
Template-Based Question Answering over Linked Data using

Recursive Neural Networks

by

Ram Ganesan Athreya

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved November 2018 by the
Graduate Supervisory Committee:

Srividya Bansal, Chair
Ricardo Usbeck
Kevin Gary

ARIZONA STATE UNIVERSITY

December 2018

ABSTRACT

The Semantic Web contains large amounts of related information in the form of

knowledge graphs such as DBpedia. These knowledge graphs are typically enormous

and are not easily accessible for users as they need specialized knowledge in query

languages (such as SPARQL) as well as deep familiarity of the ontologies used by these

knowledge graphs. So, to make these knowledge graphs more accessible (even for non-

experts) several question answering (QA) systems have been developed over the last

decade. Due to the complexity of the task, several approaches have been undertaken

that include techniques from natural language processing (NLP), information retrieval

(IR), machine learning (ML) and the Semantic Web (SW). At a higher level, most

question answering systems approach the question answering task as a conversion from

the natural language question to its corresponding SPARQL query. These systems

then utilize the query to retrieve the desired entities or literals. One approach to

solve this problem, that is used by most systems today, is to apply deep syntactic

and semantic analysis on the input question to derive the SPARQL query. This has

resulted in the evolution of natural language processing pipelines that have common

characteristics such as answer type detection, segmentation, phrase matching, part-

of-speech-tagging, named entity recognition, named entity disambiguation, syntactic

or dependency parsing, semantic role labeling, etc.

This has lead to NLP pipeline architectures that integrate components that solve

a specific aspect of the problem and pass on the results to subsequent components

for further processing eg: DBpedia Spotlight for named entity recognition, RelMatch

for relational mapping, etc. A major drawback in this approach is error propagation

that is a common problem in NLP. This can occur due to mistakes early on in the

pipeline that can adversely affect successive steps further down the pipeline. Another

approach is to use query templates either manually generated or extracted from ex-

i

isting benchmark datasets such as Question Answering over Linked Data (QALD) to

generate the SPARQL queries that is basically a set of predefined queries with various

slots that need to be filled. This approach potentially shifts the question answering

problem into a classification task where the system needs to match the input question

to the appropriate template (class label).

This thesis proposes a neural network approach to automatically learn and clas-

sify natural language questions into its corresponding template using recursive neural

networks. An obvious advantage of using neural networks is the elimination for the

need of laborious feature engineering that can be cumbersome and error prone. The

input question would be encoded into a vector representation. The model will be

trained and evaluated on the LC-QuAD Dataset (Large-scale Complex Question An-

swering Dataset). The dataset was created explicitly for machine learning based

QA approaches for learning complex SPARQL queries. The dataset consists of 5000

questions along with their corresponding SPARQL queries over the DBpedia dataset

spanning 5042 entities and 615 predicates. These queries were annotated based on 38

unique templates that the model will attempt to classify. The resulting model will

be evaluated against both the LC-QuAD dataset and the Question Answering Over

Linked Data (QALD-7) dataset.

The recursive neural network achieves template classification accuracy of 0.828 on

the LC-QuAD dataset and an accuracy of 0.618 on the QALD-7 dataset. When the

top-2 most likely templates were considered the model achieves an accuracy of 0.945

on the LC-QuAD dataset and 0.786 on the QALD-7 dataset.

After slot filling, the overall system achieves a macro F-score 0.419 on the LC-

QuAD dataset and a macro F-score of 0.417 on the QALD-7 dataset.

ii

DEDICATION

To my late father whose literal dying wish was that I do my Masters in the US and

whose eternal doubts in me made me overcome my limitations time and time again.

iii

ACKNOWLEDGMENTS

This work would not have been possible without the help, encouragement and oppor-

tunities provided by so many people. In no particular order I would like to thank,

Dr Srividya Bansal for being my Thesis Chair and getting me introduced to

the Question Answering in Linked Data Challenge which got the ball rolling and fi-

nally result in this thesis. I would also like to thank her for helping me in seeking

opportunities within ASU without which I would have found it very hard to support

myself and focus on my research.

Dr Ricardo Usbeck for being an outstanding mentor during the Google Sum-

mer of Code Program (2017) as well as assisting and shepherding me throughout this

thesis and graciously agreeing to be a part of my Thesis Committee.

Dr Kevin Gary for agreeing to be a part of my thesis committee. Also, I would

not forget the accommodations you made during the Spring semester which allowed

me to present my paper in WWW 2018 (WebConf).

Google and especially the Google Summer of Code (GSoC) program (espe-

cially Stephanie Taylor) which got me embedded within the DBpedia community

and provided me the opportunity to contribute to open source development and build

vital connections within DBpedia that were invaluable for my research as well as my

career.

The DBpedia organization and community for supporting me throughout this

work, especially Sandra Prator who was a great help during the GSoC process

and our single point of contact regarding all administrative and logistical tasks, Tim

Ermilov, Paul Spooren and Felix Conrads for infrastructure support, Dennis

iv

Diefenbach and Andreas Both for all their help when I was in WWW 2018 in

Lyon, and Julia Holze for ensuring that I was able to secure grants so that I could

attend the conference.

Jaydeep Chakraborty for the passionate disagreements and stimulating con-

versations which were invaluable during the research process.

Dr Ajay Bansal for introducing me to Prolog and the fascinating world of declar-

ative and answer set programming which I fervently hope will find its place in main-

stream artificial intelligence someday.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

CHAPTER

1 INTRODUCTION . 1

1.1 Motivation . 1

1.2 Problem Statement . 4

2 THE SEMANTIC WEB . 5

2.1 Linked Data . 5

2.2 Knowledge Graphs . 6

2.3 SPARQL Protocol and RDF Query Language (SPARQL) 6

3 QUESTION ANSWERING OVER LINKED DATA . 8

3.1 Introduction . 8

3.2 Natural Language Processing Pipelines . 9

3.3 Template Question Answering . 10

3.4 Slot Filling . 11

3.5 Conclusion . 12

4 LC-QUAD DATASET . 13

4.1 Introduction . 13

4.2 Dataset Analysis . 14

4.3 Data Preprocessing . 23

5 QUESTION ANALYSIS AND TEMPLATE CLASSIFICATION 27

5.1 Introduction . 27

5.2 Question Analysis . 28

5.2.1 Part of Speech Tagging . 28

vi

CHAPTER Page

5.2.2 Dependency Parsing . 29

5.3 Input Preparation . 31

5.3.1 One-Hot Encoding . 31

5.3.2 Word Embedding . 31

5.4 Recursive Neural Network . 33

5.4.1 Recurrent Neural Networks and LSTM . 33

5.4.2 Tree-LSTM . 35

5.4.3 Implementation . 38

5.5 Conclusion . 40

6 SLOT FILLING AND QUERYING . 41

6.1 Slot Filling . 41

6.2 Querying . 44

6.3 Conclusion . 44

7 ANALYSIS AND RESULTS . 45

7.1 Model Selection and Hyperparameter Tuning . 45

7.2 Template Classification . 48

7.3 Slot Filling . 54

8 CONCLUSION AND FUTURE WORK . 59

8.1 Conclusion . 59

8.2 Future Work . 60

REFERENCES . 63

vii

LIST OF TABLES

Table Page

4.1 Frequency Distribution of Templates in LC-QuAD Dataset 15

4.2 Frequency of templates after preprocessing. Templates with <50 ex-

amples removed and similar templates merged . 24

5.1 Dimensionality of different models created for the template classifica-

tion task . 32

7.1 Model Parameters . 47

7.2 Template Level Model Accuracy on LC-QuAD dataset 50

7.3 Template Level Model Accuracy on QALD dataset 53

7.4 Performance of system on LC-QuAD . 56

7.5 Performance comparison on QALD-7 . 56

viii

LIST OF FIGURES

Figure Page

4.1 LC-QuAD Dataset Generation Workflow . 14

5.1 Stanford POS-Tagger Output . 29

5.2 Stanford Dependency Parser Output . 30

5.3 Top: A chain-structured LSTM network (Recurrent Neural Network)

Bottom: A tree-structured LSTM network with arbitrary branching

factor (Recursive Neural Network) Tai et al. (2015) 36

7.1 Accuracy on Test Dataset for different input models 46

7.2 Confusion Matrix . 49

7.3 Pearson Matrix . 50

7.4 Answer Type Detection . 54

ix

Chapter 1

INTRODUCTION

1.1 Motivation

Diefenbach et al. (2017a) classify the techniques used in question answering (QA)

systems (over linked data) broadly into five tasks:

1. Question Analysis: In this step, the question of the user is analyzed based

on purely syntactic features. QA systems use syntactic features to deduce, for

example, the right segmentation of the question, determine that phrase corre-

sponds to an instance (subject or object), property or class and the dependency

between the different phrases.

2. Phrase Mapping: This step starts with a phrase (one or more words) s and

tries to find, in the underlying knowledge base (KB), a set of resources that cor-

respond to s with high probability. s could correspond to an instance, property

or a class from the knowledge base.

3. Disambiguation: Two ambiguity problems can arise. The first is that from

the question analysis step the segmentation and the dependencies between the

segments are ambiguous. For example, in the question "Give me all European

countries." the segmentation can group or not group the expression "European

countries" leading to two possibilities. The second is that, the phrase mapping

step returns multiple possible resources for one phrase. In the example above

"European" could map to different meanings of the word "Europe".

1

4. Query Construction: This phase deals with how the QA system constructs

the SPARQL query to find the answer to the question. A problem arises during

the query construction, that is commonly referred to as the "semantic gap".

Assume for example that a user asks the question: "which countries are in the

European Union?". One would probably assume that in the KB there are triples

like:

dbr:Italy dbo:member dbr:European_Union .

dbr:Spain dbo:member dbr:European_Union .

But this is not the case, in DBpedia the requested information is encoded as:

dbr:Italy dct:subject dbc:Member_states_of_the_European_Union.

dbr:Spain dct:subject dbc:Member_states_of_the_European_Union.

where dbr is the <http://dbpedia.org/resource/> namespace, dbo is the

<http://dbpedia.org/ontology/> namespace, dct is the

<http://dublincore.org/2012/06/14/dcterms> namespace and dbc is the

<http://dbpedia.org/page/Category> namespace. So instead of a prop-

erty dbo : member DBpedia uses the class dbc :MemberstatesoftheEuropeanUnion

to encode the information. The "semantic gap" refers to the problem that the

KB encodes an information differently from what one could deduce from the

question. This shows that in general it is difficult to deduce the form of the

SPARQL query knowing only the question.

5. Querying: The final step is to query the underlying knowledge base to retrieve

the answers for the given question. The answer can be from a single KB or

depending on the system and the task even from multiple KBs.

Most question answering systems follow the above mentioned steps in the specified

2

order. This places a difficulty on the query building process where multiple candidate

templates can be generated for a sentence. Due to error propagation, that is mistakes

in one step of the pipeline, can lead to crucial ramifications downstream and adversely

affect the overall performance of the system.

This becomes especially difficult for complex queries that span multiple triples and

many facts need to be discovered before the question can be answered. For complex

questions, where the resulting SPARQL query contains more than one basic graph

pattern, sophisticated approaches are required to capture the structure of the underly-

ing query. Current research follows two paths, namely (1) template-based approaches,

that map input questions to either manually or automatically created SPARQL query

templates or (2) template-free approaches that try to build SPARQL queries based

on the given syntactic structure of the input question. However, template-free ap-

proaches require additional effort of ensuring to cover every possible basic graph

pattern making it a more computationally intensive process Höffner et al. (2017).

Template classification acts basically as an alternative to the query building ap-

proach or the sub-graph generation (from entities) approach that are more compu-

tationally intensive and error prone. Furthermore, as the analysis of Singh et al.

(2018) on QALD subtasks shows, query building has one of the poorest F-Measures

at 0.48. So, by performing template classification in the beginning, the workflow gets

inverted and provides the benefit of restricting the number of resources, entities and

ontology classes that need to be considered for a candidate SPARQL query instead

of seemingly endless combinations as is usually done in a non-template approach.

For completeness, existing methods are used to fill the slots after template classi-

fication to provide a performance comparison against existing methods.

3

1.2 Problem Statement

The problem statement for the thesis can be summarized as follows:

1. Can state-of-the-art neural network techniques such as Long Short Term Mem-

ory (LSTM), recursive neural networks and word embeddings be leveraged for

the template classification task?

2. Can a template classification model serve as a replacement for the query build-

ing process that has been shown to be both error-prone and computationally

intensive Singh et al. (2018), Usbeck et al. (2015a), Saleem et al. (2017)?

3. Can the template classification model be developed without any domain specific

information/features that can make it easily transferable across domains?

4. Can such a system exhibit reasonable performance on existing question answer-

ing challenges or datasets such as LC-QuAD and question answering over linked

data (QALD-7) when compared to existing systems ?

4

Chapter 2

THE SEMANTIC WEB

2.1 Linked Data

Traditionally, data published on the Web has been made available as raw dumps

in formats such as CSV or XML, or marked up as HTML tables, sacrificing much

of its structure and semantics. In the conventional hypertext Web, the nature of

the relationship between two linked documents is implicit, as the data format, i.e.

HTML, is not sufficiently expressive to enable individual entities described in a par-

ticular document to be connected by typed links to related entities. The term Linked

Data refers to a set of best practices for publishing and connecting structured data

on the Web. These best practices have been adopted by an increasing number of

data providers, leading to the creation of a global data space containing billions of

assertions sometimes called the Web of Data. The Web of Data also opens up new

possibilities for domain-specific applications. Unlike Web 2.0 mash-ups which work

against a fixed set of data sources, Linked Data applications operate on top of an

unbound, global data space. This enables them to deliver more complete answers as

new data sources appear on the Web Bizer et al. (2011).

With this rapid growth of the Semantic Web (SW), the process of searching and

querying content that is both massive in scale and heterogeneous have become increas-

ingly challenging. User-friendly interfaces, that can support end users in querying and

exploring this novel and diverse, structured information space, are needed to make

the vision of the SW and Linked Data a reality Lopez et al. (2011).

5

2.2 Knowledge Graphs

A knowledge graph can be defined as a graph containing a set of assertions usually

expressed as triples. The nodes of the graph are usually entities and the edges express

relations between entities. Usually, knowledge graphs have a schema that is defined

through a rigid ontology which encodes attributes of entities and relations. This

allows capabilities such as reasoning on top of the knowledge base.

Wikipedia is the 6th most popular website, and the most widely used encyclo-

pedia. There are official Wikipedia editions in over 280 different languages which

range in size from a couple of hundred articles up to several million articles (English

edition). Besides free text, Wikipedia articles consist of different types of structured

data such as infoboxes, tables, lists, and categorization data. The DBpedia project

builds a large-scale, multilingual knowledge base by extracting structured data from

Wikipedia editions in 111 languages. This knowledge base can be used to answer

expressive queries by leveraging the semantic information derived from Wikipedia.

Being multilingual and covering a wide range of topics, the DBpedia knowledge base

is also useful within further application domains such as data integration, named en-

tity recognition, topic detection, document ranking, and question answering Lehmann

et al. (2015).

2.3 SPARQL Protocol and RDF Query Language (SPARQL)

The data stored in a knowledge graph is in the form of triples that consist of three

parts namely <Subject ><Predicate ><Object >. These triples are usually stored

in a format called Resource Description Framework (RDF).

RDF is a W3C specification for storing and interchanging data on the Web. RDF

extends the linking structure of the Web to use Uniform Resource Identifiers (URIs)

6

to name the relationship between things as well as the two ends of the link (this is

usually referred to as a "triple"). Using this simple model, it allows structured and

semi-structured data to be mixed, exposed, and shared across different applications.

The two ends of a link are called resources that are defined using a Uniform

Resource Identifier which can uniquely identify a resource or entity in the graph. The

predicate is also a URI used to depict a relationship between two nodes in a knowledge

graph.

SPARQL is an RDF query language geared towards manipulating and retrieving

data stored in semantic databases or triplestores. SPARQL allows for a query to

consist of triple patterns, conjunctions, disjunctions, filtering and optional patterns

for querying data.

7

Chapter 3

QUESTION ANSWERING OVER LINKED DATA

3.1 Introduction

Traditionally, question answering (QA) approaches have largely been focused on

retrieving answers from raw text, with the emphasis on using ontologies to mark-up

Web resources and improve retrieval by using query expansion McGuinness (2004).

Since the steady growth of the Semantic Web and the emergence of large-scale

knowledge graphs, the necessity of natural language interfaces to ontology-based

repositories has become more acute, re-igniting interest in question answering sys-

tems. This trend has also been supported by usability studies conducted by Kauf-

mann and Bernstein (2007), which show that casual users, typically overwhelmed by

the formal logic of the Semantic Web, prefer to use a natural language interface to

query an ontology.

Hence, in the past decade there has been much interest in ontology-based question

answering systems, where the power of ontologies as a model of knowledge is directly

exploited for the query analysis and translation. Typically, in such a question an-

swering system over a knowledge base incoming queries are generally addressed by

translating a natural question to a SPARQL query that can be used to retrieve the

desired information Diefenbach et al. (2017a).

In the last number of years, different benchmarks for question answering systems

over knowledge bases have been developed. The most popular among them in the

Semantic Web community is the Question Answering Over Linked Data (QALD)

dataset. In fact, QALD is not one benchmark but a series of evaluation campaigns

8

for QA systems over knowledge bases. There have been 9 iterations of the challenge

till date that have been conducted on an annual basis.

Another interesting dataset is the Large-Scale Complex Question Answering (LC-

QuAD) dataset. Unlike QALD, LC-QuAD was developed from the ground up to

facilitate machine learning based QA approaches. QALD is insufficient in terms of

size, variety, or complexity which are essential when applying and evaluating neural

network approaches. The dataset contains 5000 questions with their corresponding

SPARQL queries and associated query templates which are 38 in number, Trivedi

et al. (2017). For this reason LC-QuAD was chosen for training recursive neural

network model for template classification task. Query templates basically present a

blueprint of the final SPARQL query that needs to be derived from the question to

find the corresponding answer(s).

3.2 Natural Language Processing Pipelines

The key QA tasks of most question answering systems comprise of Named Entity

Recognition and Disambiguation, Relation Extraction and Query Building. No single

system will be perfect for all tasks and across all domains. This has led to the

development of QA components that specialize in specific tasks for specific domains

which can then be bootstrapped into modular question answering pipelines.

Diefenbach et al. (2017b) developed QANARY, a message-driven and light-weight

architecture that leverages linked data technology and particularly vocabularies to

create a component-based QA system. Their approach solves a critical problem in

the QA community, that is integrating existing components which is resource inten-

sive process. They solve this problem through an RDF based ’qa’ vocabulary which

is a flexible and extensible data model for QA systems. The vocabulary enables com-

position and integration of QA components in such a way that it is independent from

9

programming languages, agnostic to domains and datasets, as well as enabled for

components on any granularity level within the QA process.

Singh et al. (2018) studied the efficiency of these components by training classifiers

which take features of a question as input and have the goal of optimizing the selection

of QA components based on those features. They then employ a greedy algorithm

to identify the best pipeline that includes the best possible components which can

effectively answer the given question. The system was evaluated using the QALD

and LC-QuAD benchmarks. They discovered that among the available solutions for

the three tasks in question answering Named Entity Recognition ranks the highest

(based on Macro Precision, Recall and F-Score) followed by Query Building and

finally Relation Linking.

3.3 Template Question Answering

Most question answering systems translate questions into triples which are matched

against an existing knowledge base to retrieve an answer to the question by using ei-

ther a similarity or ranking metric. However, in many cases, such triples do not

accurately represent the semantic structure of the natural language question which

can result in flawed SPARQL queries or wrong answers.

To circumvent this problem, Unger et al. (2012) proposed an approach that relies

on a parse tree of the question to produce a SPARQL template that directly mirrors

the internal structure of the question. This template contains empty slots which are

then instantiated using statistical entity identification and predicate detection. Their

approach generates multiple candidate templates for a given query based on linguistic

analysis and then uses similarity measures to determine the best possible template

that adequately represents the question.

Since the system needs to generate templates from scratch it relies on a lexicon

10

which is a composite of domain dependent and domain independent expressions. In

this approach it is not known beforehand which URIs these expressions should be

mapped to. So instead, they contain slots which are built on-the-fly while parsing,

based on part-of-speech information provided by the Stanford POS tagger Toutanova

et al. (2003a), and uses a set of simple heuristics that specify which POS tag corre-

sponds to which syntactic and semantic properties.

By contrast, in this work the recursive neural network would automatically learn

the required representations through labeled examples provided in the LC-QuAD

dataset and the methodology is essentially domain independent and can thus be

transposed to work with any domain requiring very little additional modifications to

the neural network architecture.

3.4 Slot Filling

The goal of Slot Filling is to extract predefined types of attributes or slots for

a given query. The slots in the linked data context can be a resource, predicate or

ontology class. One critical component of slot filling is relation extraction. Typically,

question answering systems over knowledge graphs rely on entity and relation linking

components in order to connect the natural language input to the underlying knowl-

edge graph. Dubey et al. (2018) propose a framework called EARL, which performs

entity linking and relation linking as a joint task. They use two strategies for solving

this problem. The first is to use an instance of the Generalized Travelling Salesman

Problem (GTSP) and the second approach is to use machine learning to exploit the

connection density between nodes in the knowledge graph. The system was evaluated

against the LC-QuAD dataset. Both strategies significantly outperform the current

state-of-the-art approaches for entity and relation linking with the adaptive learning

model showing slightly higher performance compared to the GTSP model.

11

3.5 Conclusion

This section summarizes the related work and available solutions and approaches

in Question Answering Linked Data. The next section would cover an overview of the

LC-QuAD dataset and how it was preprocessed to facilitate the template classification

task.

12

Chapter 4

LC-QUAD DATASET

4.1 Introduction

An essential requirement to develop and evaluate question answering systems is the

availability of a large dataset comprising of varied questions and their corresponding

logical forms. LC-QuAD consists of 5,000 questions along with the intended SPARQL

queries required to answer questions over DBpedia. The dataset includes complex

questions, i.e. questions in which the intended SPARQL query does not consist of a

single triple pattern.

Trivedi et al. (2017) generated the dataset by using a list of seed entities, and filter-

ing by a predicate whitelist, generate subgraphs of DBpedia to instantiate SPARQL

templates, thereby generating valid SPARQL queries. These SPARQL queries are

then used to instantiate Normalized Natural Question Templates (NNQTs) which

act as canonical structures and are often grammatically incorrect. These questions

are manually corrected and paraphrased by reviewers. Fig 4.1 provides a pictorial

overview of the LC-QuAD dataset generation process.

There are two key advantages for using LC-QuAD over similar existing datasets

such as SimpleQuestions Bordes et al. (2015), Free917 Cai and Yates (2013), and

QALD-6 Unger et al. (2016). They are:

1. Higher focus on complex questions unlike SimpleQuestions which focuses en-

tirely on single triple patterns.

2. Larger volume and variety of questions. The Free917 dataset contains only 917

questions and QALD-6 has 450 training questions and 100 test questions.

13

Figure 4.1: LC-QuAD Dataset Generation Workflow

4.2 Dataset Analysis

The LC-QuAD dataset contains 5,000 questions divided into 38 unique SPARQL

templates comprising 5042 entities and 615 predicates. The SPARQL queries have

been generated based on the 2016 DBpedia release. The dataset broadly contains

three types of questions:

1. Entity Queries: Questions whose answer is an entity or list of entities with

the WHERE clause containing one or more triples.

2. Boolean Queries: Questions whose answer is a boolean True or False with

the WHERE clause containing exactly one triple.

3. Count Queries: Questions whose answer is a cardinal number with theWHERE

clause containing one or more triples.

Among the 5000 verbalized SPARQL queries, only 18% are simple questions, and

the remaining queries either involve more than one triple, or COUNT/ASK keyword,

14

or both. Moreover, 18.06% queries contain a COUNT based aggregate, and 9.57% are

boolean queries. The advantage of using LC-QuAD is that it was tailored specifically

for neural network approaches to question answering and has a relatively large variety

of questions in the complex, count and boolean categories when compared to existing

datasets which is valuable when training models and evaluating approaches. As of

now, the dataset does not have queries with OPTIONAL, or UNION keywords. Also,

it does not have conditional aggregates in the query head Trivedi et al. (2017).

Table 4.1 displays the frequency distribution of each template in the LC-QuAD

dataset along with its corresponding SPARQL template and an example query. In-

terestingly, the first 14 templates make up over 80% of the dataset and there are 7

templates with under 10 examples. In fact, templates 601, 9 and 906 have only 1

example in the entire dataset.

Table 4.1: Frequency Distribution of Templates in LC-

QuAD Dataset

ID Count Question

Type

SPARQL Template Example

Query

2 748 Entity SELECT DISTINCT ?uri WHERE {

<r ><p >?uri . }

Name the mas-

cot of Austin

College ?

305 564 Entity SELECT DISTINCT ?uri WHERE {

?x <p ><r >. ?x <p2 >?uri . ?x

rdf:type <class >. }

What layout

can be found

in cars similar

to the Subaru

Outback?

15

16 523 Entity SELECT DISTINCT ?uri WHERE {

<r ><p >?uri. <r2 ><p2 >?uri . }

Which series

has an episode

called The lost

special and

also a character

named Sherlock

Holmes ?

308 334 Entity SELECT DISTINCT ?uri WHERE

{?uri <p ><r >. ?uri <p2 ><r2 >.

?uri rdf:type <class >}

Name the moun-

tain whose range

is Sierra Nevada

(U.S.) and par-

ent mountain

peak is Nevado

de Toluca?

301 309 Entity SELECT DISTINCT ?uri WHERE {

?uri <p ><r >. ?uri rdf:type <class

>}

What is the river

whose mouth is

in deadsea?

3 262 Entity SELECT DISTINCT ?uri WHERE {

<r ><p >?x . ?x <p2 >?uri . }

What awards

did the film

director of The

Haunted House

win ?

5 213 Entity SELECT DISTINCT ?uri WHERE {

?x <p ><r >. ?x <p2 >?uri . }

Starwood oper-

ates in which

places?

16

15 198 Entity SELECT DISTINCT ?uri WHERE {

<r ><p >?uri. <r2 ><p >?uri . }

In which part of

the world can

i find Xynisteri

and Mavro?

152 188 Boolean ASK WHERE { <r ><p ><r2 >. } Was Ganymede

discovered by

Galileo Galilei?

151 180 Boolean ASK WHERE { <r ><p ><r2 >. } Does the Toyota

Verossa have the

front engine de-

sign platform?

306 175 Entity SELECT DISTINCT ?uri WHERE {

?x <p ><r >. ?uri <p2 >?x . ?uri

rdf:type <class >}

Which newspa-

pers are owned

by companies

which are un-

der Rolv Erik

Ryssdal?

105 101 Count SELECT (COUNT(DISTINCT ?uri)

as ?count) WHERE { ?x <p ><r >.

?x <p2 >?uri . }

How many

awards have

been given to

screenwriters?

1 159 Entity SELECT DISTINCT ?uri WHERE {

?uri <p ><r >. }

What are the

beverages whose

origin is Eng-

land?

17

303 115 Entity SELECT DISTINCT ?uri WHERE {

<r ><p >?x . ?x <p2 >?uri . ?x

rdf:type <class >}

What is the

region of the

ethnic group

which speaks

the language of

Arkansas?

6 94 Entity SELECT DISTINCT ?uri WHERE {

?x <p ><r >. ?uri <p2 >?x . }

What are some

characters of the

series produced

by Ricky Gre-

vais?

405 90 COUNT SELECT (COUNT(DISTINCT ?uri)

as ?count) WHERE { ?x <p ><r >.

?x <p2 >?uri . ?uri rdf:type <class >}

How many

companies have

launched their

rockets from the

Vandenerg Air

base?

401 77 Count SELECT (COUNT(DISTINCT ?uri)

as ?count) WHERE { ?uri <p ><r >.

?uri rdf:type <class >}

How many

places were

ruled by Eliza-

beth II?

18

111 76 Count SELECT (COUNT(DISTINCT ?uri)

as ?count) WHERE { ?x <p ><r >.

?x <p >?uri }

Count the num-

ber of sports

played by

schools which

play hockey ?

311 76 Entity SELECT ?uri WHERE { ?x <p ><r

>. ?x <p >?uri . ?x rdf:type <class

>}

Name all the

doctoral student

of the scientist

who also su-

pervised Mary

Ainsworth ?

406 70 Count SELECT (COUNT(DISTINCT ?uri)

as ?count) WHERE { ?x <p ><r >.

?uri <p2 >?x . ?uri rdf:type <class >}

How many TV

show has dis-

tributor located

in Burbank Cal-

ifornia ?

307 69 Entity SELECT DISTINCT ?uri WHERE {

?uri <p ><r >. ?uri <p ><r2 >. ?uri

rdf:type <class >}

What is the

river that falls

into North Sea

and Thames

Estuary?

101 67 Count SELECT (COUNT(DISTINCT ?uri)

as ?count) WHERE { ?uri <p ><r >.

}

How many

movies did

Stanley Kubrick

direct?

19

7 62 Entity SELECT DISTINCT ?uri WHERE {

?uri <p ><r >. ?uri <p ><r2 >}

Whose former

teams are Indi-

anapolis Colts

and Carolina

Panthers?

8 33 Count SELECT DISTINCT ?uri WHERE {

?uri <p ><r >. ?uri <p2 ><r2 >. }

Which colonel

consort is Dolley

Madison?

102 26 Count SELECT (COUNT(DISTINCT ?uri)

as ?count) WHERE { <r ><p >?uri

}

How many

states does the

Pioneer corpo-

ration operate

in?

106 22 Count SELECT (COUNT(DISTINCT ?uri)

as ?count) WHERE { ?x <p ><r >.

?uri <p2 >?x . }

Count all those

whose youth

club was man-

aged by Luis

Enrique.

11 20 Entity SELECT ?uri WHERE { ?x <p ><r

>. ?x <p >?uri . }

List the outflows

of the lake which

has Benu river as

one of it ?

20

403 17 Count SELECT (COUNT(DISTINCT ?uri)

as ?count) WHERE { <r ><p >?x .

?x <p2 >?uri . ?x rdf:type <class >}

How many coun-

tries surround

the sea into

which the Upper

Neratva flow?

103 17 Count SELECT (COUNT(DISTINCT ?uri)

as ?count) WHERE { <r ><p >?x .

?x <p2 >?uri . }

How many

other important

things have been

written by the

creator of Stuart

Alan Jones?

108 14 Count SELECT (COUNT(DISTINCT ?uri)

as ?count) WHERE { ?uri <p ><r >.

?uri <p2 ><r2 >. }

How many bac-

teria have tax-

onomy as Bacil-

lales and domain

as Bacteria?

315 10 Entity SELECT DISTINCT ?uri WHERE {

<r ><p >?uri. <r2 ><p >?uri . ?uri

rdf:type <class >}

Which city is the

resting place of

the Martin Rag-

away and Chuck

Connors ?

402 9 Count SELECT (COUNT(DISTINCT ?uri)

as ?count) WHERE { <r ><p >?uri

. ?uri rdf:type <class >}

How many

teams was

Garry Unger in,

previously?

21

316 5 Entity SELECT DISTINCT ?uri WHERE {

<r ><p >?uri . <r2 ><p2 >?uri . ?x

rdf:type <class >}

List the people

casted in Betsy’s

Wedding and 16

candles?

107 5 Count SELECT DISTINCT COUNT(?uri)

WHERE { ?uri <p ><r >. ?uri <p

><r2 >. }

Count the num-

ber of shows

whose creators

are Jerry Sein-

feld and Larry

David?

605 2 Entity SELECT DISTINCT ?uri WHERE {

?x <p ><r >. ?x <p2 >?uri . ?x

rdf:type <class >}

What are the

kind of games

one can play on

windows?

601 1 Entity SELECT DISTINCT ?uri WHERE {

?uri <p ><r >. ?uri rdf:type <class

>}

Which techno-

logical products

were manu-

factured by

Foxconn?

9 1 Entity SELECT DISTINCT ?uri WHERE {

<r ><p >?x . ?x <p >?uri . }

Who is owner of

the soccer club

which owns the

Cobham Train-

ing Centre?

22

906 1 Entity SELECT DISTINCT ?uri WHERE {

?x <p ><r >. ?uri <p2 >?x . ?uri

rdf:type <class >}

Name some TV

shows whose

theme is made

by a band as-

sociated with

Buckethead?

4.3 Data Preprocessing

As shown in Table 4.1 from the previous section there is great imbalance be-

tween the distribution of templates in the dataset. Also, some templates are exact

replicas of others with an additional triple. For example, templates below 100 and

templates in the 3xx series and templates in the 1xx and 4xx series have only one

triple differentiating them:

?var rdf:type <class>

With this in mind, during preprocessing all templates which had less than 50

examples in the initial dataset were removed. The rationale here was that each

template should have at least a 1% representation in the final dataset. Also, templates

below 100 were merged with their corresponding 3xx templates and 1xx templates

were merged with 4xx templates by adding additional OPTIONAL queries to the

SPARQL template. Also, templates 151 and 152 were merged into each other since

they have identical SPARQL templates.

For example template 1 and template 301 were combined into a single template

as follows:

Template 1: SELECT DISTINCT ?uri WHERE { ?uri <p ><r >. }

23

Template 301: SELECT DISTINCT ?uri WHERE { ?uri <p ><r >. ?uri

rdf:type <class >}

Combined Template: SELECT DISTINCT ?uri WHERE { ?uri <p ><r

>. OPTIONAL { ?uri rdf:type <class >} }

The removal of sparse templates resulted in only 80 questions being removed and

the final dataset had 4,920 questions spread across 15 templates. The frequency dis-

tribution and updated templates of the preprocessed dataset are shown in Table 4.2.

It must be noted that this refined dataset was used to train the template classification

model. In spite of the manual review process there were several grammatical mistakes

and misspellings of proper nouns in the dataset which were corrected as needed and

the results of the same is shared with the LC-QuAD team so that they can improve

the quality of the dataset for the community.

Table 4.2: Frequency of templates after preprocessing.

Templates with <50 examples removed and similar tem-

plates merged

ID Templates

Merged

Count Question

Type

New SPARQL Template

5 5, 305 777 Entity SELECT DISTINCT ?uri WHERE { ?x <p ><r >.

?x <p2 >?uri . OPTIONAL { ?x rdf:type <class >}

}

2 2 748 Entity SELECT DISTINCT ?uri WHERE { <r ><p >?uri

. }

16 16 523 Entity SELECT DISTINCT ?uri WHERE { <r ><p >?uri

. <r2 ><p2 >?uri . }

24

1 1, 301 468 Entity SELECT DISTINCT ?uri WHERE { ?uri <p ><r

>. OPTIONAL { ?uri rdf:type <class >} }

3 3, 303 377 Entity SELECT DISTINCT ?uri WHERE { <r ><p >?x

. ?x <p2 >?uri . OPTIONAL { ?x rdf:type <class

>} }

151 151, 152 368 Boolean ASK WHERE { <r ><p ><r2 >. }

8 308 334 Entity SELECT DISTINCT ?uri WHERE { ?uri <p ><r

>. ?uri <p2 ><r2 >. ?uri rdf:type <class >}

6 6, 306 269 Entity SELECT DISTINCT ?uri WHERE { ?x <p ><r >.

?uri <p2 >?x . OPTIONAL { ?uri rdf:type <class

>} }

105 105, 405 261 Count SELECT (COUNT(DISTINCT ?uri) as ?count)

WHERE { ?x <p ><r >. ?x <p2 >?uri . OP-

TIONAL { ?uri rdf:type <class >} }

15 15 198 Entity SELECT DISTINCT ?uri WHERE { <r ><p

>?uri. <r2 ><p >?uri . }

101 101, 401 144 Count SELECT (COUNT(DISTINCT ?uri) as ?count)

WHERE { ?uri <p ><r >. OPTIONAL { ?uri

rdf:type <class >} }

7 7, 307 131 Entity SELECT DISTINCT ?uri WHERE { ?uri <p ><r

>. ?uri <p ><r2 >. OPTIONAL { ?uri rdf:type

<class >} }

111 111 76 Count SELECT (COUNT(DISTINCT ?uri) as ?count)

WHERE { ?x <p ><r >. ?x <p >?uri }

25

11 311 76 Entity SELECT ?uri WHERE { ?x <p ><r >. ?x <p

>?uri . ?x rdf:type <class >}

106 406 70 Count SELECT (COUNT(DISTINCT ?uri) as ?count)

WHERE { ?x <p ><r >. ?uri <p2 >?x . ?uri

rdf:type <class >}

26

Chapter 5

QUESTION ANALYSIS AND TEMPLATE CLASSIFICATION

5.1 Introduction

Diefenbach et al. (2017a) classify the techniques used in question answering (QA)

systems broadly into five tasks:

1. Question Analysis

2. Phrase Mapping

3. Disambiguation

4. Query Construction

5. Querying

It must be noted that not all question answering systems follow the above steps

in the exact same order and in some systems the steps could be merged together into

a single step. The proposed system follows the steps mentioned below:

1. Question Analysis

2. Template Classification (Query Construction)

3. Slot-Filling (Phrase Mapping and Disambiguation)

4. Querying

The first two steps are handled in this chapter while the last two are elaborated

in the next chapter. This is because the output from step 1 is directly used in step 2

and the same is true for steps 3 and 4.

27

5.2 Question Analysis

In this step, the question of the user is analyzed based on purely syntactic features.

QA systems use syntactic features to deduce, for example, the right segmentation of

the question, determine which phrase corresponds to an instance (subject or object),

property or class and the dependency between the different phrases Diefenbach et al.

(2017a).

For now, we only deal with syntactic parsing of the incoming question in this

phase and converting it into a form that can be used for training the Recursive

Neural Network.

5.2.1 Part of Speech Tagging

Part of Speech (POS) Tagging is the process of annotating a word in a text as

corresponding to a particular part of speech eg: noun, verb, adjective, etc. In Natural

Language Processing (NLP) applications, POS tagging is usually the first step in a

pipeline and the output of POS tagging is typically used by downstream processes

such as parsing for instance.

For the model, the English version of the Stanford POS Tagger was used Toutanova

et al. (2003b). The Stanford POS Tagger is a log-linear POS tagger which utlilizes

both preceding and following tag contexts through the implementation of a depen-

dency network representation. It also uses a broad set of lexical features, including

joint conditioning on multiple consecutive words and fine-grained modeling of un-

known word features. The tagger uses the Penn Treebank Tagset Marcus et al. (1993)

for tagging the individual parts of speech and the Java implementation (v3.9.1) of

the tagger was used.

For example, consider the question "Philadelphia City Council is the governing

28

body of which city ?". The corresponding POS tagged question is represented in Fig

5.1.

5.2.2 Dependency Parsing

Parsing in NLP is the process of determining the syntactic structure of text using a

formal grammar. A formal grammar is basically a formal description of the structure

of a language. Given a sentence, a parser computes the combination of production

rules that generate the sentence according to the underlying grammar.

POS tagged information alone is not enough to identify the relationships between

the different chunks in a question. But this information can be leveraged by parsers

to provide rich meaningful information between constituent words.

The Stanford Neural Network dependency parser was used by the system Chen

and Manning (2014). The input to the parser was the sequence of POS tags gen-

erated from the previous step and the output is the corresponding parse tree. The

parser uses low-dimensional, dense word embeddings which can effectively alleviate

sparsity by sharing statistical strength between similar words, which results in a fast

neural network classifier that can make parsing decisions within a transition-based

dependency parser. The Java implementation (v3.9.1) on the Stanford parser was

used by the system.

Fig 5.2 represents the Stanford Dependency Parser output for the question "Philadel-

phia City Council is the governing body of which city ?".

There are two outputs of interest from Dependency Parsing. The first is the

Figure 5.1: Stanford POS-Tagger Output

29

Figure 5.2: Stanford Dependency Parser Output

typed dependencies for each word in the input sentence. The typed dependencies

representation provide a simple description of the grammatical relationships in a

sentence. Its expressed as triples of a relation between pairs of words. For the rest of

the thesis these relationships are denoted as RELS. The second output is the parse

tree. Typically, a parse tree is the syntactic representation of a sentence based on a

context-free grammar. It must be noted that a dependency parse tree does not make

a distinction between terminal and non-terminal categories. Also, they are simpler

on average than constituency-based parse trees because they contain fewer nodes.

The second output from the Stanford Parser is the dependency parse tree which

is in parent pointer format. A parent pointer tree is an N-ary tree data structure

in which each node has a pointer to its parent node but no pointers to child node.

The structure can be visualized as a set of singly linked lists that share part of their

structure, specifically their tails. From a given node, it is possible to traverse to the

ancestors of that node but not to any other node. This allows for sequential processing

30

of a parse tree which would allow efficient training of the template classification model.

5.3 Input Preparation

The output from the parse tree needs to be vectorized so that they can be supplied

to the neural network model. There are two strategies to vectorize words. They are:

1. One-Hot Encoding

2. Word Embedding

Based on the available input data five distinct kind of input models were developed

for training. These are summarized in Table 5.1

5.3.1 One-Hot Encoding

One-Hot encoding is a common strategy in machine learning for converting cate-

gorical input into a vector by setting all values as 0 except for 1 bit which has a value

1, hence the name One-Hot. For example the number of POS tags in the LC-QuAD

dataset is 43. So each POS tag is represented as a 43 x 1 vector where a single index

is 1 and the rest are 0 depending on the index of the POS tag being considered. This

conversion from an abstract categorical value to a consistently sized vector enables

easier processing and prediction by machine learning models.

5.3.2 Word Embedding

Generally, the goal of word embeddings is mapping the words in unlabeled text

data to a continuously-valued low dimensional space, in order to capture the internal

semantic and syntactic information. The concept of word embedding was first intro-

duced with the Neural Networks Language Model (NNLM). They are usually unsu-

pervised models and incorporate various architectures such as Restricted Boltzmann

31

Machine (RBM), Convolutional Neural Network (CNN), Recurrent Neural Network

(RNN) and Long-Short Term Memory (LSTM) that can be used to build word em-

beddings. Usually the goal of the NNLM is to maximize or minimize the function

of log likelihood, sometimes with additional constraints Li and Yang (2018). A key

reason for using word embedding is that, in the past few years it has been shown that

pre-trained models produce vastly better performance compared to existing methods

such as one-hot vectors.

Facebook FastText

For word embedding the system uses Facebook’s FastText embedding model Bo-

janowski et al. (2016). FastText uses an approach based on the skipgram model

(taking into account subword information), where each word is represented as a bag

of character n-grams. A vector representation is associated to each character n-gram;

words being represented as the sum of these representations. The main advantage of

using FastText is its ability to handle out of vocabulary words better due to the use

of the skipgram model. The dataset had over 6000 unique tokens which were com-

pressed into word vectors of dimensions 300 x 1 using the FastText word embedding

model.

Table 5.1: Dimensionality of different models created for

the template classification task

Model Dimensionality Description

POS 43 x 1 Only POS Tags expressed as One-Hot

Vector

32

POS + RELS 85 x 1 One-Hot POS vector concatenated

with One-Hot RELS1 Vector

FastText 300 x 1 FastText Word Embedding

FastText + POS +

RELS

385 x 1 FastText Word Vector concatenated

with One-Hot POS and RELS Vector

FastText + POS +

RELS + CHARS

444 x 1 FastText Word Vector concatenated

with One-Hot POS, RELS and

CHARS2 Vector

5.4 Recursive Neural Network

A recursive neural network is basically an extension of a recurrent neural network

implemented on a graph or tree-based input instead of a sequential input. Subsequent

sections deal with a basic introduction on recurrent neural networks and the Long

Short Term Memory (LSTM) cell which would lay the groundwork for extension into

the Tree-LSTM recursive neural network architecture which was used to train the

model for the proposed system.

5.4.1 Recurrent Neural Networks and LSTM

Recurrent neural networks (RNNs) are able to process input sequences of arbitrary

length via the recursive application of a transition function on a hidden state vector

ht. At each time step t, the hidden state ht is a function of the input vector xt that the
1RELS denote the relationships derived from the Dependency Parse of all questions. eg: nsubj,

pobj, etc. There were 42 unique RELS tags in the dataset.
2The CHARS vector for a word is the average of One-Hot Vectors of the characters of each word

in the question.

33

network receives at time t and its previous hidden state ht-1. For example, the input

vector xt could be a vector representation of the t-th word in a body of text Elman

(1990), Mikolov (2012). The hidden state htεRd which represents a d-dimensional

distributed representation of the tokens observed up to time t.

Commonly, the recurrent neural network transition function is an affine transfor-

mation followed by a pointwise nonlinearity such as the hyperbolic tangent function:

ht = tanh(Wxt + Uht−1 + b) (5.1)

where ht is the new hidden state at time step t, ht−1 is the previous hidden state

at time step t− 1, xt is the input at time step t. Finally, W , U and b are parameter

vectors that the model is trying to learn.

Unfortunately, a problem with recurrent neural networks with transition functions

of this form is that during training, components of the gradient vector can grow or

decay exponentially over long sequences which is called the vanishing gradient problem

Hochreiter (1998).

To address this problem, Hochreiter and Schmidhuber (1997) proposed the LSTM

architecture which mitigates the issue of learning long-term dependencies by intro-

ducing a memory cell that is able to preserve state over long periods of time. While

numerous LSTM variants have been described, here we describe the version used by

Zaremba and Sutskever (2014).

The LSTM unit at each time step t can be defined as a collection of vectors in Rd,

an input gate it, a forget gate ft, an output gate ot, a memory cell ct and a hidden

state ht. The values of the gating vectors it, ft and ot are in [0, 1] and d is the memory

dimension of the LSTM.

34

The LSTM transition equations are as follows:

it = σ(W (i)xt + U (i)ht−1 + b(i)),

ft = σ(W (f)xt + U (f)ht−1 + b(f)),

ot = σ(W (o)xt + U (o)ht−1 + b(o)),

ut = σ(W (u)xt + U (u)ht−1 + b(u)),

ct = it � ut + ft � ct−1,

ht = ot � tanh(ct)

(5.2)

where xt is the input at the current time step, σ denotes the logistic sigmoid function

and � denotes elementwise multiplication. The forget gate controls the extent to

which the previous memory cell is forgotten, the input gate controls how much each

unit is updated, and the output gate controls the exposure of the internal memory

state. The hidden state vector in an LSTM unit is therefore a gated, partial view of

the state of the unit’s internal memory cell. Since the value of the gating variables vary

for each vector element, the model can learn to represent information over multiple

time scales.

5.4.2 Tree-LSTM

Recursive neural networks are non-linear adaptive models that are able to learn

deep structured information. They were introduced as promising machine learning

models for processing data from structured domains. They can be employed for both

classification and regression problems and are capable of solving both supervised and

unsupervised tasks. They provide the flexibility of being able to work with input of

arbitrary length compared to other feature based approaches which are constrained

to fixed length vectors Chinea (2009).

35

Figure 5.3: Top: A chain-structured LSTM network (Recurrent Neural Network)
Bottom: A tree-structured LSTM network with arbitrary branching factor (Recur-
sive Neural Network) Tai et al. (2015)

The Tree-LSTM was implemented based on the model proposed by Tai et al.

(2015). The architecture presented below is based on their implementation. Tree-

LSTM is a generalization of LSTMs to tree-structured network topologies. A key dis-

tinction between Tree-LSTM and standard LSTM is that, while the standard LSTM

composes its hidden state from the input at the current time step and the hidden

state of the LSTM unit in the previous time step, the tree-structured LSTM, or Tree-

LSTM, composes its state from an input vector and the hidden states of arbitrarily

many child units. The standard LSTM can then be considered a special case of the

Tree-LSTM where each internal node has exactly one child. Fig 5.4.2 pictorially de-

36

picts this distinction between the architectures of the two models. For the proposed

system, the Child-Sum Tree-LSTM architecture was used.

Similar to standard LSTM units, each Tree-LSTM unit (indexed by j) contains

input and output gates ij and oj, a memory cell cj, hidden state hj and input vector

xj where xj is a vector representation of a word in a sentence. The critical difference

between the standard LSTM unit and Tree-LSTM units is that gating vectors and

memory cell updates for a given node are dependent on the states of its child units.

Additionally, instead of a single forget gate, the Tree-LSTM unit contains one forget

gate fjk for each child k. This allows the Tree-LSTM unit to selectively incorporate

information from each child. For example, a Tree-LSTM model can learn to empha-

size semantic heads in a semantic relatedness task, or it can learn to preserve the

representation of sentiment-rich children for sentiment classification Tai et al. (2015).

Given a tree, let C(j) denote the set of children of node j. The Tree-LSTM

transition equations are the following:

h̃j =
∑
kεC(j)

hk (5.3)

ij = σ(W (i)xj + U (i)h̃j + b(i)) (5.4)

fjk = σ(W (f)xj + U (f)hk + b(f)) (5.5)

oj = σ(W (o)xj + U (o)h̃j + b(o)) (5.6)

uj = σ(W (u)xj + U (u)h̃j + b(u)) (5.7)

37

cj = ij � uj +
∑
kεC(j)

fjk � ck (5.8)

hj = oj � tanh(cj) (5.9)

The Tree-LSTM learns a question by passing the sequence of words and the tree

structure. Although the tree begins at the root, the model recursively traverses the

tree and first learns the hidden states of the leaf nodes. The state of the leaf nodes

are used by their corresponding parents to derive their state and so on until the

network finally reaches the root node. So learning occurs breadth first from the leaf

to the root. Finally, the output from the root node is converted into a Nt dimensional

vector using a softmax classifier where Nt is the number of templates which in this

case is 15. Formally, to predict template t̂ from the set of templates T we calculate

the softmax at the root node followed by the argmax to classify the template for the

given question as shown below:

p̂θ(t|xroot) = softmax(W (s)hroot + b(s)),

t̂ = argmax
t

p̂θ(t|xroot)
(5.10)

The cost function is the negative log-likelihood of the true class label y and λ is

the L2-Regularization hyperparameter as given below:

J(θ) = −logp̂θ(y|xroot) +
λ

2
||θ||22 (5.11)

5.4.3 Implementation

The model was implemented using the Pytorch deep learning framework. The

original Tree-LSTM implementation which is based on Tai et al. (2015) is available

38

here 3. The template classification model was adapted from this source code and is

available on GitHub 4.

The major advantages in using Pytorch are:

1. Pytorch’s usage of a dynamic computation graph: Deep learning frameworks

maintain a computational graph that defines the order of computations that

are required to be performed. What typically happens in these frameworks is

that, a language (in this case Python) is used to define the computation graph

and an execution mechanism (C++) reads and executes the graph. This setup

is motivated due to efficiency concerns. Hence, most deep learning frameworks

use a static computation graph (memory and computation needs calculated

in advance before the graph is executed) for better optimization and perfor-

mance. But for NLP applications the input is typically of variable length and

hence a dynamic computation graph is essential. Pytorch excels in this dy-

namic computation approach and has its built-in from the ground up while in

other frameworks such as Tensorflow such behavior needs to be bootstrapped

as needed which although possible can be quite cumbersome. This availability

of dynamic computation as the execution mechanism was critical in choosing

Pytorch for developing the system.

2. Strong developer community with vast resources to get started and easy avail-

ability of readable and documented source code or packages for most standard

neural network architectures that can be easily tailored to specific problems.
3https://github.com/dasguptar/treelstm.pytorch
4https://github.com/ram-g-athreya/RNN-Question-Answering

39

5.5 Conclusion

The next chapter expounds how the results from the template classification task

are used by the proposed system to fill the variable slots in the predicted template to

generate the appropriate SPARQL query which can answer the given question.

40

Chapter 6

SLOT FILLING AND QUERYING

6.1 Slot Filling

For a given input question, the template classification algorithm from the previous

chapter determines the top-2 templates that are most likely to answer the question.

The reason for considering top-2 templates is because of misclassification between

specific pairs of templates which is discussed in detail in section 7.2. So, to improve

overall accuracy the top-2 templates from the model are considered which is basically

the argmax and 2nd highest argmax of the softmax output from the neural network

model.

This narrows the possibilities of SPARQL queries that need to be considered. The

template typically captures the semantic structure of the user’s query which is then

mapped to the underlying knowledge graph leaving gaps only for the slots that need

to be injected as needed. The candidate SPARQL template broadly contains three

kinds of slots that need to be filled:

1. Resources: Resources are named entities (proper nouns) which can be detected

using standard named entity recognition tools. For example, London, Microsoft,

etc.

2. Predicates: Predicates are nouns, adjectives, or verbs that may modify a

resource. For example, born, capital, etc.

3. Ontology Classes: Ontology classes which are associated with resource define

the type of class a resource might fall under. For example, when considering

41

the resource Barack Obama (http://dbpedia.org/page/Barack_Obama) a valid

ontology class would be Person (http://dbpedia.org/ontology/Person). The on-

tology classes are linked through the rdf:type (https://www.w3.org/1999/02/22-

rdf-syntax-ns#type) predicate of the target resource.

For example, consider the question "Philadelphia City Council is the governing

body of which city ?". The underlying candidate template detected for this question

from the template classification algorithm would be Template 1:

SELECT DISTINCT ?uri WHERE { ?uri <p ><r >.

OPTIONAL { ?uri rdf:type <class >}

}

As can be seen, for answering this question one resource, one predicate and one

ontology class needs to be detected. It must be noted that the ontology class detection

is optional and even though the original candidate SPARQL query from the LC-

QuAD dataset does not require an ontology class the present system requires it since

templates 1 and 301 were merged during the data preprocessing step.

Since specific components/libraries are optimized for named entity recognition and

relation extraction tasks an ensemble of tools were used for the slot filling process.

The reason for using multiple tools for a given task was to cover the weaknesses of

each while at the same time maximizing their strengths so as to produce the best

possible results.

For named entity recognition DBpedia Spotlight and TagMe were used in conjunc-

tion. Mendes et al. (2011) developed DBpedia Spotlight for automatically annotating

text documents with DBpedia URIs aka resources. DBpedia Spotlight allows users

to configure the annotations to their specific needs through the DBpedia Ontology

and quality measures such as prominence, topical pertinence, contextual ambiguity

and disambiguation confidence. For the slot filling task a confidence of 0.4 (which

42

is the default confidence setting in DBpedia Spotlight) was used while attempting

to detect named entities in the input question. Ferragina and Scaiella (2010) imple-

mented Tagme a system that is able to efficiently and judiciously augment a plain-text

with pertinent hyperlinks to Wikipedia pages. The specialty of Tagme is that it may

annotate texts which are short and poorly composed (which makes it ideal for ques-

tion answering) to underlying Wikipedia pages and their inter-relations. Singh et al.

(2018) showed in their analysis that Tagme outperforms other Named Entity Recog-

nition tools on the LC-QuAD dataset and hence it was a natural choice for this task.

But Tagme suffers when it comes to detection of single word entities such as Geneva

(http://dbpedia.org/resource/Geneva) in the question: "Is Esther Alder the mayor

of Geneva?". But DBpedia Spotlight has a higher accuracy in spotting such short

entities while it suffers against multi-word entities which are detected more efficiently

by Tagme hence making them complimentary solutions for the resource detection

task. Hence, Tagme’s results were augmented with DBpedia Spotlight’s results.

For relation linking, Singh et al. (2018) prescribes that RNLIWOD 1 has the best

overall performance on the LC-QuAD dataset but their results show that RNLIWOD

has poor overall macro performance (0.25 precision, 0.22 recall and 0.23 F-1 score).

So, RNLIWOD’s lexicon was augmented with a dictionary of predicates and ontology

classes along with their rdfs:label (https://www.w3.org/2000/01/rdf-schema#label)

used in the DBpedia Chatbot project Athreya et al. (2018). This resulted in higher

coverage of predicates and ontology classes that could be matched with the input

question thereby leading to better performance. The lexicon is basically a key value

hashmap with the keys being the various surface forms that can be used to express

a particular predicate or ontology class and their value being all possible predicates

and ontology classes which match the sequence of words in the given surface form.
1https://github.com/dice-group/NLIWOD

43

6.2 Querying

After the candidates for each slot are detected candidate queries are built using

the Cartesian product of the possible values in each slot. Each combination is queried

against a DBpedia SPARQL endpoint to determine if they yield any results. This

process continues until a viable combination is discovered which produces results

against the endpoint. As Usbeck et al. (2015a) show, the problem of SPARQL query

generation and pruning of invalid candidate queries is very computationally intensive

and very little progress has been made beyond semantic analysis of the Cartesian

product approach to improve efficiency and performance in this part of the question

answering process.

6.3 Conclusion

The next chapter presents the results and in-depth analysis of both the template

classification model as well as the overall results after slot filling with comparison to

existing systems evaluated against the LC-QuAD and QALD-7 datsets.

44

Chapter 7

ANALYSIS AND RESULTS

7.1 Model Selection and Hyperparameter Tuning

Among the different models for input that were attempted the model that pro-

duced the best results was the one that used a combination of FastText Word Embed-

ding concatenated with the One-Hot Vectors of the POS tag and word dependency

relationship (RELS) derived from the syntactic parse of the sentence combined with

the average of the One-Hot character vectors of each character in a given word. Fig

7.1 shows the accuracy across epochs for each of the model combinations that were

considered and clearly shows that the FastText + POS + RELS + CHARS model

outperforms all other combinations of input.

The preprocessed dataset containing 4920 questions was split into train and test

datasets with a split of 80% training and 20% test data. The training dataset com-

prised of 3936 questions and the test dataset comprised of 984 questions. The accuracy

of this model was 0.828 on the test dataset. The formula for calculating the accuracy

is as follows:

accuracy(y, ŷ) =
1

N

N∑
i=1

1(ŷi = yi) (7.1)

where ŷi is the predicted value of the ith example, y is the corresponding true

value and N is the total number of examples.

Table 7.1 tabulates the hyperparameters of the model. The input vector was

the concatenated 444-dimensional word vector. The optimizer used was the Adam

Optimizer Kingma and Ba (2014) with a mini batch size of 25 examples. The loss

45

Figure 7.1: Accuracy on Test Dataset for different input models

function used was Cross - Entropy Loss which has been shown to exhibit superior

performance for tasks involving multivariate classification Janocha and Czarnecki

(2017).

Due to the low number of training examples the model had to be aggressively

regularized and the learning rate periodically curtailed to prevent overfitting while

simultaneously improving the model’s generalization performance. Three strategies

were employed to achieve this:

1. Weight Decay: Weight Decay, also called as L2 regularization is a component

of the weight update rule that updates the weights after each pass by multiplying

it with a factor less than 1. This prevents the weights from growing too large,

and can be seen as gradient descent on a quadratic regularization term (basically

46

akin to L2 Normalization) Krogh and Hertz (1992). The model used a weight

decay of 2.25 x 10-3.

2. Dropout: Deep neural nets with a large number of parameters are very pow-

erful machine learning systems. Overfitting is an issue in such linear networks.

The key idea behind dropout is to randomly drop units (along with their connec-

tions) from the neural network during training. This prevents the model from

developing complex co-adaptations on the training data and thereby mitigating

overfitting Srivastava et al. (2014). The model uses a dropout of 0.2.

3. Adaptive Learning Rate: The optimal initial learning rate for the model

was found to be 1 x 10-2. But in subsequent epochs it was discovered through

exhaustive experimentation that the model quickly overfitted on the training

dataset while performance plateaued on the test dataset. To mitigate this, the

learning rate was reduced by a constant factor periodically after a predefined

number of epochs. In the model a step decay factor of 0.25 was implemented

to reduce the learning rate once every 2 epochs to prevent the model from

overfitting on the dataset.

Table 7.1: Model Parameters

Parameter Value

Input Dimensions 444 x 1

LSTM Memory Dimensions 150 x 1

Epochs 7

Mini Batch Size 25

Learning Rate 1 x 10-2

Weight Decay (Regularization) 2.25 x 10-3

47

Embedded Learning Rate 1 x 10-2

Dropout 0.2

Loss Function Cross - Entropy Loss

Optimizer Adam Optimizer

Learning Rate Scheduler Stepwise Learning Rate Decay

Step LR Step Size Once every 2 epochs

Step LR Decay 0.25

7.2 Template Classification

The best model from the template classification task produced an accuracy of

0.828 and 0.945 when considering the top-2 templates. Table 7.2 displays template

level accuracy. The number of examples does not seem to affect the accuracy at the

template level.

Rather, based on the confusion matrix from Fig 7.2 it can be observed that specific

templates misclassify each other. For example, templates 3 and 5 are more likely to

misclassify each other and the same can be said for 5 and 6 but 3 and 6 do not

misclassify. Also template 1 misclassifies with template 2 at a much higher rate since

they are basically a single triple pattern which are mirrors of each other. That is,

template 1 has the triple pattern ?uri <p ><r > while template 2 has the triple

pattern <r ><p >?uri.

To understand this phenomenon further, the softmax outputs of each question

was aggregated at the template level and the centroid was calculated by combining

the word vectors for each template. Then, the Pearson’s correlation was calculated

for each pair of templates and a heatmap was generated considering only values 0.5

to 1 with the rest being white. The contours of the heatmap represented in Fig 7.3 is

48

Figure 7.2: Confusion Matrix

very much similar to the confusion matrix from Fig 7.2. This seems to indicate that

the structure of the questions for the misclassified templates are viewed the same or

similarly according to the model. Looking more deeply at the actual questions from

the dataset it can be gathered that the questions are actually very similar in structure

and what is different is the order of the SPARQL triple pattern which is dictated by

the knowledge graph and cannot be pinned down with syntactic parsing alone.

49

Figure 7.3: Pearson Matrix

Table 7.2: Template Level Model Accuracy on LC-QuAD

dataset

Template ID No of Examples Accuracy

2 143 0.87

5 141 0.78

16 103 0.83

151 93 0.98

50

1 89 0.76

3 79 0.75

8 66 0.89

6 53 0.67

105 51 0.94

15 50 0.80

101 30 0.83

7 21 0.66

111 19 0.89

11 17 0.70

106 9 0.66

To test how well the model generalizes it was also tested on the Question Answer-

ing Over Linked Data (QALD-7) Usbeck et al. (2017) multilingual dataset without

any additional training or optimizations. Basically, the model had never seen the

dataset before and hence can serve as a good candidate to test the model’s predictive

power on never before seen data.

The test dataset was not considered since all 50 questions in that dataset contained

multiple predicates from other schemas, predominantly Dublin Core.

The training dataset contains 215 questions of which 85 examples were elimi-

nated and the model was tested on a total of 130 examples which is roughly 60%

of the dataset and represented 7 templates which were analogous in the LC-QuAD

dataset. The remaining questions were manually tagged by us based on the similarity

of their SPARQL queries to the LC-QuAD dataset. The reasons why questions were

eliminated are as follows:

51

1. Filter based queries: As already mentioned during the overview the LC-

QuAD dataset currently does not support FILTER or OPTIONAL queries

which do feature in the QALD dataset. Hence such queries had to be elim-

inated while testing. An example from the dataset of such a question would be:

"Is Frank Herbert still alive?" which has the SPARQL query ASK WHERE

{ OPTIONAL { <http://dbpedia.org/resource/Frank_Herbert >

<http://dbpedia.org/ontology/deathDate >?date . }

FILTER (!BOUND(?date)) }

2. UNION Queries: Union queries are queries that combine two select state-

ments. For example consider the following question from the dataset: "Give me

a list of all critically endangered birds." whose corresponding SPARQL tem-

plate query is SELECT DISTINCT ?uri ?p WHERE {

?uri a <http://dbpedia.org/ontology/Bird >. {

?uri <http://dbpedia.org/ontology/conservationStatus >’CR’

^^<http://www.w3.org/2001/XMLSchema#string >. } UNION {

?uri <http://purl.org/dc/terms/subject >

<http://dbpedia.org/resource/Category:Critically_endangered_animals

>. } }

3. MinMax Queries: MinMax queries as the name suggests are natural language

questions which ask for a variation of minimum or maximum of something eg:

highest, lowest, largest, smallest, longest, shortest, etc. An example query of

this kind would be: "What is the highest mountain in Australia?". Currently

such templates are not available in LC-QuAD to train the model.

4. Many Triples: Some questions in the dataset require queries of 3 or more

triples to answer.

52

5. Complex Boolean Questions: Currently LC-QuAD’s Boolean questions

have only a single triple in the question body. In contrast, the QALD dataset

also contains examples of questions with 2 triples and several variations of com-

plex queries for boolean questions which LC-QuAD does not support.

6. Template not available in LC-QuAD: For example consider the following

question: "Who is the king of the Netherlands ?". The SPARQL template for

this question is SELECT DISTINCT ?uri WHERE { <r ><p >?uri .

?uri a <class >. } which is currently not supported by LC-QuAD.

The overall accuracy was 0.618 and the top-2 accuracy was 0.786. It is clear

that the performance considerably varies per dataset. This is because the quality of

questions differs across datasets. Quality has various dimensions, such as complexity

or expressiveness. Table 7.3 shows the template level breakdown for accuracy in the

QALD dataset. As can be seen template 2 is over represented compared to other

templates with some templates such as template 5 and template 11 having only 1

example. But the top 3 templates (by number of examples) which comprises 84%

of the dataset have competent top-2 accuracy which shows reasonable generalization

power for the template classification model.

Table 7.3: Template Level Model Accuracy on QALD

dataset

Template ID No of Examples Accuracy Top-2 Accuracy

2 80 0.68 0.84

1 18 0.66 0.94

151 12 1.0 1.0

3 12 0.25 0.42

53

Figure 7.4: Answer Type Detection

8 6 0.00 0.33

5 1 0.00 0.00

11 1 0.00 0.00

An interesting byproduct of the model when grouped together based on the type

of question i.e. entity, count or boolean without the need for modeling question word

or answer type detection.

7.3 Slot Filling

Usbeck et al. (2015b) proposed GERBIL, a general purpose evaluation framework

for bench-marking different question answering systems. The advantage of GERBIL

54

is that it provide developers, end users and researchers with easy-to-use interfaces that

allow for the agile, fine-grained and uniform evaluation of annotation tools on multiple

datasets. In particular, GERBIL provides comparable results to tool developers so as

to allow them to easily discover the strengths and weaknesses of their implementations

with respect to the state of the art. The system ensures reproducibility and archiving

of results and generates data in a machine readable format, allowing for the efficient

querying and post-processing of evaluation results. The GERBIL system was used to

evaluate the proposed system both on the LC-QuAD dataset as well as on the QALD-7

dataset. Table 7.4 shows the performance of the system on the LC-QuAD test dataset

and Table 7.5 shows the performance of the system on QALD-7 train dataset along

with a comparison of the latest question answering systems bench-marked on that

dataset. A brief description on each of the metrics used in the evaluation is given

below:

• Micro Precision: The ratio of correct answers vs total number of answers

retrieved.

• Micro Recall: The ratio of correct answers retrieved vs gold standard answers.

• Micro F-Score: : The harmonic mean of micro precision and micro recall.

• Macro Precision: The average of the Micro Precision over all questions.

• Macro Recall: The average of Micro Recall over all questions.

• Macro F-Score: The harmonic mean of Macro Precision and Macro Recall.

55

Table 7.4: Performance of system on LC-QuAD

LC-QuAD Test Resource Predicate Ontology Class Overall

Micro Precision 0.802 0.950 0.976 0.135

Micro Recall 0.150 0.178 0.206 0.064

Micro F-1 Measure 0.253 0.300 0.341 0.087

Macro Precision 0.218 0.266 0.271 0.416

Macro Recall 0.215 0.258 0.261 0.428

Macro F-1 Measure 0.216 0.260 0.264 0.419

Table 7.5: Performance comparison on QALD-7

QALD-7 Train WDAqua ganswer2 Proposed System

Micro Precision - 0.113 0.757

Micro Recall - 0.561 0.466

Micro F-1 Measure - 0.189 0.577

Macro Precision 0.490 0.557 0.416

Macro Recall 0.54 0.592 0.423

Macro F-1 Measure 0.510 0.556 0.417

Some of the reasons for errors in the named entity recognition task were:

1. Specific instance detection: Sometimes a specific form of an entity gets

detected instead of the generic variety. For example, considering the ques-

tion: "How many schools have bison as a mascot ?" the entity American Bison

(http://dbpedia.org/resource/American_bison) was annotated instead of the

generic bison (http://dbpedia.org/resource/Bison).

56

2. Disambiguation: Sometimes it was hard to figure out the right entity to

map to the resource when there were partial matches between the sequence of

words in the question and the label of the corresponding entity. For example,

consider the question: "Was 2658 Gingerich discovered in Harvard ?". Even

though Harvard University (http://dbpedia.org/resource/Harvard_University)

has a higher PageRank in the DBpedia knowledge graph and would be the

correct choice for most questions in this particular case the correct entity is

Harvard College (http://dbpedia.org/resource/Harvard_College). But, as can

be seen, based on the question alone it is reasonable to consider either entity to

be a possible fit for the given question.

3. Accented (Unicode) Characters: Entities with accented or foreign charac-

ters were detected poorly by both entity recognition tools. eg: Étienne Biéler

(http://dbpedia.org/resource/Étienne_Biéler).

4. Colloquialisms: Colloquial forms referring to well known entities were hard

to detect. For example, when considering the question "How many companies

were started in the states ?" the phrase "the states" refers to USA

(http://dbpedia.org/resource/United_States) but instead State (Political)

(http://dbpedia.org/resource/State_(polity)) was detected.

Some of the reasons for errors in the relation extraction task (predicate and on-

tology class detection) were:

1. Implicit Predicates: Sometimes the predicate needed to answer the question

cannot be inferred from the question. For example, consider the question "How

many golf players are there in Arizona State Sun Devils ?" its corresponding

SPARQL query (Template 101) is:

SELECT DISTINCT COUNT(?uri) WHERE {

57

?uri <http://dbpedia.org/ontology/college >

<http://dbpedia.org/resource/Arizona_State_Sun_Devils >.

?uri <http://www.w3.org/1999/02/22-rdf-syntax-ns#type >

<http://dbpedia.org/ontology/GolfPlayer >} . To answer the ques-

tion the predicate college (http://dbpedia.org/ontology/college) needs to be

detected but this is impossible to do so with existing methods based on just the

input question alone.

2. Abbreviations: Some questions used abbreviations instead of their expanded

form which relation linking tools struggled to detect. Eg: PM for Prime Minister

(http://dbpedia.org/ontology/primeMinister).

3. Disambiguation: The same issue of disambiguation also plagues relation link-

ing as it did for named entity recognition. For example, consider the ques-

tion: "What is the label of Double Diamond (album) ?" refers to record label

(http://dbpedia.org/ontology/recordLabel) which was difficult for the system

to detect.

4. Subset predicates: Sometimes specific forms of a predicate needed to be

detected e.g., head coach (http://dbpedia.org/property/headCoach) instead of

coach (http://dbpedia.org/property/coach).

58

Chapter 8

CONCLUSION AND FUTURE WORK

8.1 Conclusion

This thesis presents a novel approach for question answering over Linked Data

task by converting it into a template classification task followed by a slot filling task.

Although earlier approaches, most notably Unger et al. (2012) have attempted a

similar approach this was probably the first time that neural networks, specifically

recursive neural networks were applied for the template classification task. For com-

pleteness, a slot filling approach using an ensemble of the best components for the

named entity recognition and relation linking tasks were presented. The slot filler

utilizes the Cartesian product of detected entities for each possible slot to derive

candidate SPARQL queries which are then queried against the knowledge graph to

discover the best possible answer.

The key contributions of this thesis are:

1. State-of-the-art neural network techniques such as LSTM, recursive neural net-

works and word embeddings can be used to build a model that can address the

template classification task. Using such a model removes the need for feature

engineering. The template classification model achieved an accuracy of 0.828

accuracy and 0.945 top-2 accuracy on the LC-QuAD dataset and an accuracy

of 0.6183 and 0.786 top-2 accuracy on the QALD-7 dataset.

2. Since the template classification model was developed without any domain spe-

cific information/features it can easily be transferred across domains.

59

3. An interesting finding from the template classification model was the pairwise

misclassification of specific templates due to similarities in question structure

but variance in the underlying provenance of the knowledge graph. This in-

sight points to a potential future research direction on how to reconcile natural

language structures to their corresponding knowledge graph topology.

4. Another interesting finding from the thesis would be a possible application

of the model for answer type detection. Presently, many systems especially

question answering pipelines such as Singh et al. (2018) have a dedicated answer

type detection module to funnel queries to different sub-component question

answering systems that are best suited for answering questions of a specific

answer type. For such systems the present recursive neural network model

can serve as a drop-in answer type detection module since it requires no new

additional feature engineering (beyond the words and their parse tree) such as

WH-determiner (who, what, where, when, etc.) detection, length of the word,

etc.

5. After slot filling the system achieves a macro F-score 0.419 on the LC-QuAD

dataset and a macro F-score of 0.417 on the QALD-7 dataset.

8.2 Future Work

Although LC-QuAD provides 38 unique templates many of them do not have ad-

equate examples for training neural network models. Also, the coverage of templates

are not adequate for addressing all possible question types. The most important types

being:

1. OPTIONAL queries

2. UNION Queries

60

3. FILTER and LIMIT queries

4. MINMAX queries

5. Queries involving predicates from multiple schema eg: foaf, Dublin Core, etc.

Finding methods and datasets for training such questions to improve quantity

and quality of data would be an obvious future direction for this work. Efforts also

need to be made to integrate information from multiple sources especially Wikidata

to construct more robust question answering systems in the future.

Since acquiring such data is hard the template classification approach can be

extended. Instead of having a single model that classifies the entire SPARQL query,

the dataset can be modified in such a way that models can be developed to predict

segments of the final SPARQL query that would be needed to answer the question.

For example, a model could predict the answer type (entities, count, boolean) while

another tries to determine the structure of the WHERE condition (single triple or

multiple triples) and yet another determines if an additional triple with rdf:type is

needed. Then the results of all three can be combined to generate the candidate

template. Theoretically, such an approach should be able to give good results even

with the current paucity of data.

As mentioned earlier, a major strength of this approach is that it is domain in-

dependent. So an ideal offshoot of this research would be the application of this

approach to data rich domains such as biological or biomedical data which can add

to the veracity of the approach and hopefully produce interesting results.

For the slot filling task a simple algorithm using Cartesian Product was applied.

Instead, application of transfer learning could be explored where information from

the previous template classification task such as SPARQL query structure could be

used to intelligently identify entities that fit specific sub-graphs within the template.

61

Using this approach has the potential of drastically improving querying performance

and reducing the number of candidate queries to be considered. Also, relation extrac-

tion continues to be the Achilles’ Heel of questioning answering in linked data. An

interesting future direction would be to use the work being done in word embedding

being applied to the relation extraction problem to see if promising results can be

discovered.

62

REFERENCES

Athreya, R. G., A.-C. Ngonga Ngomo and R. Usbeck, “Enhancing community inter-
actions with data-driven chatbots–the dbpedia chatbot”, in “Companion of the The
Web Conference 2018 on The Web Conference 2018”, pp. 143–146 (International
World Wide Web Conferences Steering Committee, 2018).

Bizer, C., T. Heath and T. Berners-Lee, “Linked data: The story so far”, in “Semantic
services, interoperability and web applications: emerging concepts”, pp. 205–227
(IGI Global, 2011).

Bojanowski, P., E. Grave, A. Joulin and T. Mikolov, “Enriching word vectors with
subword information”, arXiv preprint arXiv:1607.04606 (2016).

Bordes, A., N. Usunier, S. Chopra and J. Weston, “Large-scale simple question an-
swering with memory networks”, arXiv preprint arXiv:1506.02075 (2015).

Cai, Q. and A. Yates, “Large-scale semantic parsing via schema matching and lexi-
con extension”, in “Proceedings of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers)”, vol. 1, pp. 423–433 (2013).

Chen, D. and C. Manning, “A fast and accurate dependency parser using neural
networks”, in “Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP)”, pp. 740–750 (2014).

Chinea, A., “Understanding the principles of recursive neural networks: A generative
approach to tackle model complexity”, in “International Conference on Artificial
Neural Networks”, pp. 952–963 (Springer, 2009).

Diefenbach, D., V. Lopez, K. Singh and P. Maret, “Core techniques of question answer-
ing systems over knowledge bases: a survey”, Knowledge and Information systems
pp. 1–41 (2017a).

Diefenbach, D., K. Singh, A. Both, D. Cherix, C. Lange and S. Auer, “The qanary
ecosystem: getting new insights by composing question answering pipelines”, in
“International Conference on Web Engineering”, pp. 171–189 (Springer, 2017b).

Dubey, M., D. Banerjee, D. Chaudhuri and J. Lehmann, “Earl: Joint entity and
relation linking for question answering over knowledge graphs”, arXiv preprint
arXiv:1801.03825 (2018).

Elman, J. L., “Finding structure in time”, Cognitive science 14, 2, 179–211 (1990).

Ferragina, P. and U. Scaiella, “Tagme: on-the-fly annotation of short text fragments
(by wikipedia entities)”, in “Proceedings of the 19th ACM international conference
on Information and knowledge management”, pp. 1625–1628 (ACM, 2010).

Hochreiter, S., “The vanishing gradient problem during learning recurrent neural
nets and problem solutions”, International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems 6, 02, 107–116 (1998).

63

Hochreiter, S. and J. Schmidhuber, “Long short-term memory”, Neural computation
9, 8, 1735–1780 (1997).

Höffner, K., S. Walter, E. Marx, R. Usbeck, J. Lehmann and A.-C. Ngonga Ngomo,
“Survey on challenges of question answering in the semantic web”, Semantic Web
8, 6, 895–920 (2017).

Janocha, K. and W. M. Czarnecki, “On loss functions for deep neural networks in
classification”, arXiv preprint arXiv:1702.05659 (2017).

Kaufmann, E. and A. Bernstein, “How useful are natural language interfaces to the
semantic web for casual end-users?”, in “The Semantic Web”, pp. 281–294 (Springer,
2007).

Kingma, D. P. and J. Ba, “Adam: A method for stochastic optimization”, arXiv
preprint arXiv:1412.6980 (2014).

Krogh, A. and J. A. Hertz, “A simple weight decay can improve generalization”, in
“Advances in neural information processing systems”, pp. 950–957 (1992).

Lehmann, J., R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes, S. Hell-
mann, M. Morsey, P. Van Kleef, S. Auer et al., “Dbpedia–a large-scale, multilingual
knowledge base extracted from wikipedia”, Semantic Web 6, 2, 167–195 (2015).

Li, Y. and T. Yang, “Word embedding for understanding natural language: A survey”,
in “Guide to Big Data Applications”, pp. 83–104 (Springer, 2018).

Lopez, V., V. Uren, M. Sabou and E. Motta, “Is question answering fit for the semantic
web?: a survey”, Semantic Web 2, 2, 125–155 (2011).

Marcus, M. P., M. A. Marcinkiewicz and B. Santorini, “Building a large annotated
corpus of english: The penn treebank”, Computational linguistics 19, 2, 313–330
(1993).

McGuinness, D. L., “Question answering on the semantic web”, IEEE Intelligent Sys-
tems 19, 1, 82–85 (2004).

Mendes, P. N., M. Jakob, A. García-Silva and C. Bizer, “Dbpedia spotlight: shedding
light on the web of documents”, in “Proceedings of the 7th international conference
on semantic systems”, pp. 1–8 (ACM, 2011).

Mikolov, T., “Statistical language models based on neural networks”, Presentation at
Google, Mountain View, 2nd April (2012).

Saleem, M., S. N. Dastjerdi, R. Usbeck and A.-C. N. Ngomo, “Question answering
over linked data: What is difficult to answer? what affects the f scores”, in “Joint
Proceedings of BLINK2017: 2nd International Workshop on Benchmarking Linked
Data and NLIWoD3: Natural Language Interfaces for the Web of Data co-located
with 16th International Semantic Web Conference (ISWC 2017), Vienna, Austria,
October 21st-to-22nd”, (2017).

64

Singh, K., A. S. Radhakrishna, A. Both, S. Shekarpour, I. Lytra, R. Usbeck, A. Vyas,
A. Khikmatullaev, D. Punjani, C. Lange et al., “Why reinvent the wheel: Let’s
build question answering systems together”, in “Proceedings of the 2018 World
Wide Web Conference on World Wide Web”, pp. 1247–1256 (International World
Wide Web Conferences Steering Committee, 2018).

Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov,
“Dropout: a simple way to prevent neural networks from overfitting”, The Journal
of Machine Learning Research 15, 1, 1929–1958 (2014).

Tai, K. S., R. Socher and C. D. Manning, “Improved semantic representa-
tions from tree-structured long short-term memory networks”, arXiv preprint
arXiv:1503.00075 (2015).

Toutanova, K., D. Klein, C. D. Manning and Y. Singer, “Feature-rich part-of-speech
tagging with a cyclic dependency network”, in “Proceedings of the 2003 Conference
of the North American Chapter of the Association for Computational Linguistics
on Human Language Technology-Volume 1”, pp. 173–180 (Association for Compu-
tational Linguistics, 2003a).

Toutanova, K., D. Klein, C. D. Manning and Y. Singer, “Feature-rich part-of-speech
tagging with a cyclic dependency network”, in “Proceedings of the 2003 Conference
of the North American Chapter of the Association for Computational Linguistics
on Human Language Technology-Volume 1”, pp. 173–180 (Association for Compu-
tational Linguistics, 2003b).

Trivedi, P., G. Maheshwari, M. Dubey and J. Lehmann, “Lc-quad: A corpus for
complex question answering over knowledge graphs”, in “International Semantic
Web Conference”, pp. 210–218 (Springer, 2017).

Unger, C., L. Bühmann, J. Lehmann, A.-C. Ngonga Ngomo, D. Gerber and P. Cimi-
ano, “Template-based question answering over rdf data”, in “Proceedings of the 21st
international conference on World Wide Web”, pp. 639–648 (ACM, 2012).

Unger, C., A.-C. N. Ngomo and E. Cabrio, “6th open challenge on question answering
over linked data (qald-6)”, in “Semantic Web Evaluation Challenge”, pp. 171–177
(Springer, 2016).

Usbeck, R., A.-C. N. Ngomo, L. Bühmann and C. Unger, “Hawk–hybrid question
answering using linked data”, in “European Semantic Web Conference”, pp. 353–
368 (Springer, 2015a).

Usbeck, R., A.-C. N. Ngomo, B. Haarmann, A. Krithara, M. Röder and G. Napoli-
tano, “7th open challenge on question answering over linked data (qald-7)”, in
“Semantic Web Evaluation Challenge”, pp. 59–69 (Springer, 2017).

Usbeck, R., M. Röder, A.-C. Ngonga Ngomo, C. Baron, A. Both, M. Brümmer,
D. Ceccarelli, M. Cornolti, D. Cherix, B. Eickmann et al., “Gerbil: general en-
tity annotator benchmarking framework”, in “Proceedings of the 24th International
Conference on World Wide Web”, pp. 1133–1143 (International World Wide Web
Conferences Steering Committee, 2015b).

65

Zaremba, W. and I. Sutskever, “Learning to execute”, arXiv preprint arXiv:1410.4615
(2014).

66

