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ABSTRACT

Medical ultrasound imaging is widely used today because of it being non-invasive

and cost-effective. Flow estimation helps in accurate diagnosis of vascular diseases

and adds an important dimension to medical ultrasound imaging. Traditionally flow

estimation is done using Doppler-based methods which only estimate velocity in the

beam direction. Thus when blood vessels are close to being orthogonal to the beam

direction, there are large errors in the estimation results. In this dissertation, a

low cost blood flow estimation method that does not have the angle dependency of

Doppler-based methods, is presented.

First, a velocity estimator based on speckle tracking and synthetic lateral phase is

proposed for clutter-free blood flow. Speckle tracking is based on kernel matching and

does not have any angle dependency. While velocity estimation in axial dimension is

accurate, lateral velocity estimation is challenging due to reduced resolution and lack

of phase information. This work presents a two tiered method which estimates the

pixel level movement using sum-of-absolute difference, and then estimates the sub-

pixel level using synthetic phase information in the lateral dimension. Such a method

achieves highly accurate velocity estimation with reduced complexity compared to a

cross correlation based method. The average bias of the proposed estimation method

is less than 2% for plug flow and less than 7% for parabolic flow.

Blood is always accompanied by clutter which originates from vessel wall and

surrounding tissues. As magnitude of the blood signal is usually 40-60 dB lower

than magnitude of the clutter signal, clutter filtering is necessary before blood flow

estimation. Clutter filters utilize the high magnitude and low frequency features of

clutter signal to effectively remove them from the compound (blood + clutter) signal.

Instead of low complexity FIR filter or high complexity SVD-based filters, here a

power/subspace iteration based method is proposed for clutter filtering. Excellent
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clutter filtering performance is achieved for both slow and fast moving clutters with

lower complexity compared to SVD-based filters. For instance, use of the proposed

method results in the bias being less than 8% and standard deviation being less than

12% for fast moving clutter when the beam-to-flow-angle is 90o.

Third, a flow rate estimation method based on kernel power weighting is proposed.

As the velocity estimator is a kernel-based method, the estimation accuracy degrades

near the vessel boundary. In order to account for kernels that are not fully inside

the vessel, fractional weights are given to these kernels based on their signal power.

The proposed method achieves excellent flow rate estimation results with less than

8% bias for both slow and fast moving clutters.

The performance of the velocity estimator is also evaluated for challenging models.

A 2D version of our two-tiered method is able to accurately estimate velocity vectors

in a spinning disk as well as in a carotid bifurcation model, both of which are part

of the synthetic aperture vector flow imaging (SA-VFI) challenge of 2018. In fact,

the proposed method ranked 3rd in the challenge for testing dataset with carotid

bifurcation. The flow estimation method is also evaluated for blood flow in vessels

with stenosis. Simulation results show that the proposed method is able to estimate

the flow rate with less than 9% bias.
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Chapter 1

INTRODUCTION

In recent years, non-communicable diseases (NCDs) have been known to cause more

deaths than all other causes of deaths combined. The four major NCDs are cardio-

vascular diseases, cancer, chronic respiratory diseases and diabetes. Together they

account for more than 80% of the total NCD deaths. Of the four categories, a study

in [1] showed that in 2012, cardiovascular diseases caused 17.5 million deaths which

is 31.2% of the total NCD deaths worldwide and twice the number of deaths caused

by cancer [1].

To help doctors diagnose cardiovascular diseases at an early stage and improve

the prognosis, full 3D blood flow field with sufficient spatial and temporal resolution

is highly necessary. MRI and ultrasound imaging are both used in measuring blood

flow. They help monitor anomalies in the flow volume and also nature of the flow.

Although MRI is believed to have better accuracy and thus regarded as the gold

standard, it suffers from long acquisition time, high cost and low portability [2].

This long acquisition time makes MRI not suitable for measuring the peak velocity,

which provides crucial information for determining the extent of stenosis. Recent

developments in high frame rate ultrasound imaging have enabled accurate blood flow

estimation. Also, in vivo experiments show that ultrasonic flow estimation accuracy

has become comparable to that of MRI [3, 4].

In traditional medical ultrasound systems, only velocities along ultrasound direc-

tions (1D) are estimated and these velocities are angle compensated based on the

beam-to-flow angle. However, beam-to-flow angle is often hard to estimate for hu-

man vessels. This prompted the development of methods that can estimate 2D or 3D
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velocity vectors reliably [5]. Methods which overcome the angle dependency of the

1D methods include the cross-beam vector Doppler method [6], transverse oscillation

(TO) method [7,8], and speckle tracking [9].

3D velocity vectors contain significantly higher diagnostic information than its

2D counterpart, as expected. For example, 3D flow imaging can facilitate precise

calculation of volumetric flow across an arbitrary plane through a vessel [10]. In

contrast, in 2D flow imaging, blood velocity estimation is less accurate when there is

blood flowing out of the plane. Furthermore, collecting a complete velocity vector field

within a 3D region of interest enables derivation of other important flow parameters,

such as pressure drops associated with flow restrictions [5, 11, 12].

3D flow estimation requires high volumetric frame acquisition rate, which is usu-

ally in the order of kilo Hertz. Such a high frame rate results in significant increase in

the computational complexity due to beamforming. In addition to the already high

complexity of beamforming for 3D images [13–16], 3D velocity estimation typically

requires many more firings and an order of magnitude more computations than a 2D

system.

Our goal is to develop a low-cost 3D scheme for accurate blood flow estimation.

Reducing the number of computations helps reduce the power consumption, making

it possible to implement the proposed scheme in a portable platform. Portability is

particularly important since nearly three quarters of the NCDs deaths happen in low-

and middle- income countries [1], and a portable ultrasound machine could facilitate

fast access to medical help.

1.1 Blood Velocity Estimation in Medical Ultrasound

3D blood flow estimation using ultrasound has recently become a subject of active

research [17, 18]. It has a high clinical value in diagnosing vascular diseases such
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as stenosis, thereby reducing the risk of vascular deaths [19]. However, 3D flow

estimation is quite challenging, as its computational complexity is drastically higher

than its 2D counterpart [18].

Traditionally, blood velocity estimation methods have been based on autocorrela-

tion methods, such as Kasai estimator and 2D autocorrelation estimator [20]. These

methods only estimate axial velocity (along the ultrasonic beam direction) and thus

the estimation accuracy of the primary flow becomes poor when the beam-to-flow

angle approaches 90o.

Several methods have been proposed to overcome this angle dependency and en-

able accurate estimation of 2D or 3D velocity vectors. For example, the 2D cross-beam

vector Doppler method uses multiple sub-apertures and combines multiple Doppler

measurements to obtain both lateral and axial velocities [6]. Recently, a 3D cross

beam multiple receiver scheme has been used for estimation of low velocity flows [21].

Complex receive schemes that introduce transverse oscillation (TO) [7, 8] have been

proposed that enable 2D and even 3D [22] velocity vectors to be estimated using the

basic Doppler principle. The TO method has been combined with plane-wave imag-

ing to provide high frame rate 2D flow imaging [23]. SARUS, a synthetic aperture

3D ultrasound system [24] that supports flow estimation is based on the TO method.

Other velocity estimation methods use time-delay estimators, such as cross cor-

relation, to estimate motion. The directional beamforming method generates beam-

forming lines in the flow direction and estimates velocity using cross correlation [25].

However, this method requires apriori knowledge of the beam-to-flow angle.

Speckle tracking is among the earliest motion estimation methods used in ultra-

sound. It does not require prior knowledge of the flow angle [26]. Since the blood

speckle is correlated with blood movement, kernel matching techniques can be used

to track blood velocity. For example, a 2D blood velocity estimation based on speckle
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tracking with plane wave imaging has been shown to achieve a frame rate of 100 vector

flow images (VFIs) per second with a packet size of 40 [9]. Estimation robustness can

be improved by compounding the speckle tracking results in dual angle plane-wave

imaging [27]. Speckle tracking methods have also been used for estimation of complex

flows generated through computational fluid dynamics (CFD) simulations [28, 29].

With the development of fast 3D imaging, speckle tracking can be naturally ex-

tended to handle 3D motion estimation. In fact, fast 3D imaging [30] has been

actively investigated and several systems have been developed in recent years. For

instance, [31] presents a customized 3D ultrasound imaging system, with a 32×32 ma-

trix probe, that supports flow imaging with high frame rates. Despite challenges due

to large computational complexity, these developments have made speckle tracking a

promising technique for real time flow estimation [18]. There are other flow estima-

tion techniques that utilize microbubble contrast agents to enhance the contrast-to-

noise ratio between the flow containing microbubbles and surrounding static tissue

responses [32]. Because many of these techniques are also based on use of autocor-

relation or cross correlation or otherwise rely on pulse to pulse signal coherence, the

instability of the ultrasonic response of microbubbles puts a constraint on the en-

semble length, resulting in lower accuracy [33, 34]. A Fourier-based velocimetry that

uses estimates over a range of frequencies for higher estimation accuracy is proposed

in [35]. It has shown improvement when using microbubble as contrast agents.

In this work, we focus on improving the accuracy of 3D blood flow estimation with

minimum increase in the computational complexity. We present a low complexity 3D

flow esimtaitor and show that it achieves high estimation accuracy for simple (plug,

parabolic) as well as complex (spinning disk, carotid bifurcation, vessel with stenosis)

flows.
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1.2 Clutter Filter Design for Blood Flow Estimation

Blood signals acquired in vivo are accompanied by clutter signals. These originate

from the vessel wall and the surrounding tissue and usually have high amplitude and

low frequency [20]. For accurate flow estimation, it is important to first remove the

clutter before estimating flow velocity. Clutter filters work on the slow time signal of a

sample volume within a packet. These filters have traditionally been high-pass filters.

However, when the tissue surrounding the blood vessel moves, the Doppler frequency

of the clutter is no longer centered at zero. In such cases, traditional filters that have

fixed frequency response tend to remove part of the blood signal, which decreases the

accuracy of flow estimation. Thus, while the traditional high pass filters have low

computational cost, they are not robust and their performance is not acceptable.

In a realistic scenario, clutter and blood velocities change over time, resulting

in changes in the spectrum of blood and clutter signals. This makes adaptive clut-

ter filters necessary for good clutter removal performance. One approach [36] is to

downmix the signal to move the mean Doppler frequency of the clutter to zero be-

fore performing high pass filtering. However, the filter performance degrades if the

stopband is not chosen properly [37].

Another important class of adaptive clutter filter is the eigen-based clutter filter.

Eigen-based clutter filter has high adaptivity to the slow time signal. Bjaerum et

al. [38] proposed a eigen regression filter that uses the eigen decomposition on the

slow time signal. Yu and Cobbold [39] proposed an approach called Hankel-SVD

which uses Singular Value Decomposition (SVD) on the Hankel matrix constructed

using the slow time signal. Despite their excellent filter performance, eigen-based

filters suffer from the high complexity of large SVD computations, which are of the

order O(n3) [40]. Our goal is to design clutter filters that have significantly lower
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computational complexity while still producing comparable performance to existing

high-end systems.

1.3 Problems Addressed

Our flow estimation scheme is developed for a plane wave imaging system such as

the one in [16]. The block diagram of our system is shown in Fig 2.1. In each firing, a

32×32 receive aperture is used to emulate an unfocused plane wave that propagates

through the imaging region. The beamforming process used here is based on separable

decomposition of delay calculation into two separate directions. It can generate RF

data with a frame rate of up to 6,000 frames/s. This data is then processed in

packets by flow estimation units (shaded in the block diagram). Since the input is

blood contaminated with clutter, first the clutter filter removes the clutter. Next,

the clutter-filtered data is used to estimate 3D velocity vectors. The velocity vectors

obtained with motion estimation are then used in the flow rate estimation. In the

rest of this section, we summarize the specific problems that were addressed in this

work along with the findings.

1.3.1 Low Cost Blood Velocity Estimator with Sub-pixel Accuracy

Blood flow estimation is traditionally done using the Doppler method. This

method estimates the velocity only in beam direction and estimates the lateral veloc-

ity based on prior knowledge of the beam-to-flow angle. There are “real” 2D velocity

estimation schemes that obtain axial and lateral velocities independently and thus are

able to estimate the beam-to-flow angle. Moreover, 3D velocity estimation takes the

out-of-plane velocity into consideration and thus provides full velocity profiles which

enables flow rate estimation at arbitrary cross-section planes of the vessel.
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Speckle tracking is a velocity estimation technique which estimates the velocity by

tracking the movement of a kernel by using a goodness-of-match algorithm. Among

the goodness-of-match schemes used in speckle tracking, cross correlation is much

more computationally complex compared to sum-of-absolute-difference (SAD) but

usually has higher accuracy. Fortunately, as a 3D kernel includes more samples than

a 2D kernel, the performance difference between SAD and cross correlation based

methods is largely reduced and so SAD is usually sufficient for pixel level estimation.

However, in 3D speckle tracking with plane-wave imaging, lateral image resolution

remains poor and sub-pixel estimation is usually needed. Sub-pixel estimation can be

obtained by locating the zero-crossing positions of the phases of the cross correlation

functions. Unfortunately, there is no natural phase in the lateral dimension and

synthetic phase has to be generated through spectrum separation.

We proposed a two-tiered scheme to combine the low complexity SAD estimator

and a 3D version of the synthetic lateral phase method [41] to provide accurate blood

velocity estimation with sub-pixel accuracy. This method was presented in [42]. We

were able to achieve an average bias of less than 2.1% and average standard deviation

of less than 9.3% for plug flow. We also achieved less than 9% standard deviation for

parabolic flow. We further improved the sub-pixel accuracy by correcting phase of

cross correlation based on autocorrelation in [43].

1.3.2 Low Cost Eigen-based Clutter Filter

In medical ultrasound, after beamforming, the clutter signal which originates from

vessel wall and surrounding tissues usually has 40-60 dB higher magnitude than the

blood signal. Therefore, a clutter filter is needed before any blood velocity estimation

can be done. Clutter is conventionally removed by high pass filter as clutter usually
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has lower frequency. However, a high pass filter with fixed stopband does not account

for the changes in clutter and blood movement.

Eigen-based clutter filter, on the other hand, utilizes both the high magnitude and

low frequency features of clutter and adapts to the data. It has better clutter removal

performance than traditional FIR or IIR filter but has much higher complexity due

to the computationally expensive singular value decomposition (SVD) [37, 39]. The

computational cost of SVD can be reduced if only the first several largest singular

values and corresponding vectors (i.e. subspaces) are needed. These subspaces can

then be removed by subtraction from the original signal.

We proposed a low-cost eigen-based clutter filter method [43], which can remove

one or more subspaces. This method can handle both slow moving clutter caused by

respiratory motion and fast moving clutter caused by pulsatile motion. Slow moving

clutter corresponds to the case when the clutter velocity is 0.5% of the peak blood

velocity and fast moving clutter corresponds to the case when the clutter velocity is

10% of the peak blood velocity. We validated our techniques through Field-II [44]

simulations for both slow and fast moving clutter, and for 60o and 90o beam-to-flow

angles. Our simulation results showed that the proposed clutter filters attenuated

the clutter significantly with excellent post-filter clutter-to-blood ratio (CBR). It also

provided good blood velocity estimation results, comparable to the case where clutter

was not included in the simulations. For both slow and fast moving clutters, the

average velocity estimation bias was within 7.5% and the average standard deviation

was within 15.7% for parabolic flow. The clutter filter work was presented in [43,45].

1.3.3 Flow Rate Estimation for Parabolic Flow

Flow rate can be calculated by integrating the estimated velocities on a cross

section plane. As speckle tracking is a kernel based method, some of the kernels that
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are close to the vessel boundaries are not fully inside the vessel, and the velocity

esimation is noisier for such kernels. Therefore, for accurate flow rate estimation, we

use a weighting of kernel power that assigns fractional weights to kernels that are not

fully inside the vessel, thereby improving overall flow rate estimates.

We consider estimation of blood flow through vessels that can be represented

by a straight tube. The flow through such vessels is parabolic in nature. Field-II

simulation results show that our blood velocity estimation scheme is quite accurate,

with less than 8% average bias for both slow and fast moving clutter. The average

standard deviation of the estimation is smaller for 90o scenario (< 12%) than that of

the 60o scenario (< 16%). Volumetric flow rate estimation is also quite accurate. For

a beam-to-flow angle of 90o, the estimation bias is 8.2%, and the standard deviation

is 5.6% for slow moving clutter; the bias is 8.8% and the standard deviation is 3.1%

for fast moving clutter. The proposed flow rate estimation method appeared in [43].

1.3.4 Flow Estimation in Challenging Models

As the blood vessel is never a perfect cylinder, it is important to test our flow

estimation method on more challenging flow models. Therefore, we validated the

performance of our method with spinning disk and carotid bifurcation models. These

models are have complex geometry and require the flow estimation to be accurate

over a wide range of angles.

Spinning disk and carotid bifurcation models were obtained from the synthetic

aperture vector flow imaging (SA-VFI) challenge held as part of the International

Ultrasonic Symposium 2018 (IUS18) conference. Since this was a 2D velocity esti-

mation challenge with synthetic aperture imaging, we had to modify our 3D method

designed for plane wave imaging. The key changes were deriving a 2D version of the

two-tiered method, accounting for aliasing in the phase of the correlation function
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and then application of median filtering on the final estimates. The velocity pro-

files estimated with our method closely matched the ground truth for all datasets in

the challenge. For instance, the average magnitude bias was less than 10% and the

average angle bias was less than 10o for spinning disk.

We also considered velocity estimation in vessels with stenosis. We generated

these models using COMSOL. For both single stenosis and double stenosis models,

the velocity estimations were quite accurate except when the velocity gradient was

large near the stenosis boundary. We showed that by reducing the kernel size and

increasing the packet size, the bias can be reduced at the stenosis boundary without

increasing the standard deviation. The flow rate estimation for this model was also

quite accurate, with less than 6% bias.

1.3.5 Post-processing in Plane Wave Imaging Challenge in Medical Ultrasound

(PICMUS)

Plane wave imaging is a promising imaging modality for medical ultrasound as

it has fast acquisition rate. In fact, our 3D flow estimation is based on plane wave

imaging. The imaging quality of plane wave imaging can be improved by coherent

compounding [30]. We participated in the PICMUS challenge held as part of Interna-

tional Ultrasonic Symposium 2016 (IUS16). The goal of the challenge was to compare

the performance of different beamforming methods for plane wave imaging with or

without compounding.

We chose delay-and-sum (DAS) beamforming and applied a post processing method

based on edge detection. The imaging results showed that a proper choice of param-

eters in beamforming (f-number, apodization window, etc.) along with our post pro-

cessing method helped improve the contrast ratio of the cysts without affecting other
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parts of the image. Compared to the results posted by other groups, our method had

superior contrast ratio for cysts but lower resolution for point scatterers.

1.4 Outline

This dissertation is organized as follows.

In Chapter 2, we describe our two-tiered motion estimation method SAD+SLP-

3D, designed to lower the complexity of our sub-pixel accurate scheme while improv-

ing the accuracy. Techniques to further reduce the computational complexity are

described and the overall complexity is analyzed.

In Chapter 3, we introduce different approaches to reduce the complexity of eigen-

based clutter filter. Their performance based on post-filter clutter-to-blood ratio

(post-CBR) and computational complexities are compared.

In Chapter 4, we use flow rate calculation method based on power weighting to

estimate overall flow rate estimation. The performance of this system is evaluated in

detail.

In Chapter 5, we apply 2D or 3D version of our two-tiered velocity estimator

to challenging models, including spinning disk, carotid bifurcation and vessels with

stenosis. Performance of our flow estimation system when applied to each model is

presented.

In Chapter 6, we describe our performance in the PICMUS challenge of 2016. We

show that the post processing method improved the contrast ratio of cysts.

In Chapter 7, we conclude this work and discuss future challenges.
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Chapter 2

3D BLOOD VELOCITY ESTIMATION

As mentioned in Chapter 1, there are two main approaches for 3D blood flow esti-

mation. One is based on the traditional Doppler approach with special beamforming

schemes to create Doppler frequency in lateral dimensions [22, 46] and the other is

based on time delay estimators usually coupled with kernel based algorithms. Re-

gardless of the methods used, blood flow estimation requires high image acquisition

rate, in order to ensure coherence between consecutive frames. Plane wave imaging

is a suitable candidate, especially for kernel based algorithms, as it generates full 3D

images at a high frame rate.

Previously, our group had developed a low cost plane wave imaging system which

can support 6000 frames/s within the 5 W power constraint of a handheld device

[16]. The low complexity was achieved by using separable beamforming [15] and 3D

stacking architecture [14]. In this work, we make use of this high frame rate plane

wave imaging system.

In this chapter, we focus on the motion estimation module based on speckle track-

ing, as shown in Fig. 2.1. The challenges of speckle tracking in 3D include poor

sub-pixel accuracy and high computational complexity. We propose to use synthetic

lateral phase (SLP) technique and a two tiered approach to achieve low cost blood

velocity estimation with sub-pixel accuracy.

2.1 3D Speckle Tracking

Speckle tracking estimates motion across frames by searching for the best match

of a kernel in the reference frame with candidate kernels in the search region (usually
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Figure 2.1: System Block Diagram

centered around each kernel location) in a previous frame. Candidate kernel locations

are evaluated with a goodness-of-match cost function; typically, this cost function is

a time-delay estimator (TDE), such as Sum-of-Absolute-Difference (SAD), Sum-of-

Squared-Difference (SSD), or normalized cross correlation (NCC) [47]. Among these,

SAD has the lowest computational complexity and NCC is the most computational

demanding. Their performances in pixel level are comparable in most cases [47], but

NCC can preserve phase information which allows more accurate sub-pixel estimation

[41].

3D speckle tracking has advantages over its 2D counterpart because it does not suf-

fer from speckle decorrelation caused by out-of-plane motion [48]. Assume x0(i, j, k)

is a pixel in the kernel region X0, and x1(i + α, j + β, k + γ) is a pixel in the candi-

date region X1 that is displaced by (α, β, γ) compared to X0. SAD, SSD and NCC

estimates are computed using equations (2.1), (2.2) and (2.3), respectively. Here X̄0

and X̄1 are the average pixel values, and σ(X0) and σ(X1) are the standard devia-

tion of pixels in kernel regions X0 and X1. The estimated motion vector (α̂, β̂, γ̂),

corresponding to the best match candidate across two frames, is averaged across the

frames in a packet to give the motion estimation of the kernel of interest.

When using speckle tracking for flow estimation in a single transmit plane-wave

system, the TDE estimators provide limited accuracy in lateral dimensions as the

space between scanlines is quite large (λ) and the lateral resolution is poor due to

lack of transmit focusing. To improve lateral accuracy, methods based on linear

interpolation [49], and polynomial fitting [50] have been studied for 2D systems.
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εSAD(α, β, γ) =
∑
i

∑
j

∑
k

|x0(i, j, k)− x1(i+ α, j + β, k + γ)| (2.1)

εSSD(α, β, γ) =
∑
i

∑
j

∑
k

(x0(i, j, k)− x1(i+ α, j + β, k + γ))2 (2.2)

ρNCC(α, β, γ) = CC(X0, X1)/(σ(X0)σ(X1)), where (2.3)

CC(X0, X1) =
∑
i

∑
j

∑
k

(x0(i, j, k)− X̄0)(x1(i+ α, j + β, k + γ)− X̄1)

σ(X0) =

√
(
∑
i

∑
j

∑
k

(x0(i, j, k)− X̄0)2);

σ(X1) =

√
(
∑
i

∑
j

∑
k

(x1(i+ α, j + β, k + γ)− X̄1)2)

However, the improvement in sub-pixel accuracy is quite limited. The Synthetic

Lateral Phase (SLP) technique [41] estimates the sub-pixel movement by locating

the fractional position where the phase of the correlation function is zero. This

is determined by finding the location where the magnitude of the cross correlation

function is maximized. In lateral dimension, the spectrum is centered at DC, and

no phase information is present. Artificial phases must be created by splitting the

spectrum into halves so that the spectrums are no longer centered at DC. Next, we

describe a 3D extension of this method, named SLP-3D, for estimating the phases

of the cross correlation functions and using these to derive a motion vector with

sub-pixel granularity.

2.2 Synthetic Lateral Phase in 3D

In this section, we extend the Synthetic Lateral Phase algorithm [41] designed

for 2D speckle tracking to the 3D case (SLP-3D). In the SLP-3D algorithm, the
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pixel-level estimates of 3D motion vectors are calculated using the cross-correlation

functions, while the sub-pixel level estimates are obtained by locating the zero phase

positions. This algorithm is substantiated by the fact that the magnitude of the cross-

correlation function is maximum at the point where its phase is zero. To estimate the

sub-pixel level motion using the phase-based zero crossing methods, we need phase

information, which is present only in the analytical signal. In the axial dimension, the

analytical signal is obtained by taking only the positive half of the 3D FFT along that

dimension (4 out of 8 quadrants) and phase-based zero crossing is used to determine

the sub-pixel motion. However, there is no phase information in lateral dimensions as

there are no carrier frequencies in those dimensions. Thus, phase has to be generated

artificially using Synthetic Lateral Phase method.

The proposed SLP-3D algorithm is shown in Algorithm 1. Note that Step 1 is done

for each volumetric frame while Steps 2 and 3 are done for each frame pair. In Step

1, first 3D FFT of the beamformed RF data is computed. Then the spectrum is split

in both lateral dimensions, creating four spectrum quadrants as shown in Fig. 2.2.

The four sets of frame-pairs are used to compute complex cross correlation functions

(ρx+,y+, ρx+,y−, ρx−,y+, ρx−,y−) based on equation (2.3). Each of these functions can be

represented by Γe−iω, where Γ is the magnitude and ω is the net frequency. The axial,

lateral-x and lateral-y cross-correlation functions, ρaxial, ρlat−x, ρlat−y, are computed

by multiplying the four cross correlation functions (or their conjugates) as shown in

equation (2.4). Here, ∗ stands for complex conjugate.

ρaxial = (ρx+,y+)(ρx+,y−)(ρx−,y+)(ρx−,y−)

ρlat−x = (ρx+,y+)(ρx+,y−)((ρx−,y+)(ρx−,y−))∗

ρlat−y = (ρx+,y+)(ρx−,y+)((ρx+,y−)(ρx−,y−))∗ (2.4)
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Algorithm 1: Procedure of SLP-3D algorithm

Step 1 Preprocessing

• Obtain the spectra of the frame by computing 3D FFT

• Split each analytical spectrum into halves in both lateral dimensions, resulting

in four spectra

• Compute the Inverse FFT of the spectra to obtain four volume pairs: Vx+,y+,

Vx+,y−, Vx−,y+, Vx−,y−, where Vx+,y+ corresponds to the spectrum with positive

frequencies in both x and y dimensions, Vx+,y− corresponds to the spectrum

with positive frequencies in x dimension and negative frequencies in y

dimension, and so on.

Step 2 Pixel level estimation

• Compute cross correlations of four volume pairs, resulting in ρx+,y+, ρx+,y−,

ρx−,y+, ρx−,y−

• Compute ρaxial, ρlat−x, ρlat−y based on equation (2.4)

• Search for the peak using one of the three cross correlation functions

Step 3 Sub-pixel level estimation

• Correct phases of cross-correlation functions based on autocorrelations

• Locate the zero-phase position in each dimension

Utilizing the relation between the frequencies in ρx+,y+, ρx+,y−, ρx−,y+, ρx−,y− in a

way that is very similar to the 2D method in [41], we ensure that ρaxial, ρlat−x, ρlat−y

only have nonzero phase in one dimension. For instance, ρaxial only has nonzero
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(a) extracting x-y- spectrum (b) extracting x+y- spectrum

(c) extracting x-y+ spectrum (d) extracting x+y+ spectrum

Figure 2.2: Separating the Spectrum into Four Quadrants in SLP-3D

phase in the axial dimension and zero phases in both lateral dimensions. For pixel-

level estimation, it is sufficient to search for the peak of the cross-correlation function

using only one of ρaxial, ρlat−x, ρlat−y, as they have the same magnitude. The sub-

pixel level motion vector is then estimated using the synthetic phase information. The

phase variation is approximated using a linear function model [41] and the zero-phase

location along each dimension is the zero-crossing point of the fitted line.

2.2.1 Computational Complexity

To provide a single, simple complexity measure for each method, we use a normal-

ized computation metric: multiplication is considered the reference operation with a
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weight of 1, addition has a weight of 1/8, and division and square root operations both

have weight of 6. The weights have been chosen to roughly match the relative costs

of the different arithmetic operations in terms of energy and area in our hardware

design.

For a 3D frame of size 512×32×32 samples, computing the FFT and IFFTs (Step

1) requires 2 × 108 multiplications and 3 × 108 additions per frame. Assuming that

there are 100 kernels in each 3D frame and for each kernel in the reference frame

there are 387 candidate kernels, computing the correlation functions (Step 2) requires

387×100 correlation functions, resulting in 2.38 × 109 multiplications, 4.17 × 109

additions and 1.55 × 105 divisions. In the sub-pixel level estimation step (Step 3),

each estimate requires 18 additions, 3 divisions and 3 square root operations. If there

are 100 kernels in each 3D frame, this corresponds to 3,825 normalized computations.

In total, about 3.14 × 109 normalized computations are needed per frame, and Step

2 is dominant with more than 90% of the total computations.

Despite the excellent performance of SLP-3D in estimating motion at sub-pixel res-

olution, this method suffers from high computational complexity. In the next section,

we describe optimizations that drastically lower complexity without compromising on

the accuracy of naive SLP-3D.

2.3 Two-tiered Approach

As the cross correlations consume most of the computations in SLP-3D, we first

consider techniques to reduce the number of cross correlations. We propose a two-

tiered approach [42] that uses SAD for coarse-grained motion estimation and SLP-3D

for fine tuning the estimate. This approach combines the advantages of low complexity

SAD with the sub-pixel accuracy of SLP-3D. Here, SAD is used to locate the pixel-

level movement, so that the search region for cross correlation is narrowed. Only the
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Figure 2.3: Block Diagram of the Two-tiered Velocity Estimation Method

(SAD+SLP-3D)

nearest-neighbor candidates around the SAD best match are used in the sub-pixel

estimation. A block diagram of the proposed method is shown in Fig. 2.3.

2.3.1 Computational Complexity

For the setup given in Table 2.1, if there are 100 kernels in the reference frame of

size 512×32×32, the two-tiered method (SAD+SLP-3D) requires 2.23×108 additions

for SAD, 2×108 multiplications and 3×108 additions for computing FFT and IFFTs,

and 1.66×108 multiplications, 2.94×108 additions, 1.11×104 divisions and 1.11×104

square root operations for computing the cross correlation functions. This results

in a total of 6.03 × 108 normalized computations per frame. While this method

has significantly lower complexity compared to naive SLP-3D, it is still quite high.

Next, we describe techniques to reduce the computational complexity of SLP-3D

with minimal degradation in estimation performance. We refer to this method as

SAD+SLP-3Dopt.

2.3.2 Reducing Complexity of FFT & IFFT

We reduce transform complexity by exploiting the fact that many samples used

in the FFT and IFFT calculations are zeroes. For 3D FFT, we compute 1D FFT

of 512 points along the z dimension first, followed by a 2D FFT along the x-y plane
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Table 2.1: Simulation Environment

Parameter Slow moving clutter Fast moving clutter

Speed of sound 1540 m/s 1540 m/s

Transmit aperture pitch 0.5λ 0.5λ

Transmit aperture size (2D) 128×128 128×128

Receive aperture pitch λ λ

Receive aperture size (2D) 32×32 32×32

Center frequency (f0) 4 MHz 4 MHz

6 dB Bandwidth 2 MHz 2 MHz

Sampling frequency (fs) 40 MHz 40 MHz

Vessel radius (R) 3.5 mm 3.5 mm

Vessel center depth 15 mm 15 mm

Packet size 32 32

Beam-to-flow angle 60o/90o 60o/90o

Blood peak velocity (v0) 1 m/s 0.3 m/s

Clutter velocity (vc) 5 mm/s 30 mm/s

Pulse repetition frequency (fprf ) 5 kHz 2 kHz

Clutter-to-blood ratio 40 dB 40 dB

Vibration frequency (fvib) 1 Hz 1.5 Hz
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(1D FFT along x and 1D FFT along y). Since the spectrum corresponding to the

negative frequencies has to be set to zero, half of the 3D volume of intermediate data

is 0. Thus, we only need to compute 2D FFT of 256 x-y planes instead of 512 x-y

planes. Similarly, when we compute the IFFTs, we compute the 1D IFFT along the

z dimension first. Since in each case, three quarters of the data are zeroes, the 1D

IFFT are also zeroes and need to be computed. Therefore, we can save half of the

computations in the second stage where we compute the 1D IFFT along x dimension.

As a result of these reductions, the total number of multiplications for computing

FFT and IFFTs is reduced from 2 × 108 to 1.11 × 108, while the total number of

additions is reduced from 3× 108 to 1.67× 108. This corresponds to a 45% reduction

in normalized computations, from 2.38× 108 to 1.32× 108.

2.3.3 Reducing Complexity of Correlation Function

In order to reduce the number of computations for correlation functions, we first

reduce the kernel size from 77×5×5 to 25×3×3. This helps achieve about 8×savings

in the number of computations for correlation functions at the cost of increasing the

standard deviation by 2-3%. Furthermore, we omit computing σ(X0) in Eqn. 2.3,

since it is a common factor for all the candidates, and compute only once the nor-

malized factors for correlation functions ρaxial, ρlat−x, ρlat−y, since they are the same.

Finally, we avoid the square root operations required to compute the normalization

factor and replace it by finding the maximum of the square of the correlation func-

tion. Since squaring destroys the phase information required to locate the zero phase

position in Step 3 of SLP-3D, we first calculate and store the phase via the arctan

function.

Fig. 2.4 illustrates the overall reduction in complexity in terms normalized compu-

tations. The complexity of beamforming and SAD is the same for the three methods.
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Figure 2.4: Average Number of Normalized Computations for 100 Velocity Estimates

per Frame.

We were able to save about 48% if the normalized computations through the tech-

niques described above. Together with the two-tiered approach, the total complexity

reduction is about 9×. The complexity numbers were derived assuming that of the

four main computation blocks, beamforming and FFT & IFFTs are done for each

volume, while SAD and NCC are done for every motion vector estimate.

2.4 Phase Correction

While the SLP-3D method results in fairly accurate velocity estimates for plug

flow [42], for parabolic flow, the bias can be as large as 12.77% as shown in Section

2.5. We found that the bias is due to the phase errors introduced by speckle tracking.

Speckle tracking is a kernel based method, and thus, for parabolic flow or any other

flow conditions in which the velocities of each pixel within a kernel are not the same,

decorrelation between the kernels results in phase error [26].

22



Phase error also exists in autocorrelation, namely correlation between the kernel

and its neighboring kernels in the same frame. In the spatial domain, in theory, the

phase of autocorrelation of lag 0 should be zero, while the phases of autocorrelation

of lag ±1 should be symmetric (same value, different sign). However, in practice, the

phase of autocorrelation of lag ±1 are not always symmetric, especially in lateral di-

mensions. Assume the phases of autocorrelation of lag ±1 are α and β, compensation

of ∆ = ||α| − |β||/2 is needed to make the phases symmetric. This compensation, ∆,

can then be applied to the phases of the corresponding cross correlation functions to

reduce the errors. Note that in the axial dimension the phases are quite accurate, and

so we propose to correct only the phases of the cross-correlation functions (between

frame i and frame i+ 1) in lateral dimensions as follows:

• Compute autocorrelation for frame i, at lags of ±1.

• Compute the phase compensation amount (∆) needed to make the phases sym-

metric at lags of ±1 for autocorrelations.

• For the pair of frames(i,i + 1), if the peak of the cross-correlation functions

corresponds to lag 0, then apply ∆ to the cross-correlation functions at lags of

±1.

Phase correction is done for each pair of frames to ensure accuracy. For each

kernel, four autocorrelations are needed in addition to the 27 cross-correlation func-

tions. Since the complexity of autocorrelation is the same as cross correlation, this

results in a 15% increase in complexity. Considering the packet size of 32, the total

computation breakup for a packet is as follows. SAD requires 886M (million) normal-

ized computations (15%), FFT and IFFTs needed 4224M normalized computations

(75%) and cross correlation and autocorrelation need 558M normalized computations

(10%). Therefore, the number of additional computations contributes to only 0.5%
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additional complexity of the full system. The overall complexity of SAD+SLP-3Dopt

is about 1.91× of the complexity of our B-mode imaging system [16] which can achieve

a frame rate of 6,000 3D frames/s. In theory, this enables us to support flow imaging

with frame rate up to 95 velocity estimations/s when packet size is 32.

2.5 Simulation Results

In this section we evaluate the performance of the optimized two-tiered method

(SAD+SLP-3Dopt). We use Field II [44,51] in MATLAB with the parameters listed

in Table 2.1. Note that clutter is not included in this set of simulations. The effects

of clutter and clutter filter performance are discussed in Chapter 3.

2.5.1 Plug Flow

We fist consider blood flow in a straight vessel with plug velocity profiles. We

simulate two sets of cases. In the first set, the beam-to-flow angle θ is varied from 0o

to 90o, in steps of 15o, while the out-of-plane angle φ is kept at 0o. In the second set,

the out-of-plane angle φ is varied from 0o to 90o, in steps of 15o, while the beam-to-

flow-angle θ is kept at 90o. Detailed bias and standard deviation measurements are

presented in Tables 2.2 and 2.3. The standard deviations of lateral motion components

vx and vy are generally larger than the standard deviation of axial motion component

vz. The higher standard deviation is to be expected since the spatial resolution in

the lateral dimensions is 20× coarser than the axial dimension.

For the second set of simulations, where φ is varied, the estimated velocity mag-

nitude has an average bias of about 0.02 m/s and an average standard deviation of

about 0.08 m/s, while the estimated flow angle φ has an average bias of about 0.5o

and an average standard deviation of about 4.2o. Compared to the results presented

in [11], which simulate the same flow conditions, the performance of our method
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Table 2.2: Estimation Performance for Different θ with Plug Flow.

Avg. Bias(%) Avg. Std.(%)

θ Vx Vy Vz Vx Vy Vz

0o 0.93 0.91 0.21 3.28 3.39 0.46

15o 0.73 1.00 0.18 3.48 4.17 0.34

30o 1.02 1.29 0.13 4.47 6.73 0.51

45o 0.82 1.50 0.15 3.80 6.60 0.54

60o 0.82 1.95 0.56 5.06 8.34 1.06

75o 0.65 1.01 0.11 2.81 5.96 0.38

90o 1.06 1.46 0.12 4.22 7.11 0.53

(with a 32×32 array) is better than the performance of the TO (transverse oscilla-

tion) method with a 32×32 array, and yet close to the performance of the TO method

with a 64×64 array.

A pictorial summary of the results is shown in Fig. 2.5. Black arrows (solid)

indicate the true velocities, while the red lines (dashed) are the estimated velocities,

with ellipses (solid) showing the standard deviations for two velocity components (vx

and vz for the first set of simulations; vx and vy for the second set of simulations). The

estimated velocities match the true velocities well in both scenarios, demonstrating

that the SAD+SLP-3Dopt produces accurate 3D velocity vector estimates.

2.5.2 Parabolic Flow

Next, we evaluate SAD+SLP-3Dopt with parabolic flow. Fig. 2.7 shows the

estimated velocity components with θ = 90o and φ = 0o. For this case, the estimations

are fairly accurate with average standard deviations of the three velocity components
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Table 2.3: Estimation Performance for Different φ with Plug Flow.

Avg. Bias(%) Avg. Std.(%)

θ Vx Vy Vz Vx Vy Vz

0o 1.06 1.46 0.12 4.22 7.11 0.53

15o 0.99 1.02 0.08 4.63 6.30 0.32

30o 0.96 1.96 0.14 7.06 6.58 0.50

45o 2.09 1.98 0.25 9.29 7.98 1.06

60o 1.91 1.48 0.15 9.29 8.09 0.69

75o 1.92 0.96 0.12 6.76 4.89 0.43

90o 1.59 1.50 0.13 7.21 5.05 0.53

Table 2.4: Estimation Performance Comparison with or without Phase Correction.

No Clutter is Included. The Peak Velocity is 1 m/s

Avg. Bias(%) Avg. Std.(%)

Case Vx Vy Vz Vx Vy Vz

w/o Ph. Corr. -12.77 -0.26 0.03 3.99 7.11 0.36

Ph. Corr. -6.88 -0.28 0.03 3.71 8.08 0.42

vx, vy and vz being around 4.0%, 7.1% and 0.4% respectively. While the biases of

vy and vz are quite small, vx is underestimated with an average bias of about 13%.

The underestimation is mainly due to the decorrelation between the kernels and the

candidates because of the flow gradients within the kernel.
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(a) Primary flow in x dimension
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(b) Primary flow in y dimension

Figure 2.5: Velocity Estimates for Plug Flow as a Function of (a) Beam-to-flow-

angle θ; (b) Out-of-plane-angle φ. Black Arrows (Solid) Indicate the True Velocities,

while the Red Lines (Dashed) Represent the Estimated Velocities with Ellipses (Solid)

Showing the Standard Deviations for the Two Velocity Components.

2.5.3 Phase Correction

To demonstrate the improvement due to use of phase correction in the blood

velocity estimation, as mentioned in Section 2.4, we present the motion estimation

results with phase correction and without phase correction. The results are shown

in Fig. 2.7 and Table 2.4. We can see that phase correction reduced the bias from

13% [42] to below 7% in the primary flow direction. When θ is 60o, the biases are

smaller compared to the case when θ is 90o, though the improvement due to phase

correction is less significant. In general, the estimation performance is better with

considerably smaller standard deviation when θ is 90o than when θ is 60o. We also

see that when beam-to-flow angle is 90o, the standard deviation of the y dimension

is higher than in the x dimension. To verify that this is not an artificial systematic
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(a) Primary flow in x dimension (b) Primary flow in y dimension

(c) Primary flow in x dimension (d) Primary flow in y dimension

Figure 2.6: Parabolic Flow. (a)(c): Flow Direction is Lateral-x; (b)(d): Flow Direc-

tion is Lateral-y. Dark Solid Lines Represent the Actual Velocity, Red Solid Lines

Represent the Mean of the Estimated Velocity, Blue Dashed Lines Represent the

Mean±1 Standard Deviation.

bias between the two lateral dimensions, we changed the primary flow direction to be

lateral-y instead of lateral-x. The results are compared in Fig. 2.6. We can see that

the standard deviation of x dimension is now higher than in the y dimension. We

conclude that the motion estimation in the lateral dimensions tends to have higher

standard deviation in the dimension where the actual flow is smaller (or even zero).
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2.6 Summary

In this chapter, we proposed a two-tiered blood velocity estimator which uses SAD

for pixel level estimation and SLP-3D for sub-pixel estimation. By replacing the cross

correlations with SAD in the pixel level estimation and reducing the computations in

FFT and IFFTs, we achieved about 9× computational complexity reduction without

compromising on the estimation accuracy.

We evaluated the performance of the velocity estimator with both plug flow and

parabolic flow. For plug flow, the estimation bias is less than 2.1% and the standard

deviation is less than 9.3%. For parabolic flow, the estimation bias is less than 6.9%

and the standard deviation is less than 8.1%.
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(a) Without phase correction: x dimension (b) Phase correction: x dimension

(c) Without phase correction: y dimension (d) Phase correction: y dimension

(e) Without phase correction: z dimension (f) Phase correction: z dimension

Figure 2.7: Effect of Phase Correction on Parabolic Flow. Dark Solid Lines Represent

the Actual Velocity, Red Solid Lines Represent the Mean of the Estimated Velocity,

Blue Dashed Lines Represent the Mean±1 Standard Deviation.

30



Chapter 3

CLUTTER REMOVAL

The low cost motion estimation method for blood flow estimation presented in Chap-

ter 2 assumed that there was no clutter mixed in the blood signal. However, clutter

is always present, and if not removed sufficiently, may cause a large bias in velocity

estimation.

Consider motion estimation of a system where blood has slow moving clutter. Fig.

3.1 shows how presence of clutter degrades the accuracy of velocity estimation (3.1c

and 3.1d). Clearly, the clutter signal has to be removed! Fig. 3.1e and 3.1f show

the velocity estimation results when the clutter has been removed by an eigen-based

clutter filter. These results are almost as good as the case where there is no clutter

(Fig. 3.1a and 3.1b).

In this chapter, we describe clutter removal techniques that are able to sufficiently

filter out both slow- and fast- moving clutters with reduced computational complexity.

The clutter-free blood signal is then processed by motion estimation unit as shown

in Fig 2.1.

3.1 Clutter Characteristics

In blood flow estimation, the term clutter refers to the high-amplitude signals from

the vessel wall and surrounding tissues. The amplitude of the clutter signal is usually

40 to 60 dB higher than the amplitude of blood signal [20]. However, since vessel

wall and surrounding tissues are either stationary or moving very slowly compared to

the blood, clutter has relatively low frequency. As shown in Fig. 3.2, clutter usually

corresponds to the first (several) eigen/singular values, and has low frequency. These
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(a) No clutter: x dimension (b) No clutter: y dimension

(c) With clutter: x dimension (d) With clutter: y dimension

(e) Clutter removed: x dimension (f) Clutter removed: y dimension

Figure 3.1: Flow Estimation with Beam-to-flow-angle θ = 60o. Dark Solid Lines

Represent the Actual Velocity, Red Solid Lines Represent the Mean of the Estimated

Velocity, Blue Dashed Lines Represent the Mean±1 Standard Deviation.
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(a) High amplitude (b) Low frequency

Figure 3.2: Clutter Has High Amplitude and Low Frequency. (a) Singular Value

Amplitudes for both Blood and Clutter signal. (b) Singular Value vs. Doppler Fre-

quency. The Singular Value at Doppler frequency of ≈0 Hz (circled) Corresponds to

Clutter.

two basic characteristics of clutter, namely high amplitude and low frequency, are key

to identifying it and filtering it from the signal.

Traditionally, high pass finite-impulse response (FIR) or infinite-impulse response

(IIR) fiters have been used to suppress the clutter with a fixed stopband. However,

clutter characteristics vary for different blood vessels, and blood flow is pulsatile.

As shown in Fig. 3.3, we can see that when blood velocity varies, the spectrum is

different. Therefore, filters with fixed stopband result in poor filtering performance,

which could hamper the blood velocity estimation [37,38].

3.2 Eigen-based Clutter Filter

To improve the clutter filter performance, some studies have proposed adaptive

filters, such as eigen-based methods. In [37], two different approaches, namely, the

single-ensemble formulation and the multi-ensemble formulation, are presented. The
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Figure 3.3: Clutter Spectrum and Blood Spectrum with Different Velocities.

single-ensemble formulation works on the slow time signal of a signal sample volume

at a time, while the multi-ensemble formulation considers several neighboring sample

volumes at the same time. The single-ensemble formulation has better performance

when the clutter characteristics vary locally in a spatial domain. An important step

in eigen-based clutter filters is to determine whether a certain subspace is due to

clutter. In [39], only the Doppler frequency is used to distinguish whether a certain

subspace is due to clutter or blood, whereas in [52], both Doppler frequency and

relative eigenvalue amplitude are used to make this decision.

In this work, we consider both slow and fast moving clutter based on the clutter

model in [39]. If the clutter velocity is 0.5% of the peak blood velocity, we refer to it as

slow moving clutter, and if clutter velocity is 10% of the peak blood velocity, we refer

to it as fast moving clutter. For slow moving clutter only the most significant subspace

is due to clutter, while for fast moving clutter, usually the first two subspaces are due

to clutter. In [39], the Hankel-SVD approach is shown to have good performance for

various scenarios. However, since this approach involves singular value decomposition
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(SVD), the computational demand is quite high. In this section, we consider several

approaches to reduce the computational complexity.

The core of the Hankel-SVD based clutter filter method is briefly described as

follows:

• Step 1: Form the data matrix A of size m × n for a given voxel in a Hankel

structure [39]; the packet size is m+ n− 1.

• Step 2: Calculate the SVD of matrix A: A = USV , where S is a diagonal matrix

with singular values λ1, λ2, ..., U and V are matrices whose column vectors are

the singular vectors.

• Step 3: Reconstruct the subspace matrix that corresponds to clutter, by Ac =∑
i λiUiV

′
i , where Ui (of size m×1) and Vi (of size n×1) are the singular vectors

corresponding to λi, and V ′i is the conjugate transpose of Vi.

• Step 4: Transform the subspace matrix to signal vectors based on the Hankel

structure by taking the average of the elements on the inverse diagonal of the

matrix. This process is shown in Fig. 3.4. Finally, subtract this signal vector

that corresponds to clutter from the original signal packet, to reconstruct the

blood signal.

3.3 Reduce Complexity of Eigen-based Clutter Filter

For full SVD (Golub-Reinsch SVD), the complexity of Step 2 in terms of floating

point operations (flops) is 4m2n+ 8mn2 + 9n3, where m and n are the dimensions of

the matrix. Since the input to the clutter filter is the demodulated signal, which is

complex, the complexity increases by 4×. Step 3 takes (6mn+6m)×m flops, and Step

4 takes 2(mn−m− n− 1)×m, which makes the total complexity 24m2n+ 32mn2 +
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Figure 3.4: Signal Reconstruction from a Hankel Matrix in Step 4. x′(i) is the Average

of x(i)s.

36n3 + 4mn − 2m2 + 2m flops. In our flow estimation system, the packet size is 32,

and so the size of matrix A (m×n) is 16×17. The total number of flops per SVD

calculation is 429,892, which translates to 2.25 × 1011 flops for processing a volume

that has 512×32×32 voxels. This is clearly excessive and so we derive methods that

exploit blood-clutter characteristics to reduce complexity.

In clutter filtering, usually only a small number of subspaces represent clutter, the

computational complexity can be reduced if we only find the singular values that are

large. Power iteration and subspace iteration methods [40] are effective ways to find

large singular values. Although these methods are iterative, since clutter subspaces

usually have much higher power than the blood subspaces, the convergence of these

algorithms is quite fast. Another way of reducing the complexity is by reducing the

size of matrix size for SVD. This leads to small degradation in the filter performance

especially at the edge of the vessel, as will be shown in Section 3.4.

In the Hankel-SVD method, we need to first find the SVD for matrix A. To use

power iteration or subspace iteration, we convert the SVD into eigenvalue decom-

position (EVD) first. If the SVD of A gives A = USV ′, then the EVD of A∗A′

gives A∗A′ = US0U
′, where S0 = S∗S ′. Therefore, a matrix multiplication is needed

36



before using power iteration or subspace iteration to replace SVD. This step can be

computationally costly if the matrix size is large.

While power iteration is used for finding the most significant subspace in [45], it

can also be used to find the second most significant subspace by removing the most

significant subspace from the correlation matrix A∗A′ and applying power iteration

again. The signal power of the residual signal is calculated and compared with a

threshold to determine whether it is necessary ro calculate the second subspace. The

threshold is dynamic and is dependent on the total signal power and clutter-to-blood

ratio expectation (usually 40-60 dB, varies with application). The extended versions

of both power iteration and subspace iteration methods can be used to find more

than the two largest singular values. The power iteration and subspace iteration

based methods are described in Algorithms 2 and 3, respectively.

In our scheme, the packet size is 32, resulting in a Hankel matrix A of size 16×17.

In both the full SVD and its substitutes, the computational complexity is O(n3),

where the matrix is of size n× (n+ 1). Therefore, reducing the matrix size for SVD

is another effective way to reduce the computational complexity. To this end, we

propose methods which split a packet of 32 samples into 4 subgroups with 8 samples

per subgroup.

We evaluate the performance of the five methods which have varying degrees of

complexity. Methods 1-4 are based on Hankel-SVD clutter filter and Method 5 is

FIR filter (baseline). The FIR filter is a minimum phase filter, which has a frequency

response that is similar to the poly regression filter in [53].

• Method 1(SVD32): Hankel-SVD clutter filter, with SVD fully implemented, for

packet size of 32
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• Method 2(SVD8): Hankel-SVD clutter filter, with SVD fully implemented, for

4 subgroups with 8 samples in each subgroup

• Method 3(PIter8): Hankel-SVD clutter filter, with power iteration (twice), for

4 subgroups with 8 samples in each subgroup

• Method 4(SIter8): Hankel-SVD clutter filter, with subspace iteration, for 4

subgroups with 8 samples in each subgroup

• Method 5(FIR): FIR filter, order 16 (33 taps), with cutoff frequency of 0.15

Nyquist rate.

Algorithm 2: Power iteration method for finding the largest singular value

Data: Matrix A (m×n)

Result: The largest singular value S(1) and corresponding singular vectors u

and v (m×1, n×1) for matrix A

Initialization: v0 is arbitrarily given (randomly generated or unit vectors);

R = A×A′;

while abs(λk+1 − λk) > threshold do

λk+1 = norm2(R×vk);

vk+1 = R×vk/λk+1

end

S(1) = sqrt(λ);

u = A×v/S(1)

Table 3.1 compares the complexities of the five methods in terms of number of

flops. Method 5 has only 2048 flops but its performance is nowhere as good as

Methods 1-4. Note that Method 1 operates on a matrix of size 16×17 and Methods
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Algorithm 3: Subspace iteration method for finding the two largest singular

values
Data: Matrix A (m×n)

Result: The two largest singular value S(1), S(2) and corresponding singular

vectors u and v (m×2, n×2) for matrix A

Initialization: v0 is arbitrarily given so that v′0×v0 = I;

R = A×A′;

while abs(λk+1 − λk) > threshold do

zk+1 = R×vk;

zk+1 = vk+1/λk+1

end

S(1) = sqrt(λ(1, 1)), S(2) = sqrt(λ(2, 2));

u(:, 1) = A×v/S(1), u(:, 2) = A×v/S(2)

Table 3.1: Computational Complexity (in Flops) of the 5 Methods, for a Single Voxel

with Packet Size of 32.

Method 1 Method 2 Method 3 Method 4 Method 5

No. of flops 429,892 38,704 4,160 3,984 2,048

2-4 divide the packet into four subgroups and work on matrices of size 4×5. As a

result, Methods 2-4 are much less computationally complex than Method 1.

Methods 3 and 4 use power iteration and subspace iteration, respectively, and

have significantly lower number of flops than Method 2. For Method 3, assuming the

number of iterations for calculating the first and second subspace are N1 and N2 re-

spectively, the iterative process takes (63(N1+N2)−112) additions, (72(N1+N2)−128)

multiplications, (N1 + N2) square root operations, and 7(N1 + N2) divisions. There
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is another 56 additions and 80 multiplications to remove the first subspace from the

correlation matrix R. As the first subspace is usually dominant, N1 is usually 3 and

N2 is usually 4 or 6. So we choose N1 = 3 and N2 = 5 for our estimates. For

Method 4, the average number of iterations is N = 3. The iteration process takes

112(N − 1) + 58N additions, 128(N − 1) + 64N multiplications, 2N square root op-

erations, and 14N divisions. In addition, for Methods 3 and 4, 160 multiplications

and 208 additions are needed for calculating the correlating matrix R, and 80 mul-

tiplications and 70 additions are needed for removing each subspace. Following the

normalized computation metric, Method 3 takes 2065 (or 5326) normalized compu-

tations to remove one (or two) largest subspace and Method 4 takes 4597 normalized

computations. We can see that when two subspaces need to be removed, Method 4 is

less computationally complex than Method 3. However, Method 3 needs about 48%

fewer normalized computations if only one subspace is to be removed. Therefore,

Method 3 and 4 can be used for different scenarios–when the region of interest con-

tains mainly fast-moving clutter, Method 4 is less complex; when it contains mainly

slow-moving clutter, Method 3 is less complex.

3.4 Post-filter Clutter-to-blood Ratio (CBR)

To analyze the performance of each clutter filter technique, we measure the clutter-

to-blood ratio (CBR) after filtering [39]. CBR is calculated as the ratio of the post-

filter power of the clutter-only signal and the power of the slow-time clutter+blood

signal. If the filter works properly, this ratio should be negative on a dB scale. If

the same level of white noise is added to both the clutter-only and normal slow-time

signals, the CBR can be expected to be the negation of the blood signal-to-noise ratio.
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Table 3.2: CBR for Different Clutter Removal Methods (Slow Moving Clutter).

CBR(dB)

Method Min 25% Median 75% Max

1:SVD32 -27.58 -23.32 -22.04 -20.81 -16.26

2:SVD8 -27.99 -22.96 -21.55 -20.12 -15.64

3:PIter8 -27.99 -22.95 -21.54 -20.11 -15.64

4:SIter8 -27.99 -22.95 -21.55 -20.12 -15.33

5:FIR -26.93 -20.33 -18.22 -15.86 -7.14

Table 3.3: CBR for Different Clutter Removal Methods (Fast Moving Clutter).

CBR(dB)

Method Min 25% Median 75% Max

1:SVD32 -29.48 -24.16 -22.87 -21.65 -16.76

2:SVD8 -32.52 -25.98 -24.35 -22.35 -13.22

3:PIter8 -33.16 -26.23 -24.42 -22.49 -13.22

4:SIter8 -33.16 -26.56 -24.86 -22.93 -13.21

5:FIR -24.20 -5.23 -2.97 -1.61 -0.09

To account for simulation variation across packets, we randomly select roughly

40,000 packets and calculate CBR for each packet. The blood signal-to-noise ratio

(BSNR) is 20 dB for both the slow and fast moving clutter cases, and hence the

median CBR is expected to be around -20 dB. The statistics of the results for slow

moving and fast moving clutter are presented in Tables 3.2 and 3.3, respectively.

Methods 1 through 4 have comparable performance in terms of median CBR while

Method 5, which is based on the FIR filter, has poor performance. Method 1 results in
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the smallest range of CBR, which results in smaller deviations in velocity estimations

as shown in Section 4.2.

3.5 Summary

In this chapter, we presented different types of clutter filters and compared them

with respect to post-filter CBR results. The proposed methods based on power it-

eration and subspace iteration have similar performance with the full eigen-based

method. Our simulation results agree with the conclusion in [39] that the eigen-based

clutter filter outperforms traditional high pass FIR or IIR filters.

To examine whether the blood signal gets attenuated by a clutter filter, we consider

a case where the blood-only signal is filtered followed by velocity estimation. We

conduct an experiment similar to that in [53], with a beam-to-flow angle of 60o. The

results in Fig. 3.5 show that the clutter filter detects no clutter in the blood-only

signal and that the blood signal is not attenuated. In fact, the estimation result is

almost as good as the case where the clutter-free blood signal is directly sent to the

velocity estimation unit. Thus, the proposed eigen-based clutter filter introduces no

attenuation to the blood signal when clutter does not exist.
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(a) Unfiltered: x dimension (b) Filtered: x dimension

(c) Unfiltered: y dimension (d) Filtered: y dimension

(e) Unfiltered: z dimension (f) Filtered: z dimension

Figure 3.5: Flow Estimation (Slow Moving Clutter) for Blood Only Signal: Unfiltered

(Left) and Filtered (Right). Dark Solid Lines Represent the Actual Velocity, Red Solid

Lines Represent the Mean of the Estimated Velocity, Blue Dashed Lines Represent

the Mean±1 Standard Deviation.
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Chapter 4

FLOW RATE ESTIMATION FOR PARABOLIC BLOOD FLOW

In Chapter 2 and Chapter 3, we described our low-cost methods for motion estimation

and clutter removal. We presented the simulation results for both modules separately

and showed that our methods achieve excellent performance with significantly compu-

tational complexity reduction. In clinical practice, the estimated velocity field is used

to calculate the flow rate. Abnormal flow rate often indicates vascular disease [54,55].

As mentioned in Chapter 1, 3D velocity field enables flow rate estimation on any ar-

bitrary plane. In this chapter, we first describe the flow rate calculation method, and

then present the performance of our blood flow estimation for the case then the flow

is parabolic. We also present computational complexity of the whole system.

4.1 Flow Rate Calculation

To obtain accurate flow rate estimates, accurate velocity estimates are needed

throughout the vessel. Velocity estimates at the edge of the vessel are less accurate

than those in the center due to poor clutter filtering performance. This is because

the blood velocity is usually low at the edge, making it harder to distinguish its

spectrum from that of clutter. Furthermore, a sample volume at the vessel edge may

intersect the vessel wall, leading to estimation error. Therefore, we must treat velocity

estimation at the edge of the vessel carefully.

Flow rate estimation is usually calculated by integrating the velocity vectors over

a certain cross section of the vessel. Considering the use of plane wave imaging and

the fact that the beam-to-flow angle is more likely to range from 45o to 90o, it is

reasonable to use the cross sections in which the scanlines lie (y-z plane). However,
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Figure 4.1: Power Weighting Method: Finding Threshold Based on the Kernel Power

Histogram

since sample volumes abutting the vessel walks include components both inside and

outside the blood vessel, it is not accurate to directly integrate the velocity estimates

corresponding to them.

Here we propose to use power weighting in flow rate calculation. In [10], the

Doppler power histogram was used to find the threshold PT for partial weighting:

the pixels that have Doppler power larger than the threshold were given a weight of

1, while the pixels that have Doppler power smaller than the threshold were given

a weight ranging from 0 to 1, depending on the ratio between their Doppler power

and the threshold. Instead of Doppler power, here we calculate the kernel power

defined as the sum of signal power of voxels within the kernel. The threshold for

partial weighting is given as PT = 0.9×PM , where PM is the peak of the kernel power

histogram. Note that since the signal power is calculated after clutter filtering, the

kernels that are fully associated with blood signal have larger power than the kernels

that have partial association. Thus, the peak PM should not be located in the region
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where the kernel power is small. We illustrate this method in Fig. 4.1, where we treat

kernels with power larger than the threshold as containing blood signal only and give

them a weight of 1. The power weighting method corrects the overestimation of

the flow rate due to the fact that the area ascribed to the velocity vector is not all

blood near the boundary. The results obtained by both direct integration and power

weighting are shown in Section 4.2.2.

4.2 System-level Clutter Filter Performance

To construct a comprehensive demonstration of the functionality of our methods,

we consider both slow moving clutter and fast moving clutter for beam-to-flow angles

of 60o and 90o. The slow moving clutter case represents clutter movement caused by

respiratory motion, while the fast moving clutter case represents clutter movement

caused by pulsatile motion. The fast moving clutter case has lower blood velocity,

lower pulse repetition frequency, and higher clutter velocity and vibration frequency,

resulting in a more difficult scenario for the clutter filter. We only consider the

primary flow in our simulations.

A single angle plane wave with 128×128 aperture size and a pitch of 0.5λ is

used in transmit to ensure sufficient transmit power. A 32×32 aperture size with

a doubled pitch (λ) is used in receive, and the separable delay-and-sum is used for

beamforming [56]. The beamformed RF data is used in the flow estimation. The

corresponding simulation settings are listed in Table 4.1.

We use Field II to generate the blood signal [44,51]. The clutter signal, based on

the clutter model in [37, 39], is added to the blood signal to form the clutter+blood

signal. The clutter+blood signal is then processed by the clutter filters, followed by

motion and flow rate estimation. We simulate a cylindrical phantom with a length
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Table 4.1: Simulation Environment

Parameter Slow moving clutter Fast moving clutter

Speed of sound 1540 m/s 1540 m/s

Transmit aperture pitch 0.5λ 0.5λ

Transmit aperture size (2D) 128×128 128×128

Receive aperture pitch λ λ

Receive aperture size (2D) 32×32 32×32

Center frequency (f0) 4 MHz 4 MHz

6 dB Bandwidth 2 MHz 2 MHz

Sampling frequency (fs) 40 MHz 40 MHz

Vessel radius (R) 3.5 mm 3.5 mm

Vessel center depth 15 mm 15 mm

Packet size 32 32

Beam-to-flow angle 60o/90o 60o/90o

Blood peak velocity (v0) 1 m/s 0.3 m/s

Clutter velocity (vc) 5 mm/s 30 mm/s

Pulse repetition frequency (fprf ) 5 kHz 2 kHz

Clutter-to-blood ratio 40 dB 40 dB

Vibration frequency (fvib) 1 Hz 1.5 Hz
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of 10 mm and a radius of 3.5 mm containing blood scatterers. The density of the

scatterers is 10 per mm3, to ensure Gaussian distributed speckle signal amplitudes.

We consider several clutter filters that are described in Section 3.4. We evaluate

the performance of our system based on the following three metrics. We first present

the blood velocity estimation results, and compare the effect of different clutter filters

on the estimation accuracy in Section 4.2.1. We then consider the flow rate estimation

on a cross section of the vessel in Section 4.2.2.

4.2.1 Blood Velocity Estimation with Clutter

To evaluate system-level clutter filter performance, we compare the corresponding

velocity estimation results. In Fig. 4.2, the 3D velocity estimates and the simulated

velocity vectors (ground truth) on a cross section plane are presented. The estimated

velocity vectors are close to the simulated velocity vectors in the 2D parabolic profile

with small differences in velocity direction and amplitude.

The estimation results with beam-to-flow angle of 60o and 90o for Methods 1-4 are

shown in Tables 4.2, 4.3, 4.4 and 4.5 respectively. Different clutter filters are applied

to both the slow and fast moving clutter cases, and the performance is compared.

Results for FIR filter based clutter filter are very poor and so have not been listed.

Our results show that the eigen-based clutter filters clearly outperform the FIR

filter. Among the eigen-based clutter filters, the filter based on full SVD (Method 1)

has the best performance. In fact, it has performance that is closest to the clutter-

free case, which indicates best possible reconstruction of the blood signal. Methods

2-4 have similar performance, with comparable standard deviations to Method 1. In

terms of average bias, Method 1 is closer to that of the clutter-free case compared to

Methods 2-4. The latter methods lose some accuracy in estimation of the subspaces

due to the reduced number of samples. However, in some cases (slow moving clutter
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(a) Sim. velocity vectors (60o) (b) Est. velocity vectors (60o)

(c) Sim. velocity vectors (90o) (d) Est. velocity vectors (90o)

Figure 4.2: Flow Estimation Results for Fast Moving Clutter Case, with a Beam-to-

flow-angle of 60o in (a),(b) and 90o in (c),(d). The Vectors are Obtained from a Cross

Section Perpendicular to the Lateral-x Direction.
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Table 4.2: Velocity Estimation Performance when the Beam-to-flow-angle is 60o. The

Peak Velocity is 1 m/s and Slow Moving Clutter is Included.

Clutter Clutter Filter
Avg. Bias(%) Avg. Std.(%)

Vx Vy Vz Vx Vy Vz

w.o. clutter None 2.22 1.13 1.56 11.45 13.73 0.80

w. clutter

1:SVD32 1.41 1.60 1.12 10.84 13.83 0.79

2:SVD8 -4.75 0.77 -1.02 11.18 12.26 0.65

3:PIter8 -4.82 0.72 -1.01 11.12 12.25 0.65

4:SIter8 -4.83 0.76 -1.01 11.26 12.18 0.65

5:FIR 19.70 2.70 8.63 10.12 9.08 3.62

when θ = 60o and fast moving clutter when θ = 90o) their biases turn out to be

smaller than Method 1. For all eigen-based clutter filters, as we expect, the standard

deviation of the fast moving clutter case is higher than the slow moving clutter case.

When the peak blood velocity and clutter velocity differ less, they are harder to

distinguish.

Similar to related work [22, 23], our approach tends to slightly underestimate

the velocity in the primary flow direction. In [23], 2D velocity vectors are estimated

using a phase-based block matching approach with plane wave transverse oscillations.

The simulation results showed that, as the beam-to-flow angle decreases from 90o to

60o, the estimation performance degrades but the bias and standard deviation stay

within 15%. In [9],a 2D speckle tracking method was used for velocity estimation. In

general, our estimation results in lateral-x and axial dimensions are comparable with

the results presented in [9], despite differences in system settings. Compared to the

TO method in [22], for beam-to-flow angle of 90o, our method has smaller average
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Table 4.3: Velocity Estimation Performance when the Beam-to-flow-angle is 60o. The

Peak Velocity is 0.3 m/s and Fast Moving Clutter is Included.

Clutter Clutter Filter
Avg. Bias(%) Avg. Std.(%)

Vx Vy Vz Vx Vy Vz

w.o. clutter None 2.10 2.20 1.81 14.21 15.21 0.95

w. clutter

1:SVD32 2.63 0.59 1.15 13.97 15.39 0.90

2:SVD8 -1.11 -0.37 0.17 14.02 15.68 0.77

3:PIter8 -4.82 -0.35 0.17 14.06 15.67 0.77

4:SIter8 -4.83 -0.35 0.17 14.08 15.56 0.77

Table 4.4: Velocity Estimation Performance when the Beam-to-flow-angle is 90o. The

Peak Velocity is 1 m/s and Slow Moving Clutter is Included.

Clutter Clutter Filter
Avg. Bias(%) Avg. Std.(%)

Vx Vy Vz Vx Vy Vz

w.o. clutter None -6.88 -0.28 0.03 3.71 8.08 0.42

w. clutter

1:SVD32 -4.42 0.78 -0.03 6.39 7.66 0.43

2:SVD8 -0.08 0.46 0.40 4.60 9.52 0.38

3:PIter8 -1.01 0.65 -0.02 3.81 7.45 0.40

4:SIter8 -0.88 0.89 -0.02 5.23 7.33 0.40
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Table 4.5: Velocity Estimation Performance when the Beam-to-flow-angle is 90o. The

Peak Velocity is 0.3 m/s and Fast Moving Clutter is Included.

Clutter Clutter Filter
Avg. Bias(%) Avg. Std.(%)

Vx Vy Vz Vx Vy Vz

w.o. clutter None -1.99 0.45 0.01 4.36 11.82 0.42

w. clutter

1:SVD32 -6.95 0.51 0.20 6.38 11.77 0.41

2:SVD8 -7.43 1.06 -0.78 6.47 11.90 0.41

3:PIter8 -7.43 1.07 -0.77 6.47 11.90 0.41

4:SIter8 -7.48 0.48 -0.77 6.99 10.82 0.41

deviation, but larger average bias. However, for beam-to-flow angle of 60o, the two

methods have comparable bias and our method has lower standard deviation. Note

that the prior works [22, 23] only considered stationary clutter and removed it with

simple FIR filters. In contrast, we considered both slow and fast moving clutter and

still achieved velocity estimation performance that is comparable to the existing flow

estimation methods.

4.2.2 Flow Rate Estimation with Clutter

We compare flow rate estimation results, including those obtained by direct inte-

gration and our power weighting technique. The estimation results for beam-to-flow

angle of 60o and 90o are shown in Table 4.6 and 4.7.

We see that the flow rate estimation accuracy of our method was improved by

using the power weighting method. The estimation is within 10% for both bias

and standard deviation. The velocity estimation near the vessel is less accurate as

the kernels are partially inside the vessel and also partially outside the vessel. The
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clutter filter performance is expected to slightly degrade near the vessel wall as well.

By giving fractional weight to the kernels near the vessel wall, we were able to further

reduce the influence of the inaccurate estimates.

Clutter filter performance is also evaluated through flow rate estimation. When

beam-to-flow angle is 60o, the eigen-based clutter filters (Methods 1-4) have much

better estimation accuracy than the FIR filter. For both slow and fast moving clut-

ter, after power weighting, Method 1 overestimates the flow rate while Methods 2-4

underestimates the flow rate, with bias less than ±7% and standard deviation less

than 6%. Similar conclusions can be made when the beam-to-flow angle is 90o, as

shown in Table 4.7. While Method 1 has larger bias for slow moving clutter, Meth-

ods 2-4 have comparable performances for both slow and fast moving clutter, as

expected. Methods 2-4 have about -8% bias and 6% standard deviation for the slow

moving clutter, and about -9% bias and 3% standard deviation for the fast moving

clutter. These results are consistent with the velocity estimation results in Table 4.4

and 4.5. Overall, eigen-based clutter filters have good performance for both velocity

estimation and flow rate estimation with Methods 3-4 having significantly reduced

computational complexity.

4.3 Computational Complexity Analysis

In our scheme, the image volume has 512×32×32 voxels, and the packet size is

32. To derive the complexity of the whole system, we see that separable beamforming

for a plane wave system [16] has to be done 32 times, while the motion estimation

(SAD+SLP3D) has to be done 31 times for the 31 volume pairs, and clutter filtering

has to be done only once. As a result, separable beamforming, clutter filter (Method

3) and motion estimation constitute 6194M (45%), 2792M (18%) and 5647M (37%) of

the total complexity, as shown in Fig. 4.3. If Method 4 is used for clutter filtering, the
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Table 4.6: Flow Rate Estimation (Beam-to-flow-angle is 60o). The Real Flow Rate

is 1154.04 mL/min for Slow Moving Clutter, and 346.34 mL/min for Fast Moving

Clutter.

(Unit: mL/min) Slow moving clutter Fast moving clutter

Direct integ. Power weighting Direct integ. Power weighting

Method Avg.±Std. Avg.±Std. Avg.±Std. Avg.±Std.

1:SVD32 1304.7±58.83 1209.3±56.05 391.26±14.42 363.16±17.58

2:SVD8 1227.1±49.81 1083.8±69.53 340.93±12.83 325.06±13.92

3:PIter8 1225.0±50.18 1089.6±68.58 339.70±13.52 324.82±13.84

4:SIter8 1231.0±51.23 1094.4±64.15 340.07±13.66 323.94±13.57

5:FIR 731.09±44.22 730.78±44.13 N.A. N.A.

Table 4.7: Flow Rate Estimation (Beam-to-flow-angle is 90o). The Real Flow Rate

is 1154.04 mL/min for Slow Moving Clutter, and 346.34 mL/min for Fast Moving

Clutter.

(Unit: mL/min) Slow moving clutter Fast moving clutter

Direct integ. Power weighting Direct integ. Power weighting

Method Avg.±Std. Avg.±Std. Avg.±Std. Avg.±Std.

1:SVD32 1248.2±20.49 1039.5±58.59 338.56±5.66 327.01±10.01

2:SVD8 1342.3±17.62 1062.4±66.83 325.96±6.94 314.23±10.27

3:PIter8 1343.0±16.69 1059.6±64.55 325.95±6.87 315.82±10.83

4:SIter8 1325.0±17.48 1064.0±71.99 325.05±7.02 315.77±10.06
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Figure 4.3: Computational Complexity Analysis for the Whole System when Power

Iteration (Method 3) is used for the Clutter Filter.

change in the overall complexity is minor. Separable beamforming, clutter filter and

motion estimation now contribute 6194M (46%), 2410M (16%) and 5647M (38%) to

the total complexity respectively. The complexity of our flow rate estimation system

is only increased by 2.22 times if Method 3 is used and 2.17 times if Method 4 is used,

compared to the baseline plane wave beamforming system.

Considering both the performance and the computational complexity, we recom-

mend using Method 3 for slow moving clutter and Method 4 for fast moving clutter.

Compared to Method 4, Method 3 has about 20% more normalized computations for

fast moving clutter, and about 55% less normalized computations for slow moving

clutter. If the clutter characteristic is unknown, Method 3 is recommended since

it can remove 1 or 2 subspaces as needed. If more subspaces have to be removed,

Method 3 can be employed with minor changes.
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4.4 Summary

In this chapter, we presented a weighting method based on kernel power that

helped reduce the error in flow rate estimation. We showed that our flow estimation

system which include a power/subspace iteration based clutter filter, a two-tiered

velocity estimator using SAD for pixel level estimation and SLP-3D for sub-pixel

level estimation, and a weighting method based on kernel power, achieved excellent

estimation performance for both velocity vectors and flow rate. For instance, for

parabolic flow with 90o beam-to-flow angle surrounded by fast moving clutter, the

velocity estimation has a bias less than 7.5% and standard deviation less than 12%,

and the flow rate estimation has a bias less than 9% and standard deviation of less

than 3%.

We also evaluated the clutter filter performance by comparing the velocity and flow

rate estimation results with different clutter filters. The proposed power/subspace it-

eration based methods have comparable results with the naive implementation of

SVD based methods, and are superior to the trational FIR filter. Taking the com-

putational complexity into consideration, we concluded that power iteration based

method is best for slow moving clutter while the subspace iteration based method is

best for fast moving clutter.
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Chapter 5

FLOW ESTIMATION IN CHALLENGING MODELS

In previous chapters, we described our two-tiered speckle tracking method that com-

bines pixel level estimates using sum-of-absolute difference with sub-pixel level esti-

mates using 3-D synthetic lateral phase [43]. We showed that our method produces

accurate velocity vector estimates for a parabolic blood flow model with fast and slow

moving clutter.

In this chapter, we extend our flow estimation method to handle challenging flow

scenarios such as flow in a spinning disk (Section 5.1.2), flow in carotid bifurcation

(Section 5.1.3) and flow with stenosis blockage (Section 5.2). The spinning disk and

carotid bifurcation models are based on the synthetic aperture vector flow imaging

(SA-VFI) challenge held in International Ultrasonic Symposium (IUS) 2018 [57]. The

flow with stenosis blockage model is based on a computational fluid dynamics (CFD)

simulation using COMSOL.

5.1 SA-VFI challenge

The SA-VFI challenge in 2018 [57] provided a platform to compare the perfor-

mance of different estimators. It has two stages: training and testing. In the training

stage the true velocity profile is known to the participants, while in the testing stage

the true velocity profile is not known. Five data sets are given to the participants in

the training stage. These include both simulation and experiment data for straight

tubes with beam-to-flow angle of 60o and 90o and a spinning disc data set. The test-

ing stage include the carotid bifurcation model. Since the SA-VFI challenge is for 2D
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velocity estimation based on synthetic aperture, we had to modify our 3D velocity

estimation method for plane wave imaging.

5.1.1 2D Velocity Estimation Method

The 2D velocity estimator in this chapter is based on speckle tracking and derived

from our earlier work on 3D blood velocity estimation [42, 43]. In the proposed

two-tiered method for 2D flow estimation, pixel-level motion is estimated with sum-

of-absolute differences (SAD) and sub-pixel–level motion is estimated using the phase

of the correlation function around the pixel-level peak. For the lateral dimension, we

create a synthetic phase signal by operating on the spatial spectrum. Specifically, the

spectrum is separated into two halves to generate up and down spectra. These two

spectra are then inversely transformed into up and down images and cross correlation

functions are calculated for both images. The lateral phase is obtained from Rlateral =

Rup×R∗down, where Rup and Rdown are the correlation functions obtained from the up

and down images, respectively, and R∗down is conjugate of Rdown. Similarly, the axial

phase is obtained from Raxial = Rup×Rdown.

Sub-pixel motion is estimated based on the phase of the correlation function at the

peak location and the ±1 lag locations in the axial or lateral dimension. Normally,

the phases at these three locations form a straight line, and the zero-crossing point of

this fitted line is used to determine the sub-pixel movement. However, due to aliasing,

the phases at these three locations can form a V-shape. One strategy is to discard

these aliased samples when combining the estimates within a packet. However, this

approach would decrease the effective packet size and increase the standard deviation.

So, instead, we propose to account for aliasing by compensating either the lag 1 or

the lag -1 location by 2π. This ensures that the phases at the three locations fit into

a line. As it is not clear whether we should compensate for the lag 1 or the lag -1
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location, we consider both cases and keep records of both sub-pixel movements. In

the end, when combining the results within a packet, we use samples that do not have

V-shape phases to help choose which data should be used for determining the correct

sub-pixel movement. As a final step, we apply median filtering in both the axial and

lateral dimensions with a window size of 3.

5.1.2 Flow Estimation in Spinning Disk

Estimating flow in a spinning disk is challenging since the estimation has to be

accurate over all beam-to-flow angles. The flow is modeled by spinning disk shaped

scatterers with the same angular speed. Thus the further a scatterer is away from

the disk center, the larger is its speed. In this work, the spinning disk model is

borrowed from the SA-VFI challenge [57]. Since the straight vessel datasets from the

challenge were used to tune the parameters in velocity estimation, their results are

also discussed in this section.

Simulation Setup

Five virtual sources are used in the flow sequence to form an RF image. After every set

of five firings for flow estimation, a B-mode firing is initiated. Therefore, the effective

pulse repetition frequency (PRF) is one sixth of the actual PRF. Each low resolution

image is beamformed with delay-and-sum (DAS) and then summed to form the final

image. Since the input is RF data, clutter removal is necessary. Clutter filtering is

done with simple mean subtraction, as only stationary clutter is considered here.

Some of the key parameters used in our simulations are listed in Table 5.1. The

packet size is 32, which is the same as in our 3D velocity estimation work [42, 43].

We also used 32 samples in the mean subtraction process for clutter filtering. The

kernel size is 1.6 mm × 0.9 mm, in the lateral and axial dimensions, respectively. The
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Table 5.1: Simulation Settings

Parameter Value

Number of virtual sources (flow) 5

Pulse repetition frequency (PRF) 5000 Hz

Effective PRF in estimation 5000/6 Hz

Packet size 32

Kernel size (axial) 1.6 mm

Kernel size (lateral) 0.9 mm

search region is selected based on the maximum possible velocity. Note that since

the largest velocity is unknown for the testing dataset, a large search region is used

to enable estimation of velocity as large as 1 m/s.

The metrics used are bias and weighted standard deviation, which are calculated

over multiple estimated velocity profiles. The weighted standard deviation is given

by: σweighted = σ
√

1 + N
5

, where σ is the standard deviation and N is the packet size

used in clutter filtering and velocity estimation. We used N = 32.

Straight Vessels

Initial estimation results for straight vessels with inter-scanline distance of 0.3 mm

are shown in Fig. 5.1. Although for the most part, the estimations are accurate, there

are errors at the vessel boundaries. Since the pitch of the transducer elements is quite

large (0.3 mm), if we only include scanlines at the center of the elements—the distance

between scanlines is large enough to affect the estimation accuracy. Therefore, we add

two beamformed lines between neighboring transducer elements, thereby reducing the

inter-scanline distance from 0.3 mm to 0.1 mm.

60



(a) 90o, simulation (b) 90o, measurement

(c) 105o, simulation (d) 105o, measurement

Figure 5.1: Estimation Results for Straight Vessels, with Inter-scanline Distance of

0.3 mm. The Red Line Indicates the True Velocity. The Black Solid Line is the

Estimated Velocity. The Grey Dotted Lines Mark the Standard Deviation.

The estimation results for 0.1 mm spacing are shown in Fig. 5.2. Compared to

the results for 0.3 mm spacing, the standard deviation is reduced by 52% to 87%

for the straight vessel datasets. This improvement arises because reducing scanline

distance improves the pixel-level estimation.

61



(a) 90o, simulation (b) 90o, measurement

(c) 105o, simulation (d) 105o, measurement

Figure 5.2: Estimation Results for Straight Vessels, with Inter-scanline Distance of

0.1 mm. The Red Line Indicates the True Velocity. The Black Solid Line is the

Estimated Velocity. The Grey Dotted Lines Mark the Standard Deviation.

Detailed measurements for all training datasets are shown in Table 6.3. Estimation

results for beam-to-flow angle of 90o is slightly better than for 105o, with smaller

biases and standard deviations. This result confirms that, unlike traditional Doppler

method, our method handles flow in the lateral dimension quite well. The standard

62



Table 5.2: Final Measurement Results Obtained from the Platform, for Training

Datasets.

Magnitude (%) Angle (o)

Weighted std. Bias Weighted std. Bias

90o
Simulation 2.41 3.24 8.21 1.43

Measurement 2.12 3.33 1.77 1.99

105o
Simulation 3.62 4.24 11.55 2.77

Measurement 3.82 5.44 5.68 2.17

Spinning disk Simulation 9.65 10.16 16.08 10.16

deviations of the velocity magnitude are within 4%, which is quite low. The standard

deviations of the angle are slightly larger for the simulation datasets due to noisy

estimates at the vessel boundaries.

Spinning Disk

The estimation results for spinning disk are shown in Fig. 5.3. The estimations

of both velocity magnitude and angle are reasonably accurate over all angles with

the average bias being about 10% for magnitude and 10o for angle. The velocity

magnitudes have small bias except at the vertical center line of the disk. The angle

estimation is also less accurate at the center of the disk. The standard deviation

for magnitude is small almost everywhere, while the standard deviation for angle is

slightly higher at the disk center.
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(a) magnitude (b) magnitude error (c) magnitude std.

(d) angle (e) angle error (f) angle std.

Figure 5.3: Estimation Results for Spinning Disk, with Scanline Distance of 0.1 mm.

5.1.3 Flow Estimation in Carotid Bifurcation

Carotid artery plays a very important role in human circulatory system. Since it

is relatively shallow and has bifurcation, it is extensively used as a modeling target

for flow estimation [58]. The bifurcation introduces challenges such as different flow

direction and possible reverse flows.

The PRF in the testing dataset is 15 kHz, which is larger than the 5 kHz PRF

in the training datasets. Fig. 5.4a shows the B-mode image and Fig. 5.4b shows the

vector flow image for this dataset. We can see that the flow pattern in the carotid

bifurcation has been captured well with estimated velocity reducing at the vessel

boundary and increasing when the vessel narrows (in the upper branch). The average

magnitude bias is 8% and the average angle bias is 7o.
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(a) B-mode image (b) Estimation results

Figure 5.4: B-mode Image and Estimation Results for the Testing Dataset.

5.2 Flow Estimation in Vessels with Stenosis

Stenosis is believed to be related to stroke and ischemia, including asymptotic

stenosis. For instance, in a study in [19], stenosis in carotid artery has been shown

to result in higher stroke risk when the stenosis is greater than 75%. However, if

treated properly in early stage, the risk of stroke or any cardiovascular death can be

reduced [59].

While in vitro and in vivo experiments can provide real data to estimate flow in

vessels with stenosis, the true velocity field cannot be extracted directly. So we make

use of CFD simulation to provide the ground truth velocity profiles. In this work,

the velocity field is generated using COMSOL [60], wihch is then coupled with Field

II simulation with interpolation and regridding [58, 61]. In Field II simulation, the

point scatterers are moved based on the velocity field in every frame, which may cause

dilution of aggregation. In order to avoid this problem, we propose to reset the scatter
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Figure 5.5: The Stenotic Vessel Model with Geometry

density every frame, thus keeping the scatterer distribution constant throughout the

simulation. The velocity estimator is the two-tiered method described in Chapter 2.

5.2.1 Single Stenosis

We start with a single, semi-sphere stenosis in a cylindrical vessel. The diameters

of the stenosis and the vessel are both 4 mm. Blood is modeled as an incompressible

Newtonian fluid with dynamic viscosity and density of the blood are 3.5 mPas and

1050 kg/m3. The initial setting at the inlet is plug flow with a 0.2 m/s velocity. The

outlet boundary has a constant pressure of 100 mmHg. The CFD model geometry is

presented in Fig 5.5. Other simulation setting are the same as Table 2.1 (in Chapter

2).

The velocity estimation results using the flow estimator proposed in Chapter 2 are

shown in Fig. 5.6. In general, the estimated velocities match the simulated velocities

with good accuracy except at the vessel or stenosis edges where the velocity change is

sharp. At the narrowest part of the stenosis, the lateral-x velocity has larger bias than

other parts. Since our estimation is based on speckle tracking which is a kernel based

method, the velocities within a kernel are averaged, resulting in bias. This is more

severe when the velocity gradient is large. In this case, reducing kernel size could help
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(a) Normal part:x dimension (b) Partial stenotic part:x di-

mension

(c) Narrowest stenotic part:x di-

mension

(d) Normal part:y dimension (e) Partial stenotic part:y di-

mension

(f) Narrowest stenotic part:y di-

mension

(g) Normal part:z dimension (h) Partial stenotic part:z di-

mension

(i) Narrowest stenotic part:z di-

mension

Figure 5.6: Estimation Results for Single Stenosis Model. (a)(d)(g) Normal Part;

(b)(e)(h) Partial Stenotic Part; (c)(f)(i) Narrowest Stenotic Part. Dark Solid Lines

Represent the Actual Velocity, Red Solid Lines Represent the Mean of the Estimated

Velocity, Blue Dashed Lines Represent the Mean±1 Standard Deviation.
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Figure 5.7: The Stenotic Vessel Model with Geometry

reduce the bias, but the standard deviation is expected to be higher. Since the flow

for the double stenosis model is more complex, in the next section, we investigate this

tradeoff on a vessel with double stenosis.

5.2.2 Double Stenosis

We consider a vessel with double stenosis. We model the vessel as a cylindrical

tube with 4 mm diameter and two semi-spherical stenoses (4 mm diameter) placed 2

mm apart on opposite walls. Blood modeling parameters, inlet and outlet conditions

all have the same settings as that of the single stenosis model described in Section

5.2.1. The CFD simulated output with the model geometry is presented in Fig. 5.7.

We first investigate flow estimation accuracy based on kernel size. As we can

see from Fig. 5.8, reducing the kernel size helps reduce the bias in the primary

flow direction (Vx), especially at the edge of the stenosis. This is reasonable as a

larger kernel tends to average the velocities within it. However, smaller kernel size

increases the standard deviation in both lateral dimensions. For instance, in lateral-x

dimension, the average standard deviation is increased from 10% to 15% and 18%

for the half-size and minimum-size kernel. Fortunately, increasing the packet size

from 32 to 48 can shrink the standard deviation to within 12% for half-size kernel.
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(a) Normal-size kernel Vx (b) Half-size kernel Vx (c) Minimum-size kernel Vx

(d) Normal-size kernel Vy (e) Half-size kernel Vy (f) Minimum-size kernel Vy

(g) Normal-size kernel Vz (h) Half-size kernel Vz (i) Minimum-size kernel Vy

Figure 5.8: Estimation Results for Double Stenosis Model (Left Capture). (a)(d)(g)

Normal-size Kernel: 25×3×3; (b)(e)(h) Half-size Kernel: 13×3×3; (c)(f)(i)

Minimum-size Kernel: 3×3×3;. Dark Solid Lines Represent the Actual Velocity,

Red Solid Lines Represent the Mean of the Estimated Velocity, Blue Dashed Lines

Represent the Mean±1 Standard Deviation.
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Table 5.3: Flow Rate Estimation for Double Stenosis Model (Beam-to-flow-angle is

90o). The Real Flow Rate is 150 mL/min.

Slice
Left Middle Right

Avg.±Std (mL/min)

1 142.19±4.44 187.67±6.39

2 136.84±4.08 150.60±4.37

3 138.95±5.24 141.85±3.39

4 143.36±5.96 141.12±4.87

5 149.76±5.97 142.84±3.79 171.84±5.49

6 170.62±6.04 148.69±4.61 145.14±5.19

7 149.50±3.39 146.26±6.68

8 151.47±8.39 145.28±4.65

9 140.95±4.60 140.01±6.19

10 120.01±6.65 135.55±3.86

The increase in packet size means reducing temporal resolution of flow estimation.

However, our flow estimation can still be up to 40 estimations per second with a PRF

of 2 kHz.

One of the benefits of using plane wave imaging for flow estimation is that the

estimation can cover multiple scanlines without moving the scanhead. However, since

imaging quality usually gets worse at the edge, we need to investigate the imaging

range we can trust for flow estimation. Our 2D transducer array covers about 10 mm

in both lateral dimension. Since the simulated vessel is 20 mm long, it is not possible

to cover the entire vessel without moving the transducer. So we put the transducer

array at three different positions to generate three different sets of flow estimation
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results. We first start with putting the transducer on top of center of the vessel,

and then we move the transducer 3 mm left and right, allowing overlap between the

three sets (left, middle and right). The flow estimation results are shown in Fig. 5.9,

5.10, 5.11. The flow rate estimation results for the middle capture, along with the

overlapped region for the left and right captures are shown in Table 5.3. We can see

that only the results in the first and tenth slice are not trustworthy, meaning the flow

imaging range can be as large as 5 mm in lateral dimensions.

5.3 Summary

In this chapter, we demonstrated that our velocity estimator is capable of accu-

rately estimating 2D or 3D velocity vectors in challenging models, for both synthetic

aperture and plane wave imaging systems.

In the SA-VFI challenge, for the four straight vessel datasets, the estimated ve-

locity profiles closely match the true velocity profiles, with small biases and standard

deviations. For the spinning disk dataset, the estimation is accurate in all places

except at the vertical center line of the disk. For the testing dataset, we can see that

the flow pattern in the carotid bifurcation has been captured well. Our method with

8% magnitude bias and 7o angle bias ranked 3rd in the challenge.

Velocity estimation in vessels with stenosis is quite accurate except when the

velocity gradient is large near the stenosis boundary. We showed that reducing the

kernel size results in smaller bias but larger standard deviation. We also showed that

our flow rate estimation is accurate over a 5 mm range in lateral dimensions.
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(a) Estimated velocity vectors

(b) Simulated velocity vectors

Figure 5.9: Middle Set. Black Arrows Represent Velocity Vectors. Color Represents

Velocity Magnitudes.
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(a) Estimated velocity vectors

(b) Simulated velocity vectors

Figure 5.10: Left Set. Black Arrows Represent Velocity Vectors. Color Represents

velocity Magnitudes.
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(a) Estimated velocity vectors

(b) Simulated velocity vectors

Figure 5.11: Right Set. Black Arrows Represent Velocity Vectors. Color Represent

Velocity Magnitudes.
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Chapter 6

PLANE WAVE IMAGING CHALLENGE IN MEDICAL ULTRASOUND

Plane wave imaging has been popular in medical ultrasound community due to its

high frame rate. Compared to linear/phased array beamforming or synthetic aperture

ultrasound, which needs multiple transmits to generate a frame, plane wave imaging

is capable of generating a frame in every transmit. While the image quality can be

sub-optimal due to lack of transmit focusing, it can be compensated by techniques

such as compounding [30]. In flow estimation, high pulse repetition frequency is

desirable, which makes plane wave imaging a suitable beamforming scheme for this

application [18].

Although plane wave imaging has been the topic of numerous papers, different

researchers have used different simulation settings, making it hard to compare the

performances. In 2016, the International Ultrasonics Symposium (IUS) initiated a

open competition (PICMUS) where all participants use the same raw data (channel

data before beamforming) to generate B-mode images. Such an effort helped provide

a fair platform to evaluate the performance of different beamforming techniques [62].

PICMUS provided both simulated and experimental datasets. The two simulated

datasets were generated using Field II [44], the simulation parameters are listed in

Table 6.1. The first simulated dataset includes vertically and horizontally distributed

scatterers as shown in Fig. 6.1a. The second simulated dataset includes vertically and

horizontally distributed cysts as shown in Fig. 6.1b. In addition, two experimental

datasets were provided, with one focusing on resolution of the point spread functions

and the other focusing on contrast ratio of the cysts. The experimental datasets are

also shown in Fig. 6.1.
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Table 6.1: Simulation Setup

Parameter Slow moving clutter

Pitch 0.30 mm

Element width 0.27 mm

Element height 5 mm

Elevation focus 20 mm

Number of elements 128

Aperture width 38.4 mm

Transmit frequency 5.208 MHz

Sampling frequency 20.832 MHz

Pulse bandwidth 67%

Excitation 2.5 cycles

The PICMUS challenge consists of two stages. In the first stage, the participants

are given the training datasets described earlier, and asked to submit their best results

to the competition. In the second stage, blind datasets are used to avoid overfitting,

and the organizer is charged with writing a journal paper discussing the results. For

both datasets, we were able to enhance the contrast ratio without affecting other

metrics.

6.1 Stage I Evalutation

6.1.1 Metrics and Scoring Scheme

B-mode image quality is usually measured using two metrics: resolution and

contrast. In the challenge, the resolution is measured by full width half maximum
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(a) (b)

(c) (d)

Figure 6.1: Example of the Simulated (a and b) and Experimental (c and d) Datasets.

(FWHM) in both axial and lateral dimensions [62]. All the scatterers are measured

and the average values are used in the scoring system.
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Contrast-to-noise ratio (CNR) is used as the metric for contrast.It is calculated

as CNR = 20log10(
|µin−µout|√
(σ2

in+σ
2
out)/2

), where µin and µout are averaged gray level values

in and out of the cyst area, and σin and σout are the standard deviations of the gray

level values in and out of the cyst area. CNR values of all the cysts in an image (Fig.

6.1b and 6.1d) are averaged to provide a single CNR value for each image.

The performance on four datasets is measured using either FWHM or CNR. A

score is given based on the ranking among all participants. The best team gets 100

points and the worst team gets 0 point for a certain dataset, and the scores for all

datasets are summed up to provide the final score. There are four categories in

the challenge. The first three categories require the participants to use 1, 11, 75

firings for compounding (named C1, C11 and C75), while the fourth category allows

the participants to choose the number of firings and normalized the score with the

number of firings (named Cfree). Both geometrical distortion and speckle quality

violation are penalized by deducting 40 points from the total score. If the scatter

positions are off by more than a wavelength, the geometrical distortion test is said

to fail. If the speckle quality in several predefined regions fails to follow Raleigh

distribution, the speckle quality test is said to fail.

6.1.2 Choice of beamforming parameters

We choose to use delay-and-sum (DAS) beamforming since it is easy to imple-

ment and has low complexity [16]. In the context of this challenge, parameters such

as apodization window, f-number are important for good image quality. We tested dif-

ferent apodization windows and found that Hamming and Tukey50 windows provide

best CNR results for cysts. Rectangular window gave the best resolution performance

but the worst CNR. In general, a smaller f-number provided better FWHM but worse

CNR. We use a f-number of 1 to maintain a good balance between the two metrics.

78



(a) Proposed algorithm without Step 4 (b) Proposed algorithm

Figure 6.2: Speckle Contrast Images for Simulation Data with or without Step 4 of

Our Proposed Algorithm. Images are Shown with 60 dB Dynamic Range.

For Cfree and C11 categories, we are allowed to choose arbitrary firings from the

75 firings provided. It is reasonable to always include the central firing (38th) as it is

with 0 firing angle and provides best image quality. We choose to use 3 firings in the

Cfree categories. Table 6.2 shows the comparison between Hamming and Tukey50

windows with different firing indices combinations. We actually tested all 37 possible

combinations for C3 and found that firing sequence (35,38,41) is the best for CNR

and firing sequence (1,38,75) is the best for resolution. Our goal in the challenge was

to maximize the CNR, and so we chose (35,38,41) for Cfree. For similar reasons, we

chose (23,26,29,32,35,38,41,44,47,50,53) for C11.
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Table 6.2: Choice of Apodization Window and Firing Indices. Scores were Obtained

from the Ranking System on the Platform. Hamming Window with Firing Indices of

35, 38 and 41 is the Best Choice.

Window Firings
CNR (dB) Axial, Lateral FWHM (mm)

Score
Simulation Experiment Simulation Experiment

Hamming

1,38,75 8.45 9.07 0.57, 0.62 0.40, 0.50 98.8

35,38,41 10.20 13.50 0.57, 1.18 0.40, 1.06 136.3

36,38,40 9.95 12.68 0.58, 1.19 0.40, 1.07 128.1

37,38,39 9.70 13.47 0.57, 1.20 0.40, 1.08 136.3

Tukey 50

1,38,75 7.70 8.46 0.57, 0.49 0.41, 0.49 77.5

35,38,41 9.45 11.61 0.57, 1.00 0.40, 0.91 123.8

36,38,40 9.20 11.02 0.57, 1.00 0.40, 0.92 115.6

37,38,39 9.10 11.29 0.57, 1.00 0.40, 0.93 120.0

6.1.3 Post Processing

In cyst imaging, the cyst area is sometimes contaminated with fill-in originat-

ing from surrounding tissue due to insufficient aperture size (side-lobes) or aperture

sampling (grading-lobes). To obtain a better contrast ratio for the cyst images, we

used a post-processing technique based on edge detection. While in practice, the

sonographers can manually select the area for post processing, here we propose an

automated procedure, which detects the edges of a cyst and then smoothes the cyst

areas. This is necessary in the context of this challenge, as we are required to use the

same method for both the cyst images and point target images.

Our post-processing scheme is summarized in Algorithm 4. The original image

is blurred with a 20×20 Gaussian window to reduce speckle in the background, thus
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Algorithm 4: Proposed post-processing algorithm steps

1. Blur the image with a large kernel size (20×20 Gaussian window) to reduce

speckle noise.

2. Use Canny edge detector for edge detection.

3. Identify cyst area using contour tracing.

4. Reduce the intensity of the pixels in the cyst area by 1/10.

5. Use 3×3 Gaussian window for smoothing in the cyst areas.

preventing the selection of low amplitude speckle spots as small cysts (Step 1). Canny

edge detector is used for edge detection (Step 2) since it is known to be effective in

detecting weak edges [63]. After the edges are detected, we exclude those edges that

do not form a closed curve. We use contour tracing to determine the cyst areas (Step

3). Step 4 reduces the intensity of the pixels in the cyst area by 1/10, which helps

further increase the contrast between the cyst and the background. Finally, a 3×3

Gaussian window is used for smoothing the cyst area (Step 5).

Note that adjusting the intensity of the pixels in the cyst makes this procedure

sensitive to the edge detection quality. Including Step 4 helps increase the CNR by

about 1 dB for the given data sets; the visual improvement can also be seen in Fig.

6.2. The proposed algorithm would have to be adjusted if there are any hyperechoic

lesions. Adjustment in edge detection needs to be made to make the algorithm work

for hyperechoic cysts. However, it would be possible to set both positive and negative

thresholds and apply these to hyperechoic and hypoechoic lesions, respectively, in the

same image.
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(a) 1 firing (b) 3 firings

(c) 11 firings (d) 75 firings

Figure 6.3: Edge Detection Results for the Simulation Data. Red Circles Indicate the

Cyst Areas Detected by the Algorithm. Cyst Images are Shown with 50 dB Dynamic

Range.

6.1.4 Results

First, the edge detection results for the simulation data are shown in Fig. 6.3.

The edge detection performs well, except for the first row of the 1 firing case where
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(a) 1 firing (b) 3 firings

(c) 11 firings (d) 75 firings

Figure 6.4: Speckle Contrast Images for Simulation Data with Different Number of

Firings. Images are Shown with 60 dB Dynamic Range.

it almost fails. This is expected as there are severe sidelobes in those cysts. The

final cyst images with simulation data are shown in Fig. 6.4. The CNR measurement
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(a) 1 firing (b) 3 firings

(c) 11 firings (d) 75 firings

Figure 6.5: Point Target Images for Simulation Data with Different Number of Fir-

ings. Images are Shown with 60 dB Dynamic Range.

results are also shown in Table 6.3. Compared to the images before edge detection

and filtering, the CNR improves by 0.97 dB, 1.43 dB, 2.12 dB and 2.29 dB, for 1,
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Table 6.3: Final Measurement Results Obtained from the Platform.

1 firing 3 firings 11 firings 75 firings

Contrast (dB)
Simulation 12.79 15.10 17.30 19.09

Experiment 11.45 13.80 14.95 15.45

Axial resolution (mm)
Simulation 0.40 0.40 0.40 0.41

Experiment 0.57 0.57 0.56 0.56

Lateral resolution (mm)
Simulation 0.71 0.70 0.66 0.54

Experiment 0.90 0.90 0.77 0.55

3, 11, 75 firing(s) respectively. As the number of firings increases, the image quality

improves, the edge detection is more effective, and so the improvement in CNR is

more significant.

The same conclusion can be drawn for the CNR results with the experimental

data. In fact, for the 1 firing case, the image quality was too poor for the edge

detector to detect the deeper cyst, while both cysts were detected for the other 3

cases.

As for the point target images, edge detector does not help improve the resolution

as no edges are detected. As our parameters were chosen towards having a better

CNR in the CNR-resolution tradeoffs, the resolution results are not as good.

6.2 Stage II

After the conference, the organizers of the challenge improved their datasets and

provided a new set of metrics. Participants were required to submit their code and

the organizers then ran the code with blind datasets. The results were provided as

feedback to the participants. Similar to the first stage, both simulated and experi-
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(a) 1 firing (b) 3 firings

(c) 11 firings (d) 75 firings

Figure 6.6: Speckle Contrast Images for Experimental Data with Different Number

of Firings. Images are Shown with 60 dB Dynamic Range.

mental datasets were included in the second stage. In fact, one simulated and three

experimental datasets were designed for the challenge. As shown in Fig. 6.8, they
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(a) 1 firing (b) 3 firings

(c) 11 firings (d) 75 firings

Figure 6.7: Point Target Images for Experimental Data with Different Number of

Firings. Images are Shown with 60 dB Dynamic Range.

were named as numerical, and in-vitro type 1-3. In this section, we describe the new

aspects of the challenge and discuss the results.
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(a) Numerical (b) In-vitro type 1

(c) In-vitro type 2 (d) In-vitro type 3

Figure 6.8: Datasets in PICMUS Stage II. Images are Generated with Compounding

of 75 Firings and Shown with 60 dB Dynamic Range.
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Figure 6.9: The Scatterer Distribution for Measuring Image Resolution.

6.2.1 New Metrics

Four metrics were used in the first stage of the challenge, including FWHM, CNR,

geometrical distortion and speckle quality. In addition to these four metrics, the

second stage of the challenge introduced two more metrics, resolution and intensity

linearity [64].

The resolution was measured by varying the distance between two scatterers and

checking if two local maxima can be found. As shown in Fig. 6.9, the distance varies

in both axial and lateral dimensions. The separations between scatterers are 4, 3, 2,

1, 0.5, 0.25 mm. If two local maxima is not found for a certain separation distance,

the resolution is determined as the next larger separation distance [64].

In order to prohibit intensity transformation on the ultrasound image which would

harm the fairness of the CNR based comparison, a speckle region with linear intensity

variation along lateral dimension was added in the numerical dataset. As shown in

Fig. 6.10, if the intensity linearity in the predefined region does not hold, the test

fails [64].
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Figure 6.10: Illustration of the Intensity Linearity Test.

6.2.2 Improved Method

In order to cope with the new datasets and metrics, we modified our previous

method. Basically, we improved our cyst boundary detection accuracy, so that only

the real cyst area is processed. The key to making the method more robust is to

replace hard thresholds with adaptive ones. In our new method, the dynamic range of

the image before using Canny detector is adaptively chosen based on the histogram of

the image. After the edge detection, only closed loop boundaries that are significantly

larger than other small holes are preserved as cyst areas. The effectiveness of the

improved method can be seen from Fig. 6.11, where only the real cyst area is identified

(white circle). Small holes in the deeper part of the image, which exist because of

the change of intensity level over depth, are not identified as cysts. A drawback of

this method is the possibility of missing small cysts. However, we would rather miss

some small cysts than distort images if cysts are wrongly detected.
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(a) Final image (b) Cyst Detection

Figure 6.11: Our Improved Method is Able to Accurately Identify Cysts. Images are

Shown with 60 dB Dynamic Range.

6.2.3 Results

As mentioned before, the participants submitted codes and the organizer gener-

ated the results which can be accessed at [65]. Except for the numerical dataset, the

other datasets (in-vitro type 1-3) have 6 realizations. One of the realization is the

same as the training set provided to the participants, and the other five have varied

cysts or point scatteres locations. Fig. 6.12 compares two varied realizations of in-

vitro type 1 datasets with the original one, where the entire image is shifted to the

right in Fig. 6.12b and the point scatterer location is shifted to the left in Fig. 6.12c.

These realizations are named in-vitro type 1-1 through 1-6 in this section. The use of

multiple realizations avoids overfitting to the training sets in algorithm development.
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(a) In-vitro type1-1 (b) In-vitro type1-2 (c) In-vitro type1-4

Figure 6.12: Illustration of the Various Realizations of In Vitro Type 1 Datasets.

There were a total of 14 participants in Stage 2 of the challenge. We compare

with two of the top performers in the competition, namely Szasz and Deylami who

were the top 3 in at least one of the four categories in the competition. In [66],

Szasz et. al. formulated the beamforming as an inverse problem and solved it using

Laplacian priors through basic pursuit. They achieved excellent performance in both

resolution and contrast. However, the images generated by their method do not

hold the speckle characteristics usually seen in ultrasound images. In [67], Deylami

et. al. used a modified version of minimum variance (MV) beamforming method.

They were also able to achieve excellent performance in both resolution and contrast.

However, similar to Szasz’s method, the generated images did not look like a normal

ultrasound image. Moreover, minimum variance beamforming is known to be highly

computationally complex. Possibly for this reason, only the single firing plane wave

imaging results were available online for Deylami’s method. In addition to these two

other participants’ results, we also include the classic delay-and-sum (DAS) results

for comparison.
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(a) Our method (b) DAS

(c) Szasz’s method (d) Deylami’s method

Figure 6.13: CNR results for Numerical Dataset. (a) Our method, (b) DAS, (c)

Szasz’s Method[66] and (d) Deylami’s Method[67]. Our Method Has Best CNR for

All Cases. Improvement Over DAS is More Than 4 dB.
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Figure 6.14: CNR Results for In-vitro Type 1 Dataset Using Our Method. Significant

Improvement Over DAS in All Cases except for In-vitro Type 1-5.

Fig. 6.13 shows the results of CNRs for numerical dataset. We can see that our

method has the best CNR for all numbers of firings. The improvement over DAS is

more than 4 dB. Fig. 6.14, 6.15, 6.16 and 6.17 show the results of CNR for in-vitro

type 1 dataset. We can see that our method has the best CNRs except for in-vitro

type 1-5. For the other five cases, significant improvement over DAS exists, but

not for type 1-5. As mentioned in Section 6.2.2, this is because our method missed

cysts in type 1-5. Szasz’s method performed much better for in-vitro type 1 than for

numerical dataset. However, as shown in Fig. 6.18 and 6.20, Szasz’s method always

fails the speckle quality test for numerical dataset and occasionally fails the test for
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Figure 6.15: CNR Results for In-vitro Type 1 Dataset Using DAS. CNR is Lower

than Our Method in All Cases except for In-vitro Type 1-5.

in-vitro type 1 dataset. In contrast, our method does not fail the speckle quality test

for either datasets.

Fig. 6.21 and 6.23 compares the results of FWHMs and resolutions in axial di-

mension for numerical dataset. Four methods have comparable results for these two

metrics. This is also true for all the in-vitro datasets and so we do not present them

graphically. In the lateral dimension, the results of resolutions for four methods are

identical, as shown in Fig. 6.24. However, Deylami’s method provides much better

FWHM result for the single firing case than the other three methods in lateral di-

mension, as shown in Fig. 6.22. For all these four metrics, our proposed method has
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Figure 6.16: Results of CNRs for In-vitro Type 1 Dataset Using Szasz’s Method[66].

Szasz’s Method is Comparable to Our Method for In-vitro types 1-1, 1-2, 1-3 and 1-5

and Worse than Our Method for Types 1-4 and 1-6.

comparable performances to the DAS method, which confirms that our method does

not affect other image regions with falsely identified cysts.

6.3 Summary

In this chapter, we presented our work in the plane wave imaging challenge (PIC-

MUS). Our method is based on DAS with judicious choice of parameters and inclusion

of post processing. The purpose of post processing is to improve the contrast perfor-

mance of the cysts. We proposed to use automatic cyst detection after beamforming,

and then manipulate the intensities within the cyst region. Results have proven our
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Figure 6.17: Results of CNRs for In-vitro Type 1 Dataset Using Deylami’s

Method[67]. Deylami’s Method Only Has Results for Single Firing, and They are

not as good as Our Method.

method to be both effective and robust. Overall, DAS is still the most robust and cost

effective method for beamforming. Other methods can provide better performance

in resolution and contrast, but sometimes introduce distortion or harm the speckle

quality. More insights on how these new methods compare with DAS will be available

once the results from stage 2 are compiled by the organizers in a future journal paper.

My committee chair and I have been invited to be co-authors.
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(a) Our method (b) DAS

(c) Szasz’s method (d) Deylami’s method

Figure 6.18: Results of Speckle Quality Test for Numerical Dataset. (a) Our Method,

(b) DAS, (c) Szasz’s Method[66] and (d) Deylami’s Method[67]. All Methods Passed

the Speckle Quality Check except for Szasz’s Method.
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Figure 6.19: Results of Speckle Quality Test for In-vitro Type 1 Dataset Using Our

Method. Our Method Passed the Speckle Quality Check All the Time, while Szasz’s

Method Failed Occasionally.
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Figure 6.20: Results of Speckle Quality Test for In-vitro Type 1 Dataset Using Szasz’s

Method[66]. Our Method Passed the Speckle Quality Check All the Time, while

Szasz’s Method Failed Occasionally.
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(a) Our method (b) DAS

(c) Szasz’s method (d) Deylami’s method

Figure 6.21: FWHM Results in Axial Dimension for Numerical Dataset. (a) Our

Method, (b) DAS, (c) Szasz’s Method[66] and (d) Deylami’s Method[67]. Our Method

is Comparable to DAS. Both Szasz’s and Deylami’s Methods Provide Slightly Better

Results in Axial FWHMs.
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(a) Our method (b) DAS

(c) Szasz’s method (d) Deylami’s method

Figure 6.22: FWHM Results in Lateral Dimension for Numerical Dataset. (a) Our

Method, (b) DAS, (c) Szasz’s Method[66] and (d) Deylami’s Method[67]. Our Method

is Better Than Both DAS and Szasz’s Method for Lateral FWHM, Deylami’s Method

is the Best for the Single Firing Case.
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(a) Our method (b) DAS

(c) Szasz’s method (d) Deylami’s method

Figure 6.23: Resolution Results in Axial Dimension for Numerical Dataset. (a) Our

Method, (b) DAS, (c) Szasz’s Method[66] and (d) Deylami’s Method[67]. All Methods

Have Comparable Results for Axial Resolution.
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(a) Our method (b) DAS

(c) Szasz’s method (d) Deylami’s method

Figure 6.24: Resolution Results in Lateral Dimension for Numerical Dataset. (a)

Our Method, (b) DAS, (c) Szasz’s Method[66] and (d) Deylami’s Method[67]. All

Methods Have Comparable Results for Lateral Resolution.
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Chapter 7

CONCLUSION

In this work, we developed a low-complexity flow rate estimation system for plane-

wave imaging systems. It is based on a low-cost two-tiered 3D velocity estimation

scheme with sum-of-absolute difference (SAD) for coarse-grained search and synthetic

lateral phase for fine tuning the estimation results. Additional features include kernel

power weighting for accurate flow estimation and low complexity power iteration

based approach for clutter filtering.

1. Low cost blood velocity estimator with sub-pixel accuracy

We proposed a two-tiered scheme to combine the low complexity SAD estimator

with a 3D version of the synthetic lateral phase method (SLP3D) [41] to provide

accurate blood velocity estimation with sub-pixel accuracy. We further improved the

sub-pixel accuracy by correcting phase of cross correlation based on autocorrelation.

The proposed method achieved a 9× reduction in terms of normalized computation,

compared to a direct implementation of SLP3D [42]. For the case when the blood

did not have clutter, we achieved excellent velocity estimation accuracy for both plug

flow and parabolic flow models. For plug flow, the average estimation bias was within

2% and the average standard deviation is within 10%. For parabolic flow, when

the beam-to-angle was 90o, the average estimation bias was within 7% and average

standard deviation was within 8%.

2. Low cost eigen-based clutter filter

Clutter signal has to be removed before any velocity estimation can be done due

to its magnitude being much higher than that of the blood signal. We proposed a low-

cost eigen-based clutter filter method [45], which can remove one or more subspaces
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and thus can handle both slow moving clutter where the clutter velocity is 0.5% of the

peak blood velocity and fast moving clutter where the clutter velocity is 10% of the

peak blood velocity. We validated our clutter filter performance with clutter-to-blood

ratio (CBR) simulations. The results showed that the power/subspace iteration based

clutter filter has comparable performance with the full SVD based clutter filter with

significantly reduced complexity.

3. Flow rate estimation for parabolic flow

For accurate flow rate estimation of blood with clutter, we proposed a weighting

of kernel power that assigns fractional weights to kernels that are not fully inside the

vessel, thereby improving overall flow rate estimates. We validated our techniques

through Field-II [44] simulations for parabolic flow with both slow and fast moving

clutter and for 60o and 90o beam-to-flow angles. We show that our blood velocity

estimation scheme is quite accurate, with less than 8% average bias for both slow and

fast moving clutter. The average standard deviation of the eatimation is smaller for

90o scenario (< 12%) than that of the 60o scenario (< 16%). Volumetric flow rate

estimation is also quite accurate. For a beam-to-flow angle of 90o, the bias is 8.2%,

and the standard deviation is 5.6% for slow moving clutter; the bias is 8.8% and

the standard deviation is 3.1% for fast moving clutter. The complexity of our flow

rate estimation system is only about 2.2 times higher than the baseline plane-wave

beamforming system.

4. Flow estimation using challenging models

We tested our flow estimation method on challenging models such as spinning

disk and carotid bifurcation. The spinning disk and carotid bifurcation were part

of the synthetic aperture vector flow imaging (SA-VFI) challenge in IUS18. Since

these two models were in 2D, we used a 2D version of our two-tiered method with

techniques to account for aliasing. Estimation results for spinning disk showed that
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our method is capable of accurately estimating velocity vectors over all angles, with

average magnitude bias less than 10% and average angle bias less than 10o. Estimation

results for carotid bifurcation demonstrated that our method is able to accurately

estimate velocity vectors with average magnitude bias of 9% and average angle bias

of 8o. In addition, we also tested our method on vessels with stenosis by using velocity

profiles generated from COMSOL. The velocity estimation was quite accurate with

low bias and deviation except at the stenosis boundaries. The flow rate estimation

was still accurate with lower than 6% bias in the central part of the imaging aperture.

5. Post processing for plane-wave imaging

Plane-wave imaging provides fast aquisition rate which is beneficial for 3D velocity

estimation. We participated in the PICMUS challenge in IUS16 which aimed at

evaluating different beamforming methods for plane wave imaging. We used delay-

and-sum (DAS) beamforming and edge detection based techniques for post processing.

Our method helped improve the contrast ratio of cysts without affecting other parts

of the image. Compared to other methods in the challenge that were not based on

DAS, our method was superior in terms of contrast ratio of cysts but had worse

resolution on point spread functions. In addition, we passed all distortion checks,

such as speckle quality check, while others failed occasionally. Our results will be

included in the paper that is being put together by the organizers.

Future work

While the proposed velocity estimator has superior performance for plug/parabolic

flow, its performance in “real” flows has yet to be studied. We assumed straight vessels

with a perfect cylinder shape, for plug/parabolic flow. In practice, the vessel shape

is never regular–the radius changes and bifurcation exists. We also assumed constant

flow rate while the blood flow is pulsatile in nature. Theoretically, the pulsatility is

not an issue as long as the pulse repetition frequency (PRF) is high and the packet
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size is reasonable so that the velocity changes within a packet is bounded. However,

more validation is needed and an optimal packet size needs to be chosen.

During the course of this work, we did not have access to in-vitro and in-vivo data

and so could not evaluate our method on real data. However, through the SA-VFI

challenge which was initiated this year by the IUS18 conference organizers, we had

access to both in-vitro data and CFD simulated data that are closer to practical

scenarios. Our method provided superior results on all datasets.

Finally, although only performance is compared in the challenge, computational

complexity matters in practice. So further reduction in the complexity of our method

without compromising on the performance would help pave the way to the proposed

flow estimation system being used in real ultrasound systems.
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