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ABSTRACT  
   

Science is a formalized method for acquiring information about the world. In 

recent years, the ability of science to do so has been scrutinized. Attempts to reproduce 

findings in diverse fields demonstrate that many results are unreliable and do not 

generalize across contexts. In response to these concerns, many proposals for reform have 

emerged. Although promising, such reforms have not addressed all aspects of scientific 

practice. In the social sciences, two such aspects are the diversity of study participants 

and incentive structures. Most efforts to improve scientific practice focus on replicability, 

but sidestep issues of generalizability. And while researchers have speculated about the 

effects of incentive structures, there is little systematic study of these hypotheses. This 

dissertation takes one step towards filling these gaps. Chapter 1 presents a cross-cultural 

study of social discounting – the purportedly fundamental human tendency to sacrifice 

more for socially-close individuals – conducted among three diverse populations (U.S., 

rural Indonesia, rural Bangladesh). This study finds no independent effect of social 

distance on generosity among Indonesian and Bangladeshi participants, providing 

evidence against the hypothesis that social discounting is universal. It also illustrates the 

importance of studying diverse human populations for developing generalizable theories 

of human nature. Chapter 2 presents a laboratory experiment with undergraduates to test 

the effect of incentive structures on research accuracy, in an instantiation of the scientific 

process where the key decision is how much data to collect before submitting one’s 

findings. The results demonstrate that rewarding novel findings causes respondents to 

make guesses with less information, thereby reducing their accuracy. Chapter 3 presents 
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an evolutionary agent-based model that tests the effect of competition for novel findings 

on the sample size of studies that researchers conduct. This model demonstrates that 

competition for novelty causes the cultural evolution of research with smaller sample 

sizes and lower statistical power. However, increasing the startup costs to conducting 

single studies can reduce the negative effects of competition, as can rewarding 

publication of secondary findings. These combined chapters provide evidence that 

aspects of current scientific practice may be detrimental to the reliability and 

generalizability of research and point to potential solutions.  
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INTRODUCTION 

One goal of science is to accumulate information in order to produce increasingly 

accurate theories of the world. Recently, science’s ability to do so has come under 

scrutiny.  In 2005, John Ioannidis published a paper titled “Why most published research 

findings are false”, in which he built a simple analytical model to determine the effects of 

various factors on the probability that a positive finding corresponded to a true effect (i.e. 

Positive Predictive Value) (Ioannidis, 2005). Ioannidis found that, for parameter 

combinations that approximate those in various fields, Positive Predictive Value is less 

than 50%. In other words, Ioannidis’s model concluded that more than half of published 

positive results are false positives. This work received widespread attention (Aschw, 

2015) and for good reason: to the extent that this model captures the core features of 

scientific practice, we should expect the validity of many scientific findings to be 

questionable.  

One way to determine the validity of research findings is to conduct direct 

replications. That is, recreate the essential elements of a research study, straying as little 

as possible from the original design, and determine the ability of the same method to 

generate the same results upon repetition (Zwaan, Etz, Lucas, & Donnellan, 2018). In the 

last several years, scholars across the social and biological sciences, in fields including 

psychology, experimental economics, experimental philosophy, and cancer biology have 

conducted large-scale replication attempts of published findings. These efforts have made 

one thing clear: all fields so-far studied have some subset of published findings that 

cannot be replicated (Begley & Ioannidis, 2015; Camerer et al., 2016; Collaboration & 
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others, 2015; Cova et al., 2018; Nosek & Errington, 2017; Prinz, Schlange, & Asadullah, 

2011).   

Given these findings, it is no surprise that there are widespread concerns about the 

validity of published scientific findings. According to a recent Nature survey, most 

scholars in most fields believe that science is facing a replication crisis (Baker, 2016). 

Current scientific practice is certainly generating information about the world, but there 

appears to be much room for improvement.  

We have reason to suspect that many failures to replicate published findings are 

due to the fact that published findings are unreliable (e.g. false-positives). Many current 

practices that scientists engage in increase the probability of unreliable findings. Studies 

often lack statistical power (Button et al., 2013; Cohen, 1962; Ioannidis, Stanley, & 

Doucouliagos, 2017; Smaldino & McElreath, 2016) meaning that they have a low 

probability of accurately detecting a true effect when one exists. And one consequence of 

low statistical power is, conditional on publication bias against negative results, 

published research will have a higher ratio of false-positive-to-true-positive findings 

(Ioannidis, 2005), and produce inflated published estimates of true effect sizes (Button et 

al., 2013). Second, researchers introduce many sources of undisclosed bias during the 

research process (i.e. researcher degrees of freedom) that increase the probability of false-

positive results (John, Loewenstein, & Prelec, 2012; Simmons, Nelson, & Simonsohn, 

2011). And in part due to publication bias against negative results and lack of incentives 

for conducting replications, most published studies report novel, positive results (Fanelli, 

2011; Makel, Plucker, & Hegarty, 2012).  
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 However, published findings can also fail to replicate even if the original findings 

were correct because of differences between original studies and replications (Gilbert, 

King, Pettigrew, & Wilson, 2016). For instance, seemingly arbitrary aspects of 

experimental context (e.g. light vs. dark room) or experimental design (e.g. using 

different scales to measure a psychological construct) can generate different results, 

essentially serving as “hidden moderators” of effects (Frey, Pedroni, Mata, Rieskamp, & 

Hertwig, 2017; Gilbert et al., 2016; Landy & others, n.d.; N. Schwarz & Clore, 2016; 

Van Bavel, Mende-Siedlecki, Brady, & Reinero, 2016). Additionally, because most 

social-science research relies on convenience samples (i.e. college undergraduates) and is 

otherwise conducted with participants from a narrow-range of humanity (i.e. those from 

western, educated, industrialized, rich, and democratic societies), even findings that 

reliably replicate among these participants may not generalize to humanity as a whole 

(Henrich, Heine, & Norenzayan, 2010; Medin, 2017; Nielsen, Haun, Kärtner, & Legare, 

2017). These combined considerations suggest that research findings will often be limited 

in their reliability and generalizability, and that current scientific practices may 

exacerbate these problems.  

This dissertation research strives to reveal limitations of current research practices 

and understand their causes. Chapter 1 presents a cross-cultural study of social 

discounting - the purportedly fundamental human tendency to sacrifice more for socially-

close individuals. This study was conducted among the most diverse populations to date 

(U.S. undergraduates, rural Indonesians, rural Bangladeshis). This allowed examination 

of whether social discounting generalizes beyond the narrow range of participants used in 
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previous studies (i.e. college-undergraduates and U.S. participants). In contrast to most 

prior research, this study found no independent effect of social distance on generosity 

among Indonesian and Bangladeshi participants, despite documenting this effect among 

U.S. participants. This finding suggests that social discounting is less generalizable than 

previously assumed. It also suggests the importance of increasing investment in strong 

checks on generalizability across diverse human populations, in addition to current 

scientific reforms that largely focus on the reliability of published findings.   

Chapters 2 and 3 move from empirical demonstrations of issues with current 

scientific practice towards understanding the causes of problematic practices. Chapter 2 

presents a laboratory experiment with U.S. undergraduates testing how incentive 

structures can affect research quality. This experimental protocol was reviewed and 

provisionally accepted for publication in Royal Society Open Science via a new article 

format called a “registered report” (C. D. Chambers, 2013; Nosek & Lakens, 2014). 

Registered reports are evaluated based on the importance of the research question and the 

quality of the proposed methodology, before data-collection ensues. In this way, 

registered reports ameliorate some problems with how research is currently conducted 

and published (e.g. incentives to hunt for positive and clean results; bias against null-

results; underpowered studies) (Nosek & Lakens, 2014). The experiment in Chapter 2 

focuses on the effect of one incentive in particular: rewards for novel results. It tests 

whether rewarding novel results affects the amount of information that people acquire 

when solving research questions and how much effort they invest in doing so. This study 

finds that rewarding novel research findings has harmful effects (i.e. individuals make 
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guesses with less information) and finds no evidence of benefits (i.e. competition does 

not cause individuals to increase effort in order to acquire information more efficiently).  

Chapter 3 presents an agent-based model that tests the effect of competition for 

novel research findings on the sample size of studies that researchers conduct. In this 

model, scientists investigate a phenomenon and compete to be first to obtain a 

statistically significant result. Scientists can increase statistical power by using larger 

samples, but this takes more time and so increases their risk of being “scooped”.  The 

model demonstrates that competition for novel research findings causes the cultural 

evolution of research with smaller sample sizes and lower statistical power than when 

competition is absent. It also finds that increasing the time costs associated with setting 

up a single study can reduce the negative effects of competition, as can rewarding 

publication of non-novel findings. Chapters 2 and 3 suggest that current hypotheses about 

the detrimental effects of competition on the scientific process are valid under some 

conditions: competition for novel findings can cause reduced research quality. However, 

competition can also have benefits, causing individuals to increase research quality.  

Additionally, the model in Chapter 3 points to one way to ameliorate the negative effects 

of competition: increase rewards for publication of non-novel results and increase the 

startup costs to conducting studies. These provide a way forward as the scientific 

community works towards a better understanding of how to change current incentive 

structures in order to increase the reliability of published findings.  
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CHAPTER 1 

GENERALIZABILITY IS NOT OPTIONAL: INSIGHTS FROM A CROSS-

CULTURAL STUDY OF SOCIAL DISCOUNTING 

Abstract 

Current scientific reforms focus more on solutions to the problem of reliability 

(e.g. direct replications) than generalizability. Here, we use a cross-cultural study of 

social discounting to illustrate the utility of a complementary focus on generalizability 

across diverse human populations. Social discounting is the tendency to sacrifice more 

for socially-close individuals—a phenomenon replicated across countries and 

laboratories. Yet, when adapting a typical protocol to low-literacy, resource-scarce 

settings in Bangladesh and Indonesia, we find no independent effect of social distance on 

generosity, despite still documenting this effect among U.S. participants. Several 

reliability and validity checks suggest that methodological issues alone cannot explain 

this finding. These results illustrate why we must complement replication efforts with 

investment in strong checks on generalizability. By failing to do so, we risk developing 

theories of human nature that reliably explain behavior among only a thin slice of 

humanity. 

Introduction 

A long-term goal of psychological science is to produce robust and generalizable 

theories of human nature (Crandall & Sherman, 2016; Rozin, 2009). In recent years, we 

have become increasingly aware of how inefficiencies in the scientific process obstruct 

progress towards this goal (Begley & Ioannidis, 2015; C. Chambers, 2017; Ioannidis, 
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2005; Munafò et al., 2017) and may contribute to the unreliability of published research 

findings (Begley & Ioannidis, 2015; Camerer et al., 2016; Collaboration & others, 2015). 

This realization has inspired a revolution: Psychologists (along with scholars from 

diverse disciplines) have united to propose a range of innovative reforms to current 

scientific practice (C. Chambers, 2017; Munafò et al., 2017).  One central reform has 

been an increased emphasis on direct replications, studies that recreate the essential 

elements of previous research to assess the ability of a specific method to generate the 

same results upon repetition (Zwaan et al., 2018).  Direct-replication efforts are rapidly 

changing the scientific landscape.  Large-scale interdisciplinary replication teams are 

emerging across the globe, scientific journals are increasingly publishing direct 

replications, and federal governments are beginning to invest resources in replication 

efforts (Baker, n.d.; Nelson, Simmons, & Simonsohn, 2017).  

This cultural shift is long overdue: direct replications are essential for determining 

the reliability of findings (Koole & Lakens, 2012; Zwaan et al., 2018). Nonetheless, 

direct replications are no panacea (Munafò & Smith, 2018; Stroebe & Strack, 2014): they 

often do not reveal boundary conditions for an effect (Fiedler, 2011; Simons, Shoda, & 

Lindsay, 2017a), the extent to which it replicates under different operationalizations of 

theoretical constructs (Crandall & Sherman, 2016), or how well it generalizes to different 

study populations (Henrich et al., 2010). Recently, Marcus Munafo and George Davey 

Smith (scholars who have dedicated their careers towards increasing scientific reliability) 

expressed concerns that an increased emphasis on direct replication is “...laudable, but 

insufficient” (14, p.1 ) because it underemphasizes the fact that “strong theories emerge 
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from the synthesis of multiple lines of evidence” (14, p. 3). In other words, direct 

replications solve one barrier to developing broadly-relevant theories of human nature 

(i.e. reliability) but do not (and are not designed to) solve others (e.g. generalizability).   

Moving generalizability into the limelight   

The vast majority of proposals to improve scientific practice sidestep the issue of 

generalizability. Proposals by leading scholars in the field, including John Ioannidas’s 

“How to Make More Published Research True” and an interdisciplinary “Manifesto for 

Reproducible Science” have largely focused on threats to reproducibility (e.g. p-hacking, 

publication bias, low-statistical power, openness of materials, replication) (Ioannidis, 

2014; Munafò et al., 2017). Those proposals that have directly engaged with concerns 

about generalizability have focused largely on experimental design and statistical 

analysis. For instance, radical randomization of experimental parameters (Baribault et al., 

2018) and crowdsourcing operationalizations of theoretical constricts (Landy & others, 

n.d.) and analytical choices (Silberzahn et al., 2017) have all been proposed as ways to 

reveal how effects vary due to arbitrary choices that researchers make when designing 

studies. Here we focus on another longstanding proposal to improve generalizability: 

increasing sample diversity (Henrich et al., 2010; Moshontz et al., 2018).  

Social scientists have long worried that convenience samples (e.g. college 

undergraduates) bias our inferences about human nature (Arnett, 2008; Henrich et al., 

2010; McNemar, 1946; Nielsen et al., 2017; Peterson, 2001; Sears, 1986). Despite these 

concerns, most social-science research continues to rely on participants from a narrow 

slice of humanity (i.e. those from western, educated, industrialized, rich, and democratic 
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societies (Henrich et al., 2010)) and leading proposals for scientific reform scarcely 

mention the issue of sample diversity (Munafò et al., 2017, but see Moshontz et al., 2018; 

Simons et al., 2017a). It is not clear why worries about unrepresentative participants have 

not translated into tangible changes to scientific practice, whereas worries about 

unreliable effects have: Henrich, Heine, and Norenzayan (2010) published their widely-

cited “WEIRD” paper (Henrich et al., 2010) just one year before Simmons, Nelson, and 

Simonsohn published “False-Positive Psychology” (Simmons et al., 2011), Daryl Bem’s 

published his infamous pre-cognition paper (Bem, 2011), and Diedrik Stapel admitted to 

fabricating decades worth of psychological data (Bhattacharjee, 2013). The latter three 

events “drove psychological science into a spiral of methodological introspection” (10, p. 

3). The former seems to have led largely to brief caveats that acknowledge the 

unrepresentativeness of participants, cite the WEIRD paper, and go about business as 

usual (Medin, 2017; Nielsen et al., 2017).  

In this paper, we use our recent multi-site investigation of social discounting as 

one in an emerging set of case studies to illustrate how failing to conduct checks on 

generalizability across diverse samples can lead to the production of narrow models of 

human behavior (for other examples, see (Apicella & Barrett, 2016; Henrich, 2015; 

Henrich et al., 2010)). We do so acknowledging the fact that convenience samples 

(including WEIRD populations) are often useful: all authors of this paper have and 

continue to rely on convenience samples in our work. We also do not have a special 

reason for choosing social discounting as a case study, besides the fact that we have 

conducted social-discounting research and are familiar with the literature. Rather, we 
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suspect that social discounting research illustrates an issue that will become increasingly 

relevant to many fields of psychological science: we have good evidence that a 

phenomenon reliably replicates in a limited set of conditions but know little about 

whether it constitutes a general feature of human nature or is a quirk of the WEIRD 

participants upon which we so heavily rely.  

Social Discounting 

In psychology, social discounting is defined as the tendency to bear greater costs 

to benefit socially-close individuals than socially distant ones (Jones & Rachlin, 2006). 

Specifically, when given the option to sacrifice money (or some other resource) in order 

to provide money (or some other resource) to others, people sacrifice substantially more 

for socially-close partners. Over 50 published studies in the last 10 years document this 

behavioral bias (see https://osf.io/cfkdr/), including a recent pre-registered direct 

replication (see https://osf.io/fn9am/).  The apparent regularity of a hyperbolic 

relationship between social distance and generosity has led scholars to hypothesize a 

fundamental relationship with time discounting (Jones & Rachlin, 2006) and investigate 

its neural basis (Strombach et al., 2015). Others give social-discounting law-like status 

(Goeree, McConnell, Mitchell, Tromp, & Yariv, 2010), or describe it as a “robust 

phenomenon, with respondents across settings and cultures reliably willing to sacrifice 

more resources for socially close others relative to distant others” (36, p. 1). 

From the perspective of assessing reliability, using the same method to find a 

recurring hyperbolic relationship between social distance and willingness to sacrifice 

could be considered a success.  Yet, we know little about whether successful replication 
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extends beyond the limited range of participants and methods in these studies.  To 

understand the scope of this potential problem, we reviewed all social-discounting studies 

that cited Rachlin and Jones’ seminal social-discounting paper (Jones & Rachlin, 2006) 

and used a comparable protocol (see https://osf.io/k8sbg/).  Of 43 groups of participants 

from 21 publications, 40 groups were from the United States and/or university students, 

with only 3 groups as exceptions (1 from an Indian Mechanical Turk sample, (Hackman, 

Danvers, & Hruschka, 2015) and 2 from one study in Singapore (Pornpattananangkul, 

Chowdhury, Feng, & Yu, 2017)).  Even research cited as supporting the cross-cultural 

reliability of social discounting typically relies on university students (Ishii & Eisen, 

2018; Ma, Pei, & Jin, 2015; Strombach et al., 2014)1.  

The Standard Social-Discounting Protocol 

 The standard protocol for assessing social discounting was developed with U.S. 

college undergraduates ((Jones & Rachlin, 2006); a similar protocol is used in 

evolutionary psychology to study welfare-tradeoff ratios (Delton & Robertson, 2016)). 

Typically, it consists of a paper-and-pencil task where participants imagine a list of 100 

people closest to themselves.  Participants then identify a person (recipient) at a specific 

location on that list (e.g. #1, #2, #5, #10, #20, #50, #100).  For each recipient, participants 

                                                
1 One exception is a study that compared social discounting among U.S. college 

students, urban Chinese, and Kenyan herders (P. Boyer, Lienard, & Xu, 2012). Boyer, 
Lienard & Xu found that social distance had a weaker effect on generosity among 
Kenyan herders compared to the other two groups. However, because this study did not 
measure social distance directly (instead using culture-specific categories such as “high-
school friend” or “same-age-set”), it is unclear how to compare its results to those of 
typical protocols (or even across languages or cultures) and it did not meet our pre-
registered exclusion criteria (see https://osf.io/k8sbg/).   
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make several decisions about keeping some amount of money for themselves or 

transferring some amount to the recipient.  In a typical task (Locey, Jones, & Rachlin, 

2011; Rachlin & Jones, 2008; Vekaria et al., 2017), participants might choose between 

option A and option B as follows:   

“A. $85 for you alone. B. $75 for the #___ person on the list. 
 
A. $75 for you alone. B. $75 for the #___ person on the list. 

 
A.  $65 for you alone. B. $75 for the #___ person on the list. 
… 

 A.  $5 for you alone.   B. $75 for the #___ person on the list.” 
 

To assess individual generosity, analyses typically calculate the “crossover point” 

in the sequence of questions where respondents switch from response A (i.e. the selfish 

option) to response B (i.e. the generous option). For example, if a participant chooses the 

selfish option at $85 and $75 but switches to the generous option at $65, her crossover 

point is $70. This approach assumes that participants will switch from generous to selfish 

only once in a sequence of decisions. Participants that make multiple crossovers are 

labelled “inconsistent” and often excluded from analyses (Jones & Rachlin, 2006; 

Vekaria et al., 2017). 

To assess ecological and cultural moderators of social discounting, we adapted 

this social-discounting task (Rachlin & Jones, 2008) to a low-resource, rural, semi-literate 

setting in Bangladesh, as well as the most commonly studied population in the literature 

—U.S. college undergraduates.  Doing so revealed a drastically different pattern of 

responding (Table 1; Figures 1 - 3). Unlike U.S. college undergraduates, Bangladeshi 

participants were not more generous to socially-close partners. We were surprised by this 

finding: based dozens of prior studies (see Figure 3) we expected to find at least some 
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degree of social discounting. We then took advantage of an opportunity to run the same 

task in another non-western, low-resource setting: rural Indonesia. Again, we found the 

same pattern: Indonesian participants were not more generous to socially-close partners. 

These patterns could not be explained by several common methodological critiques, such 

as participants failing to understand the protocol, poor measurement of dependent or 

independent variables, floor effects, or low statistical power. 

Methods 

 Because participants in rural Bangladesh and Indonesia are semi-literate and have 

varying levels of schooling and experience with typical abstracted paper-and-pencil tasks, 

adapting the standard protocol to these settings required extensive modifications 

(Hruschka, Munira, Jesmin, Hackman, & Tiokhin, in press).  These included 1) 

translation of materials, piloting, and comprehension checks, 2) identifying locally 

appropriate idioms for ranking relationships by social distance, 3) limiting the list of 

socially-close individuals to 20, 4) asking respondents to list and then physically rank 

cards with 20 socially-close individuals rather than asking for abstract rankings of 

1,2,5,10, and 20, 5) modifying how participants identify partners (Bangladesh: choosing 

among images of all individuals in the village; Indonesia: writing and ranking socially-

close individuals on notecards), 6) use of an alternative currency (Bangladesh: rice 

instead of money) to avoid harming ongoing relationships with community members, 7) 

presenting choices between selfish and generous options on slips of paper that could be 

placed in a transparent lottery, 8) visual representation of the stakes on slips of paper and 

9) using strategically-placed screens to enhance anonymity of decisions.  Such challenges 
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are the norm when developing protocols that are meaningful across variable contexts and 

cultural settings (Apicella, Crittenden, & Tobolsky, 2017; Henrich et al., 2010; Hruschka 

et al., in press).  

Unless otherwise stated, the following adapted protocol was used uniformly 

across all three sites, including the U.S. sample.  Participants made a list of the 20 people 

that they felt closest to and that did not live in their same household.  We identified the 

idiom most closely aligned with “social closeness” in Bangladesh and Indonesia from 

conversations with local respondents about how they describe good relationships where 

partners care about and help each other (i.e. Bangladesh: ghonishto, meaning 

“thick/viscous”; Indonesia: dekat, meaning “close”).  Participants then sorted the listed 

individuals in order of how close they felt to each one.  The experimenter then selected 

individuals at 5 social distances (#1, #2, #5, #10, #20) for the subsequent task.  For each 

of these 5 individuals, participants made 6 dichotomous choices between keeping a 

certain amount of currency for themselves (i.e. selfish option) or giving a certain amount 

of the currency to that recipient (i.e. generous option).  The generous option remained 

fixed for all choices.  The selfish option varied between an amount equal to the generous 

option to an amount 10% of the generous option, and the order in which it was presented 

was randomized. The maximum generous option was scaled to the equivalent of a half-

to-full day’s wage in each of the contexts (150 Tk in Bangladesh, 25 USD in college 

student sample, 50,000 IDR in Indonesia).  To assess individual decisions with unfamiliar 

partners, participants also made decisions between selfish and generous options for an 
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“unknown person”.  Participants in Bangladesh also made decisions between selfish and 

generous options for an “acquaintance” in the village.  

Each decision was presented as a choice between two paper tickets, one with the 

selfish option and one with the generous option.  For each choice, participants placed 

their preferred ticket in a small bucket labeled “lottery”, and their non-preferred ticket in 

a small bucket labeled “trash”.  Participants were instructed that one of the tickets placed 

in the “lottery” would be paid out at the end of the experiment, whereas all tickets placed 

in the “trash” would be thrown away.  All decisions were made behind a screen so that 

the experimenter was blind to participant decisions.  Participants were instructed that 

their choices were anonymous and choice order was randomized between individuals.  

We found high rates of “inconsistency” in choices (i.e. multiple crossover points 

for at least 1 recipient) among participants in both Bangladesh and Indonesia (80% and 

100% of participants with non-zero generosity were inconsistent in Bangladesh and 

Indonesia, respectively; see Appendix).  As a consequence, we used a weighted average 

of respondents’ 6 decisions (henceforth “expected sharing”). Expected sharing is 

monotonically increasing with the crossover point when respondents have a single 

crossover point, does not force exclusion of inconsistent respondents, and provides a 

simple measure of individual differences in generosity (See Appendix for details and for 

re-analysis using approximated crossover points).  Notably, “inconsistent” respondents 

did not behave differently than “consistent” respondents, indicating that inconsistency 

does not arise from failure to comprehend the task (See Appendix). 
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Upon finishing the task, participants completed several self-report measures.  

Participants indicated the relative financial need of the recipient compared to themselves 

via an ordinal scale (i.e. “This person is needier than you”, “This person has the same 

need as you”, “This person is less needy than you”).  Participants in the U.S. and 

Indonesia also completed the Inclusion of Other in the Self (IOS) Scale (Aron, Aron, & 

Smollan, 1992), as a complementary measure of closeness to the recipient.  Bangladesh 

participants had difficulty understanding the IOS.  As such, in Bangladesh, we developed 

a protocol using bins of varying distance from the informant, in which villagers could 

place photos (Hackman, Munira, Jasmin, & Hruschka, 2017; Hruschka et al., in press).  

Participants also indicated their age and sex.  At the end of the experiment, one choice 

was randomly selected from the lottery for payout.  If a selfish option was selected, 

participants received that payment immediately, along with their participation fee.  If a 

generous option was selected, participants only received their participation fee.  After all 

participants completed the task, experimenters paid the appropriate amount to any 

recipient randomly selected to receive a payout without indicating who it came from. 

A total of 284 participants across 3 sites (U.S. = 40, Bangladesh = 200, Indonesia 

= 44) participated in this study (See Appendix for demographic characteristics).  In the 

U.S., we recruited 40 participants via emails sent to a list of 6000 undergraduates, curated 

by the Center for Behavior, Institutions, and the Environment.  In Bangladesh, we 

recruited one participant from each of 200 households across four villages in 

Northwestern Bangladesh (see 47).  In Indonesia, we recruited 44 participants using 

opportunity sampling from a single rural settlement (nagari) in West Sumatra, near the 
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city of Payakumbuh in the Lima Puluh Kota regency, limiting recruitment to 2 

individuals from the same household.  

For the U.S. and Indonesia, sample size was determined based on the sample size 

in a previous lab study of social discounting (Hackman et al., 2015).  For Bangladesh, 

sample size was chosen to provide sufficient power (Power = 0.80, α = 0.05) to detect a 

bivariate association between social distance and generosity with a coefficient of 

prediction greater than 0.15.  

Analysis and Results 

We tested whether generosity declines with increasing social distance by 

regressing expected sharing on social distance using a multilevel model (Table 1).  This 

model controls for genetic relatedness (linear) and relative need (categorical), and for 

correlated observations from the same participant with random effects for each 

individual.  It also includes two random slopes: social distance and recipient need (See 

Appendix for alternative-model comparisons).  Because the relationship between money 

forgone and social distance typically follows a heavy-tailed function, we use the natural 

log of social distance as a predictor.  To adjust for multiple comparisons, we use 

Bonferroni-adjusted alpha (α = 0.004) levels for all tests of statistical significance based 

on 12 tests.  

For comparability with prior social-discounting research using real stakes, we 

limit our analysis to decisions for social distances #1, #2, #5, #10, and #20 (Locey et al., 

2011).  In the Appendix, we also report analyses including generosity towards an 

“unknown person” in all 3 sites (See Appendix).  
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Consistent with prior research, we find a strong independent effect of social 

distance on generosity among U.S. undergraduates, after controlling for need and 

relatedness [β = -0.10, 95% CI [ -0.12, -0.08], p<0.001].  In contrast, we find no 

independent effect of social distance on generosity among Bangladeshi [β = 0.00, 95% CI 

[ -0.01, 0.01], p = 0.677] or Indonesian [β = -0.01, 95% CI [ -0.03, 0.02], p=0.626] 

participants (Table 1; Figure 1a). The independent effects of social distance on generosity 

in Bangladesh [β = 0.10, 95% CI [ 0.08, 0.12], p<0.001] and Indonesia [β = 0.10, 95% CI 

[ 0.07, 0.12], p<0.001] were significantly different from the effect among U.S. 

undergraduates (see Table 8S in appendix). The independent effects of social distance on 

generosity in Bangladesh and Indonesia were not significantly different from each other 

[β = -0.01, 95% CI [ -0.03, 0.02], p=0.541]. The maximum plausible effect-size estimates 

in Bangladesh [β = -0.01] and Indonesia [β = -0.03] are several times smaller than the 

minimum plausible effect-size estimate in the U.S. [β = -0.08].  These results are robust 

to a variety of alternative model specifications (see appendix for sensitivity analyses and 

BIC-approximated Bayes Factors (Wagenmakers, 2007)). 

Figure 2 plots the distribution of expected sharing in all sites, as a function social 

distance and the relative need of a recipient. This depicts a slight decrease in generosity 

with increasing social distance among Indonesian participants in the raw data. However, 

the apparent decrease in generosity with increasing social distance among Indonesian 

participants is due to a confounding effect of relative need judgments at varying social 

distances: we find this effect only when removing relative need as a fixed-effect predictor 

from the multilevel model in Table 1 (See Appendix).  
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 This study’s finding—that generosity does not increase with decreasing social 

distance—diverges from well-established findings in social-discounting research.  Figure 

3 plots our findings against those of comparable social-discounting studies, comprising 

39 groups of participants from 19 published articles (for data and pre-registration, see 

https://osf.io/k8sbg/).  For comparability, we calculate the ratio of the maximum amount 

forgone by participants to the amount transferred to recipients in all studies.  

    U.S.  
Expected Sharing   Bangladesh  

Expected Sharing   Indonesia 
Expected Sharing 

    Estimate 
(CI) P   Estimate (CI) P   Estimate 

(CI) P 

Fixed Effects 

(Intercept)   0.71 
(0.57, 0.84) <.001   0.15 

(0.07, 0.22) <.001   0.67 
(0.56, 0.78) <.001 

Ln Social 
Distance   -0.10 

(-0.12, -0.08) <.001   0.00 
(-0.01, 0.01) .677   -0.01 

(-0.03, 0.02) .626 

Need 

Recipient 
Equally 
Needy 

  -0.10 
(-0.22, 0.02) .121   -0.07 

(-0.15, 0.01) .084   -0.20 
(-0.29, -0.10) <.001 

Recipient  
Less Needy   -0.19 

(-0.32, -0.07) .004   -0.13 
(-0.21, -0.05) .001   -0.31 

(-0.42, -0.20) <.001 

Relatedness   0.05 
(-0.08, 0.19) .459   -0.01 

(-0.10, 0.08) .857   0.12 
(-0.00, 0.25) .056 

 
 

Table 1| Generosity as a function of social distance, need, and relatedness. 
Fixed effects from multilevel model of social distance, recipient need, and 
relatedness regressed on expected sharing. Model controls for correlated 
observations from the same participant with random effects for each individual 
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and includes random slopes for social distance and recipient need. CI = 95% 
confidence intervals. 

 
 
a.                                                                       b.  

  
 

 

Figure 1| Independent effects of social distance and need on generosity. 
Independent effects of a. social distance (natural log transformed) and b. relative 
need on expected sharing. Model estimates from the multilevel model in Table 1. 
Error bars represent 95% confidence intervals. 
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a.                                                                       

 
b. 

 
 

Figure 2| Distribution of generosity as a function of social distance and 
relative need of recipient. Probability density of expected sharing as a function 
of a. social distance and b. relative need. Dots represent arithmetic means. Error 
bars represent 95% confidence intervals. 
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  a.                                                                         b.  

 
 

Figure 3| Social discounting in prior research and current study. Social 
discounting, plotted as the ratio of the maximum amount foregone by participants 
to the amount transferred to recipients. Error bars represent 95% confidence 
intervals. a. Prior studies (N = 39 groups of subjects across 19 publications). b. 
Current study.  
 
To further probe why social distance did not predict generosity among 

Bangladeshi and Indonesian participants, we analyzed participants’ verbal statements 

about the reasons for their decisions.  In all sites, we asked participants to explain their 

decisions at the end of the task. Bangladeshi and U.S. participants were asked to justify 

their decisions towards each recipient, whereas Indonesian participants were asked for 

justifications once, after making all decisions towards all recipients.  After reading a 

subset of statements, we generated a codebook with 13 categories (See Appendix).  Each 

author independently coded all participant statements in all sites and we resolved 

conflicting codes via collaborative discussion.  We then analyzed the subset of codes 

most relevant to our findings: statements about qualities of relationships and statements 

about own or recipient need (see Appendix for codebook and https://osf.io/cfkdr/ for 
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complete data set).  Figure 4 plots the proportion of participants who made at least 1 

statement about relationships or need in justifying their decisions.  The majority of 

participants in all sites mentioned need as a justification for their decisions.  In contrast, 

only in the U.S. did the majority of participants mention relationships. In Bangladesh and 

Indonesia, 15% and 45% of participants mentioned relationships, respectively.  In 

Indonesia, many respondents mentioned both need and social relationships, even though 

we did not find an effect of social distance on generosity [β = -0.01, 95% CI [ -0.03, 

0.02], p=0.626]. However, almost all Indonesian participants that mentioned relationships 

only mentioned the importance of helping family, and Indonesia was the site where we 

found the largest estimate for the effect of relatedness on generosity [β = 0.12, 95% CI [ -

0.00, 0.25], p=0.056]. Participants’ statements appear to correspond closely to their 

behavior in the social-discounting task, providing convergent evidence that factors 

regarding relationship quality have a stronger impact on U.S. participants’ behavior than 

they do for Bangladeshi and Indonesian participants.  
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Figure 4| Proportion of Participants Who Mentioned Need or Relationships 
When Explaining their Behavior. Proportion of participants that explained their 
behavior in the social-discounting task by making at least 1 statement about 
qualities of social relationships (Relationships) or own/recipient need (Need).  
We found that Bangladeshi participants displayed low levels of generosity (160 of 

200 participants did not give anything to anyone).  To check whether our findings were 

affected by the inclusion of these participants, we re-ran the same multilevel model on 

the subset of participants with non-zero levels of generosity (U.S., n = 39; Bangladesh, n 

= 35; Indonesia, n = 42).  The results were robust to these exclusions (See Appendix).   

One potential reason for the lack of a social discounting effect in Bangladesh and 

Indonesia may be that the dependent variable (i.e. amount foregone) was unreliably 

measured.   However, another theoretically-relevant covariate — recipient’s need relative 

to participant’s need— showed significant independent associations with the dependent 

variable in all 3 sites.    Specifically, participants were more generous to individuals 
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classified as “more needy” versus those classified as “less needy” in all 3 sites (U.S. [β = 

-0.19, 95% CI [ -0.32, -0.07], p = 0.004], Bangladesh [β = -0.13, 95% CI [ -0.21, -0.05], 

p=0.001], Indonesia [β = -0.30, 95% CI [ -0.41, -0.20], p < 0.001]).  This suggests that 

generosity was measured with sufficient reliability to have substantial and significant 

associations with at least one theoretically-important variable.   

Another reason for the lack of a social discounting effect may be that the 

independent variable (i.e. social distance) was unreliably measured, despite having shown 

strong relationships with reported helping in a previous study in the same Bangladesh 

context (Hackman et al., 2017).  To assess this possibility, we analyzed the relationship 

between social-distance rankings and reports of closeness via the IOS scale (and 

Bangladesh modification of the IOS), using a multilevel model with random effects for 

each individual.  Participants in the U.S. (β = -1.23, 95% CI [ -1.38, -1.08], p<0.001), 

Indonesia (β = -0.86, 95% CI [ -1.00, -0.72], p<0.001) and Bangladesh (β = -0.78, 95% 

CI [ -1.00, -0.59], p<0.001) reported feeling less close to individuals at greater social 

distances.  Further, participants in the U.S. (β = -0.03, 95% CI [ -0.05, -0.01], p<0.001), 

Indonesia (β = -0.06, 95% CI [ -0.08, -0.05], p<0.001) and Bangladesh (β = -0.02, 95% 

CI [ -0.02, -0.01], p<0.001) were less closely genetically related to individuals at greater 

social distances.   

Another concern in Bangladesh is that of a “floor” effect on amount foregone.  

Specifically, if Bangladesh participants had been offered a chance to sacrifice even less 

than 1/2kg rice to give their partner 5kg rice, we may have detected some effect of social 

distance.  However, 1/2kg rice is already a very low level of sacrifice (10% of what the 
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partner would have received), and there was ample room for examining variation above 

that low level of potential sacrifice.  Moreover, even Indonesian participants who had 

much higher levels of sacrifice did not exhibit social discounting, independent of other 

effects (e.g., relative need).  

It is possible that the effect of social discounting only exists when participants 

interpret decisions as independent, whereas Bangladeshi and Indonesian participants 

tended to interpret the task in a cumulative context.  This would represent a previously-

unknown boundary condition for social discounting.  To assess this possibility, we tested 

for an interaction effect of participant consistency and social distance on expected 

sharing, using a multilevel model with random effects for each individual.  Because all 

Indonesian participants were inconsistent, this analysis is limited to the U.S. and 

Bangladesh.  Among participants with non-zero generosity, there is no evidence that 

inconsistent participants exhibited less social discounting than consistent participants in 

the U.S. (β = -0.01, 95% CI [ -0.09, 0.06], p = 0.687) or Bangladesh (β = -0.01, 95% CI [ 

-0.08, 0.06], p = 0.760) (See Appendix for BIC-approximated Bayes Factors).  This 

suggests that a cumulative interpretation of the task is not sufficient to explain a lack of 

social discounting.  

It remains possible that the current design was insufficiently powered to detect a 

true relationship between social distance and generosity.  To assess this possibility, we 

used the SIMR (Green & MacLeod, 2016) package in R (R Core Team, 2017) to estimate 

the effect size that our study had 95% power (α = 0.05) to detect.  We find that the 

current study had approximately 95% power to detect an effect of [β = -0.018] in 



 

  27 

Bangladesh and [β = -.040] in Indonesia.  This indicates that the current design was 

sufficiently powered to detect all but the smallest effects.  Detecting substantially smaller 

effects would require samples that are orders of magnitude larger than those of the 

current study.  To illustrate, we calculate the number of participants needed to have 95% 

power (α = 0.05) to detect a true relationship between social distance and generosity, 

using the estimated effect sizes from Table 1.  For Bangladesh, detecting an effect of [β = 

0.002] would require approximately 3200 participants.  For Indonesia, detecting an effect 

of [β = -0.006] would require approximately 4200 participants.  

Discussion  

 We adapted a common social-discounting protocol, using real stakes, for 

implementation in 3 diverse populations: rural Bangladesh, rural Indonesia, and U.S. 

undergraduates.  U.S. undergraduates displayed typical patterns of social discounting, 

replicating findings from numerous previous studies: participants incurred substantially 

greater costs to benefit socially-closer individuals. However, we also found a 

fundamental difference between U.S. undergraduates and the two rural populations in the 

relationship between social distance and generosity.  In stark contrast, Bangladeshi and 

Indonesian participants did not exhibit social discounting.  Further, participants in all 

sites were more generous to partners categorized as having greater relative need. These 

findings were consistent with respondents’ post-decision rationales for their choices and 

could not be explained by several potential methodological concerns. 

Our protocol differed in several ways from typical protocols (see 

https://osf.io/cfkdr/; (Hruschka et al., in press)). These modifications were necessary to 
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implement a study in rural settings with lower-literacy rates and participants unfamiliar 

with typical economic games, and we do not yet know how they affected our results.  The 

fact that our findings among U.S. participants were consistent with past U.S. findings 

provides evidence that our study retained key aspects of typical protocols.  And the fact 

that we documented the same pattern in Bangladesh and Indonesia (i.e. need predicts 

generosity but social distance does not) despite different protocols (See Methods) 

provides convergent evidence that these findings are not artefacts of one specific method 

(Munafò & Smith, 2018). Nonetheless, all operationalizations are imperfect and even 

seemingly arbitrary differences between protocols can generate dramatically different 

results (Landy & others, n.d.). We know embarrassingly little about what construct is 

captured by the typical measure of generosity used in this study (dichotomous choices 

between amounts of currency for self-versus other) and how well it correlates with 

different alternative operationalizations. This problem is not unique to social discounting 

(see (Frey et al., 2017) for a similar issue in studies of risk-preference) and is an 

important direction for future research.  

 Despite working with informants to ensure appropriate translations, it is possible 

that key concepts (e.g. social closeness) were understood differently by participants in 

Indonesia and Bangladesh than U.S. undergraduates.  However, at least in Bangladesh, 

extensive interviewing suggests that the local term, ghonishto, is the appropriate modifier 

to describe relationships as intimate, close, or familiar.  In interviews about their 

ghonishto friends and relationships, people mentioned that one helps them, can rely on 

them for help, and can talk with them about sensitive matters.  In Indonesia, translators 
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and local research assistants identified dekat as the appropriate term to describe close and 

intimate relationships.  Further, in all three sites, social distance was negatively correlated 

with another measure of closeness (i.e. IOS) and genetic relatedness (see results).  This 

provides evidence that the idioms used in Bangladesh and Indonesia were roughly 

comparable to U.S. meanings.    

Our study absolutely does not support general claims such as “humans are not 

more generous to socially-close partners” or “people in Bangladesh are not generous”. 

Rather, it provides one piece of evidence against the hypothesis that social discounting is 

a cross-culturally robust phenomenon. Our study also provides evidence against the 

hypothesis that generosity is hyperbolically related to social distance (Jones & Rachlin, 

2006): if social distance is unrelated to generosity, then this precludes a hyperbolic 

relationship with generosity. We can only speculate as to why our results diverge from 

prior findings.  One plausible hypothesis is differences in cultural norms across sites.  For 

example, informal interviews in Bangladesh revealed that giving without recipient need is 

a frowned-upon signal of superiority.  Norms about whether people should behave 

according to personal preferences versus formal social obligations also vary across 

cultures, and it is possible that social discounting only exists when people treat others 

based primarily on individual feelings (Miller & Bersoff, 1998). It is also possible that 

populations in resource-scarce environments have norms that encourage a focus on 

relative need over other factors.  Future research can assess this possibility by 

implementing social-discounting protocols among populations that vary in resource 

scarcity.  
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Given that norms strongly shape human behavior across societies, determining 

their precise effect on social discounting is a promising direction for future research.  One 

approach is to manipulate experimental framing (e.g.  instructing participants to make 

decisions based on “your duties or obligations towards this person” vs “your personal 

feelings towards this person”), as slight changes in framing can dramatically affect 

behavior and cognition in cross-cultural settings.  However, when norms are internalized, 

slight framing-changes may be insufficient to change behavior.  In such cases, 

comparative studies in diverse cultural and ecological settings may be our main window 

into the scale of human diversity (Henrich et al., 2005). 

Towards a science of reliable and general phenomena 

 Our cross-cultural investigation of social discounting serves as one case study to 

illustrate the importance of checks on generalizability across diverse populations as a 

complement to narrowly-focused replication efforts. For any phenomenon, we should 

strive to conduct those studies that are most valuable to the scientific community. Just as 

some studies will not be worth replicating (Brandt et al., 2014; Coles, Tiokhin, Scheel, 

Isager, & Lakens, 2018), some will not warrant checks on generalizability (e.g. if an 

effect has weak empirical support, has a weak theoretical foundation, or does not even 

hold up to different operationalizations of theoretical constructs). But checks on 

generalizability are often essential. As this paper demonstrates, studying phenomena in 

previously-unstudied populations can be useful. However, distinct circumstances warrant 

distinct approaches to assessing generalizability (Apicella & Barrett, 2016). If we 

hypothesize that a reliably-replicated phenomenon is universal, we should strive to test it 
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among a diverse set of human populations. If we hypothesize that a phenomenon is 

unique to populations that exhibit some trait (e.g. that only populations with languages 

that use number words can count exact numbers of large magnitudes), then we can test 

this hypothesis by using a few target societies as critical tests (e.g. comparing 

performance on counting tasks in societies with and without number words) (Apicella & 

Barrett, 2016). And if we hypothesize that a phenomenon varies as a function of some 

parameter (e.g. generosity as a function of economic deprivation), but are agnostic as to 

the source of this variation (e.g. between cultures; between individuals within the same 

culture), then both within and between-culture studies can be useful (e.g. economic 

games among individuals from differentially-affluent neighborhoods within the same 

city; economics games among individuals from countries with different levels of 

affluence) (Nettle, 2017).  

 Without seriously considering how to improve the generalizability of our science, 

we put ourselves at risk. Foremost, we risk generating narrowly-replicable effects and 

theories of human behavior that tell us little about humanity as a whole (Crandall & 

Sherman, 2016; Henrich et al., 2010; Rozin, 2009). But we also face another risk: failing 

to study generalizability in a way that maximizes the scientific value of our research. 

Cross-cultural studies are costly, and it is often difficult to recruit large numbers of 

participants (especially for lone field researchers working in small-scale societies). Two 

unfortunate consequences are that many behavioral and psychological studies of non-

WEIRD populations rely on small numbers of participants and are never directly 

replicated. Documenting cross-cultural variation may be a necessary first step towards 
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developing generalizable theories of human nature, but it will not be sufficient unless we 

invest in complementary efforts to ensure that such variation is reliable.    

We see several potential ways to address these concerns. One is to increasingly 

invest in long-term field sites in non-WEIRD contexts (e.g. (Gurven et al., 2017)) where 

it is more feasible to acquire large sample sizes and conduct follow-up research. Another 

is to invest in large-scale collaborative projects that investigate the same phenomenon in 

diverse contexts (Barrett et al., 2016; Bryant et al., 2016; Henrich et al., 2006). One 

laudable recent initiative, The Psychological Science Accelerator (PSA), has taken the 

latter approach by developing a distributed network of laboratories across more than 50 

countries (Moshontz et al., 2018). The PSA has tremendous potential: cross-cultural 

research projects will be able to acquire previously inconceivable sample sizes and lab-

based experiments could plausibly allow better assessment of how contextual variables 

influence effect heterogeneity (Moshontz et al., 2018). Nonetheless, the PSA also faces 

major challenges. For example, if studies rely primarily on college undergraduates in 

different cultures, they will inevitably recruit participants who are wealthier, more 

educated, live in settings that more urban and industrialized, and are otherwise 

unrepresentative of much of humanity. This could result in a misleading picture of human 

diversity: consistent findings across different labs may be interpreted as establishing 

universality, whereas an effect actually depends on a parameter that does not sufficiently 

vary between labs (e.g. exposure to modern society, (Apicella, Azevedo, Christakis, & 

Fowler, 2014)). The extent to which this will be a major issue remains to be determined.  
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In our continual search for ways to improve our science, we should strongly 

consider the benefits of increasing investment in tests of generalizability across diverse 

populations. Although this point is not new (Crandall & Sherman, 2016; Henrich et al., 

2010; Rozin, 2009), we believe it deserves far more attention in current discussions on 

scientific reform.  Our plea for stronger checks on generalizability does not imply that 

replication is not important.  On the contrary, an exclusive focus on exploring 

generalizability without direct replication risks generating a range of interesting effects 

that are difficult to explain and have questionable reliability (Zwaan et al., 2018).  

Improving our science requires investment in both determining the reliability of effects 

and assessing their generalizability across diverse contexts, cultures, and populations.  

Although norms and incentives are shifting in favor of the former, the latter remains 

woefully undervalued.  This needs to change.  Only by doing so will we develop models 

of human nature that are both reliable and broadly relevant.   

Constraints on Generality (COG) 

 Constraints on Generality (COG) Statement (Simons et al., 2017a). The current 

study found no social discounting among participants from rural Bangladesh and 

Indonesia.  We were surprised by this finding, and can only speculate as to the conditions 

in which it will replicate.  Participants. Social distance and generosity: rural, resource-

scarce populations in Asia.  We have no reason to believe that the effect of recipient need 

on participant generosity depends on other characteristics of participants. Materials. We 

have no reason to believe that the results depend on characteristics of the specific 

materials used in our social-discounting protocol, although the lottery procedure may 
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increase the likelihood of “inconsistent” responding. Procedures. Social-closeness should 

be translated using the same terminology as the current study (i.e. ghonishto in 

Bangladesh; dekat in Indonesia).  Participants should pass a comprehension check before 

starting the social-discounting protocol, and be ensured that their decisions are 

anonymous. Historical/Temporal Specificity. The effect of need on generosity may be 

driven by cultural norms that promote helping individuals with greater financial need.  If 

so, this effect should not occur when such norms do not exist, or when norms promote 

exploiting individuals with greater financial need.  The effect of social distance on 

generosity may be affected by cultural norms that sanction giving without need.  If so, 

this effect should not occur when such norms exist. We have no reason to believe that the 

results depend on other characteristics of the participants, materials, or context.  
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(https://osf.io/mw37t/). The direct replication of our lab’s prior social-discounting study 

was pre-registered (https://osf.io/fn9am/). The social discounting study and coding of 

participant responses were not pre-registered.  
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CHAPTER 2 

REGISTERED REPORT: AN EXPERIMENTAL TEST OF THE EFFECTS OF 

COMPETITION FOR PRIORITY ON INFORMATION SAMPLING 

Abstract 

 *This study has received in-principle acceptance as a Registered Report in Royal Society 

Open Science.  

Scientific progress depends on the reliability of scientific findings. Yet, recent 

failures to replicate findings in several fields demonstrate that published literature is often 

unreliable. Although many factors plausibly affect the reliability of scientific findings, 

incentive structures are thought to be fundamental. One longstanding incentive, 

rewarding priority of publication, may have the negative effect of incentivizing rushed, 

low-quality research. Here we develop a laboratory experiment to investigate how 

competition affects information sampling in a game that parallels scientific investigation. 

Individuals must gather data in order to guess true states of the world, are incentivized to 

make as many correct guesses as possible, and face a tradeoff between guessing quickly 

and increasing accuracy by acquiring more information. To test whether competition 

affects accuracy, we compare a condition in which individuals are rewarded for each 

correct guess to a condition where individuals face the possibility of being “scooped” by 

a competitor that makes the correct guess more quickly.  In a second set of experimental 

treatments, we make information harder to acquire by making information-acquisition 

contingent on solving arithmetic problems. This allows us to test whether competition 

necessarily causes individuals to trade accuracy for speed or whether individuals can 
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avoid this tradeoff by increasing the rate at which they acquire information. In doing so, 

this study takes one step towards understanding how competitive incentives affect 

information-sampling strategies.  

Introduction 

          A central aim of science is generating reliable results to produce increasingly 

accurate theories about the world. However, reliability can’t be taken for granted. Models 

of the scientific process suggest that, given current scientific practices, many research 

findings will be false (Ioannidis, 2005; Richard McElreath & Smaldino, 2015; Nissen, 

Magidson, Gross, & Bergstrom, 2016). For example, publication bias in favor of positive 

results and combined with low statistical power is predicted inflate the ratio published 

false positive to positive results (Button et al., 2013). Empirical findings from large-scale 

replication efforts in diverse fields are consistent with these prediction: many results fail 

to replicate (Begley & Ioannidis, 2015; Camerer et al., 2016; Collaboration & others, 

2015; Cova et al., 2018; Nosek & Errington, 2017). Science may be our most powerful 

tool for generating knowledge, but there is clearly room for improvement. 

         Many factors plausibly affect the reliability of science (Munafò et al., 2017). At 

the heart of these are incentive structures: by determining the professional payoffs for 

various types of research, incentives shape scientists’ research decisions (Nosek, Spies, & 

Motyl, 2012). Many current incentives are thought to harm the efficiency of science, 

including publication bias in favor of positive and novel findings, evaluating scientists 

based on number of publications, and lack of rewards for data sharing and transparent 

research (Munafò et al., 2017). In recent years, scholars have been especially concerned 
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about the harmful effects of competition on the scientific process (Alberts, Kirschner, 

Tilghman, & Varmus, 2014; Anderson, Ronning, De Vries, & Martinson, 2007; 

Benedictus, Miedema, & Ferguson, 2016; Fang & Casadevall, 2015; Geman & Geman, 

2016; Nosek et al., 2012; Rawat & Meena, 2014; Sarewitz, 2016, 2016; Smaldino & 

McElreath, 2016). Competitive incentive structures are circumstances in which 

individuals can expend finite resources (e.g. time, money) to increase their probability of 

receiving a payoff, and one individual’s success reduces the probability that others will 

succeed (Dechenaux, Kovenock, & Sheremeta, 2015). By this definition, much of science 

is competitive: scientists compete for publication in journals, limited professional 

positions, and funding opportunities (Anderson et al., 2007; Balietti, Goldstone, & 

Helbing, 2016; Fang & Casadevall, 2015; Nosek et al., 2012).  

 Competition over priority of discovery is arguably one of the most important 

forms of competition in science. Academic science has a longstanding norm of rewarding 

individuals for making discoveries and publishing novel findings. Over 50 years ago, 

sociologist of science Robert Merton noted how this norm might benefit science: 

rewarding priority can incentivize scientists to invest effort to quickly solve important 

problems and share their discoveries with the scientific community (Merton, 1957). 

Models of academic priority races substantiate Merton’s intuition: under some 

conditions, rewarding priority of discovery can incentivize the disclosure of partial results 

(Banerjee, Goel, & Kollagunta Krishnaswamy, 2014; Bergstrom, Foster, & Song, 2016; 

T. Boyer, 2014; Heesen, 2017) and lead to efficient distributions of scientists across 

research problems (Strevens, 2003). Nonetheless, scholars have also had longstanding 
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concerns about the repercussions of this norm. Charles Darwin thought that rewarding 

priority by naming species after their first-describers incentivized biologists to produce 

“hasty and careless work” by “miserably describing a species in two or three lines “ (21, 

p. 644). More recently, concerns over the consequences of rewarding priority have led the 

academic journals eLife and PLOS Biology to offer “scoop protection” (i.e. allowing 

researchers to publish findings identical to those already published in the same journal) in 

attempts to reduce the disproportionate payoffs to scientists who publish first (Marder, 

2017; The PLOS Biology Staff Editors, 2018; Yong, 2018b). In the editorial justifying 

their new policy, The PLOS Biology Staff Editors write “…many of us know researchers 

who have rushed a study into publication before doing all the necessary controls because 

they were afraid of being scooped. Of course, healthy competition can be good for 

science, but the pressure to be first is often deleterious…” (The PLOS Biology Staff 

Editors, 2018).  

Despite these reasonable concerns, there is little empirical evidence for the 

hypothesis that competitive pressures to publish cause individuals to produce lower-

quality research. In focus-group discussions with mid and early-career researchers, 

scientists acknowledge that competition incentivizes them to conduct careless work 

(Anderson et al., 2007), but laboratory experiments investigating competition more 

broadly demonstrate that competition also promotes individual effort (Baer, Vadera, 

Leenders, & Oldham, 2013; Balietti et al., 2016; Dechenaux et al., 2015; Gneezy, 

Niederle, & Rustichini, 2003). As a consequence, it is unclear how competition in 

general, and competition for priority in particular, affects research quality. On the one 
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hand, competition might cause researchers to make dubious claims based on inadequate 

data. On the other, competition might encourage researchers to gather data more 

efficiently.   

Given the difficulty of experimentally manipulating incentives in real-world 

scientific practice, we developed a simple game that mimics aspects of scientific 

investigation. In our experiment, participants must gather data in order to guess true 

states of the world and face a tradeoff between guessing quickly and increasing accuracy 

by acquiring more information. Although this game is a simplification of the scientific 

process, leaving out many factors that exist in real-world scientific research, it allows us 

to investigate two hypothesized effects of competition on information-sampling strategies 

in controlled conditions. By doing so, our experiment brings quantitative data to the 

debate about whether competition necessarily causes individuals to sacrifice research 

quality by trading accuracy for speed or whether individuals can avoid this tradeoff by 

modulating their effort. 

Study Aims 

 We develop a simple experiment to test the effect of competition for priority on 

information-acquisition strategies. To do so, we modify the Cambridge Information 

Sampling Task (IST) (Clark, Robbins, Ersche, & Sahakian, 2006) to create a game in 

which individuals gather information in order to guess true states about the world. Players 

are incentivized to make as many correct guesses as possible and face a tradeoff between 

guessing quickly and increasing accuracy by gathering more information.  
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In order to investigate the effect of competition on how individuals acquire 

information, we compare a baseline treatment in which players are rewarded for each 

correct guess to a treatment where players face the possibility of being “scooped” by a 

competitor that makes the correct guess more quickly.  In a second set of treatments, we 

make the rate at which individuals can acquire information contingent on individuals’ 

effort. Doing so allows us to test whether competition to guess first leads to a faster rate 

of information acquisition.  

This set of treatments investigates two potential effects of competition on 

information acquisition: a negative effect on reliability (individuals might make 

inferences from smaller amounts of evidence) and a positive effect on productivity 

(individuals might work to acquire evidence at a faster rate).  Such a design allows us to 

test whether competition necessarily encourages individuals to trade accuracy for speed 

or whether individuals can avoid this tradeoff by adjusting their level of effort.  

 Below, we outline the experimental design and hypotheses, and present a simple 

analytical model based on the experimental parameters. We then outline all planned 

analyses and present results from a pilot study.  

Game Design  

This computer game (a modified version of the Cambridge Information Sampling 

Task (Clark et al., 2006); programmed in Object Pascal with Delphi 7) provides a simple 

instantiation of a process in which individuals decide how much information to gather 

when solving a problem and face tradeoffs between quickly producing an answer and 

increasing accuracy via larger samples. Players view a screen with 25 black tiles arranged 
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in a 5 x 5 grid (Figure 1a). Each tile has one of two underlying colors (yellow or blue) 

and participants can click any tile to reveal its underlying color. Players must guess the 

grid’s majority (i.e. most common) color and are rewarded for accurate guesses. After 

guessing, players move on to the next grid. Players are informed whether their guess was 

correct or incorrect and can see their cumulative score. In the No-Competition treatments 

(see Treatments) participants play 20 minutes and so face a speed-accuracy tradeoff: 

guessing earlier (i.e. with few tiles clicked) allows them to quickly move on to 

subsequent grids but decreases their probability of guessing correctly. 

The proportion of yellow and blue tiles and their order of appearance are 

deterministic but remain unknown to players. This controls for stochasticity in access to 

information by ensuring that each player receives the same information in the same order, 

regardless of the tiles that a player clicks. Each grid is characterized by a proportion of 

yellow and blue tiles (i.e. effect size). This proportion is chosen randomly from one of 

three possible ratios (8:17, 10:15, 12:13) and yellow and blue tiles have the same 

probability of being in the majority. To control for stochasticity in the grids solved by 

different participants, all participants receive the same grids in the same order. Because 

one of the two colors might be more salient for the human visual system (e.g. 4 blue: 2 

yellow might be a stronger visual signal for blue than 4 yellow: 2 blue is a signal for 

yellow), the baseline color is randomly selected at the beginning of the experiment for 

each participant (e.g. some participants see Y-Y-B-Y-…-Y and have to guess Y, while 

others see B-B-Y-B-…-B and have to guess B). This aims to limit unforeseen bias.   

Treatments 
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We use a 2 x 2 between-subjects design to investigate two treatments (No 

Competition; Competition) and two conditions (No Effort, Effort). 

No-Effort Condition 

No Competition: Participants play the game for 20 minutes and can acquire 

information by clicking 1 tile every 1 second. The 1-second delay between clicking tiles 

prevents players from increasing their clicking speed to acquire information faster than 1 

tile per second. Players receive payoffs solely as a function of their own performance: 

they gain 1 point for each correct guess and lose 1 point for each incorrect guess. Players 

must wait for 5-seconds between making their guess and being presented with the next 

grid. This payoff structure incentivizes players to acquire at least some information 

before guessing, because guessing without clicking any tiles results in a 50% probability 

of answering correctly and hence an expected payoff of 0.   

Competition: Players compete against the performance of one previous same-sex 

participant from the No-Competition treatment. These competitors will be sampled 

without replacement: each participant will compete against the performance of one 

unique previous participant. After submitting their guess, players move on to the 

subsequent problem, where they again compete against the same player’s performance on 

that problem until they solve the same set of grids as their competitor. For grids where 

the competitor guesses correctly, players receive a payoff only if they are correct and 

guess faster than their competitor. For grids where the competitor guesses incorrectly, 

players receive a payoff solely as a function of their own performance. Players are 

informed of their payoff at the end of each round and are notified whenever they guess 
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after a competitor who has already guessed correctly.  Players are not informed about the 

number of tiles revealed by their competitor.  

We instantiate competition by having players compete against the performance of 

baseline participants for several reasons. A more realistic instantiation would be for two 

players in the competition treatment to directly compete against each other. In this 

design, for both players to remain synchronized, they would need to move to the next 

grid as soon as either player guessed.  Such a design is problematic: it only generates data 

from 1 player per grid (i.e. the guesser) and that data is biased towards the player that 

reacts most to competition by guessing earliest. One potential solution is to synchronize 

players by allowing both players to make their guess on each grid. However, this 

introduces other problems: the player that guesses earlier is forced to wait for their 

competitor to guess. As a consequence, the two competitors would not experience the 

exact same experimental conditions, which may result in experimental biases. For 

example, players might delay their guesses to avoid waiting for their competitor to guess. 

Our design avoids these problems.  

Effort Condition 

Treatments in the Effort condition are identical to treatments in the No-Effort 

condition except that participants need to solve a simple arithmetic problem before being 

able to click on a tile (Figure 1b). This is a commonly used real-effort task in economics 

(Lezzi, Fleming, & Zizzo, 2015). In this treatment, players can increase their rate of 

clicking tiles by solving arithmetic problems more quickly (See Pilot Study for checks on 

floor effects).  
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a.             b. 

            

Figure 1| Game Principle.  The experimental task consists of 25 black tiles 
arranged in a 5 x 5 grid. Players can click on tiles to reveal their underlying color 
(yellow or blue) and are rewarded for correct solutions (i.e. correctly guessing the 
majority color). Clicking more tiles provides more information about the grid but 
takes more time. The order in which colors are revealed is deterministic (i.e. 
independent of which tile is clicked) but remains unknown to players. (a) In the 
No-Effort condition, players can click a black tile every 1 second. (b) In the Effort 
condition, players need to solve an arithmetic problem to acquire information (i.e. 
clicking a tile). In the No-Competition treatment, players gain/lose 1 point for 
each correct/incorrect guess. In the Competition treatment, players only gain/lose 
points if they guess sooner than their competitor. 
 

Sampling Plan 

 Arizona State University students (equal numbers of women and men, age 18 and 

over) will be randomly selected from a database managed by the Elinor Ostrom Multi-

Method Lab at Arizona State University and recruited by email. We will obtain informed 

consent from all subjects before the experiment’s onset (ethical approval has been 

obtained from the Arizona State University IRB, code: STUDY00007691). Participants 
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will receive $5 for participation and an additional amount ranging from $0 to $10 

depending on their performance (see Score Calculation).  

Procedure 

The experiment will take place in a computer room at Arizona State University. 

Each session will consist of a maximum of 16 participants (exclusively male or female) 

who will all be assigned to either a Competition or No-Competition treatment. 

Participants in the Competition treatments will be randomly assigned to compete against 

the performance of one same-sex player from the equivalent No-Competition treatment. 

This requires that the first session be the No-Competition treatment. Subsequent sessions 

will alternate between Competition and No-Competition. Within each session, each 

participant will be randomly assigned to either the Effort or No-Effort condition. All 

manipulations (Competition vs No Competition; Effort vs No Effort) are between 

subjects.  

Participants will enter the computer room in the order that they arrive to the 

experiment, will sit at physically-separated computers, and will be instructed that 

communication is not allowed. Participants will be blind to the fact that there are four 

experimental treatments. Before starting the experiment, participants will be requested to 

enter their age and sex. Participants will be shown the instructions on their screens. In the 

No-Competition treatments, the game will last 20 minutes. In the Competition treatments, 

the game will last as long as it takes players to complete the same set of grids that were 

completed by their competitor. At the end of the game, participants will receive a reward 

according to their performance (see Score Calculation).   



 

  46 

Tutorial and Pre-Game Information 

Before starting, players will complete a tutorial in which they will perform basic 

actions. This tutorial will guide players’ actions so that players experience clicking tiles 

and choosing the majority color, to ensure that all players have mastered the interface 

before playing. Players in the No-Competition treatments will be informed that the goal 

of the game is to make as many correct guesses as possible within the experiments’ 

duration. Players in the Competition treatments will be informed that they are playing 

against the performance of another participant, and that the goal of the game is to be first 

to make as many correct guesses as possible. Players will be informed that their score and 

monetary reward will depend on their total number of correct guesses and correct faster-

guesses, respectively. In the Effort condition, players will experience solving a math 

problem. Players will not be informed about the total number of yellow and blue tiles per 

round. 

Score Calculation 

In the No-Competition treatments, players will receive one point for each correct 

guess and will lose one point for each incorrect one. In the Competition treatments, the 

payoff structure is identical when participants guess a) sooner than their competitor, or b) 

after a competitor who guessed incorrectly. Participants do not gain or lose any points 

when guessing after a competitor who guessed correctly. This payoff structure 

corresponds to the assumption that being scooped prevents researchers from both 

receiving a benefit for being correct and from paying a cost for being wrong. In the 

unlikely event that a player guesses at the exact same time as their competitor, they will 



 

  47 

receive one point. A player’s final score will be the sum of these points. The function that 

translates scores into payoffs will remain unknown to players: 

Payoffno-competition = $0.15 x CorrectGuesses – $0.15 x IncorrectGuesses 

Payoffcompetition = $0.15 x CorrectFasterGuesses – $0.15 x IncorrectFasterGuesses 

Data Collection Stopping Rules 

We specify a region of practical equivalence (ROPE) for all relevant parameters 

(34, see "Analyses and Predictions" below). We will stop data collection after the 95% 

highest probability density interval (HPDI) for all parameters falls entirely inside or 

outside pre-specified ROPEs for each hypothesis. We will check whether the HPDIs fall 

inside or outside each ROPE after every 4 sessions of data collection (1 session 

corresponding to each of the 4 treatments; maximum 16 participants per session) and will 

collect data until we obtain a maximum of 260 participants (an upper limit set by funding 

availability). Data from participants excluded based on pre-specified criteria will not 

count towards this 260-participant limit.  

Completion Timeline 

If stage 1 review is successful, we anticipate completing the experiment and 

submitting the manuscript for stage 2 review within 5 months of receiving stage 1 

approval.   

Model 

 We developed a simple mathematical model to better understand the payoff 

structure of our experiment and to gain insight into how competition should affect 

players’ behavior in the No-Effort conditions. The goal of this model is to understand 
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whether H1a (see Hypotheses below) is logically coherent (i.e. that our instantiation of 

competition for priority actually incentivizes participants to guess with smaller amounts 

of evidence).  

In the experiment’s Competition treatments, players who guess the underlying 

color only gain or lose 1 point if they a) take less time to guess than their opponent or b) 

they take longer to guess than their opponent, but their opponent has guessed incorrectly. 

When a player guesses before or at the same time as an opponent, the player’s expected 

payoff (EP) is:   

𝐸𝑃 = 𝑝% ∗ 1 + )1 −	𝑝%, ∗ (−1) 

𝐸𝑃 = 2𝑝% − 1 

where pp is the probability that the player guesses correctly. When a player guesses after 

their opponent, the player’s EP is:  

𝐸𝑃 = 𝑝0 ∗ 0 +	(1 −	𝑝0) ∗	𝑝% ∗ 1 +		(1 −	𝑝0) ∗	 )1 −	𝑝%, ∗ (−1) 

𝐸𝑃 = 2𝑝% +	𝑝0 − 	2𝑝%𝑝0	 − 	1 

where po is the probability that the player’s opponent (i.e. the player in the no-

competition treatment) guesses correctly. This assumes that guessing at the same time or 

before an opponent are equivalent, and that only guessing after an opponent results in 

some probability of being scooped.  EP can take on values between 0 and 1 because 

players have a minimum 0.5 probability of correctly guessing the underlying color and 

payoffs to correct and incorrect guesses are symmetrical. pp and po are a function of two 

parameters: the ratio of colored tiles (i.e. effect size 8:17, 10:15, or 12:13) and the 

number of tiles that a player/opponent reveals (we assume that players’ time-to-guess is 
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entirely determined by the number of tiles they reveal). To calculate pp and po,, we 

simulated the average amount of information available to a player, conditional on the 

effect size and the player revealing a given number of tiles (Fig. S1, code available at 

https://osf.io/udm8g/). For each effect size, we randomly generated 25-tile sequences of 

yellow and blue tiles (500 simulations). We then computed the proportion of all possible 

25-tile sequences that give the same outcome as the current majority color after n tiles 

have been revealed. For example, consider a player who reveals a 7-tile sequence of Y-Y-

Y-Y-B-Y-Y.  Given this initial sequence of tiles, there are 230964 25-tile sequences, out 

of all possible sequences, that result in a majority yellow color and 31180 sequences that 

result in a majority blue color. The amount of information available to this player is 

230964 / (31180 + 230964) = 0.881. This means that if the player guesses that yellow is 

the majority color from that specific 7-tile sequence, she will be correct 88.1% of the 

time.  

Figure 2 plots EP as a function of the number of tiles that a player and their 

opponent reveal, for different effect sizes. If an opponent reveals many tiles, a player 

receives the highest EP by revealing the exact same number or slightly fewer numbers of 

tiles. This occurs because players have a high probability of guessing the majority color 

when they reveal a large number of tiles and guessing before an opponent guarantees that 

the player does not get scooped. If a player guesses after an opponent who has revealed 

many tiles, a player’s EP is low: the opponent will usually correctly guess the majority 

color, causing the player to obtain 0 points.  If an opponent reveals very few tiles, a 

player receives the highest EP by revealing a large number of tiles. This occurs because a 
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player who guesses before this opponent has a high probability of guessing incorrectly, 

whereas a player who guesses after this opponent can maximize their probability of 

correctly guessing the majority color by revealing as many tiles as possible.  As effect 

sizes decrease, a player receives higher EP by revealing more tiles. This occurs because, 

for most possible numbers of tiles revealed below 25, a player has a lower probability of 

guessing correctly when effect sizes are small. 

    

Figure 2| Player’s expected payoff as a function of the number of tiles 
revealed by the player and their competitor. Plotted (left to right) for three 
ratios of colored tiles (i.e. effect sizes): 8:17, 10:15, and 12:13. X and Y-axes 
indicate the number of tiles revealed by a player’s opponent and the player, 
respectively. Players’ expected payoff is highest when a competitor reveals a 
large number of tiles and players reveal the exact same or fewer tiles. The largest 
drop in payoff occurs when players reveal slightly more tiles than a competitor. 
When a competitor guesses after revealing few tiles, players maximize their 
expected payoff by revealing many tiles before guessing.  

 
 To assess the logical coherence of H1a, we calculated players’ EP as a function of 

the effect size and number of tiles revealed, assuming that players compete against 

payoff-maximizing competitors (i.e. against individuals who reveal the number of tiles 

that maximizes their expected-payoff in the No-Competition, No-Effort treatment).  The 

results corroborate the intuition suggested by a visual inspection of Figure 2: when 
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competing against payoff-maximizing competitors (who reveal large numbers of tiles), 

players maximize EP by revealing the same number or fewer tiles than their competitor 

(See Appendix). Sensitivity checks indicate that this result is robust to incorporating 

stochasticity in the number of tiles revealed by competitors.  

 This model provides support for the logical coherence of H1a: the experiment’s 

payoff structure incentivizes players to guess at the same time as or before their 

competitors. However, the former outcome is unlikely: in the experiment (unlike the 

model), priority is determined by amount of time spent before guessing, not by number of 

tiles revealed. As such, players in the Competition, No-Effort treatment usually maximize 

their expected payoff by guessing before competitors.  

Hypotheses 

Condition 1: No Effort 

(H1a) Competition for priority will cause participants to guess with 

smaller amounts of evidence. 

In the first set of experimental treatments, individuals cannot acquire information 

faster than a predetermined rate (See Figure 1a). As a consequence, when individuals are 

in competition to guess correctly before a competitor, they can only do so by making 

their guess with less information (i.e. removing less tiles before guessing). 

(H1b) If H1a is confirmed, then competition for priority will also cause 

participants in Condition 1 to have reduced accuracy.  
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If participants remove less tiles before guessing, then they will have a lower 

probability of making a correct guess on each grid, because the probability of making a 

correct guess is a monotonically increasing function of the number of tiles revealed.  

Condition 2: Effort 

(H2) Competition for priority will increase participant effort, thereby 

causing participants to reveal information faster.  

In the second set of experimental treatments, the rate at which information can be 

acquired depends on individuals’ effort: individuals need to solve an arithmetic problem 

for each piece of information (see Figure 1B). Individuals can thus affect their rate of 

information acquisition by adjusting their effort (i.e. solving arithmetic problems faster or 

slower). Empirical research in experimental economics has found that competition 

increases participants’ effort in similar tasks (Dechenaux et al., 2015; Lezzi et al., 2015). 

As such, we expect competition for priority to cause participants to solve arithmetic 

problems at a faster rate (H2).  

Interaction between Condition 1 and Condition 2 

(H3a) The effect of competition for priority on reducing the amount of 

evidence that participants gather will be larger in Condition 1 than in 

Condition 2.   
 

(H3b) If H3a is confirmed, then competition will cause a bigger reduction 

in participant accuracy in Condition 1 than in Condition 2.   

In the Effort condition, individuals can potentially guess before their competitor 

in two ways: reveal less information (i.e. fewer tiles) before guessing or increase effort 
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and solve arithmetic problems more quickly. These are not mutually exclusive. However, 

if individuals do increase their speed of solving arithmetic problems, then we expect 

competition to have a smaller effect on their accuracy. We make no prediction about 

whether competition will have absolutely no effect on participant accuracy in the Effort 

condition or whether competition will simply have a smaller, negative effect on accuracy, 

compared to the No-Effort condition.  

Analyses and Predictions 
 

We will fit statistical models within a Bayesian framework with weakly 

informative priors, using map2stan in Richard McElreath’s Rethinking package in R (R. 

McElreath, 2012; R Core Team, 2017). Table 1 (see “Priors” below) lists prior 

probability distributions for parameters in all statistical models.   

Power Analysis 

To check whether 260 participants provides sufficient statistical power to evaluate 

our hypotheses, we used our pilot data (see “Pilot Study” below) to conduct a power 

analysis. For confirmatory analyses, we set a ROPE for each relevant parameter by 

determining the minimum effect size that could be detected 95% of the time, given our 

maximum sample size of 260 participants. This minimum effect size then determined the 

upper and lower bounds of the ROPE for each analysis (Lakens, 2017; Lakens, Scheel, & 

Isager, 2017). We considered an alternative approach: setting all ROPE boundaries based 

on theoretical considerations (J. K. Kruschke, 2018). However, because our hypotheses 

only make directional predictions, they provide no guidance as to an effect’s size or 

minimum effect sizes of interest.  
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We collected data in the pilot study to be able to conduct power analyses for H1 (a, b) 

and H3 (a, b). For H2 (Model 3), we did not record participants’ time between clicking 

one tile and being allowed to click subsequent tile (i.e. time to accurately solve one 

arithmetic problem) in the pilot study. As such, we instead conducted a power analysis 

for Model 3 using a slightly different outcome variable: time to produce any answer 

(accurate or inaccurate) for one arithmetic problem. We then set a ROPE based on 99% 

statistical power, to compensate for the uncertainty introduced by basing the power 

analysis on a statistical model with a different outcome variable.   

For each power analysis, we followed the following steps (code available at 

https://osf.io/udm8g/): 

1. Analyze the pilot data with Bayesian statistical models using map2stan in Richard 

McElreath’s Rethinking package in R (see “Analyses and Predictions*” below) 

(R. McElreath, 2012; R Core Team, 2017).  

a. *Simulated data for Model 1 were assumed to be Gamma distributed (see 

code).  

2. Extract samples for all parameters from the posterior probability distribution for a 

given statistical model.  

3. Simulate 260 participants with x observations per participant, where x is randomly 

sampled (with replacement) from the number of observations per participant in 

the pilot.  
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4. Generate simulated data for each participant by taking random samples from the 

posterior probability distribution for each parameter and inserting those samples 

into the formula implied by the statistical model structure for an analysis.  

5. Analyze the simulated data with a Frequentist implementation of the statistical 

model in the proposed analysis.  

6. Record the confidence interval for each parameter of interest.  

7. Repeat steps 2 – 6, 500 times.  

8. Generate a ROPE for each parameter of interest by determining the maximum 

effect size that fell outside of the 95% of confidence interval in the 500 

simulations.  

Testing Hypotheses 
 

For quality checks, we generated a ROPE for each parameter based on our 

subjective assessment of what effect size would convincingly indicate that a manipulation 

was successful. For confirmatory predictions, we generated a ROPE for each parameter 

by conducting power analyses to determine the minimum effect size that can be detected 

95% of the time, given our maximum sample size. 

If the 95% highest probability density interval (HPDI) for a parameter falls 

outside of the ROPE, we will consider this as evidence against the null hypothesis of no 

effect. If the 95% HPDI for a parameter falls outside of the ROPE and is in the direction 

predicted by a hypothesis, we will consider this as evidence for the hypothesis. If the 

95% HPDI for a parameter falls outside of the ROPE and is in the opposite direction to 

that predicted by a hypothesis, we will consider this as evidence against the hypothesis. If 
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the 95% HPDI falls within the ROPE, we will consider this as evidence for the null 

hypothesis of no effect. If the 95% HPDI does not fall entirely within or outside the 

ROPE, we will consider that the study does not provide conclusive evidence for either the 

prediction or the null hypothesis.  

Exclusions and Outliers 
 

We will exclude all data from participants who did not complete the study (i.e. 

who did not answer the final “Competition Attention Check” question; see Quality 

Checks below). Within individual participants, we will exclude observations for which 

there is missing data for at least one measured variable. Both participants’ time to make a 

guess and time to solve arithmetic problems follow heavily right-skewed distributions 

(see “Exclusions and Outliers” in Pilot Study). For participants’ time to make a guess, we 

will exclude times that are more than 5 standard deviations larger than the mean time 

until making a guess. For participants’ time to solve arithmetic problems, we will exclude 

arithmetic-problem solving times that are more than 5 standard deviations larger than the 

mean arithmetic-problem solving time. These criteria allow for exclusion of the most 

extreme data points while preventing exclusion of too many observations. These same 

exclusion criteria are also used in the analysis of the pilot data (see Appendix).  

Quality Checks 
 

Effort Manipulation: If the effort manipulation is successful, then participants in 

the Effort conditions should take longer per click than participants in the No-Effort 

conditions. To assess the effect of effort on the average time to click a tile, we will use a 

linear regression, with random effects for player, of the following form:  
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Yi ~ Normal(µi, σ) 

µi = α + αPLAYER[i] + βE*Ei  + βC*Ci + βCE *Ci Ei 

Yi: Time (seconds) to click one tile and reveal its underlying color. α: Intercept. αPLAYER[i]: 

Random intercept for each player. E: Effort Condition (1 / 0). C: Competition Treatment 

(1 / 0). βCE *Ci Ei: Interaction between treatment and effort. 

Competition Attention Check: At the end of the experiment, participants will be 

asked “During the experiment, were you competing with another player to be first to 

guess the correct answer?”. If the participants in the competition treatment are aware that 

they competed against another individual, then a higher proportion of participants in the 

Competition treatments should answer “yes” to this question than in the No-Competition 

treatments. To assess the effect of competition on answering “yes” to this question, we 

will use a logistic regression of the following form:   

Yi ~ Binomial(1, pi) 
 

Logit(pi) = α + βC*Ci  

 
Yi: Answered “yes”. α: Intercept. C: Competition Treatment (1 / 0).  
 
Confirmatory Analysis Plans 
 

(H1a). Competition for priority will cause participants in the No Effort condition 

to guess with smaller amounts of evidence.  

(H3a). Competition for priority will cause a bigger reduction in the amount of 

evidence that participants gather in the No Effort condition than in the Effort 

condition. 
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We will use one dependent measure to test whether competition causes players to 

guess with smaller amounts of evidence: the number of tiles that players reveal when 

making a guess.  

In the Competition treatments, players should reveal fewer tiles when making 

their guess than in the No-Competition treatments. There should also be a positive 

interaction between the Competition treatments and the Effort condition (see Hypotheses 

above): the effect of competition on number of tiles revealed should be smaller in the 

Effort condition than in the No-Effort condition (due to the expected positive effect of 

competition on individual effort).  

Model 1: To compare the number of tiles that players reveal before guessing the 

majority color in the Competition treatments versus the No-Competition treatments, we 

will use a multiple linear regression, with random effects for player, of the following 

form: 

Yi ~ Normal(µi, σ) 

µi = α + αPLAYER[i] + βC*Ci + βE*Ei + βCE *Ci Ei + βNs*Nsi 

Yi: Number of tiles clicked before guessing. α: Intercept. αPLAYER[i]: Deviation from 

intercept for each player. C: Competition Treatment (1 / 0). E: Effort Condition (1 / 0). 

βCE *Ci Ei: Interaction between treatment and effort. βNs: Standardized number of tiles for 

the majority color (i.e. effect size). 

 (H1b). If H1a is confirmed, then competition for priority will also cause 

participants in the No Effort condition to have reduced accuracy.    
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(H3b). If H3a is confirmed, then competition for priority will cause a bigger 

reduction in participant accuracy in the No Effort condition than in the Effort 

condition. 

We will use one dependent measure to test the effect of competition for priority 

on accuracy: probability of correctly guessing the majority color. In the Competition 

treatments, players should have a lower probability of making correct guesses than in the 

No-Competition treatments. There should also be positive interaction between the 

Competition treatments and the Effort condition: the effect of competition on accuracy 

should be smaller in the Effort condition than in the No-Effort condition.  

Model 2: To assess the probability of a correct guess, we will use a logistic 

regression, with random effects for player, of the following form:   

 

Si ~ Binomial(1, pi) 

Logit(pi) = α + αPLAYER[i] + βC*Ci + βE*Ei + βCE *Ci Ei + βNs*Nsi 

Si: Successful guess. α: Intercept. αPLAYER[i]: Deviation from intercept for each 

player. C: Competition Treatment (1 / 0). E: Effort Condition (1 / 0). βCE *Ci Ei: 

Interaction between treatment and effort. βNs: Standardized number of tiles for the 

majority color (i.e. effect size). 

(H2). Competition for priority will increase participant effort, thereby causing 

participants to reveal information faster. 

We will use one dependent measure to test the effect of competition for priority 

on effort: amount of time (seconds) between when players reveal a piece of information 

(i.e. click a tile) and when players are able to click the next tile (i.e. the time to accurately 
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solve an arithmetic problem).  This analysis will be limited to players in the Effort 

condition.  

Players in the Competition X Effort treatment should solve arithmetic problems 

faster than players in the No-Competition X Effort treatment. The time that it takes 

players to solve arithmetic problems is the time between clicking one tile and being 

allowed to click the subsequent tile. As a result, players in the Competition X Effort 

treatment should have a smaller time between clicking one tile and being allowed to click 

the subsequent tile compared to players in the No-Competition X Effort treatment.  

Model 3: To test the effect of competition on the time between clicking one tile 

and being allowed to click the subsequent tile (i.e. time to accurately solve one arithmetic 

problem), we will use a multiple linear regression, with random effects for player, of the 

following form: 

Yi ~ Normal(µi, σ) 

µi = α + αPLAYER[i] + βC*Ci + βNs*Nsi 

Yi: Time between clicking one tile and being allowed to click the subsequent tile 

(i.e. time to solve an arithmetic problem; seconds). α: Intercept. αPLAYER[i]: Deviation from 

intercept for each player. C: Competition Treatment (1 / 0). βNs: Standardized number of 

tiles for the majority color (i.e. effect size). 
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Priors 
 

Parameter Effort  
Manipulation 

Check 

Competition 
Attention 

Check 

Model 1  
(Tiles) 

Model 2  
(Correct 
Guess) 

Model 3 
(Arithmetic 

Time) 
σ Gamma (2, 

0.5) 
NA Gamma (2, 

0.5) 
NA Gamma (2, 

0.5) 
α Gamma (1.5, 

0.05) 
Normal (0, 

10) 
Uniform (0, 

25) 
Normal (0, 

10) 
Gamma (1, 

0.05) 
αPLAYER Normal (0, 

σPLAYER) 
NA Normal (0, 

σPLAYER) 
Normal (0, 
σPLAYER) 

Normal (0, 
σPLAYER) 

σPLAYER Gamma (1.5, 
0.05) 

NA Gamma (1.5, 
0.05) 

Gamma (1.5, 
0.05) 

Gamma (1, 
0.05) 

ΒC Normal (0, 
10)  

Normal (0, 
10)  

Normal (0, 
10) 

Normal (0, 
10) 

Normal (0, 
10) 

βE Normal (0, 
10)  

NA  Normal (0, 
10) 

Normal (0, 
10) 

NA  

βCE Normal (0, 
10)  

NA Normal (0, 
10) 

Normal (0, 
10) 

NA  

βNs NA NA Normal (0, 
10) 

Normal (0, 
10) 

Normal (0, 
10) 

 
Table 1 | Priors for statistical models. Prior probability distributions for all 
statistical models, including quality checks (“Effort Manipulation Check”, 
“Competition Attention Check”) and confirmatory analysis plans (Models 1 – 3). 
Gamma distributions are defined by parameters for shape and rate. Normal 
distributions are defined by parameters for mean and standard deviation. 
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ROPEs 
 
Parameter Effort  

Manipulation 
Check 

Competition 
Attention 

Check 

Model 1  
(Tiles) 

Model 2  
(Correct 
Guess) 

Model 3 
(Arithmetic 

Time) 
ΒC NA (-0.8, 0.8) (-1.22, 

1.22) 
(-0.19, 0.19) (-0.33, 

0.33)** 
βE (-0.5, 0.5) NA NA NA NA 
βCE NA NA   (-0.10, 

0.10)* 
(-0.09, 0.09) NA 

 
Table 2 | Region of practical equivalence (ROPE). ROPEs for quality checks 
are based on subjective assessment of what effect size would convincingly 
indicate a successful manipulation. ROPEs for confirmatory analyses (Models 1 - 
3) are based on 95% statistical power, unless indicated otherwise. Model 1 tests 
the effect of the Competition treatment and Effort condition on number of tiles 
clicked before guessing, using a multiple linear regression with random effects for 
each player. Model 2 tests the effect of the Competition treatment and Effort 
condition on the probability of a correct guess, using a logistic regression with 
random effects for each player. Model 3 tests the effect of the Competition 
treatment on the time to accurately solve one arithmetic problem, using a multiple 
linear regression with random effects for each player. *ROPE based on 85% 
statistical power. **ROPE based on 99% statistical power.  
 

Pilot Study 
 

We conducted a pre-registered (https://osf.io/udm8g/) pilot study (see Appendix 

for detailed results and full exclusion criteria). This study was designed to test the 

feasibility of the proposed design, not to test hypotheses. In conducting the pilot study, 

we underspecified exclusion criteria and deviated from the pre-specified pilot analysis 

plan. We consider all results from the pilot study to be exploratory.  

The pilot study involved 48 participants. We excluded data from 1 participant that 

did not complete the study. This resulted in a final sample of 47 participants (23 female, 

24 male).16 and 31 participants were assigned to the Competition and No-Competition 

treatments and 23 and 24 participants were assigned to the Effort and No-Effort 
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conditions, respectively. More participants were assigned to the No-Competition 

treatment because No-Competition participants need to participate first, so that 

participants in the Competition treatment have a Competitor to play against. By chance, 

we ended the pilot before more participants were recruited for the Competition treatment. 

The pilot design differed from the proposed design in one way: players were paid $0.25 

cents per solution instead of $0.15 cents.  

Participants in the Effort conditions spent more time (seconds) per grid (i.e. took 

longer to guess the majority color) than participants in the No-Effort conditions (95% 

HPDI: (11.81, 27.95), β = 19.66). This provides evidence that the Effort manipulation 

was successful. Participants in the Competition treatments had a larger log-odds of 

answering “yes” to an attention-check question about whether or not they competed 

against another player in the experiment (95% HPDI: (3.93, 22.67), β = 11.92). This 

provides evidence that participants in the Competition treatments were aware that they 

were competing against another player.  

Compared to participants in the No-Competition treatments, participants in the 

Competition treatments revealed fewer tiles per grid (95% HPDI: (-7.46, -0.55), β = -

3.98), did not have a lower log-odds of correctly guessing the majority color (95% HPDI: 

(-1.20, 0.03), β = -0.60), did not spend less time (seconds) per grid (95% HPDI: (-13.21, 

3.92), β = -5.02), and made a larger number of guesses per minute (95% HPDI: (0.91, 

4.12), β = 2.50). Compared to participants in the No-Competition x Effort treatment, 

participants in the Competition X Effort treatment solved more arithmetic problems per 

minute (95% HPDI: (0.55, 4.53), β = 2.58).  
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Compared to participants in the No-Effort conditions, participants in the Effort 

conditions did not reveal fewer tiles (95% HPDI: (-3.35, 2.12), β = -0.64), did not have a 

lower log-odds of correctly guessing the majority color (95% HPDI: (-0.62, 0.45), β = -

0.07), spent more time (seconds) per grid (95% HPDI: (11.81, 27.95), β = 19.66), and 

made a smaller number of guesses per minute (95% HPDI: (-3.36, -0.63), β = -2.03).  

There was no evidence for an interaction between Competition and Effort on 

number of tiles revealed (95% HPDI: (-1.51, 7.93), β = 3.26), log-odds of correctly 

guessing the majority color (95% HPDI: (-0.29, 1.53), β = 0.62), or time (seconds) spent 

per grid (95% HPDI: (-13.95, 8.67), β = -2.32). There was evidence for an interaction 

between Competition and Effort on the number of guesses made per minute (95% HPDI: 

(-4.49, -0.13), β = -2.28): in the No-Effort condition only, players in the Competition 

treatment make a larger number of guesses per minute than players in the No-

Competition treatment. Again, we consider all of these results exploratory, as the pilot 

study was designed to test the feasibility of the proposed design, not to test hypotheses.  

Results  

We conducted the experiment according to the in-principle accepted Stage 1 

protocol. Before data collection, we requested and received editorial approval for a minor 

deviation in the experimental procedure: instead of sessions where all participants are 

assigned to either the No-Competition or Competition treatment, we ran sessions such 

that participants could be assigned to either treatment within each session.  
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While data collection was ongoing, we requested and received editorial approval 

for another minor deviation: excluding data from all participants who informed the 

experimenter of technical difficulties during the experiment.  

Every 4 sessions of data collection, we checked whether the HPDIs for all 

parameters fell entirely within or outside the pre-specified ROPEs for each hypothesis. 

This never occurred. As such, we collected data until we reached the pre-specified 

maximum sample size of 260 useable participants. In total, we collected data from 269 

individuals. After applying the pre-specified exclusion criteria, our final sample size was 

260 participants (6 participants did not complete the study and 2 participants experienced 

technical difficulties. 1 additional participant was excluded because every data point for 

their time-to-make-a-guess was above 5 standard deviations from the mean).  The final 

sample of participants was composed of 130 females and 130 males (No-Effort condition: 

65 females, 65 males; Effort condition: 65 females, 65 males). 

Within individual participants, we excluded observations for which there was no 

data for at least one measured variable. We also excluded observations for time-to-make-

a-guess and time-to-solve-arithmetic-problems that were more than 5 standard deviations 

larger than their respective means.  

Below, we present analyses for quality checks and confirmatory predictions, using 

this final sample of 260 participants. All analyses (excluding exploratory analyses) use 

the exact statistical models specified earlier in this report and approved in Stage 1 review.  

Quality Checks 
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Participants in the Effort conditions spent more time (seconds) per-click than 

participants in the No-Effort conditions (95% HPDI: (3.27, 3.99), β = 3.64). The effect 

falls entirely outside of the pre-specified ROPE of (-0.5, 0.5) and is in the predicted 

direction. This indicates that Effort Manipulation was successful.   

Participants in the Competition treatments had greater log-odds of answering 

“yes” to the Competition Attention Check question than participants in the No-

Competition treatments (95% HPDI: (2.85, 4.24), β = 3.53). The effect falls entirely 

outside of the pre-specified ROPE of (-0.8, 0.8) and is in the predicted direction. This 

indicates that participants in the Competition treatments were aware that they were 

competing against another player.   

Confirmatory Analyses 

We used Model 1 to test whether competition caused participants in the No-Effort 

condition to guess with smaller amounts of evidence (H1a) and whether competition 

caused a bigger reduction in the amount of evidence gathered in the No-Effort condition 

than in the Effort condition (H3a). Figure 3 plots the distribution of the raw data, 

alongside predicted means and 95% HPDI’s from Model 1.   

In the No-Effort condition, participants in the Competition treatment revealed 

fewer tiles per grid than participants in the No-Competition treatment (95% HPDI: (-5.03, 

-2.39), β = -3.70). The effect falls entirely outside of the pre-specified ROPE of (-1.22, 

1.22) and is in the predicted direction. Based on our pre-specified criteria for evaluating 

hypotheses, this provides confirmatory evidence for H1a.  
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In the Effort condition, participants in the Competition treatment also revealed 

fewer tiles than participants in the No-Competition treatment (95% HPDI: (-4.47, -1.86), 

β = -3.11). There was no evidence for an interaction between Competition and Effort on 

number of tiles revealed (95% HPDI: (-1.23, 2.54), β = 0.60). The effect for the 

interaction does not fall entirely within or outside of the pre-specified ROPE of (-0.10, 

0.10). Based on our pre-specified criteria for evaluating hypotheses, this does not provide 

conclusive evidence for H3a or for the null hypothesis.  

 

Figure 3| Tiles revealed. Participants revealed fewer tiles in the Competition, 
No-Effort treatment than in No-Competition, No-Effort treatment (95% HPDI: (-
5.03, -2.39), β = -3.70). Participants also revealed fewer tiles in the Competition, 
Effort treatment than in No-Competition, Effort treatment (95% HPDI: (-4.47, -
1.86), β = -3.11). There was no evidence that competition caused a larger 
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reduction in the number of tiles revealed in the No-Effort condition compared to 
the Effort condition (see main text). 

 
Because H1a was confirmed, we used Model 2 to test whether competition caused 

participants in the No-Effort condition to have reduced accuracy (H1b). Because we did 

not find conclusive confirmatory evidence for H3a, we do not expect to find conclusive 

confirmatory evidence for H3b. Figure 4 plots the distribution of the raw data, alongside 

predicted means and 95% HPDI’s from Model 2.   

In the No-Effort condition, participants in the Competition treatment had a 

smaller probability of making a correct guess compared to participants in the No-

Competition treatment (95% HPDI: (-0.11, -0.03), β = -0.07). In log odds, this effect is 

(95% HPDI: (-0.64, -0.20), β = -0.42), which falls entirely outside of the pre-specified 

ROPE of (-0.19, 0.19) and is in the predicted direction. Based on our pre-specified 

criteria for evaluating hypotheses, this provides confirmatory evidence for H1b.  

In the Effort condition, participants in the Competition treatment also had a 

smaller probability of making a correct guess compared to participants in the No-

Competition treatment (95% HPDI: (-0.11, -0.02), β = -0.07). There was no evidence for 

an interaction between Competition and Effort on the log-odds of making a correct guess 

(95% HPDI: (-0.30, 0.39), β = 0.02). The effect for the interaction does not fall entirely 

within or outside the pre-specified ROPE of (-0.09, 0.09). Based on our pre-specified 

criteria for evaluating hypotheses, this does not provide conclusive evidence for H3b or 

for the null hypothesis.  
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Figure 4| Accuracy. Probability of making a correct guess.  Participants were less 
accurate in the Competition, No-Effort treatment than in No-Competition, No-
Effort treatment (95% HPDI: (-0.11, -0.03), β = -0.07). Participants were also less 
accurate in the Competition, Effort treatment than in No-Competition, Effort 
treatment (95% HPDI: (-0.11, -0.02), β = -0.07). There was no evidence that 
competition caused a larger reduction in accuracy in the No-Effort condition 
compared to the Effort condition (see main text).  
 
We used Model 3 to test whether competition increased effort: participants in the 

Competition-Effort treatment should faster to accurately solve one arithmetic problem 

than participants in the No-Competition, Effort treatment (H2). Figure 5 plots the 

distribution of the raw data, alongside predicted means and 95% HPDI’s from Model 3.   

Participants in the Competition-Effort treatment were not faster to accurately 

solve one arithmetic problem than participants in the No-Competition, Effort treatment 

(95% HPDI: (-0.40, 0.35), β = -0.02). The effect does not fall entirely within or outside of 
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the pre-specified ROPE of (-0.33, 0.33). Based on our pre-specified criteria for evaluating 

hypotheses, this does not provide conclusive evidence for H2 or for the null hypothesis. 

 

Figure 5| Time (seconds) to accurately solve one arithmetic problem. 
Competition did not increase participant effort: participants in the Competition-
Effort treatment did not have a faster time to solve one arithmetic problem than 
participants in the No-Competition, Effort treatment (95% HPDI: (-0.40, 0.35), β 
= -0.02).  
 

Exploratory Analyses 

We tested the relationship between the ratio of tiles on a given grid (i.e. effect 

size) and the number of tiles revealed by participants by modifying Model 1 to include 

interactions between effect size and competition/effort, and control for guess number. 

Across all treatments and conditions, players generally revealed fewer tiles as effect size 
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increased (Figure 6). There was exploratory evidence for a negative effect of effect size 

on number of tiles revealed in the No-Competition, No-Effort treatment (95% HPDI: (-

0.50, -0.65), β = -0.57). There was also exploratory evidence for a positive interaction 

between the Competition treatment and effect size on number of tiles revealed (95% 

HPDI: (0.20, 0.39), β = 0.29), and a positive interaction between the Effort condition and 

effect size on number of tiles revealed (95% HPDI: (0.09, 0.30), β = 0.19). 

Within treatments, in the No-Effort, No-Competition treatment, participants 

revealed fewer tiles for large (95% HPDI (7.19, 8.69), mean = 7.94) compared to small 

(95% HPDI (8.76, 10.24), mean = 9.48) effect sizes. In the No-Effort, Competition 

treatment, participants did not reveal fewer tiles for large (95% HPDI (4.00, 5.60), mean 

= 4.83) compared to small (95% HPDI (4.8, 6.40), mean = 5.59) effect sizes. In the 

Effort, No-Competition treatment, participants did not reveal fewer tiles for large (95% 

HPDI (6.63, 8.24), mean = 7.48) compared to small (95% HPDI (7.69, 9.28), mean = 

8.49) effect sizes. In the Effort, Competition treatment, participants did not reveal fewer 

tiles for large (95% HPDI (3.6, 5.21), mean = 4.37) compared to small (95% HPDI (3.79, 

5.42), mean = 4.6) effect sizes.  
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Figure 6| Tiles revealed as a function of effect size. Participants generally 
revealed fewer tiles on grids with larger effect sizes. There was a positive 
interaction between the Competition treatment and effect size, and between the 
Effort condition and effect size, on number of tiles revealed (see main text).  

 
We also tested the relationship between effect size and accuracy by modifying 

Model 2 to include interactions between effect size and competition/effort, and control 

for guess number. Across all treatments and conditions, players had higher accuracy as 

effect size increased (Figure 7). There was exploratory evidence for a positive effect of 

effect size on log-odds of making a correct guess in the No-Competition, No-Effort 

treatment (95% HPDI: (0.59, 0.72), β = 0.66). There was also exploratory evidence for a 

negative interaction between the Competition treatment and effect size on log-odds of 

making a correct guess (95% HPDI: (-0.23, -0.06), β = -0.14), and a positive interaction 

between the Effort condition and effect size on log-odds of making a correct guess (95% 

HPDI: (0.06, 0.26), β = 0.16). 



 

  73 

Within treatments, in the No-Effort, No-Competition treatment, participants had a 

larger probability of making a correct guess for large (95% HPDI (0.91, 0.93), mean = 

0.92) compared to medium (95% HPDI (0.81, 0.85), mean = 0.83) and small (95% HPDI 

(0.64, 0.70), mean = 0.67) effect sizes. In the No-Effort, Competition treatment, 

participants had a larger probability of making a correct guess for large (95% HPDI 

(0.84, 0.88), mean = 0.86) compared to medium (95% HPDI (0.73, 0.78), mean = 0.76) 

and small (95% HPDI (0.57, 0.64), mean = 0.61) effect sizes. In the Effort, No-

Competition treatment, participants had a larger probability of making a correct guess for 

large (95% HPDI (0.91, 0.94), mean = 0.93) compared to medium (95% HPDI (0.79, 

0.84), mean = 0.81) and small (95% HPDI (0.55, 0.63), mean = 0.59) effect sizes. In the 

Effort, Competition treatment, participants had a larger probability of making a correct 

guess for large (95% HPDI (0.85, 0.89), mean = 0.87) compared to medium (95% HPDI 

(0.70, 0.76), mean = 0.73) and small (95% HPDI (0.48, 0.57), mean = 0.53) effect sizes. 
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Figure 7| Accuracy as a function of effect size. Participants had a higher 
probability of making a correct guess for larger effect sizes. There was a negative 
interaction between the Competition treatment and effect size, and a positive 
interaction between the Effort condition and effect size, on accuracy (see main 
text). 
 

Summary 

 We developed a laboratory experiment to test how competition for priority affects 

information sampling in a game that parallels scientific investigation. The pilot study 

indicated that the effort and competition manipulations were successful and produced no 

indication of floor or ceiling effects for any dependent measure. This study was then 

approved for in-principle acceptance as a Registered Report at Royal Society Open 

Science. Following our pre-specified experimental protocol, we collected data from 260 

students at Arizona State University. Pre-specified quality checks revealed that the 
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experimental manipulations were successful. Confirmatory analyses revealed that 

competition caused participants to make guesses with less information, thereby reducing 

their accuracy. Confirmatory analyses did not provide conclusive evidence for an 

interaction between competition and effort, and did not provide evidence that competition 

caused participants to increase effort (i.e. time to accurately solve an arithmetic problem). 

The 95% HPDI around the effect of competition on effort (-0.40, 0.35) indicates that any 

existing effect of competition on time to solve arithmetic problems is likely to be small. 

This study provides experimental evidence that competition for priority can cause 

individuals to make guesses based on less information. The design is merely one 

instantiation of priority races and the results should not be interpreted as providing 

definitive evidence that incentivizing priority harms the scientific process. Whether 

incentivizing novel findings harms the scientific process remains an open question, and 

will depend on the extent to which these results can be replicated and can generalize 

across different experimental instantiations of competition for priority.   

Constraints on Generality (COG) 

We provide a statement of the Constraints on Generality (COG) of our 

experiment (Simons, Shoda, & Lindsay, 2017b). Participants. We have no reason to 

believe that the effect of competition on information sampling depends on characteristics 

of participants. The effects should replicate when scientists participate in this experiment. 

Materials. The effects should not depend on the specific colors of the two different tiles 

or the number of different underlying effect sizes. We make no claims as to whether the 

results depend on other characteristics of the materials used in this study. Procedures. 
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Participants should pass a tutorial and comprehension check before starting the study. 

Participants should not be able to see the performance of other simultaneous participants 

in the study. We make no claims as to whether the results generalize to situations in 

which two participants directly compete against one another and can dynamically 

respond to each other’s behavior. Historical/Temporal Specificity. We have no reason to 

believe that the results depend on characteristics of historical or temporal specificity.  

Ethics 

Permission to perform this study was granted by the Arizona State University 

Institutional Review Board (IRB), code: STUDY00007691. All participants provided 

informed consent.  

Data Accessibility  

All data, materials (including experimental protocols) and code are openly 

available at the Open Science Framework (https://osf.io/udm8g/). The pilot pre-

registration can be found at the Open Science Framework (https://osf.io/udm8g/).   
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CHAPTER 3 

COMPETITION FOR PRIORITY AND THE NATURAL SELECTION OF 

UNDERPOWERED RESEARCH 

Abstract 
 

It is becoming increasingly clear that many published findings do not replicate 

(i.e. the “reproducibility crisis”). As a consequence, scholars in diverse disciplines are 

interested in understand how different factors affect the reliability of science and in 

evaluating potential solutions. Currently, incentive structures are thought to be one key 

determinant of the reliability of research that scientists conduct. Here we develop an 

evolutionary agent-based model to test the effect of incentives for priority of discovery 

on the reliability of scientific findings. In this model, scientists investigate a phenomenon 

and compete to be first to obtain a statistically significant result. Scientists can increase 

statistical power by using larger samples, but this takes more time and so increases their 

risk of being “scooped”. We find that competition for priority causes populations of 

scientists’ practices to culturally evolve towards lower sample sizes and, in turn, lower 

statistical power. This mirrors the results of a previous model about the cultural evolution 

of bad science. However, we also find that two factors attenuate the negative effects of 

competition: increased time costs associated with setting up a single study and increased 

payoffs to publication of secondary (i.e. scooped) results. Startup costs lower the relative 

payoff to individuals who pursue a “quantity” strategy by conducting many low-quality 

studies. Payoffs for “scooped” results allow individuals who conduct few high-quality 

studies to obtain benefits even though they are frequently scooped.  We discuss the 
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implications of these findings for preventing low-quality research and use them to 

evaluate the effectiveness of proposed scientific reforms (e.g. registered reports). 

Introduction 

In science, priority matters. The norms of science have rewarded researchers for 

being first to make discoveries for at least several hundred years (Merton, 1957). Such 

rewards take various forms, including financial prizes for discoveries (e.g. the Nobel 

prize), increased probability of obtaining professional positions or speaking engagements, 

and increased probability of publishing one’s results in a high-impact academic journal 

(Fang & Casadevall, 2015; Makel et al., 2012; Nosek et al., 2012). A consequence of this 

norm is that scientists are strongly incentivized to compete over priority.   

In recent years, there has been growing recognition that some scientific incentives 

contribute to erroneous published findings (Ioannidis, 2014; Munafò et al., 2017; Nosek 

et al., 2012), by favoring positive and novel findings, evaluating scientists based on 

quantity rather than quality of publications, and disincentivizing data sharing and 

transparent research (Begley & Ioannidis, 2015; Higginson & Munafò, 2016; Munafò et 

al., 2017; Nissen et al., 2016; Smaldino & McElreath, 2016). Among many such 

incentives, scholars have been especially concerned about the harmful effects of 

competition on scientific outcomes (Alberts et al., 2014; Anderson et al., 2007; 

Benedictus et al., 2016; Fang & Casadevall, 2015; Geman & Geman, 2016; Nosek et al., 

2012; Rawat & Meena, 2014; Sarewitz, 2016; Smaldino & McElreath, 2016). In 

competitive incentive structures, individuals can expend finite resources (e.g. time, 

money) to increase their probability of receiving a payoff, and one individual’s success 



 

  79 

reduces the probability that others will succeed (Dechenaux, Kovenock, & Sheremeta, 

2015). By this definition, much of science is competitive; scientists seek to gain access to 

limited resources such as funding and faculty positions, and their success implies the 

failure of others. Being first to report a given result helps scientists gain access to funding 

and faculty positions, which in turn causes competition over priority.   

 Given its role as a major scientific incentive, how does rewarding priority of 

discovery affect the scientific process? It is possible that rewarding priority benefits 

science. For instance, scientists may be incentivized to quickly solve problems and share 

their findings with the scientific community (Merton, 1957). Scientists may also 

efficiently distribute themselves among multiple scientific problems, because each 

scientist benefits from working on a problem with as few competitors as possible 

(Bergstrom et al., 2016; Strevens, 2003). The prospect of losing out in a competitive 

system may also increase the individual effort, task performance, and innovation of 

scientists, relative to a system in which individuals are rewarded for each unit of output 

regardless of order.  This could improve the quality of science that is carried out (Balietti 

et al., 2016; Dechenaux et al., 2015; Gneezy et al., 2003).  

However, rewarding priority has plausible downsides. Scientists may rush their 

work in an effort to avoid being scooped (Yong, 2018a). This might reduce the quality of 

their research by increasing their probability of making mistakes or by reducing the 

amount of information that they share with the scientific community. Robert Merton 

described Charles Darwin’s irritation with how rewarding priority rewarded rushed, low-

quality work, writing ‘In biology, it is the long-standing practice to append the name of 
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the first describer to the name of a species, a custom which greatly agitated Darwin since, 

as he saw it, this put “a premium on hasty and careless work” as the “species mongers” 

among naturalists try to achieve an easy immortality by “miserably describing a species 

in two or three lines”’ (Merton, 1957, p. 644). Scientists themselves are aware of how 

competition for priority incentivizes rushed work. In a set of focus-group discussions 

with 51 researchers, one early-career researcher described this effect: “There’s a fine line 

with actually having enough ... data to support your idea, and then going that extra half-

meter to really send it home. You don’t have that sort of time, because if you don’t get it 

published in a timely fashion, someone else will—without that data.” (Anderson et al., 

2007, p. 458).   

Here we focus on the latter hypothesis: competition for priority incentivizes 

rushed, low-quality research. To evaluate the plausibility of this hypothesis, we develop 

an evolutionary agent-based model that tests the effect of incentive structures that reward 

priority of discovery on the scientific process. In our model, researchers simultaneously 

compete to be first to publish a significant result on a given problem. Researchers can 

increase their statistical power by increasing their sample size. However, increasing 

sample size costs time, which leaves researchers vulnerable to being scooped by 

competitors.  

Our model supports the general hypothesis that competition can reduce the quality 

of individual studies: the practices of scientists who compete for priority culturally evolve 

towards smaller equilibrium sample sizes and lower statistical power than those for 

individual scientists who are not in competition. We also propose a mechanism that 
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allows populations to maintain higher sample sizes and statistical power at equilibrium: 

increased costs to starting investigations. This finding is robust to several extensions of 

the initial model (see below and Appendix). This suggests that competition for priority 

can cause researchers to pursue lower-quality investigations, but that its effect on science 

depends on the cost of starting new investigations. It also suggests that the time-cost 

inherent to some current reforms (e.g. pre-registration; registered reports) may be a 

feature rather than a bug, because it de-incentivizes researchers from conducting large 

numbers of underpowered studies.   

Model 

Consider a population of n scientists. Each scientist is characterized by a single 

(positive, discrete) parameter, s, that corresponds to their sample size when they conduct 

research. On any given question, a scientist’s statistical power (pwr) is a function of s, the 

false-positive rate (α, i.e., the significance threshold), and the size of the effect being 

studied (e). A scientist’s pwr is calculated using a two-sample t-test, by passing these 

parameters to the pwr.t.test() function in the ‘pwr’ package in R (Champely et al., 2018; 

R Core Team, 2017). In effect, this assumes that all research is of the form where 

scientists collect s data points from each of two populations and then test for a difference 

between the two.  

In our model, e values are drawn from an exponential distribution characterized 

by the rate parameter λ (distinct from the aforementioned rate of significant results) and 

rounded to the nearest 0.1. Each scientist’s career lasts for T time-steps. Once their career 
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has started, scientists collect data until they reach their desired sample size as dictated by 

their respective s value. The number of time steps required to do this (t) is: 

𝑡 = 𝑠 ∗ 𝑐5 + 𝑐 

Once a scientist has completed data collection, they perform a significance test, 

with probability pwr of obtaining a statistically-significant result. Every time a scientist 

obtains a statistically-significant result, they gain 1 point and move on to the next 

problem, starting a new study from scratch. If they are competing against other scientists, 

then all other scientists also move on to the next problem.  In this way only the first 

player to obtain a statistically-significant finding receives any points, because being 

scooped prompts scientists to abandon their current work. However, if a scientist tests 

their data and fails to find a significant result, their competitor continues as usual, while 

the focal scientist starts a new study from scratch. If both scientists conclude a study and 

obtain a statistically-significant result at the same time, each scientist obtains ½ point.  

We allow the phenotypes of scientists to evolve across generations: scientists who 

acquire more points within a generation have a higher probability of being represented in 

the next generation. This evolutionary component of our model corresponds to the 

assumption that scientists who are more successful (e.g. have more publications) are 

more likely to pass on their characteristics (e.g. the sample size used in their studies) to 

the subsequent generation of scientists. For example, younger scientists may 

preferentially imitate the behaviors of successful, well-established scientists (i.e. payoff-

biased social learning, (Richard McElreath et al., 2008)). Alternatively, scientists who 

acquire more publications may be more likely to remain in academia, and will thus be 



 

  83 

disproportionately available as cultural models for other scientists (Brischoux & 

Angelier, 2015; Smaldino & McElreath, 2016; van Dijk, Manor, & Carey, 2014). Our 

model is agnostic to the specific mechanism of cultural transmission by which the 

characteristics of successful scientists become disproportionately represented in 

subsequent generations.  

The cultural-fitness of each scientist is proportional to their total number of 

points. After all rounds of competition are complete, individuals reproduce according to 

the Wright-Fisher model, where repeated sampling with replacement from the parent 

generation, weighted by fitness, generates n offspring. The sample size (s) of offspring is 

a rounded value drawn from a normal distribution with mean sparent and standard 

deviation 2. Values of s < 2 are set to 2, because two-sample t-tests require at least 2 

samples in each group. The sample sizes of the initial population of scientists are 

generated by rounding n random numbers drawn from a uniform distribution ranging 

from 2 to 1000.  

Individual scientists (i.e. no competition).  

Assume first that α is constant across all studies, that λ = 3 (i.e. e values are drawn 

from an exponential distribution with a rate parameter = 3), and that there is no 

competition (i.e. scientists’ payoffs are determined entirely by their rate of statistically-

significant results). Given these parameters, we can approximate the payoff-maximizing 

sample size for individual scientists by evolving a population of n = 100 scientists across 

many generations do determine the equilibrium sample size. Figures 1a and 1b plot 
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equilibrium sample size and statistical power (respectively) for individual scientists, as a 

function of varying startup costs (sc), after 200 generations of evolution. 

a.                                                                       b.  

    

Figure 1 | Equilibrium (a) sample size and (b) statistical power for individual 
scientists as a function of startup cost (200 generations, 50 repeats). Parameter 
values are: n=100, α=0.05, λ = 3, r=5, T=5000 and cs=1. Larger startup costs lead 
to larger sample sizes and statistical power at equilibrium.   
 
When there are no startup costs, populations of scientists evolve towards very 

small sample sizes. As startup costs increase, equilibrium sample size increases. 

Scientists who conduct studies with small sample sizes have low statistical power which 

means that their probability of obtaining a statistically-significant result in a given study 

is low. Instead, their success depends on performing many studies as quickly as possible. 

This is most profitable when startup costs are low because scientists can perform multiple 

successive studies quickly. When the goal is to obtain at least one statistically-significant 

finding, running many small, underpowered studies can be a more efficient strategy than 

running one larger, well-powered study. This result is consistent with prior simulations of 
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strategies for chasing statistical significance in science (Bakker, van Dijk, & Wicherts, 

2012).  

However, large startup costs de-incentivize researchers from pursuing such a 

“quantity” strategy because they place a time cost on the scientist every time they start 

(or restart) a study. As startup costs increase, researchers obtain higher payoffs by 

investing more in each individual study – the additional time required to collect a larger 

dataset being compensated by the increased probability of finding a significant result. To 

illustrate, consider a case where e = 0.1. A scientist with a sample size of 100 has 

statistical power of 0.11, whereas a scientist with sample size s = 300 has statistical 

power = 0.23. When there are no startup costs, the s = 100 scientist can run 3 studies 

during the time that the sample size s = 300 scientist can run 1. The former’s probability 

of detecting at least 1 statistically-significant effect within 300 time periods is 1 - 0.89^3 

= .295, while the latter’s is 0.23. In this case, the s = 100 scientist is likely to win. Now 

consider a case where the startup cost is 300.  It will take the s = 100 scientist 400 time-

periods (100 + 300) to conduct one study with statistical power = 0.11, and it will take 

the s = 300 scientist 600 time-periods (300 + 300) to conduct one study with statistical 

power = 0.23. The former’s probability of obtaining at least 1 statistically-significant 

effect after 800-time periods is 1 – 0.89^2 = 0.21, while the latter’s probability of 

detecting a significant effect after just 600 time-periods is 0.23. Thus, higher startup costs 

decrease the relative payoff of small sample-size scientists compared to large sample-size 

scientists.    

 



 

  86 

Extension 1: Multiple Competitors and Sample Sizes Drawn from Different 

Exponential Distributions 

Thus far, we have assumed that effect sizes were drawn from an exponential 

distribution with λ = 3 and that n = 1 (i.e. there was no competition). Below, we modify 

these assumptions.  

As a sensitivity check, we explore the effect of drawing e valued from a range of 

exponential distributions, that vary in their λ parameter. We also incorporate competition: 

scientists compete against other scientists to be first to detect statistically-significant 

results (see “Model” description above for details). To test the effect of increasing 

competition on equilibrium sample size, we vary the number of competitors across 

simulations: scientists compete against each other in groups of 2, 4, or 8. As before, only 

the first scientist to obtain a statistically-significant result obtains a payoff, and all 

scientists simultaneously move on to the next problem upon being scooped. Each group is 

composed of individuals randomly-selected (without replacement) from the population of 

n scientists, where n = 100 (for groups of 2 and 4) or n = 96 (for groups of 8). 

Competition occurs locally (i.e. within each group). However, fitness is determined 

globally (i.e. a scientist’s proportion of the total number of points of all scientists in the 

population) and reproduction occurs in the same way as before (see “Model” description 

above).  

Figures 2 illustrates effect of competition on sample size by plotting equilibrium 

sample as a function of varying startup costs (sc) and number of competitors, when λ = 3. 

The appendix for Chapter 3 contains an alternative visualization of this effect. Given any 
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level of competition and non-zero startup costs, equilibrium sample size is substantially 

lower than for individual researchers. This occurs because more competitors increase the 

probability that any given scientist will be scooped, which favors smaller sample sizes. 

To illustrate, consider a case where e = 0.2, there are no startup costs, and where there are 

two competitors with sample sizes 50 and 150, respectively. The scientist with a sample 

size of 50 has statistical power of 0.17, whereas the scientist with a sample size of 150 

has statistical power of 0.41. The s = 50 scientist can run 2 studies (i.e. at time periods 50 

and 100) before the s = 150 scientist is even able to run 1. The former’s probability of 

detecting at least 1 statistically-significant effect before the latter is even able to run 1 is 1 

- 0.83^2 = .31. In this case, the s = 100 scientist has approximately a 30% chance of 

being scooped before being able to run even 1 study. Now consider a case where the s = 

100 scientist faces 7 other competitors, all of whom have s = 50. There is now a 1 - 

0.69^7 = 0.93 probability that at least one other scientist obtains at least 1 statistically-

significant result before the s = 100 scientist is even able to run 1 study.  
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Figure 2 | Equilibrium sample size for individual scientists compared to varying 
numbers of competitors, as a function of startup cost (200 generations, 50 repeats).  
Parameter values are: n=100, α=0.05, λ = 3, r=5, T=5000 and cs=1. For any number of 
competitors (i.e. 2, 4, 8), equilibrium sample size is lower than that of individual 
scientists (i.e. competitors = 1). As the number of competitors increases, equilibrium 
sample size decreases, because more competitors increase the probability that any given 
researcher will be scooped. As startup costs increase, equilibrium sample size increases, 
for the same reasons as in Figure 1. See Figure 5S in Appendix for an alternative 
visualization of Figure 2.  
 

Figures 3 and 4 plot equilibrium sample size and statistical power, respectively, 

for exponential distributions that vary in their λ parameter. To better illustrate the effect 

of increasing competition and startup costs, these figures only display equilibrium sample 

size given some level of competition (i.e. 2, 4, or 8 competitors). Equilibrium sample size 

for individual researchers (i.e. competitor = 1) is always substantially higher than 

equilibrium sample size given any amount of competition. Figures 3 and 4 demonstrate 

that the pattern in Figure 2 generalizes to a range of effect-size distributions.  More 

competitors lead to smaller equilibrium sample sizes, while higher startup costs lead to 

larger equilibrium sample sizes. Equilibrium sample size is largest for intermediate 

values of λ and smallest for small and large values of λ. When λ is large, effect sizes are 
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often zero, which disfavors investment in large samples. When λ is intermediate, 

scientists with larger samples are better able to detect the increased number of small and 

medium-sized effects. When λ is small, effect sizes are enormous, and scientists can 

detect them even with small sample sizes. However, equilibrium statistical power is 

highest for small values of λ: effect sizes are often large, and even scientists with small 

sample sizes can often obtain substantial statistical power.   
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Figure 3 | Equilibrium sample size as a function of number of competitors, startup 
cost, and exponential-distribution rate (λ) parameter (200 generations, 50 repeats). 
Parameter values are: n=100, α=0.05, r=5, T=5000 and cs=1. We explored the effect of 
running the simulation with five levels of λ (top row, left to right: 1, 3; bottom row, left to 
right: 5, 10, 50). As number of competitors increases, equilibrium sample size decreases, 
because more competitors increase the probability that any given scientist will be 
scooped. As startup costs increase, equilibrium sample size increases, for the same 
reasons as in other simulations. Equilibrium sample size is largest for intermediate values 
of the rate parameter and smallest for small and large values. When λ is large, effect sizes 
are often zero, which disfavors investing in large samples. When λ is intermediate, 
scientists with larger samples are better able to detect the increased number of medium-
sized effects. When λ is small, effect sizes are enormous, and scientists can detect them 
even with small sample sizes.  
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Figure 4 | Statistical power as a function of number of competitors, startup cost, and 
exponential-distribution rate (λ) parameter (200 generations, 50 repeats). Parameter 
values are: n=100, α=0.05, r=5, T=5000 and cs=1. We calculated the statistical power at 
equilibrium, given five levels of λ (top row: 1, 3; bottom row: 5, 10, 50). When effects 
are large (e.g. λ = 1) statistical power is high, even though equilibrium sample size is low. 
This is because scientists do not need large samples to obtain high statistical power, given 
large effect sizes. When effects are small (and often 0, e.g. λ = 50), average statistical 
power is low, even though equilibrium sample size is often substantial. This is due to two 
factors. For small effects, statistical power increases very slowly with increasing sample 
size, meaning that even large samples do not provide much statistical power. Further, 
when effects are 0, statistical power is fixed at the false-positive rate and does not 
increase with increasing sample size. As startup costs increase, statistical power 
increases. This occurs because startup costs increase equilibrium sample size, and 
statistical power is a monotonically increasing function of sample size.   
 
 Figure 5 plots equilibrium total fitness (i.e. the combined number of false positive 

and true positive results) as a function of startup cost and number of competitors. This 
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provides a measure of the total number of studies completed by all scientists. Higher 

startup costs lead to fewer total positive results.  This occurs because scientists spend 

much time waiting (instead of sampling) and are able to conduct fewer studies.  A larger 

number of competitors also decreases the total number of positive results.  This occurs 

because more competition causes many scientists to compete over the same research 

questions (i.e. effects). Although this increases the speed with which a statistically-

significant finding is found for a given research question, it decreases the total number of 

research questions investigated by the population. For instance, when groups consist of 2 

competitors and the population consists of n = 100 scientists, 50 groups of 2 scientists 

each collect data on 50 unique sequences of effects. When groups consist of 4 

competitors, 25 groups of 4 scientists each collect data on 25 unique sequences of effects. 

The decrease in the total number of questions investigated by the population of scientists 

results in fewer total positive results with increased competition.   
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Figure 5 | Total fitness (i.e. number of positive results) as a function of number of 
competitors and startup cost (200 generations, 50 repeats). Parameter values are: 
n=100, α=0.05, λ = 3, r=5, T=5000 and cs=1. We explored the total number of positive 
(i.e. statistically-significant results) as a function of the number of competitors and 
startup cost. As number of competitors increases, the total number of positive results 
decreases. This occurs because many researchers compete over the same research 
questions (i.e. effects). Although this increases the speed with which a statistically-
significant finding is found for a given research question, it decreases the total number of 
research questions investigated by the population. As startup costs increase, the total 
number of positive results decreases. This occurs because researchers conduct fewer 
studies when startup costs are high, which means that they have a slower rate of obtaining 
statistically-significant results per unit time.  
 
Extension 2: Adding benefits for secondary publications 

So far, our model has assumed that scientists who get scooped receive no payoff: 

they simply abandon their current investigation and move on to the subsequent one. 

Below, we modify this assumption, allowing for payoffs to secondary publication. This 

corresponds to the assumption that scientists who are scooped are still sometimes able to 

publish their findings or receive other forms of recognition for their research, which 

results in some non-zero payoff. For instance, the academic journals eLife and PLOS 
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Biology have recently begun offering “scoop protection” (i.e. allowing researchers to 

publish findings identical to those already published in the same journal) in attempts to 

reduce the disproportionate payoffs to scientists who publish first (Editors, 2018; Marder, 

2017; Yong, 2018a). Extending the model to allow for benefits to secondary publication 

allows us to evaluate the effects of such policy changes on research quality.  

In this extension, scientists who are scooped stop sampling and conduct a 

significance test. The significance test has the statistical power (pwr) associated with the 

number of participants that the scientist had gathered at the time of being scooped. With 

probability pwr, the scientist obtains a statistically-significant result and obtains the 

secondary benefit, b2. With probability 1 – pwr, they obtain a null result and receive no 

payoff. Scientists then move on to the subsequent research question (i.e. all competitors 

remain synchronized).  

Figure 6 plots equilibrium sample size (Log10) as a function of startup cost and 

number of competitors, for varying levels of b2.. Given any non-zero level of startup 

costs, benefits for secondary publication increase equilibrium sample size. This occurs 

because benefits to secondary publication allow scientists who are most likely to get 

“scooped” to receive a non-zero payoff. This reduces the difference in relative payoffs 

between scooped scientists and those who are first to obtain a statistically-significant 

finding. As long as scientists with large sample-sizes are more likely to be scooped than 

those with small sample-sizes, increasing the rewards to scooped scientists should 

increase equilibrium sample size.   
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Figure 6 | Equilibrium sample size (Log10) as a function of number of competitors 
and startup cost, for various levels of benefit to secondary publication, b2 (200 
generations, 50 repeats). Parameter values are: n=100, α=0.05, λ = 5, r=5, T=5000 and 
cs=1. We explored the effect of running the simulation with five levels of benefits to 
secondary publication (top row, left to right: 0, 0.33; bottom row, left to right: 0.66, 1, 2). 
Once at least one scientist has published a statistically-significant result, all other 
scientists stop collecting data and test for statistical significance, where their statistical 
power is determined by their sample size at the time of being scooped. Any of those 
scientists who obtain a statistically-significant result receives the secondary benefit. As 
number of competitors increases, equilibrium sample size decreases, because more 
competitors increase the probability that any given researcher will get scooped.  As 
startup costs increase, equilibrium sample size increases. Larger benefits to secondary 
publication increase equilibrium sample size. Secondary benefits to publication 
disproportionately benefit those researchers who are likely to get scooped. When startup 
costs are low, large sample-size scientists are more likely to get scooped. When startup 
costs are high, small sample-size scientists become increasingly likely to be scooped. 
However, large sample-size scientists have a higher probability of receiving the 
secondary payoff, conditional on being scooped, because they can achieve higher 
statistical power and have a higher probability of receiving the secondary payoff.  
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Discussion  

Our initial findings support the hypothesis that competition for priority can reduce 

research quality: in our model, competition always causes scientists to reduce their 

sample size and statistical power. This occurs because scientists can increase their 

probability of being first by quickly conducting studies with small sample-sizes, even 

though this reduces the probability that any single study obtains a statistically-significant 

result. Larger numbers of competitors exacerbate this effect: when scientists compete 

against many other individuals, those scientists who strive to conduct studies with large 

sample-sizes often get scooped before they even get to run their study once. As a 

consequence, they are even more strongly incentivized to conduct small sample-size 

studies.   

We also find that increased startup-costs allow populations to maintain higher 

sample sizes and statistical power at equilibrium. Startup costs are far from efficient: 

every researcher is forced to waste time in each investigation, resulting in populations of 

scientists that complete fewer studies (see Figure 5). However, startup costs de-

incentivize a “quantity” strategy wherein researchers conduct large numbers of 

underpowered studies (Bakker et al., 2012) because these scientists experience startup 

costs more frequently.  

 Allowing scientists who get scooped to receive a non-zero payoff (i.e. rewarding 

secondary publications) also results in increased equilibrium sample sizes. In our model, 

this effect occurs whenever large sample-size scientists are most likely to be scooped. 

Allowing scooped scientists to receive some payoff reduces the incentive for scientists to 
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run small sample-size studies to increase their probability of being first. Our model thus 

provides theoretical support for the efficiency of “scoop protection” reforms at several 

academic journals (Editors, 2018; Marder, 2017; Yong, 2018a).     

 Although our model uses equilibrium sample size and statistical power as a proxy 

for research quality, it is not well-designed to determine what is harmful or beneficial for 

science as a whole. For example, we might be interested in whether increased 

competition leads scientists to publish research that has a higher ratio of false positives to 

true positives, as in other models of the scientific process (Ioannidis, 2005; Richard 

McElreath & Smaldino, 2015; Nissen et al., 2016; Smaldino & McElreath, 2016). The 

basic version of our model assumes that scientists only publish positive results, all 

scientists abandon a research question as soon as they are scooped by a competitor, and 

each research question is characterized by either no effect (i.e. e = 0) or a true effect (i.e. 

e > 0). As a consequence, all published results are positive, and the ratio of true positives 

to false positives is determined by the ratio of no-effect-to-true-effect research questions. 

To address this limitation, we are developing an extension that relaxes the 

aforementioned assumptions (e.g. both positive and negative results are published; 

scientists are not forced to abandon research questions upon being scooped; see 

https://github.com/ltiokhin/BESTEVERCompetitionModel/tree/Expansion_Abandonmen

t_Bins_Pubbias). This will allow us to better determine the effect of competition and 

startup costs on science as a whole.  

Our model has several assumptions that may be modified as we develop it further. 

We assume that the payoff for publication is independent of the sample size of a study or 
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effect size investigated.  This assumption could be modified such that publishing large 

sample-size studies generates a higher payoff than publishing small sample-size studies, 

or that discovering a large effect results in a higher payoff than discovering a small effect.  

Several models of the scientific process have made different assumptions, including 

allowing the extent of publication bias to vary (Richard McElreath & Smaldino, 2015; 

Nissen et al., 2016) or allowing the probability of publication to depend on study quality 

(Higginson & Munafò, 2016).  Our assumption of extreme publication bias (i.e. null 

results are not published, statistically-significant results are always published) 

corresponds better to some scientific fields than others. For instance, over 90% of 

published findings in Psychology/Psychiatry provide positive support for the hypothesis 

being tested, compared to approximately 70% in Space Science (Fanelli, 2010). Finally, 

our model assumes that researchers restart a project (i.e. throw away all their data) each 

time they test for statistical-significance but obtain a non-significant result, and that 

scientists cannot receive payoffs for intermediate results, unlike several other models of 

the scientific process (Bergstrom et al., 2016; T. Boyer, 2014).  

 Our finding that increased startup costs allow populations to maintain higher 

sample sizes and statistical power at equilibrium suggests that startup costs may be one 

viable solution to the problem of scientific reliability. Several proposals for scientific 

reform have already inadvertently introduced such startup costs. For example, pre-

registration and registered reports make researchers spend more time thinking about and 

designing protocols before running investigations (Nosek, Ebersole, DeHaven, & Mellor, 
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2018; Nosek & Lakens, 2014). Although we currently conceptualize this time cost as an 

inconvenience, it may turn out to be key to incentivizing higher-quality research.  

Open Practices Statement 

All code for this project is available at: 

https://github.com/ltiokhin/BESTEVERCompetitionModel   

Ethics 

Following the precedent set by (Smaldino & McElreath, 2016), all simulated scientists 

were humanely euthanized.  
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DISCUSSION 
 

This combined research illustrates two aspects of scientific practice that may 

benefit from modification: the sample diversity of study participants and incentives for 

novel research findings.  In the case of social discounting, an experiment conducted 

among the most diverse participant populations to date found that social discounting may 

not be a universal human phenomenon: there was no evidence that participants in rural 

Indonesia and rural Bangladesh were more generous to close social partners than distant 

ones. This finding could not be explained by various potential methodological issues, 

including floor effects, unreliable measurement of the independent or dependent 

variables, or lack of statistical power. Further, the fact that this experiment found the 

same pattern in Indonesia and Bangladesh, despite different protocols, provides 

convergent evidence that this finding is robust to methodological variations (Munafò & 

Smith, 2018). This provides evidence against the hypothesis that the null effect was a 

methodological artefact, and is consistent with the hypothesis that social discounting is a 

phenomenon that may only hold in a restricted range of human populations. It also 

illustrates the importance of complementing efforts at direct replication of published 

findings with investment in strong checks on generalizability across diverse samples. 

Without doing so, we risk developing theories of human nature that inevitably fail to 

generalize outside of the narrow range of participants on which most social-science 

research typically relies.    

Although sample diversity has been largely overlooked by recent efforts at 

scientific reform (for example, see (Munafò et al., 2017)) incentive structures have 
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received more attention (Higginson & Munafò, 2016a; Munafò et al., 2017; Nosek et al., 

2012). However, there is a dearth of empirical and theoretical evidence for precisely how 

different incentives affect the scientific process. Chapters 2 and 3 take one step towards 

addressing this gap by testing effects of incentivizing novel findings on information 

acquisition in an instantiation of the scientific process where the key decision that 

researchers face is how much data to collect before submitting an answer to a problem.  

The experimental results in Chapter 2 demonstrate that the competition induced 

by rewarding novel findings can be harmful: individuals in the competition treatment 

made their guesses with less information (and as a result, had a higher probability of 

guessing incorrectly) than individuals in the no-competition treatment. The pilot study 

provided positive exploratory evidence for potential benefits of competition: individuals 

in the competition treatment solved arithmetic problems at a faster rate than individuals 

in the no-competition treatment. However, the subsequent high-powered confirmatory 

study provided no confirmatory evidence for the hypothesized benefits of competition: 

when individuals could adjust their effort to acquire more information, competition did 

not cause individuals to solve more arithmetic problems in order to acquire information 

more efficiently. This result is most likely if there was either 1) no effect of competition 

on effort in this particular study or 2) the effect was so small that the study was 

insufficiently powered to detect it.   

 The evolutionary agent-based model in Chapter 3 provides theoretical evidence 

that substantiates one of the main findings of the aforementioned experiment: 

competition for novel findings can incentivize individuals to rely on less evidence when 
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they guess the solution to research problems. In this model, competition for novel 

findings caused populations of scientists to evolve towards conducting research with 

smaller sample sizes and lower statistical power than when competition was absent. The 

model also provided theoretical evidence for the utility of two ways to increase research 

quality: startup costs and benefits for secondary publications. Higher time costs 

associated with setting up a single study allowed populations of scientists to maintain 

higher equilibrium sample sizes and statistical power. This occurred because high startup 

costs decreased the relative payoff to scientists who pursued a “quantity” strategy by 

conducting many low-quality studies. Increased benefits to secondary (i.e. non-novel 

results) also generally increased equilibrium sample size and statistical power. This 

occurred because individuals with large samples are often more likely to get scooped, and 

increasing benefits to secondary publications allows scooped individuals to receive at 

least some payoff for their research instead of receiving no benefit.   

Limitations and Future Directions 

The research in this dissertation is subject to a number of limitations. The cross-

cultural study of social discounting (Chapter 1) is not able to provide a theoretical 

explanation for the finding of no social discounting among Bangladeshi and Indonesian 

participants. For instance, it is possible that social discounting only exists in a subset of 

human populations. Alternatively, it is possible that norms about whether individuals 

should behave according to personal preferences versus formal obligations determine 

whether or not the social distance between individuals affects their generosity (Miller & 

Bersoff, 1998). It is also possible that social discounting exists only given specific 
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experimental protocols (e.g. operationalizations of generosity), as slight differences in 

experimental protocol can sometimes generate dramatically different results (Landy et al., 

n.d.). Testing these and other explanations will be a fruitful direction for future research 

as scholars work towards a better understanding of the boundary conditions of social 

discounting.  

 The experimental test of how competition for novel results affects information 

sampling strategies (Chapter 2) is a useful first step to evaluate how incentive structures 

affect the reliability of science. However, it is subject to several limitations. The 

experiment is conducted with undergraduate participants, and it remains to be established 

whether the results will generalize to scientists. The experiment conceptualizes scientific 

discovery as effect hunting: there exist true effects which are independent of one another, 

and there is an identical payoff to discovering any given effect. These assumptions do not 

apply to some domains of scientific inquiry. Discoveries can vary in their payoff value, 

such that solving some research problems makes more of a scientific contribution than 

solving others, and scientists thereby receive a higher payoff for solving those problems 

(Bergstrom et al., 2016). Discoveries may also be interconnected, such that one finding 

increases the probability that scientists are able to make other findings, or make 

connections between previously unstudied phenomena (Rzhetsky, Foster, Foster, & 

Evans, 2015; Uzzi, Mukherjee, Stringer, & Jones, 2013). The fact that simple innovations 

allow individuals to discover more complex ones (Derex, Perreault, & Boyd, 2018) 

means that assuming independence between discoveries may not hold in real-world 

scientific practice.  
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 Another limitation of the experiment is the fact that players in the Competition 

treatments compete solely against the performance of players in the No-Competition 

treatments. This results in a competitive situation where one individual’s payoff (i.e. 

players in the Competition treatment) depends on their opponent’s behavior, but an 

opponents’ payoffs (i.e. players in the No-Competition treatment) do not depend on the 

behavior of other players.  This causes a one-sided strategic interaction: players in 

Competition are expected to adjust their behavior based on their belief about the behavior 

of players in the No-Competition treatment, but players in the No-Competition treatment 

do not respond to the behavior of other players. As a result, the experiment provides a test 

of the direction of the effect of competition on information sampling (i.e. when people 

compete against individuals who are conducting research a non-competitive world, do 

people acquire more or less information before submitting their solution to the research 

problem?). The design does not provide information about equilibrium behavior (i.e. the 

stable long-run behavior when two individuals are in competition and can both adjust 

their behavior based on an expectation of the other player’s likely behavior).  

 One-sided interaction could lead to different results than two-sided strategic 

interaction. In a one-sided game, players in the competition treatment are incentivized to 

guess slightly earlier than their opponent, while the opponent is not incentivized to 

change their behavior as a function of others play. In a two-sided game, both players are 

incentivized to guess earlier than each other, which could lead to a reduction in the 

number of tiles revealed across many rounds of play. In this case, a one-sided design 

would provide information about the direction of the effect of competition on tiles 
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revealed, while a two-sided design would be necessary to reveal equilibrium behavior. To 

illustrate the differences between the one-sided experimental design in Chapter 2 and that 

of other experiments on strategic interaction, I provide two examples of related 

experimental paradigms in behavioral game theory that are not one-sided (i.e. that allow 

both players to respond to each other’s’ behavior): the investment game and the ”p-

beauty contest” game. 

 In the symmetric version of the investment game, two players have an equal 

budget (e), and each have the option of making an irrecoverable investment to win an 

indivisible prize (r) (Camerer, 2011; Harris & Vickers, 1985). Players lose the proportion 

of their budget that is used to make their bid and they keep their remaining budget. The 

highest bidder receives the prize, but neither player receives the prize if both bid the same 

amount. This design conceptualizes bidding as an interaction where both players make a 

single, simultaneous decision, and each player’s optimal decision depends on the decision 

of the other player. Consider the case where e = 5 and can potentially win r = 8. If their 

opponent invests 0, a player maximizes their payoff by investing e= 1, leaving them with 

a total payoff of 12. However, if an opponent invests everything (i.e. e = 5), a player 

maximizes their payoff by investing 0 (because investing everything would result in a bid 

equal to their opponent, resulting in 0 payoff), leaving them with a total payoff of 5.  The 

bidding game has a unique symmetric mixed-strategy equilibrium, where individuals 

invest their whole endowment with probability 678
6
	 and invest smaller integer amounts 

with equal probabilities 9
6
 (Camerer, 2011; Rapoport & Amaldoss, 2000). Experiments 

with undergraduate and graduate students provide evidence that the aggregate behavior of 
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individuals is close to the predicted mixed-strategy equilibrium (Camerer, 2011; 

Rapoport & Amaldoss, 2000).  

 The symmetric investment game has some similarities to the experiment in 

Chapter 2: interactions occur between 2 players and each player can make only a single 

decision per trial. One difference is that both players make their decisions simultaneously 

in the investment game, whereas decisions in the experiment in Chapter 2 have a 

temporal element: players get scooped if their competitor makes the correct guess faster 

than they do. This thus incentivizes players to anticipate how quickly their opponent is 

likely to make a guess and how accurate that guess will be. Another key difference is that 

the investment game incentivizes both players to anticipate the likely behavior of their 

competitor and adjust their own behavior accordingly, whereas the experiment in in 

Chapter 2 only allows one player to anticipate the other’s behavior. Finally, the 

experiment in Chapter 2 allows players in the Competition treatment to learn about their 

competitor’s behavior, whereas the investment game randomizes partner-pairings across 

after each trial, thereby only allowing players to learn about the average behavior of their 

many competitors (Rapoport & Amaldoss, 2000).  

 In the “p-beauty contest” game, each of n players simultaneously choose a 

number x in the interval 0 to 100. A multiple p of the average of all players’ numbers is 

then chosen to be the “target number”, and the player whose number x is closest to the 

target number wins a fixed prize (Camerer, 2011). The game was first described in 

(Moulin, 1986) as a way of measuring the number of steps of iterated reasoning engaged 

in by individuals. Assume that p = 0.67. In this game, people maximize their payoff by 
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guessing the average of other players’ guesses, and then picking a number that is 2/3 of 

this average, knowing that all other players are also engaged in the same computation. 

This unique equilibrium strategy in this game is for players to guess 0.  The reasoning is 

as follows. Players should never choose a number larger than 67: such a choice is 

dominated by choosing 67 (i.e. choosing 67 always results in a higher payoff than 

choosing a number greater than 67). If a player thinks that other individuals obey 

dominance, the player should choose 0.67 * 67 = 45. But if all players think that 

everyone obeys one step of dominance and choose 45, then a player should choose 0.67 * 

45 = 30. Infinite steps of such iterated dominance lead to the unique equilibrium of 0.  

 Nagel conducted the first experimental test of player behavior in repeated “p-

beauty contest” games (Nagel, 1995). She found that players typically exhibited 1-2 steps 

of iterated reasoning in first-round play. For example, when p = 0.67, most players 

guessed numbers between 20 and 40. In subsequent rounds of play, players’ guesses 

decreases, such that guesses in the last round were closest to the predicted game-theoretic 

equilibrium of 0. Nagel’s findings are corroborated by subsequent published studies of 

the “p-beauty contest” in western populations ranging from Cal-Tech undergraduates to 

high-school students in the U.S.: first-round choices are consistent with 1-3 steps of 

iterated reasoning and are far from the game-theoretic equilibrium, but players learn to 

make smaller guesses across multiple rounds of the experiment, such that the most 

guesses are 0 after 6-10 rounds of play (Camerer, 2011).  

“P-beauty contest” games demonstrate that players’ first round behavior may be 

far from predicted game-theoretic equilibria, even though players do move towards the 
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predicted equilibrium across multiple rounds of play. However, first-round play is not 

entirely misleading: players make guesses that are in the predicted direction (i.e. they 

choose numbers closer to 0 than would be expected if players choose at random). This is 

relevant to the experiment in Chapter 2, where only one player in a pair is incentivized to 

anticipate their competitor’s behavior. That experimental design does not provide 

information about equilibrium behavior. However, it does provide information regarding 

the direction of the effect of competition on information sampling (i.e. when players A 

and B are competing, player B is rewarded for being first to accurately guess the 

underlying color, and player A is not anticipating the behavior of player B, does player B 

acquire more or less information?). An important future extension of the experiment in 

Chapter 2 would be to test equilibrium behavior by modifying the experiment such that 

both players can respond to competition for priority. 

 The evolutionary agent-based model in Chapter 3 has several assumptions that 

may limit its generality. It assumes that scientists are perfectly synchronized: all scientists 

start research questions at the same time, and as soon as one scientist publishes a positive 

result, all other scientists abandon their research question and move on to the subsequent 

one. This mirrors the experimental design of Chapter 2, but lacks realism. In more 

realistic competitive situations, finishing a problem early may allow scientists to get a 

head start on other research questions. The model also assumes that the payoff for 

publication is independent of the sample size of a study or effect size investigated.  This 

assumption could be modified to make the payoff for publication contingent on research 

quality (e.g. scientists are rewarded more for publishing studies with large sample sizes).  
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Finally, the model assumes extreme publication bias: null results are never published, 

whereas statistically-significant results are always published. This approximates the 

current state of affairs in some fields better than others. For example, over 90% of 

published findings in Psychology/Psychiatry provide positive support for the hypothesis 

being tested, compared to approximately 70% in Space Science (Fanelli, 2010). An 

important future extension would be to test the effect of varying publication bias on the 

types of studies that scientists are incentivized to conduct. To address these limitations, a 

more general version of the model in Chapter 3 is currently being developed (see 

https://github.com/ltiokhin/BESTEVERCompetitionModel/tree/Expansion_Abandonmen

t_Bins_Pubbias). This extension relaxes the assumption that scientists are always 

synchronized, allows both positive and negative results to be published, and does not 

force scientists to abandon a research question once a single result has been published on 

that question. This will allow an exploration of the extent to which the results of the 

model in Chapter 3 generalize beyond the specific assumptions of that model.   

 It is an exciting time to be a scientist. Scientists across disciplines are becoming 

aware that status quo scientific practice has problems that do not necessarily need to be 

accepted. We do not need to accept that individually-beneficial scientific practices 

necessarily conflict with the collective goals of scientists. We do not need to accept that 

publication requires a positive result that supports one’s hypothesis, without showing any 

signs of uncertainty about the research (Frankenhuis & Nettle, 2018). And we do not 

need to accept a scientific world in which our theories are not formalized and our 

empirical work is conducted with populations that do not represent humanity as a whole. 
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The meta-scientific research in this dissertation takes one step towards addressing these 

issues. By itself, it may not have much impact. But in the aggregate, meta-scientific 

research provides our best hope for ensuring that scientists prioritize the pursuit of truth 

above all else.  
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PARTICIPANT DEMOGRAPHIC CHARACTERISTICS 
 

 U.S. Bangladesh Indonesia 

N 40 200 44 

Age (mean(s.d.)) 19.5 (1.3) 38.0 (14.3) 34.5 (9.6) 

Sex (female/male (% 
female)) 

18/21 (46%) 166/200 (83%) 25/18 (58%) 

 
Table 1S | Participant Demographic Characteristics. Two participants (one 
U.S., one Indonesian) reported their sex as “other” and were excluded from 
estimates of the male-female ratio. 
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MODEL COMPARISON 
 

Testing the Best Model for All Sites 
 

Model DF Log 
Likelihood 

AIC ΔAIC BIC  
(Max N = 
1388) 

ΔBIC  
(Max 
N = 
1388) 

BIC 
(Min N 
= 284) 

ΔBIC 
(Min N 
= 284) 

Full Model (2 
Ran. Slopes) 

26 509.30 -966.59 0 -830.47 15.35 -871.73  8.99    

No Ran. Slope 
Social Distance 

22 502.5 -961 5.59  -845.82 0 -880.72  0 

No Ran. Slope 
Need  

19 395.97 -753.95 212.64  -654.47 191.35  -684.61  196.11  

No Ran. Slope 
Social Distance or 
Need; 
Ran. Slope 
Relatedness  

19 389.63 -741.27 225.32  -641.79 204.03  -671.93  208.79  

Ran. Intercept 
Only 

17 387.33 -740.65 225.94  -651.65 194.17  -678.63  202.09  

No Ran. Effects 16 167.52 -303.05 663.54 -219.28 626.54 -244.66 636.06 

 
Table 2S | Information criteria for different random-effect structures. Full 
Model (2 Ran. Slopes; Table 1, main text) includes fixed-effects for social 
distance, relatedness, and relative need, a random intercept for participant, and 
random slopes for both relative need and social distance. Table 2S compares this 
model to alternative models that differ only in their random-effects. No Ran. 
Slope Social Distance = random intercept for participant and random slope for 
need. No Ran. Slope Need = random intercept for participant and random slope 
for social distance. No Ran. Slope Social Distance or Need; Ran. Slope 
Relatedness = random intercept for participant and random slope for relatedness. 
Ran. Intercept only = random intercept for participant. No Ran. Effects = linear 
model with no random effects. 2 columns for Bayesian Information Criteria (BIC) 
indicate the upper and lower bounds on BIC. BIC with Max N = 1388 calculates 
BIC assuming each observation is independent. BIC with Min N = 284 calculates 
BIC assuming only 1 observation per participant (i.e. all observations for a given 
participant are entirely non-independent). ΔAIC and ΔBIC indicate the 
differences in information criteria between alternative models and the best model. 
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Model DF AIC AIC 
Weight 

BIC  
(Max N = 
1388) 

BIC 
Weight 
(Max N = 
1388) 

BIC 
(Min N 
= 284) 

BIC Weight 
(Min N = 
284) 

Full Model (2 
Ran. Slopes)  

26 -966.59 0.94 -830.47 0 -871.73 0.01 

Ran. Slope Need 22 -961 0.06 -845.82 1 -880.72 0.99 

Ran. Slope 
Social Distance 

19 -753.95 0 -654.47 0 -684.61 0 

Ran. Slope 
Relatedness 

19 -741.27 0 -641.79 0 -671.93 0 

Ran. Intercept 
Only 

17 -740.65 0 -651.65 0 -678.63 0 

No Ran. Effects 16 -303.05 0 -219.28 0 -244.66 0 

 
Table 3S | AIC and BIC Weights. Full Model (2 Ran. Slopes; Table 1, main 
text) includes fixed-effects for social distance, relatedness, and relative need, a 
random intercept for participant, and random slopes for both relative need and 
social distance. Table 3S compares the AIC and BIC weights of this model to 
alternative models that differ only in their random-effects (See Table 2S above) 
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Chi-Square Tests for Model Fit 
 

Random intercept for participant is significant  
Model 1: Fixed Effects (ln Social Distance, Relative Need, Relatedness); Random Effects 
(None) 
Model 2: Fixed Effects (ln Social Distance, Relative Need, Relatedness); Random Effects 
(Random Intercept for Participant) 
Model DF ΔDF Chisq P-Value 
Model 1 16    
Model 2 17 1 439.61 <0.001 

 
Random slope for social distance is significant  
Model 2: Fixed Effects (ln Social Distance, Relative Need, Relatedness); Random Effects 
(Random Intercept for Participant) 
Model 3: Fixed Effects (ln Social Distance, Relative Need, Relatedness); Random Effects 
(Random Intercept for Participant; Random Slope for ln Social Distance) 
Model DF ΔDF Chisq P-Value 
Model 2 17    
Model 3 19 2 17.3 <0.001 

 
Random slope for relative need is significant  
Model 2: Fixed Effects (ln Social Distance, Relative Need, Relatedness); Random Effects 
(Random Intercept for Participant) 
Model 4: Fixed Effects (ln Social Distance, Relative Need, Relatedness); Random Effects 
(Random Intercept for Participant; Random Slope for Relative Need) 
Model DF ΔDF Chisq P-Value 
Model 2 17    
Model 4 22 5 230.35 <0.001 

 
Random slope for relatedness is not significant  
Model 2: Fixed Effects (ln Social Distance, Relative Need, Relatedness); Random Effects 
(Random Intercept for Participant) 
Model 5: Fixed Effects (ln Social Distance, Relative Need, Relatedness); Random Effects 
(Random Intercept for Participant; Random Slope for Relatedness) 
Model DF ΔDF Chisq P-Value 
Model 2 17    
Model 5 19 2 4.62 0.10 

 
A model with random slopes for both relative need and ln social distance is significantly 
better than a model with only a random slope for need or only a random slope for social 
distance 
Model 3: Fixed Effects (ln Social Distance, Relative Need, Relatedness); Random Effects 
(Random Intercept for Participant; Random Slope for ln Social Distance) 
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Model 4: Fixed Effects (ln Social Distance, Relative Need, Relatedness); Random Effects 
(Random Intercept for Participant; Random Slope for Relative Need) 
Model 6: Fixed Effects (ln Social Distance, Relative Need, Relatedness); Random Effects 
(Random Intercept for Participant; Random Slopes for ln Social Distance and Relative 
Need) 
Model DF ΔDF Chisq P-Value 
Model 3 19    
Model 6 26 7 226.65 <0.001 

 
Model DF ΔDF Chisq P-Value 
Model 4 22    
Model 6 26 4 13.60 0.009 
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ALTERNATIVE MODEL SPECIFICATIONS 
 

All Sites 
 

    U.S.  
Expected Sharing   Bangladesh  

Expected Sharing   Indonesia 
Expected Sharing 

    Estimate 
(CI) P   Estimate (CI) P   Estimate 

(CI) P 

Fixed Effects 

(Intercept)   0.70 
(0.57 – 0.83) <.001   0.15 

(0.07 – 0.23) <.001   0.66 
(0.55 – 0.77) <.001 

Ln Social 
Distance   -0.10 

(-0.12 – -0.08) <.001   0.00 
(-0.01 – 0.01) .627   -0.00 

(-0.02 – 0.01) .620 

Need 

Recipient 
Equally 
Needy 

  -0.10 
(-0.22 – 0.03) .140   -0.08 

(-0.16 – 0.01) .069   -0.19 
(-0.29 – -0.09) <.001 

Recipient  
Less 
Needy 

  -0.19 
(-0.32 – -0.06) .004   -0.13 

(-0.21 – -0.05) .001   -0.30 
(-0.41 – -0.19) <.001 

Relatedness   0.07 
(-0.07 – 0.20) .325   -0.01 

(-0.10 – 0.08) .866   0.13 
(0.00 – 0.25) .049 

 
Table 4S| Generosity as a function of social distance, relative need, and 
relatedness. Only random slope for relative need. Multilevel model of social 
distance, recipient need, and relatedness regressed on expected sharing. Model 
controls for correlated observations from the same participant with random effects 
for each individual and includes a random slope for recipient need. CI = 95% 
confidence intervals.  
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    U.S.  
Expected Sharing   Bangladesh  

Expected Sharing   Indonesia 
Expected Sharing 

    Estimate 
(CI) P   Estimate (CI) P   Estimate 

(CI) P 

Fixed Effects 

(Intercept)   0.71 
(0.58 – 0.84) <.001   0.15 

(0.07 – 0.22) <.001   0.70 
(0.59 – 0.80) <.001 

Ln Social 
Distance   -0.10 

(-0.12 – -0.08) <.001   0.00 
(-0.01 – 0.01) .661   -0.01 

(-0.03 – 0.01) .226 

Need 

Recipient 
Equally 
Needy 

  -0.10 
(-0.22 – 0.02) .117   -0.07 

(-0.15 – 0.01) .087   -0.20 
(-0.30 – -0.10) <.001 

Recipient  
Less 
Needy 

  -0.19 
(-0.32 – -0.07) .004   -0.13 

(-0.21 – -0.05) .001   -0.31 
(-0.42 – -0.20) <.001 

 
Table 5S| Generosity as a function of social distance and relative need 
(excluding genetic relatedness). Multilevel model of social distance and 
recipient need regressed on expected sharing. Model controls for correlated 
observations from the same participant with random effects for each individual 
and includes random slopes for social distance and recipient need. CI = 95% 
confidence intervals.  
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U.S.  

Expected 
Sharing 

  Bangladesh  
Expected Sharing   

Indonesia 
Expected 
Sharing 

    Estimate 
(CI) P   Estimate 

(CI) P   Estimate 
(CI) P 

Fixed Effects 

(Intercept)   0.61 
(0.54 – 0.67) 

<.00
1   0.04 

(0.02 – 0.07) .003   0.52 
(0.45 – 0.59) 

<.00
1 

Ln Social 
Distance   

-0.11 
(-0.13 – -

0.09) 

<.00
1   0.00 

(-0.01 – 0.01) .875   
-0.03 

(-0.05 – -
0.01) 

.013 

Relatedness   
0.04 

(-
0.12 – 0.19) 

.653   -0.04 
(-0.15 – 0.07) .453   0.14 

(0.00 – 0.27) .046 

 
Table 6S| Generosity as a function of social distance and relatedness 
(excluding need). Multilevel model of social distance and relatedness regressed 
on expected sharing. Model controls for correlated observations from the same 
participant with random effects for each individual and includes a random slope 
for social distance. Without controlling for need, social distance has a stronger 
estimated association with generosity in Indonesia. CI = 95% confidence 
intervals. 
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    U.S.  
Expected Sharing   Bangladesh  

Expected Sharing   Indonesia 
Expected Sharing 

    Estimate 
(CI) P   Estimate 

(CI) P   Estimate 
(CI) P 

Fixed Effects 

(Intercept)   0.61 
(0.55 – 0.68) 

<.00
1   0.04 

(0.01 – 0.07) .004   0.55 
(0.49 – 0.61) 

<.00
1 

Ln Social 
Distance   

-0.11 
(-0.14 – -

0.09) 

<.00
1   0.00 

(-0.01 – 0.01) .775   
-0.04 

(-0.06 – -
0.02) 

<.00
1 

 
Table 7S| Generosity as a function of social distance (excluding need and 
genetic relatedness). Multilevel model of social distance regressed on expected 
sharing. Model controls for correlated observations from the same participant 
with random effects for each individual and includes a random slope for social 
distance. When removing all co-variates, social distance has a stronger estimated 
association with generosity in Indonesia. CI = 95% confidence intervals.  
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    Expected Sharing 

    Estimate (CI) P 

Fixed Effects 

(Intercept)   0.71 
(0.57 – 0.84) <.001 

Ln Social Distance (U.S.)   -0.10 
(-0.12 – -0.08) <.001 

Site (Reference = U.S) 

Bangladesh   -0.56 
(-0.71 – -0.41) <.001 

Indonesia   -0.04 
(-0.21 – 0.13) .670 

Relative Need  

Recipient  
Equally Needy   -0.10 

(-0.22 – 0.02) .121 

Recipient  
Less Needy   -0.19 

(-0.32 – -0.07) .004 

Relatedness   0.05 
(-0.08 – 0.19) .459 

Ln Social Distance: Bangladesh   0.10 
(0.08 – 0.12) <.001 

Ln Social Distance: Indonesia   0.10 
(0.07 – 0.12) <.001 

Bangladesh: Recipient  
Equally Needy   0.03 

(-0.12 – 0.17) .721 

Indonesia: Recipient  
Equally Needy   -0.10 

(-0.25 – 0.06) .224 

Bangladesh: Recipient 
Less Needy   0.06 

(-0.09 – 0.21) .401 



 

  133 

Indonesia: Recipient  
Less Needy   -0.11 

(-0.28 – 0.06) .191 

Bangladesh: Relatedness   -0.06 
(-0.22 – 0.10) .475 

Indonesia: Relatedness   0.07 
(-0.11 – 0.25) .452 

Random Parts 
σ2   0.016 
τ00, respid   0.080 
ρ01   -0.750 
Nrespid   284 

Observations   1388 
R2 / Ω02   .882 / .879 

 
Table 8S| Generosity as a function of social distance, relative need, and 
relatedness (Full output for Table 1 in main text). Multilevel model of social 
distance, relative need, and relatedness regressed on expected sharing. Model 
controls for correlated observations from the same participant with random effects 
for each individual and includes random slopes for social distance and relative 
need. Model compares effect estimates in Bangladesh and Indonesia to the U.S. 
(i.e. the reference group). CI = 95% confidence intervals.  
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    U.S.  
Expected Sharing   Bangladesh  

Expected Sharing   Indonesia 
Expected Sharing 

    Estimate 
(CI) P   Estimate 

(CI) P   Estimate 
(CI) P 

Fixed Effects 

(Intercept)   0.68 
(0.55 – 0.80) 

<.00
1   0.15 

(0.07 – 0.23) 
<.00

1   0.67 
(0.57 – 0.78) 

<.00
1 

Social 
Distance   

-0.02 
(-0.02 – -

0.01) 

<.00
1   0.00 

(-0.00 – 0.00) .618   -0.00 
(-0.01 – 0.00) .315 

Need 

Recipient 
Equally 
Needy 

  -0.11 
(-0.23 – 0.02) .095   -0.08 

(-0.16 – 0.00) .064   
-0.20 

(-0.30 – -
0.10) 

<.00
1 

Recipient  
Less 
Needy 

  
-0.20 

(-0.33 – -
0.08) 

.002   -0.13 
(-0.21 – -0.06) 

<.00
1   

-0.30 
(-0.41 – -

0.19) 

<.00
1 

Relatedness   0.04 
(-0.09 – 0.18) .548   -0.01 

(-0.10 – 0.08) .870   0.11 
(-0.01 – 0.23) .081 

 
Table 9S| Generosity as a function of social distance (unlogged), relative 
need, and relatedness. Multilevel model of raw (unlogged) social distance, 
relative need, and relatedness regressed on expected sharing. Model controls for 
correlated observations from the same participant with random effects for each 
individual and includes random slopes for social distance and relative need. CI = 
95% confidence intervals.  
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Within Sites 
 

    Bangladesh  
Expected Sharing 

    Estimate (CI) P 

Fixed Effects 

(Intercept)   0.13 
(0.05 – 0.22) .002 

Ln Social Distance   0.00 
(-0.00 – 0.01) .444 

Relative Need 

Recipient 
Equally Needy   -0.07 

(-0.15 – 0.01) .106 

Recipient 
Less Needy   -0.12 

(-0.20 – -0.04) .004 

Relatedness   -0.01 
(-0.06 – 0.04) .799 

Order_Asked 

Order_Asked2   0.01 
(-0.00 – 0.03) .120 

Order_Asked3   -0.01 
(-0.02 – 0.01) .260 

Order_Asked4   -0.00 
(-0.02 – 0.01) .718 

Order_Asked5   0.00 
(-0.02 – 0.02) .954 

Age   0.00 
(-0.00 – 0.00) .914 

Recipient Gender (Reference Category = Female) 
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Male   0.00 
(-0.01 – 0.01) .911 

Unspecified   0.01 
(-0.16 – 0.17) .949 

Participant Gender 
(Reference Category = Female)   0.01 

(-0.01 – 0.04) .343 

Random Parts 
σ2   0.005 
τ00, respid   0.088 
ρ01   0.077 
Nrespid   200 

Observations   964 
R2 / Ω02   .876 / .874 

 
Table 10S| Generosity among Bangladesh participants as a function of social 
distance, relative need, and relatedness, controlling for participant and 
recipient gender, order of recipient, and participant age. Multilevel model of 
social distance, recipient need, and relatedness regressed on expected sharing. 
Model also includes fixed effects for participant gender, recipient gender, order or 
recipient, and participant age. Model controls for correlated observations from the 
same participant with random effects for each individual and includes random 
slopes for social distance and recipient need. CI = 95% confidence intervals.  
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    Indonesia 
Expected Sharing 

    Estimate (CI) P 

Fixed Effects 

(Intercept)   0.69 
(0.46 – 0.93) <.001 

Ln Social Distance   -0.00 
(-0.03 – 0.03) .871 

Relative Need 

Recipient 
Equally Needy   -0.23 

(-0.33 – -0.13) <.001 

Recipient 
Less Needy   -0.34 

(-0.46 – -0.22) <.001 

Relatedness   0.12 
(-0.07 – 0.31) .210 

Order_Asked 

Order_Asked2   0.03 
(-0.06 – 0.12) .464 

Order_Asked3   -0.01 
(-0.10 – 0.08) .780 

Order_Asked4   0.03 
(-0.07 – 0.12) .589 

Order_Asked5   -0.02 
(-0.12 – 0.07) .623 

Order_Asked6   0.08 
(-0.19 – 0.36) .569 

Age   0.00 
(-0.01 – 0.01) .783 



 

  138 

 

 
Table 11S| Generosity among Indonesian participants as a function of social 
distance, relative need, and relatedness, controlling for participant and 
recipient gender, order of recipient, and participant age. Multilevel model of 
social distance, recipient need, and relatedness regressed on expected sharing. 
Model also includes fixed effects for participant gender, recipient gender, order of 
recipient, and participant age. Model controls for correlated observations from the 
same participant with random effects for each individual and includes a random 
slope for recipient need. CI = 95% confidence intervals.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Recipient Gender (Reference Category = Female) 

Male   -0.03 
(-0.11 – 0.04) .402 

Unspecified   0.06 
(-0.10 – 0.21) .464 

Participant Gender 
(Reference Category = Female)   -0.05 

(-0.17 – 0.07) .436 

Random Parts 
σ2   0.039 
τ00, respid   0.027 
ρ01   -0.273 
Nrespid   43 

Observations   215 
R2 / Ω02   .737 / .722 
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    U.S.  
Expected Sharing 

    Estimate (CI) P 

Fixed Effects 

(Intercept)   0.58 
(-0.68 – 1.84) .376 

Ln Social Distance   -0.11 
(-0.14 – -0.08) <.001 

Relative Need 

Recipient 
Equally Needy   -0.13 

(-0.24 – -0.01) .032 

Recipient 
Less Needy   -0.22 

(-0.33 – -0.11) <.001 

Relatedness   0.14 
(-0.09 – 0.37) .223 

Order_Asked 

Order_Asked2   -0.13 
(-0.23 – -0.02) .020 

Order_Asked3   -0.08 
(-0.19 – 0.03) .145 

Order_Asked4   -0.20 
(-0.31 – -0.10) <.001 

Order_Asked5   -0.11 
(-0.21 – -0.00) .051 

Order_Asked6   0.01 
(-0.10 – 0.12) .808 

Age   0.01 
(-0.05 – 0.08) .729 
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Recipient Male  
(Reference Category = Female)   0.04 

(-0.03 – 0.12) .284 

Participant Male 
(Reference Category = Female)   0.02 

(-0.15 – 0.19) .842 

Random Parts 
σ2   0.047 
τ00, respid   0.061 
Nrespid   39 

Observations   195 
R2 / Ω02   .728 / .722 

 
Table 12S| Generosity among U.S. participants as a function of social 
distance, relative need, and relatedness, controlling for participant and 
recipient gender, order, and participant age. Multilevel model of social 
distance, recipient need, and relatedness regressed on expected sharing. Model 
also includes fixed effects for participant gender, recipient gender, order of 
recipient, and participant age. Model controls for correlated observations from the 
same participant with random effects for each individual. CI = 95% confidence 
intervals.  
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BIC AND BAYES FACTORS FOR MODELS WITH/WITHOUT SOCIAL 
DISTANCE 

 

We calculate Bayesian Information Criterion (BIC)(G. Schwarz, 1978) values to 
assess the extent to which the data favor models (i.e. statistical descriptions of 
hypotheses) with or without social distance. We then use BIC values to approximate 
Bayes Factors (BF) for competing models(Wagenmakers, 2007).  

 

Bangladesh DF Log Likelihood BIC  
(Max N = 968) 

BIC  
(Min N = 200) 

Full Model (2 Ran. Slopes) 16 902.25 -1694.5 -1719.73 
No Ran. Slope Social Distance 12 881.47 -1680.4 -1699.36 
No Ran. Slope or Fixed Effect 
Social Distance  

11 881.06 -1686.5 -1703.84 

Indonesia  DF Log Likelihood BIC  
(Max N = 220) 

BIC  
(Min N = 44) 

Full Model (2 Ran. Slopes) 16 -6.31 98.92 73.16 
No Ran. Slope Social Distance 12 -8.02 80.77 61.45 
No Ran. Slope or Fixed Effect 
Social Distance  

11 -8.08 75.49 57.78 

U.S.  DF Log Likelihood BIC  
(Max N = 200) 

BIC  
(Min N = 40) 

Full Model (2 Ran. Slopes) 16 -25.34 135.45 109.7 
No Ran. Slope Social Distance 12 -26.74 117.05 97.75 
No Ran. Slope or Fixed Effect 
Social Distance  

11 -46.28 150.85 133.14 

 
Table 13S | BIC for competing models. Full Model (2 Ran. Slopes; Table 1, 
main text) includes fixed-effects for social distance, relatedness, and relative 
need, a random intercept for participant, and random slopes for both relative need 
and social distance. This table compares this model to alternative models that 
differ by removing just the random slope for social distance (No Ran. Slope 
Social Distance) or by removing both the random and fixed effect of social 
distance (No Ran. Slope or Fixed Effect Social Distance). 2 columns for Bayesian 
Information Criteria (BIC) indicate the upper and lower bounds on BIC. BIC with 
Max N calculates BIC assuming each observation is independent. BIC with Min 
N calculates BIC assuming only 1 observation per participant (i.e. all observations 
for a given participant are entirely non-independent).  

 
 We approximate Bayes Factors (BF) by exponentiating half the difference 
between the BIC values of competing models (i.e. exp(ΔBIC10 / 2)).(Wagenmakers, 
2007) BF10  indicates a ratio: the likelihood of the data conditional on Model 1, P(D|M1), 
divided by the likelihood of the data conditional on Model 0, P(D|M0). For example, if 
BF10 = 8, the data are 8 times more likely under Model 1 than Model 0. If BF10 = 0.01, the 
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data are 100 times less likely under Model 1 than Model 0. For all below comparisons, 
Model 1 is listed first and Model 0 is listed second.  
 
Bangladesh BF 
Full Model (2 Ran. Slopes) vs. No Ran. Slope Social Distance 
Using BIC Max N. BF10 = 1152.86 
Using BIC Min N. BF10 = 26462.93 
Full Model (2 Ran. Slopes) vs. No Ran. Slope or Fixed Effect Social Distance 
Using BIC Max N. BF10 = 54.60 
Using BIC Min N. BF10 = 2818.61 
No Ran. Slope Social Distance vs. No Ran. Slope or Fixed Effect Social Distance 
Using BIC Max N. BF10 = 0.05 
Using BIC Min N. BF10 = 0.11 
 
Indonesia BF 
Full Model (2 Ran. Slopes) vs. No Ran. Slope Social Distance 
Using BIC Max N. BF10 = 0.0001 
Using BIC Min N. BF10 = 0.0029 
Full Model (2 Ran. Slopes) vs. No Ran. Slope or Fixed Effect Social Distance 
Using BIC Max N. BF10 = 0.000008 
Using BIC Min N. BF10 = 0.00046 
No Ran. Slope Social Distance vs. No Ran. Slope or Fixed Effect Social Distance 
Using BIC Max N. BF10 = 0.07 
Using BIC Min N. BF10 = 0.16 
 
U.S. BF 
Full Model (2 Ran. Slopes) vs. No Ran. Slope Social Distance 
Using BIC Max N. BF10 = 0.0001 
Using BIC Min N. BF10 = 0.0026 
Full Model (2 Ran. Slopes) vs. No Ran. Slope or Fixed Effect Social Distance 
Using BIC Max N. BF10 = 2208.35 
Using BIC Min N. BF10 = 123007.4 
No Ran. Slope Social Distance vs. No Ran. Slope or Fixed Effect Social Distance 
Using BIC Max N. BF10 = 21856305 
Using BIC Min N. BF10 = 48399498 
 
 In Bangladesh and Indonesia, BF indicate support for a model without a fixed 
effect for social distance, whereas in the U.S., BF indicate support for a model with a 
fixed effect for social distance. In Indonesia and the U.S., BF also indicate support for a 
model without a random slope for social distance, whereas in Bangladesh, BF indicate 
support for a model with a random slope for social distance.  
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EXCLUSIONS AND INCLUSIONS 

Excluding Participants Who Gave Nothing to All Recipients 

    U.S.  
Expected Sharing   Bangladesh  

Expected Sharing   Indonesia 
Expected Sharing 

    Estimate 
(CI) P   Estimate (CI) P   Estimate 

(CI) P 

Fixed Effects 

(Intercept)   0.74 
(0.59 – 0.89) 

<.00
1   0.41 

(0.28 – 0.55) 
<.00

1   0.69 
(0.56 – 0.82) 

<.00
1 

Ln Social 
Distance   

-0.10 
(-0.14 – -

0.07) 

<.00
1   0.01 

(-0.03 – 0.04) .615   -0.01 
(-0.04 – 0.03) .715 

Need 

Recipient 
Equally 
Needy 

  -0.12 
(-0.26 – 0.03) .118   -0.15 

(-0.30 – -0.00) .052   
-0.20 

(-0.32 – -
0.08) 

.001 

Recipient  
Less Needy   

-0.21 
(-0.36 – -

0.06) 
.007   -0.30 

(-0.43 – -0.16) 
<.00

1   
-0.31 

(-0.44 – -
0.18) 

<.00
1 

Relatedness   0.05 
(-0.16 – 0.26) .630   -0.03 

(-0.36 – 0.31) .878   0.13 
(-0.07 – 0.32) .202 

 

Random Parts 
σ2      0.042       
τ00, respid      0.077       
ρ01     -0.692       
Nrespid       116       

Observations        576       
R2 / Ω02  .781 / .768   .    

 

Table 14S| Generosity as a function of social distance, relative need, and 
relatedness, only including participants with non-zero generosity. Multilevel 
model of social distance, recipient need, and relatedness regressed on expected 
sharing. Model controls for correlated observations from the same participant 
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with random effects for each individual and includes random slopes for social 
distance and recipient need. When excluding participants who gave nothing to all 
recipients, the effect of social distance on generosity remains largely unchanged 
in each site. Number of participants = 35 (Bangladesh), 39 (U.S.), 42 (Indonesia). 
CI = 95% confidence intervals.  
 

Including Participant Decisions Towards “Unknown Person” 
 

To assess individual decisions unfamiliar partners, participants in all sites also 
made decisions between selfish and generous options for an “unknown person”. Below, 
we reanalyze the data, including generosity towards an “unknown person”.  

 

    U.S.  
Expected Sharing   Bangladesh  

Expected Sharing   Indonesia 
Expected Sharing 

    Estimate 
(CI) P   Estimate 

(CI) P   Estimate 
(CI) P 

Fixed Effects 

Intercept 
for 
“Unknown 
Individual” 

  
0.39 

(0.28, 0.50
) 

<.001   0.08 
(0.03, 0.13) .003   0.60 

(0.51, 0.70) 
<.00

1 

Change in 
Intercept 
for  
Recipients 
with a 
Social 
Distance 

 
0.36 

(0.30, 0.42
) 

<.001   
0.01 

(-
0.02, 0.04) 

.381   0.03 
(-0.03, 0.09) 

.291 
 

Ln Social  
Distance  

-0.10 
(-0.12, -

0.08) 
<.001   

0.00 
(-

0.01, 0.01) 
.605   -0.00 

(-0.02, 0.02) .943 

Need 

Recipien
t Equally 
Needy 

  
-0.15 

(-0.26, -
0.05) 

.003   
-0.03 

(-
0.08, 0.02) 

.257   -0.16 
(-0.25, -0.08) 

<.00
1 

Recipien
t  
Less 
Needy 

  
-0.24 

(-0.34, -
0.13) 

<.001   
-0.07 

(-0.13, -
0.02) 

.006   -0.30 
(-0.39, -0.21) 

<.00
1 
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Relatedness   
0.06 

(-
0.07, 0.19) 

.335   
-0.02 

(-
0.10, 0.07) 

.722   0.16 
(0.04, 0.28) .010 

 

 

 

Random Parts 
σ2   0.018      
τ00, respid   0.057      
ρ01   0.086      
Nrespid   284      

Observati
ons   1671      

R2 / Ω02   .858 / .855      
 

 
Table 15S| Generosity as a function of social distance, relative need, and 
relatedness, including data for generosity towards an “unknown person”. 
Multilevel model of social distance, recipient need, relatedness, and whether 
recipient had a social-distance ranking (categorical) regressed on expected 
sharing. Model controls for correlated observations from the same participant 
with random effects for each individual and includes random slopes for social 
distance and recipient need. ‘Intercept for “Unknown Individual”’ indicates the 
estimate for participant generosity towards an “unknown individual”.  ‘Change in 
Intercept for Recipients with a Social Distance” indicates the change in intercept, 
relative to ‘Intercept for “Unknown Individual”’, for recipients who have a social-
distance ranking (i.e. the expected sharing towards a recipient at social distance = 
1). Number of participants = 200 (Bangladesh), 40 (U.S.), 44 (Indonesia). CI = 
95% confidence intervals. 
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GENEROSITY AS A FUNCTION OF PAYOFF TO PARTICIPANT 
 

 

    U.S.  
Odds of Sharing    Bangladesh  

Odds of Sharing    Indonesia  
Odds of Sharing  

    Estimate (CI) P   Estimate 
(CI) P   Estimate 

(CI) P 

Fixed Effects 

(Intercept)   0.17 
(0.08, 0.38) 

<.00
1   0.00 

(0.00, 0.00) 
<.00

1   0.47 
(0.29, 0.78) .003 

Decision 

2   2.62 
(1.51, 4.55) 

<.00
1   1.56 

(0.81, 3.02) .184   2.27 
(1.47, 3.50) <.001 

3   6.76 
(3.86, 11.84) 

<.00
1   1.73 

(0.90, 3.32) .101   3.33 
(2.15, 5.16) <.001 

4   16.88 
(9.39, 30.36) 

<.00
1   3.65 

(1.94, 6.86) 
<.00

1   2.88 
(1.86, 4.45) <.001 

5   39.17 
(20.81, 73.71) 

<.00
1   7.10 

(3.80, 13.26) 
<.00

1   2.74 
(1.78, 4.24) <.001 

  6    88.42 
(43.73, 178.78) <.001   12.61 

(6.72, 23.67) <.001   3.50 
(2.25, 5.43) <.001 

 
 Random Parts 

τ00, respid   4.503   85.830   1.713 
Nrespid   40   200   44 

Observation
s   1200   5808   1320 

Deviance   908.292   876.467   1417.457 
 

Table 16S| Generosity as a function of payoff to participant. Logistic 
regression of payoff to participant (i.e. cost of sharing) regressed on sharing 
(binomial yes/no outcome). Larger numbers for “Decision” indicate smaller 
participant payoffs (i.e. smaller costs to sharing). Model controls for correlated 
observations from the same participant with random effects for each individual. 
Excludes data for generosity towards “unknown person” and “acquaintance”. In 
all sites, participants have higher odds of sharing on decisions when the personal 
costs of doing so are low.   
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INTERACTION BETWEEN PARTICIPANT CONSISTENSY AND 
GENEROSITY  
 

    U.S.  
Expected Sharing 

    Estimate (CI) P 

Fixed Effects 

(Intercept)   0.74 
(0.52, 0.96) <.001 

Ln Social  
Distance   -0.10 

(-0.16, -0.03) .004 

Consistent  
Participant   0.03 

(-0.19, 0.25) .778 

Need 

Recipient  
Equally  
Needy 

  -0.13 
(-0.25, -0.01) .036 

Recipient  
Less Needy   -0.22 

(-0.33, -0.11) <.001 

Relatedness   0.08 
(-0.15, 0.31) .482 

Ln Social  
Distance *  
Consistent Participant  
Interaction 

  -0.01 
(-0.09, 0.06) .687 

Random Parts 
σ2   0.055 
τ00, respid   0.055 
Nrespid   39 

Observations   195 
R2 / Ω02   .677 / .669 
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Table 17S| Generosity among U.S. participants as a function of social 
distance, relative need, relatedness, and participant consistency, only 
including participants with non-zero generosity. Multilevel model of social 
distance, recipient need, relatedness, and participant consistency (categorical: 1, 
0) regressed on expected sharing. Participants were considered inconsistent if they 
had multiple crossover points for at least 1 recipient. Model controls for 
correlated observations from the same participant with random effects for each 
individual and includes random slopes for social distance and recipient need. CI = 
95% confidence intervals. 
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    Bangladesh 
Expected Sharing 

    Estimate (CI) P 

Fixed Effects 

(Intercept)   0.40 
(0.24, 0.56) <.001 

Ln Social  
Distance   0.01 

(-0.02, 0.05) .420 

Consistent  
Participant   0.07 

(-0.10, 0.25) .424 

Need 

Recipient  
Equally  
Needy 

  -0.16 
(-0.34, 0.03) .106 

Recipient  
Less Needy   -0.30 

(-0.47, -0.14) .002 

Relatedness   -0.03 
(-0.34, 0.28) .847 

Ln Social  
Distance *  
Consistent Participant  
Interaction 

  -0.01 
(-0.08, 0.06) .760 

Random Parts 
σ2   0.035 
τ00, respid   0.108 
ρ01   -0.767 
Nrespid   35 

Observations   171 
R2 / Ω02   .782 / .774 
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Table 18S| Generosity among Bangladesh participants as a function of social 
distance, relative need, relatedness, and participant consistency, only 
including participants with non-zero generosity. Multilevel model of social 
distance, recipient need, relatedness, and participant consistency (categorical: 1, 
0) regressed on expected sharing. Participants were considered inconsistent if they 
had multiple crossover points for at least 1 recipient. Model controls for 
correlated observations from the same participant with random effects for each 
individual and includes a random slope for recipient need. CI = 95% confidence 
intervals. 

BIC AND BAYES FACTORS FOR MODELS WITH/WITHOUT PARTICIPANT-
CONSISTENCY INTERACTION 
 

We calculate Bayesian Information Criterion (BIC)(G. Schwarz, 1978) values to 
assess the extent to which the data favor models (i.e. statistical descriptions of 
hypotheses) with or without an interaction between Ln Social Distance and Participant 
Consistency in Bangladesh and the U.S.. We then use BIC values to approximate Bayes 
Factors (BF) for competing models.  

 
 

U.S.  DF Log Likelihood BIC  
(Max N = 195) 

BIC  
(Min N = 39) 

Interaction Model (Ran. 
Intercept) 

9 -28.12 98.59 85.73 

No-Interaction Model 
(Ran. Intercept) 

8 -28.21 103.71 89.21 

Bangladesh  DF Log Likelihood BIC  
(Max N = 171) 

BIC  
(Min N = 35) 

Interaction Model (Ran. 
Intercept + 1 Ran. Slope) 

14 1.52 68.86 46.65 

No-Interaction Model 
(Ran. Intercept + 1 Ran. 
Slope) 

13 1.56 63.81 43.18 

 
Table 19S | BIC for competing models. In the U.S., Interaction Model (Ran. 
Intercept) includes fixed-effects for social distance, relatedness, relative need, and 
participant consistency (categorical; 1, 0), an interaction between participant 
consistency and social distance, and a random intercept for participant. In 
Bangladesh, Interaction Model (Ran. Intercept + 1 Ran. Slope) is an identical 
model, but also includes a random slope for recipient need. Both models only 
include data from participants with non-zero generosity. In both sites, the No-
Interaction model removes the interaction between participant consistency and 
social distance. Participants were considered inconsistent if they had multiple 
crossover points for at least 1 recipient. 2 columns for Bayesian Information 
Criteria (BIC) indicate the upper and lower bounds on BIC. BIC with Max N 
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calculates BIC assuming each observation is independent. BIC with Min N 
calculates BIC assuming only 1 observation per participant (i.e. all observations 
for a given participant are entirely non-independent).  

 
 We approximate Bayes Factors (BF) by exponentiating half the difference 
between the BIC values of competing models (i.e. exp(ΔBIC10 / 2)).(Wagenmakers, 
2007) BF10  indicates a ratio: the likelihood of the data conditional on Model 1, P(D|M1), 
divided by the likelihood of the data conditional on Model 0, P(D|M0). For example, if 
BF10 = 8, the data are 8 times more likely under Model 1 than Model 0. If BF10 = 0.01, the 
data are 100 times less likely under Model 1 than Model 0. For all below comparisons, 
Model 1 is listed first and Model 0 is listed second.  
 
U.S. BF 
No-Interaction Model (Ran. Intercept) vs Interaction Model (Ran. Intercept)  
Using BIC Max N. BF10 = 12.94 
Using BIC Min N. BF10 = 5.70 
 
Bangladesh BF 
No-Interaction Model (Ran. Intercept + 1 Ran. Slope) vs Interaction Model (Ran. 
Intercept + 1 Ran. Slope) 
Using BIC Max N. BF10 = 12.49 
Using BIC Min N. BF10 = 5.67 
 
 In both Bangladesh and the U.S., BF indicate support for a model without an 
interaction between social distance and participant consistency.  
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POWER ANALYSIS  
 

Power of the current study to detect a significant independent effect of Social 
Distance on Expected Sharing, as a function of effect size. Analysis uses the powerSim() 
function from the SIMR(Green & MacLeod, 2016) package in R(R Core Team, 2017). 
For each simulation, powerSim() simulates new values for Expected Sharing from the 
model in Table 1 (main text), refits this model using those values, and performs a two-
sized z-test on the simulated data. Analysis based on 1000 simulations (α = 0.05).   

 
Bangladesh 
Effect Size Power 95% CI 

0.005 19.50% (17.09, 22.09) 
0.0075 37.00% (34.00, 40.08) 
0.010 56.30% (53.16, 59.40) 
0.012 76.10% (73.33, 78.71) 
0.015 88.80% (86.68, 90.69) 
0.018 95.90% (94.48, 97.04) 
0.020 99.30% (98.56, 99.72) 

 
Indonesia 
Effect Size Power 95% CI 

0.005 7.40% (5.85, 9.20) 
0.010 15.10% (12.94, 17.47) 
0.015 30.30% (27.46, 33.25) 
0.020 46.20% (43.08, 49.35) 
0.025 64.80% (61.75, 67.76) 
0.030 81.40% (78.85, 83.77) 
0.032 84.00% (81.58, 86.22) 
0.034 86.90% (84.65, 88.93) 
0.036 91.70% (89.81, 93.34) 
0.038 93.90% (92.23, 95.30) 
0.040 96.10% (94.71, 97.21) 

 
Power of the current study to detect a significant independent effect of Social 

Distance on Expected Sharing, as a function of varying sample sizes. Analysis uses the 
powerCurve() function from the SIMR package in R, which runs powerSim() over a 
range of sample sizes. This allows estimation of the number of participants necessary to 
have sufficient power to detect an effect of the size estimated in the model. All analyses 
use the same specifications described for powerSim() above.  

 
Indonesia 
 

Power to detect an independent effect [β = -0.006] of social distance on 
generosity from the model in Table 1 (main text).  
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Sample Size Power 95% CI 

44 7.20% (5.68,  8.98) 
1144 45.40% (42.28, 48.55) 
2224 72.60% (69.72, 75.34) 
3344 88.10% (85.93, 90.04) 
4224 95.00% (93.46, 96.27) 

 
Bangladesh 

Power to detect an independent effect [β = 0.002] of social distance on generosity 
from the model in Table 1 (main text).   

 
Sample Size Power 95% CI 

200 11.30% (9.40, 13.43) 
1000 49.50% (46.36, 52.65) 
1800 77.00% (74.26, 79.58) 
2600 89.40% (87.32, 91.24) 
2800 90.00% (89.05, 92.70) 
3200 94.70% (93.12, 96.01) 

 

INCONSISTENT RESPONDING ACROSS SITES  
 

 We found high rates of inconsistency (i.e. multiple crossover points for at least 1 
recipient) among participants in both Bangladesh and Indonesia.  When considering all 
participants and social distances (i.e. #1, #2, #5, #10, and #20), 28 out of 200 Bangladesh 
participants, 42 out of 44 Indonesia participants, and 9 out of 40 U.S. were inconsistent.  
This underestimates rates of inconsistency in Bangladesh, since 165 out of 200 
participants always chose the selfish option and were considered consistent as a result.  
When considering participants with non-zero generosity (i.e. those who chose the 
generous option at least once for at least one recipient at social distances 1 to 20), 80% 
Bangladesh participants (28/35) and 100% of Indonesia participants (42/42) had at least 1 
inconsistent response, compared to only 26% of U.S. participants (9/39).  These are 
strikingly high levels of inconsistency.  Figure 1S plots levels of inconsistency in these 3 
sites alongside all reported inconsistency rates in social-discounting studies citing 
Rachlin and Jones’ seminal paper (Jones & Rachlin, 2006) and using a comparable 
protocol (data and inclusion criteria: https://osf.io/k8sbg/).  In contrast to U.S. 
participants and the vast majority of previous studies, inconsistency is the norm among 
the participants from rural Indonesia and Bangladesh. 
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Figure 1S| Inconsistent responding.  Proportion of inconsistent participants (i.e. 

multiple crossover points for at least 1 recipient) in prior social-discounting research, 
compared with levels of inconsistency in the U.S., Bangladesh, and Indonesia samples 
from the current study. Participants from Bangladesh are represented twice 
(including/excluding participants with non-zero generosity).  

 
 Several observations contradict the standard interpretation that “inconsistency” 
reflects lack of participant understanding.  First, responses in all sites were associated 
with a theoretically important variable—whether the recipient was needier than the 
participant. Second, participants were more likely to choose the generous option when the 
payoff for the selfish option was small (See “Generosity as a Function of Payoff to 
Participant” in Supplementary Materials). Third, observations during piloting suggested 
that participants may not make (1) independent decisions based on (2) a constant utility 
function.   For example, Bangladeshi participants often spoke out loud when making 
decisions. In such cases, many participants mentioned their decisions in previous choices 
while weighing current choices (e.g. “Well, I didn’t give up 1kg in the last decision, so 
I’ll give up 2kg this time.”; “I already gave up 5kg and 2kg rice, so I won’t give up 3kg 
this time”).  This suggests that participants treated these as aggregate contributions, rather 
than as independent decisions.  From this perspective, “inconsistent” responding with 
multiple crossover points is completely reasonable, and suggests the common model used 
to interpret consistent responding is wrong, at least in some situations.   
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EXPECTED SHARING AS A MEASURE OF GENEROSITY 
 

“Expected sharing” is the weighted sum of all generous decisions divided by the 
weighted sum of all possible decisions (I.e. 0.5*X0 + 1*X1 + 2*X2 + 3*X3 + 4*X4 + 
5*X5)/15.5.  Here Xi = 1 if a participant sacrificed i units to give person 5 units.  X0 
indicates a sacrifice of 0.5 units. Although not identical to crossover points, expected 
sharing is monotonically increasing, provides a simple measure of average generosity 
towards a specific individual, and does not force exclusion of inconsistent respondents. 
Consider a participant who chooses to transfer $5 to the recipient, keeps $4, $3, $2, for 
themselves, and also chooses to transfer $1 and $0.50 to the recipient. In this case, 
expected sharing is simply (5 + 1 + 0.5) / (5 + 4 + 3 + 2 + 1 + 0.5) = 0.419.	 

 

RELATIONSHIP BETWEEN EXPECTED SHARING AND CROSSOVER 
POINTS 
 

Typical analyses calculate the “crossover point” in the sequence of questions 
where respondents switch from the selfish option to the generous option(Jones & 
Rachlin, 2006). Consider a consistent participant who chooses the selfish option at $5 and 
$4 but switches to the generous option for subsequent decisions (i.e. $3, $2, $1, $0.50). 
This participant’s crossover point is $3.50. A participant who always chooses the 
generous option (i.e. chooses the generous option at $5, $4, $3, $2, $1, $0.50) is 
considered to have a crossover point of $5.50. A participant who always chooses the 
selfish option (i.e. chooses the selfish option $5, $4, $3, $2, $1, $0.50) is considered to 
have a crossover point of $0.25. Any given crossover point corresponds to an exact 
expected sharing value. For our study, these values are:  

 
 

Crossover Point Expected Sharing 
0.25 0 
0.75 0.5 / 15.5 
2.5 1.5 / 15.5 
2.5 3.5 / 15.5 
3.5 6.5 / 15.5 
4.5 10.5 / 15.5 
5.5 1 

 

 To approximate crossover points from expected sharing values for all participants, 
we fit a quadratic function to these values, of the form y = 0.0001669 + 0.0149876x + 
0.0302354x^2. We then used the approx() function in R(R Core Team, 2017) 
(https://stat.ethz.ch/R-manual/R-devel/library/stats/html/approxfun.html) to perform 
linear interpolation, calculating approximate crossover points for every expected sharing 
value. Figure 2S (below) below plots the relationship between expected sharing and 
crossover points.  



 

  156 

 
Figure 2S | Relationship Between Expected Sharing and Crossover Points. 
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RE-ANALYSIS USING APPROXIMATE CROSSOVER POINTS 
 

    U.S.  
Crossover Points   Bangladesh  

Crossover Points   Indonesia 
Crossover Points 

    Estimate 
(CI) P   Estimate (CI) P   Estimate 

(CI) P 

Fixed Effects 

(Intercept)   4.32 
(3.64, 4.99) 

<.00
1   1.16 

(0.76, 1.55) 
<.00

1   4.22 
(3.65, 4.79) 

<.00
1 

Ln Social 
Distance   -0.55 

(-0.66, -0.44) 
<.00

1   0.01 
(-0.04, 0.06) .775   -0.03 

(-0.15, 0.08) .545 

Need 

Recipient 
Equally 
Needy 

  -0.29 
(-0.91, 0.33) .370   -0.36 

(-0.77, 0.05) .090   -0.77 
(-1.27, -0.28) .003 

Recipient  
Less Needy   -0.80 

(-1.45, -0.15) .018   -0.75 
(-1.15, -0.36) 

<.00
1   -1.45 

(-2.01, -0.89) 
<.00

1 

Relatedness   0.44 
(-0.28, 1.16) .232   -0.07 

(-0.55, 0.40) .759   0.60 
(-0.04, 1.25) .066 

 

Random Parts 
σ2      0.403       
τ00, respid      2.192       
ρ01     -0.696       
Nrespid       284       

Observations        1388       
R2 / Ω02  .916 / .914   .    

 
Table 20S| Generosity as a function of social distance, relative need, and 
relatedness, using approximated crossover points instead of expected 
sharing. Multilevel model of social distance, recipient need, and relatedness 
regressed on approximate crossover points. Model controls for correlated 
observations from the same participant with random effects for each individual 
and includes random slopes for social distance and recipient need. CI = 95% 
confidence intervals.  
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Figure 3S| Generosity as a function of social distance, relative need, and 
relatedness, using approximated crossover points instead of expected 
sharing. Independent effects of a. social distance (natural log transformed) and b. 
relative need on generosity (i.e. approximated crossover points). Model estimates 
from the multilevel model in Table 17S. Error bars represent 95% confidence 
intervals. 
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CODEBOOK FOR VERBAL STATEMENTS 
 

Need.  Any mention of the respondent’s or recipient’s need, financial situation, or wealth 
as a reason for the decision, with implication that either the respondent or recipient is in 
greater need.  Includes mentions of general statements such as “it is good to help people 
who need money” and includes mentions of giving to someone who is in a needy 
situation (e.g. unemployed; widowed). Also includes mentions of pitying the recipient.   
Relationship. Any mention of closeness, love, staying in touch, family, length of 
relationship or being in a relationship (e.g. good friend) as a reason for the decision.  
(Example: “He is my brother, but he is better off than me” would be coded as 
relationship, in addition to need). Includes mentions of living near the person and 
mentions of not knowing the person as a reason.  
 

Relationship Exclusions: If the relationship term is simply used as a description 
of the person (Example: “my brother is better off than me” would not be coded as 
relationship). If the only mention of the relationship is when respondent states that 
the recipient will later use the money on them or that the respondent owes the 
recipient. If the only reason for mentioning relationship is not knowing the other 
person (Example: “This person is a stranger” or “I don’t know this person”), 
without an implication that the respondent made their decision because they did 
not know this person, this would not be coded as “relationship”.  
 

Reciprocity / Imbalance. Mentions giving because the other person has given to them in 
the past, giving in order to have the other person give to them in the future, mentions 
“establishing a reciprocal relationship” as a good thing, or mentions “taking turns”. Also 
includes references to the fact that the respondent owes the recipient or that the recipient 
has already received too much from the respondent. 
Moral.  Reasoning that it is good to help others. 
Descriptive.  Simply states what they did (e.g., I gave to myself) without any clear 
reason given. 
Efficiency.  Refers to the fact that the respondent would give up less than the other 
person got. 
Make Happy.  Refers to the feeling that might be invoked in the recipient by the gift 
(happy, excited, etc.). Includes instances where respondents mentioned that the recipient 
would “appreciate” the gift.  
Indirect Benefit.  If the respondent states that the recipient will later use the money on 
them. 
Give to something else.  The respondent will keep the money to give to something or 
somebody else later or do something for the recipient later. 
Previous decision.  Respondent describes earlier decision as a justification for a later 
decision (I already sacrificed, so I kept for myself later; I already kept for myself, so I 
decided to give). 
Want the money.  Respondent simply stated they wanted the money. 
Deserving.  Respondent or recipient deserves or doesn’t deserve it for reasons other than 
need (e.g. person is hard working, profligate) 
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Other. Anything that doesn’t fall into the other categories (e.g. mentions of the 
appropriateness of an action, mentions of religion, etc.). Reasoning that it is good to help 
others 
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APPENDIX B 

CHAPTER 2 
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Model 
 
To calculate a player’s expected payoff for guessing the majority color, we simulated the 
average amount of information available to a player, conditional on having revealed a 
given number of tiles (see “Model” in main text). Below, Figure 1S plots information as a 
function of number of tiles revealed, for the 3 effect sizes used in the experiment.  

 
Figure 1S| Average information (500 simulations) as a function of the 
number of tiles revealed and effect size. Plotted for the three ratios of colored 
tiles used in the experiment (i.e. effect sizes). “Small”, “Medium”, and “Large” 
effect sizes correspond to colored-tile ratios of 12:13, 10:15, and 8:17, 
respectively. The X axis indicates the number of tiles revealed. The Y axis 
indicates the information available to players, averaged across 500 simulations. In 
the model, we assume that players guess the majority color by selecting the color 
that is in the majority in the tiles that they reveal. Information thus corresponds to 
the probability of correctly guessing the majority color (po and pp). For any given 
number of tiles revealed, information is larger when effect sizes are larger.   
 
Given the information value of revealing any given number of tiles, we can 

calculate a player’s expected number of points (i.e. reward, R) by the completion of the 
experiment in the No-Competition, No-Effort treatment. To calculate R for each effect 
size, we assume that an individual plays a 20-minute (1200 second) experiment with 
grids that are characterized by a single effect size.   
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In this treatment, players gain or lose 1 point by guessing the majority color 
correctly or incorrectly, respectively. Players can reveal 1 tile every 1 second, and 
experience a 5-second delay between guessing the majority color of a grid and being able 
to start another grid. As such, a player’s expected reward, R, is:  

 

𝑅 =
1200
𝑛	 ∗ (𝑝 − (1 − 𝑝)) ∗

𝑛
𝑛 + 	5 

𝑅 =
2400𝑝 − 1200

𝑛 + 5  
 
where p is the probability that the player guesses correctly and n is the number of tiles 
they reveal. 1200 corresponds to the length of the experiment (seconds) and 5 
corresponds to the 5-second delay between grids. Players who reveal fewer tiles have the 
opportunity to guess the majority color more often: they encounter more grids within the 
20-minute time limit. However, those players also have a lower probability of correctly 
guessing the majority color, and experience the 5-second delay between-grids more often. 
The number of tiles that maximizes a player’s expected reward in the No-Competition 
No-Effort treatment is 25, 23, and 16, for small, medium and large effect sizes 
respectively. Below, Figure S2 plots player’s expected reward as a function of number of 
tiles revealed, for the 3 effect sizes used in the experiment.  

  
 

Figure 2S| Expected reward as a function of the number of tiles revealed and 
effect size, without competition. Plotted for the three ratios of colored tiles used 
in the experiment (i.e. effect sizes). “Small”, “Medium”, and “Large” effect sizes 
correspond to colored-tile ratios of 12:13, 10:15, and 8:17, respectively. The X 
axis indicates the number of tiles revealed. The Y axis indicates the expected 
reward, for a player who reveals a fixed number of tiles. The number of tiles that 
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maximizes a player’s expected reward in the No-Competition No-Effort 
condition, for small, medium and large effect sizes is 25, 23, and 16, respectively.  
 
Assuming that a player in the Competition, No-Effort treatment competes against 

a competitor who revealed the number of tiles that maximized their expected reward, we 
can calculate a player’s expected payoff (EP) for revealing any given number of tiles (as 
in the main text).  

When a player guesses before or at the same time as an opponent, the player’s 
expected payoff (EP) is:  

 
𝐸𝑃 = 𝑝% − )1 −	𝑝%, 

 
where pp is the probability that the player guesses correctly. When a player guesses after 
their opponent, the player’s EP is:  
 

𝐸𝑃 = (1 −	𝑝0) ∗ 	𝑝% −	(1 −	𝑝0) ∗	 )1 −	𝑝%, 
 
where po is the probability that the player’s opponent (i.e. the player in the no-
competition treatment) guesses correctly. In this case, by assuming that opponents reveal 
25, 23, and 16 tiles for small, medium, and large effect sizes, respectively, we know the 
amount of information available to players who reveal any possible number of tiles 
(Figure S2), and can directly calculate EP.  Figure S3a (below) depicts a player’s EP 
when competing against a competitor who always reveals the payoff-maximizing number 
of tiles. Figures S3b and S3c relax the assumption that a competitor always reveals the 
payoff-maximizing number of tiles by assuming that the number of tiles that a competitor 
reveals is a rounded value sampled from a normal distribution with a mean equal to the 
payoff-maximizing number of tiles, and standard deviation of 2 and 5, respectively. 
Values < 1 and > 25 are rounded to 1 and 25, respectively. For Figures S3b and S3c, 
player’s EP is calculated by averaging across 10,0000 samples from these distributions.   
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a.  

  
 
 

b.                              
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    c. 

 
 
 

Figure 3S| Expected payoff as a function of the number of tiles revealed and 
effect size, when playing against a competitor who reveals the payoff-
maximizing number of tiles. Plotted for the three ratios of colored tiles used in 
the experiment (i.e. effect sizes). “Small”, “Medium”, and “Large” effect sizes 
correspond to colored-tile ratios of 12:13, 10:15, and 8:17, respectively. The X 
axis indicates the number of tiles revealed by a player in the Competition 
treatment. a. Competitor always reveals the number of tiles that maximizes their 
expected payoff. b and c. The number of tiles revealed by a competitor is a 
random variable, sampled from a normal distribution with a mean equal to the 
payoff-maximizing number of tiles (25, 23, and 16 for small, medium, and large 
effect sizes, respectively), and standard deviation of 2 and 5, respectively; 
player’s EP is calculated by averaging across 10,0000 samples from these 
distributions. In general, players maximize their expected payoff by revealing the 
same number or fewer tiles than their competitor.  
 
This analysis corroborates the intuition suggested by a visual inspection of Figure 

2 in the main text: players obtain a higher EP by revealing the exact same or fewer tiles 
than their competitors. This is true when competitors always reveal the payoff-
maximizing number of tiles, and when the number of tiles revealed by a competitor is a 
random variable instead of a fixed value. 
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Pilot Study 
 

We conducted a pre-registered (https://osf.io/udm8g/) pilot study. This study was 
designed to test the feasibility of the proposed design, not to test hypotheses. In 
conducting the pilot study, we underspecified exclusion criteria and deviated in several 
ways from pre-specified pilot analysis plan. As such, we consider all findings from this 
pilot study to be exploratory.  
 
The pilot study involved 48 participants and was conducted in the Elinor Ostrom Multi-
Method Lab at Arizona State University. We excluded data from 1 participant that did 
not complete the study, resulting in a final sample of 47 participants (23 female, 24 
male). 16 and 31 participants were assigned to the Competition and No-Competition 
treatments and 23 and 24 participants were assigned to the Effort and No-Effort 
conditions, respectively. The pilot study differed from the proposed design in one way: 
 

1) Players were paid $0.25 cents per solution instead of $0.15 cents: 
 
Payoffno-competition = $0.25 x CorrectGuesses – $0.25 x IncorrectGuesses 
Payoffcompetition = $0.25 x CorrectFasterGuesses – $0.25 x IncorrectFasterGuesses 
 
 

Below, we present the results for quality checks and all confirmatory predictions. We 
present three pieces of information for each analysis: 1) parameter estimates from the 
proposed Bayesian statistical model, 2) parameter estimates from Frequentist 
implementations of the same model, and 3) a plot visualizing the predictions of the 
Frequentist-model. Because some pilot analyses differ from the previously proposed 
analyses, we specify the statistical model for each analysis.  
 
Exclusions and Outliers. 
 
Both participants’ time until guess and time to solve arithmetic problems followed 
heavily right-skewed distributions (see below). We removed outlier time-until-guess 
values that were more than 5 standard deviations larger than the mean time-until-guess 
(25 out of 3565 observations). This resulted in excluding substantially fewer observations 
than would be excluded had we used an outlier criterion of larger than 3 standard 
deviations (79 observations). We removed outlier arithmetic-problem solving times that 
were more than 5 standard deviations larger than the mean arithmetic-problem solving 
time (4 out of 5169 observations). This resulted in excluding slightly fewer observations 
than would be excluded had we used an outlier criterion of larger than 3 standard 
deviations (8 observations). Below, we present visualizations of the time until guess and 
arithmetic-problem solving times (both rounded to the nearest second) before and after 
outlier exclusion.  
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Time Until Guess 

 

 
 
 
 
 
 
 
 
Arithmetic Problem Solving Times 
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Quality Checks. 
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1. Participants should reveal information at a lower rate in the Effort treatments than 
the No-Effort treatments. 
 

Because we did not obtain data on time-per-click in the no-effort treatment, we cannot 
use the pilot data to perform this quality check. A complementary quality check is that 
participants in the Effort treatments should spent more time per grid (i.e. take longer to 
guess the underlying color) than participants in the No-Effort treatment. This quality 
check was confirmed (see Exploratory Analysis 2, “Time Until Guess”, below).  
 

2. A higher proportion of participants in the Competition treatments should answer 
“yes” to a question about whether or not they were competing with another 
player.  

 
This quality check was confirmed. 16/16 participants answered “yes” in the Competition 
treatments, compared to 3/31 participants in the No-Competition treatments. Below, we 
present parameter estimates from the Bayesian model only (the frequentist 
implementation did not converge because “yes” responses were almost completely 
separated by the predictor).  
 
Likelihood 
 

Yi ~ Binomial(1, pi) 
 

Logit(pi) = α + βC*Ci  

 
Yi: Answered “yes”. α: Intercept. C: Competition Treatment (1 / 0).  
 
Priors  

α ~ Normal(0, 10) 
βC ~ Normal(0, 10) 

Results 
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Exploratory Analyses. 

Competition and number of tiles revealed (see H1a and H3a).  

Likelihood 
Yi ~ Normal(µi, σ) 

µi = α + αPLAYER[i] + βC*Ci + βE*Ei + βCE *Ci Ei + βNs*Nsi 

Yi: Number of tiles clicked before guessing. α: Intercept. αPLAYER[i]: Random intercept for 
each player. C: Competition Treatment (1 / 0). E: Effort Condition (1 / 0). βCE *Ci Ei: 
Interaction between treatment and effort. βNs: Standardized number of tiles for the 
majority color (i.e. effect size). 
Priors 

σ ~ Gamma(2, 0.5) 
α ~ Uniform(0, 25) 

αPLAYER ~ Normal(0, σPLAYER) 
σPLAYER ~ Gamma(1.5, 0.05) 

βC ~ Normal(0, 10) 
βE ~ Normal(0, 10) 
βCE ~ Normal(0, 10) 
βNs ~ Normal(0, 10) 
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Tiles Revealed (Bayesian) 
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Tiles Revealed (Frequentist) 

    TilesRevealed 

    Estimate (CI) P 

Fixed Parts 

(Intercept)   7.69 
(5.94 – 9.45) <.001 

Competition1   -4.25 
(-7.49 – -1.01) .010 

Effort1   -0.78 
(-3.39 – 1.84) .559 

SmallEffect.s 

MediumEffect.s   -0.37 
(-0.58 – -0.16) <.001 

LargeEffect.s   -0.61 
(-0.83 – -0.38) <.001 

Competition1:Effort1   3.67 
(-0.82 – 8.15) .109 

Random Parts 
σ2   6.840 
τ00, ID_Player   13.476 
NID_Player   47 

Observations   3540 
R2 / Ω02   .614 / .614 
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Competition and accuracy (see H1b and H3b). 

Likelihood 
Si ~ Binomial(1, pi) 

Logit(pi) = α + αPLAYER[i] + βC*Ci + βE*Ei + βCE *Ci Ei + βNs*Nsi 

Si: Successful guess. α: Intercept. αPLAYER[i]: Random intercept for each player. C: 
Competition Treatment (1 / 0). E: Effort Condition (1 / 0). βCE *Ci Ei: Interaction between 
treatment and effort. βNs: Standardized number of tiles for the majority color (i.e. effect 
size). 
 
Priors 

σ ~ Gamma(2, 0.5) 
α ~ Normal(0, 10) 

αPLAYER ~ Normal(0, σPLAYER) 
σPLAYER ~ Gamma(1.5, 0.05) 

βC ~ Normal(0, 10) 
βE ~ Normal(0, 10) 
βCE ~ Normal(0, 10) 
βNs ~ Normal(0, 10) 
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Probability of Correct Guess (Bayesian) 
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Probability of Correct Guess (Frequentist) 

    Log Odds Correct_Guess 

    Estimate (CI) P 

Fixed Parts 

(Intercept)   0.58 
(0.26 – 0.90) <.001 

Competition1   -0.59 
(-1.13 – -0.05) .032 

Effort1   -0.09 
(-0.57 – 0.39) .716 

SmallEffect.s 

MediumEffect.s   0.82 
(0.64 – 0.99) <.001 

LargeEffect.s   1.23 
(1.03 – 1.43) <.001 

Competition1:Effort1   0.61 
(-0.19 – 1.42) .133 

Random Parts 
τ00, ID_Player   0.318 
NID_Player   47 

Observations   3540 
Deviance   3955.318 
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Competition and time until players guess 

Likelihood 
Yi ~ Normal(µi, σ) 

µi = α + αPLAYER[i] + βC*Ci + βE*Ei + βCE *Ci Ei + βNs*Nsi 

Yi: Number of seconds until guess. α: Intercept. αPLAYER[i]: Random intercept for each 
player. C: Competition Treatment (1 / 0). E: Effort Condition (1 / 0). βCE *Ci Ei: 
Interaction between treatment and effort. βNs: Standardized number of tiles for the 
majority color (i.e. effect size). 
 
Priors  

σ ~ Gamma(2, 0.5) 
α ~ Gamma(1.5, 0.05) 

αPLAYER ~ Normal(0, σPLAYER) 
σPLAYER ~ Gamma(1.5, 0.05) 

βC ~ Normal(0, 10) 
βE ~ Normal(0, 30) 
βCE ~ Normal(0, 10) 
βNs ~ Normal(0, 10) 
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Time Until Guess (Bayesian) 

 

 

Time Until Guess (Frequentist) 

    ElapsedTime_Guess 

    Estimate (CI) P 

Fixed Parts 

(Intercept)   11.15 
(5.74 – 16.57) <.001 

Competition1   -5.66 
(-15.65 – 4.34) .267 

Effort1   20.16 
(12.11 – 28.22) <.001 

SmallEffect.s 

MediumEffect.s   -0.72 
(-1.26 – -0.18) .009 

LargeEffect.s   -1.10 
(-1.68 – -0.51) <.001 
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Competition1:Effort1   -2.55 
(-16.38 – 11.27) .717 

Random Parts 
σ2   45.519 
τ00, ID_Player   128.482 
NID_Player   47 

Observations   3540 
R2 / Ω02   .668 / .668 
   

 

 

 

 

 

 

 

 



 

  180 

Competition and number of guesses per unit time (i.e. guess rate) 

Likelihood 
Yi ~ Normal(µi, σ) 

µi = α +  βC*Ci + βE*Ei + βCE *Ci Ei + βNs*Nsi 

Yi: Guess Rate. α: Intercept. C: Competition Treatment (1 / 0). E: Effort Condition (1 / 0). 
βCE *Ci Ei: Interaction between treatment and effort. βNs: Standardized mean number of 
tiles for the majority color (i.e. effect size) encountered by a player across all attempted 
grids.  
 
Priors 

σ ~ Gamma(2, 0.5) 
α ~ Gamma(2, 0.05) 
βC ~ Normal(0, 10) 
βE ~ Normal(0, 10) 
βCE ~ Normal(0, 10) 
βNs ~ Normal(0, 10) 

 

Guess Rate (Bayesian) 
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Guess Rate (Frequentist) 

    guessrate 

    Estimate (CI) P 

(Intercept)   4.68 
(3.80 – 5.56) <.001 

Competition1   2.55 
(0.96 – 4.14) .002 

Effort1   -1.99 
(-3.34 – -0.64) .005 

MeanEffectSize.s   -0.66 
(-1.22 – -0.10) .022 

Competition1:Effort1   -2.34 
(-4.54 – -0.14) .038 

Observations   47 
R2 / adj. R2   .561 / .520 
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Competition and effort (i.e. rate of revealing information; see H2).  

Likelihood 
Yi ~ Normal(µi, σ) 

µi = α + βC*Ci + βNs*Nsi 

Yi: Rate of solving arithmetic problems. α: Intercept. C: Competition Treatment (1 / 0). βNs: 
Standardized mean number of tiles for the majority color (i.e. effect size) encountered by 
a player across all attempted grids.  
 
Priors 

σ ~ Gamma(2, 0.5) 
α ~ Gamma(1.5, 0.05) 
βC ~ Normal(0, 10) 
βNs ~ Normal(0, 10) 

 
 
 
 
 
 
 



 

  183 

Rate of Solving Arithmetic Problems (Bayesian) 

 

 

 

 

Rate of Solving Arithmetic Problems (Frequentist) 

    mathprobs_perminute 

    Estimate (CI) P 

(Intercept)   12.63 
(11.41 – 13.86) <.001 

Competition (1)   2.61 
(0.65 – 4.58) .012 

MeanEffectSize.s   -0.08 
(-1.07 – 0.90) .861 

Observations   23 
R2 / adj. R2   .285 / .213 
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APPENDIX C 

CHAPTER 3 
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Figure 1S | Density of Effect Sizes as a function of different exponential-distribution 
rate (λ) parameters. 
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Figure 2S | Histogram of Rounded Effect Sizes as a function of different 
exponential-distribution rate (λ) parameters. Rounding without adding 0.1 to each 
effect size.  
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Fixed Effect Sizes (e) (i.e. not drawn from an exponential distribution)  
 

   a.                                                                      b.  

 

Figure 3S | Equilibrium (a) sample size and (b) statistical power as a function 
of effect size and startup cost (50 generations); 2 competitors. Parameter values are: 
n=100, α=0.05, r=5, T=5000 and cs=1. a) Larger effect sizes lead to smaller sample sizes 
at equilibrium, while larger startup costs lead to larger sample sizes at equilibrium.  When 
effect size = 0 (i.e. no effect), equilibrium sample sizes are at their lowest value. 
Equilibrium sample sizes are greatest when the effect size is small, but non-zero, and the 
startup cost is high. b) Statistical power at equilibrium is highest when both effect sizes 
and startup costs are large.   
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a.                                                                   b.  

      

Figure 4S | Reduction in (a) sample size and (b) statistical power due to 
competition relative to individual optimum (50 generations); 2 competitors.  a) When 
effect sizes are large and startup costs are small, competition has a smaller effect on 
sample size. The largest reduction in statistical power occurs at high startup costs but 
intermediate effect sizes. b) Power is most reduced by competition when effect sizes are 
intermediate, provided that startup costs are non-zero. 
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Figure 5S | Alternative plot of results in Figure 2: Equilibrium sample size 
for individual scientists compared to Log2 number of competitors, as a function of 
startup cost (200 generations, 50 repeats).  Parameter values are: n=100, α=0.05, λ = 3, 
r=5, T=5000 and cs=1. For any number of competitors (i.e. 2, 4, 8), equilibrium sample 
size is lower than that of individual scientists (i.e. competitors = 1). As the number of 
competitors increases, equilibrium sample size decreases, because more competitors 
increase the probability that any given researcher will be scooped. As startup costs 
increase, equilibrium sample size increases. The effect of startup cost on equilibrium 
sample size is largest when there are few competitors.  
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