
Broken Ergodicity and 1/f Noise from Finite, Local Entropy Baths

by

Bryce F. Davis

A Dissertation Presented in Partial Fulfillment
of the Requirement for the Degree

Doctor of Philosophy

Approved November 2018 by the
Graduate Supervisory Committee:

Ralph V. Chamberlin, Chair
Oliver Beckstein
Philip Mauskopf

George Wolf

ARIZONA STATE UNIVERSITY

December 2018



ABSTRACT

Fluctuations with a power spectral density depending on frequency as 1/fα (0 <

α < 2) are found in a wide class of systems. The number of systems exhibiting

1/f noise means it has far-reaching practical implications; it also suggests a pos-

sibly universal explanation, or at least a set of shared properties. Given this di-

versity, there are numerous models of 1/f noise. In this dissertation, I summarize

my research into models based on linking the characteristic times of fluctuations of

a quantity to its multiplicity of states. With this condition satisfied, I show that

a quantity will undergo 1/f fluctuations and exhibit associated properties, such as

slow dynamics, divergence of time scales, and ergodicity breaking. I propose that

multiplicity-dependent characteristic times come about when a system shares a con-

stant, maximized amount of entropy with a finite bath. This may be the case when

systems are imperfectly coupled to their thermal environment and the exchange of

conserved quantities is mediated through their local environment. To demonstrate

the effects of multiplicity-dependent characteristic times, I present numerical simula-

tions of two models. The first consists of non-interacting spins in 0-field coupled to

an explicit finite bath. This model has the advantage of being degenerate, so that

its multiplicity alone determines the dynamics. Fluctuations of the alignment of this

model will be compared to voltage fluctuations across a mesoscopic metal-insulator-

metal junction. The second model consists of classical, interacting Heisenberg spins

with a dynamic constraint that slows fluctuations according to the multiplicity of the

system’s alignment. Fluctuations in one component of the alignment will be com-

pared to the flux noise in superconducting quantum interference devices (SQUIDs).

Finally, I will compare both of these models to each other and some of the most

popular models of 1/f noise, including those based on a superposition of exponential

relaxation processes and those based on power law renewal processes.
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Chapter 1

BACKGROUND

1.1 1/f Noise: Its Discovery and Prevalence

Some of the earliest investigations of the spectral distribution of noise power were

carried out by J.B. Johnson on the voltage fluctuations of vacuum tube amplifiers and

resistors. Johnson was able to measure three distinct categories of noise. First, he

measured a noise with a spectrum independent of the frequency, originating from the

thermal motion of electrons present in all conductors, now known as Johnson-Nyquist

noise [57]. In an analogy to white light, having equal contributions to its intensity

from every visible wavelength, noise that has a frequency-independent spectral density

is known as white noise. Second, Johnson measured another white noise, but with its

origins in the thermionic emission of single electrons from the surface of the cathode

in the vacuum tube amplifier, now known as shot noise. The third, initially named

flicker noise, now more commonly called pink noise and most often 1/f noise, with

a spectral density that increased with decreasing frequency, was the most puzzling to

Johnson [56].

This first type of noise, Johnson-Nyquist noise, was noted by Johnson to have two

important characteristics: it was proportional to the resistance R and temperature

T of the conductor under investigation. Otherwise, the composition, size, etc. of the

conductor were immaterial. The only dependence upon the measurement apparatus

was a linear dependence of the magnitude upon the bandwidth, indicating that the

voltage fluctuations δV were distributed uniformly over all frequencies; that is, the

power spectral density SV was constant as a function of frequency f [57].
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The same year, H. Nyquist (the second namesake of Johnson-Nyquist noise) pro-

vided a theoretical treatment of Johnson-Nyquist noise [95]. Nyquist considered two

resistors connected in a circuit, in thermal equilibrium with one another. Recognizing

that the power dissipated in a resistor from fluctuations in voltage of the other resis-

tor must be the same for both resistors, he developed what is now called the Nyquist

relation for the spectral density of voltage fluctuations:

SV (f) =
d

df
〈(δV )2〉 = 4kBTR (1.1)

where kB is Boltzmann’s constant. This expression is the first instance of a fluctuation-

dissipation relation, relating dissipative processes (through R, the resistance) to equi-

librium fluctuations (in voltage, δV ).

The second type of noise, shot noise, also has a white noise spectrum. However, its

origin is not the thermal fluctuations of electrons, but instead is due to the discrete

nature of the electron. The spectrum was predicted in 1918 by W. Schottky, who

modeled the current from the thermionic emission of electrons in a tube amplifier

as a series of uncorrelated pulses, essentially a Poisson process. By calculating the

autocorrelation function for a Poisson process and Fourier transforming, he arrived

at the spectral density for shot noise in the current of a tube amplifier:

SI(f) = 2e〈I〉 (1.2)

where e is the electron charge and 〈I〉 is the mean current through the vacuum tube.

This expression holds at frequencies below the inverse characteristic time of a pulse,

which in this case is the emission of an electron [115].

The first successful measurement of the white noise spectrum of shot noise was

performed by Johnson in 1925 [56]. However, while measurement of the shot noise

may have been his primary purpose, perhaps more significant was Johnson’s discovery
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of the third type of noise, an excess noise in the low frequency end of the measured

spectrum, which, because of its distinct dependence upon the square of the current,

he surmised was a phenomenon separate from the shot noise. The power contained in

the noise was seen to increase with decreasing frequency as a power law, S(f) ∼ 1/f ,

down to the lowest frequency measured [56].

Since being first discovered by Johnson, 1/f noise has been measured in carbon

resistors [10, 33], semiconductors [87, 41, 128, 79], metals [44, 42, 132, 136, 43], spin

glasses [137, 2, 123, 18], metal-oxide-semiconductor field effect transistors [102], oper-

ational amplifiers [22], nanowires [8], nanoelectrodes [68], nanopores [122], graphene

and other carbon allotropes [9, 113, 59], biomolecular systems [12, 141, 140, 75, 121],

turbulence [120], quantum dots [112, 99], Josephson junctions [96, 142, 97, 58], long-

term fluctuations in rainfall [83], and the fluctuations in pitch and volume of music

and human speech [131]. Of the published literature on noise, more than a third of

it is on 1/f noise [65].

Given the number and the variety of systems exhibiting 1/f noise listed above, it is

of practical concern for many different fields. Its appearance in resistors [44, 42, 132,

136, 43], MOSFETs [102], and op-amps [22] limits the performance of traditional

electronics devices. Furthermore, its presence in graphene [9, 113, 59], Josephson

junctions [96, 142, 97, 58], nanoscale devices [8, 68, 122], etc., means it degrades the

most sensitive and sophisticated of current and future devices, including graphene

FETs [9], chemical and biological sensors [113], superconducting quantum interference

devices (SQUIDs) [62, 4], qubits and quantum computers [97, 96, 35, 58], etc.. In

these systems, 1/f noise is particularly problematic: because of its divergence at low

frequencies, extending the measurement time of a variable exhibiting 1/f noise tends

not to improve, and can often diminish, the accuracy of the measurement.

Although a nuisance in the systems listed above, 1/f noise is necessary to the

3



function of other systems. In general, slow, low-frequency fluctuations have been

found to be crucial to the functionality of biomolecules [75, 17]. For example, the

low frequency 1/f fluctuations in the residence time of water molecules on a lipid

membrane have been found in molecular dynamics simulations to contribute to the

stability of the membrane’s hydration layer, which is necessary for its biological func-

tion [141]. Dynamic force spectroscopy experiments have shown a 1/f spectrum in

the force associated with the exploration of a rugged free energy landscape in the

process of biorecognition [12, 13]. 1/f noise is also present in the regulation of wa-

ter transport through aquaporins [140], the spectrum of sequence in DNA [75], and

fluctuations of ionic currents through membrane nanopores [121].

Irrespective of these practical implications, the ubiquity of 1/f noise has led many

to speculate on its origin: whether there is a universal mechanism or, in the absence of

such, what other features do systems exhibiting 1/f noise have in common? The con-

nection of fluctuations to dissipation and relaxation through fluctuation-dissipation

relations, an innovation that has developed alongside the growing literature on 1/f

noise, continues to provide insights and open new questions. Its divergence at low

frequencies, and therefore over long time scales, suggests that 1/f noise is funda-

mentally connected to deep statistical properties like ergodicity, stationarity, and the

aging observed in glasses and other systems. The scale invariance of the spectrum

and the associated self-similarity of a time-series possessing 1/f fluctuations has led

many to speculate that this property is the cornerstone of a universal model.

The fundamental aspects of 1/f noise, its practical importance, and its seeming

omnipresence mean that models for it run the gamut from universal to highly system-

specific to models with no readily-apparent physical meaning. These include the

superposition of exponential relaxation processes, power law distributed relaxation

processes, time-correlated relaxation processes, sub-diffusion processes, multiplicative
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as well as fractional stochastic differential equations, self-organized criticality, and

more.

In this dissertation, I will offer a new account of the origin of 1/f noise. By re-

laxing the assumption used in standard statistical mechanics of ideal coupling to an

infinite thermal reservoir, this explanation produces 1/f noise by linking the char-

acteristic times of fluctuations to the multiplicity of the fluctutating variable. This

interpretation will be tested using the results of numerical simulations of two mod-

els and comparison to experimental results in the literature. While perhaps not the

sought-after universal account, this explanation will hopefully uncover some common

ground among the many systems exhibiting 1/f noise and the models used to describe

them.

Before discussing these multiplicity-dependent characteristic times from finite, lo-

cal baths in § 2, and the models employed to study them in § 3 and 4, the mathematical

background and literature relevant to 1/f noise will be discussed in this chapter. In

§ 1.2 the autocorrelation function and the power spectral density of fluctuations will

be discussed, and their relationship through the Wiener-Khinchin theorem will be

derived. In § 1.3, some properties of 1/f noise, including the form of its autocorrela-

tion function and probability density function (§ 1.3.1), its Gaussianity and linearity

(§ 1.3.2), and its stationarity and ergodicity (§ 1.3.3) will be discussed. Finally, in

§ 1.4, three of the most popular classes of models of 1/f noise will be presented:

those based on a distribution of exponential relaxation processes (§ 1.4.1), power law

renewal processes (§ 1.4.2), and self-organized criticality (§ 1.4.3).

1.2 The Autocorrelation Function and the Spectral Density of Fluctuations

Many processes in nature can be described as stochastic or random. A stochastic

process is defined by its time series x(t), a random function that gives the value of
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some variable x as a function of time t. The time series x(t) of a stochastic process

can be characterized by a probability density function, w(x, t), which is defined such

that

P{a ≤ x ≤ b, t} =

∫ b

a

w(x, t)dx (1.3)

where P{a ≤ x ≤ b, t} is the probability that the value of x(t) lies between x = a

and x = b at time t. For a stationary process, the probability density function

is independent of the time t, and we can drop the dependence on time from our

notation. The mean value is then well-defined through the expectation value of the

process x(t):

E[x] = E[x(t)] =

∫ ∞

−∞
x · w(x)dx (1.4)

This quantity is time-independent for a stationary process. Let δx(t) denote the

fluctuation of x(t); that is, the deviation of x(t) from its mean value: δx(t) ≡ x(t)−

〈x〉. The mean value of the fluctuation is by definition zero, so to characterize the

degree to which x(t) deviates from its mean value, we define the variance as the mean

fluctuation squared:

E[(δx)2] = E[{δx(t)}2] = E[{x(t)− E[x]}2] = E[x2]− E[x]2 (1.5)

Like the mean value, this quantity is time-independent for a stationary process.

In a typical experiment, the mean value of the random quantity x is not determined

using equation 1.4. To practically determine the mean value, one of two methods of

averaging can be used. The random quantity x(t) can be averaged over one realization

of a time series of length tm, to give a time average:

x = lim
tm→∞

1

tm

∫ tm/2

−tm/2
x(t)dt (1.6)

The random quantity x(t) can also be averaged over an ensemble of N identically
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prepared systems, to give an ensemble average:

〈x〉 = lim
N→∞

1

N

N∑

i=1

xi(t) (1.7)

Note that time averages and ensemble averages are distinguished by an overbar and

angle brackets, respectively. Though, intuitively it might seem that these are equiv-

alent in the limits of very large tm and N , this is not always the case, and it is

important to differentiate the two. If time averages and ensemble averages are both

well-defined and converge to the same value in the limits of very large tm and N , the

system is said to be ergodic [66, 55]. This fundamental property, its meaning, and its

relation to stationarity, will be discussed in § 1.3.3.

In addition to the mean value of a random quantity and the variance describing

the magnitude of fluctuations about this mean, it would be useful to have a non-

random function to describe the time-evolution of fluctuations about the mean. Using

equation 1.4, the two-time autocorrelation function is defined

ξx(t1, t2) = E[δx(t1)δx(t2)]

=
∑

δx(t1)δx(t2)w(x1, t1;x2, t2)

(1.8)

where w(x1, t1;x2, t2) is the two-dimensional probability density function giving the

probability that x = x1 at time t = t1 and x = x2 at time t = t2. Defining the joint

conditional probability P (x2, t2|x1, t1) as the probability that x = x2 at time t = t2

given the condition that x = x1 at time t = t1, this can be written as

ξx(t1, t2) =
∑

δx(t1)δx(t2)P (x2, t2|x1, t1)w(x, t1) (1.9)
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Using ensemble averaging, the autocorrelation function is:

ξx(t1, t2) = 〈δx(t1)δx(t2)〉

= 〈x(t1)x(t2)〉 − 〈x(t1)〉〈x(t2)〉

= lim
N→∞

1

N

N∑

i=1

δxi(t1)δxi(t2)

(1.10)

Or, equivalently for an ergodic system, using time averaging:

ξx(t1, t2) = δx(t1)δx(t2)

= lim
tm→∞

1

tm

∫ tm/2

−tm/2
δx(t1 + t)δx(t2 + t)dt

(1.11)

As with the mean and variance, the autocorrelation function is time-independent

for a stationary process. However, it does depend upon the difference t1 − t2, per-

mitting it to be written as a function of a single variable ξx(t1, t2) = ξx(t1 − t2). As

can be seen from equation 1.9, the autocorrelation function at t1 = t2 is equal to the

variance, equation 1.5: ξx(0) = 〈(δx)2〉. For a stochastic process, the autocorrelation

function is typically a monotonically decreasing function of |t1 − t2|.

With a view toward expressing the autocorrelation function in spectral terms, the

Fourier transform of a fluctuation is defined

δ̃x(ω) =

∫ ∞

−∞
δx(t)eiωtdt (1.12)

or equivalently, through the inverse Fourier transform,

δx(t) =

∫ ∞

−∞
δ̃x(ω)e−iωt

dω

2π
(1.13)

Assuming ergodicity, equation 1.13 can be substituted into equation 1.10 for the

ensemble-averaged autocorrelation function

ξx(t1, t2) = 〈δx(t1)δx(t2)〉

=

∫ ∞

−∞

∫ ∞

−∞
〈δ̃x(ω)δ̃x(ω′)〉e−i(ωt1+ω′t2)dω

2π

dω′

2π

(1.14)
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Looking at the argument of the exponential, it is clear that for the autocorrelation

function to be a function of t1 − t2 alone, the integrand, specifically 〈δ̃x(ω)δ̃x(ω′)〉,

can only be nonzero for ω = −ω′. That is, it must contain a delta function:

〈δ̃x(ω)δ̃x(ω′)〉 = A(ω) × δ(ω + ω′). Making this substitution in equation 1.14 and

performing the integral over ω′

ξx(t1 − t2) =

∫ ∞

−∞
A(ω)e−iω(t1−t2) dω

(2π)2
(1.15)

Comparing equation 1.15 to equation 1.13, it is clear that the coefficient of the delta

function is A(ω) = 2πξ̃x(ω), where ξ̃x(ω) is the Fourier transform of the autocorrela-

tion function ξx(t1 − t2):

〈δ̃x(ω)δ̃x(ω′)〉 = 2πξ̃x(ω)δ(ω + ω′) (1.16)

As noted above, the autocorrelation function at t1 − t2 = 0 is equal to the variance:

〈(δx)2〉 = ξx(0)

=

∫ ∞

−∞
ξ̃x(ω)

dω

2π

=

∫ ∞

0

2ξ̃x(ω)
dω

2π

(1.17)

Where the fact that ξ̃x(−ω) = ξ̃∗x(ω) (the * indicating complex conjugation), since

ξx(t1−t2) is real-valued, has been used to express the integral over positive frequencies

only. The form of equation 1.17 suggests that the integrand in the final integral is

a kind of density. Specifically, it is the mean fluctuation squared in an infinitesimal

frequency band centered around f , known as the power spectral density :

Sx(f) ≡ 2ξ̃x(ω) = 2

∫ ∞

−∞
ξx(t1 − t2)eiω(t1−t2)d(t1 − t2) (1.18)

The above relationship is known as the Wiener-Khinchin theorem. The power spectral

density does not necessarily correspond to a physical power. Instead, in this context
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it refers to the square of any signal that is fluctuating about its mean, known as noise

power [66].

In order to practically determine the power spectral density from an experiment

or simulation, it is more useful to express it in terms of the time series of fluctuations.

In fact, the power spectral density can be expressed simply as Sx(f) = 2δ̃x(ω)δ̃x∗(ω).

To show this, the time-averaged definition for the autocorrelation function in equation

1.11 is substituted into the Wiener-Khinchin theorem, equation 1.18:

Sx(f) = 2

∫ ∞

−∞
ξx(t1 − t2)eiω(t1−t2)d(t1 − t2)

= 2

∫ ∞

−∞

{∫ ∞

−∞
δx(t1 + t)δx(t2 + t)dt

}
eiω(t1−t2)d(t1 − t2)

= 2

∫ ∞

−∞

{∫ ∞

−∞
δx(t)δx(t+ t1 − t2)dt

}
eiω(t1−t2)d(t1 − t2)

= 2

∫ ∞

−∞

{∫ ∞

−∞
δx(t+ t1 − t2)eiω(t1−t2)d(t1 − t2)

}
δx(t)dt

(1.19)

A change of variables t′ ≡ t + t1 − t2 in the bracketed integral allows the integrals

to be separated. Recognizing that δx(t) is, of course, real-valued, the desired result

manifests

Sx(f) = 2

∫ ∞

−∞

{∫ ∞

−∞
δx(t′)eiωt

′
e−iωtd(t′ − t)

}
δx(t)dt

= 2

∫ ∞

−∞
δx(t′)eiωt

′
dt′
∫ ∞

−∞
δx(t)e−iωtdt

= 2

∣∣∣∣
∫ ∞

−∞
δx(t)eiωtdt

∣∣∣∣
2

= 2δ̃x(ω)δ̃x∗(ω)

(1.20)

This quantity is known as the periodogram. Of course, for a real experiment or

simulation, the time series can only be collected over a finite interval of time, −tm <
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t < tm. So, the truncated Fourier expansion has to be used:

Sx(f) =
1

tm

∣∣∣∣
∫ tm

−tm
δx(t)eiωtdt

∣∣∣∣
2

(1.21)

Finally, in actuality, any time series obtained will not be continuous, but a discrete

set of N points collected over the time tm:

Sx(f) =
1

N

∣∣∣∣
N−1∑

n=0

δxne
iωn/N

∣∣∣∣
2

(1.22)

This estimation of the power spectral density will be used throughout this dissertation.

1.3 Properties of 1/f Noise

1/f noise, or perhaps more appropriately noise of 1/f -type, can be defined as any

fluctuation of a physical quantity that exhibits a power spectral density S(f) ∝ 1/fα,

where the spectral exponent 0 < α < 2, over some range of frequencies f . In this

sense, it describes all fluctuations with a power spectral density that obeys a power

law with a spectral exponent between that of white noise, where α = 0 and all

frequencies contribute equally to the noise, and what is known as red or brown noise,

where α = 2 and all cycle-times contribute equally, which describes the power spectral

density of velocity fluctuations of a Brownian particle [66].

In this section, a number of notable properties of 1/f noise will be discussed. In

§ 1.3.1, the autocorrelation function, intimately related to the power spectral density

through the Wiener-Khinchin theorem, will be discussed. In addition, the probability

density function of 1/f processes will be described. In § 1.3.2, the Gaussianity and

linearity of 1/f noise, and the processes which underlie it, will be discussed. Finally,

in § 1.3.3, the divergence of 1/f noise at zero frequency, the so-called paradox of

infinite fluctuations will be discussed. This long standing problem has attracted a

large amount of attention, and is a consequence of the fractal nature of 1/f noise.
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The stationarity and ergodicity of 1/f noise will also be discussed in general. All of

these properties will be used to distinguish the models discussed in § 1.4 as well as

the original models and results in § 3 and 4.

1.3.1 Heavy-Tailed Autocorrelation Functions and Probability Density Functions

The form of the spectral density of a process determines the form of its autocor-

relation function by way of the Wiener-Khinchin theorem, equation 1.18:

Sx(f) = 2

∫ ∞

−∞
ξx(t)e

iωtdt (1.23)

In equation 1.23 and from this point on, the autocorrelation function will be denoted

for convenience as ξx(t) instead of ξx(t1 − t2). Noting that limf→0 Sx(f) =∞, it can

be seen from equation 1.23 that the integral over time of the autocorrelation function

for a 1/f -type process is divergent:

Sx(0) = 2

∫ ∞

−∞
ξx(t)dt =∞ (1.24)

From this it can be concluded that the autocorrelation function of a 1/f -type pro-

cess is heavy-tailed, meaning that it decays more slowly than functions of exponential

form and may in fact be dependent upon its initial state for all time. Qualitatively,

this implies that 1/f -type processes have long-range correlation over time. Indeed,

the defining characteristic of many processes exhibiting 1/f noise is diverging char-

acteristic times, decaying according to, e.g., a power law, ξx(t) ∝ t−β, or a stretched

exponential, ξx(t) ∝ e−t
β

[74].

More precisely, for an exact 1/f spectrum, S(f) ∝ 1/f , over the range f1 < f <

f2, the autocorrelation function can be calculated using the inverse of the Wiener-

Khinchin theorem, equation 1.18, over the range (2πf2)−1 < t < (2πf1)−1. Assuming
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that f2 � f1 and retaining the leading terms

ξx(t)

〈(δx)2〉 =

∫ f2

f1

cos(2πft)

f
df

≈ 1− 1

ln(f2/f1)
[γ + ln(2πf2t)]

(1.25)

where γ = 0.577... is the Euler-Mascheroni constant. Again, it is found that the auto-

correlation function decays non-exponentially. Specifically, for an exact 1/f spectrum

over the range f1 < f < f2, the autocorrelation function decays logarithmically in

the range (2πf2)−1 < t < (2πf1)−1.

The non-exponential decay of the autocorrelation function suggests that the prob-

ability density functions of 1/f processes are also heavy-tailed, through equation 1.8.

It is known that heavy-tailed probability distributions (e.g. the Pareto distribution,

Lévy distribution, Cauchy distribution, etc..) will result in autocorrelation functions

that decay non-exponentially. Physically, the heavy tails of a probability distribution

mean an enhanced probability of rare processes. A well-known property of heavy-

tailed probability density functions is that they often do not have a well-defined mean

and/or variance, implying processes that are divergent or unbounded [74]. Processes

with infinite mean and variance, their meaning, and their relevance to 1/f noise will

be further discussed in § 1.3.3 and 1.4.2.

1.3.2 Gaussianity and Linearity

Though the discussion of heavy-tailed probability density functions in § 1.3.1 is

suggestive, it is possible to have a non-exponential autocorrelation function from a

Gaussian process. A Gaussian distribution is characterized completely by its mean

value and variance and has the single-time probability density function:

w(x, t) =
1√

2π〈(δx)2〉
exp

(
− (x− 〈x〉)2

2〈(δx)2〉

)
(1.26)
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A process is Gaussian if all its higher order probability density functions (that is,

w(x1, t1;x2, t2; ...;xn, tn), for all n) are also distributed as such. Consequently, all

higher-order moments of a process can be expressed as a function of the second-order

moment, the variance [66].

According to a result known as the central-limit theorem, the probability density

function of a random variable that is the sum of N uncorrelated and identically

distributed random variables, whether they are distributed according to a Gaussian or

not, will approach a Gaussian distribution in the limit of a very large number N →∞

of random variables being summed [106]. The central-limit theorem therefore limits

what a macroscopic measurement can reveal about the underlying processes producing

1/f noise. If the microscopic kinetics are Gaussian, then a measurement will result

in Gaussian fluctuations, regardless of the system size. If, on the other hand, the

microscopic kinetics are non-Gaussian or nonlinear, a measurement will result in

Gaussian fluctuations only if the system is sufficiently large and the fluctuations will

not retain their Gaussian character as system size is reduced.

Therefore, if 1/f fluctuations are necessarily the result of a superposition of a

great number of degrees of freedom (as e.g. the models discussed in § 1.4.1), then 1/f

fluctuations will always be closely Gaussian regardless of the underlying processes. If

the underlying processes are not Gaussian, then the Gaussian character and the 1/f

character of the fluctuations will break down as system size is reduced. On the other

hand, if 1/f fluctuations are not necessarily the result of a large number of degrees

of freedom, they will be seen to persist at small system sizes even if their Gaussian

character breaks down. The Gaussianity of 1/f fluctuations at smaller system sizes

is therefore an important indicator of their origin [65].

Naturally, the first test of Gaussianity is to measure the single-time probability

density function to verify if it matches equation 1.26. Failure of this test would mean
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the process is certainly not Gaussian, though success does not necessarily verify that

it is. As mentioned, to absolutely confirm that a process is Gaussian, the probability

density functions of all orders have to be tested. Measurements of the single-time

probability density function of 1/f processes have been performed numerous times

[101, 91, 21, 130].

A notable example is a series of measurements reported by R.F. Voss in 1978 on

five different sources of 1/f noise: the voltage across a carbon resistor, the collector-

base current and the emitter voltage of a reverse-biased n-p-n bipolar transistor, the

current in a MOSFET, and the current through a reverse-biased p-n diode. What

he found was that the single-time probability density functions in the carbon resistor

and the MOSFET were almost exactly Gaussian, that the collector-base current and

emitter voltage of the n-p-n transistor deviated from Gaussianity at the tails, and

that the p-n junction current was strongly non-Gaussian [130]. Other measurements

have been carried out that test the higher-order moments for Gaussianity [124, 93].

However, it suffices to say that 1/f fluctuations are not always Gaussian, therefore

the underlying mechanisms are not always Gaussian.

In the course of testing the Gaussianity of these systems, Voss also tested their

linearity. Fluctuations of a quantity are linear if the value of the variance and higher

moments of the quantity do not depend upon the value of the quantity. Voss tested

this by measuring the correlation function for realizations of the experiment with a

specific initial value δx0 of the fluctuation and reducing it by δx0:

φ(t|δx0) =
〈δx(t)|δx0〉

δx0

(1.27)

If fluctuations of x are linear, this function of time will be independent of the value

of δx0. Voss found the deviation from linearity in these systems to follow that of

the Gaussianity. That is the more non-Gaussian a system’s fluctuations, the more
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non-linear the fluctuations. Of course, much like the Gaussianity, this says noth-

ing regarding the kinetics of the underlying processes producing the noise in these

systems, but only of the observed phenomenology.

These considerations and tests of the Gaussianity and linearity, particularly for

systems of varying size, are important in restraining models of 1/f noise. For example,

the 1/f noise measured in the flux of SQUIDs is known to be non-linear. Since

the spectral density of fluctuations of the flux are related to the SQUID inductance

through the fluctuation-dissipation relation, this has important ramifications on the

operation of SQUIDs [119, 4].

1.3.3 The Paradox of Infinite Fluctuations, Ergodicity, and the Stationarity of 1/f

Noise

Regardless of where the spectral exponent falls in the range 0 < α < 2, a question

of immediate importance presents itself: over what range of frequencies is the noise

of 1/f -type present? The potential problem is apparent upon integrating a power

spectral density of 1/f -type over the range f1 < f < f2 to find the total power of

fluctuations in that range:

∫ f2

f1

Sx(f)df ∝
∫ f2

f1

1

fα
df ∝





ln

(
f2

f1

)
α = 1

1

1− α

[
1

fα−1
2

− 1

fα−1
1

]
α 6= 1

(1.28)

Apparently, if fluctuations of 1/f -type persist over all frequencies, the variance of the

quantity is infinite. For 0 < α < 1, the above integral diverges in the high frequency

limit; for 1 < α < 2, it diverges in the low frequency limit; and for an exact 1/f

spectrum (α = 1), it diverges in both limits, albeit logarithmically. Experimental

considerations usually remove any concerns about this divergence. In the high fre-

quency limit, 1/f noise is always subsumed by some other source of noise, and in
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both the low and high frequency limits, the noise is limited either by filters in the

experimental apparatus or simply by the time of measurement. However, this does

not resolve the fundamental paradox of infinite fluctuations.

Typically, the assumption is that there is a low frequency cutoff of 1/f noise and

in fact, a low-frequency cutoff is a natural feature of many of the most popular models

for 1/f noise, particularly those discussed in § 1.4.1 [10, 87, 42]. However, for most

systems, no such cutoff has been observed experimentally. The lowest frequency

measurement of the a 1/f -type spectrum was reported by M.A. Caloyannides in

1974, down to a frequency of 10−6.3Hz in a measurement of current noise through

operational amplifiers that lasted approximately three weeks [22]. A similarly lengthy

measurement was performed on thick-film resistors by B. Pellegrini, R. Saletti, P.

Terreni, and M. Prudenziati and showed the same result: a 1/f -type spectrum over

six decades of frequency with no sign of flattening at the lowest frequencies [98].

In a more exotic example, using 300 years worth of weather data, B.B. Mandelbrot

and J.R. Wallis reported in 1968 no low-frequency cutoff in the 1/f behavior of

fluctuations in rainfall [83]. Of course, all of these quantities being bounded, the idea

of an infinite variance is non-sensical.

Aside from a low-frequency cutoff, a possible resolution to the paradox of infi-

nite fluctuations is in the answer to another question that has long been a point

of contention in the field of 1/f noise: whether or not the processes that produce

1/f noise are stationary. A stationary process is a stochastic process in which the

probability density function is invariant under a shift in time [65]. As a result, prop-

erties like the mean and variance, if otherwise well-defined, are independent of time.

Autocorrelation functions, as well, are time-independent for stationary processes and

consequently, so are power spectral densities. A non-stationary process, on the other

hand, could have a spectral density that is generally 1/f , but can wander over time in
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shape and amplitude [127] or scale in amplitude with the time over which the process

is observed [127, 107, 94, 112].

With the appropriate time-dependence of the spectral density, the integral in

equation 1.28 could remain finite even for a spectral density having a 1/f dependence

with no low-frequency cutoff, thus resolving the paradox of infinite fluctuations. To

wit, if equation 1.28 is evaluated over the interval 1/tm < f < ∞ for a spectral

density with 1 < α < 2, where the time of measurement tm restricts the lowest

measurable frequency, the total noise power depends upon measurement time as ∝

tm
α−1. Therefore, a spectral density with the form

S(f) ∝ tm
1−α/fα (1.29)

will see its amplitude decrease with measurement time in such a way that the variance
∫∞

0
S(f)df remains bounded. Models that possess this property and physical systems

that has been observed to possess it, will be discussed in SEC 1.4.2.

The suggestion that non-stationary processes are necessary for a 1/f -type spec-

trum was first made by Mandelbrot in 1967 [80] and, as a possible resolution to the

paradox of infinite fluctuations, it was an attractive proposition. A number of exper-

iments into the current noise spectra of carbon resistors and semiconductor diodes

following Mandelbrot’s suggestion appeared to indicate that 1/f noise is in fact non-

stationary [101, 91, 21]. The indicator of non-stationarity was a measured variance of

the variance; that is, the noise spectrum itself seemed to fluctuate and exhibit noise,

what J.J. Brophy termed noisy noise [21]. This noisy noise is often assessed using

the second spectrum, S(2)(f1, f2), which is the spectrum of fluctuations as a function

of frequency f1 in the octave sums of the first power spectral density S(f) about

frequencies f2 [65].

In 1976, when the suspicion that 1/f noise was a non-stationary process was
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at its peak, J.L. Tandon and H.R. Bilger showed that a stable 1/f mean spectral

density could be obtained from a time-dependent autocorrelation function [127]. The

peculiar form of the autocorrelation function, however, did not and does not appear

to correspond to any known physical system [43]. The same year, measurements

by M. Stoisiek and D. Wolf [124] of the systems that originally appeared to exhibit

non-stationarity, failed to reproduce the original results. Subsequent experiments

have also indicated that 1/f noise is a stationary process in metals, carbon resistors,

and semiconductors and that has become the operating assumption of most, but not

all, investigations [43]. Recently, however, with the advent of more sophisticated

measurement techniques that allow the observation of intrinsically non-stationary

1/f noise in nano-sized systems, these ideas of Mandelbrot’s have regained currency.

The physical systems exhibiting non-stationarity, and the theoretical models used to

describe them, will be discussed in § 1.4.2.

Stationarity is closely connected to another fundamental statistical property: er-

godicity. As mentioned above, a system is ergodic when ensemble averages 〈x〉 (equa-

tion 1.7) and time averages x (equation 1.6) are well-defined and equivalent in the

limit of a large number of ensembles N and long times of measurement tm, 〈x〉 = x.

Aside from equivalence of the moments, mean and variance, this also includes corre-

lation functions and spectral densities. To understand how ergodicity is broken and

what it means for the fluctuations of a system, fluctuations have to be understood in

the context of statistical mechanics.

A system is considered macroscopic when it is composed of a very large number of

degrees of freedom. A complete specification of all the degrees of freedom is called a

microstate and the number of microstates that a system can find itself in is typically

very large. The state of the system can also be specified using a much coarser measure

by considering the value of a measurable, macroscopic variable, e.g. temperature,
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potential difference, net magnetization, etc.. The set of microstates that correspond

to a single value of a macroscopic variable is called a macrostate. In these terms,

fluctuations of a variable correspond to transitions between various macrostates of

the system.

For a system that is in ideal thermal contact with an effectively infinite thermal

reservoir at temperature T , the probability that the system is in a specific microstate,

denoted by j, depends upon the energy Ej of the microstate through the Gibbs

distribution:

wj =
e−Ej/kBT∑
j e
−Ej/kBT (1.30)

where the sum in the denominator is over all microstates and kB is Boltzmann’s

constant. The mean value of a macroscopic variable x is found from the probability

distribution using equation 1.4 in discrete form:

E[x] =
∑

j

xjwj =

∑
j xje

−Ej/kBT
∑

j e
−Ej/kBT (1.31)

where xj is the value of the variable x when the system is in the jth microstate. Since

an ensemble of identically prepared systems will be distributed according to equation

1.30, equation 1.31 is equivalent to the ensemble average, equation 1.7: E[x] = 〈x〉.

For very large systems, the probability that the system will be found in states with

energies significantly different from the mean energy 〈E〉 becomes vanishingly small.

In this case, wj → 1/Ω, where Ω is the number of states with energy Ej = 〈E〉, called

the multiplicity. Therefore, in the space of possible configurations, known as phase

space, the system is confined to a surface of definite energy. The mean value of x in

equation 1.31 becomes:

〈x〉 =
1

Ω

∑

Ej=〈E〉
xj (1.32)

where the sum is performed over microstates j with Ej = 〈E〉; that is, over the

microstates of a single macrostate.
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By definition, a system is ergodic when ensemble averages are equivalent to time

averages, 〈x〉 = x. For this to be the case, the system must have occupied, in the time

of measurement tm, all of phase space, or at least a portion of phase space significant

enough that the condition 〈x〉 = x is satisfied. If this condition is satisfied, it is clear

that for even longer times of measurement, the time average is the same, so that

stationarity is satisfied as well. The condition for ergodicity can then be stated:

tm > tφ (1.33)

where tφ is the time it takes for a system to explore enough of phase space to satisfy

〈x〉 = x. This can be stated another way: after a sufficiently long period of time, an

ergodic system spends an equal amount of time in each microstate. This postulate,

known as the ergodic hypothesis, is central to the standard derivation of the second

law of thermodynamics [55].

Ergodicity is broken in systems in which tφ diverges and equation 1.33 cannot be

realistically satisfied. This occurs when the phase space is divided into regions which

are not connected to one another by a dynamic pathway. In other words, valleys of

phase space are separated by barriers which are not crossable in a realistic period

of time. A distribution of barrier heights can mean the system will wander different

regions of phase space on arbitrarily long time scales, meaning diverging characteristic

rates, which were pointed out above to be associated with 1/f noise [74]. This picture

is often associated with glasses. Indeed, 1/f noise in glasses, particularly spin glasses,

has been extensively reported upon [137, 2, 123, 18]. The spectral wandering of 1/f

noise, associated with the system making rare transitions to different regions of phase

space, has been directly observed through the second spectrum and used to distinguish

between the two most popular models for spin glass dynamics: the droplet model and

the hierarchical kinetics model [137]. This same observation has also been used to
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justify the model for 1/f noise based on the superposition of exponential relaxation

processes, described is § 1.4.1.

1.4 Models of 1/f Noise

Having reviewed the properties of 1/f noise, three of the most popular models, or

classes of models, of 1/f noise will be discussed. The first of these, § 1.4.1, is based

on a distribution of exponential, or Poissonian, relaxation processes. It is the most

widely employed class of models of 1/f noise, as well as the earliest. It relies upon

the superposition of processes with a certain distribution of characteristic times. The

distribution, though specific, has been shown to be a natural feature of many physical

systems. The next class of models, § 1.4.2, is based upon renewal processes, in which

transition times of a single process have a power law probability distribution function.

Models based on power law renewal processes were first proposed by Mandelbrot in the

early 1960s. Though they did not gain much traction aside from some initial interest,

they have recently regained relevance as models of 1/f noise in nanoscopic systems,

such as stimulated quantum dots. These models are intrinsically non-stationary,

exhibiting aging like that described in § 1.3.3. The last model, § 1.4.3, discussed only

briefly here, is the subject of the most cited paper in the 1/f noise literature. It

is based on, and is the first paper describing, self-organized criticality. All of these

models will be compared to the original models and results presented in § 3 and 4.

1.4.1 1/f Noise From a Distribution of Exponential Relaxation Processes

The earliest model for 1/f noise remains today the most popular. The essential

idea is that by superposing exponential relaxation processes with the correct distribu-

tion of characteristic frequencies a 1/f spectrum over an appropriately broad range of

frequencies can develop. Such conditions are often found in heterogeneous systems.
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Models of this basic type have been used to explain 1/f in many systems and to

review them, it is best to follow their development since the very discovery of 1/f

noise.

In the same year that Johnson reported his measurement of excess noise in the

low frequency end of the shot noise spectrum, Schottky provided a mathematical

treatment of what he deemed the flicker effect. Following suggestions from Johnson,

Schottky’s proposition was that impurities on the surface of the cathode created sites

where electrons were being trapped and undergoing emission at a rate given by an

exponential with a single characteristic time [116]. For a system variable x (in Schot-

tky’s case, the current due to capture and emission of trapped electrons) undergoing

fluctuations that decay with a single characteristic time, τc, the autocorrelation of a

fluctuating quantity is exponential

ξx(t) = 〈(δx)2〉e−|t|/τc (1.34)

where (δx)2 is the variance of the variable x. By way of the Wiener-Khinchin the-

orem, EQ 1.18, the spectral density is proportional to the Fourier transform of the

autocorrelation:

Sx(f) =

∫ ∞

−∞
ξx(t)e

−iωtdt

= 4

∫ ∞

0

ξx(t) cos(ωt)dt

= 〈(δx)2〉 4τc
1 + ω2τ 2

c

(1.35)

This function is known as a Lorentzian. Qualitatively, this spectrum would be con-

stant (white) at low frequencies and roll over to noise with a 1/f 2 dependence at the

characteristic frequency fc ≈ 1/τc. Admitting the Lorentzian to be a rather rough

fit to Johnson’s data, Schottky pointed out a 1/f 2 dependence in the high end of
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Johnson’s measurements to comport with his theory, but noted that the bend at low

frequencies in the data did not quite flatten out to constant, as does a Lorentzian

[116].

Further measurements on the same and different materials showed a 1/f depen-

dence over a broad range of frequencies and no flattening at low frequencies, and

it became clear that Schottky’s explanation was not sufficient. In an attempt to

explain measurements of 1/f noise in the current of carbon microphones made by

C.J. Christensen and G.L. Pearson at Bell Labs [33], J. Bernamont pointed out that,

instead of a single Lorentzian, the correct distribution of Lorentzians having different

characteristic times has the properties necessary to reproduce the observed spectra:

a 1/f dependence at low frequencies transitioning to 1/f 2 at higher frequencies [10].

Specifically, the power spectral density is integrated over the characteristic time, τc,

weighted by a distribution, p(τc):

Sx(f) =

∫ ∞

0

p(τc)
4τc

1 + ω2τ 2
c

dτc (1.36)

The quantity p(τc)dτc includes in it both the abundance of fluctuators as well as the

strength of the contribution from a single fluctuator with characteristic times between

τc and τc + dτc. Therefore, the total variance is absorbed into the distribution p(τc),

so that ∫ ∞

0

p(τc)dτc =

∫ ∞

0

Sx(f)df = 〈(δx)2〉 (1.37)

Bernamont showed that to yield a power spectral density with a 1/f region in the

range f1 < f < f2, it must be that the distribution p(τc) ∝ 1/τc in the range 1/f1 <

τc < 1/f2 [65]. That is, for exact 1/f noise, p(τc) is constant on a logarithmic scale.

To yield 1/f noise, the problem then becomes to develop some physical justification

of characteristic modes distributed as ∼ 1/τc over the range 1/f1 < τc < 1/f2.

The first of such models to physically justify this distribution was developed in
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1957 by A.L. McWhorter [87]. McWhorter was attempting to explain 1/f type noise

in the current through semiconductor (germanium) filaments. His supposition was

that these fluctuations are due to fluctuations of the charge carrier density at the

germanium-oxide interface, which in turn are due to the occasional capture and release

of electrons in sites within the oxide layer. If the process by which the electrons are

captured and released is tunneling, the rate, or inverse characteristic time, of this

process falls off exponentially with increasing distance x between the surface and the

trap: τ−1
c = τ−1

0 exp(−x/x0), where the attempt frequency τ0 depends upon x weakly

enough to be ignored, and x0 is a scattering length. To surmise the distribution, p(x),

of barrier widths, x, necessary to yield p(τc) ∝ 1/τc, McWhorter observed:

p(τc)dτc = p(x)dx

→ p(τc) =
p(x)

|dτc/dx|
= p(x)

x0

τc

(1.38)

So, to yield a distribution of characteristic times p(τc) ∝ 1/τc, it must be that p(x)

is constant over some range of barrier widths, x. Because of the exponential de-

pendence of the characteristic time upon barrier width, the constant distribution of

barrier widths can be relatively narrow and still yield a power law distribution of

characteristic times over a wide range [65]. For example, values of τ0 ≈ 10−12 s and

x0 ≈ 1 Å, physically reasonable values, would require that the distribution of barrier

widths be constant only in the range 0.1 Å < x < 0.4 Å in order to yield 1/f noise

over the observed range [136, 87].

McWhorter’s model was the first of its kind to attempt to model a specific physical

system exhibiting 1/f noise. However, it was not the first time that an exponential

dependence of characteristic time on a barrier height with a constant distribution

was postulated to derive the 1/τc distribution of characteristic times needed for 1/f

noise. Without mentioning a specific system, F.K. du Pre [41] and A. van der Ziel
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[128] independently suggested that a collection of Arrhenius-type activation processes,

τc = τ0 exp(E/kBT ), with a uniform distribution of activation energies, E, could

produce 1/f noise. This model gives a dependence upon temperature of the spectral

density, observed in metals [136, 42], which is absent in McWhorter’s model [87] and

generally absent in the low frequency noise of semiconductors [136].

The first model to ascribe the temperature-dependent 1/f noise observed in metals

(specifically, thin Ag films) to a distribution of Arrhenius-type activation processes

is due to P. Dutta, P. Dimon, and P.M. Horn [42]. Along with the assumption of

Arrhenius-type activation processes coupling linearly to the observable exhibiting 1/f

noise, in this case, resistivity ρ, they assumed that the samples exhibiting 1/f noise

were heterogeneous, having a distribution p(E) of activation energies E. Under these

assumptions, the spectral density of fluctuations in resistivity is

Sρ(f, T ) =

∫ ∞

0

p(E)
4τ0e

E/kBT

1 + ω2τ 2
0 e

2E/kBT
dE

=
2

ω

∫ ∞

0

p(E)
1

cosh(E − E∗)/kBT
dE

(1.39)

Here, τ0 is the inverse characteristic attempt frequency of the material, often the

phonon frequency of that material [42]. Typically, for solids, 10−14 s < τ0 < 10−11 s

[65]. Therefore, for the range of ω over which 1/f noise is typically observed, the

energy

E∗ ≡ −kBT ln(ωτ0) (1.40)

is of the order of typical activation energies ≈ 1 eV . Note that, because of the

logarithmic dependence upon τ0 of this energy, E∗ is very insensitive to the value of

τ0 [42].

The factor cosh−1 [(E−E∗)/kBT ] appearing in the integrand of the spectral density

is peaked about E = E∗ with a width ≈ kBT , exponentially suppressing energies

with |E − E∗| > kBT . Physically, this means that as temperature is increased, more
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activation processes are thermally allowed, anticipating a dependence of the spectral

density upon temperature. If it is the case that the distribution of activation energies

p(E) is approximately constant over this range, then it is a safe approximation to

replace p(E) with p(E∗) and remove it from the integral. The integral can then be

evaluated to give

Sρ(f, T ) ∝ kBTp(E
∗)

1

f
(1.41)

The spectral density has the desired 1/f dependence. It is also linearly dependent

upon T , reflecting the fact that the power of the noise grows as the temperature is

increased and more activation processes are thermally allowed.

However, as Dutta, Dimon, and Horn pointed out, J.W. Eberhard and P.M. Horn

found that the spectral exponent α (in the relationship S(f) ∝ 1/fα) of metals is

temperature dependent with α decreasing in the range 0.8 / α / 1.4 with increasing

temperature [44]. Dutta, Dimon, and Horn supposed that this meant a failure of the

assumption that p(E) is independent of temperature, altering the spectral density’s

exact 1/f dependence upon frequency as well as its linear dependence upon temper-

ature. To characterize these deviations, they assumed that p(E) depends only upon

temperature implicitly through E∗. They then related the temperature and frequency

dependences of the spectral density while simultaneously removing their dependence

upon p(E∗).

Taking the logarithm of equation 1.41 and taking the derivative of this expression

with respect to ln(ω) yields

∂ ln(Sρ(ω, T ))

∂ ln(ω)
=
∂ ln(p(E∗))

∂ ln(ω)
− 1

=
1

p(E∗)

∂p(E∗)

∂E∗
∂E∗

∂ lnω
− 1

= − kBT

p(E∗)

∂p(E∗)

∂E∗
− 1

(1.42)
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Again, taking the logarithm of equation 1.41, but now taking the derivative with

respect to ln(T ) yields

∂ ln(Sρ(ω, T ))

∂ ln(T )
=
∂ ln(p(E∗))

∂ ln(T )
+ 1

=
1

p(E∗)

∂p(E∗)

∂E∗
∂E∗

∂ lnT
+ 1

= − ln(ωτ0)
kBT

p(E∗)

∂p(E∗)

∂E∗
+ 1

(1.43)

Equations 1.42 and 1.43 are combined to eliminate the terms containing p(E∗). Fi-

nally, solving for the spectral exponent α(f, T ) = −∂ ln
(
Sρ(ω, T )

)
/∂ ln(ω)

α(f, T ) = 1− 1

ln(ωτ0)

[
∂ ln(Sρ(ω, T ))

∂ ln(T )
− 1

]
(1.44)

As can be seen from equation 1.44, a linear relationship between the power spec-

tral density and temperature will result in a pure 1/f spectrum. Dutta, Dimon, and

Horn found agreement with this model for silver, gold, copper, and bismuth for tem-

peratures up to 550K [42], verified by Eberhard and Horn for those metals as well

as for nickel [44]. In all of these cases it was found that fits to data gave reasonable

values for activation energies E∗ = −kBT ln(ωτ0) ≈ 1 eV [43].

In the above, no mention was made of the nature of the heterogeneity that leads

to the distribution of characteristic times aside from the fact that they obey an

Arrhenius-like activation law and some further assumptions about the distribution of

activation energies. However, 1/f noise was known to persist in metals below temper-

atures where any Arrhenius processes would be thermally active [43]. Fortunately,

at the time that Dutta, Dimon, and Horn proposed their model for 1/f noise in

metals, a class of excitations yielding the correct distribution of characteristic times

had already been used to explain many material properties. In 1971, P.W. Anderson,

B.I. Halperin, and C.M. Varma used a model based on two-level tunneling systems
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(TLTS) to explain the anomalous linear dependence upon temperature of the low-

temperature specific heat and thermal conductivity in disordered materials [3]. The

crux of their model is the existence in disordered materials of atoms or collections of

atoms that can occupy one of only two states and are able to tunnel between these

states. These two-level tunneling systems can then be represented by a double-well

potential and the probability of transitioning from one well to another is controlled by

a tunneling parameter, which in turn is determined by the height of the barrier, the

distance over which the atoms must tunnel, and the mass of the tunneling atoms. Fi-

nally, the transitions of these two-level tunneling systems are coupled to macroscopic

quantities, such as resistivity or dielectric function, leading to observable fluctuations

[67, 77].

The results of Dutta, Dimon, and Horn were quickly reformulated in terms of

TLTS [67, 136, 16, 15, 77], so that 1/f behavior, due to classical Arrhenius activation

processes at high temperatures, could be seen to continue at low temperatures, where

tunneling dominates. The manner in which TLTS lead to 1/f noise is only qualita-

tively outlined here; very complete overviews can be found in reference [65, 14]. It

was noted that as temperature is reduced, and most thermally activated transitions

become inaccessible, the fluctuations are dominated instead by tunneling. In order

to ascribe 1/f noise to the tunneling, the transition times must be distributed as

p(τc) ∝ 1/τc, and this usually comes about from the transition time τc depending

upon the exponential of a quantity that is distributed uniformly over some range. In

this case, the transition time is found through Fermi’s golden rule of time-dependent

perturbation theory to depend upon the tunneling parameter λ as τc ∝ e2λ, where λ

depends upon the barrier’s height and width and the mass of the tunneling atoms.

Physical arguments lead to the conclusion that this tunneling parameter λ is indeed

uniformly distributed [67, 77, 14], and so the necessary ingredients for 1/f noise are
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present. The model of two-level tunneling systems is today one of the more popular

models for 1/f noise and has been applied to a number of systems and devices which

typically operate at low temperatures, e.g. Josephson junctions [97, 143].

Regardless of the origins of the heterogeneity in these models, a natural test for

any model of 1/f noise based on a broad distribution of characteristic times is to

reduce the system size until few enough modes contribute to the noise spectrum that

features in the spectrum corresponding to single Lorentzians can be distinguished.

The first such test was reported in 1984 by K.S. Ralls et al. by observing changes in

resistance of the inversion channels of MOSFETs of very small size, ≈ 1 µm×0.1 µm.

They observed time series of resistance that switched between two states with noise

spectra that were Lorentzian and in one case were able to measure a time series with a

spectrum that consisted of two Lorentzians superposed. A transistor with an inversion

channel with larger dimensions ≈ 10 µm × 20 µm, manufactured simultaneously

from the same wafer as the submicron transistors, showed no distinguishable two-

state switching in the time series or features in the spectra, only the 1/f spectrum

expected in macroscopic transistors. However, while they did observe the two-state

switching that is expected to lead to 1/f noise, they did not have sufficient data to

see the emergence of a 1/f spectrum from a few Lorentizan spectra [102]. In the

same year, C.T. Rogers and R.A. Buhrman reported just such observations in the

voltage fluctuations of a submicron metal-insulator-metal tunnel junction, resolving

an approximate 1/f spectrum with features that were able to be fit to a superposition

of just a few Lorentzian spectra [108].

E.V. Russell and N.E. Israeloff have also reported evidence for 1/f arising from

heterogeneity in a structural glass. By biasing the probe of an atomic force microscope

and a sample of the polar, glass-forming molecule polyvinylacetate they were able to

measure fluctuations in the polarization of a volume of ≈ 2×10−17 cm3 of the sample,
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recording a time series over approximately a day. This volume probed is comparable

to the size of cooperative clusters in polyvinylacetate found from nuclear magnetic

resonance experiments, ≈ 2 − 4 nm, so that only a few clusters contributed to the

fluctuations. From full, day-long time series, a 1/f type spectrum was observed.

However, for time series on the order of an hour, the shape of the spectrum was

found to wander, and at times spectral features identified as individual Lorentzians

would grow and subsequently relax. These observations provide evidence not just

of heterogeneity, but specifically of dynamic heterogeneity, with the strength and

characteristic time of fluctuations changing with time as the probed volume moves

slowly among configurations with different sets of characteristic times [110]. Similar

observations of distinct spectral features have been made in mesoscale experiments

in spin glasses [136] and semiconductor devices [92].

Some of the best evidence for these models is that heterogeneity and the resultant

distribution of characteristic times is also the most popular explanation for a number

of other properties of disordered systems. It was pointed out above that the two-level

tunneling systems used by Anderson, Halperin, and Varma to explain some properties

of disordered materials [3] have been extensively used in models of 1/f noise [67,

136, 15, 16, 77]. Another significant property of heterogeneity is the nonexponential

characteristic of supercooled liquids and structural glasses [133, 19, 105, 26]. For

systems such as these, the relaxation and autocorrelation functions ξ(t) are not found

in experiments to be exponential, but more often follow a stretched exponential form

known as the Kohlrausch-Williams-Watt function:

ξ(t) ∝ e−(t/τc)β (1.45)

where the parameter β = 1 at high (typically inaccessible in experiments) temper-

atures, meaning standard exponential characteristic, and decreases to some value
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β < 1 near the glass transition temperature, yielding the much slower characteris-

tic associated with glasses. While it remains a possibility that this stretching is a

phenomenon intrinsic to individual molecules, allowing the liquid to relax homoge-

neously, the explanation supported by the experimental evidence is that molecular

cooperativity near the glass transition results in the creation of clusters of molecules

with their own relaxation rates. Like the power spectral density, this means that

to find the relaxation function for the bulk sample, the exponential relaxation of an

individual region needs to be integrated over its characteristic time, weighted by a

distribution p(τc):

ξ(t) ∝
∫ ∞

0

p(τc)e
−t/τcdτc (1.46)

The heterogeneous explanation for the stretched form of relaxation and autocorrela-

tion functions has been known for some time. However, in the past twenty years, with

the advent of molecular dynamics simulations and experimental techniques such as

reduced 4D nuclear magnetic resonance and non-resonant spectral hole burning that

allow for the direct observation of characteristic of individual clusters of molecules,

evidence has suggested more and more that heterogeneity is in fact the solution to

this long-standing problem [133].

Similarly, experimental limitations for some time obfuscated the heterogeneous

explanation of 1/f noise. While nonexponential relaxation may clearly be a property

of supercooled liquids, most early observations of 1/f noise were made in metals,

carbon resistors, etc., where those effects are not readily observable. Ironically, while

it was the noise that prevented direct measurement of the susceptibility, it was through

measurement of the noise that the susceptibility could be found indirectly, by way of

the fluctuation-dissipation relation [65, 110].

As previously discussed, no low frequency cutoff of a continuous 1/f type spec-

trum has been observed. By definition, this means that ergodicity is broken in these
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systems. Absent of a cutoff, the lowest frequency characteristic modes cannot have

been observed to have made a transition, so that the system, in the time of observa-

tion, has not fully explored its phase space. These models, at their core, are based

upon a constant distribution of barrier heights. However, because of the characteristic

time’s exponential dependence upon barrier height, this distribution can be relatively

narrow and still yield a very broad distribution of characteristic times. It therefore

comes as no surprise that the low frequency cutoff is inaccessible. It should also be

pointed out that the underlying processes in these models are stationary, linear, and

Gaussian. Instead, the power law nature of the 1/f noise in these models come from

the distribution p(τc) ∼ 1/τc. This is in contrast to the models in the next section, §

1.4.2, in which the underlying processes themselves are based on power laws and are

therefore intrinsically non-stationary.

1.4.2 1/f Noise From Power-Law Renewal Processes

For models based on the superposition of exponential relaxation processes with

distributed characteristic times, the resolution to the paradox of infinite fluctuations

is found in the assurance that there exists some low-frequency cutoff to the 1/f spec-

trum. The underlying processes of these models are stationary, and the power law

nature of 1/f noise comes from a power law distribution of relaxation times. How-

ever, there also exist classes of models that resolve this paradox by considering non-

stationary and/or non-ergodic processes which demonstrate aging like that described

in § 1.3.3, specifically equation 1.29. One such class of models is based on renewal

processes [50]. The use of renewal processes to generate 1/f type spectra that could

avoid the paradox of infinite fluctuations was first suggested by B.B. Mandelbrot in

the mid 1960s [82, 135]. The simplest of these are two-state random processes, in

which a system switches between two discrete states, described by a random variable
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I that assumes one of two values, say

I(t) = ±I0 (1.47)

at times t = t1, ...tn, .... In this case, not only is I(t) a random variable, but so are

the sojourn times τi = ti − ti−1 that the system spends in each state [46]. An early

investigation of two-state random noise was conducted by S.O. Rice in 1944 [104]. Rice

considered a Poisson process, where the sojourn times τi are exponentially distributed

with a single intensity µ. The probability density function from such a process is

ψ(τ) = µe−µτ (1.48)

and the number of switching events n occuring in time t follow a Poisson distribution:

P (n, t) = (µt)ne−µt/n!. An example of a time series of such a process is shown in

figure 1.1a. The mean sojourn time is well defined:

τ =

∫ ∞

0

τψ(τ)dτ =
1

µ
(1.49)

The power spectral density is a Lorentzian, and as such Poisson processes are often

the fluctuators appearing in the models of distributed characteristic times in § 1.4.1,

where µ−1 is interpreted as the characteristic time τc. Indeed, McWhorter employed

a Poisson process to describe the occupation of defects by electrons in his model of

noise in semiconductors [87], described in § 1.4.1.

In addition to having a well-defined mean sojourn time, the correlation function

of a Poisson process depends only upon the lag and not upon the measurement time

tm, converging to a delta function as tm → ∞ [46, 84]. The process is therefore

ergodic and stationary. However, the sojourn times of a two-state process need not

be exponentially distributed, and not all such processes are ergodic or stationary. One

example comes from sojourn times following a Mittag-Leffler distribution, a survival
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function interpolating between a power law distribution ψ(τ) ∝ τ−β for τ → ∞ and

a stretched exponential ψ(τ) ∝ e−τ
β

for τ → 0. Time series from models of this type

are non-stationary and non-ergodic and fluctuate with a 1/f type spectrum that has

been found to exhibit aging [94, 46]. Importantly, this aging preserves the shape of

the spectrum as a function of frequency, yielding an α that is constant in time. Only

the amplitude, separable as a time-dependent prefactor multiplying the frequency-

dependent part of the spectrum, changes with time. The ensemble average of this

prefactor has the proper time dependence, ∝ t1−α, to avoid the paradox of infinite

fluctuations [94].

Similarly, when sojourn times are distributed according to simply a power law, the

resulting time series may not be ergodic and will fluctuate with a 1/f type spectrum

[80, 84, 76]. For instance, a process obeying Lévy statistics, for which the sojourn

times follow a probability distribution function

ψ(τ) ∼ τ−1−θ, 0 < θ ≤ 2 (1.50)

will fluctuate with a 1/f type spectrum and may be non-ergodic and non-stationary,

depending on the value of θ. An example of such a time series, for θ = 0.5 is shown

in figure 1.1(b). The time-averaged mean and variance of τ are

τ =

∫ ∞

0

τψ(τ)dτ ∝ lim
τ→∞

τ 1−θ

τ 2 =

∫ ∞

0

τ 2ψ(τ)dτ ∝ lim
τ→∞

τ 2−θ
(1.51)

For θ = 2, both the mean and the variance are bounded and the process simply

describes Brownian motion. In this extreme case, the mean sojourn time remains

small, yielding a variance that is finite. It will therefore have a power spectral density

that decays as 1/f 2 and is stationary. For 1 < θ < 2, the tail of the distribu-

tion is heavy enough that longer sojourns are allowed. Time series of this type, of
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Figure 1.1: Illustration of ergodic (Poissonian) and non-ergodic (power law) time
series. (a) Time series of a random variable I(t) = ±1 containing N = 100 transitions,
where the sojourn time between two transitions τi = ti−ti−1 is itself a random variable
distributed according to equation 1.48 with µ = 1. It is clear that τ has a finite
time-average and that I(t) → 0. (b) Another time series of I(t) = ±1 containing
N = 100 transitions, where τi is distributed according to equation 1.50 with θ = 0.5.
Since 0 < θ < 1, the time-averaged mean and variance of τ , equation 1.51, diverge.
Therefore, I(t) does not converge, the process is non-stationary and non-ergodic, and
the power spectral density will exhibit aging.

which Brownian motion is a special case, are known as Lévy flights, a term coined by

Mandelbrot after Paul Lévy, a mathematician whose work anticipated much of Man-

delbrot’s [81]. The mean sojourn time remains bounded and consequently so does

the time-averaged mean of I(t) = ±I0: I(t) = 0. The variance, on the other hand,

diverges and the power spectral density is non-stationary. For 0 < θ ≤ 1, both the

mean and the variance of τ diverge, and I(t) is a random variable for all measurement

times [135, 80, 84]. This highly non-ergodic case has attracted the most attention in

recent years [84, 94, 73].

From figure 1.1 it can be visualized how a time series with sojourn times dis-

tributed as in equation 1.50 can lead to the aging described by equation 1.29. In

figure 1.1a is shown a time series with N = 100 transitions and sojourn times dis-

tributed exponentially, as in equation 1.48, with µ = 1. It is clear from the time
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series alone that the average sojourn time is finite and I(t) → 0. In figure 1.1b is

shown a time series with the same number of transitions, N = 100, but sojourn times

distributed according to equation 1.50, with θ = 0.5. Because the distribution ψ(τ)

is heavy tailed, unlike the exponentially distributed sojourn times seen in figure 1.1a,

the mean sojourn time, equation 1.51, is infinite. This means that there is always

finite probability of a sojourn time of any length occuring. This includes sojourn

times greater than the length of the measurement itself, τ > tm. If such a sojourn

time occurs during and beyond the end of a measurement, extending the length of

the measurement only extends the time over which no fluctuations occur. Essentially,

as time passes the cumulative probability of encountering a sojourn time τ ∼ tm

increases. As a result, ensemble averages of power spectral densities calculated from

successively longer measurements of the same time series will decay with time. An-

other consequence of non-stationarity that becomes clear from these considerations is

that the time-averaged mean value of I(t) is not well-defined. Encountering a sojourn

time τ ∼ tm over which either I(t) = +I0 or −I0 will bias I(t) toward this value,

so that I(t) 6= 0 for any tm. Of course, the ensemble-averaged mean value 〈I〉 = 0,

confirming that the process is nonergodic in addition to being non-stationary.

In figure 1.2, another property of time series of this type, and a property of 1/f

noise in general, is illustrated: its scale invariance, or self-similarity. FIG 1.2 shows

successively shorter portions of a single time series of a two-state random process

with sojourn times taken from equation 1.50 with θ = 0.3. The top figure, figure

1.2a, shows the full time series, containing N = 105 transitions over a unitless length

of time tm ≈ 107. The red vertical lines in figure 1.2a indicate the range shown

in (b), an order of magnitude smaller than that of (a), and so on for (c), (d), and

(e). The visual similarity of these demonstrates that this process has no natural

scale; it is scale invariant, or self-similar. Continually cutting out smaller portions
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Figure 1.2: A demonstration of the fractal nature of the processes underlying 1/f
noise, specifically their scale invariance, or self-similarity. (a) The full time series,
containing N = 100 over a unitless length of time tm ≈ 107. The vertical red lines
indicate the range shown in (b), an order of magnitude smaller than that of (a), and
likewise for (c), (d), and (e). Shrinking or expanding the measurement time yields the
same distribution of sojourn times. The mean sojourn time therefore diverges with
measurement time. As a result, I(t) never converges and the process is non-stationary
and, since 〈I〉 = 0, non-ergodic. In (e) it becomes clear to the eye that the time series
only contains a finite number of transitions, marking the end of the self-similarity.

of a time series of such a process produces the same distribution of sojourn times.

Likewise, continually extending the time of measurement, the time series will have

the same distribution of sojourn times. This means that the time-averaged sojourn

time increases with measurement time, so that I(t) never converges for any length

of time. The exception to this is perhaps figure 1.2(e), where the finite number of

transitions becomes visible to the eye.

As discussed in § 1.3.3, such non-stationary models, though generating excitement,

failed to gain currency in the years immediately after their conception, since most
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experiments concluded that the processes underlying 1/f noise are stationary [124,

43]. Only until recently have experiments begun to show conclusive evidence of non-

stationarity in systems exhibiting 1/f noise through the mechanisms described in this

section (often called power law intermittency in the experimental literature). Like 1/f

noise in general, the systems showing power law intermittency are diverse, including:

the current-voltage characteristic of nanoscale electrodes [68]; turbulence in weakly

driven liquid crystals [120] and the magnetic field generated by the flow of liquid

metals [54]; the relaxation of a number of glasses [2]; in experiments and simulations

of the interface fluctuations of the (1+1)-dimensional Kardar-Parisi-Zhang (KPZ)

universality class [126]; biorecognition observed through dynamic force spectroscopy

[12]; and, most exhaustively, in the fluorescense spectra of laser-driven quantum dots

[99, 34, 48, 112].

Non-stationarity and spectral aging are experimentally observed only in a rela-

tively small fraction of the many systems exhibiting 1/f noise. However, it may

be possible that non-stationarity and its resolution of the paradox of infinite fluc-

tuations might be salvageable and reconcilable with stationary models of 1/f noise.

This is accomplished through the concepts of conditional measurements and a con-

ditional spectra. Once again, this idea was originally conceieved by Mandelbrot [80],

though it is only recently gaining popularity in relation to the physics of 1/f noise

[135, 73]. The power spectral densities of the processes described in this section are

non-stationary because of the finite probability of a sojourn time occuring during the

measurement that is on the order of the measurement time, τ ∼ tm. However, the

ensemble average of power spectral densities might be made stationary by considering

only the subset of measurements from “active” processes, for which there are no such

sojourn times, τ < tm. Expanding on this idea, Mandelbrot was able to show that

the complete, ensemble-averaged power spectral density for the processes described
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by equation 1.50 could be decomposed into a function of frequency and the parameter

θ, and a function of the measurement time and θ [80, 135]:

〈Stm(f)〉 ∝ tθ−1
m

f 2−θ (1.52)

Such a spectrum will age as required to avoid the paradox of infinite fluctuations,

equation 1.29. Nearly 50 years after first being expressed by Mandelbrot [80], this

idea has been revisited and analyzed precisely, both analytically and numerically [94].

equation 1.52 comes from considering a process that is intrinsically non-stationary.

However, it has been shown recently by N. Leibovich and E. Barkai that the concepts

of conditional measurements and conditional spectra can reconcile stationary and

non-stationary models of 1/f noise [73]. The most popular model of 1/f noise, that

based on the superposition of exponential relaxation processes with a distribution

of characteristic times, § 1.4.1, was among those considered. How a non-stationary

conditional spectrum can be recovered from this intrinsically stationary model, and

how it might manifest in experiments, will be outlined here.

The process is composed of N underlying processes. These are two-state Pois-

son processes, equation 1.47, where sojourn times between switching events are dis-

tributed as in equation 1.48. The spectrum of a single underlying process is a

Lorentzian

Sj(f) = I2
0

4τj
1 + τj

2ω2
(1.53)

where its characteristic time is the mean sojourn time τc = τ , equation 1.49, and

the magnitude of fluctuations I2
0 is the same for all processes. If the characteristic

times τj of the underlying processes are distributed as p(τ) = 1/τβ in the interval

τmin < τj < τmax, the total spectrum, equation 1.36, will be S(f) ∝ 1/f 2−β in the

interval 1/τmax < f < 1/τmin. Note that the magnitude of fluctuations I2
0 , being

the same for all processes, is retained in the single-process spectra, equation 1.53.
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Therefore, the distribution p(τ) is normalized to 1 as opposed to the total variance,

as was the case in equation 1.37. The normalization constant is

ν =

[ ∫ τmax

τmin

τ−βdτ

]−1

= (1− β)/[(τmax)
1−β − (τmin)1−β] (1.54)

Now, if the measurement time is shorter than at least the longest characteristic

time, tm < τmax, not all underlying processes will undergo transitions. Specifically,

those with τj � tm are not active and do not contribute to the total, observed

spectrum. The probability that a process with characteristic time τj will undergo a

transition in measurement time tm is

Pact(tm|τj) = 1− e−tm/τj (1.55)

To construct the conditional spectrum, the underlying processes are considered indi-

vidually and measurements are subject to the condition that only active processes are

considered, which is precisely the condition used in experiments of single fluctuators.

The conditional spectrum is found from integrating the active processes weighted by

the new distribution

pact(τj) = νact × p(τj)Pact(tm|τj) (1.56)

where the new normalization constant νact is

ν−1
act =

∫ τmax

τmin

Pact(tm|τj)p(τj)dτj ≈ Γ(β)

(
tm
τmax

)1−β
(1.57)

where Γ(β) ≡
∫∞

0
xβ−1e−xdx is the gamma function. Since the conditional spectrum

is found by integrating the spectra of active processes weighted by pact(τj), it is also

normalized by νact. Therefore, the conditional spectrum of active processes is non-

stationary, decaying with measurement time as ∝ tβ−1
m for 0 < β < 1, which yields an

ensemble averaged conditional spectrum

〈Sact(f, tm)〉 ∝ I2
0

tβ−1
m

f 2−β (1.58)
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With α = 2− β, so that 1 < α < 2, this conditional spectrum has the same form as

that expressed in equation 1.29, thus avoiding the paradox of infinite fluctuations.

The conditional spectrum of equation 1.58 may correspond to actual measure-

ments if an experiment were to observe individual processes, as is the case in studies

of individual quantum dots or nanocrystals [99, 34, 48, 112]. On the other hand, in

many experiments, the underlying processes cannot be resolved individually. That

is to say, a macroscopic measurement is being made. In this case, the spectrum

will grow with time as more processes become active and contribute to the observed

spectrum. The number of active processes is

Nact = N

∫ τmax

τmin

Pact(tm|τj)p(τj)dτj

≈ N × Γ(β)

(
tm
τmax

)1−β (1.59)

Interpreting the conditional spectrum, equation 1.58, as the average spectrum of

single active processes, the observed macroscopic spectrum is

Sobs(f) = Nact × 〈Sact(f, tm)〉

∝ NI2
0τ

β−1
max

1

f 2−β

(1.60)

So, while the average spectrum of active processes decays as tβ−1
m , the number of

processes contributing to Sobs(f) grows as t1−βm . The observed spectrum is therefore

independent of tm and is stationary. However, the process remains non-ergodic on

these time scales, as tm < τmax and the system has not explored all possible states.

Similarly, it has been shown that a macroscopic measurement of an intrinsically

non-stationary process will yield a stationary spectrum [73]. In the case of blinking

quantum dots, this explains why past measurements, which were not performed on

individual quantum dots, hid the intrinsic non-stationarity of the underlying processes

[112]. This opens up the possibility that more systems exhibiting 1/f noise are
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composed of intrinsically non-stationary processes. In this case, no natural cutoff

frequency would be necessary to avoid the paradox of infinite fluctuations.

1.4.3 1/f Noise From Self-Organized Criticality

The final model considered here is the subject of the most highly-cited paper in the

1/f literature, with over 4,000 citations. The paper, published in 1987 by Per Bak,

Chao Tang, and Kurt Wiesenfeld, has garnered so much attention not for its utility

as a general model of 1/f noise, but for introducing the concept of self-organized

criticality [7]. This paper will be briefly described here.

Self-organized criticality is an attempt to explain the self-similarity and power

law distributed length and time-scales observed in nature, e.g. the shape of coast

lines, correlations in turbulence, etc.. As discussed in the previous section, these

phenomena are strongly linked to 1/f noise. Bak, Tang, and Wiesenfeld argued that

these structures arise naturally in systems with extended degrees of freedom and

represent an evolution of the system under weak perturbation to a state of minimal

stability with a wide distribution of length scales. Because the system is in a state of

minimal stability and length scales are widely distributed, small perturbations lead

to cascades of larger perturbations on a wide distribution of length and time scales,

generating 1/f noise. Because the system naturally evolves toward this critical state,

it is distinct from the criticality observed at the critical point of a phase transition

familiar from equilibrium statistical mechanics, which requires the tuning of external

parameters, e.g. temperature, pressure, etc..

As an example of such a system, Bak, Tang, and Wiesenfeld considered sandpiles

starting from an unstable configuration. If the slope of a sandpile exceeds a certain

value K, the sand pile collapses until the slope equals K. This is the minimally

stable position and a small perturbation, in the form of adding a little sand to the
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top of the pile, will once again cause a collapse. The size and duration of this collapse

will depend upon the size of the sandpile. Furthermore, the collapse will perturb

neighboring sandpiles, causing them to collapse and perturb their neighbors, and a

chain reaction ensues.

Bak, Tang, and Wiesenfeld simulated this system using cellular automata in one,

two, and three dimensions. In two dimensions, each point is assigned a height of

sand z(x, y). If z(x, y) > K, the sandpile collapses, its height decreases and the sand

moves to its neighbors, raising their height:

z(x, y)→ z(x, y)− 4

z(x± 1, y)→ z(x± 1, y) + 1

z(x, y ± 1)→ z(x, y ± 1) + 1

(1.61)

Note that fluctuations in this sandpile model are independent of K. The boundary

conditions are that z = 0 on the edges (imagine a table covered in sand). Initializing

the system randomly under the condition that the system is far from equilibrium with

all z � K, it will evolve into a state of minimal stability with all z ≤ K. The system

is perturbed by adding bits of sand to one z at a time and observing its evolution.

As predicted, Bak, Tang, and Wiesenfeld found that this system, under pertur-

bation of a single site, exhibited collapses of sandpiles of all sizes s, where s is the

extent of the sandpile’s collapse in x and y. They found the size of sandpile collapses

are distributed according to a power law p(s) ∼ s−β, with β ≈ 0.98 and ≈ 1.35 in

two and three dimensions, respectively.

Because the updating rule equation 1.61 is limited to nearest-neighbors, collapses

propagate at a finite and constant speed. This is a crucial ingredient, as it means

that, since collapse size is distributed according to a power law, so too is the duration
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tc of collapses. Say the collapse spreads over a duration tc according to its size s as

t1+γ
c ∼ s (1.62)

The distribution of collapse durations can be found from the distribution of collapse

sizes:

p(tc) =
s

tc
p(s(tc))

ds

dtc
≈ t−β(γ+1)+2γ

c = t−θc (1.63)

where θ ≡ β(γ + 1) − 2γ and p(tc) is weighted according to the average response

of collapses s/tc. Indeed, Bak, Tang, and Wiesenfeld found simulations produced

power law distributions of tc with θ ≈ 0.42 and ≈ 0.90 in two and three dimensions,

respectively. As a result, the spectra of fluctuations are of the form S(f) ≈ 1/fα with

α ≡ 2− θ ≈ 1.58 and ≈ 1.1 in two and three dimensions, respectively.

Though other models, including those discussed in § 1.4.1 and 1.4.2, are more

popular as explanations of 1/f noise, this model has generated a vast literature sur-

rounding self-organized criticality and its relevance to the self-similarity seen in na-

ture. This model will also be relevant to the original models and results presented

below in § 3 and 4. The similarity is somewhat tangential, as the models of § 3 and

4 do not exhibit self-organized criticality. They do, however, share the property that

the time-scale of fluctuations of a quantity is related to the value of that fluctuating

quantity. In the model of Bak, Tang, and Wiesenfeld, this property is encapsulated

in the power law relation equation 1.62, and is crucial to the presence of 1/f noise

[7].
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Chapter 2

MULTIPLICITY-DEPENDENT CHARACTERISTIC TIMES

Before discussing the original models and work presented in § 3 and 4, their

foundation is introduced: the concept of multiplicity-dependent characteristic times.

That is to say, a stochastic variable M fluctuates with a characteristic time τc that

depends upon M through its multiplicity Ω(M) as

τc(M) ∼ 1

Ω(M)
(2.1)

When this condition is satisfied, a system will exhibit fluctuations with a 1/f spec-

trum. This will be shown mathematically in § 2.1, for models based on a distribution

of exponential relaxation processes and models based on power law renewal processes.

In § 2.2, a physical interpretation of this condition will be offered: that equation 2.1

applies when the system is coupled to a finite, non-equilibrium bath, with which it

shares a constant, maximized amount of entropy. This system + bath may then be

coupled to an effectively infinite thermal reservoir, in the case that a system is only

weakly coupled to the larger thermal environment and contact is mediated through

the system’s local environment.

2.1 Mathematical Motivation

In this section, equation 2.1 will be mathematically motivated. In § 2.1.1, it will

be shown to result in 1/f fluctuations for a superposition of fluctuators in the manner

of models discussed in § 1.4.1. In § 2.1.2, it will be shown to result in 1/f fluctuations

for a single fluctuator, in the manner of the power law renewal processes discussed

in § 1.4.2. Finally, in § 2.1.3 it will be compared to models based on self-organized
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criticality, discussed in § 1.4.3. This mathematical motivation will also serve to clarify

its physical interpretation in 2.1.3.

2.1.1 As a Distribution of Exponential Relaxation Processes

As discussed in § 1.4.1, a stochastic variable M (consider M stationary and

〈M〉 = 0) will fluctuate with a 1/f spectrum if it is composed of fluctuators with

Lorentzian spectra with time constants distributed as p(τc) ∼ 1/τc. Given equation

1.37, the distribution p(τc) is interpreted as being the variance due to fluctuators with

characteristic times between τc and τc+dτc [65]. From this, p(τc) can be further inter-

preted as containing the density Ω(τc) of fluctuators as well as the average amplitude

squared A2(τc) of a single fluctuation with characteristic time τc. It can be expressed

as [51]

p(τc) = A2(τc)× Ω(τc) (2.2)

So, with the proper relationship A2(τc) × Ω(τc) ∼ 1/τc between the density and the

strength of fluctuations in the interval τ1 < τc < τ2, fluctuations will have a 1/f

spectrum in the frequency interval 1/τ2 < f < 1/τ1. This is illustrated in figure 2.1,

where 50 Lorentzian spectra are plotted along with their sum S(f) for three different

sets of Ω(τc) and A2(τc), each having the property A2(τc)× Ω(τc) ∝ 1/τc.

Suppose that this stochastic variable M fluctuates with a characteristic time τc

that depends upon M according to the condition of equation 2.1. This can be used

to find the Ω(τc) appearing in p(τc) in terms of Ω(M)

Ω(τc)dτc = Ω(M)dM

→ Ω(τc) = Ω(M)

∣∣∣∣
dτc
dM

∣∣∣∣
−1

= Ω3(M)

∣∣∣∣
dΩ(M)

dM

∣∣∣∣
−1 (2.3)
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Figure 2.1: Log-log plot of 50 Lorentzian spectra (colored curves) and their sum
(black dotted curve) corresponding to the total power spectral density as a function
of frequency. Values of τc, in the interval 10−1 < τc < 101 from each set, were chosen
according to the specified density Ω(τc) of fluctuators and spectra are weighted by
their corresponding amplitude A2(τc). Each set has the property p(τc) = A2(τc) ×
Ω(τc) ∝ 1/τc necessary to produce 1/f noise. For clarity of presentation, individual
spectra are reduced by their amplitude and their sum is reduced in amplitude to
match the low-frequency white noise level of the Lorentzian with the largest τc (lowest
frequency mode). (a) Ω = const, A2 ∝ 1/τc. For a system consisting of linearly
spaced characteristic times τc, the amplitude must be ∝ 1/τc. (b) Ω ∝ 1/τ 2

c , A2 ∝ τc.
For a system consisting of characteristic times spaced as 1/τc, the amplitude must
be ∝ τc. (c) Ω ∝ 1/τc, A

2 = const. For a system consisting of logarithmically
spaced characteristic times (linearly spaced on the log-log plot), the amplitude must
be constant.

or in terms of τc as

Ω(τc)dτc = Ω(M)dM

→ Ω(τc) =
1

τc

∣∣∣∣
dM

dτc

∣∣∣∣
(2.4)

Now consider the average amplitude A2(τc) of a single fluctuation. The contribution

to the total variance 〈(δM)2〉 from a fluctuation of average size |M | and duration τc,

while dependent upon the shape of the fluctuation, is approximately

A2 ∼M2 × τc/tm (2.5)

where tm is the total measurement time. Substituting equation 2.4 and 2.5 into
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equation 2.2, the distribution of such multiplicity-dependent characteristic times τc is

p(τc) = A2(τc)× Ω(τc) ∝M2(τc)

∣∣∣∣
dM

dτc

∣∣∣∣ (2.6)

or, substituting equation 2.3 and 2.5 into equation 2.2, in terms of Ω(M),

p(τc) ∝M2Ω2(M)

∣∣∣∣
dΩ(M)

dM

∣∣∣∣
−1

(2.7)

In this case, of course, whether or not p(τc) ∼ 1/τc is satisfied and M exhibits

fluctuations with a 1/f type spectrum will depend upon the form of Ω(M). A common

situation, and one that will be relevant in the following, is that Ω(M) is Gaussian.

If it isn’t explicitly so, it can be approximated as such if a system undergoes small

fluctuations about a state of maximum entropy. Here, Boltzmann’s expression for the

statistical entropy is used:

S = kB ln Ω (2.8)

where Ω is the multiplicity of microstates corresponding to the macrostate of the

system. In general, this multiplicity and the entropy of the system will depend upon

the energy as well as any other parameters, including the variable M , which determine

the macrostate of the system. For now, any dependency of M and S upon the energy

E is ignored. The entropy considered is purely configurational so that equation 2.8

can be written S(M) = kB ln[Ω(M)]. This configurational entropy can be expanded

as a function of M about its maximum Smax

S(M) = Smax − 1

2

∂2S
∂M2

M2 +O(M4) (2.9)

Retaining only the leading terms, the entropy is approximated as being quadratic in

M so that the multiplicity is Gaussian, Ω(M) ∝ e−const.×M
2
, and from equation 2.1,

τc(M) ∝ econst.×M
2 →M ∝

√
ln(τc). Either of these can be substituted into equation

2.6 or 2.7 to yield

p(τc) ∝
√

ln(τc)

τc
(2.10)
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If the range of τc is sufficiently broad,
√

ln(τc) being slow-growing, then this distri-

bution is very nearly ∼ 1/τc. More precisely, for a distribution p(τc) ∝ 1/τβ, it is

known that S(f) ∝ 1/f 2−β [73]. Therefore, taking p(τc) ∼
√

ln(τc)/τc ∼ 1/τβc locally

in some range of τc, then β < 1, so that limτ→∞ β = 1−. So, the spectral exponent is

α ∼ 2− β > 1, so that limτ→∞ α = 1+.

So, a variable M , fluctuating with a characteristic time τc depending upon M as

in equation 2.1, will exhibit fluctuations with a 1/f spectrum if the multiplicity of

states with M is Gaussian in M or as long as fluctuations in M are small enough that

they may be approximated as such. Finally, if the value of M is bounded, so too is the

value of τc. This defines the maximum characteristic time τmax. For measurement

times tm > τmax, the system is ergodic. At frequencies f < τ−1
max fluctuations are

white and the power spectral density is flat.

2.1.2 As a Renewal Process

Equation 2.1 may also yield 1/f fluctuations in the fashion of a renewal process,

as discussed in § 1.4.2. Consider a system which, unlike the two-state examples in §

1.4.2, has multiple states, corresponding to different values of the variable M , which

may even be continuous. Further suppose that M is limited in how quickly it can

change its value, if at all:

M(t+ dt) =




M(t)± δM

M(t)

(2.11)

If states are separated by a constant value δM ∼ const, then each fluctuation can be

considered as being between two states, and having a constant magnitude squared,

(δM)2. Therefore, though this process has multiple states, it is approximately red-

ucable to the two-state systems discussed in § 1.4.2. Particularly, if the process is

non-stationary and has no well-defined mean value, then the only meaningful measure
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of the magnitude of each fluctuation is the separation δM between states adjacent in

time. This also allows the characteristic time τc in § 2.1.1 to be considered equivalent

to sojourn times τ in the analysis here.

If this single fluctuator obeys equation 2.1, then equation 2.4 holds and Ω(τ) =

τ−1|dM/dτ |. Once again, consider a system with a Gaussian multiplicity in M ,

τ ∝ econst.×M
2 →M ∝

√
ln(τ) so that

ψ(τ) ∝ Ω(τ) ∝ 1

τ 2
√

ln(τ)
(2.12)

where it was recognized that the probability density function of sojourn times ψ(τ)

is the normalized multiplicity. Locally about some τ , this corresponds to equation

1.50, ψ(τ) ∼ τ−1−θ, with θ > 1 so that limτ→∞ θ = 1+; therefore, α = 2 − θ < 1,

so that limτ→∞ α = 1−. So, this system will exhibit 1/f fluctuations. Furthermore,

since θ > 1, according to equation 1.51, M will have a well-defined, though slowly

converging, mean, an infinite variance and a non-stationary power spectral density.

However, if the value of M is bounded, so is the value of τ . The power law behavior

of ψ will then be truncated at the maximum value of τ :

ψ(τ) ∼ τ−1−θe−τ/τmax (2.13)

So, while the power spectral density may undergo large fluctuations for measurement

times tm < τmax, it will converge for tm > τmax and become stationary. In addition,

fluctuations with τ > τmax will be white and the spectral density will be flat for

f < 1/τmax.

2.1.3 Relationship to Self-Organized Criticality

Finally, systems obeying equation 2.1 bear some resemblance to models based on

self-organized criticality, since in both cases the size of a fluctuation is related to its
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duration. For the sandpile model of Bak, Tang, and Wiesenfeld, this is through the

power law relation t1+γ
c ∼ s, equation 1.62 [7]. For the models based on multiplicity-

dependent characteristic times presented here, this is through the relationship be-

tween the variable M , its multiplicity Ω(M), and the characteristic time, equation

2.1. While these relationships are crucial to 1/f fluctuations in both types of mod-

els, it is not clear that this similarity is anything more than cosmetic. Additionally,

these are not the only two models of 1/f noise that depend upon a relationship be-

tween fluctuation size and duration. For instance, the droplet model of a spin glass,

in which the magnetization fluctuates as 1/f , has such a relationship, the size and

duration of a fluctuation both being related the size of a cluster or droplet of spins

[137]. However, there is another important property that originates from the rela-

tionship between fluctuation size and duration, shared by the multiplicity-dependent

and self-organized criticality models: both models do not require the imposition of a

specific distribution of sojourn times or characteristic times. Instead, 1/f noise arises

naturally in both models without the tuning of a specific parameter.

2.2 Physical Interpretation

Having motivated equation 2.1 mathematically, and before moving on to its phys-

ical interpretation, the effects of this condition should be considered in general. Qual-

itatively, the condition equation 2.1 generates 1/f noise in a system by causing lower

entropy states to live longer, causing the characteristic time of the system to evolve

as the system moves among states of differing entropy. The system, then, is explicitly

non-ergodic: different amounts of time are spent in different microstates. In fact, the

probability of finding the system in a macrostate with M is

P (M) ∝ τ(M)× Ω(M) = constant (2.14)
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Apparently, imposing the condition equation 2.1 renders all macrostates and values of

M equally likely in time. However, if the systems of an ensemble are prepared in such

a way that ignores τ , so that their likelihood of being chosen is proportional to the

multiplicity, then P (M) ∝ Ω(M). Therefore, ensemble-averaged and time-averaged

quantities will in general be different if equation 2.1 is satisfied, and the system is

non-ergodic. Once again, however, if M is bounded, so too is the value of τ < τmax.

For measurement times tm > τmax time-averaged quantities become well-defined and

the system is stationary for these times. However, these time averages may still differ

from ensemble averages, so the system remains non-ergodic.

Another important consequence of equation 2.1 is that, since the fluctuations in

M are directly related to M , models of this type are by definition non-linear (see §

1.3.2). This bodes well for models of this type for e.g. the flux noise in SQUIDs, which

is known to be non-linear [119, 4]. The model presented in § 4 will be compared to

SQUID flux noise, where its non-linearity allows it to reproduce the phenomenology

of SQUID flux noise. On the other hand, linearity of the microscopic fluctuations of

a system can serve as an experimental way to eliminate models of this type.

Below, the physical interpretation of what physical systems might obey the con-

dition equation 2.1, and why, is explored. The interpretation used throughout this

dissertation is that the system is in contact with a finite bath that can be pushed out

of equilibrium according to the state of the system.

2.2.1 From a Finite, Non-Equilibrium Bath

Having outlined how the relationship expressed in equation 2.1 yields fluctuations

with a 1/f type spectrum, it is left to describe the physical situation in which equation

2.1 might hold. The interpretation offered here is that equation 2.1 applies for a

mesoscopic system in contact with a finite, local bath. The system + local bath may in
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turn be considered to be coupled to an effectively infinite thermal reservoir, in the case

that the system is not completely isolated, but also not ideally coupled to the thermal

reservoir. On the other hand, ideal coupling to an infinite reservoir is assumed in the

canonical ensemble, and is central to standard formulation of equilibrium statistical

mechanics. Foundational to this formulation is the Boltzmann weight, which gives

the probability of observing a system coupled to a thermal reservoir at temperature

T to be in a state of energy E relative to the probability of observing a state with

E = 0:

p ∝ e−E/kBT (2.15)

The sum over all Boltzmann weights of a system is known as the canonical partition

function:

Z ≡
∑

j

e−Ej/kBT (2.16)

The partition function, while doing much more, normalizes the Gibbs distribution to

give definite values for the probabilities of states with energy Ej:

wj =
e−Ej/kBT

Z
(2.17)

Finally, the relative probability of two states having energies E1 and E2 separated by

∆E = E1 − E2 is:

w1

w2

=
e−E1/kBT

e−E2/kBT
= e−∆E/kBT (2.18)

This is known as Boltzmann’s factor. If the condition of detailed balance is satisfied,

Boltzmann’s factor also determines the probability of a transition between states

of energy E1 and E2. In this role, Boltzmann’s factor is the foundation of Markov

chain Monte Carlo, most notably the heavily employed Metropolis-Hastings algorithm

[89, 53].

Boltzmann’s factor, equation 2.18, can be derived in a number of ways, e.g. using

Lagrange’s method of undetermined multipliers [55]. Here, to facilitate comparison
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with the conditions necessary for equation 2.1, a derivation considering the linear

change in the thermal reservoir’s entropy due to the change ∆E in the internal energy

of the system is employed [6]. Considering the system and the reservoir together, the

probability of a fluctuation will be determined by the total change in entropy of the

system and reservoir, ∆Stot = ∆SS + ∆SR, where the subscripts R and S will denote

reservoir and system quantities, respectively. Since the state of the system is known

before and after the fluctuation, its entropy remains constant, ∆SS = 0, so that

∆Stot = ∆SR. Now, the probability of the fluctuation is found by considering the

relative probabilities of states to be proportional to their multiplicities, and inverting

the Boltzmann entropy, equation 2.8:

p = e∆SR/kB (2.19)

Expanding ∆SR as a function of the change in the reservoir’s energy, ∆ER, produces

the fundamental equation of thermodynamics:

∆SR =
∂SR
∂ER

∆ER +O((∆ER)2) ≈ ∆ER
T

(2.20)

Where T ≡ (∂SR/∂ER)−1 defines the reservoir temperature. Higher order terms

O((∆ER)2) are neglected under the assumption that the thermal reservoir is infinite.

Further assuming that the only change in the energy of the reservoir comes from

changes in the internal energy of the system, conservation of energy requires that

∆ER = −∆ES. Substituting this and equation 2.20 into equation 2.19 gives Boltz-

mann’s factor, equation 2.18. This derivation makes clear that the preference for the

system to reduce its internal energy expressed in Boltzmann’s factor fundamentally

comes from a preference for raising the entropy of the thermal reservoir.

A number of assumptions go into deriving Boltzmann’s factor. Two of these are

(1) that the thermal reservoir to which the system is coupled is effectively infinite
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and (2) that the coupling to this thermal reservoir is immediate. The sum of these

considerations is that the thermal reservoir is not altered by changes in the state of

the system and is therefore independent of the state of the system. However, when the

system under consideration is small enough, the time scale of events short enough, or

the system is not coupled ideally to the thermal reservoir, as may be the case at low

temperatures, these assumptions might not hold. Instead, the local environment of

the system, referred to here as the system’s local bath, mediates contact and exchange

of energy with the reservoir. Evidence for such imperfect coupling is found in the

dynamical independence of nanometer size regions observed in many materials, as

discussed is § 1.4.1 [133, 19, 105, 26]. Since the local bath is finite and of a size

comparable to the system itself, changes in the system drive the local bath out of

equilibrium, changing the thermal environment seen by the system. This violates

the assumptions stated above which are necessary in deriving Boltzmann’s factor to

justify dropping the higher order terms O((∆ER)2) from the expansion in equation

2.20 and assuming that changes in the energy of the reservoir are accounted for

entirely by the changes in the internal energy of the system.

To model this imperfect coupling, it is assumed that on the time scale of micro-

scopic events, a maximized and constant amount of entropy is shared between the

system and its local bath. Here, this constant amount of entropy is taken to be the

maximum entropy of the system Smaxsystem. The system + local bath are then coupled

as a unit to the effectively infinite thermal reservoir. To maintain this situation, if

the entropy of the system decreases, the entropy of its local bath must increase by

a corresponding amount. As a result, if the system fluctuates into a state of low

entropy, changes in its state are suppressed while the local bath, with its entropy now

increased, explores newly available states and exchanges energy with the thermal

reservoir. Specifically, changes are suppressed by a factor proportional to the fraction
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Figure 2.2: Schematic representation of a system (red) and its local bath (blue)
sharing a constant amount of phase space. Depending on its entropy, transitions
in the system are suppressed by a factor proportional to its relative share of the
constant phase space: Ωsystem/(Ωsystem + Ωlocal bath) = eSsystem−S

max
system . This leads to

the dependency of characteristic time upon multiplicity expressed in equation 2.1.
The black dashed line depicts the smooth Gaussian dependence of the multiplicity
upon M : Ωsystem ≡ Ω(M) ∝ e−const.×M

2
.
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of the total phase space Ωsystem + Ωlocal bath = eS
max
system that the system occupies:

Ωsystem

Ωsystem + Ωlocal bath

= eSsystem−S
max
system (2.21)

Suppressing the probability of transitions by a factor ∝ Ωsystem extends the lifetime

of states with M by a factor of Ω−1
system. This leads to the relationship between the

characteristic time τ and the multiplicity Ω(M) ≡ Ωsystem expressed in equation 2.1.

figure 2.2 illustrates this situation, depicting a constant amount of phase space being

shared between the system and its local bath. Interpreting equation 2.1 as originating

from the system’s deviation from its state of maximum entropy suggests expressing

it in another way:

τ(M) ∼ eS
max
system−Ssystem (2.22)

Under this interpretation, low entropy states of the system are preserved longer

because the entropy of the local bath has been raised. Therefore, equation 2.22

(equivalent to 2.1) comes from a preference to keep the entropy of the local bath high,

similar to Boltzmann’s factor. However, equation 2.18 is different from Boltzmann’s

factor in that the local bath is pushed out of equilibrium by transitions in the system,

whereas when the thermal reservoir is assumed infinite, its thermal equilibrium is

unaltered by transitions in the system. One way that this difference manifests itself

is that, while a change in entropy appears in equation 2.18, the offset from the

maximum entropy appears in equation 2.22. This is because it is the offset from

maximum entropy of the system that determines the state of the local bath, whose

own offset from maximum entropy is determined by that of the system. If the total

offset is considered to be the sum of changes in entropy from individual transitions,

the local bath can be said to have a memory.

Another difference between the forms of equation 2.18 and 2.22 is that, while

Boltzmann’s factor comes solely from changes in the internal energy of the system,
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equation 2.22 depends upon the configurational entropy as a function of M . However,

fluctuations in configurational entropy may be accompanied by transfers of heat,

independent of the interactions responsible for the internal energy of the system. A

well-known example of work with an entirely entropic origin is the elasticity of a

freely-jointed chain [47]. A well-studied practical realization of this is the cooling

caused by the adiabatic demagnetization of non-interacting spins [70, 63]. If the

transfers of entropy between the system and its local bath are indeed accompanied

by transfers of heat, this allows the constraint to be viewed in another way: when

the system fluctuates into a low entropy state, the local bath is heated. Transitions

are suppressed while the now-heated local bath exchanges energy and equilibrates

with the thermal reservoir. However, if coupling to the thermal reservoir is ideal,

this equilibration occurs on a time scale faster than that of single transitions. The

system then has no persistent effect on its own thermal environment and the rate of

transitions and lifetime of states does not depend upon the state of the system.

Another reason this dependence upon configurational entropy due to M may come

about is if changes in M require the transfer of a conserved quantity [29]. For in-

stance, if M is the magnetization of a cluster of spins, as it can be interpreted in

the spin models presented in § 3 and 4, changes in M require the transfer of angular

momentum. Considering a single spin flip, this angular momentum necessary to ef-

fect the change in M must come from the spin’s local environment. This can come

from either exchange between neighboring spins or collective excitations (spin waves)

in the magnetization of the cluster [129]. For a cluster of spins that is small and

imperfectly coupled to its environment, the availability of angular momentum on the

time scale of single spin flips is limited by the cluster’s magnetization. In effect, the

cluster acts as its own local bath of angular momentum. In heterogeneous systems

such as supercooled liquids and structural glasses [133, 19, 105, 26], the conservation

59



of linear momentum may similarly constrain the dynamics of independent regions

[29]. In addition to the interpretation that the local bath is the locally available

amount of some conserved quantity aside from energy, another interpretation is that

the identity of the local bath may be the kinetic energy of the system. Indeed, neither

kinetic energy nor conserved quantiites like momentum and angular momentum are

accounted for by Boltzmann’s factor or traditional Monte Carlo simulations. There

do, however, exist a number of Monte Carlo methods that employ local and/or global

conservation of energy, such as that proposed by M. Creutz [36], of other conserved

quantities like angular momentum, such as Kawasaki [61] and Glauber spin dynam-

ics [49], and combined and/or relaxed versions of these [111, 78, 20]. In the models

presented here, however, it is the entropy that is being conserved, to recreate an

isolated or semi-isolated system + local bath which maintains a maximum entropy

state, without reference to the identity of the local bath. It is therefore appropriate

to deem it a finite entropy bath.

The condition of equation 2.1 and 2.22, imposed upon systems with approximately

Gaussian multiplicities, results in distributions of characteristic times, equation 2.10,

and sojourn times, equation 2.12, which are known to yield fluctuations with a 1/f

spectrum (see § 1.4.1 and § 1.4.2). To demonstrate this, two models are presented.

The first, in § 3, consists of a small number of non-interacting, binary spins coupled

to an explicit finite bath. This model is simulated using a simple matrix to determine

transitions, which occur either in the spin system or in the explicit local bath, depend-

ing upon their relative share of their total entropy. This model has the advantage of

being simple and discrete, allowing entropies and transition probabilities to be easily

calculated. The model is also non-interacting so that the entropy alone governs the

dynamics, allowing the effects of the condition of equation 2.1 to be studied on their

own. The second model consists of interacting classical Heisenberg spins. In this
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model, the condition of equation 2.1 is imposed on clusters of spins with an implicit

local bath by accepting spin-flips with a probability determined through equation

2.22, in a manner similar to the Metropolis algorithm. This differs from the matrix

model most notably in that the spins interact with one another and exchange energy

with a thermal reservoir. Therefore, this model does not exactly conserve entropy

for all times, simulating instead a system that is non-ideally coupled to its thermal

environment. Both of these models will be seen to produce 1/f -type fluctuations.
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Chapter 3

1/f NOISE FROM A SIMPLE MATRIX

To explore the effect on fluctuations of the condition in equation 2.1, a model

with dynamics governed by a simple matrix was studied [25]. The physical interpre-

tation of equation 2.1 employed here is that the system shares a constant amount

of entropy with a finite bath. As will be seen, the model has the advantages (1) of

being degenerate, allowing the effect of the entropy-transfer mechanism alone to be

studied, (2) of having a bath that is explicit so that its size relative to the system

can be set exactly, and (3) of being discrete and simple enough that exact multiplic-

ities, the stochastic matrix, etc., can be calculated. The model also has the appeal

that its simplicity allows a clear interpretation and helps to clarify the features of

a constrained Heisenberg spin model including interactions and continuous degrees

of freedom, based on the same principles, presented in § 4. In § 3.3, the results of

simulations will be presented. Additionally, noise in this model will be compared to

noise measurements in the voltage across a mesocopic metal-insulator-metal (MIM)

tunnel junction [108]. Lastly, this model will be recast as a discrete Markov chain

in § 3.4. This allows a stochastic matrix to be constructed, the eigenvalues of which

correspond to the transition frequencies of the model. This allows an alternate route

to calculating the power spectral density, and these results will be compared to the

results of simulations.

Much of the work presented in this chapter was published under the title “Fluctua-

tions theorems and 1/f noise from a simple matrix” in The European Physical Journal

B. The complete citation is listed under reference [25]. The original publication was

completed in collaboration with others and is included in appendix A.
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3.1 Model: System and Bath States

The system is perhaps the simplest possible arrangement of spins: an even number

N of non-interacting, binary spins, allowed to take values of +1 or −1, in 0 field. The

statistics of the system is therefore governed entirely by its configurational entropy.

Absent any information on the state of the system, the total multiplicity is the number

of possible arrangements of the N binary spins: Ωall = 2N . Given knowledge of the

system’s macrostate, determined by its net alignment m, the multiplicity can be found

using the binomial coefficient

Ωm =
N ![

1
2
(N +m)

]
!
[

1
2
(N −m)

]
!

(3.1)

The configurational entropy of the system, according to Boltzmann’s definition, is

Sm = kB ln(Ωm). Of course, the maximum possible value of entropy is for zero net

alignment m = 0 with spins half-up and half-down: S0 = kB ln(Ω0) with Ω0 =

N !/[(N/2)!]2. The system undergoes fluctuations about this state which reduce its

configurational entropy, Sm ≤ S0. The critical assumption of this model is that

the combined entropy of the system plus its bath is maximized and constant at S0,

such that a fluctuation of the system into a macrostate with net alignment m 6= 0

means that the entropy of its bath has correspondingly been raised by an amount

S0 − Sm > 0. To recreate this situation, additional bath states are included in the

model which modify the transition rate among macrostates of the system according

to the system’s net alignment. First, however, the model without bath states will be

described.

The state of the system is determined by the elements of a rectangular matrix, M.

An example of this matrix for a system of N = 4 spins and a schematic representation

of its possible microstates is shown in figure 3.1. There are N + 1 rows in M, corre-

sponding to all possible macrostates of the system, and Ω0 columns, corresponding to
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Figure 3.1: Schematic representation of all possible system states (left) and the
corresponding rectangular matrix M (right) with bath states for an N = 4 spin
system. Non-zero elements of the matrix M represent system states and the value of
the element (Mi,j = ±1) determines how the alignment changes during a simulation
step. Elements with Mi,j = 0 represent explicit bath states and do not alter the
system alignment, thus slowing the dynamics for highly aligned systems.

all possible microstates of the system plus bath for a given net alignment. That is to

say, M has elements Mi,j, with −N/2 ≤ i ≤ N/2 giving the system’s net alignment

m = 2i, and 1 ≤ j ≤ Ω0 giving the specific microstate the system occupies for that

net alignment.

Within a given row, non-zero elements of the matrix represent system states, while

elements with Mi,j = 0, the novel feature of this model, represent bath states and will

be discussed momentarily. So, the number of non-zero elements in a row is equal

to the number of possible realizations (microstates) of that alignment (macrostate).

That is, the number of non-zero elements in a row is given by the system’s multiplicity

Ωm, equation 3.1. The values of the elements determine transitions of the system.

64



Specifically, a value of Mi,j = +1 means an increase in the alignment and a move to

the next row up, whereas a value of Mi,j = −1 means a decrease in the alignment

and a move to the next row down. The ratio of elements having Mi,j = +1 and −1 is

such that, if bath states with Mi,j = 0 are bypassed, all microstates are equally likely

and the alignment will undergo Gaussian fluctuations. That is, there are

Ω+
m = Ωm ×

[
1

2

N −m
N

]
=

[N − 1]![
1
2
(N +m)

]
!
[

1
2
(N −m)− 1

]
!

(3.2)

elements having Mi,j = +1, and

Ω−m = Ωm ×
[

1

2

N +m

N

]
=

[N − 1]![
1
2
(N +m)− 1

]
!
[

1
2
(N −m)

]
!

(3.3)

elements having Mi,j = −1. For example, the central row of M corresponds to zero

net alignment, m = 2i = 0. The number of non-zero elements is Ω0, corresponding

to the number of possible configurations that give zero net alignment. Ω0/2 of these

elements are M0,j = +1 and increase the net alignment, while the remaining Ω0/2

elements are M0,j = −1 and decrease the net alignment.

For alignments that are small compared to the number of spins, m � N , the

multiplicity Ωm can be approximated as a Gaussian. To show this, equation 3.1 for

Ωm is written as a function of the reduced alignment λ ≡ m/N :

Ωm =
N ![

N
2

(1 + λ)
]
!
[
N
2

(1− λ)
]
!

(3.4)
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and its logarithm (the Boltzmann entropy) expanded using Stirling’s approximation:

ln(Ωm) ≈ N ln(N)− N

2
(1 + λ) ln

[
N

2
(1 + λ)

]
− N

2
(1− λ) ln

[
N

2
(1− λ)

]

= N ln 2− N

2
(1 + λ) ln(1 + λ)− N

2
(1− λ) ln(1− λ)

= N ln 2− N

2
(1 + λ)

(
λ− λ2

2
+
λ3

3
− ...

)
+
N

2
(1− λ)

(
λ+

λ2

2
+
λ3

3
+ ...

)

= N ln 2− N

2

(
λ2 +

λ4

6
+ ...

)

= N ln 2− 1

2

m2

N
−O(m4)

(3.5)

The first term of the last equality is recognized as the constant maximum entropy,

corresponding to no knowledge of the state of the system (Ωall = 2N). The next

leading term is the approximate deviation from maximum entropy. It is quadratic, so

that the multiplicity is Gaussian. Thus, according to the results of § 2, this system

will exhibit 1/f fluctuations if equation 2.1 holds and the average time spent in each

state is proportional to the inverse of the multiplicity, τ(m) ∝ em
2/2N . This condition

is satisfied and 1/f noise accomplished through the addition of explicit bath states.

By including the bath states explicitly, any concerns regarding the range of validity

of the approximation m � N used to show Ωm ∝ e−m
2/2N are alleviated. This is

important because, as has been discussed generally and will be seen for this model,

a consequence of including bath states is that all macrostates are equally likely over

long enough times.

The bath states are represented by the elements Mi,j = 0 in figure 3.1. For these

elements, no transition is made and the system remains in its current macrostate

with its current alignment while another transition is attempted. Inclusion of the

bath states, then, has the effect of slowing transitions when the system is in a low-

entropy, highly aligned state. The degree to which the dynamics is slowed depends
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upon the number of bath states compared to the number of system states. Since

inclusion of these states is meant to give the system plus bath a constant multiplicity

Ω0 for all alignments, the number of bath states for a system with alignment m is

given by Ω0−Ωm. So, the ratio of bath states to system states for a given alignment

m of a system of N spins is

Ω0 − Ωm

Ωm

=
N −m
N

m/2∏

i=0

N/2 + i

N/2− i − 1 (3.6)

and the probability of a transition occuring when bath states are included is

Ωm

Ω0

=
N

N −m

m/2∏

i=0

N/2− i
N/2 + i

(3.7)

The ratio of the total number of bath states to the total number of system states,

using Stirling’s formula, is found to be

∑N
m=0(Ω0 − Ωm)∑N

m=0(Ωm)
=

2(N + 1)√
2πN

− 1 (3.8)

This ratio grows slowly (∼
√
N), with the number of bath states exceeding the number

of system states for N > 4 spins. For the largest systems simulated here, N = 24,

there are only about 3 times as many bath states as system states.

3.2 Simulation Details

To summarize the dynamics: simulations proceed by selecting an element of M

at random from the row i corresponding to the current alignment m = 2i; the value

of the chosen element then determines how the alignment changes. Specifically, for

a time step dt, an element Mi,j is chosen from the current row which determines

the row in the next time step; if Mi,j = 0, no change is made, i → i, and another

transition is attempted from the same row; if Mi,j = +1, the number of the row

is increased by one, i → i + 1; if Mi,j = −1, the number of the row is decreased
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by one, i → i − 1. So, the alignment of the system evolves in time according to

m(t + dt) = m(t) + 2Mi,j = 2(i + Mi,j), where 1 ≤ j ≤ Ω0 is chosen at random at

each time step.

To obtain spectra over many decades, data from simulations are collected in a

manner similar to experiments by averaging the instantaneous value of alignment

over a measurement time tav. That is, time series are recorded of the average of

m(t) for averaging times separated by factors of 10, tav = 1, 10, etc.. For the results

presented here, averaging times up to tav = 106 are employed, and simulations are

run until 217 data are collected; simulations are therefore run for as long as 1.31×1011

steps. Multiple simulations (∼ 20) are then averaged together to obtain the values

presented. To compare different sized systems, the alignment is normalized by the

number of spins N to give the relative alignment λ(t) = m(t)/N .

3.3 Results and Discussion

In figure 3.2 are histograms of the relative alignment λ from simulations of N = 24

spins with (solid symbols) and without (open symbols) bath states. Different col-

ors/shapes are for histograms of time series with different averaging times tav =

1, 10, ..., 106. Histograms are presented on a semi-logarithmic plot, giving the Boltz-

mann entropy as a function of alignment for tav = 1. Illustrating this, the black

dashed curve shows the binomial distribution for N = 24 and, as expected, it is

matched precisely by the histogram of instantaneous (tav = 1) alignment for simula-

tions without bath states (open squares). As tav is increased, the number of possible

values for alignment increases dramatically (for tav = 1 there are, of course, only

N + 1 = 25 possible alignments) and histograms become continuous Gaussians. The

histograms become increasingly narrow, approaching a delta function for very large

tav. Specifically, a Gaussian fit, ln(Ω) ∝ λ2/2σ2, to the peak of the histograms pro-
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duces a variance or width that decreases as the inverse of averaging time, σ2 ∝ 1/tav,

giving a σ2 ≈ 9.5 × 10−7 for tav = 106. Simulations without bath states therefore

produce Gaussian fluctuations as expected. The inclusion of bath states produces

markedly different fluctuations. The histogram of instantaneous (tav = 1) alignment

is flat, meaning that the Boltzmann entropy is constant. As averaging time tav is

increased, this flat distribution becomes a Gaussian for alignments close to zero, but

with substantial excess wings for larger alignments. Fitting the central peak of the

histogram for tav = 106 to a Gaussian gives a variance σ2 ≈ 7.7 × 10−3. The heavy

tails of these histograms themselves suggest the presence of slow fluctuations and 1/f

noise, as discussed in § 1.3.1.

These two very different behaviors can be analyzed and compared in terms of their

thermodynamic reversibility using a very general relationship: Crooks’ fluctuation

theorem [37]. Crooks’ fluctuation theorem states that for a system with microscopi-

cally reversible dynamics, regardless of how far from equilibrium it may be, the ratio

of the probabilities of a trajectory in time and the time-reversal of that trajectory

depend exponentially on the entropy production of the forward trajectory:

P [λ+(t)]

P [λ−(t)]
= eς[λ(t)] (3.9)

Where P [λ+(t)] denotes the probability of some trajectory λ+(t), P [λ−(t)] denotes

the probability of the time-reversal λ−(t) of that trajectory, and ς[λ(t)] is the entropy

production of the forward trajectory. From this, it can be seen that a process which

increases the entropy is exponentially more likely than its reverse. Conversely, for a

reversible process where the entropy remains constant, the ratio of probabilities of the

forward and reverse process is exactly 1 [60]. Typically, entropy production appears

as ς[λ(t)] = −β∆F + βW [4], where ∆F is the difference in free energy between the

initial and final states of the system in the forward trajectory and W is the work done
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Figure 3.2: Histograms of the relative alignment for an N = 24 spin system, pre-
sented on a semi-logarithmic plot so that the vertical axis is proportional to the
Boltzmann entropy (ln(Ω)). Different symbol shapes/colors correspond to different
averaging times, from tav = 1 to 106 simulation steps. Open symbols are from simu-
lations without explicit bath states; fluctuations are clearly Gaussian and histograms
narrow as tav is increased. Closed symbols are from simulations with bath states;
fluctuations are non-Gaussian and large values of alignment remain probable even
for very large averaging times tav. The heavy tails of these histograms suggest the
presence of slow fluctuations and 1/f noise (see § 1.3.1).
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on the system. In the model, however, there are no interactions between spins and no

external field, so that all states are degenerate and the configurational entropy alone,

easily calculated from binomial distribution, equation 3.1, determines the probability

and entropy production of fluctuations.

First consider fluctuations of the system without bath states, shown in figure 3.2

as the open symbols. Consider a forward transition as one where a single spin is

flipped from down to up so that i→ i+ 1 and m→ m+ 2. The reverse is of course a

transition where i+ 1→ i and m+ 2→ m. The probability of the forward transition

is given by the ratio of system states in the row i = m/2 with Mi,j = +1 to total

system states in the row. From equation 3.2, this probability is

P [m→ m+ 2] =
1

2

N −m
N

(3.10)

Similarly, for the reverse transition, the probability is given by the ratio of system

states in the row i = m/2 + 1 with Mi,j = −1 to total system states in the same row.

From equation 3.3,

P [m+ 2→ m] =
1

2

N +m+ 2

N
(3.11)

And their ratio is

RS =
P [m→ m+ 2]

P [m+ 2→ m]
=

N −m
N +m+ 2

(3.12)

According to Crooks’ fluctuation theorem, this ratio should be equal to the expo-

nential of the entropy production of the process. Since the system is degenerate, the

entropy production is easily found from the binomial coefficient giving the configura-

tional entropy, equation 3.1, confirming that fluctuations of the model without bath
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states satisfy the Crooks’ fluctuation theorem:

eς[m→m+2] = e(Sm+2−Sm)/kB

=
Ωm+2

Ωm

=
N −m

N +m+ 2

(3.13)

As noted, RS 6= 1 means that irreversible work must be done on the system to effect

this transition.

Consider next the fluctuations of the system when coupled to a finite bath with

which it shares a constant entropy. The effect of this coupling is that highly aligned

(low entropy) states persist for longer, i.e. transitions are suppressed for states with

alignment m by a factor of Ωm/Ω0. For the same forward transition considered above

(m→ m+ 2), this is given by equation 3.7:

Ωm

Ω0

=
N

N −m

m/2∏

i=0

N/2− i
N/2 + i

(3.14)

And for the reverse transition, the probability is reduced by a factor

Ωm+2

Ω0

=
N

N −m− 2

m/2+1∏

i=0

N/2− i
N/2 + i

=
N

N −m− 2
× N/2−m/2− 1

N/2 +m/2 + 1

m/2∏

i=0

N/2− i
N/2 + i

=
N −m

N +m+ 2
× Ωm

Ω0

(3.15)

So, compared to the ratio of probabilities of the forward and reverse transitions with-

out bath states RS, equation 3.12, the new ratio is

RS+B =
Ωm

Ωm+2

×RS = 1 (3.16)

So, the ratio of probabilities of forward and reverse transitions is RS+B = 1, implying

that, when the system is coupled to a finite bath with which it shares a constant
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Figure 3.3: Power spectral densities of fluctuations of the relative alignment as a
function of frequency from simulations of different sized (N) systems. Sλ(f) has been
normalized with a factor of N to compare spectra from different sized systems and
log(f) is multiplied by 10 to put it on a decibel scale. A spectrum for a single N
is composed of individual spectra from time series with 6 different averaging times
from tav = 1 to 106 steps. The black diagonal line shows perfect 1/f noise. Open
triangle symbols mark the lowest frequency to exhibit 1/f noise, given by 10 log(f) =
53.5−10 log(Ω0). The yellow solid line show the power spectral density for an N = 24
spin system without bath states.

amount of entropy, fluctuations are slow and reversible [60]. Crooks’ fluctuation

theorem therefore reinforces the original demand that entropy of the system plus

bath remains constant during fluctuations.

In figure 3.3 are shown power spectral densities Sλ(f) of the relative alignment

λ(t) from 6 different system sizes N ≤ 24. Time series of the relative alignment are
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Fourier transformed and squared to find the power spectral density:

Sλ(f) =

∣∣∣∣
1

tm

tm−1∑

t=0

λ(t)e−2πift/tm

∣∣∣∣
2

(3.17)

Spectra are smoothed by dividing them into octaves and creating a linear least-squares

fit to data contained in that octave; the value of the smoothed spectral density at the

center frequency of the octave is taken to be the value of the fit at that frequency.

Spectra are created for the time series of different averaging times tav and these are

merged together. Since each of these spectra extends over log10(tm) ≈ 5 decades

and spectra from different averaging times are only separated by a decade, there is

significant overlap of spectra from different averaging times. So, spectra with different

averaging times tav are merged using an average that is weighted more heavily at the

center of the spectrum, where its value is less noisy.

The black dashed line in figure 3.3 shows perfect 1/f behavior. Without bath

states, 1/f noise is not observed, as seen in a system of size N = 24 (solid yellow

line). Instead, the spectrum is white for low frequencies, transitioning to a Lorentzian-

like tail at the highest frequencies. Including bath states, the largest system N = 24

(solid black line) exhibits 1/f noise over approximately 4 decades in frequency f

before transitioning to white noise at low frequencies. Looking at smaller systems,

the range over which 1/f noise is observed is found to decrease with decreasing system

size N . This low frequency roll-off to white noise marks the lowest frequency mode of

the system and occurs when the system has had sufficient time to explore all possible

macrostates. As such, it is expected that this frequency will be inversely related to

the longest time scale of the system, which is the time it takes to undergo a transition

in its fully aligned state, or the inverse of the probability of making a transition when

fully aligned. Therefore, it is expected that the low frequency limit f0 of the 1/f

range to be related to system size as f0 ∝ ΩN/Ω0 = 1/Ω0 = [(N/2)!]2/N !. This is
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demonstrated by the open triangles in figure 3.3, the location of which are given by

10 log(f) = 53.5− 10 log(Ω0). The value of 53.5 is an adjustable parameter. Since f0

depends approximately upon the exponential of the square of the number of spins N ,

the range over which 1/f noise is observed grows very quickly with increasing system

size. It should be pointed out that additional bath states (Mi,j = 0) can be added as

extra columns of zero elements to the matrix M. As might be expected, this has the

effect of slowing the dynamics for all alignments by the same amount and shifts the

range over which 1/f noise is observed.

Figure 3.4 presents the power spectral density in another way; by multiplying

Sλ(f) by frequency f , 1/f noise becomes constant (dashed horizontal line in the

figure), allowing spectral features to be more easily resolved. Of the six spectra

presented in figure 3.3, two are presented in figure 3.4, for N = 16 (solid green line)

and N = 24 (solid black line) spins, showing 1/f noise over two and four decades of

frequency, respectively. As in figure 3.3, the open triangles mark the lowest frequency

mode f0 ∝ 1/Ω0 of the model. In fact, the value of 53.5 was found from the low

frequency peak in f × Sλ(f).

Difficult to discern in figure 3.3, but clear in figure 3.4, particularly in the N = 24

system, are additional spectral features. These arise from higher frequency modes

corresponding to less aligned states of the system. These transition frequencies of the

different alignments of the system are proportional to the probability of a transition,

given by equation 3.7. Specifically, they are marked by the open diamond symbols

which are located at frequencies f1 ∝ ΩN−2/Ω0 = f0 × N , f2 ∝ ΩN−4/Ω0 = f0 ×

N(N − 1)/2, f3 ∝ ΩN−6/Ω0 = f0 ×N(N − 1)(N − 2)/6, etc..

1/f noise in this system is an example of how a single fluctuator with a multiplicity-

dependent, and therefore time-dependent, transition frequency can lead to 1/f noise,

just as a superposition of fluctuators with the proper distribution of time-independent
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Figure 3.4: Plot of the power spectral density of fluctuations of alignment multiplied
by frequency, f × Sλ(f), as a function of frequency f . 1/f behavior is now given by
the horizontal dashed line (the same line as in figure 3.3). Data from simulations of
an N = 24 spin system (solid black line) and an N = 16 spin system (solid green
line) are shown. As in figure 3.3, open triangles depict the lowest frequency mode of
the system, f0 ∝ ΩN/Ω0 = [(N/2)!]2/N !. Compared to figure 3.3, multiplying Sλ(f)
by f reveals additional spectral features. These are marked by open diamonds and
correspond to the transition frequency for different alignments of the system given
by fi ∝ Ω−N−2i/Ω0. The red dotted line is from a composition of Sλ(f) for an N = 24
spin system and 10× that of an N = 16 spin system, with the amplitude offset for
clarity. Symbols show measurements of the voltage across a metal-insulator-metal
tunnel junction for two different values of current, with amplitude and frequency
offset for clarity [108].
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transition frequencies can. Furthermore, as demonstrated in figure 3.4, when the

possible values of the time-dependent transition frequency are discrete (correspond-

ing here to the discrete alignments of the system), spectral features can arise, as

they do for a superposition of time-independent Lorentzian spectra when a system

is small enough that only a few fluctuators contribute to the observed spectrum

[108, 110, 136, 92]. Of course, it is possible, even expected, that a physical system

could be composed of a number of fluctuators, each coupled to their own finite bath.

In such a case, both the state-dependence of each individual fluctuator’s transition fre-

quency and the superposition of the many fluctuators will contribute to the observed

spectrum.

The first observation of features in a 1/f spectrum that could be tied to individual

Lorentzians was reported in 1984 by C.T. Rogers and R.A. Buhrman [108]. Under

investigation were voltage fluctuations of metal-insulator-metal (MIM) tunnel junc-

tions biased with dc currents of 65 µA and 105 µA at low temperatures T / 80K.

These spectra are included in figure 3.4, given by the cyan (Ib = 65 µA) and magenta

(Ib = 105 µA) symbols. Critically, they studied junctions that were small enough,

with cross sectional areas of 5× 10−10 cm2 < A < 10−8 cm2, that only a few fluctua-

tors contributed to the the low-frequency voltage fluctuations and spectra were able

to be accurately fit to a small (< 5) number of Lorentzians. Rogers and Buhrman

attributed their observations to fluctuations in the conductance due to capture and

release of electrons in the insulator by Arrhenius-like traps, τ = τ0e
−E/kBT , with a

broad distribution of activation energies E. This is similar to the theory developed

by Dutta, Dimon, and Horn [42], using the popular two-level system formalism [3]

(see § 1.4.1). Unlike Dutta, Dimon, and Horn, who used a constant attempt rate

1/τ0, Rogers and Buhrman found it necessary to use at least two attempt rates for

each fluctuator, corresponding to different probabilities of the capture and release of
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electrons, as well as a broad distribution of attempt rates over all fluctuators. The

conclusion of Rogers and Buhrman is that both the attempt rates of each fluctua-

tor and the activation energy are distributed, leading to the observed 1/f spectral

density.

Attempt rates in the matrix model depend upon the system state (alignment)

and as a consequence distribute themselves in time in such a way as to produce 1/f

noise. It is important to note that a 1/f spectrum arises naturally, without imposing

or assuming an ad hoc distribution of time scales. In addition to the general shape,

this leads to the features seen in the spectra of the N = 24 (solid black line) and

N = 16 (solid green line) spin systems in figure 3.4. Furthermore, while the model

does not contain any activation energies (all states are degenerate), the shape of the

spectrum is determined exponentially by the size N of the system. So, the spectrum

of fluctuations in net alignment of an ensemble of individual systems is expected to

exhibit spectral features arising from the distribution of system sizes as well as the

distribution of attempt rates. So, similar to the conclusions of Rogers and Buhrman,

the model has (1) more than a single attempt rate for individual fluctuators and (2)

fluctuators with different characteristic frequencies (though based on system size and

not activation energy). So, with a view towards recreating some of the quailitative

features of the spectra reported by Rogers and Buhrman (cyan and magenta symbols

in figure 3.4), presented in figure 3.4 is also a spectrum (red dotted line) composed

from the N = 24 spin system and 10× that of the N = 16 spin system. Since the

matrix model has no interactions, the spectrum of two systems is equivalent to the

sum of their individual spectra.

Rogers and Buhrman found that a single attempt rate was not sufficient to explain

the spectra they observed in their experiments. Instead, they surmised that a two-

state system with two different switching rates was necessary. The two rates different
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rates they attributed to the rates for the capture and the release of electrons to be

different. The theory of two-rate kinetics for a simple two-state system, known as two-

state random telegraph noise, was developed by S. Machlup [79]. Machlup framed this

problem as a discrete Markov process with two possible states. Of course, a discrete

Markov process can have any number of states. Since this model undergoes transitions

to states which only depend upon the previous state, its dynamics is Markovian and

the model can be recast as a discrete multi-state Markov process. The power spectral

densities of systems of various size N will be calculated and compared to the simulated

results of this section.

3.3.1 Matrix Model as a Discrete Markov Chain

To rescast this model as a discrete Markov process, the transitions and the time

evolution of this system are expressed as a left stochastic matrix P acting on a column

vector π of state occupancy probabilities. That is to say, πi, the ith element of the

vector π (where 1 ≤ i ≤ 2N + 1), is the probability that the system has alignment

m = 2(i− 1)−N . The state occupancy probabilities π at time step t are found from

their values one time step previous

π(t) = Pπ(t− 1) (3.18)

The diagonal elements Pi,i of this transition matrix are interpreted as being the proba-

bility of the system remaining in its current state (bath states). Off-diagonal elements

Pi,j represent the probability of transitions from state i to j (system states). The sum

of elements of any given column is therefore 1. From equation 3.1, 3.2, and 3.3 the
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matrix P has elements given by

Pi,j =





1− Ωm

Ω0

i = j

Ωm

Ω0

N +m

2N
i = j − 1

Ωm

Ω0

N −m
2N

i = j + 1

0 |i− j| > 0

(3.19)

or, as a single term, by

Pi,j =

(
1− Ωm

Ω0

)
δi,j +

Ωm

Ω0

N +m

2N
δi,j−1 +

Ωm

Ω0

N −m
2N

δi,j+1

= δi,j −
Ωm

Ω0

[
δi,j − δi,j+1 −

j − 1

N
(δi,j−1 − δi,j+1)

] (3.20)

where δi,j is the Kronecker delta. Presented as a matrix, P =



1− 1
Ω0

1
N

ΩN−2
Ω0

0 · · · 0 0 0 · · · 0 0

1
Ω0

1− ΩN−2
Ω0

2
N

ΩN−4
Ω0

· · · 0 0 0 · · · 0 0

0 N−1
N

ΩN−2
Ω0

1− ΩN−4
Ω0

· · · 0 0 0 · · · 0 0

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

. · · · 0 0

0 0 0 · · · 1− Ωm−2
Ω0

Ωm
Ω0

N+m
2N

0 · · · 0 0

0 0 0 · · · Ωm−2
Ω0

N−m+2
2N

1− Ωm
Ω0

Ωm+2
Ω0

N+m+2
2N

· · · 0 0

0 0 0 · · · 0 Ωm
Ω0

N−m
2N

1− Ωm+2
Ω0

· · · 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

0 0 0 0 0 0 0 · · · 1− ΩN−2
Ω0

1
Ω0

0 0 0 0 0 0 0 · · · 1
N

ΩN−2
Ω0

1− 1
Ω0



Knowing the time-evolution of the state occupancy probabilities can provide an

alternative way to find the spectral density of fluctuations other than through simu-

lations. From equation 3.18, the occupancy probabilities after an arbitrary number

of time steps t from an initial state π(0) are

π(t) = Pπ(t− 1) = P2π(t− 2)... = Ptπ(0) (3.21)

The autocorrelation function of the relative alignment λ as a function of time t is

ξλ(t) =
1

N

2N+1∑

i

πiP
tπi (3.22)
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where πi is the initial probability vector corresponding to the system being in state

i = m/2. The power spectral density is found via the Wiener-Khinchin theorem

Sλ(f) =
2

N

∞∑

t=−∞

2N+1∑

i

πiP
tπie

iωt (3.23)

Given the simplicity of the two state model, evaluating this by brute force was the

method was employed by S. Machlup to find the spectrum of two-state random tele-

graph noise [79].

Another strategy allows a clearer interpretation of the power spectral density as a

sum of autoregressive relaxation processes with the proper distribution of relaxation

times and strengths of fluctuations. P can be reduced and equation 3.18 rewritten to

show how the state occupancy probabilities evolve per unit time:

π(t) = Pπ(t− 1)

→ π(t)− π(t− 1)

∆t
= (P− I)π(t)

→ d

dt
π(t) = Qπ(t)

(3.24)

where I is the identity matrix and the nondiagonal elements of Q ≡ P − I are

transition rates from state i to j per unit time. The last of equation 3.24 are known

as the Kolmogorov equations for a discrete Markov process. The state occupancy

probabilities have the solution

π(t) = eQtπ(0) (3.25)

where the exponential of Q is defined through the power series

eQ =
∞∑

k=0

Qk

k!
= I + Q +

1

2
Q2 + ... (3.26)

For individual states (πi, the components of π) the solutions are exponentials of the

form e−t/τ

πi(t) = πi(0)e−t/τi (3.27)
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where the relaxation rates τ−1
i are the eigenvalues of Q, the roots of the equation

det |Q− τ−1 × I| = 0 (3.28)

If a variable m (with 〈m〉 = 0) in the state i has the value mi, the autocorrelation

function (defined only for t > 0) is found from equation 1.8:

ξm(|t1 − t2|) = 〈δmi(t1)δmi(t2)〉

=
∑

i

m2
iw(mi, t1;mi, t2)

=
∑

i

m2
iπi(|t1 − t2|)

=
∑

i

m2
iπi(t1)e−|t1−t2|/τi

→ ξm(t) =
∑

i

m2
iπi(0)e−t/τi

(3.29)

where w(mi, t) is the probability density function giving the probability of m having

the value of mi at time t and w(mi, t1;mi, t2) is the two-dimensional probability

density function giving the probability of m having the value of mi at time t1 and t2.

In the third equality of equation 3.29, πi(|t1 − t2|) is recognized as being equivalent

to w(mi, t1;mi, t2). Further recognizing that πi(t1) is the one-dimensional probability

distribution function w(mi, t1) giving the probability that m = mi at time t1, it

becomes clear that e−|t1−t2|/τi is the joint conditional probability that m = mi at time

t = t2 given that m = mi at time t = t1 [65].

The power spectral density is found from equation 3.29 via the Wiener-Khinchin
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theorem, equation 1.18:

Sm(f) = 2ξ̃m(ω)

= 2

∫ ∞

−∞

[∑

i

m2
iπi(0)e−t/τi

]
eiωtdt

= 4
∑

i

m2
iπi(0)

[ ∫ ∞

−∞
e−t/τi cos(ωt)dt

]

=
∑

i

m2
iπi(0)

4τi
1 + ω2τ 2

i

(3.30)

This can be used to find the power spectral density of the matrix model. First,

relaxation times τi must be found using equation 3.28. Using the fact that the system

is symmetric about m = 0, the stochastic matrix P can be recast as an (N/2 + 1)×

(N/2 + 1) matrix, and reduced by the identity matrix I to give Q =



− 1
Ω0

1
N

ΩN−2
Ω0

0 · · · 0 0 0 · · · 0 0

1
Ω0

−ΩN−2
Ω0

2
N

ΩN−4
Ω0

· · · 0 0 0 · · · 0 0

0 N−1
N

ΩN−2
Ω0

−ΩN−4
Ω0

· · · 0 0 0 · · · 0 0

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

. · · · 0 0

0 0 0 · · · −Ωm−2
Ω0

Ωm
Ω0

N+m
2N

0 · · · 0 0

0 0 0 · · · Ωm−2
Ω0

N−m+2
2N

−Ωm
Ω0

Ωm+2
Ω0

N+m+2
2N

· · · 0 0

0 0 0 · · · 0 Ωm
Ω0

N−m
2N

−Ωm+2
Ω0

· · · 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
. .

.

.

.

.

.

.

0 0 0 0 0 0 0 · · · −Ω2
Ω0

1

0 0 0 0 0 0 0 · · · N−2
2N

Ω2
Ω0

0



The eigenvalues of this matrix, found from the solutions to equation 3.28, are the

relaxation times τi of the system. The strength of each fluctuation, i.e. the square of

the net alignment, is m2
i = (N − 2i + 2)2. Finally, since the presence of bath states

makes all states equally likely, the initial condition is simply πi(0) = (N/2 + 1)−1.

The results of this strategy are shown in figure 3.5. These can be compared to the

results of simulations seen in FIGs. 3.3 and 3.4. Discrepancies between this method

and simulations are likely due to the fact that cross-correlations between states were

not included in the calculation of the correlation functions in equation 3.29. Instead,
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Figure 3.5: (a) Power spectral densities calculated from the stochastic matrix Q
describing the time-evolution of the matrix model. This figure should be compared
to figure 3.3. (b) The same spectra as in (a), multiplied by frequency, f . Spectral
features, corresponding to the eigenvalues of Q are more visible. This figure should
be compared to figure 3.4.
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each state was taken to be an independent fluctuator with its own relaxation time.

Of course, since the system only moves between adjacent states, there is a non-zero

correlation between the different states. Regardless, the results presented in figure

3.5 capture the essential features of the power spectral density. Exact calculation

of power spectral densities from the stochastic matrix, including cross-correlations

between states, is a possible subject of future work.

3.4 Conclusions

This model, with dynamics governed by a simple matrix, has been shown to

exhibit 1/f noise. The condition equation 2.1 is satisfied by the inclusion of explicit

bath states, rendering the combined entropy of the system + bath constant during

fluctuations. As shown in § 2, this is due to the Gaussian form of the system’s

multiplicity, equation 3.1, in terms of m. This model does not include interactions

between spins, so that the multiplicity alone determines its dynamics. It is therefore

a particularly revealing way to investigate multiplicity-dependent relaxation times.

With the insights gained from the matrix model, another model will be explored

in the next section, based on dynamically constrained Heisenberg spins. Since this

next model discussed is based on classical Heisenberg spins, continuous degrees of

freedom are also introduced, a feature not seen in the matrix model. The constrained

Heisenberg model will also include interactions, unlike the matrix model. In addition

to constraining the Heisenberg model in a way that satisfies equation 2.1 and mimics

the bath states of the matrix model, changes in the internal energy will be governed

by Boltzmann’s factor. The system will therefore exchange energy and entropy with

a thermal reservoir, so that the entropy of the system + bath will not be constant for

all time, but only approximately on the time scale of single events.
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Chapter 4

1/f NOISE FROM A HEISENBERG SPIN MODEL COUPLED TO A FINITE

BATH

To further investigate the effects of multiplicity-dependent relaxation times, equa-

tion 2.1, a classical Heisenberg spin model is investigated. In this model, spin flips are

constrained according to a spin’s local configurational entropy. Unlike the previous

model, a finite bath is included implicitly through a nonlinear dynamic constraint.

In addition to this constraint, changes in the internal energy of the system, which

includes spin-spin interactions, are governed by Boltzmann’s factor. This is another

departure from the matrix model of § 3, which did not include interactions. Since

the system and its implicit local bath are coupled to a thermal reservoir, the entropy

remains maximized between a system and its local bath only on the time scale of

microscopic events (single spin flips). Fluctuations in the alignment of this model

will be compared to the 1/f flux noise observed in Josephson junctions, specifically

in superconducting quantum interference devices (SQUIDs), reproducing the temper-

ature dependence of noise power and spectral exponent α, as well as the relationship

between α and the amplitude of the spectral density.

Much of the work presented in this chapter was published under the title “1/f

noise from a finite entropy bath: comparison with flux noise in SQUIDs” in Journal of

Statistical Mechanics: Theory and Experiment. The complete citation is listed under

reference [38]. The original publication was completed in collaboration with others

and is included in appendix B.
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4.1 Background: 1/f Flux Noise in SQUIDs

1/f noise is present in the low-frequency fluctuations of most materials and de-

vices, placing a limit on their functionality. As one example of concern for many

modern devices, and as an example of the omnipresence of 1/f noise, there are at

least two separate sources of 1/f noise in a Josephson junction. One source of noise

is in the critical current of the Josephson junction [52]. Similar in origin to the 1/f

noise described by McWhorter in the current through a semiconductor filament [87] or

that found in the voltage across a metal-insulator-metal junction [108, 109], this noise

is due to the capture and release of electrons in the tunnel barrier between supercon-

ductors having a distribution of capture/release times τc that varies as 1/τc. Models

of this type and their application were explained in detail in § 1.4.1. However, since

the amplitude of noise in the critical current linearly decreases with temperature, it is

not a significant performance issue at the low temperatures where SQUIDs typically

operate [100]. Instead, performance is usually limited by the second source of 1/f

noise in a Josephson junction: flux noise. Discovered more than 35 years ago [64], it

is this flux noise that is the primary contributor to noise in SQUIDs [138, 136] and

a widely accepted explanation of its origin has yet to be found. Interest in this long-

standing problem has been strengthened recently since flux noise is also the dominant

cause of decoherence in flux [142, 58] and phase [11] qubits, limiting their practicality

as the basic elements of quantum computers [35].

Models of 1/f flux noise typically involve unpaired spins residing at the superconductor-

insulator interface of the Josephson junction. One of the earliest of these models as-

sumed non-interacting spins and concluded the spins must have a surface density of

≈ 5×1017 m−2 [64]. Measurements of paramagnetism at the superconductor-insulator

interface confirmed this value [118]. However, these and further measurements showed
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evidence of spins forming clusters, suggesting the presence of significant spin-spin in-

teractions. Also observed was time-reversal symmetry breaking in the form of a cor-

relation between surface magnetization and inductance, meaning that the spin-spin

interactions are primarily ferromagnetic. Finally, correlation between the SQUID

inductance and flux (related to one another through the fluctuation-dissipation rela-

tion) show that the fluctuations are non-linear, increasingly so at low temperatures

[119].

Exhaustive measurements of the 1/f flux noise have been reported by Anton et al.

in 10 separate dc SQUIDs [4] and by Kempf et al. in 84 SQUIDs and SQUID arrays

[62]. For all devices, these measurements reveal not only a temperature dependence

of the spectral exponent α and the overall amplitude of the flux noise, but also a con-

sistent relationship between α and the amplitude themselves that causes the spectra

of each device, measured at different temperatures, to pivot about a common crossing

frequency fc. Spectral pivoting of this kind can be expressed by the relationship

SΦ(f) = SΦ(fc)× (fc/f)α (4.1)

where Φ refers to the SQUID flux, and SΦ is the spectral density of its fluctuations.

Notice that this expression encodes a relationship between α and the amplitude that

is independent of their individual dependences upon temperature. Taking into ac-

count that α decreases as the temperature is increased, the noise power increases for

frequencies above the crossing frequency f > fc, and decreases for frequencies below

the crossing frequency f < fc, as the temperature is increased.

Generally, unpaired spins arise on the surfaces of materials in a multitude of dif-

ferent ways, and a great many of these have been employed as the precise microsopic

explanation of 1/f flux noise. These include: electronic and nuclear spins, as well as

a combination of both [71]; oxygen molecules adsorbed on the superconductor surface
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[134, 69]; electrons occupying localized gap states in the superconductor-insulator

interface [32]; and paramagnetic dangling bonds coupling to two-level tunnelling sys-

tems in the semiconductor-oxide interface (Si/SiO2) of some SQUIDs [123]. To de-

scribe the interaction between these unpaired spins, a number of mechanisms have

been considered, including the Ruderman-Kittel-Kasuya-Yoshida (RKKY) interac-

tion [45], dipole-dipole interactions [5], and hyperfine interactions [139]. To model

1/f flux noise phenomelogically, the most popular types of model are spin glasses,

including disordered Ising [31, 39] and Heisenberg models [1, 5]. Models such as

these have the drawback that their fluctuations are linear, showing no correlation

between alignment (SQUID flux) and susceptibility (SQUID inductance), in contra-

diction to experiments. Furthermore, disordered spin glass models possessing an

even distribution of antiferromagnetic and ferromagnetic interactions conflict with

the time-reversal symmetry breaking observed at the superconductor-insulator inter-

face [31, 119]. So, models with disorder, but a preference for ferromagnetic coupling,

have been studied as well [134, 39]. As far as the spectral pivoting of equation 4.1

goes, models considered before the report of Anton et al. do not account for this

observation. Since then, a model that modifies the RKKY interaction to produce

spin diffusion with a diffusion coefficient that depends upon temperature, as well as

spectral pivoting with a band of crossing frequencies, has been reported [72].

In spin glass models such as those described above, 1/f noise and the associated

slow dynamics originate from a distribution of relaxation rates due to interaction

strengths between spins with a distribution that does not change with time. While this

distribution may be static in time and the interaction strengths constant, the effective

distribution seen on short time-scales can change over longer time-scales. In the

hierarchical kinetics picture of a spin glass, this occurs from the system exploring the

space of possible configurations, with configurations separated by a wide distribution
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of distances. In the droplet scaling picture of a spin glass, this is due to changes in

spatial correlations, with the relaxation rate a droplet (or cluster) depending upon

the droplet size [137].

Employed here is a Heisenberg spin model with a square lattice of spins with inter-

actions that are not only static in time, but spatially homogeneous. The Hamiltonian

therefore remains entirely homogeneous and heterogeneity instead comes from the

condition equation 2.1 linking the characteristic time of spin flips to the net align-

ment of the clusters that contain them. The clusters distribute themselves naturally

to produce 1/f -type noise that is temperature dependent. Furthermore, since the

distribution of net alignments of clusters changes with time, so does the distribu-

tion of characteristic times, yielding heterogeneity that is dynamic. Similarly, models

involving a state-dependent relaxation rate have been used in models of aging and

plastic flow [117, 125, 90]. Power spectral densities of this model’s net alignment will

be compared in § 4.4 to the 1/f flux noise found in SQUIDs, qualitatively repro-

ducing the temperature dependence and the spectral pivoting of equation 4.1. Since

SQUIDs operate at low temperatures, the spurious clusters of spins leading to flux

noise may be non-ideally coupled to their thermal environment, leading to the con-

dition equation 2.1 as described in § 2.2.1. Finally, imposing the condition equation

2.1 has the advantage that it links fluctuations in alignment to the magnitude of the

net alignment, so that fluctuations are explicitly non-linear, similar to the flux noise

of SQUIDs [119]. This model will also be contrasted with spin glass models used to

recreate 1/f flux noise in SQUIDs.

4.2 Model: Heisenberg Spins and Nonlinear Constraint

Direct observations of magnetism at the superconductor-insulator of Josepshon

junctions, including the observation of time-reversal symmetry breaking, suggest that
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the 1/f flux noise observed in SQUIDs is due to clusters of unpaired, interacting spins

[118, 119]. 1/f noise in general is often interpreted as being due to the superposition

of fluctuators with relaxation times τc distributed as p(τc) ∝ 1/τc. This would suggest

that the relaxation times of clusters of spins at the superconductor-insulator inter-

face are distributed in this manner. Considering the spectral pivoting expressed in

equation 4.1 and observed in SQUIDs and SQUID arrays [4, 62], p(τc) must decrease

for frequencies below the crossing frequency, f < fc, and increase for frequencies

above the crossing frequency, f > fc, as the temperature is increased. In the droplet

picture of a spin glass [137], this has a natural interpretation: as the temperature is

decreased, the average size of a cluster increases, so its relaxation time (the time it

takes to “flip” or reorient the entire cluster) also increases, so that the distribution

p(τc) increases for low frequencies; in addition, as the temperature decreases and the

average size of clusters increases, the number of smaller clusters with smaller relax-

ation times decreases, so that the distribution p(τc) decreases for high frequencies.

Here, however, the change in p(τc) that leads to spectral pivoting is accomplished

in a rather different way: the characteristic time of a cluster depends upon the net

alignment of the cluster.

The mechanism leading to this constraint and the different interpretations of its

origins were discussed in § 2, and the effects of similar nonlinear constraints have been

investigated for the Ising model [29, 23, 27, 28, 24]. The constraint is interpreted as

originating from maintaining a constant, maximized entropy of clusters of spins plus

their local (finite) bath during fluctuations. To account completely for the entropy of

a cluster, the configurational entropy is considered. In terms of energy, a finite amount

of work is indeed required to change the configurational entropy of a collection of spins,

and this energy is separate from that originating from spin-spin interactions, which the

Boltzmann factor accounts for. In this sense, it is similar to the entropic elasticity of
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the ideal, freely-jointed chain model of a polymer, which requires finite work to stretch,

yet undergoes no change in internal energy [47]. As will be seen, this constraint

slows the dynamics of highly aligned clusters, so that the relaxation times of clusters

become distributed according to the distribution of their alignments. Of course, as

the distribution of alignments evolves with time, so to does the distribution of time

scales. As discussed previously, both the spatial heterogeneity of the clusters as well

as their being allowed to change in time yield 1/f noise. Furthermore, the specific

effect of the constraint as the temperature is reduced is to enhance low-frequency

fluctuations of highly aligned clusters while reducing high-frequency fluctuations due

to fast, single spin flips. This leads to the spectral pivoting expressed in equation 4.1.

The model is a classical Heisenberg spin system on a two-dimensional ideal square

lattice with periodic boundary conditions of sizes N×N = 24×24 or N×N = 48×48,

with and without varying strengths of dipolar anisotropy. The Hamiltonian is:

H = −J
∑

〈ij〉
si · sj −D

∑

i

(szi )
2 (4.2)

Spin vectors si have a length of one, |si| = 1. The first sum comes from the spin-

spin interactions; it is performed over all nearest neighbor pairs of spins 〈ij〉 and the

exhange constant J is set to one. This ferromagnetic coupling J > 0 comports with

the observation of time-reversal symmetry breaking at the superconductor-insulator

interface [119]. The second sum provides dipolar anisotropy in the z-direction; it is

performed over all spins i and the strength D is set to D = 0× J, 2× J, or 4× J for

the simulations presented here.

Though many of the possible physical identities of the unpaired surface spins

discussed above and in the literature are electrons with a spin 1/2, including localized

gap states [32] and paramagnetic dangling bonds [123], there are also indications,

including the material independence of flux noise and its reduction through cycles of
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heating of devices in a vacuum chamber, that spins may be due to adsorbed molecular

species, specifically O2 [134, 69]. These are better modeled using classical spins and

justify using the Heisenberg Hamiltonian, equation 4.2. Density functional theory

calculations of adsorbed molecular oxygen show that it retains a substantial magnetic

moment when adsorbed on the surface, which is free to rotate about the O-O bond,

providing physical justification for the second term in equation 4.2. In addition, a

previous study of a similarly constrained discrete, two-state Ising model produced

spectra with α < 1.4 for even the lowest temperatures [28]. This is a limit that

is seen in a number of physical systems, including the 1/f flux noise in SQUIDs

discussed here. The constrained, fully isotropic, classical Heisenberg model exceeds

this limit, producing 1/f -type noise with α as high as ≈ 1.8. Including the second

term in equation 4.2 restores this limit, bridging the gap between the fully discrete

Ising model and the fully isotropic Heisenberg model.

To perform Monte Carlo simulations, the Metropolis algorithm [53] with Boltz-

mann’s factor is used:

e−∆E/kBT > [0, 1) (4.3)

where [0, 1) is a uniformly distributed random number between zero and one, kB is

Boltzmann’s constant, and T is the temperature in units of J/kB. ∆E is the change

in the internal energy (due to spin-spin interactions) from an attempted spin flip, in

which new orientation for a spin is chosen at random.

In addition to Boltzmann’s factor, the condition equation 2.1 described in SEC 2

is imposed upon spin flips within a given cluster. To accomplish this, the lattice is

subdivided into square clusters of Nc spins and spins flips are subject to the additional,

nonlinear constraint:

e−g(Sc−S
max
c )/kB =

[
Ω(0)

Ω(Mc)

]g
> [0, 1) (4.4)
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where Sc is the configurational entropy of the cluster, −Nc ≤ Mc ≤ Nc is the net

alignment of the cluster, Ω(Mc) is the multiplicity of states of the cluster with align-

ment Mc, and the factor g is a parameter used to adjust the strength of the constraint.

This nonlinear constraint arises entirely from the configurational entropy of the clus-

ter, not the internal energy due to interactions, and does not change the Hamiltonian,

equation 4.2. This is distinct from e.g. a spin glass, where heterogeneity come from

non-uniform interactions [137]. Instead, the Hamitonian is kept homogeneous and

heterogeneity comes from linking local dynamics in a cluster to the state of that

cluster.

From the general form of equation 4.4, the specific form for the classical Heisenberg

model can be found. The configurational entropy of Nc classical Heisenberg spins with

net alignment Mc is given by

Sc = Smaxc −
∫
L−1

(
Mc

Nc

)
dMc (4.5)

where L−1(x) is the inverse Langevin function and can be expanded as

L−1(x) = 3x+
9

5
x3 + ... (4.6)

so that the configurational entropy of a cluster is

Sc = Smaxc −Nc

[
3

2

(
Mc

Nc

)2

+
9

20

(
Mc

Nc

)4

+ ...

]
(4.7)

If it is assumed that the alignment is small compared to its maximum value, Mc � Nc,

the entropy can be approximated as being quadratic in Mc (in other words, Mc has

a Gaussian probability distribution)

Sc ≈ Smaxc − 3

2

M2
c

Nc

(4.8)

so that the final form of the constraint is

e−g×(3M2
c /2Nc) > [0, 1) (4.9)
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In order to illustrate how the use of the nonlinear constraint in this system leads to

fluctuations with a 1/f spectrum, the high temperature limit (T →∞) with g = 1 is

considered. In this case, the criterion set by Boltzmann’s factor, equation 4.3, allows

all spin flips. As a result, interactions can be ignored and the dynamics is governed

solely by equation 4.9, similar to the matrix model presented in § 3. The average

lifetime of a state of a cluster with alignment Mc is therefore τc(Mc) ∝ 1/Ω(Mc) =

e3M2
c /2Nc ; this is inverted to obtain Mc in terms of τc:

Mc =

√
2Nc ln(τc)

3
(4.10)

Allowing the distribution of relaxation times to be found from equation 2.6:

p(τc) ∝M2
c (τc)

∣∣∣∣
dMc

dτc

∣∣∣∣ ∝ N3/2
c

√
ln(τc)

τc
(4.11)

As will be shown, the range of τc for the model considered is quite large, so that the

factor
√

ln(τc), growing slowly enough to be considered constant, can be neglected.

In deriving equation 4.11, it was assumed that the approximation of equation

4.8 holds, under the condition that Mc � Nc, so that the configurational entropy is

quadratic in Mc. However, for small enough Nc, clusters are more likely to fluctuate

into a highly aligned state and this approximation may not hold. This can be seen

in figure 4.1, where power spectral densities from simulations of size 24 × 24 = 576

spins, at high temperature kBT/J = 109, with no anisotropy D = 0, and g = 1 are

presented for cluster sizes of Nc = 4 (blue curve), 9 (green), 16 (red), and 36 (black)

spins. For the largest cluster size Nc = 36, the prediction of equation 4.11 holds and

the power spectral density is very close to exact 1/f noise (indicated by the black

dashed line) at low frequencies. For smaller Nc, where the assumption Mc � Nc

breaks down and equation 4.8 and 4.11 do not hold, spectra deviate more and more

from 1/f behavior. The rollover to white noise is also made to be more gradual due
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Figure 4.1: Power spectral densities from simulations of size 24 × 24 = 576 spins,
at high temperature kBT/J = 109, with no anisotropy D = 0, and g = 1, for cluster
sizes of Nc = 4 (blue curve), 9 (green), 16 (red), and 36 (black) spins. Exact 1/f
noise is indicated by the black dashed line. The lowest frequencies f0 = e−3Nc/2 where
1/f noise is expected and spectra rollover to white noise are marked by the diamond
symbols for Nc = 4 (f0 ≈ 2.5 × 10−3) and 9 (f0 ≈ 1.4 × 10−6) spins. For increasing
cluster size, these frequencies shrink exponentially, so that they are far outside the
simulated range for Nc = 16 (f0 ≈ 3.8× 10−11) and 36 (f0 ≈ 3.5× 10−24) spins. For
Nc = 36, the approximation of equation 4.8 holds in the frequency range simulated
and the spectrum is exactly 1/f at low frequencies. For smaller Nc, Mc � Nc breaks
down and deviations from 1/f at low frequencies are observed.
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to the breakdown of this assumption. To see this, the lowest frequencies at which

1/f noise is expected are marked by the diamond signals for Nc = 4 and 9 spins (for

larger clusters, this frequency is far oustide of the simulated range). These frequencies

correspond to the inverse of the longest average lifetime of the system, which is the

time it takes to flip a spin in a fully aligned Mc = Nc cluster:

f0 =
Ω(Mc = Nc)

Ω(Mc = 0)
= e−3gNc/2 (4.12)

As can be seen is figure 4.1, these frequencies do mark where spectra rollover to fully

white noise, but the rollover is made gradual by the failure of equation 4.8, and the

spectra are far from exactly 1/f before this point is reached. Of course, since the

frequency f0 corresponds to a fully aligned cluster Mc = Nc, the assumption Mc � Nc

breaks down before this point is reached.

The exact entropy is found from the inverse Langevin function, and the next

term from its expansion equation 4.7 would yield a correction to equation 4.8 of

O(M4
c ). However, given the high density ≈ 5 × 1017 m−2 of spins on the surface

[64], clusters are expected to be quite large. In the results presented below a cluster

size of Nc = 6 × 6 = 36 is used, for which the rollover to white noise is far outside

the simulated range, and the approximation of equation 4.8 should be sufficient. It

should be pointed out that in the matrix model presented in § 3, an explicit bath

was employed, so that configurational entropies are exact. As a consequence, the

deviations seen in figure 4.1 are not present and the rollover to white noise is abrupt

(see figure 3.3). Furthermore, in a previous study of a similarly constrained Ising

model [28], exact configurational entropies from the binomial coefficient are used and

the deviations and anomalous size dependence of figure 4.1 are not observed.
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4.3 Simulation Details

Monte Carlo simulations were performed using the Metropolis algorithm [53] with

the standard Boltzmann factor of equation 4.3, in addition to the nonlinear con-

straint of equation 4.4. All random numbers were generated using the Mersenne

Twister pseudorandom number generator [86]. For a single spin flip, an entirely new

orientation of the spin is chosen from an isotropic distribution, without regard to the

spin’s previous orienation. To ensure that the distribution of newly chosen orienta-

tions is isotropic, random numbers r1 and r2 are generated from (−1, 1), are accepted

only if the condition r = (r1)2 +(r2)2 < 1 is met, and the new spin orientation is given

by si = (sxi , s
y
i , s

z
i ) = (2r1

√
(1− r), 2r2

√
(1− r), 1− 2r), which is then normalized

to magnitude one [85]. A full Monte Carlo sweep (MCS) is completed after each spin

has attempted a flip, at which point data are recorded; the order in which spins are

flipped is randomized after each sweep.

Simulations are initialized by orienting all spin vectors in the positive z-direction,

(sxi , s
y
i , s

z
i ) = (0, 0, 1), and allowing the simulation to run for 106 sweeps with no

anisotropy and without applying the nonlinear constraint of equation 4.4. Anisotropy

(if applicable) and the constraint are then applied and the simulations are run for

another 217 × 103 sweeps. Finally, data are collected as the simulation is run for

another tm = 217× 103 sweeps. During these 217× 103 sweeps, four time series of the

time-averaged z-component of the net alignment, Mz(t), are collected, each of length

217 data, averaged over averaging times of tav = 100, 101, 102, or 103 sweeps. The

Fourier transform of each of these time series is calculated and squared to estimate

the power spectral density of fluctuations:

SMz(f) =
1

tm

∣∣∣∣
tm∑

t=0

Mz(t)e
2πift/tm

∣∣∣∣
2

(4.13)

Spectra from five identical simulations are collected in such a manner and averaged
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together, leaving four averaged spectra, one for each averaging time tav. These spectra

are then smoothed by dividing each of them into octaves, performing a linear least

squares fit to the data within each octave, and taking the value of the smoothed

spectrum at the center frequency of each octave to be the value of the linear fit at

its octave’s center frequency. Because spectra are smoothed over subsequent octaves,

the resulting frequencies are evenly spaced on a logarithmic scale. Once the spectra

from different averaging times are smoothed, they must be merged together. Because

each spectrum covers O(log10(tm)) ∼ 5 decades of frequency, and each spectrum

is separated by a single decade, spectra from different averaging times significantly

overlap each other’s frequency ranges. This is useful, as it allows the spectra to be

merged using an average that is weighted more heavily toward the center of each

spectrum’s frequency range, where the Fourier transform is less noisy; specifically, a

Gaussianh distribution is used as the weighting function. This overlap can also be

used to test for system equilibration and stationarity, by minimizing the integrated

difference between the spectra of different averaging times in frequency range where

they overlap. This process, equilibration, and stationarity in this model in general,

are discussed in § 4.4.1 and in figure 4.5.

4.4 Results and Discussion

As discussed, a cluster size of Nc = 6×6 = 36 is used for the simulations presented

here. Simulations with Nc = 36 were found not to exhibit the deviations shown in

figure 4.1 associated with the breakdown of the approximation equation 4.8. Using

g = 1 in the nonlinear constraint, equation 4.4, the power spectral density is exactly

1/f (α = 1) in the high temperature limit, kBT/J → ∞. Since α increases with

decreasing temperature, for all finite temperatures, α > 1 with g = 1. Thus, in order

to reproduce the range 0.35 / α / 1.40 observed in the flux noise of SQUIDs [4, 62]
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Figure 4.2: (a-c) Power spectral densities of fluctuations in the z component of net
alignment for D = 0J (a), 2J (b), and 4J (c) at temperatures ranging from kBT/J =
1.4 to 42 (spectra of different anisotropies are not necessarily simulated at the same
temperature). (d-f) Fits (equation 4.14) to the low-frequency (centered around f =
10−6 MCS−1) portion of the spectral densities in (a-c). All fits have coefficients of
determination R2 > 0.9. Fits to the spectra cross each other at frequencies fc =
5.36(+1.32/ − 1.06) × 10−3 MCS−1, fc = 3.93(+1.16/ − 0.90) × 10−3 MCS−1 and
fc = 6.60(+1.06/ − 0.91) × 10−3 MCS−1 for D = 0, 2J and 4J , respectively, as
marked by the black dashed lines. Insets show the values of the fits, SMz ,fit(fc),
at the crossing frequency fc, plotted against α. They are seen to depart from the
otherwise common value when α ' 1 (marked by the black dashed line). This figure
should be compared to data presented in reference [4].

a value of g < 1 is used. For the results presented below a value of g = 2/3 was used.

In figure 4.2 (a-c) are presented power spectral densities as a function of frequency

from simulations with varying strengths of anisotropy: D = 0J (a), 2J (b), and 4J

(c). Spectra, specifically their spectral exponents α, have similar frequency depen-

dences, consisting of a high-frequency tail where α ≈ 1.8 and is only very weakly
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temperature dependent, transitioning to a low-frequency regime where α < 1.8 and

strongly depends upon temperature. In the high-frequency region, the constant shape

of the spectrum is a consequence of fluctuations being dominated by single spin flips.

Here, it is not expected that these Monte Carlo simulations will produce realistic fluc-

tuations. Physically, the microscopic dynamics is expected to take over at these short

time scales and fluctuations will no longer be stochastic [65]. In these simulations,

single spin flips, in which spins can assume any new orientation, unencumbered by

the underlying microscopic physics, are on the order of the highest measurable fre-

qeuncy, 1 MCS−1. Furthermore, because it decays quickly (as ≈ 1/f , of course),

this high-frequency behavior is invariably subsumed by some other source of white

(α = 0) noise in experiments, e.g. Johnson noise in the readout electronics, so that

the dynamics in the observable portion of the spectrum are stochastic [40, 114, 4].

In the low-frequency regime, 0.35 / α / 1.6 for D = 0 and 0.35 / α / 1.4 for

both D = 2J and D = 4J , decreasing with increasing temperature. A similar range of

values of α, centered on α = 1, as well as the inverse dependence on temperature, has

been reported in the literature for flux noise in SQUIDs [64, 4, 62, 40, 114]. To clarify

the temperature dependence of α and of the amplitude in the low-frequency regime of

the spectra, linear least squares fits to the spectra, centered around f = 10−6 MCS−1,

were performed. Specifically, fits were made to the function

SMz ,fit(f) = SMz ,0 × (f/10−6 MCS−1)−α (4.14)

where SMz ,0 = SMz ,fit(f = 10−6 MCS−1) was chosen for clarity of presentation and

to place this fit parameter at the center of the frequency range being fit. These fits

are presented in figure 4.2 (d-f). All fits have coefficients of determination R2 > 0.9.

From these it is clear that (1) α increases with decreasing temperature, quickly at

low temperatures and much more slowly at high temperatures as interactions become
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negligible and equation 4.4 dominates the dynamics instead of equation 4.3; (2) the

power spectral density increases at low frequencies and decreases at high frequencies

with decreasing temperature; (3) α and the power spectral density are themselves

related, seemingly independent of their own dependences on temperature, in such a

way that fits to the spectral densities cross each other at a common crossing frequency

fc, similar to the flux noise of SQUIDs reported by Anton et al. [4] and Kempf et al.

[62]. Values of the crossing frequency are fc = 5.36(+1.32/ − 1.06) × 10−3 MCS−1,

fc = 3.93(+1.16/− 0.90)× 10−3 MCS−1 and fc = 6.60(+1.06/− 0.91)× 10−3 MCS−1

for D = 0, 2J and 4J , respectively. These values are marked by the black dashed lines

in figure 4.2 (a-f). Values of the power spectral density at the crossing frequency are

〈SMz ,fit(fc)〉 = 2.44(+0.27/− 0.24)× 10−1 M2×MCS, 〈SMz ,fit(fc)〉 = 2.85(+0.38/−

0.33)× 10−1 M2×MCS and 〈SMz ,fit(fc)〉 = 2.44(+0.21/− 0.19)× 10−1 M2×MCS for

D = 0, 2J and 4J , respectively, whereM is our unit of alignment, or magnetization.

Crossing frequencies and the values of the fits to the power spectral density at the

crossing frequency were calculated using the geometric mean of crossing frequencies of

all pairs of fits; uncertainties were calculated using the geometric standard deviation.

Fits to spectra for the six lowest temperatures presented in figure 4.2 are not included

in these calculations, and inspecting either the spectral densities (a-c) or their fits (d-

f) it can be seen why: at these temperatures, when α > 1, spectra begin to drop

substantially in amplitude, no longer preserving the relationship between α and SMz ,0

and therefore no longer passing through a common crossing frequency fc. This is

made more clear in the insets of figure 4.2, where the values of the fits at the crossing

frequency fc, SMz ,fit(fc), are plotted against α. It can be seen that SMz ,fit(fc) remains

approximately constant until α ≈ 1 (marked by the black dashed line), at which point

it begins to drop precipitously. This behavior will be discussed in greater detail in §

4.4.1.
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Examining the raw spectra of figure 4.2 (a-c) at the crossing frequency fc (marked

by the black dashed line), and comparing to the fits of figure 4.2 (d-f), it can be seen

that the crossing frequency in the fits occurs approximately at the crossover from

the highly temperature dependent low-frequency regime to the high-frequency tail.

So, while close inspection shows that the raw spectra do in fact cross each other,

it appears that they converge at high frequencies to common values of SMz and α,

except for temperatures where α ' 1 and the spectral density at high frequencies is

greatly reduced. Since this high-frequency behavior is determined by single spin flips,

the convergence of the spectra of different temperatures at high frequencies suggests

that this fast behavior is not strongly altered by the change in temperature or the

presence of the nonlinear constraint. Again, at these high frequencies, the Monte

Carlo simulations will not yield realistic dynamics. In addition to masking the high-

frequency portion of the 1/f contribution to the spectrum, white noise in experiments

give spectra a positive curvature, enhancing the appearance of a crossing frequency

[4, 62, 40, 114]. Regardless of these considerations, the relationship between SMz ,0

and α that produces the crossing frequency holds at low frequencies, f < fc. Here,

the effect of the nonlinear constraint is to alter the slow dynamics, which, as will be

seen, is dominated by collective changes in the net alignment of clusters.

In figure 4.3 are shown the fit parameters of equation 4.14 as functions of tem-

perature for strengths of anisotropy D = 0J (blue curve), 2J (red), and 4J (green).

Specifically, it shows spectral exponents α, figure 4.3(a), and the corresponding am-

plitudes SMz ,0, figure 4.3(b). From the similarity of these curves alone it can be seen

that there is a relationship between α and SMz ,0 for spectra with α / 1. This is

made more clear in the inset of figure 4.3(a), where the fit parameters α and SMz ,0

are plotted against each other. The relationship between α and SMz ,0 holds for α / 1

and is independent of the strength of the anisotropy, tying the relationship to the
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Figure 4.3: Fit parameters α (a) and SMz ,0 (b) from fits in figure 4.2(d-f) as a
function of temperature for D = 0J (blue), 2J (red), and 4J (green). (Inset) The
relationship between α and SMz ,0 leading to the presence of a crossing frequency for
α / 1 is made clearer by plotting α and SMz ,0 against each other. The relationship
is independent of D, suggesting its origin is the nonlinear constraint, equation 4.4.
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constraint, the form of which, equation 4.4, depends upon the configurational en-

tropy alone and is unaltered by the presence of anisotropy, unlike Boltzmann’s factor,

equation 4.3, which depends upon D through the second term in the Hamiltonian,

equation 4.2. In experiments, it is reported that different SQUIDs, while possessing

different dependencies of α and SMz ,0 on temperature, show the same relationship,

equation 4.1, between α and SMz ,0, regardless of temperature [4, 62]. This is similar

to the independence of the relationship on D displayed in the inset of figure 4.3(a).

Generally, the temperature independence of the relationship producing a crossing

frequency suggests that the origin of the relationship is independent of the internal

energy of the clusters, a condition that is certainly satisfied by this model.

It was mentioned previously that the six lowest temperature spectra, for which

α ' 1, were excluded from the calculation of the crossing frequency fc. The reason

for this is that at this point, the amplitudes of the spectra begin to drop precipitously,

no longer crossing the other spectra at fc. This is apparent from the raw spectra in

figure 4.2(a) and the fits in figure 4.2(b), but is most clear in the insets, which show

SMz ,fit dropping quickly at the crossing frequency. At lower temperatures, specifically

when α ' 1.35, the divergence becomes even more pronounced and there is a peak

in SMz ,0, which can be seen in figure 4.3(b). It is worth noting that, since the spectra

and their slopes decrease monotonically, there is similarly a peak in the total noise

power 〈Mz〉 =
∫
SMz(f)df . A similar peak in noise power has been observed in

experiments on spin glasses [137, 103] and simulations of the standard Ising model

[30] and the Ising model with disorder in the form of random exchange constants

[31]. In these cases, the maximum in the noise power, i.e. the variance of the

alignment, coincide with phase transitions and spin glass transitions, respectively.

This is suggessted by the fluctuation-dissipation relation, relating the total noise

power to the dissipative (imaginary) part of the susceptibility, which diverges at a

105



Figure 4.4: Time series of the z-component of net alignment of a single cluster with
D = 2J at kBT/J = 7.8 (a), kBT/J = 3.4 (b), and kBT/J = 2.5 (c). The full
extent of the vertical axis is fully aligned in the z-direction (Mc = Nc = 36) and the
length of each time series is t = 219 MCS. (a) At kBT/J = 7.8 the temperature is low
enough that clusters undergo Ising-like switching. (b) As the temperature is lowered
to kBT = 3.4, the magnitude of fluctuations and the switching time increase. Close
inspection shows that the magnitude of fluctuations and the switching time are in
fact related, as in equation 4.10. (c) At kBT/J = 2.5. When the temperature is low
enough, the cluster no longer undergoes switching, the time-average of alignment is
non-zero, and ergodicity is broken. At this temperature, α ≈ 1.35 (figure 4.3(a)) and
there is a maximum in the amplitude of fluctuations (figure 4.3(b)).

phase transition temperature (for a system of infinite size) and is a maximum at the

spin glass transition temperature. In this model, the maximum does not indicate

a phase transition or a spin glass transition per se, as the classical Heisenberg in

two dimensions is known not to undergo a ferromagnetic phase transition for T > 0

[88]. However, it does indicate a dynamical freezing and diverging time scales for

reorientation of clusters, similar to that seen in the spin glass transition [137].

This can be seen in figure 4.4, which shows time series of the z-component of the
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net alignment of a single cluster for D = 2J and kBT/J = 7.8 (a), 3.4 (b), and 2.5

(c). At low temperatures, clusters are found to undergo Ising like switching (figure 4.4

(a) and (b) kBT/J = 7.8, 3.4). As the temperature is reduced, cluster become more

aligned and the average amplitude of the fluctuations increase and, as a consequence

of equation 4.1, the average switching times increase; this is apparent from comparing

figure 4.4 (a) kBT/J = 7.8 and (b) kBT/J = 3.4. As suggested by equation 4.4, these

switching times diverge exponentially with decreasing temperature, so that at low

enough temperature the switching time is on the order of the simulation time tm.

At this point, as illustrated in figure 4.4(c) where kBT/J = 2.5, clusters no longer

undergo switching and the time average of alignment is non-zero over the entire

simulation time (tm = 217 × 103 MCS), meaning that ergodicity is broken on these

time scales. It is at this temperature that the peak in SMz ,0 occurs (figure 4.3(b)) and

spectra begin to drop in amplitude (figure 4.2), violating the relationship equation

4.1 that yields the crossing frequency. In figure 4.3(a), it can be seen that it is also

at this temperature that for simulations with anisotropy (D = 2J, 4J) the value of

α levels to ≈ 1.35. An investigation of the Ising model, similarly constrained, found

that simulations freeze at low temperatures when α ≈ 1.4 [28]. This is a limit seen in

the resistivity fluctuations of thin metal films [44], as discussed in reference [28], as

well as the flux noise of SQUIDs, discussed here. Specifically, the SQUID flux noise

spectra presented by Anton et al. [4] show 0.35 / α / 0.80 for single SQUIDs and

those presented by Kempf et al. [62] show 0.50 ≤ α ≤ 0.82 for single SQUIDs and

0.34 ≤ α ≤ 1.41 for SQUID arrays. In addition to obeying the limit of α / 1.4,

these data are in the range of α in which no freezing occurs in our model, so that the

correlation between α and SMz ,0 is maintained, leading to the existence of a crossing

frequency. This implies that the clusters of spins responsible for 1/f flux noise are

near a transition at these temperatures, a suggestion that has been made previously
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[134, 72, 39].

The form of the constraint, equation 4.9, can provide some insight into this dy-

namical freezing and the conditions, specifically the temperature and simulation time,

when these simulations are ergodic. From equation 4.4, the constraint has the ef-

fect of extending the lifetimes of states of clusters with alignment Mc by a factor

≈ eg×(3M2
c /2Nc) = eM

2
c /Nc , diverging rapidly as the temperature is reduced and the

average net alignments Mc of clusters increase. From this, three benchmarks can be

immediately established: (1) the lowest frequency at which 1/f noise is observed and

spectra roll over to white noise, and (2) the alignment at which ergodicity is broken

for a given simulation time tm. The first of these, the white noise rolloff frequency,

was discussed previously. It is the inverse of the maximum time that the constraint

can slow spin flips, which is the time it takes to flip a spin in a fully aligned cluster,

f0 = e−3gNc/2. This was illustrated in figure 4.1 for simulations with g = 1, with

diamond symbols marking f0 for cluster sizes Nc = 4 and 9 spins. For the simulations

presented in this section, with g = 2/3 and Nc = 36, f0 = e−Nc ≈ 2×10−16 MCS−1, or

9 orders of magnitude lower than the lowest simulated frequency 1/tm ≈ 10−7 MCS−1

presented here. Indeed, no rolloff to white noise was observed in these simulations,

as seen in figure 4.2.

To establish another benchmark, it is noted that ergodicity is broken when spin

flips are slowed to times comparable to the simulation time: tm ≈ eg×(3M2
c /2Nc). Invert-

ing this equation gives the average relative (reduced by a factor of Nc) net alignment

of clusters when ergodicity is broken:

Mc

Nc

=

√
2

3gNc

ln(tm) (4.15)

So, for g = 2/3, Nc = 36, and tm = 219×103 MCS, ergodicity is broken when clusters

have relative net alignments of Mc/Nc ≈ 0.72. Indeed, near the temperature where a
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peak in noise power is observed in figure 4.3(b), relative net alignments of clusters of

≈ 0.72 are found and spin flips in these clusters are suppressed for the duration of the

simulation. Under close inspection, the relationship between the lifetime of states of

clusters and their net alignment can also be seen in figure 4.4, where larger values of

net alignment are seen to last longer for a given temperature, and the net alignments

and lifetimes of states are both generally larger at lower temperatures. This is similar

to the non-linearity observed in SQUID flux noise [119].

4.4.1 Equilibration, Stationarity, and Ergodicity

As discussed in § 1.3.3, the properties of stationarity and ergodicity are intimately

related. Broadly speaking, a stochastic process x(t) is ergodic when ensemble aver-

ages, equation 1.7, are equal to time averages, equation 1.6: 〈x〉 = x; whereas it is

stationary when its joint probability distribution is invariant under a shift in time:

w(x, t) = w(x, t + ∆t) [66]. Though related, stationarity and ergodicity are not mu-

tually inclusive. A non-stationary process cannot be ergodic; without a well-defined

time average x, the condition 〈x〉 = x is meaningless. However, a process can be

stationary and non-ergodic. A common example that is relevant here is the position

of a classical particle trapped in a double well potential. When the particle has an

energy greater than the barrier height of the well, or if its energy is taken from a

canonical distribution at sufficiently high temperature, its position is ergodic: it is

free to move from one well to another so that 〈x〉 = x in a finite measurement time.

It is also stationary: its position is bounded so that statistical measurements become

well-defined after a finite time. However, if the energy is much less than the barrier

height, or the temperature low enough, the particle will be confined to one well, for

all time in the former case, and for all reasonable times in the latter. Clearly, the

particle’s position is no longer ergodic. However, it is stationary: being free to ex-
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plore the accesible states of the single well, statistical measurements are well-defined

in a reasonable and finite time. It should be noted that this system can be made

ergodic if the ensemble from which averages are calculated only contains states with

the particle in one well or the other.

Having considered the conditions under which this model is ergodic, it is of interest

to consider when it is stationary. To initialize the model, all spins are oriented in

the positive z-direction, (sxi , s
y
i , s

z
i ) = (0, 0, 1) and simulations are run without

anisotropy (D = 0) and without the additional nonlinear constraint. Since there is

no phase transition in the isotropic 2D Heisenberg model for T > 0 [88], the model

at this point is both stationary and ergodic and the time-averaged net alignment

becomes zero in a reasonable time (< 106 MCS). When the nonlinear constraint and

(if applicable) anisotropy are applied, the system is no longer ergodic, at least not

for the combination of temperatures and simulation times discussed above. What’s

more, for the time that the system is in transit from ergodicity and a zero time-

averaged net alignment to non-ergodicity and a possibly non-zero time-averaged net

alignment, it is no longer stationary. That is to say, its time-averaged net alignment,

variance of net alignment, and power spectral density of fluctuations of net alignment,

are all functions of time, i.e. they are themselves stochastic variables on these time

scales. After sufficient time, clusters settle into their new equilibrium in one well or

another and fluctuate about this newly established and well-defined time-averaged

net alignment; stationarity is restored.

It is necessary therefore to assess how long the system takes to reach a stationary

state and allow it to establish stationarity before collecting data. To do this, the power

spectral densities of different averaging times are compared to one another. The raw

data collected are 217 values each of the z-component of net alignment averaged over

four different averaging times, tav = 100, 101, 102 and 103 MCS. Each of these time
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series are Fourier transformed and squared to create four power spectral densities,

each of length O(log10(tm)) ∼ 5 decades of frequency and separated by 1 decade.

This means that power spectral densities of adjacent tav overlap over ≈ 4 decades

of frequency. Stationarity is established by summing the difference between power

spectral densities with adjacent tav in this ≈ 4 decade wide range of frequencies and

checking that it is sufficiently small and centered around zero for the five different

simulations used to create the final spectra. An example of this process is shown in

figure 4.5(a) for a simulation that was not given sufficient time to equilibrate and

produced a non-stationary alignment and power spectral density. The spectra of

longer tav decay with time. This is because, during equilibration, clusters are settling

from a state of approximately zero net alignment to a non-zero net alignment. Since

the frequency of spin flips depends upon cluster net alignment Mc as ∼ e−M
2
c /Nc ,

fluctuations are suppressed as clusters equilibrate and Mc grows.

In § 1.3.3 it was pointed out that if the power spectral density of fluctuations of

a variable x(t) have the form Sx(f) ∝ 1/fα with α ≥ 1 all the way down to zero

frequency, then the total variance lim
tm→∞

∫ tm

0

Sx(f)df = (δx)2 of x is infinite. One

possible resolution of this long-standing problem is that the power spectral density is

non-stationary. Specifically, if (δx)2 is to remain independent of measurement time

tm, it must have the form S(f) ∝ t1−αm /fα. So, for two adjacent averaging times tav

separated by a decade, the spectrum will have decayed by a factor

δS(f) =
S(tm)(f)

S(10tm)(f)
=

(tm)1−α

(10tm)1−α = 10(α−1) (4.16)

or, converting to decibels, δS(f) = 10(α− 1).

In figure 4.5(b), 〈δS(f)〉 of adjacent tav, averaged over their overlapping frequency

range, is plotted in decibels as a function of 10(α− 1) from multiple simulations that

were not allowed sufficient time to equilibrate and were therefore non-stationary. Sim-
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Figure 4.5: Demonstration of equilibration, aging, and non-stationary behavior in
the constrained Heisenberg model. (a) Power spectral densities in the z-component
of net alignment from a simulation with D = 2J , and averaging times tav = 100

(blue curve), 101 (red), 102 (green), and 103 (pink) MCS. Stationarity is checked in
simulations by integrating the difference δS(f) (an example for tav = 100 and 101

MCS is given in the figure) between spectra of adjacent tav and checking that it is
sufficiently small and centered around zero for different simulations. The example
shown here was not allowed to equilibrate for a sufficient number of sweeps and is
clearly not stationary. (b) Plot of 〈δS(f)〉 in decibels, averaged over the overlapping
frequency range of spectra with adjacent tav, as a function of 10(α−1), where α is the
spectral exponent taken from S(f) ∝ 1/fα. Different colors (symbols) correspond to
different values of kBT/J (D/J). The paradox of infinite fluctuations is avoided for
non-stationary spectra if 〈δS(f)〉 = 10(α− 1) (marked by the solid black line).

ulations were for a number of different values of temperature kBT/J and anisotropy

D/J (as indicated by different colors and symbols, respectively), but the decay of

the spectrum 〈δS(f)〉 trends with α, independent of these. For α < 1, 〈δS(f)〉 is

close to zero. For α > 1, 〈δS(f)〉 (which, the process being non-stationary, is a

stochastic variable) roughly follows the trend necessary for the variance to remain

independent of tm in equation 1.29, thus avoiding the paradox of infinite fluctuations:

δS(f) = 10(α− 1), marked by the solid black line.

Apparently, when this model is allowed to settle into equilibrium from a non-

equilibrium state, the power spectral density of fluctuations decays in such a way

that the total variance remains approximately constant. The reasons for this are not
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clear and require further investigation. It is certain that this model does not suffer

from the paradox of infinite fluctuations since, because it is bounded, its 1/f behavior

must not continue to zero frequency. Indeed, a cutoff frequency of f0 = e−3gNc/2 is

predicted and has been observed (figure 4.1).

4.5 Conclusions

The classical Heisenberg spin model, with the Hamiltonian equation 4.2, con-

strained according to equation 4.9 to reproduce the condition of equation 2.1, has

been found to exhibit fluctuations with a 1/f -type spectrum. Unlike the matrix

model of § 3, this model includes interactions and exchanges energy and entropy with

a thermal reservoir, simulated using Boltzmann’s factor, equation 4.3. Because of

this, the constant, maximum entropy of the system + local bath is maintained only

approximately on the time-scale of single spin flips. Furthermore, 1/fα behavior was

found to be temperature dependent, with α increasing as the temperature was de-

creased, as shown in figure 4.3. In the high-temperature limit and with g = 1, where

the criterion of equation 4.9 dominates the dynamics over equation 4.3, exact 1/f

noise was observed, as shown in figure 4.1. Adjusting the strength of the constraint

through the value of g allowed the model to reproduce the range of α reported in

SQUIDs [4, 62].

Generally, the constraint produces slow dynamics and 1/f noise in the system by

slowing transitions in more aligned regions. Therefore, the fluctuations in alignment

in this model are explicitly non-linear, similar to the flux noise in SQUIDs [119].

By slowing large-sized (large alignment) fluctuations and suppressing smaller-sized,

high frequency fluctuations, the constraint produces spectral pivoting of spectra at

different temperatures about a common-crossing frequency fc, equation 4.1. This

behavior is a feature of the 1/f flux noise seen in SQUIDs, as described in § 4.1.
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This model, therefore, qualitatively recreates some of the features of 1/f flux noise

in SQUIDs. figure 4.3 shows this spectral pivoting.

At low enough temperatures, this model becomes non-ergodic for the given simu-

lation times. The longest characteristic times of spin flips at a given temperature are

related to the net alignment through the constraint. This is shown in the lowest fre-

quency at which 1/f noise occurs, equation 4.12, and the net alignment corresponding

to a slowing of the dynamics beyond the time of measurement, equation 4.15. Be-

cause of the exponential dependence of the characteristic time on the net alignment

squared, the time-scales of this model diverge rapidly as the temperature is reduced

and the average net alignment of clusters increases. This, and the ergodicity and

stationarity of the model in general, were discussed in § 4.4.1.
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Chapter 5

CONCLUSIONS AND POSSIBLE FUTURE WORK

In § 2, multiplicity-dependent characteristic times were discussed and shown to

produce fluctuations with a 1/f -type spectrum. The physical interpretation offered is

that multiplicity-dependent characteristic times arise from coupling to a finite, local

entropy bath, or from non-ideal coupling to an infinite thermal reservoir which must

be mediated through a local bath. Two models employing multiplicity-dependent

characteristic times were simulated and found to exhibit fluctuations with a 1/f

spectrum in § 3 and 4. In this final chapter, the numerical results of simulations of

these two models will be compared to each other and to the class of models based

on a distribution of exponential relaxation processes and the class of models based

on power law renewal processes. In many cases, these simlarities might not be lim-

ited to the models presented here, and may be more general. In addition to these

comparisons, some unanswered questions and possible future work will be discussed.

5.1 Comparison of Numerical Results to Models Based on Distributed Exponential

Relaxation Processes and Models Based on Renewal Processes

Many, though not all, models of 1/f noise can be placed into one of two categories:

(1) those based on a spatial distribution of exponential relaxation processes with

characteristic times distributed as a power law p(τc) ∼ 1/τc and (2) those based

on a single relaxation processes with waiting times that are distributed as a power

law ψ(τ) ∼ 1/τ−1−θ as opposed to an exponential. These two classes of models were

described in detail in § 1.4.1 and 1.4.2, respectively. The relationship of these classes of

models to the models based on multiplicity-dependent characteristic times presented
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here was discussed in general in § 2. Here, the results of simulations of these models,

presented in § 3 and 4, will be placed in the context of these classes of models. It

will be seen that models based on multiplicity-dependent characteristic times possess

properties of both classes of models, and that the two are not necessarily mutually

exclusive.

5.1.1 Comparison of Distributed Exponential Relaxation Processes Models and

Renewal Process Models

The first class of models, like that of McWhorter [87] and Dutta, Dimon, and

Horn [42], are based on a random process composed of many random, uncorrelated

stationary and ergodic processes, with characteristic times distributed according to a

power law p(τc) ∼ 1/τc. This class of models was described in § 1.4.1. The underly-

ing processes may be modelled as two-state Poisson processes, with transition times

distributed exponentially, with the mean of this distribution corresponding to the

characteristic time τc. Processes with an exponential distribution of transition times

will have an exponential autocorrelation function and a Lorentzian power spectral

density. Physically, these underlying processes can be described in terms of uncor-

related transitions over classical Arrhenius-like activation barriers [10, 128, 87, 42]

or, for systems at low temperatures where tunnelling dominates, two-level tunnelling

systems [3, 14, 15, 16, 67, 77, 136]. Regardless of the physical origin of the underlying

processes, in many of these models, the power law distribution p(τc) comes from as-

suming (1) an exponential dependence of τc upon some parameter, such as activation

energy [42] or tunnelling distance [87], and (2) a flat distribution of that parameter

in the range of interest. Because of the exponential dependence of τc upon the pa-

rameter, the distribution of said parameter can be flat over a relatively narrow range

to accomplish a broad range over which p(τc) ∼ 1/τc. Because of this, models of this
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type, which rely upon spatial heterogeneity, are physically reasonable for a wide class

of systems. Additionally, spatial heterogeneity is a popular explanation for a number

of other physical phenomena [19, 26, 105, 133]. Finally, in recent years, with the ad-

vent of more sophisticated measurement techniques, the dimensions of samples under

observation have been made small enough to resolve individual Lorentzian features

in the power spectral density [92, 102, 108, 110, 136].

The second class of models, first proposed by Mandelbrot over 50 years ago [82,

81, 83, 80, 135] and now gaining renewed interest [46, 73, 76, 84, 94], is based on a

single fluctuator with sojourn times that are distributed according to a power law

ψ(τ) ∼ τ−1−θ. These models are a class of renewal processes [50] and were discussed

in § 1.4.2, specifically the simplest two-state case. An exponentially distributed two-

state system, the underlying processes of the first class of models, is a special, ergodic

and stationary case of a renewal process. Unlike the first class of models, these do not

rely upon a spatial power law distribution of fluctuators with different characteristic

times. Instead, the power law character of fluctuations comes from the distribution of

sojourn times themselves, so that a single fluctuator will exhibit fluctuations with a

1/f spectrum. These models also differ from the first class of models in that they are

intrinsically non-stationary and will exhibit aging like that discussed in § 1.3.3 and

1.4.2. In this way, these models resolve the paradox of infinite fluctuations, discussed

in § 1.3.3. The first class of models, on the other hand, resolves the paradox with

the inclusion of a maximum characteristic time τmax, so that p(τc) ∼ 1/τc only for

τc < τmax.

The first and second class of models are not necessarily mutually exclusive and

share a number of properties. For one thing, the concept of conditional measurements

and the consequent spectra (see § 1.4.2) reconcile the stationarity and ergodicity of

these two classes of models. In addition, models with sojourn times distributed as
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ψ(τ) ∼ τ−1−θ can make up the underlying processes of a spatially heterogeneous sys-

tem, similarly to the first class of models, resulting in a stationary 1/f -type power

spectral density [112, 73]. Also, it is possible that a process has a power law distribu-

tion of sojourn times over only a limited range, ψ(τ) ∼ τ−1−θ × e−τ/τmax . A process

such as this will have a non-stationary spectrum for measurement times tm < τmax

and a stationary spectrum with a cutoff frequency fcutoff ∼ τ−1
max for tm > τmax.

5.1.2 Matrix Model

The model based on a simple matrix, presented in § 3, does not rely upon the

superposition of multiple processes, and all results presented were from simulations

of a single multi-level fluctuator. In fact, since there are no interactions in this model,

the superposition of multiple processes is trivial and the same spectrum can be found

from adding the spectra of individual processes. This fact was used to compare

the sum of spectra to the data of Rogers and Buhrman, which resolved individual

Lorentzian features in the 1/f -type spectrum of voltage fluctuations in mesoscopic

MIM junctions [108].

Since the matrix model produces 1/f noise without the need for a superposition

of processes it is, in at least one way, more similar to the class of models based

on power law renewal processes. Unlike the two-state power law renewal processes

reviewed in § 1.4.2, however, this model has multiple states, each of these having

its own, well-defined characteristic time. In § 2 it was shown that models based on

multiplicity-dependent sojourn times can be recast as renewal processes with a power

law dependence if (1) the fluctuating variable only moves between adjacent states,

equation 2.11, and (2) the difference between values of the fluctuating variable are

equal for adjacent states. Both of these conditions are met in the matrix model.

So, while the characteristic time of each state is well-defined, the distribution of
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characteristic times follows a power law. The sum of these considerations means

that the sojourn times of this model will have a power law distribution. This model

therefore bears characteristics of both classes of models. These similarities, however,

are not necessarily a property of this model alone, and may point to a more general

similarity.

The value of the fluctuating variable in the matrix model, the net alignment m, is

bounded by the number of spins: m ≤ N . Consequently, the mean maximum sojourn

time is τmax ∝ Ω0. The spectrum will therefore have a cutoff frequency fcutoff ∝ Ω−1
0 ,

as seen in figure 3.3. However, since the multiplicity Ωm of states with m is known

to be approximately Gaussian, the distribution of sojourn times will have the form

ψ(τ) ∼ τ−1−θ with θ ' 1 for τ < τmax. It is therefore expected that the matrix

model will have the form ψ(τ) ∼ τ−1−θe−τ/τmax . As a result, for tm < τmax, the power

spectral density of the matrix model may be non-stationary. When in a highly aligned

state, the model will undergo no fluctuations for a long period of time, depressing

the value of the spectrum as described in § 1.4.2. Given this, it seems likely that the

amplitude of the spectrum will vary until tm > τmax and all of phase space has been

explored. The stationarity of the matrix model, however, was not investigated for

tm < τmax. This is a possible subject of future work.

In § 3.3.1, this model was also recast in the form of a discrete Markov process.

The mathematics of discrete Markov processes, specifically the characteristic times

from the system’s stochastic matrix, were used to recreate the power spectral den-

sities obtained from simulations. This process did not exactly recreate the results

obtained from simulations, most likely due to the fact that correlations among differ-

ent states were ignored. Calculation of these cross-correlations is a possible subject

of future work. Since discrete Markov models can model diffusion processes through

their generalization to continuous states [66], recasting multiplicity-dependent char-
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acteristic times in this form may provide a way to generalize models of this type to

microscopically realistic methods of simulation, i.e. molecular dynamics.

5.1.3 Constrained Heisenberg Model

Like the matrix model, the constrained Heisenberg model, presented in § 4, does

not rely upon multiple processes being superposed to produce 1/f noise. Single clus-

ters of spins were found to exhibit 1/f noise. Still, the results presented for the

constrained Heisenberg model were primarily for a sample composed of many inter-

acting clusters. These clusters arrange themselves into a distribution of different net

alignments and, through the dynamic constraint, a distribution of different charac-

teristic times. In this way, this model is similar to those based on a distribution of

exponential relaxation processes. Another similarity, one shared by the matrix model,

is that the broadness of the distribution of characteristic times is achieved through

the exponential dependence of the characteristic time on a not-necessarily broadly

distributed parameter (the square of the net alignment of a cluster). For example,

in the model of Dutta, Dimon, and Horn [42], the characteristic time depends expo-

nentially on activation energy and/or tunnelling parameter. For the matrix model

and constrained Heisenberg model, it is the Gaussian dependence of the characteris-

tic time on net alignment. To further investigate these similarities, a distribution of

cluster sizes, either static or dynamic, might be considered. As discussed, different

cluster sizes do produce differing spectra, with an increase in cluster size increasing

the range over which 1/f noise is observed, demonstrated in figure 4.1.

At low temperatures, as seen in figure 4.4, clusters were found to undergo Ising-

like switching at low enough temperatures for simulations with anisotropy (D 6= 0),

and these single clusters did in fact exhibit 1/f noise on their own. These consid-

erations suggest that at low temperatures this model for single clusters is similar to
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the two-state renewal processes of § 1.4.2. Since those models are intrinsically non-

stationary, the stationarity (or non-stationarity) of this model can provide insights

into these similarities. At lower temperatures than which Ising-like switching occurs,

no transitions often occurred over the time of measurement. Still, no aging, associ-

ated with non-stationarity, was observed in the spectra of single regions. However,

as discussed in § 4.4.1, when not properly equilibrated, this model showed aging of

the type discussed in § 1.4. This same behavior is expected from the model if pushed

out of equilibrium, and would also be expected after a rare event, i.e. when a single

cluster flips its orientation. In such a case, the cluster moves from its highly aligned

initial state, through ≈ 0 net alignment, and to its new highly aligned state. During

this time, the characteristic time of fluctuations evolve with the cluster’s alignment,

with fast fluctuations occuring when the cluster has ≈ 0 net alignment and slow-

ing rapidly as the cluster settles into its new highly aligned state. In this way, the

power-spectral density may actually be non-stationary at low temperatures. Meth-

ods to investigate these questions in the future might include directly measuring the

distribution of waiting times of single clusters and comprehensive measurements of

conditional spectra, like those discussed in § 1.4.2.

The effect of the constraint in the constrained Heisenberg model and the finite

bath states of the matrix model both have the effect of equation 2.1. Given this

similarity between these two models, the mechanisms by which they produce 1/f

noise are equivalent. In fact, in the high-temperature limit, where interactions are

negligible, with g = 1, the constrained Heisenberg model is practically equivalent to

the matrix model. However, at finite temperatures the presence of interactions com-

plicates the matter. Another difference between the two is that the matrix model is

fully discrete, whereas the constrained Heisenberg model employs continuous degrees

of freedom. Since the generalization of discrete Markov processes, used to analyze
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the matrix model in § 3.3.1, to the continuous case provide a route to models of

diffusion, this constrained Heisenberg model might be a useful point from which to

consider generalizing these models to molecular dynamics. In general, modelling

the constrained Heisenberg model as a diffusion process may provide insight into

multiplicity-dependent characteristic times.

5.2 Final Remarks

The models considered here, based on multiplicity-dependent characteristic times,

have been found to exhibit fluctuations with a 1/f -type spectra. The physical foun-

dation offered here of this dependence is that a system fluctuates with a characteristic

time depending on its state when it is coupled to a finite, local bath, with which it

shares a constant, maximimized amount of entropy. The models presented may pro-

vide insight into the origin of 1/f noise in heterogeneous systems and small systems

which are imperfectly coupled to their larger thermal environment. The similarity

of this class of models to others suggests that a universal explanation of 1/f noise

may be able to be formulated in terms of the connectivity of a system to its thermal

reservoir and how this connectivity impacts equilibrium fluctuations.
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[41] F. K. Du Pré. A suggestion regarding the spectral density of flicker noise.
Physical Review, 78(5):615615, 1950.

[42] P. Dutta, P. Dimon, and P. M. Horn. Energy scales for noise processes in metals.
Physical Review Letters, 43(9):646649, 1979.

125



[43] P. Dutta and P. M. Horn. Low–frequency fluctuations in solids: 1/f noise.
Reviews of Modern Physics, 53(3):497516, 1981.

[44] J. W. Eberhard and P. M. Horn. Excess (1/f) noise in metals. Physical Review
B, 18(12):66816693, 1978.

[45] L. Faoro and L. B. Ioffe. Microscopic origin of low-frequency flux noise in
josephson circuits. Physical Review Letters, 100(22):227005, May 2008.

[46] S. Ferraro, M. Manzini, A. Masoero, and E. Scalas. A random telegraph signal
of mittag-leffler type. Physica A: Statistical Mechanics and its Applications,
388(19):3991–3999, Oct 2009.

[47] R. P. Feynman, R. B. Leighton, and M. Sands. The Feynmann lectures on
physics, volume 1. Addison-Wesley, 1966.
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ORIGINAL PUBLICATION: FLUCTUATION THEOREMS AND 1/F NOISE
FROM A SIMPLE MATRIX
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A.1 Introduction

Much of the work presented in § 3 was published under the title “Fluctuations
theorems and 1/f noise from a simple matrix” in The European Physical Journal
B. The complete citation is listed under reference [25]. This work was completed
in collaboration, in the order appearing in the original publication, by Ralph V.
Chamberlin, Sumiyoshi Abe, Bryce F. Davis (myself), Priscilla E. Greenwood, and
Andrew S.H. Shevchuk. The coauthors have granted their permission to have this
work included in this dissertation.

Simulations, the creation of figures, and writing were primarily done by Ralph
Chamberlin. Priscilla Greenwood provided the initial inspiration to cast the model
in the form of a simple matrix. Priscilla Greenwood and Sumiyoshi Abe aided in
the language and interpretation involving Markov processes and information theory.
Algorithms for simulating the model and the structure of the simulation matrix were
developed by Ralph Chamberlin and myself. Ralph Chamberlin, Andrew Shevchuk,
and myself contributed to the physical interpretation of the results of simulations.

Specifically, my contribution was in the development of the simulation algorithm
and structure of the simulation matrix, allowing a system which conserves entropy
at each step to be simulated explicitly. This was done through discussions and code
testing with Ralph Chamberlin. I also contributed to the physical interpretation of
the results, most notably the distribution of transition frequencies and the identity of
the cutoff frequency of 1/f noise. This was done by recasting the model as a discrete
Markov process, developing the stochastic matrix, finding its eigenvalues, relating
them to the transition frequencies of the model, and relating these to spectral features
seen in the power spectral densities obtained from simulations.

The original publication is included below.
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Abstract. Here we present a model for a small system combined with an explicit entropy bath that is
comparably small. The dynamics of the model is defined by a simple matrix, M. Each row of M corresponds
to a macrostate of the system, e.g. net alignment, while the elements in the row represent microstates. The
constant number of elements in each row ensures constant entropy, which allows reversible fluctuations,
similar to information theory where a constant number of bits allows reversible computations. Many
elements in M come from the microstates of the system, but many others come from the bath. Bypassing
the bath states yields fluctuations that exhibit standard white noise; whereas with bath states the power
spectral density varies as S(f) ∝ 1/f over a wide range of frequencies, f . Thus, the explicit entropy bath
is the mechanism of 1/f noise in this model. Both forms of the model match Crooks’ fluctuation theorem
exactly, indicating that the theorem applies not only to infinite reservoirs, but also to finite-sized baths.
The model is used to analyze measurements of 1/f -like noise from a sub-micron tunnel junction.

Fluctuation theorems [1–5] provide fundamental formulas
that have been used to describe the thermal properties of
small systems that may be far from equilibrium. These for-
mulas have been applied to the out-of-equilibrium behav-
ior of several small systems including: stretching of RNA
molecules [6], information-to-energy conversion [7–9], and
particles driven by an external field [10,11]. Of course the
theorems should also apply to fluctuations of small sys-
tems around equilibrium, but what if the thermal bath is
similarly small? Nanothermodynamics was originally de-
veloped to describe the thermal properties of a large en-
semble of small systems [12,13], which has been extended
to treat the dynamics of individual small systems with
their own local bath [14,15]. Here we describe a model
based on a single matrix M that contains a maximum
number of system states Ω0, with a comparable number
of bath states. We show that if the bath states are by-
passed, the matrix model yields a power spectral density
that exhibits standard white noise and agrees with one
value from the Crooks fluctuation theorem [1]. However
if the explicit bath states are included, the matrix model
yields 1/f -like noise and agrees with a different value from
the Crooks theorem. Finally, the matrix model is used to
analyze measurements of voltage noise from a sub-micron-
sized tunnel junction [16].

The matrix model is based on information theory [17],
adapted to treat thermal fluctuations. The matrix model

a e-mail: ralph.chamberlin@asu.edu

includes bath states that maintain maximum entropy dur-
ing fluctuations of a binary system, similar to “garbage”
states in information theory. Neighboring rows of M are
connected by an Ω0-to-Ω0 map that yields reversible fluc-
tuations, similar to the one-to-one map that yields re-
versible computations (e.g. Fig. 3a of Ref. [17]). Specific
Hamiltonians that may accomplish the transfer of infor-
mation are discussed in references [17,18], but here we
focus on the general principle that entropy must remain
maximized if fluctuations are to be reversible. Experimen-
tal evidence establishing that information is a physical
quantity comes from the minimum work necessary to erase
a single bit [9].

All system states in the matrix model are degener-
ate, with an explicit local bath that is comparable to sys-
tem size and depends on system entropy, thereby violating
multiple assumptions required for thermal properties to be
governed solely by Boltzmann’s factor [19]. Thus, the re-
sulting thermal fluctuations differ from those found from
standard statistical mechanics and stochastic thermody-
namics [20], which are based on Boltzmann’s factor alone.
Indeed, because all system states are degenerate, the ther-
mal properties are governed entirely by entropy, simi-
lar to microcanonical behavior. And as expected, finite-
sized fluctuations depend on the ensemble. To compare:
Boltzmann’s factor favors low energy states of the sys-
tem when energy is transferred to an infinite heat reser-
voir; whereas the matrix model favors low entropy states
of the system when entropy is transferred to the finite
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entropy bath. Non-degenerate states in the system can
be accommodated by combining Boltzmann’s factor from
energy transfer with a nonlinear correction from entropy
transfer [14,15], but here we emphasize that the entropy-
transfer mechanism is the crucial ingredient for 1/f -like
noise. Using Boltzmann’s factor for energy transfer gener-
ally yields deviations from pure 1/f behavior [21].

Thermal fluctuations exhibiting 1/f -like noise were
first reported in 1925 [22,23]. Similar 1/f -like noise has
since been found in virtually all types of materials, as well
as in electronic, magnetic, and quantum devices [24–26],
and even in biological systems [27,28] and human pref-
erences [29,30]. No single mechanism can explain all de-
tails in the dynamics of such diverse systems. Nevertheless,
an Ising-like model has been found to simulate measured
1/f -like noise, including temperature-dependent slopes
shown by various metal films, and tri-modal histograms
exhibited by spin glasses and nanopore systems [21].
Here we study the basic cause of 1/f noise in the Ising-
like model. The key ingredient is a nonlinear correction
to Boltzmann’s factor that can be justified in several
ways [14,15,31,32]. One mechanism comes from conserva-
tion of energy by including Hill’s subdivision potential to
treat non-extensive contributions from finite-sized fluctu-
ations. Another comes from the statistics of indistinguish-
able particles. Here we focus on a third mechanism, where
maximum entropy is maintained by transferring entropy
between the system and its bath.

Consider an isolated small system that fluctuates into
a low-entropy state. Although seeming to violate the 2nd
law of thermodynamics, at least three possible explana-
tions have been proposed. Total entropy may decrease
temporarily if the system is small enough [2,33]. The
time-averaged Gibbs entropy should be used instead of
the time-dependent Boltzmann expression [34,35]. Alter-
natively, because information theory [7,8] requires a trans-
fer of entropy when knowledge about the system changes,
a decrease in entropy of the system implies an increase
in entropy elsewhere, consistent with measurements of bit
erasure [9]. Information theory is also consistent with us-
ing Lagrange multipliers for higher moments that max-
imize the total entropy of a fluctuating system and its
environment. Here we treat the transferred entropy ex-
actly by including explicit bath states that slow down the
dynamics of the system.

For simplicity, assume that the system contains an
even number (N) of binary degrees of freedom (“spins”),
so that each spin may be up (+1) or down (–1). If
the alignment of the system is unknown, then the to-
tal multiplicity is always ΩAll = 2N . Whereas if the net
alignment (m) is known, then the multiplicity of each
macrostate is given by the binomial coefficient Ωm =
N !/{[1/2(N + m)]![1/2(N − m)]!}. Using Boltzmann’s def-
inition, the alignment entropy of the system is Sm =
kB ln(Ωm). The maximum multiplicity occurs when spins
are half-up and half-down: Ω0 = N !/[(1/2N)!]2, yielding
the maximum entropy S0 = kBln(Ω0). Fluctuations re-
duce this alignment entropy, Sm � S0. The matrix model
is based on the assumption that if Sm < S0 because

Fig. 1. System states (left) and rectangular matrix M (right)
for an N = 4 spin system. Non-zero elements in M correspond
to system states, with the fraction of Mij = +1 or –1 from
the probability that inverting a spin at random will increase or
decrease the alignment, respectively. Elements with Mij = 0
are explicit bath states that pause the dynamics of the system.

m �= 0, an amount of entropy S0 − Sm must have been
transferred from the system to its bath. Thus, the total
entropy of the system plus bath remains maximized at S0,
which never decreases.

The dynamics of the system is governed by a rect-
angular matrix, M (see Fig. 1). (Note that the standard
transition matrix of the alignment process is easily ob-
tained from M). The elements of M are Mij , with N + 1
rows (–N/2 � i � N/2) from the net alignments of the
system m = 2i, and Ω0 columns (1 � j � Ω0) from all
microstates of the system plus bath. The middle row of M
contains Ω0 non-zero elements (M0j = ±1), one for each
configuration of the unaligned system, with no states for
the bath. The sign of the element governs how the align-
ment of the system will change: M0j = +1 if m is to
increase and M0j = −1 if m is to decrease. Thus, in the
middle row there are Ω0/2 elements having M0j = +1,
and an equal number having M0j = −1. Other rows have
Ωm < Ω0 non-zero elements, from the number of system
states for m �= 0. The remaining Ω0 − Ωm elements in
each row have Mij = 0, representing bath states. The
system states in each row, Mij = +1 or –1, have the ap-
propriate ratio for the probability that the alignment will
increase or decrease, respectively. Specifically, there are
Ωm[1/2(N −m)/N ] = (N −1)!/{[1/2(N +m)]![1/2(N −m)−
1]!} elements having Mij = +1; and Ωm[1/2(N +m)/N ] =
(N −1)!/{[1/2(N +m)−1]![1/2(N −m)]!} elements having
Mij = −1. Adding extra 0 elements, as might be expected
for large baths in contact with small systems, lowers the
frequency where the system starts 1/f -like behavior, but
does not alter the general features of the 1/f regime. Us-
ing Stirling’s formula, the ratio of bath states to system

states is: 2(N+1)√
2πN

−1. Thus, for N � 6 there are more bath

states than system states; but the square-root dependence
keeps the ratio relatively small, so that even for N = 24
there are only about 3 times as many bath states as sys-
tem states. Because the number of bath states depends
on system entropy, our model yields fluctuations that dif-
fer from most other treatments that are based solely on
Boltzmann’s factor that assumes an infinite heat reservoir.

136



Eur. Phys. J. B (2016) 89: 185 Page 3 of 6

-1.0 -0.5 0.0 0.5 1.0
0

5

10

15
ln
( Ω
)

λ
Fig. 2. Histograms, converted to the logarithm of multiplicity,
from the dynamics of the N = 24 matrix. Solid (open) symbols
are from simulations with (without) explicit bath states. Dif-
ferent shapes come from different averaging times, from τ = 1
to 106 steps. The most-probable values in the wings come from
the allowed alignments, with lower values from averaging be-
tween them.

The dynamics of the model involves a time step (dt)
that has two parts. In part one, an element is chosen at
random from the current row of M. In part two, this ele-
ment is used to determine how the row might change: if
Mij = 0 there is no change j → j; if Mij = +1 the row
increases by one j → j +1; if Mij = −1 the row decreases
by one j → j − 1. In other words, all possible changes in
alignment are determined by m(t+dt) = m(t)+2Mij. The
dynamics continues by repeating parts one and two. For
standard Monte-Carlo simulations without explicit bath
states, part one is modified by choosing only non-zero el-
ements (states with Mij = 0 are bypassed), so that m(t)
changes every step. To realistically simulate measurements
over a wide dynamic range we use an averaging time τ .
Specifically if τ = 1, m(t) is recorded every step, if τ = 10,
m(t) is averaged over 10 steps before recording, etc. We
use averaging times up to τ = 106 steps, with 217 data
points per simulation, yielding up to 1.31× 1011 steps per
simulation. Smoother curves are obtained by simulating
the system ∼20 times using different initial conditions,
but intrinsic noise is retained by analyzing each simula-
tion separately before averaging. To compare systems of
different size we use relative alignment, λ(t) = m(t)/N .

The solid (open) symbols in Figure 2 come from his-
tograms of λ(t) with (without) bath states, from the ma-
trix having N = 24. Each point in the histogram gives the
likelihood of the alignment. Thus, when τ = 1 (to avoid
averaging between alignments) a logarithmic plot (Fig. 2)
yields the entropy as a function of alignment. Without
explicit bath states (open squares), the τ = 1 histogram
matches the binomial distribution (dashed curve), as ex-
pected for non-interacting binary degrees of freedom with
no local bath. For τ � 1 this discrete binomial evolves
to a continuous Gaussian, as expected from the central-

limit theorem. The width of the Gaussian decreases with
increasing τ , and approaches a delta function for very
large τ , as expected from the law of large numbers. In-
deed, after the system has had time to explore all states,
τ � N , a Gaussian fit [ln(Ω) ∼ −λ2/2σ2] to the central
part of the peak yields a variance of σ2 ≈ 0.95/τ , so that
σ2 ≈ 9.5×10−7 for τ = 106. Such inverse-τ dependence is
expected for long-time averaging of normal fluctuations.
In contrast, simulations with explicit bath states yield con-
stant entropy for τ = 1 (horizontal dotted line), evolving
into a broad Gaussian with excess wings for τ � 1. Again
fitting the central part of the peak to a Gaussian, the vari-
ance is σ2 ≈ 7.7 × 10−3 for τ = 106, which extrapolates
towards σ2 ∼ 3.2× 10−3 as τ → ∞. However, because the
range of alignments is limited (–1� λ � +1), this central
Gaussian must also eventually approach a delta function
for τ � 2N = 1.67 × 107.

Crooks’ fluctuation theorem is consistent with both
forms of behavior shown in Figure 2. Furthermore, since
both forms involve all states explicitly, Crooks’ fluctua-
tion theorem is a consequence of detailed balance. First
consider the open squares for fluctuations of the system
without explicit bath states. Note that because the states
of the system are degenerate, entropy alone governs all
thermal properties, so that fluctuations are identical in
the microcanonical ensemble with no bath, and canon-
ical ensemble with infinite heat reservoir. Let the “for-
ward” step change the alignment from m to m + 2, and
the “reverse” step change m+2 to m. From the fraction of
non-zero elements in row i = m/2 having Mij = +1, the
forward step has probability Pm(+2) = 1/2(N − m)/N ,
the reverse step has Pm+2(−2) = 1/2(N + m + 2)/N ,
and their ratio is RS = Pm(+2)/Pm+2(−2) = (N −
m)/(N + m + 2). The Crooks’ fluctuation theorem states
that this ratio should come from the difference in en-
tropy: RS = exp[(Sm+2 − Sm)/kB]. Indeed, using the en-
tropy of the system from the binomial coefficient yields
exp[(Sm+2 − Sm)/kB] = (N − m)/(N + m + 2), matching
the ratio RS as expected from the fluctuation theorem.
Here RS �= 1 implies irreversible work must be done to
change the net alignment of the system [4].

Now consider fluctuations of the system plus explicit
entropy bath. For large systems with m ≈ ±N the dynam-
ics is very slow because the system plus bath spends most
of its time exploring bath states that do not change m.
Specifically, the probability of a forward step is reduced
by a factor Ωm/Ω0 = [(1/2N)!]2/{[1/2(N + m)]![1/2(N −
m)]!}, with the reverse step similarly reduced Ωm+2/Ω0 =
[(1/2N)!]2/{[1/2(N+m)+1]![1/2(N−m)−1]!}. Note that the
ratio of these factors is Ωm/Ωm+2 = (N +m+2)/(N−m),
so that the ratio of forward to reverse steps is simply
RS+B = RSΩm/Ωm+2 = 1. Here RS+B = 1 implies that
the system may change its net alignment reversibly [4].
Thus, from Crooks’ fluctuation theorem the total entropy
of the system plus bath should be constant, as ensured by
the constant number of elements in each row and shown
by the solid squares in Figure 2.

The solid symbols in Figure 3 show the power spectral
density of the alignment process, S(f). The data come
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Fig. 3. Power spectral density of noise as a function of fre-
quency. Solid symbols are from simulations of systems with
several sizes (N). Note that S(f) is multiplied by N to scale
the power from normal fluctuations, and log(f) is multiplied
by 10 to match the dB scale. The wide frequency range is ob-
tained by averaging the Fourier transform from several time-
series sequences, with averaging times of τ =1 to 106 steps.
The diagonal dashed line shows exact 1/f behavior. The open
triangles identify the frequency of the slowest response rate,
from 10 log(f) = 53.5−10 log(Ω0). The hexagonal symbols are
from the N = 24 matrix, but with all bath states bypassed.

from the same simulations used for Figure 2, and from 5
other systems with sizes N < 24. The relative alignment
as a function of discrete time is converted to the power
spectral density using a discrete Fourier transform:

S(f) =

∣∣∣∣∣
1
j

j−1∑

t=0

λ(t) exp(−2πift/j)

∣∣∣∣∣

2

.

The spectra are smoothed by linear regression using a
sliding frequency range; then spectra with different τ
are matched using a weighted average [21]. The diago-
nal dashed line indicates exact 1/f noise. The single sys-
tem with N = 24 shows 1/f -like behavior over at least
4 orders of magnitude in f , but the frequency range
decreases with decreasing N . Open triangles show the
lowest-frequency mode of each system, given by the sin-
gle fully-aligned state divided by the total number of all
states, f0 ∝ 1/Ω0 = [(1/2N)!]2/N !, which includes Ω0 − 1
bath states. Without explicit bath states, the symbols near
the bottom of Figure 3 exhibit white noise over at least 8
orders of magnitude in f , with no 1/f regime.

Figure 4 presents a useful way to focus on the 1/f -
like behavior, where S(f) is multiplied by frequency so
that 1/f noise becomes horizontal. Indeed, the horizontal
dashed line is the same equation as the diagonal dashed
line in Figure 3 showing 1/f noise. The solid lines show-
ing 1/f -like behavior over 4 and 2 orders of magnitude
in frequency come from the matrix model with N = 24
and N = 16, respectively. Triangles mark the lowest-
frequency modes from the fully-aligned states f0 ∝ 1/Ω0

Fig. 4. Log-log plot of noise power spectral density multiplied
by frequency. The dashed line (from the same equation as the
dashed line in Fig. 3) shows exact 1/f noise. Solid lines, from
the N = 24 and 16 matrices M with explicit bath states, show
a 1/f -like regime with distinct oscillations. Triangles mark the
lowest frequency for transitions out of the fully-aligned state:
f0 ∝ 1/Ω0 = [(1/2N)!]2/N !. Diamonds mark progressively
higher frequencies expected for the less-aligned states of the
N = 24 system. The dotted line comes from the response of one
N = 24 matrix added to ten times the N =16 matrix, with the
amplitude offset for clarity. Symbols are from measurements of
voltage noise across a submicron tunnel junction [16], with the
amplitude and frequency offset for clarity.

(as in Fig. 3). Diamonds mark the expected higher-
frequency modes from progressively less-aligned states of
the N = 24 matrix: f1 = f0N , f2 = f0N(N − 1)/2,
f3 = f0N(N − 1)(N − 2)/6, etc.

We compare the matrix model to measurements of
voltage noise from a submicron metal-insulating-metal
(MIM) tunnel junction [16]. In general, 1/f noise in tun-
nel junctions is attributed to two-level systems (TLS) with
exponentially-broad time scales [26]. Specific mechanisms
that have been proposed for these TLS include: disordered
atomic positions, charge traps, electrons with random spin
orientations [36], and diffusion of independent spins [37].
The Ising model is useful for treating such binary degrees
of freedom because it maps directly to several scenar-
ios, including binary alloys having random atomic posi-
tions, lattice gases with random particle traps, and sim-
plified electron spins. A common challenge is to explain
the exponentially broad distribution of relaxation times
for 1/f noise, often attributed to a broad range of local
environments or interaction strengths. The matrix model,
which comes from the degenerate Ising model for non-
interacting TLS, achieves 1/f -like noise by including bath
states that ensure thermodynamically-reversible equilib-
rium fluctuations.

The symbols in Figure 4 are from measurements of
voltage noise across a MIM tunnel junction measured at
constant currents of (A) 65 and (B) 105 μA. This junc-
tion is small enough (0.3 μm on both sides) that deviations
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from pure 1/f noise can be seen. The dominant features
are three distinct maxima. We chose to compare the ma-
trix model to these measurements because they cover
more than four orders of magnitude in frequency, and
were the first to show finite-size effects in 1/f noise. Al-
though qualitatively similar to the oscillations in the simu-
lations, a quantitative analysis yields unrealistic values for
the frequencies, as follows. From the published measure-
ments we find characteristic frequencies of fA0 = 7.2 Hz,
fA1 = 585 Hz, fA2 = 9.52 kHz and fB0 = 10.1 Hz,
fB1 = 865 Hz, fB2 = 12.9 kHz. Averaging the ratio of
the lowest two frequencies yields f1/f0 = 84 ± 2, imply-
ing that the MIM junction would need N ≈ 84 binary
degrees of freedom if these peaks were to come from the
two lowest frequencies of a single matrix. This N yields
f0 ∼ [(1/2N)!]2/N ! ∼ 1.68 × 10−24, which would require
that the microscopic dynamics be an unphysical 24 orders
of magnitude faster than the measured f0. More likely
the distinct maxima come from independent subsystems
inside the sample, supporting the original interpretation
of the measurements. The dotted line in Figure 4 comes
from the sum of responses from one N = 24 matrix plus
ten times the N = 16 matrix. The sizes and weights of
these simulations are chosen to give qualitative similar-
ity between the model and experimental data, including
the net slope when plotted as in Figure 4 showing devia-
tions from pure 1/f noise. Quantitative values can be ob-
tained by assuming microscopic dynamics at a frequency
of fmax ∼ 1010 Hz. Then, using f0 = fmax/Ω0 for the char-
acteristic frequency, the published data yield N ∼ 33, 26,
and 22 for the effective number of binary degrees of free-
dom causing the three measured peaks. The matrix model
is too simplistic to reproduce all details in these spectra,
but the similarity indicates that it is possible to capture
the general features in such 1/f -like noise measurements
by combining binary degrees of freedom with explicit bath
states.

We have shown that a simple system with explicit bath
states fluctuates differently than the isolated system, and
also differently from the system coupled to an infinite
reservoir. Without explicit bath states the fluctuations
yield well-known white noise. With explicit bath states the
fluctuations yield 1/f -like noise, which is measured uni-
versally at lower frequencies, signifying the final approach
to thermal equilibrium. Having explicit bath states also
maintains maximum entropy. Thus, at least if the fluctu-
ations are slow enough, the 2nd law of thermodynamics
may be a fundamental physical law, not just a statistical
rule-of-thumb. Additional tests of the matrix model will
come from measuring systems with small enough baths
that they exhibit the return to white noise at ultra-low
frequencies, as shown in Figure 3. From Stirling’s approx-
imation of the multiplicities, the model predicts that the
minimum frequency for 1/f -like noise should decrease ex-
ponentially with increasing number of degrees of freedom.
At these ultra-low frequencies, the system has time to ex-
plore all states of the system and its bath, thereby achiev-
ing the true thermal equilibrium. Because it is usually
difficult to calculate all contributions to entropy exactly,

the matrix model provides a simplistic way to simulate
how strict adherence to the 2nd law of thermodynamics
yields a basic mechanism for 1/f -like noise.
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A.2 Remarks

This model was useful for understanding the role of finite entropy baths in that
it involves no interactions or internal energy, meaning the dynamics is determined
entirely by the system’s entropy. This allows the effects of multiplicity-dependent
characteristic times to be studied entirely on their own. The simplicity of the model
allowed the stochastic matrix to be written explicitly and from this the transition
frequencies to be calculated exactly.

All of these properties proved useful for comparison purposes when applying the
same concepts to the constrained Heisenberg model, which does involves interactions,
exchanges energy with an infinite reservoir through the application of Boltzmann’s
factor, and involves continuous degrees of freedom
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B.1 Introduction

Much of the work presented in § 3 was published under the title “1/f noise from a
finite entropy bath: comparison with flux noise in SQUIDs” in Journal of Statistical
Mechanics: Theory and Experiment. The complete citation is listed under reference
[38]. This work was completed in collaboration, in the order listed in the original
publication, by Bryce F. Davis (myself) and Ralph V. Chamberlin. The coauthor
(Ralph Chamberlin) has granted his permission to have this work included in this
dissertation.

Simulations, the creation of figures, writing of code, and writing of the article
were primarily done by myself. Algorithms for simulating the model, most notably
the form of the dynamic constraint, were developed by Ralph Chamberlin and myself.
Physical interpretation of the results was done by Ralph Chamberlin and myself.

The original publication is included below.
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Abstract.  The primary low-frequency noise in superconducting quantum 
interference devices (SQUIDs) at low temperature is flux noise with a power 
spectral density of the form S( f) ∝ 1/fα with α ≈ 1. Experiments show 
this noise is due to independent clusters of interacting spins at the metal-
insulator interface of the Josephson junction. The temperature dependences 
of the amplitude and the spectral exponent α are such that the noise spectra 
S( f) of devices taken at dierent temperatures cross each other at a common 
crossing frequency fc, so that S(fc) is constant over a wide range of temperatures. 
Presented here are Monte Carlo simulations of a Heisenberg spin model 
modified with a type of dynamic constraint that depends on the configurational 
entropy of clusters of spins. The constraint arises from assuming that coupling 
between clusters of spins and the thermal reservoir is mediated by a local bath. 
Noise in the alignment of this model shows similarities to the temperature-
dependent flux noise of SQUIDs, reproducing the relationship between α and 
the amplitude that leads to the existence of a crossing frequency fc of spectra 
at dierent temperatures.

Keywords: noise models, fluctuation phenomena, mesoscopic systems, slow 
relaxation, glassy dynamics, aging

B F Davis and R V Chamberlin

1/f noise from a finite entropy bath: comparison with flux noise in SQUIDs

Printed in the UK

103206

JSMTC6

© 2018 IOP Publishing Ltd and SISSA Medialab srl

2018

2018

J. Stat. Mech.

JSTAT

1742-5468

10.1088/1742-5468/aae2df

PAPER: Classical statistical mechanics, equilibrium and non-equilibrium

10

Journal of Statistical Mechanics: Theory and Experiment

© 2018 IOP Publishing Ltd and SISSA Medialab srl

ournal of Statistical Mechanics:J Theory and Experiment

IOP

1742-5468/18/103206+17$33.00

146



1/f noise from a finite entropy bath: comparison with flux noise in SQUIDs

2https://doi.org/10.1088/1742-5468/aae2df

J. S
tat. M

ech. (2018) 103206
Contents

1. Introduction	 2

1.1.  Flux noise in SQUIDs.......................................................................................3

1.2.  Model and nonlinear constraint........................................................................4

2. Simulations and results	 10

3. Conclusions	 15

References	 16

1.  Introduction

Standard statistical mechanics in the canonical ensemble assumes systems are ideally 
coupled to an eectively infinite heat reservoir. Specifically, the reservoir is taken to 
be large enough and the coupling fast enough that the local thermal environment of 
the system is unaltered by the state of the system. However, when the length and time 
scales of events are small enough, or when a system is not ideally connected to a larger 
thermal environment, as may be the case when the system is at low temperatures, these 
assumptions break down. An immediate example in classical systems is the limitation 
imposed by the speed of sound. At the mesoscopic scale, evidence of imperfect coupling 
to the thermal environment is found in the observation of dynamically independent, 
nanometer-sized regions. Spatial heterogeneity of this type has been inferred from the 
stretched exponential primary response of materials as well as directly observed using 
techniques such as nuclear magnetic resonance, non-resonant spectral hole burning, 
and neutron scattering [1–3]. Theoretical strategies to address these questions include 
rigorous modifications of thermodynamics, stochastic equations of motion for systems 
that alter their own environment and possess a memory, and the marriage of these two 
in form of stochastic thermodynamics [4–7].

Here, we consider a simple modification to Monte Carlo simulations by way of a 
nonlinear constraint that recreates the dynamic heterogeneity seen in many physical 
systems. The constraint originates from assuming that the system, in addition to being 
coupled to the larger thermal reservoir, is in contact with a finite, local bath. On the 
time scale of microscopic events, the combined entropy of the system and its local 
bath is maintained at a maximum. The addition of this constraint is found to produce 
1/f-type noise, ubiquitous in nature, in systems that otherwise exhibit white noise. 
Simulations of various models using a similar constraint have been reported in previous 
publications [8–12]. Here, we constrain the classical Heisenberg spin model, with and 
without dipolar anisotropy, and focus on 1/f noise in the net alignment. The results of 
simulations are compared to a long-standing problem: the origin of low-frequency 1/f 
flux noise found in superconducting quantum interference devices (SQUIDs). The model 
is also compared to models of spin glasses with disordered Hamiltonians, previously 
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used for explaining 1/f flux noise in SQUIDs, which produce slow dynamics and hetero-
geneity in a notably dierent fashion.

1.1. Flux noise in SQUIDs

Low frequency noise with a power spectral density (PSD) of the form S( f) ∝ 1/fα with 
α ≈ 1 (referred to as 1/f noise) is found virtually everywhere in nature. First observed 
in the current through resistors [13], it has since been found in most types of materials 
and devices. 1/f noise often limits the performance of traditional electronic systems as 
well as that of more modern devices. Specifically, 1/f noise has been known for some 
time to be the dominant form of noise at low temperature in SQUIDs [14–16], and 
more recently has been found to be the primary cause of decoherence in flux [17, 18] 
and phase [19] qubits. In a testament to its ubiquity, there are at least two sources of 
1/f noise in a Josephson junction (the essential component of all SQUIDs and many 
qubits). One source of noise is in the critical current, caused by the capture and release 
of electrons at sites in the tunnel barrier between superconductors, with a static density 
of release times τ that varies as 1/τ [20, 21]. Models such as these, based on a distribu-
tion of relaxation times, are probably the most widely-known and frequently-invoked 
explanation for 1/f noise [22]. However, since the amplitude of this critical current 
noise decreases linearly with temperature [23], device performance at low temper
atures is instead limited by 1/f flux noise. In the more than 30 years since its discovery 
[14–16] a satisfactory explanation of 1/f flux noise in Josephson junctions has yet to 
be provided. Interest in the problem has been strengthened in recent years since flux 
noise is the primary cause of dephasing in qubits [17–19], limiting their viability as the 
components of quantum computers [24].

Most models for flux noise are based upon unpaired spins at the metal-insulator 
interface of the SQUID. An early such model [16], based on non-interacting spins, pre-
dicted an areal density of spins of 5 × 1017 m−2, and this value comports with direct 
measurements of paramagnetism at the superconductor surface [25]. However, further 
measurements indicate that spin-spin interactions are significant, causing the spins 
to form clusters. These measurements also show evidence of time-reversal symmetry 
breaking, indicating that interactions are ferromagnetic [26]. Comprehensive flux noise 
measurements have been reported of 10 dierent dc SQUIDs by Anton et al [27] and 84 
dierent SQUIDs and SQUID arrays by Kempf et al [28]. These measurements show a 
dependence upon temperature of both the flux noise amplitude and spectral exponent 
α, as well as a relationship between the two that leads to the spectra of individual 
devices at dierent temperatures coinciding at a crossing frequency fc. This spectral 
pivoting can be expressed by the relationship

SΦ( f) = SΦ( fc) × ( fc/f)
α.� (1)

Where SΦ denotes the power spectral density of flux noise. Since α is found to increase 
with decreasing temperature, this functional form of the power spectral density means 
that with decreasing temperature, the noise power decreases for f  >  fc, and increases 
for f  <  fc.

Contenders for the microscopic physical origin of the surface spins include nuclear 
or electron spins, or a combination of the two [29]; adsorbed oxygen molecules [30, 
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31]; electrons in localized gap states at the metal/insulator interface [32]; and para-
magnetic dangling bonds coupled to two-level tunneling systems at the amorphous-
semiconductor/oxide interface [33]. Mechanisms of spin interactions that have been 
considered include the Ruderman–Kittel–Kasuya–Yoshida (RKKY) interaction [34], 
anisotropic dipole–dipole interactions [35], or hyperfine interactions [36]. Various spin 
glass models, including disordered Heisenberg [35, 37] and Ising [38, 39] models, have 
been employed to test these mechanisms. Spin glass models with a distribution of fer-
romagnetic and antiferromagnetic interactions may be incompatible with observations 
of time-reversal symmetry breaking [26, 38], but disordered models with preferentially 
ferromagnetic interactions, more compatible with observations of time-reversal sym-
metry breaking, have also been explored [30, 39]. Furthermore, models previous to the 
report of Anton et al [27] do not account for the observed spectral pivoting. A subse-
quent modification of a spin diusion model involving the RKKY interaction has since 
been presented which yields a temperature dependent diusion coecient and a band 
of crossing frequencies [40].

Slow dynamics and 1/f noise in these spin glass models are attributed to static 
disorder in the form of non-uniform interaction strengths. While the distribution of 
interaction strengths is indeed constant, what does change with time is the subsequent 
distribution of relaxation times, either by exploring configurations with a distribu-
tion of separations in the space of states, as in models based on hierarchical kinetics, 
or by changing spatial correlations, as in the droplet scaling picture [41]. Here, how-
ever, we describe a Heisenberg model for spins with uniform interactions on an ideal 
square lattice, but with the relaxation time of spins in a cluster dependent upon the 
net alignment of the cluster. The Hamiltonian in this model remains homogeneous and 
the heterogeneity comes instead from the distribution of net alignments of clusters, 
yielding a time-dependent distribution of relaxation times so that the hetergeneity is 
dynamic. Dependence of the relaxation time upon the system state has been employed 
to describe slow dynamics in models of plastic flow and aging [7, 42, 43]. Noise spectra 
of the net alignment of this model will be compared with 1/f flux noise observed in 
SQUIDs, specifically the observed spectral pivoting, equation (1) [27, 28]. Our model 
will also be compared to spin glass models for 1/f flux noise in SQUIDs.

1.2. Model and nonlinear constraint

There is direct evidence that 1/f flux noise in SQUIDs is the result of unpaired, inter-
acting spins which form into clusters [25, 26]. The common interpretation of 1/f noise 
as arising from a 1/τ distribution of relaxation times suggests that the relaxation times 
of these clusters is distributed in just such a way. The spectral pivoting, equation (1), 
observed by Anton et al [27] and Kempf et al [28] further suggests that, as the temper
ature is decreased, this distribution increases for frequencies below fc and decreases for 
frequencies above fc. One explanation is that the relaxation time of a cluster increases as 
the cluster grows, so that the change in the distribution of relaxation times is due to an 
increase in the average size of clusters and a reduction of the number of smaller clusters 
with decreasing temperature, as in the droplet picture of a spin glass [41]. In this paper, 
however, we explore the possibility that the relaxation time of a cluster is connected 
to its net alignment through its local configurational entropy. To test this picture, we 
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performed computer simulations of the standard Heisenberg spin model with dynamics 
modified by a constraint due to the configurational entropy of clusters. Clusters are 
obtained by explicitly subdividing the entire lattice into local regions. To demonstrate 
that a distribution of cluster sizes is not needed in our model to produce the necessary 
distribution of relaxation times, all clusters are given the same fixed size. In our case, 
the dynamics of each spin is constrained according to the configurational entropy of 
all spins within the cluster that contains that spin. Our model has the advantage that 
neither a specific distribution of cluster sizes nor an explicit temperature dependence 
are needed to obtain the distribution of relaxation times that produces 1/f noise.

Various mechanisms for similar nonlinear constraints have been considered else-
where for the Ising model [8–12]. Here, for the Heisenberg model, we attribute the 
constraint to the additional heat transfer required to change the local configurational 
entropy within a cluster of spins. This heat, arising purely from a change in entropy, is 
distinct from the fluctuations in internal energy due to spin-spin interactions accounted 
for by the Boltzmann factor. Well-known examples of heat/work with a purely entropic 
origin include the work required to stretch an ideal, freely-jointed chain [44], and the 
cooling aorded by adiabatic demagnetization [45, 46]. The constraint suppresses spin-
flips in highly aligned clusters, creating a distribution of relaxation times that evolve 
with the cluster’s configuration, yielding 1/f noise. The constraint also suppresses high-
frequency single spin-flips while enhancing low-frequency reorientations of whole clus-
ters, which yields spectral pivoting, equation (1).

We start with a classical Heisenberg spin model with and without dipolar aniso
tropy. While many candidates for the physical identity of the unpaired surface spins 
are electrons with spin 1/2, such as dangling bonds [33] and localized gap states [32], 
there are also explanations better modeled by classical spins, e.g. adsorbed molecular 
oxygen [30, 31]. Density functional theory calculations of adsorbed O2 have shown that 
the molecule retains a large magnetic moment while adsorbed on the surface, which 
is able to rotate freely about the O–O bond [30], providing physical justification for 
the use of classical, anisotropic spins. We use a two-dimensional square lattice with 
periodic boundary conditions and a total number of spins N = 24 × 24 or 48 × 48. The 
Hamiltonian is:

H = −J
∑

〈ij〉
si · sj − D

∑

i

(szi )
2.

� (2)

The spin vectors si are of magnitude 1, and the first sum is taken over all nearest-
neighbor pairs 〈ij〉. The exchange constant J is set to 1 for results presented here, 
and this ferromagnetic coupling is consistent with observations of time-reversal sym-
metry breaking [26]. The second term introduces anisotropy in the z-direction and 
the strength D is set to 0J, 2J, or 4J. As will be seen, without anisotropy (D  =  0), our 
dynamically constrained Heisenberg model produces noise spectra with α > 1.4 at low 
temperatures, exceeding a limit on α seen in some systems, including the flux noise in 
SQUIDs [27, 28]. On the other hand, an investigation [11] of the Ising model with a 
dynamic constraint similar to that used here (detailed below, see equation (4)) found 
that the discrete, two-state Ising model obeys this limit and produces noise spectra 
S( f) ∝ 1/fα with α < 1.4 even at the lowest temperatures. Thus, inclusion of the 
second term in equation (2) is meant to bridge the gap between the discrete, two-state 
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Ising model and the fully isotropic Heisenberg model, and allows α to assume the range 
of values 0.35 � α � 1.40 observed in the flux noise in SQUIDs [27, 28].

The model is simulated using a Metropolis algorithm with Boltzmann’s factor:

e−∆E/kBT > [0, 1).� (3)

Where kB denotes Boltzmann’s constant, T the temperature, and [0, 1) is a random 
number uniformly distributed between zero and one. ∆E  is the change in energy from 
an attempted spin flip, in which a single spin is given a new orientation chosen from 
an isotropic distribution.

The novel feature in our model is to subdivide the lattice into Nc = 6 × 6 = 36 spin 
clusters and subject spin flips within each cluster to the additional constraint:

eg(Sc−Smax
c )/kB =

[
Ω(0)

Ω(Mc)

]g

> [0, 1).� (4)

Here Sc denotes the configurational entropy of the cluster, Mc is the cluster’s net 
alignment, Ω(Mc) is the multiplicity of a cluster with alignment Mc, and g is a 
parameter used to control the strength of the constraint. For a cluster of Nc classi-
cal Heisenberg spins of length 1, with net alignment Mc, the configurational entropy 
is (Sc − Smax

c )/kB ≈ −3M2
c /2Nc (for Mc � Nc) [47]. So, for our model, the constraint, 

equation (4), becomes

e−g×(3M2
c /2Nc) > [0, 1).� (5)

To better understand how this constraint modifies the dynamics of our model, it is 
useful to consider the high temperature limit, kBT → ∞, with g  =  1. In this limit, all 
spin flips are accepted according to the criterion set by Boltzmann’s factor, equation (3). 
Therefore, spin-spin interactions may be ignored and the dynamics are determined 
entirely by the nonlinear constraint, equation (4). Specifically, at infinite temperature 
and with g  =  1, the constraint causes states of the cluster with alignment Mc to persist 
for an average lifetime of τ = Ω(0)/Ω(Mc). To find the power spectrum of fluctuations 
in alignment, we note that a distribution F (τ) of fluctuations, each having a Lorentzian 
spectrum of characteristic time τ, yields a total power spectrum:

SMc( f) =

∫ ∞

0

F (τ)
4τ

1 + ω2τ 2
dτ .� (6)

With F (τ) ∝ 1/τ  in the interval τ1 < τ < τ2, the spectrum has the form SMc( f) ∝ 1/f  
in the interval 1/τ2 < f < 1/τ1. Since the total integral of the power spectrum gives 

the total variance, 
∫
S( f)df =

∫
F (τ)dτ = (δx)2 , we recognize F (τ)dτ  as the variance 

from fluctuators with characteristic times between τ and τ + dτ  [22]. As such, F (τ) 
must contain the density Ω(τ) of fluctuators with characteristic time τ as well as the 
contribution A2(τ) of a single fluctuation, so that F (τ) = A2(τ) × Ω(τ) [48]. First, Ω(τ) 
can be found from the relationship τ ∝ 1/Ω(Mc):

Ω(τ) = Ω(Mc)

∣∣∣∣
dMc

dτ

∣∣∣∣ =
1

τ

∣∣∣∣
dMc

dτ

∣∣∣∣.� (7)
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Turning to A2(τ), the average contribution to the variance from a fluctuation of size Mc 
and average lifetime τ is A2 ∼ M2

c × τ . Finally, for our constrained Heisenberg model 

τ ∝ 1/Ω(Mc) = e3M
2
c /2N so that Mc ∝

√
2N ln(τ)/3. So, the distribution of fluctuators 

with characteristic time τ is

F (τ) = M2
c

∣∣∣∣
dMc

dτ

∣∣∣∣ ∝ N3/2

√
ln(τ)

τ
.� (8)

Which, over the range of τ considered here is very nearly 1/τ. Indeed, for g  =  1, it was 
found that simulations produce exact 1/f noise in the high temperature limit, with 
α increasing with decreasing temperature. The high temperature limit of the Ising 
model, similarly constrained with g  =  1, was also found to be an exact 1/f spectrum 
[11]. Finally, a similar model employing binary spins without interactions, coupled 
to an explicit local bath in lieu of a nonlinear constraint (equation (4) also produced 
fluctuations in alignment with an exact 1/f spectrum [49]. These considerations indi-
cate that the alignment fluctuates with an exact 1/f spectrum when the average life-
time of states τ(Mc) ∝ 1/Ω(Mc). For g  =  1 this occurs at infinite temperature, when 
spin-spin interactions can be neglected and the dynamics are controlled by the nonlin-
ear constraint alone.

In deriving equations (5) and (8), the approximation (Sc − Smax
c )/kB ≈ −3M2

c /2Nc 
was used under the condition that Mc � Nc. However, for small Nc this condition 
may not hold. This is seen in figure 1, which shows spectral densities of fluctuations 
in the z-component of net alignment from simulations with g  =  1, D  =  0, kBT/J → ∞, 
and Nc  =  4 (blue), 9 (green), 16 (red), and 36 (black) spins per cluster. As predicted 
by equation (8), for cluster size Nc  =  36 the spectrum is very nearly 1/f (indicated by 
the black dashed line). However, for smaller Nc, spectra deviate significantly from 1/f 
and the range over which 1/f type noise is observed shrinks progressively. This clus-
ter size dependence is due to the breakdown of the condition Mc � Nc. Furthermore, 
the rollover to white noise is made more gradual by the breakdown of this condition. 
The reason for this is that the lowest frequency f0 at which 1/f type noise will be 
observed corresponds to the inverse time it takes to flip a spin in a fully aligned cluster 
f0 ∼ 1/τ(Mc = Nc) ∼ e−3gNc/2, and the condition Mc � Nc of course breaks down before 
this point is reached. This is also seen in figure 1, where f0 for Nc  =  4 and 9 is marked by 
the diamond symbols. As is apparent from the Nc  =  9 spectrum, the rollover to white 
noise begins before reaching f0. For the similarly constrained Ising model [11] and the 
model of non-interacting spins with an explicit bath [49], the exact entropies are used 
in equation (4). As a consequence, this anomalous size dependence is not observed. For 
the Heisenberg model presenented here, the exact entropy is found by integrating the 
inverse Langevin function and the next largest term in the expansion is O(M4) [47].

Having discussed the consequences of the constraint on the dynamics of our sys-
tem, we now turn to its physical interpretation. The constraint allows us to relax two 
assumptions of Boltzmann’s factor: (1) that the system is coupled to an eectively 
infinite thermal reservoir and (2) that the coupling is immediate; as a result, the ther-
mal reservoir is unaltered by changes undergone by the system and does not depend 
upon the system state. At small enough length and time scales and in systems which 
are imperfectly coupled to the larger thermal environment, as is possible at low temper
atures, these assumptions may not hold. Instead, during fluctuations, the heat provided 

152



1/f noise from a finite entropy bath: comparison with flux noise in SQUIDs

8https://doi.org/10.1088/1742-5468/aae2df

J. S
tat. M

ech. (2018) 103206

and/or dissipated by the bath to change the configurational entropy of the system 
must be mediated by the local environment. To recreate this imperfect coupling in our 
model, clusters of spins are taken to be coupled to their own finite, local entropy bath; 
the system  +  bath is then coupled to the larger thermal environment. On the time scale 
of single spin flips, entropy of the cluster plus its local bath is assumed to be maxi-
mized. In order to maintain maximum entropy, as the entropy of the cluster goes down, 
the entropy of its local bath must go up. As a result, when the cluster fluctuates into 
a low entropy state, changes in the state of the cluster are suppressed as newly avail-
able local bath states are explored and the local bath instead exchanges entropy with 
the larger thermal environment. This situation is illustrated in figure 2, where a con-
stant amount of phase space is shared between a system and its local bath. Neglecting 
interactions (or letting T → ∞) and setting g  =  1, the shared phase space in this model 
truly becomes constant (that is, it is unchanged by interactions with the larger thermal 
environment). This is seen by considering that the constraint causes states to persist 
for an average lifetime of τ(Mc) = Ω(0)/Ω(Mc). So, the probability of finding a cluster 
with alignment Mc is constant and independent of Mc: p(Mc) ∝ Ω(Mc) × τ(Mc) = Ω(0) 
So, the time spent exploring states of the bath exactly balances the density of states in 
the system, as illustrated in figure 2.

So, the constraint causes the cluster to prefer low entropy states (thus slowing trans-
tions) while the local bath is in a correspondingly high entropy state. In this way the 
constraint is analogous to Boltzmann’s factor. In one method to derive Boltzmann’s 
factor, the probability of a fluctuation of a local region is considered, p ∼ e∆S∗/kB, where 
∆S∗ is the change in entropy of the bath. This probability is combined with the funda-
mental equation of thermodynamics for a system in contact with a bath at temperature 

Figure 1.  Spectral densities of fluctuations in the z-component of net alignment 
from simulations with g  =  1, D  =  0, kBT/J → ∞, and Nc  =  4 (blue), 9 (green), 16 
(red), and 36 (black) spins per cluster. In this high temperature limit, with g  =  1 
and Nc  =  36, fluctuations approach an exact 1/f spectrum (indicated by the black 
dashed line). For smaller Nc, the assumption that Mc � Nc no longer holds, so 
that the approximation (Sc − Smax

c )/kB ≈ −3M2
c /2Nc used in equations (5) and (8) 

is no longer justified. Diamond symbols mark frequencies f0 = e−3gNc/2 for Nc  =  4 
(blue) and 9 green, roughly approximating where spectra are expected to roll over 
to white noise. Since these frequencies correspond to fully aligned clusters, the 
assumption Mc � Nc does not hold and the rollover to white noise is gradual.
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T, ∆S∗ = ∆E∗/T . Conservation of energy is used to replace the change in the bath 
energy with the change in the system energy, ∆E∗ = −∆E. This yields Boltzmann’s 
factor, equation (3), which determines the probability of changes in the internal energy. 
Boltzmann’s factor states that the probability of a transition which lowers the system’s 
internal energy is determined by the preference for the entropy of the bath to increase. 
The similarity between Boltzmann’s factor and the nonlinear constraint is that the 
constraint favors low entropy states of the system due to a preference to raise the 
entropy of the local bath. The dierence is that, in the case of our nonlinear constraint, 
transitions push the local bath out of equilibrium, whereas in Boltzmann’s factor the 
bath returns to its original state after each transition. This dierence manifests itself 
in the form of each constraint in two dierent ways.

One dierence is that while Boltzmann’s factor depends entirely upon the presence 
of internal energy due to spin-spin interactions, the nonlinear constraint depends solely 
upon the configurational entropy of the system, regardless of whether spin-spin interac-
tions are present. However, fluctuations in the configurational entropy may still entail 
heat transfers. Heat/work exchange due to changes in the configurational entropy of a 
system, without a change in the system’s internal energy, are seen in the work applied 
to stretch a freely-jointed chain against its entropic force [44] and the cooling caused by 
adiabatic demagnetization [45, 46]. Considering changes in configurational entropy of a 
cluster to be accompanied by heat exchanges with its local bath allows us to view the 
constraint in another way: as the cluster fluctuates into a low entropy state, the local 
bath is heated and spin flips are suppressed as the local bath equilibrates and exchanges 
heat with the larger thermal environment. With perfect coupling to an infinite bath, 
this equilibration occurs on a time scale much faster than that of changes in the state of 
the system, and the state of the system no appreciable impact on the thermal environ
ment that the system sees and therefore no impact on the rate at which changes in the 
system’s configuration are attempted. These considerations make apparent a second 
dierence between Boltzmann’s factor and our nonlinear constraint: a change in entropy 
appears in Boltzmann’s factor, whereas an oset in entropy appears in our nonlinear 
constraint. Without time to equilibrate with the larger thermal environment, the state 
of the bath is determined by the oset in the entropy of the cluster. Considering the 

Figure 2.  Illustration of a constant amount of phase space (pink) shared 
between a system (red) and its local bath (blue). When a cluster of spins 
is in a highly aligned, low-entropy state, spin-flips are suppressed by an 

amount proportional to the cluster’s relative share of the total phase space, 

Ωsystem/(Ωsystem + Ωlocal bath) = eg(Sc−Smax
c )/kB ∼ e−g(3M2

c /2Nc). Instead, transitions occur  
in the local bath’s internal degrees of freedom, without altering the state of the 
system.
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oset in the cluster’s entropy to be an accumulation of changes in entropy, it might be 
said that the local bath has a memory.

Generally, the nonlinear constraint causes low entropy states to persist by a factor 
of ∼ eg(3M

2
c /2Nc) longer than without the constraint. Specifically, the eect of this con-

straint is to reduce the frequency of spin flips in more highly aligned clusters, eectively 
slowing their dynamics and leading to clusters with dierent relaxation times that 
evolve in time with the alignments of the clusters, even in an ostensibly uniform sys-
tem. This can lead to 1/f noise in two ways: first, the distribution of cluster alignments 
results in a distribution of relaxation times, which leads to 1/f noise, as in models 
based on a fixed 1/τ distribution of relaxation times [22]; second, the relaxation time 
of an individual cluster evolves in time with the cluster alignment so that the charac-
teristic time is distributed in time, as in e.g. models based on power-law intermittency  
[50, 51]. These two eects are not mutually exclusive and both are expected to con-
tribute to the observed spectrum of the entire sample. Note that no distribution of 
relaxation times among clusters and no time dependence of relaxation time for indi-
vidual clusters are explicitly imposed. Instead, clusters naturally distribute themselves 
in such a way as to produce 1/f noise.

In this paper, we will compare the noise in the z-component of the net alignment of 
this model to SQUID flux noise. Specifically, the model produces spectra that, in the 
low-frequency regime, pivot about a common crossing frequency for dierent temper
atures, similar to observations made by Anton et al [27] and Kempf et al [28].

2. Simulations and results

Monte Carlo simulations of the Heisenberg model presented here were performed using 
algorithms that were developed by the authors. The simulations are first initialized 
by setting all spin vectors to the positive z-direction and running for 106 Monte Carlo 
sweeps (MCS) without the additional nonlinear constraint and without anisotropy. The 
constraint and anisotropy (if applicable) are then applied and simulations are run for 
an additional 217 × 103 MCS. Simulations are then run for tm = 217 × 103 MCS for data 
collection. Over the course of data collection, four time series, each of length 217 data, 
are recorded of the time-averaged z-component of the alignment Mz(t), for averaging 
times of 100 to 103 MCS. From the time series of each averaging time, the spectral 

density of fluctuations is calculated SMz( f) =
1
N

| ∑N−1
t=0 Mz(t)e

2πift/tm |2. Spectra from 

five dierent simulations are averaged together. These averaged spectra are smoothed 
by dividing them into octaves and taking a linear least-squares fit to all data in that 
octave; the value of the spectral density is taken to be the value of this fit at the center 
frequency of each octave. Finally, the spectra for dierent averaging times are merged 
together. Since the spectra from each averaging time extend over  ≈5 decades, but are 
separated by only a decade, there is significant overlap of spectra from dierent aver-
aging times. These are merged using an average that is weighted more heavily at the 
center of each spectrum, where there is less noise in the spectrum. This overlap is also 
used to check for equilibration and stationarity by comparing the integrated spectra of 
each averaging time in the overlapping frequency range.
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Using a value of g  =  1 in the nonlinear constraint at kBT → ∞ produces an exact 

1/f spectrum (α = 1), while for finite temperatures α > 1. Therefore, to reproduce the 
range 0.35 � α � 1.40 from spectra of SQUID flux noise, a value of g  <  1 must be used. 
For the results presented in this section, a value of g  =  2/3 was used. Figure 3(a) shows 
spectral densities from simulations with no anisotropy, D  =  0. The spectral exponent α 
is frequency dependent, consisting of a tail at high frequency with an α ≈ 1.8, which is 
weakly dependent on temperature, crossing over to a much more strongly temperature-
dependent low-frequency range. The high-frequency tail is on a short enough time scale 
that single spin flips determine the shape of the spectrum and our Monte Carlo simula-
tions are not expected to realistically simulate dynamics, which cannot be considered 
stochastic on short enough time scales. For instance, the highest measurable frequency 
and the frequency of single spin flips are both on the order of 1 MCS−1 in our simula-
tions. In experiments, this high frequency noise is invariably masked by another source 
of noise with a constant frequency dependence, α = 0 (white noise) [27, 52, 53].

In the low-frequency range, α varies from  ≈1.6 (≈1.3 for anisotropic simulations, as 
discussed below) at the lowest temperatures to  ≈0.4 at the highest temperatures, encom-
passing the range of values of α observed in SQUID flux noise as well as qualitatively 
reproducing its temperature dependence [16, 27, 28, 52, 53]. Least squares fits of the 
low-frequency portion (centered around f  =  10−6 MCS−1) of the spectra to the function 
SMz ,fit( f) = SMz ,0 × ( f/10−6 MCS−1)−α were performed, where SMz ,0 = SMz ,fit( f = 10−6 
MCS−1) was chosen for clarity of presentation. The fits are presented in figure 3(b). 
For all fits the coecient of determination was found to be R2  >  0.9. The increase in 
alpha with decreasing temperature is clear here. Also clear is that the higher temper
ature spectra pivot about a common crossing frequency, fc = 5.36(+1.32/−1.06) × 10−3 
MCS−1, similar to observations by Anton et al [27] and Kempf et al [28]. The cross-
ing frequency (indicated by the dashed lines in figures  3(a) and (b)) and its uncer-
tainty were calculated by taking the geometric mean and geometric standard deviation, 
respectively, of the crossing frequencies of all pairs of fits. Excluded from this calcul
ation are the 6 lowest temperature spectra pictured. These low temperature spectra, 
for which α � 1, begin to drop in amplitude, no longer passing through the crossing 
frequency shared by spectra with α � 1. This can be seen in the raw spectra and fits of 
figures 3(a) and (b), but is more clearly displayed in the inset of figure 3(b), where the 
value of the fit to the spectral density at the crossing frequency, SMz ,fit( fc), is plotted 
against α. The reason for this drop in amplitude is a dynamical freezing on the time 
scale of the simulation and will be discussed in more detail below.

Comparing the fits in figure 3(b) and the raw spectra in figure 3(a), the crossing in 
the raw spectra is obscured by the proximity of the crossing frequency to the frequency 
where all spectra change from the strongly temperature dependent low-frequency 
regime to the high-frequency tail. This gives the appearance that, rather than crossing 
each other, spectra converge in the high-frequency regime with approximately the same 
α and SMz ,0. This suggests that the high-frequency (f  >  fc) behavior, dominated by fast, 
single spin flips, remains relatively constant except at low temperatures, where α � 1 
and spin flips are strongly suppressed. Again, at these high frequencies, our Monte 
Carlo simulations are not expected to realistically simulate dynamics. Furthermore, 
in experiments, the high frequency behavior is always masked by some other source 
of white noise [27, 28, 52, 53]. The presence of white noise at high frequencies in 
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ence of a crossing frequency, clarifies it. On the other hand, at low frequencies (f  <  fc), 
where the slow, collective changes in the alignment of clusters dominates, the eect of 
the constraint is substantial and leads to the relationship between α and SMz ,0 that 
produces a crossing frequency.

In figure 4(a), α is shown as a function of kT/J for dierent strengths of anisotropy 
D = 0, 2J , 4J . In figure 4(b) are the corresponding amplitudes of the spectral density 
SMz ,0. The relationship between α and SMz ,0 for α � 1 is clear from the similarity of the 
curves in these two figures. In the inset of figure 4(a), α and SMz ,0 are plotted against 
each other. It can be seen here that, while they have dierent temperature dependen-
cies, α and SMz ,0 have approximately the same relationship for dierent strengths of 
anisotropy D, tying the relationship to the constraint. Similarly, experiments show 
that while α and SMz ,0 of dierent SQUIDs may have quite dierent temperature 

Figure 3.  (a) Spectral densities of fluctuations in the z-component of net 
alignment. (Inset) Example of a fit (black dashed line) to the low-frequency 
portion of a spectrum (kT/J = 21.2). (b) Corresponding fits to the low-frequency 
portion (centered around f = 10−6 MCS−1) of the spectra. Simulations are 
isotropic (D  =  0) and from temperatures kT/J  =  1.4 to kT/J  =  42. The crossing 
frequency fc = 5.36(+1.32/ − 1.06) × 10−3 MCS−1 is indicated by the black 
dashed line in (a) and (b). Values of fc = 3.93(+1.16/ − 0.90) × 10−3 MCS−1 and 
fc = 6.60(+1.06/−0.91) × 10−3 MCS−1 are found for D  =  2J and 4J, respectively. 
The coecient of determination R2  >  0.9 for all fits. (Inset) The value of fits to the 
spectral density at fc as a function of the spectral exponent α. The spectral density 
remains constant up to α ≈ 1 (indicated by black dashed line).
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dependencies, the correlation between α and SMz ,0 is similar, independent of temper
ature [27, 28].

As discussed above, and as can be seen in figure 3, the correlation between α and 
SMz ,0 begins to break down at low temperatures, where α � 1. At lower temperatures, 
where α ≈ 1.3, the situation becomes even more severe and there is a peak in SMz ,0 
(figure 4(b)). Note that, since the slopes of the spectra are monotonically decreasing, 
the total noise power 〈M2

z 〉 =
∫
SMz( f)df (not shown here) has a similar peak. This 

peak in noise power is similar to experimental observations of spin glasses [41, 54] as 
well as the Ising model with [38] and without [55] disorder, where maxima in noise 
power correspond to their respective spin glass and phase transitions, as suggested by 
the fluctuation–dissipation relation, which relates the noise power to the imaginary 
part of the susceptibility. While not indicative here of either a spin glass transition or 
a ferromagnetic phase transition (the classical 2D Heisenberg model does not undergo a 
ferromagnetic phase transition for T  >  0 [56]), this peak does correspond to a dynami-
cal freezing and a divergence in the time scales of cluster reorientation. This situation 
is illustrated in figure 5 by time series of the z-component of net alignment of a single 
cluster (D  =  2J, Nc  =  36) at temperatures kBT/J = 7.8 (a), 3.4 (b), and 2.5 (c). As the 
temperature is lowered, clusters undergo Ising-like switching (kBT/J = 7.8, 3.4) with 

Figure 4.  (a) Spectral exponent α (measured about f = 10−6 MCS−1) as a function 
of temperature for isotropic (D  =  0) and anisotropic (D = 2J , 4J ) simulations. 
(b) Values of fits to the spectral density at f = 10−6 MCS−1 as a function of 
temperature. (Inset) Values of fits to the spectral density at f = 10−6 MCS−1 as a 
function of spectral exponent α (measured about f = 10−6 MCS−1). The relationship 
is independent of D.
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progressively longer switching times until the switching time is on the order of the length 
of time simulated (kBT/J = 2.5). At these temperatures, the time-averaged alignment 
is non-zero for all simulation times (tm = 217 × 103 MCS), indicating that ergodicity has 
been broken on these time scales. It is also at this temperature that, for simulations 
with anisotropy (both D  =  2J and 4J  ), α levels o at  ≈1.3. For the Ising model with 
a similar constraint, simulations similarly freeze for α ≈ 1.4 [11]. It should be pointed 
out that the SQUID data presented by Anton et al [27] shows 0.35 � α � 0.80 for single 
SQUIDs and the data presented by Kempf et al [28] shows 0.50 � α � 0.82 for single 
SQUIDs and 0.34 � α � 1.41 for SQUID arrays. The experimental data are therefore 
within the range of values of α in our model for which no freezing occurs so that the 
relationship between α and SMz ,0 holds. This suggests that at these temperatures, spins 
causing flux noise in SQUIDs may be proximal to a transition, as has been previously 
proposed [30, 39, 40].

To better understand this freezing, we note that the nonlinear constraint has the 
eect of extending the relaxation time of spins in clusters with higher net alignments. 
Therefore, as the temperature is reduced and clusters tend to fluctuate into higher align-
ments, the time scales of fluctuations begin to diverge rapidly, producing the observed 
slow dynamics and 1/f noise, and eventually the dynamical freezing and peak in noise 
power. From equation (5), we know that the constraint slows spin flips in clusters with 
net alignment Mc by a factor ∼ eg(3M

2
c /2Nc). This allows us to establish some benchmarks 

regarding the range of frequencies over which we observe 1/f noise in our simulations 

Figure 5.  Time series of length t  =  219 MCS of z-alignment of a cluster in a 
simulation with D  =  2J, Nc  =  36, g  =  2/3 and temperatures kBT/J = 7.8 (a), 3.4 
(b), and 2.5 (c). The full extent of the vertical axis is fully aligned, Mc,z  =  36. (a) At 
kBT/J = 7.8 clusters undergo Ising like switching. (b) This behavior continues for 
kBT/J = 3.4, but with more power in low frequency fluctuations (longer switching 
times τ). (c) At kBT/J , clusters no longer undergo switching for the duration of 
the simulations. At these temperatures, clusters become strongly correlated and 
ergodicity is broken for time scales investigated.
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and for how long simulations must be run in order to be ergodic. Specifically, simula-
tions are no longer ergodic when spin flips are slowed to times comparable to the simu-
lation time tm. For simulations presented here (tm = 217 × 103), this is connected to the 
cluster alignment through the constraint, equation (5): spin flips are slowed by a factor 

of tm when Mc/Nc ∼
√

2
3gNc

ln (tm) ∼ 0.72. Indeed, our simulations showed a peak in 

noise power at temperatures where clusters had net alignments Mc/Nc ≈ 0.72 and spin 
flips in such clusters were suppressed for the duration of measurement.

As another benchmark, the longest that the constraint can slow spin flips is for a 
fully aligned cluster, where spin flips are slowed by a factor ∼ e3gNc/2. This roughly 
establishes a lowest frequency f0 ∼ e−3gNc/2 for which 1/f noise can be observed in 
this model and spectra become white [22]. This is illustrated in figure 1, where noise 
spectra from simulations of systems with g  =  1 and N  =  4 (blue), 9 (green), 16 (red), 
and 36 (black) spins per cluster are presented. As expected, increasing the size of 
clusters extends the range over which 1/f type noise is observed. For Nc  =  4 and 9 
spins per cluster, the frequencies f0 = e−3gNc/2 are marked by the diamond symbols, 
showing approximately where spectra roll over to fully white noise. For the simula-
tions with Nc  =  36 and g  =  2/3 presented in this section, e3gNc/2 ∼ 4 × 1015, which is 
7 orders of magnitude longer than our longest simulation times, so that the frequency 
f0 ∼ e−3gNc/2 ∼ 2 × 10−16 MCS−1 is far outside of the measured range. Indeed, at the 
lowest measured frequency, a crossover to white noise was never observed in simula-
tions with Nc  =  36.

3. Conclusions

In summary, we have performed simulations of the classical 2D Heisenberg model with 
spin flips constrained according to the local configurational entropy of clusters contain-
ing the spins. Noise in the z-component of the net alignment of this model is of 1/f type 
over at least seven decades and qualitatively reproduces the temperature dependence of 
flux noise found in SQUIDs, including the existence of a crossing frequency. Interactions 
in the model are of uniform strength and chosen to be ferromagnetic, consistent with 
measurements indicating the breaking of time-reversal symmetry. The constraint pro-
duces 1/f noise naturally with no ad hoc distribution of time scales, cluster sizes, or 
interaction strengths. While producing 1/f noise and dynamical freezing similar to a 
spin glass, this model is fundamentally dierent in that interactions remain homoge-
neous and the heterogeneity is purely dynamic. Finally, constraints of this type are 
fungible, having been used to reproduce a number of other physical phenomena [8–12].
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B.2 Remarks

This work further developed the theory of multiplicity-dependent characteristic
times from finite entropy baths. This model was useful in applying the results of the
matrix model to more realistic systems. More realistic features include interactions
between spins, interactions between the system + local bath and an infinite thermal
reservoir, and continuous degrees of freedom.

This model may serve as a bridge between simple, discrete models of finite entropy
baths and models using microscopically realistic simulation methods (e.g. molecular
dynamics).
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