
Harnessing Teamwork in Networks:

Prediction, Optimization, and Explanation

by

Liangyue Li

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved October 2018 by the
Graduate Supervisory Committee:

Hanghang Tong, Chair
Chitta Baral

Huan Liu
Norbou Buchler

ARIZONA STATE UNIVERSITY

December 2018

ABSTRACT

Teams are increasingly indispensable to achievements in any organizations. Despite

the organizations’ substantial dependency on teams, fundamental knowledge about

the conduct of team-enabled operations is lacking, especially at the social, cognitive

and information level in relation to team performance and network dynamics. The

goal of this dissertation is to create new instruments to predict, optimize and ex-

plain teams’ performance in the context of composite networks (i.e., social-cognitive-

information networks).

Understanding the dynamic mechanisms that drive the success of high-performing

teams can provide the key insights into building the best teams and hence lift the

productivity and profitability of the organizations. For this purpose, novel predic-

tive models to forecast the long-term performance of teams (point prediction) as well

as the pathway to impact (trajectory prediction) have been developed. A joint pre-

dictive model by exploring the relationship between team level and individual level

performances has also been proposed.

For an existing team, it is often desirable to optimize its performance through

expanding the team by bringing a new team member with certain expertise, or finding

a new candidate to replace an existing under-performing member. I have developed

graph kernel based performance optimization algorithms by considering both the

structural matching and skill matching to solve the above enhancement scenarios. I

have also worked towards real time team optimization by leveraging reinforcement

learning techniques.

With the increased complexity of the machine learning models for predicting and

optimizing teams, it is critical to acquire a deeper understanding of model behavior.

For this purpose, I have investigated explainable prediction – to provide explanation

behind a performance prediction and explainable optimization – to give reasons why

i

the model recommendations are good candidates for certain enhancement scenarios.

ii

DEDICATION

This dissertation is dedicated to my parents.

iii

ACKNOWLEDGMENTS

First of all, I want to express my deep gratitude to my advisor Dr. Hanghang Tong,

for his advice, encouragement, patience, and support. This dissertation is impossible

without the help from him. Prof. Tong led me to the exciting field of data mining and

mentored me through every step of the way towards conducting excellent research:

from finding a good research problem to coming up with innovative solutions, from

writing good research papers to giving well-prepared presentations with dedication to

every detail. I enjoyed every discussion with him and I have benefited tremendously

from his sharp insights, wise suggestions and grand visions. More than that, he is

also a great friend with a lot of caring. His encouragement during the moments when

my research was not going as planned, when my paper got rejected, and during my

job hunting makes my PhD journey much less stressful. He is hands down the best

advisor ever.

I would like to thank my thesis committee members, Chitta Baral, Huan Liu and

Norbou Buchler for their helpful suggestions and insightful comments. I took Dr.

Baral’s course on natural language processing, which broadened my horizon on the

challenging tasks for understanding human languages. Dr. Liu, with his deep and

broad knowledge in the field, always challenges me to see the problems in the big

picture. Dr. Buchler is nothing but a great collaborator, who generously shares with

me his deep understanding in the computational approaches to teaming.

I was very lucky to work as an intern in LinkedIn with amazing colleagues and

mentors: Qi He, How Jing, Jaewon Yang, Bee-Chung Chen, Qin Wang, Siyuan Zhang.

Special thanks to How, who was my mentor during the internship, for offering me

tremendous help on my project.

During my PhD study, I have received consistent support and encouragement from

my friends and colleagues. I am especially grateful to all the colleagues at the Data

iv

Lab and Star Lab: Chen Chen, Xing Su, Si Zhang, Boxin Du, Qinghai Zhou, Jian

Kang, Zhe Xu, Scott Freitas, Haichao Yu, Ruiyue Peng, Rongyu Lin, Xiaoyu Zhang,

Dawei Zhou, Yao Zhou, Arun Reddy, Xu Liu, Xue Hu, Jun Wu, Lecheng Zheng, Pei

Yang. I am also thankful to all my friends both at and outside of ASU, whom make

the journey a pleasant one.

Finally, I am deeply indebted to my dear mother and father for their unconditional

love and strong support during my graduate study in the US. This dissertation is

dedicated to them.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER

1 INTRODUCTION . 1

1.1 Motivations . 1

1.2 Research Objectives and Key Challenges . 2

1.3 Research Tasks Overview . 3

1.4 Impacts and Benefits . 5

2 LITERATURE SURVEY . 7

2.1 Literature Survey on Performance Prediction . 7

2.2 Literature Survey on Team Performance Optimization 9

2.3 Literature Survey on Team Performance Explanation 11

3 TEAM PERFORMANCE PREDICTION . 14

3.1 Long-term Performance Forecasting . 14

3.1.1 Problem Statement . 17

3.1.2 Empirical Observations . 19

3.1.3 Proposed Algorithms . 21

3.1.4 Experiments . 33

3.2 Performance Trajectory Forecasting . 39

3.2.1 Problem Definition . 42

3.2.2 Proposed Algorithms . 44

3.2.3 Analysis and Comparisons . 48

3.2.4 Empirical Evaluations . 52

3.3 Part-Whole Outcome Prediction . 58

vi

CHAPTER Page

3.3.1 Problem Definition . 62

3.3.2 Proposed Model – PAROLE . 64

3.3.3 Optimization Algorithm . 71

3.3.4 Experiments . 76

4 TEAM PERFORMANCE OPTIMIZATION . 83

4.1 Team Member Replacement . 83

4.1.1 Problem Definitions . 87

4.1.2 Proposed Solutions . 88

4.1.3 Scale-up and Speed-up . 92

4.1.4 Experimental Evaluations . 99

4.2 Beyond Team Member Replacement . 107

4.2.1 Problem Definitions . 108

4.2.2 Beyond Team Member Replacement: Team Refine-

ment, Team Expansion and Team Shrinkage 109

4.2.3 Experimental Evaluations . 111

4.3 Towards Real Time Team Optimization . 111

4.3.1 Problem Definition . 114

4.3.2 Proposed Model . 116

5 TEAM PERFORMANCE EXPLANATION . 122

5.1 Towards Explainable Networked Prediction . 122

5.1.1 Problem Definition . 126

5.1.2 Proposed Model . 128

5.1.3 Empirical Evaluations . 138

5.2 Explaining Team Optimization in Networks . 149

vii

CHAPTER Page

5.2.1 Functionality Demonstration . 150

5.2.2 Technical Details . 153

5.2.3 System Demonstration . 157

6 CONCLUSION AND FUTURE WORK . 159

6.1 Conclusion . 159

6.2 Future Work . 162

REFERENCES . 164

BIOGRAPHICAL SKETCH . 173

viii

LIST OF TABLES

Table Page

3.1 Symbols for iBall . 18

3.2 p-value of statistical significance. 36

3.3 Symbols for iPath . 43

3.4 Performance gain analysis of iPath. Smaller is better. 57

3.5 Symbols for PAROLE . 63

3.6 Summary of Datasets for PAROLE. 78

4.1 Symbols of Team Member Replacement . 87

4.2 Summary of Datasets for Team Member Replacement. 99

5.1 Symbols of NEPAL . 127

5.2 Multi-Aspect, Multi-Level Explanation in Networked Prediction 131

5.3 Case study on Sentiment. 148

5.4 Summary of system functionalities. Columns are different team rec-

ommendation scenarios and rows are different aspects for explanation. . 151

ix

LIST OF FIGURES

Figure Page

3.1 An illustrative example of the proposed joint predictive model. Papers

from the same domain (e.g., AI, Databases, Data Mining and Bio)

share similar patterns in terms of attracting citations over time. Cer-

tain domains (e.g., AI and Data Mining) are more related with each

other than other domains (e.g., AI and Bio). We want to jointly learn

four predictive models (one for each domain), with the goal of encour-

aging the predictive models from more related domains (e.g., AI and

Data Mining) to be ‘similar’ with each other. 17

3.2 Prediction error comparison with different features. 20

3.3 RMSE comparisons using different methods. The citation count is

normalized in this figure. See Section 3.1.4 for normalization details. . . . 20

3.4 Visualization of papers’ citation behavior. Different colors encodes

different citation behaviors. 20

3.5 Overall paper citation prediction performance comparisons. Lower is

better. 36

3.6 Author citation prediction performance comparison. Lower is better. . 36

3.7 Venue citation prediction performance comparison. Lower is better. . . . 36

3.8 Sensitivity study on iBall-fast: study the effect of the parameters θ, λ

and r in terms of RMSE. 37

3.9 Paper citation prediction performance comparison in two domains. 37

3.10 Prediction error analysis: actual citation vs. predicted citation. Best

viewed in color. 38

3.11 Comparison of running time of different methods. The time axis is of

log scale. 39

x

CHAPTER Page

3.12 Quality vs. speed with 88,905 training samples. 39

3.13 Graphical model representation of iPath. 53

3.14 RMSE comparison of all the methods for paper impact pathway pre-

diction. 56

3.15 RMSE comparison of all the methods for author impact pathway pre-

diction. 56

3.16 Sensitivity study on iPath-lin: study the effect of the parameters α and

β in terms of RMSE. 56

3.17 Robustness to noise on the label graph. 58

3.18 Convergence analysis of iPath. 58

3.19 Prediction error comparison on Movie dataset. Lower is better. Best

Viewed in Color. The right two bars are the proposed methods, which

encode the non-linear part-whole relationship and the non-linearity

with part-part interdependency respectively. 60

3.20 An illustrative example of part-whole outcome prediction where movies

are the whole entities and the actors/actresses are the part entities.

The four shadowed ellipses correspond to the key sub-objectives in our

proposed PAROLE model (Eq. (3.34)). 65

3.21 RMSE comparisons on Math. Best viewed in color. From left to right:

Separate, Sum, Linear, Max, Huber, Bisquare, Lasso and OWL. 79

3.22 RMSE comparisons on SO. Best viewed in color. From left to right:

Separate, Sum, Linear, Max, Huber, Bisquare, Lasso and OWL. 80

3.23 RMSE comparisons on DBLP. Best viewed in color. From left to right:

Separate, Sum, Linear, Max, Huber, Bisquare, Lasso and OWL. 80

xi

CHAPTER Page

3.24 RMSE comparisons on Moive. Best viewed in color. From left to right:

Separate, Sum, Linear, Max, Huber, Bisquare, Lasso and OWL. 80

3.25 Performance gain analysis on Movie. 81

3.26 Convergence analysis on SO. 81

3.27 RMSE with varying α and β of Lasso on Movie. 82

3.28 Scalability plot on SO. 82

4.1 The team graphs before and after Jiawei Han takes Philip S. Yu’s

place. See subsection 4.1.4 for detailed explanations. 85

4.2 The average recall, average precision and R@1 of the three comparison

methods. Higher is better. 102

4.3 Recall for different papers. Higher is better. 103

4.4 Precision for different papers. Higher is better. 103

4.5 Average accuracy vs. budget k. Higher is better. 105

4.6 Time Comparisons before and after pruning on three datasets. Notice

time is in log-scale. 105

4.7 Time Comparison between TeamRep-Basic and TeamRep-Fast-

Exact. TeamRep-Fast-Exact is on average 3× faster. TeamRep-

Basic takes more than 10 hours when team size = 70. 106

4.8 Time Comparisons between Ark-L[20] and TeamRep-Fast-Approx.

TeamRep-Fast-Approx is on average 3× faster. 106

4.9 Running time of TeamRep-Fast-Exact vs. graph size. TeamRep-

Fast-Exact scales sub-linearly w.r.t. the number of edges of the

input graph. 107

xii

CHAPTER Page

4.10 Running time vs. graph size. TeamRep-Fast-Approx scales sub-

linearly w.r.t. the number of edges of the input graph. 107

4.11 Precision@1, Recall@1 and F@1 of the three comparison methods for

Team Shrinkage. Higher is better. 112

4.12 Running example of real time team optimization. 114

5.1 An illustration of networked prediction system. 123

5.2 The distribution of the macro-level influences of training examples in

each of the three tasks. 141

5.3 The top 10 globally influential training samples. 141

5.4 Fraction of training labels flipped vs. test accuracy. 141

5.5 The macro-level influences of training samples vs. their yθTt x. 142

5.6 The top 5 influential training examples specific to each of the three

learning tasks in (a), (b) and (c), respectively. The influence score of

these training examples w.r.t. the tasks are shown under the example

images. 143

5.7 The top 4 influential training examples specific to each of the three test

examples from each of the three tasks in (a), (b) and (c), respectively.

The influence score of these training examples w.r.t. the test examples

are shown under the example images. 144

5.8 Using influence function to approximate leave-one-out retraining test

loss. 144

5.9 The micro-level influences of training samples vs. their yθTt x 145

5.10 Running time vs. total number of training examples n for computing

the micro-level influences of training examples. 146

xiii

CHAPTER Page

5.11 Euclidean distance vs. micro-level influence score on Semantic Scholar.

We only show their relationship in data mining and computer vision

as similar patterns are observed in other domains. Green triangles are

training examples with the same label as the test example, and red

dots are training examples with opposite label as the test example. . . . 147

5.12 An illustrative example of influence analysis. 157

xiv

Chapter 1

INTRODUCTION

1.1 Motivations

In defining the essence of professional teamwork, Hackman and Katz [51] stated

that teams function as ‘purposive social systems’, defined as people who are readily

identifiable to each other by role and position and who work interdependently to

accomplish one or more collective objectives. Teams are increasingly indispensable

to achievement in any organization. This is perhaps most evident in multinational

organizations where communication technology has transformed the geographically

dispersed teams and networks. Business operations in the large organizations now in-

volve large, interactive, and layered networks of teams and personnel communicating

across hierarchies and countries during the execution of complex and multifaceted in-

ternational businesses. Despite the organizations’ substantial dependency on teams,

fundamental knowledge about the conduct of team-enabled operations is lacking,

especially at the social, cognitive and information level in relation to team perfor-

mance and network dynamics. What do high-performing engineering/design/sale

teams share in common with respect to their communication patterns? How to pre-

dict a team’s performance before it starts to work on the assigned project? How

to foster productive behavioral changes of team members and leaders in order to

optimize performance?

1

1.2 Research Objectives and Key Challenges

Generally speaking, the team performance can be viewed as the composite of

the following three aspects, including (1) its users, (2) tasks that the team performs

and (3) the networks that the team is embedded in or operates on, i.e.,

team performance = f(users, tasks, networks) (1.1)

The goal of my Ph.D. dissertation is to create new instruments to predict, op-

timize and explain teams’ performance in the context of composite networks (i.e.,

social-cognitive-information networks). This research objective involves a number

of key challenges, many of which can be attributed to the complexity of teams.

Specifically, the complexity of the teams comes from all the following five components

of Eq. (1.1).

• Challenge 1: the complexity of the users. There are three basic types of users,

including the individuals (e.g., team members), team leaders (e.g., project man-

agers), the “owners” of human resource (e.g., HR in an organization). While

in general, different types of users are collaborative in nature, their goals are

not always consistent with each other. For certain tasks, the team members

or its leader might have to make a decision within a short time period, with

incomplete and partial knowledge of its embedded environment/networks, and

possibly under great stress.

• Challenge 2: the complexity of tasks. Within an organization, there are often

multiple teams for a variety of different types of tasks, such as engineering teams,

support teams, business teams, planning teams, etc. Each type of teams might

have its own “secret recipe” for success. For example, a successful engineering

team might heavily rely on its execution of plan, while a planning team might

2

need more innovation. Some tasks might be collaborative, while others might

be competitive with each other. How to optimize the performance of a target

team in the presence of an adversarial team? From an organization perspective,

how to strengthen an existing team (e.g., by expanding the team size) without

hurting others?

• Challenge 3: the complexity of networks. The challenges come from the environ-

ment that the team is embedded in or operates on, i.e., the fact that such net-

works are often big, meaning that they are large in size (volume), highly volatile

in dynamics (velocity), spreading over multiple channels/layers/platforms (va-

riety); and noisy and incomplete (veracity). In the dissertation, we assume the

networks are undirected, but the proposed methods can be easily extended to

handle the directionality of networks.

• Challenge 4: the complexity of performance. There is no single performance

measure of the team, but rather a set of inter-correlated metrics. For example,

the impact metrics for research teams include citation-based number of cita-

tions, h-index, online usage based view counts, download counts and network

based centrality, all of which might be correlated with each other [12].

• Challenge 5: the complexity of composite (e.g., f()). The composite itself,

which composes different aspects/metrics into the performance measure(s), is

far-beyond a many-to-one linear process. Instead, it is likely to be a many

(aspect) to many (performance measures) non-linear process.

1.3 Research Tasks Overview

In this dissertation, I take a multi-disciplinary approach, consisting of super-

vised learning, visualization and optimization, to tackle three complementary research

3

tasks.

Task 1: Team Performance Prediction. Understanding the dynamic mech-

anisms that drive the success of high-performing teams can provide the key insights

into building the best teams and hence lift the productivity and profitability of the

organizations. From the algorithmic perspective, the interesting problems are to fore-

cast the long-term performance of teams (point prediction) as well as the pathway to

impact (trajectory prediction). For research teams, early prediction of their perfor-

mance has many important implications, ranging from personal career development

and recruitment search, to the jurisdiction of research resources. The impact path-

way often provides a good indicator of the shift of the research frontier and can also

help trigger an early intervention should the impact trajectory step down in the near

future. On the other hand, the ancient Greek philosopher Aristotle articulated more

than 2000 years ago that “the whole is more than the sum of its parts”, it is worthwhile

to quantitatively examine the relationship between the team level and individual level

performances and leverage that to build a joint predictive model.

Task 2: Team Performance Optimization. In this task, we focus on the

problem of optimizing/enhancing an existing team. For example, if the team leader

perceives the need to enhance certain expertise of the entire team, who shall we bring

into the team (i.e., team expansion); if we need to reduce the size of an existing team

(e.g., for the purpose of cost reduction), who shall leave the team (i.e., team shrinkage)

so that the remaining team is least impacted; if the team leader sees a conflict between

certain team members, how shall we resolve it (i.e., team conflict resolution); in case

the desired team configuration changes over time, how to reflect such dynamics in

the team enhancement process (i.e., team evolution)? We propose to solve all these

enhancement scenarios based on a team member replacement algorithm we developed

recently [75]. On the other hand, teams can be often viewed as a dynamic system.

4

We propose to plan the sequential optimization actions to maximize the cumulative

performance using reinforcement learning.

Task 3: Team Performance Explanation. The basics of team effectiveness

were identified by J. Richard Hackman, who uncovered a groundbreaking insight:

what matter most to collaboration are certain enabling conditions. Recent studies

found that three of Hackman’s conditions – a compelling direction, a strong structure,

and a supportive context – continue to be particularly critical to team success [50]. In

this task, we aim to reveal the “secret recipe” for success by developing an explanation

model for the above team performance prediction models as well as the performance

optimization models. Such explanations can provide insights to why some teams are

predicted to be successful and why we should bring a certain member to the team.

Understanding the reasons behind predictions and recommendations is critical in

assessing trust, which is especially fundamental if decisions (e.g., funding allocations)

need to be made based on a prediction.

1.4 Impacts and Benefits

In the context of composite networks, this research will establish effective algo-

rithms and tools for the performance prediction and optimization of teams along

with explanations. This research will help organizations make a better decision to

perform certain tasks that need collaborative effort within a team. Based on our

work in this dissertation, we will build a system of team enhancement (i.e., predic-

tion, optimization, explanation). The visualization component of this system can be

used to track individual and team performance over time, and provide feedback to

individuals to foster productive behavior change. To the best of our knowledge, this

is the first comprehensive effort that integrates interactive visualization mechanisms,

machine learning models and advanced network analysis algorithms for optimizing

5

teams. The preliminary results (e.g., publications, presentations and prototype sys-

tems) are available at team-net-work.org.

6

team-net-work.org

Chapter 2

LITERATURE SURVEY

In this chapter, we will briefly introduce some of the state-of-the-arts for perfor-

mance/impact prediction, optimization, and explanation.

2.1 Literature Survey on Performance Prediction

Impact/popularity prediction: As a pilot study, Yan et al. [119, 118] identify

effective features to address citation count prediction problem. Davletov et al. [34] ad-

dress the same problem by first clustering papers according to their temporal change

in citation counts over time and assigning a polynomial to each cluster for regres-

sion. In light of the difficulty posed by power law distribution of citations, Dong et

al. [38] instead consider whether a paper can increase the primary author’s h-index.

Yu et al. [124] address predicting citation relations in heterogeneous bibliographical

networks.

A close line of work is to predict the popularity of other online contents, e.g., posts,

videos, TV series. Yao et al. [121] predict the long-term impact of questions/answers.

Notice that in terms of methodology, the method in [121] can be conceptually viewed

as a special case of our iBall model when there are only two domains and the instance-

level correspondence across different domains (e.g., question-answers association) is

known. Li et al. [71] conduct an study on popularity forecast of videos shared in

social networks. They consider both the intrinsic attractiveness of a video and the

influence from the underlying diffusion structure. Chang et al. [25] are the first to

comprehensively study for predicting the popularity of online serials with autore-

gressive models. As online serials have strong sequence dependence and release date

7

dependence, they develop an autoregressive model to capture the dynamic behaviors

of audiences. Though the focus of this research is to propose a tailored method to

predict the long-term citation counts, our method could be naturally applied to other

related applications, e.g., popularity prediction.

Multi-task learning: Our joint model iBall is also related to multi-task learning

as we jointly learn the models for each domain (task). Multi-task learning aims to

improve the generalization performance of a learning task with the help of other

related tasks. A key challenge in multi-task learning is to exploit the relationship

among different tasks to allow information shared across tasks. One way is by sharing

of parameters. In neural networks, hidden units are shared across tasks [21, 85]. It

can also be induced by assuming that the parameters used by all tasks are close

to each other by minimizing the Frobenius norms of their differences in methods

based on convex optimization formulations [43]. In Bayesian hierarchical models,

parameter sharing can be imposed by assuming a common prior they share [123]. A

second way is assuming a common basis of the parameter space. A low-rank and

sparse structure of the underlying predictive hypothesis has been applied to capture

the tasks relatedness as well as outlier tasks [28, 29, 57]. Our method is directly

applicable when the correlation/similarity among different tasks is known and enjoys

a closed-form solution. In terms of computation, we also provide an efficient way to

track the joint predictive model in the dynamic setting.

Multi-label Learning. Multi-label learning is a machine learning paradigm

where each data instance is associated with a set of labels. For example, in im-

age classification, an image could be tagged as nature, ocean and sky; in document

categorization, a text might belong to politics and foreign affairs. The algorithms

developed for multi-label learning can be roughly categorized into two groups by a

recent survey [129]: problem transformation methods, to fit data to existing algo-

8

rithms; and algorithm adaptation methods, to adapt existing learning technique to fit

the multi-label data. In the first category, binary relevance [17] trains an individual

classifier for each of the labels separately, which ignores label correlations and might

suffer class imbalance issue. Classifier chains [97] on the other hand incrementally

build classifier for each of the labels by augmenting the feature space using preceding

predicted labels. The multi-label problems can be also modeled as a label ranking

problem through the technique of pairwise comparison [45], essentially binary clas-

sifiers trained in one-vs-one fashion. In the second category, multi-label k-nearest

neighbor algorithm [128] combines kNN and Bayesian reasoning to make prediction

based on labeling information in the neighbors. Decision tree has also been adopted

to handle multi-label data by computing the multi-label entropy [30]. Rank-SVM [42]

employs maximum margin strategy to define linear models that minimize the ranking

loss while having a large margin and enjoying non-linear extension through kernel

trick. Recently, there is a line of work focused on exploiting the relationship among

the labels to improve the learning performance. Zhang and Yeung [130] propose a

probabilistic model for multi-label learning by assuming that the model parameters

follow a matrix-variant normal distribution and the label relationship learning be-

comes solving for the column covariance matrix in the maximum a posteriori (MAP)

solution. Huang and Zhou [56] notice that some label correlations are not shared

globally and propose an approach that allows correlation sharing in a subset of in-

stances. Ji et al. [59] assume that the model parameters share a low-dimensional

subspace and formulate a regularized optimization problem.

2.2 Literature Survey on Team Performance Optimization

Team Formation. Team formation studies the problem of assembling a team of

people to work on a project. To ensure success, the selected team members should

9

possess the desired skills and have strong team cohesion, which is first studied in [67].

As follow-up work, Anagnostopoulos et al [2] studies forming teams to accommodate

a sequence of tasks arriving in an online fashion and Rangapuram et al [96] allows

incorporating many realistic requirements into team formation based on a generaliza-

tion of the densest subgraph problem. Beyond that, minimizing the tensions among

the team members is considered [48]. With the presence of the underlying social net-

work, the set cover problem is complicated by the goal of lowering the communication

cost at the same time. Cao et al [20] develop an interactive group mining system that

allows users to efficiently explore the network data and from which to progressively

select and replace candidate members to form a team. Bogdanov et al [11] studies

how to extract a diversified group pulled from strong cliques given a network; this en-

sures that the group is both comprehensive and representative of the whole network.

Cummings and Kiesler [33] find that prior working experience is the best predictor

of collaborative tie strength. To provide insights into designs of online communities

and organizations, the systematic differences in appropriating social softwares among

different online enterprise communities is analyzed in [90]. The patterns of infor-

mal networks and communication in distributed global software teams using social

network analysis is also investigated in [26]. Specific communication structures are

proven critical to new product development delivery performance and quality [24].

To assess the skills of players and teams in online multi-player games and team-based

sports, “team chemistry” is also accounted for in [36, 35].

Recommendation and Expert Finding. Recommendation and expert finding

is a very active research topic in data mining and information retrieval, either to rec-

ommend products a user is mostly interested in or to identify the most knowledgeable

people in a field. Our work is related to this in the sense that we aim to recommend

top candidates who are most suitable for the vacancy. A popular method in recom-

10

mendation (collaborative filtering) is latent factor model [66, 40, 113]. The basic idea

is to apply matrix factorization to user-item rating data to identify the latent factors.

The factorization technique can be naturally extended by adding biases, temporal

dynamics and varying confidence levels. In question-answering sites, e.g., Quora and

Stack Overflow, an important task is to route a newly posted question to the ‘right’

user with appropriate expertise and several methods based on link analysis have been

proposed [127, 16, 131]. In academia, identifying experts in a research field is of great

value, e.g., assigning papers to the right reviewers in a peer-review process [88, 61],

which can be done by either building the co-author network [72] or using language

model and topic-based model [37, 52]. For enterprises, finding the desired specialist

can greatly reduce costs and facilitate the ongoing projects. Many methods have been

proposed to expert search through an organization’s document repository [6, 116].

Graph Kernel. Graph kernel measures the similarity between two graphs. Typ-

ical applications include automated reasoning [108], bioinformatics and chemoinfor-

matics [44, 102]. Generally speaking, graph kernels can be categorized into three

classes: kernels based on walks [46, 111, 112, 47, 13], kernels based on limited-sized

subgraphs [55, 103, 65] and kernels based on subtree patterns [86, 101, 53]. Graph

kernels based on random walk is one of the most successful choices [14]. The idea is

to perform simultaneous walks on the two graphs and count the number of matching

walks. One challenge of random walk based graph kernel lies in computation. The

straight-forward method for labelled graphs take O(lr′t3) time by reducing to the

problem of solving a linear system [111, 112]. With low rank approximation, the

computation can be further accelerated with high approximation accuracy [60].

2.3 Literature Survey on Team Performance Explanation

Intelligible Models. Some machine learning models are inherently intelligible

11

and are proposed to strike a good balance between model complexity and intelli-

gibility [83, 84, 22]. The Generalized Additive Models (GAMs) [83] assume that

the target is a linear combination of potentially nonlinear single-feature models (i.e.,

shape functions). Popular shape functions are splines, decision trees and boosted

trees. GA2M models [84] incorporate the pairwise interactions between the features

on top of GAMs. In addition, the sparse partially linear additive model (SPLAM) [82]

is proposed to address two model selection challenges, i.e., what features to include in

the model and which of these features should be treated nonlinearly. The limitations

with this line of work is that the intelligible models might fail when the number of

features grows into the millions.

Model Explanation. With increased complexity of machine learning models,

many research efforts have been on acquiring a deeper understanding of model be-

havior. There are mainly two paths for explaining model’s performances, namely,

explaining through features and training samples. The first approach examines the

importance of different features to model predictions. To work for any complicated

model, LIME [98] is proposed as a model-agnostic explanation model by learning an

interpretable model locally around the prediction for a specific test sample. In some

cases, the features may have indirect influence to the model prediction via other re-

lated features. Such indirect influence can be quantified based on a differential anal-

ysis of feature influence before and after obscuring the feature influence on the model

outcome [1]. The second popular approach to model interpretability is to generate

explanations through the lens of training examples. Influence functions, as a clas-

sic technique from robust statistics, are used to trace a model’s prediction through

the learning algorithm back to its training data [64]. The key idea is to compute

the change of the loss at a test sample should a training example is upweighted by

some small ε. Graph signal process has also been used for influential sample analysis

12

where the influence metric is used as a function at the nodes in the data graph [4].

The most influential samples would be those critical to the recover of high frequency

components of the function.

13

Chapter 3

TEAM PERFORMANCE PREDICTION

In this chapter, we introduce our work on team performance prediction, including

long-term performance prediction [73] and performance trajectory forecasting [79].

We also explore the relationship between the team level and individual level perfor-

mances and design a joint prediction model for the prediction of both. We would

describe their problem definitions and the key ideas behind our solutions. We focus

on research teams for the performance prediction purpose.

3.1 Long-term Performance Forecasting

Understanding the dynamic mechanisms that drive the high-impact scientific work

(e.g., research papers, patents) is a long-debated research topic and has many impor-

tant implications, ranging from personal career development and recruitment search,

to the jurisdiction of research resources. Scholars, especially junior scholar, who could

master the key to producing high-impact work would attract more attentions as well

as research resources; and thus put themselves in a better position in their career

developments. High-impact work remains as one of the most important criteria for

various organization (e.g. companies, universities and governments) to identify the

best talents, especially at their early stages. It is highly desirable for researchers to

judiciously search the right literature that can best benefit their research.

Recent advances in characterizing and modeling scientific success have made it

possible to forecast the long-term impact of scientific work. Wuchty et al. [117] observe

that papers with multiple authors receive more citations than solo-authored ones.

Uzzi et al. [110] find that the highest-impact science work is primarily grounded in

14

atypical combinations of prior ideas while embedding them in conventional knowledge

frames. Recently, Wang et al. [114] develop a mechanistic model for the citation

dynamics of individual papers. In data mining community, efforts have also been made

to predict the long-term success. Carlos et al. [23] estimate the number of citations

of a paper based on the information of past articles written by the same author(s).

Yan et al. [119] design effective content (e.g., topic diversity) and contextual (e.g.,

author’s h-index) features for the prediction of future citation counts. Despite much

progress, the following four key algorithmic challenges in relation to predicting long-

term scientific impact have largely remained open.

C1 Scholarly feature design: many factors could affect scientific work’s long-term

impact, e.g., research topics, author reputations, venue ranks, citation networks’

topological features, etc. Among them, which bears the most predictive power?

C2 Non-linearity: the effect of the above scholarly features on the long-term scien-

tific impact might be way beyond a linear relationship.

C3 Domain heterogeneity: the impact of scientific work in different fields or domains

might behave differently; yet some closely related fields could still share certain

commonalities. Thus, a one-size-fits-all or one-size-fits-one solution might be

sub-optimal.

C4 Dynamics: with the rapid development of science and engineering, a significant

number of new research papers are published each year, even on a daily basis

with the advent of arXiv1. The predictive model needs to handle such stream-

like data efficiently, to reflect the recency of the scientific work.

In this study, we propose a joint predictive model–Impact Crystal Ball (iBall in

1arxiv.org

15

short) – to forecast the long term scientific impact at an early stage by collectively

addressing the above four challenges. First (for C1), we found that the citation

history of a scholarly entity (e.g., paper, researcher, venue) in the first three years

(e.g., since its publication date) is a strong indicator of its long-term impact (e.g.,

the accumulated citation count in ten years); and adding additional contextual or

content features brings little marginal benefits in terms of prediction performance.

This not only largely simplifies the feature design, but also enables us to forecast the

long-term scientific impact at its early stage. Second (for C2), our joint predictive

model is flexible, being able to characterize both the linear and non-linear relationship

between the features and the impact score. Third (for C3), we propose to jointly learn

a predictive model to differentiate distinctive domains, while taking into consideration

the commonalities among these similar domains (see an illustration in Figure 3.1).

Fourth (for C4), we further propose a fast on-line update algorithm to adapt our

joint predictive model efficiently over time to accommodate newly arrived training

examples (e.g., newly published papers).

Our main contributions can be summarized as follows:

• Algorithms: we propose a joint predictive model –iBall– for the long-term

scientific impact prediction problem, together with its efficient solvers.

• Proofs and analysis: we analyze the correctness, the approximation quality

and the complexity of our proposed algorithms.

• Empirical evaluations: we conduct extensive experiments to demonstrate the

effectiveness and efficiency of our proposed algorithms.

16

AI

Data Mining Database

Bio

Paper 1

Paper 2

Paper 3

Paper 4

Paper 5

Paper 6

Paper 7

Paper 8

Figure 3.1: An illustrative example of the proposed joint predictive model. Papers

from the same domain (e.g., AI, Databases, Data Mining and Bio) share similar

patterns in terms of attracting citations over time. Certain domains (e.g., AI and

Data Mining) are more related with each other than other domains (e.g., AI and

Bio). We want to jointly learn four predictive models (one for each domain), with the

goal of encouraging the predictive models from more related domains (e.g., AI and

Data Mining) to be ‘similar’ with each other.

3.1.1 Problem Statement

In this section, we first present the notations and then formally define the long-

term scientific impact prediction for scholarly entities (e.g., research papers, re-

searchers, conferences).

Table 3.1 lists the main symbols used. We use bold capital letters (e.g., A) for

matrices, bold lowercase letters (e.g., w) for vectors, and lowercase letters (e.g., λ)

for scalars. For matrix indexing, we use a convention similar to Matlab as follows,

e.g., we use A(i, j) to denote the entry at the i-th row and j-th column of a matrix

A, A(i, :) to denote the i-th row of A and A(:, j) to denote the j-th column of A.

17

Symbols Definition

nd number of domains

ni number of training samples in the i-th domain

mi number of new training samples in the i-th domain

d feature dimensionality

X
(i)
t feature matrix of training samples from the i-th domain at time t

x
(i)
t+1 feature matrix of new training samples from the i-th domain at

time t+ 1

Y
(i)
t impact vector of training samples from the i-th domain at time t

y
(i)
t+1 impact vector of new training samples from the i-th domain at time

t+ 1

A adjacency matrix of domain relation graph

w(i) model parameter for the i-th domain

K(i) kernel matrix of training samples in the i-th domain

K(ij) cross domain kernel matrix of training samples in the i-th and j-th

domains

Table 3.1: Symbols for iBall

Besides, we use prime for matrix transpose, e.g., A′ is the transpose of A.

To differentiate samples from different domains at different time steps, we use

superscript to index the domain and subscript to indicate timestamp. For instance,

X
(i)
t denotes the feature matrix of all the scholarly entities in the i-th domain at time

t and x
(i)
t+1 denotes the feature matrix of new scholarly entities in the i-th domain at

time t + 1. Hence, X
(i)
t+1 = [X

(i)
t ; x

(i)
t+1]. Similarly, Y

(i)
t denotes the impact vector of

scholarly entities in the i-th domain at time t and y
(i)
t+1 denotes the impact vector of

18

new scholarly entities in the i-th domain at time t + 1. Hence, Y
(i)
t+1 = [Y

(i)
t ; y

(i)
t+1].

We will omit the superscript and/or subscript when the meaning of the matrix is

clear from the context.

With the above notations, we are ready to define the long-term impact prediction

problem in both static and dynamic settings as follows:

Problem 1. Static Long-term Scientific Impact Prediction

Given: feature matrix X and impact Y of scholarly entities

Predict: the long-term impact of new scholarly entities

We further define the dynamic impact prediction problem as:

Problem 2. Dynamic Long-term Scientific Impact Prediction

Given: feature matrix Xt and new training feature matrix xt+1 of scholarly entities,

the impact vector Yt, and the impact vector of new training samples yt+1

Predict: the long-term impact of new scholarly entities

3.1.2 Empirical Observations

In this subsection, we perform an empirical analysis to highlight some of the

key challenges on AMiner citation network [105]. This is a rich real dataset for

bibliography network analysis and mining. The dataset contains 2,243,976 papers,

1,274,360 authors, and 8,882 computer science venues. For each paper, the dataset

provides its titles, authors, references, publication venue and publication year. The

papers date from year 1936 to 2013. In total, the dataset has 1,912,780 citation

relationships extracted from ACM library.

19

0

1

2

3

4

5

6

7

8

R
oo

t M
ea

n
Sq

ua
re

d
Er

ro
r

1 y
ea

r

2 y
ea

rs

3 y
ea

rs

1 y
ea

r +
 co

nte
nt

2 y
ea

rs
+ c

on
ten

t

3 y
ea

rs
+ c

on
ten

t

Figure 3.2: Prediction er-

ror comparison with differ-

ent features.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

R
oo

t M
ea

n
Sq

ua
re

d
Er

ro
r

iBall−
fas

t

iBall−
ke

rne
l

Kern
el−

se
pa

rat
e

Kern
el−

co
mbin

e

iBall−
line

ar

Lin
ea

r−s
ep

ara
te

Lin
ea

r−c
om

bin
e

Pred
ict

0

Sum
 of

 fir
st

3 y
ea

rs

Figure 3.3: RMSE compar-

isons using different meth-

ods. The citation count is

normalized in this figure.

See Section 3.1.4 for nor-

malization details.

0 10 20 30 40 50 60 70 80
0

50

100

150

200

250

300

350

Age

Figure 3.4: Visualization

of papers’ citation behav-

ior. Different colors en-

codes different citation be-

haviors.

Feature design Prior work [23, 119] has proposed some effective features for cita-

tion count prediction, e.g., topic features (topic rank, diversity), author features (h-

index, productivity), venue features (venue rank, venue centrality). Other work [114]

make predictions only on the basis of the early years’ citation data and find that

the future impact of majority papers fall within the predicted citation range. We

conduct experiment to compare performance of different features. Figure 3.2 shows

the root mean squared error using different features with a regression model for the

prediction of 10 years’ citation count. For example, ‘3 years’ means using the first 3

years’ citation as feature, and ‘3 years + content’ means using the first 3 years’ cita-

tion along with content features (e.g., topic, author features). The result shows that

adding content features (the right three bars in the figure) brings little improvement

for citation prediction.

20

Non-linearity To see if the feature has linear relationship with the citation, we

compare the performance of different methods using only the first 3 years’ citation

history. In Figure 3.3, the non-linear models (iBall-fast, iBall-kernel, Kernel-combine)

all outperform the linear models (iBall-linear, Linear-separate, Linear-combine). See

Section 3.1.3 and 3.1.4 for details of these models. It is clear that complex relationship

between the features and the impact cannot be well characterized by a simple linear

model - the prediction performance for all the linear models is even worse than the

baseline method (using the summation of the first 3 years’ citation counts).

Domain heterogeneity To get a sense of the dynamic patterns of the citation

count, we construct a paper-age citation matrix M, where Mij indicates the number

of citations the i-th paper receives in the j-th year after it gets published. The

matrix M is then factorized as M ≈ WH using Non-negative Matrix Factorization

(NMF) [70]. We visualize the first six rows of H in Figure 3.4, which can give us

different clustering citation dynamic patterns. As can be seen from the figure, the

cyan line has a very small peak in the first 3 years and then fades out very quickly;

the blue line picks up very fast in the early years and then fades out; the yellow line

indicates a delayed pattern where the scientific work only receives some amount of

attentions decades after it gets published. This highlights that impact of scientific

work from different domains behaves differently.

3.1.3 Proposed Algorithms

In this subsection, we present our joint predictive model to forecast the long-term

scientific impact at an early stage. We first formulate it as a regularized optimization

problem; then propose effective, scalable and adaptive algorithms; followed up by

theoretical analysis in terms of the optimality, the approximation quality as well as

21

the computational complexity.

iBall – Formulations Our predictive model applies to different types of scholarly

entities (e.g., papers, researchers and venues). For the sake of clarity, we will use

paper citation prediction as an example. As mentioned earlier, research papers are

in general from different domains. We want to jointly learn a predictive model for

each of the domains, with the design objective to leverage the commonalities between

related domains. Here, the commonalities among different domains is described by a

non-negative A, i.e., if the i-th and j-th domains are closely related, its corresponding

Aij entry will have a higher numerical value. Denote feature matrix for papers in

the i-th domain by X(i), citation count of papers in the i-th domain by Y(i) and the

model parameter for the i-th domain by w(i), we have the following joint predictive

model:

min
w(i),i=1,...,nd

nd∑
i=1

L[f(X(i),w(i)),Y(i)] + θ
nd∑
i=1

nd∑
j=1

Aijg(w(i),w(j)) + λ
nd∑
i=1

Ω(w(i))

(3.1)

where f(X(i),w(i)) is the prediction function for the i-th domain, L(.) is a loss func-

tion, g(w(i),w(j)) characterizes the relationship between the model parameters of the

i-th and j-th domains, Ω(w(i)) is the regularization term for model parameters and

θ, λ are regularization parameters to balance the relative importance of each aspect.

As can be seen, this formulation is quite flexible and general. Depending on

the loss function we use, our predictive model can be formulated as regression or

classification task. Depending on the prediction function we use, we can have either

linear or non-linear models. The core of our joint model is the second term that relates

parameters of different models. If Aij is large, meaning the i-th and j-th domains

are closely related to each other, we want the function value g(.) that characterizes

the relationship between the parameters to be small.

22

iBall– linear formulation: if the feature and the output can be characterized by

a linear relationship, we can use a linear function as the prediction function and the

Euclidean distance for the distance between model parameters. The linear model can

be formulated as follows:

min
w(i),i=1,...,nd

nd∑
i=1

‖X(i)w(i) −Y(i)‖2
2 + θ

nd∑
i=1

nd∑
j=1

Aij‖w(i) −w(j)‖2
2 + λ

nd∑
i=1

‖w(i)‖2
2

(3.2)

where θ is a balance parameter to control the importance of domain relations, and λ is

a regularization parameter. From the above objective function we can see that, if the

i-th domain and j-th domain are closely related, i.e., Aij is a large positive number,

it encourages a smaller Euclidean distance between w(i) and w(j). The intuition is

that for a given feature, it would have a similar effect in predicting the papers from

two similar/closely related domains.

iBall– non-linear formulation: As indicated in our empirical studies (Figure 3.3),

the relationship between the features and the output (citation counts in ten years) is

far beyond linear. Thus, we further develop the kernelized counterpart of the above

linear model. Let us denote the kernel matrix of papers in the i-th domain by K(i),

which can be computed as K(i)(a, b) = k(X(i)(a, :),X(i)(b, :)), where k(·, ·) is a kernel

function that implicitly computes the inner product in a high-dimensional reproducing

kernel Hilbert space (RKHS) [5] . Similarly, we define the cross-domain kernel matrix

by K(ij), which can be computed as K(ij)(a, b) = k(X(i)(a, :),X(j)(b, :)), reflecting

the similarity between papers in the i-th domain and j-th domain. Different from

the linear model where the model parameters in different domains share the same

dimensionality (i.e., the dimensionality of the raw feature), in the non-linear case,

the dimensionality of the model parameters are the same as the number of training

samples in each domain, which is very likely to be different across different domains.

Thus, we cannot use the same distance function for g(.). To address this issue, the

key is to realize that the predicted value of a test sample using kernel methods is

23

a linear combination of the similarities between the test sample and all the training

samples. Therefore, instead of restricting the model parameters to be similar, we

impose the constraint that the predicted value of a test sample using the training

samples in its own domain and using training samples in a closely related domain to

be similar. The resulting non-linear model can be formulated as follows:

min
w(i),i=1,...,nd

nd∑
i=1
‖K(i)w(i) −Y(i)‖22 + θ

nd∑
i=1

nd∑
j=1

Aij‖K(i)w(i) −K(ij)w(j)‖22 + λ
nd∑
i=1

w(i)′K(i)w(i)

(3.3)

where θ is a balance parameter to control the importance of domain relations, and λ is

a regularization parameter. From the above objective function we can see that, if the

i-th domain and j-th domain are closely related, i.e., Aij is a large positive number,

the predicted value of papers in the i-th domain computed using training samples

from the i-th domain (K(i)w(i)) should be similar to that using training samples from

the j-th domain (K(ij)w(j)).

iBall – Closed-form Solutions It turns out that both iBall linear and non-linear

formulations have the following closed-form solutions:

w = S−1Y (3.4)

iBall linear formulation. In the linear case, we have that w = [w(1); . . . ; w(nd)],

Y = [X(1)′Y(1); . . . ; X(nd)′Y(nd)], and S is a block matrix composed of nd×nd blocks,

each of size d×d, where d is the feature dimensionality. S can be computed as follows:

i-th block column j-th block column


.

. . . X(i)′X(i) + (θ
nd∑
j=1

Aij + λ)I −θAijI
i-th block

row

.

(3.5)

24

iBall non-linear formulation. In the non-linear case, we have that w = [w(1); . . . ; w(nd)],

Y = [Y(1); . . . ; Y(nd)], and S is a block matrix composed of nd × nd blocks with the

(i, j)-th block of size ni × nj, where ni is the number of training samples in the i-th

domain. S can be computed as follows:

i-th block column j-th block column


.

. . . (1 + θ
nd∑
j=1

Aij)K
(i) + λI −θAijK

(ij)
i-th block

row

.

(3.6)

iBall – Scale-up with Dynamic Update The major computation cost for the

closed-form solutions lies in the matrix inverse S−1. In the linear case, the size of S

is (dnd) × (dnd); and so its computational cost is manageable. However, this is not

the case for non-linear closed-form solution since the matrix S in Eq. (3.6) is of size

n× n, where n =
∑nd

i=1 ni, which is the number of all the training samples. It would

be very expensive to store this dense matrix (O(n2) space) and to compute its inverse

(O(n3) time); especially when the number of training samples is very large, and the

model receives new training examples constantly over time (dynamic update). In this

subsection, we devise an efficient algorithm to scale up the non-linear closed-form

solution and efficiently update the model to accommodate the new training samples

over time. The key of the iBall algorithm is to use the low-rank approximation of the

S matrix to approximate the original S matrix to avoid the matrix inversion; and at

each time step, efficiently update the low-rank approximation itself.

After new papers in all the domains are seen at time step t + 1, the new St+1

25

computed by Eq. (3.6) becomes:

i-th block column j-th block column


.

. . . (1 + θ
nd∑
j=1

Aij)K
(i)
t+1 + λI −θAijK

(ij)
t+1

i-th block

row

.

(3.7)

where K
(i)
t+1 is the new within-domain kernel matrix for the i-th domain and K

(ij)
t+1

is the new cross domain kernel matrix for the i-th and j-th domains. The two new

kernel matrix can be computed as follows:

K
(i)
t+1 =

 K
(i)
t (k

(i)
t+1)′

k
(i)
t+1 h

(i)
t+1

K
(ij)
t+1 =

 K
(ij)
t k

(ij∗)
t+1

k
(i∗j)
t+1 h

(i∗j∗)
t+1

(3.8)

where k
(i)
t+1 is the matrix characterizing the similarity between new training samples

and old training samples and can be computed as: k
(i)
t+1(a, b) = k(x

(i)
t+1(a, :),X

(i)
t (b, :));

h
(i)
t+1 is the similarity matrix among new training samples and can be computed as:

h
(i)
t+1(a, b) = k(x

(i)
t+1(a, :),x

(i)
t+1(b, :)). k

(i∗j)
t+1 is the matrix characterizing the similarity

between new training samples in the i-th domain and old training samples in the

j-th domain and can be computed as: k
(i∗j)
t+1 (a, b) = k(x

(i)
t+1(a, :)),X

(j)
t (b, :). Similarly,

k
(ij∗)
t+1 measures the similarity between old training samples in the i-th domain and

new training samples in the j-th domain and can be computed as: k
(ij∗)
t+1 = k(X

(i)
t (a, :

),x
(j)
t+1(b, :)); h

(i∗j∗)
t+1 is the similarity matrix between new training samples from both

i-th and j-th domains and is computed as: h
(i∗j∗)
t+1 = k(x

(i)
t+1(a, :),x

(j)
t+1(b, :)).

Given that St is a symmetric matrix, we can approximate it using top-r eigen-

decomposition as: St ≈ UtΛtU
′
t, where Ut is an n × r orthogonal matrix and Λt

is an r × r diagonal matrix with the largest r eigenvalues of St on the diagonal. If

we can directly update the eigen-decomposition of St+1 after seeing the new training

26

samples from all the domains, we can efficiently compute the new model parameters

as follows:

wt+1 = S−1
t+1Yt+1 = Ut+1Λ

−1
t+1U

′
t+1Yt+1 (3.9)

where Yt+1 = [Y
(1)
t ; y

(1)
t+1; . . . ; Y

(nd)
t ; y

(nd)
t+1]. Here, Λ−1

t+1 a r×r diagonal matrix, whose

diagonal entries are the reciprocals of the corresponding eigenvalues of Λt+1. In this

way, we avoid the computationally costly matrix inverse in the closed-form solution.

Compare St+1 with St, we find that St+1 can be obtained by inserting into St at

the right positions with some rows and columns of the kernel matrices involving new

training samples, i.e.,k
(i)
t+1, h

(i)
t+1,k

(i∗j)
t+1 ,k

(ij∗)
t+1 ,k

(i∗j∗)
t+1 . From this perspective, St+1 can

be seen as the sum of the following two matrices:

i-th block column j-th block column



.

. . .

αiK(i)
t 0

0 0


−θAijK

(ij)
t 0

0 0

 i-th block

row

.

︸ ︷︷ ︸
S̃t

(3.10)

+

i-th block column j-th block column



.

. . .

 0 αi(k
(i)
t+1)′

αik
(i)
t+1 αih

(i)
t+1 + λI


 0 −θAijk

(ij∗)
t+1

−θAijk
(i∗j)
t+1 −θAijh

(i∗j∗)
t+1

 i-th block

row

.

︸ ︷︷ ︸
∆S

(3.11)

def
= S̃t + ∆S (3.12)

where we denote 1 + θ
∑nd

j=1 Aij by αi. The top-r eigen-decomposition of S̃t can be

directly written out from that of St as: S̃t ≈ ŨtΛtŨ
′
t, where Ũt can be obtained by

27

inserting into Ut corresponding rows of 0, the same row positions as we insert into St

the new kernel matrices. We propose Algorithm 1 to update the eigen-decomposition

of St+1, based on the observation that St+1 can be viewed as S̃t perturbed by a low-

rank matrix ∆S. In line 5 of Algorithm 1, the only difference between the partial QR

decomposition and the standard one, is that since Ũt is already orthogonal, we only

need to perform the Gram-Schmidt procedure starting from the first column of P.

Algorithm 1: Eigen update of St+1

Input: (1)eigen pair of St: Ut, Λt;

(2)feature matrices of new papers in each domain: x
(i)
t+1, i = 1, . . . , nd;

(3)adjacency matrix of domain relation graph A ;

(4)balance parameters θ, λ

Output: eigen pair of St+1: Ut+1, Λt+1

1 Obtain Ũt by inserting into Ut rows of 0 at the right positions ;

2 Compute k
(i)
t+1, h

(i)
t+1,k

(i∗j)
t+1 ,k

(ij∗)
t+1 ,k

(i∗j∗)
t+1 for i = 1, . . . , nd, j = 1, . . . , nd ;

3 Construct sparse matrix ∆S ;

4 Perform eigen decomposition of ∆S: ∆S = PΣP′;

5 Perform partial QR decomposition of [Ũt,P]:[Ũt,∆Q]R← QR(Ũt,P);

6 Set Z = R[Λt 0; 0 Σ]R′;

7 Perform full eigen decomposition of Z: Z = VLV′;

8 Set Ut+1 = [Ũt,∆Q]V and Λt+1 = L;

9 Return: Ut+1, Λt+1.

Building upon Algorithm 1, we have the fast iBall algorithm (Algorithm 2) for

scaling up the non-linear solution with dynamic model update.

28

Algorithm 2: iBall –scale-up with dynamic update

Input: (1)eigen pair of St: Ut, Λt;

(2)feature matrices of new papers in each domain: x
(i)
t+1, i = 1, . . . , nd;

(3)citation count vectors of new papers in each domain: y
(i)
t+1, i = 1, . . . , nd;

(4)adjacency matrix of domain relation graph A ;

(5)balance parameters θ, λ

Output: (1) updated model parameters wt+1, (2) eigen pair of St+1: Ut+1,

Λt+1

1 Update the eigen-decomposition of St+1 using Algorithm 1 as:

St+1 ≈ Ut+1Λt+1U
′
t+1;

2 Compute the new model parameters: wt+1 = Ut+1Λ
−1
t+1U

′
t+1Yt+1;

3 Return: wt+1, Ut+1 and Λt+1.

iBall – Proofs and Analysis In this subsection, we will provide some analysis

regarding the optimality, the approximation quality as well as the computational

complexity of our proposed algorithms.

A - Correctness of the closed-form solutions of the iBall linear and

non-linear formulations: In Lemma 1, we prove that the closed-form solution

given in Eq. (3.4) with S computed by Eq. (3.5) is the fixed-point solution to the

linear formulation in Eq. (3.2) and the closed-form solution given in Eq. (3.4) with

S computed by Eq. (3.6) is the fixed-point solution to the non-linear formulation in

Eq. (3.3).

Lemma 1. (Correctness of closed-form solution of the iBall linear and non-linear

formulations.) For the closed-form solution given in Eq. (3.4), if S is computed by

Eq. (3.5), it is the fixed-point solution to the objective function in Eq. (3.2); and if

29

S is computed by Eq. (3.6), it is the fixed-point solution to the objective function in

Eq. (3.3).

Proof. Omitted for brevity. See [74] for detail.

B - Correctness of the eigen update of St+1: The critical part of Algo-

rithm 2 is the subroutine Algorithm 1 for updating the eigen-decomposition of St+1.

According to Lemma 2, the only place that approximation error occurs is the initial

eigen-decomposition of S0. The eigen updating procedure won’t introduce additional

error.

Lemma 2. (Correctness of Algorithm 1.) If St = UtΛtU
′
t holds, Algorithm 1 gives

the exact eigen-decomposition of St+1.

Proof. Omitted for brevity. See [80] for details.

C - Approximation Quality: We analyze the approximation quality of Algo-

rithm 2 to see how much the learned model parameters deviate from the parameters

learned using the exact iBall non-linear formulation. The result is summarized in

Theorem 1.

Theorem 1. (Error bound of Algorithm 2.) In Algorithm 2, if
∑

i/∈H λ
(i)
t∑

i λ
(i)
t+1

< 1, the

error of the learned model parameters is bounded by:

‖wt+1 − ŵt+1‖2 ≤
∑

i/∈H λ
(i)
t

(
∑

i λ
(i)
t+1)2(1− δ)

‖Yt+1‖2 (3.13)

where wt+1 is the model parameter learned by the exact iBall non-linear formulation

at time t+ 1, ŵt+1 is the updated model parameter output by Algorithm 2 from time

t to t + 1, λ
(i)
t and λ

(i)
t+1 are the largest i-th eigenvalues of St and St+1 respectively,

δ = ‖(ŨtΛtŨ
′
t + ∆S)−1(S̃t − ŨtΛtŨ

′
t)‖F , H is the set of integers between 1 and r,

i.e., H = {a|a ∈ [1, r]}.

30

Proof. Suppose we know the exact St at time t and its top-r approximation: Ŝt =

UtΛtU
′
t. After one time step, we can construct ∆S and the exact St+1 can be

computed as St+1 = S̃t + ∆S. The model parameters learned by the exact non-linear

model is:

wt+1 = S−1
t+1Yt+1 = (S̃t + ∆S)−1Yt+1 (3.14)

If we allow approximation as in Algorithm 2, the approximated model parameter

is:

ŵt+1 = Ŝ−1
t+1Yt+1 = (ŨtΛtŨ

′
t + ∆S)−1Yt+1 (3.15)

Denote S̃t + ∆S by B and ŨtΛtŨ
′
t + ∆S by C,we have the following:

‖B−C‖F = ‖S̃t − ŨtΛtŨ
′
t‖F ≤

∑
i/∈H λ

(i)
t

(3.16)

where the last inequality is due to the following fact:

‖
∑

i aiuiu
′
i‖F =

√
tr(
∑

i a
2
iuiu

′
i) =

√∑
i a

2
i tr(uiu

′
i)

=
√∑

i a
2
i ≤

∑
i |ai|

(3.17)

Denote ‖C−1(B−C)‖F by δ, we know that

δ ≤ ‖C−1‖F‖B−C‖F ≤
∑

i/∈H λ
(i)
t∑

i λ
(i)
t+1

< 1 (3.18)

From matrix perturbation theory [49], we will reach the following:

‖wt+1 − ŵt+1‖2 = ‖B−1Yt+1 −C−1Yt+1‖2

≤ ‖B−1 −C−1‖F‖Yt+1‖2

≤ ‖C−1‖2F ‖B−C‖F
1−δ ‖Yt+1‖2

≤
∑

i/∈H λ
(i)
t

(
∑

i λ
(i)
t+1)2(1−δ)

‖Yt+1‖2

(3.19)

D - Complexities: Finally, we analyze the complexities of Algorithm 1 and

Algorithm 2. In terms of time complexity, the savings are two-folds: (1) we only need

31

to compute the kernel matrices involving new training samples; (2) we avoid the time

consuming large matrix inverse operation. In terms of space complexity, we don’t

need to maintain the huge St matrix, but instead store its top-r eigen pairs which is

only of O(nr) space.

Theorem 2. (Complexities of Algorithm 1 and Algorithm 2.) Algorithm 1 takes

O((n + m)(r2 + r′2)) time and O((n + m)(r + r′)) space. Algorithm 2 also takes

O((n+m)(r2 + r′2)) time and O((n+m)(r + r′)) space, where m is total number of

new training samples.

Proof. Time complexity of Algorithm 1: Step 1-3 take O(nm) time, where n is total

number of training samples from previous step, and m is the total number of new

training samples. Eigen decomposition of ∆S in step 4 takes O(nmr′), where r′

is the rank of ∆S, since ∆S is sparse matrix with O(nm) non-zero entries. QR

decomposition in step 5 takes O((n + m)r′2) since we only need to start from the

columns in P. Step 6 and 7 both take O((r + r′)3) time. The last line takes at most

O((n+m)(r + r′)2). The overall time complexity is O((n+m)(r2 + r′2)).

Space complexity of Algorithm 1: The storage of eigen pairs requires O((n+m)r)

space. Step 1-3 take O(mn) space. Eigen decomposition of ∆S in step 4 takes

O((n + m)r′) space. QR decomposition in step 5 needs O((n + m)(r + r′)) space.

Step 6 and 7 take O((r+ r′)2) space and line 8 needs O((n+m)(r+ r′)). The overall

space complexity is O((n+m)(r + r′)).

Time complexity of Algorithm 2: Update eigen decomposition of St+1 in step 1

takes O((n+m)(r2 + r′2)) time and computing the new learning parameter in step 2

takes O(n+m)r time. The overall time complexity is O((n+m)(r2 + r′2)).

Space complexity of Algorithm 2: Update eigen decomposition of St+1 in step 1

takes O((n + m)(r + r′)) and computing the new learing parameter in step 2 takes

32

O((n+m)r) space. The overall space complexity is O((n+m)(r + r′)).

3.1.4 Experiments

In this subsection, we design and conduct experiments mainly to inspect the fol-

lowing aspects:

• Effectiveness: How accurate are the proposed algorithms for predicting scholarly

entities’ long-term impact?

• Efficiency: How fast are the proposed algorithms?

Experiment Setup We use the real-world citation network dataset AMiner2 to

evaluate our proposed algorithms. The statistics and empirical observations are de-

scribed in Section 3.1.1. Our primary task is to predict a paper’s citations after 10

years given its citation history in the first three years. Thus, we only keep papers

published between year 1936 and 2000 to make sure they are at least 10 years old.

This leaves us 508,773 papers. Given that the citation distribution is skewed, the

10-year citation counts are normalized to the range of [0, 7]. Our algorithm is also

able to predict citation counts for other scholarly entities including researchers and

venues. We keep authors whose research career (when they publish the first paper)

begin between year 1960 and 2000 and venues that are founded before year 2002.

This leaves us 315,340 authors and 3,783 venues.

For each scholarly entity, we represent it as a three dimensional feature vector,

where the i-th dimension is the number of citations the entity receives in the i-th year

after its life cycle begins (e.g., paper gets published, researchers publish the first paper

). We build a k-nn graph (k = 5) among different scholarly entities; use METIS [62]

2http://arnetminer.org/billboard/citation

33

to partition the graph into balanced clusters; and treat each cluster as a domain.

We set the domain number (nd) to be 10 for both papers and researchers; and 5 for

venues. The Gaussian kernel matrix of the cluster centroids is used to construct the

domain-domain adjacency matrix A.

To simulate the dynamic scenario where training samples come in stream, we start

with a small initial training set and at each time step add new training samples to

it. The training samples in each domain are sorted by starting year (e.g., publication

year). In the experiment, for papers, we start with 0.1% initial training data and at

each update add another 0.1% training samples. The last 10% samples are reserved as

test samples, i.e., we always use information from older publications for the prediction

of the latest ones. For authors, we start with 0.2% initial training data and at each

update add another 0.2% training data and use the last 10% for testing. For venues,

we start with 20%, add 10% at each update and use last 10% for testing.

The root mean squared error (RMSE) between the the actual citation and the

predicted one is adopted for accuracy evaluation. All the experiments were performed

on a Windows machine with four 3.5GHz Intel Cores and 256GB RAM.

Repeatability of Experimenal Results: The AMiner citation dataset is publicly

available. We have released the code of the proposed algorithms through authors’

website. For all the results reported in this section, we set θ = λ = 0.01 in our joint

predictive model. Gaussian kernel with σ = 5.1 is used in the non-linear formulations.

Effectiveness Results We perform the effectiveness comparisons of the following

nine methods:

1 Predict 0: directly predict 0 for test samples since majority of the papers have

0 citations.

34

2 Sum of the first 3 years: assume the total number of citations doesn’t change

after three years.

3 Linear-combine: combine training samples of all the domains for training using

linear regression model.

4 Linear-separate: train a linear regression model for each domain separately.

5 iBall-linear: jointly learn the linear regression models as in our linear formula-

tion.

6 Kernel-combine: combine training samples of all the domains for training using

kernel ridge regression model [99].

7 Kernel-separate: train a kernel ridge regression model for each domain sepa-

rately.

8 iBall-kernel: jointly learn the kernel regression models as in our non-linear for-

mulation.

9 iBall-fast : proposed algorithm for speeding up the joint non-linear model.

A - Overall paper citation prediction performance. The RMSE result of different meth-

ods for test samples from all the domains is shown in Figure 3.5. We have the follow-

ing observations: (1) the non-linear methods (iBall-fast, iBall-kernel, Kernel-separate,

Kernel-combine) outperform the linear methods (iBall-linear, Linear-separate, Linear-

combine) and the straightforward ‘Sum of first 3 years’ is much better than the linear

methods, which reflects the complex non-linear relationship between the features and

the impact. (2) The performance of iBall-fast is very close to iBall-kernel and some-

times even better, which confirms the good approximation quality of the model update

and the possible de-noising effect offered by the low-rank approximation. (3) The iBall

family of joint models is better than their separate versions (Kernel-separate, Linear-

35

Predict 0 Linear-combine Linear-separate iBall-linear Sum of first 3 years Kernel-combine Kernel-separate iBall-fast

iBall-kernel 0 5.53e-16 6.12e-17 1.16e-13 1.56e-219 1.60e-72 8.22e-30 3.39e-14

Table 3.2: p-value of statistical significance

separate). To evaluate the statistical significance, we perform a t-test using 1.4% of

the training samples and show the p-values in Table 3.2. From the result, we see that

the improvement of our method is significant. To investigate parameter sensitivity,

we perform parametric studies with three parameters in iBall-fast, namely, θ, λ and r.

Figure 3.8 shows that the proposed method is stable in a large range of the parameter

space.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Training Size

R
M

SE

iBall−fast
iBall−kernel
Kernel−separate
Kernel−combine
iBall−linear
Linear−separate
Linear−combine
Predict 0
Sum of first 3 years

Figure 3.5: Overall paper

citation prediction perfor-

mance comparisons. Lower

is better.

2000 4000 6000 8000 10000 12000 14000
1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

Training Size

R
M

SE

iBall−fast
iBall−kernel
Kernel−separate
Kernel−combine
iBall−linear
Linear−separate
Linear−combine
Predict 0
Sum of first 3 years

Figure 3.6: Author ci-

tation prediction perfor-

mance comparison. Lower

is better.

1600 1800 2000 2200 2400 2600
1.5

2

2.5

3

3.5

4

4.5

5

Training Size

R
M

SE

iBall−fast
iBall−kernel
Kernel−separate
Kernel−combine
iBall−linear
Linear−separate
Linear−combine
Predict 0
Sum of first 3 years

Figure 3.7: Venue ci-

tation prediction perfor-

mance comparison. Lower

is better.

B - Domain-by-domain paper citation prediction performance. In Figure 3.9 we show

the RMSE comparison results for two domains with different total training sizes.

iBall-kernel and its fast version iBall-fast consistently outperform other methods in

both of the domains. In the first domain, some linear methods (Linear-separate and

Linear-combine) perform even worse than the baseline (‘Predict 0’).

C - Prediction error analysis. We visualize the actual citation vs. the predicted

36

0.00001 0.0001 0.001 0.01 0.1 1
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

θ

R
M
SE

(a) RMSE vs. θ

0.001 0.01 0.1 1 10
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

λ

R
M
SE

(b) RMSE vs. λ

10 20 30 40 50
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

r

R
M
SE

(c) RMSE vs. r

Figure 3.8: Sensitivity study on iBall-fast: study the effect of the parameters θ, λ and

r in terms of RMSE.

0.5 1.2 2
0

0.5

1

1.5

2

2.5

Total Training Size (%)

R
M

SE

iBall−fast
iBall−kernel
iBall−linear
Kernel−separate
Kernel−combine
Linear−separate
Linear−combine
Predict 0
Sum of first 3 years

(a) Prediction performance comparison

in the first domain.

0.5 1.2 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Total Training Size (%)

R
M

SE

iBall−fast
iBall−kernel
iBall−linear
Kernel−separate
Kernel−combine
Linear−separate
Linear−combine
Predict 0
Sum of first 3 years

(b) Prediction performance comparison

in the second domain.

Figure 3.9: Paper citation prediction performance comparison in two domains.

citation using iBall as a heat map in Figure 3.10. The (x, y) square means among all

the test samples with actual citation y, the percentage that have predicted citation x.

We observe a very bright region near the x = y diagonal. The prediction error mainly

occurs in a bright strip at x = 1, y ≥ 1. This is probably due to the delayed high-

impact of some scientific work, as suggested by the blue and green lines in Figure 3.4,

i.e., some papers only pick up attentions many years after they were published.

D - Author and venue citation prediction performance. We also show the RMSE com-

37

Predicted Citation

Ac
tu

al
 C

ita
tio

n

0 1 2 3 4 5 6 7

7

6

5

4

3

2

1

0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.10: Prediction error analysis: actual citation vs. predicted citation. Best

viewed in color.

parison results for the impact prediction of authors and venues in Figure 3.6 and 3.7

respectively. Similar observations can be made as the paper impact prediction, except

that for the venue citation prediction, iBall-linear can achieve the similar performance

as iBall-fast and iBall-kernel. This is probably due to the effect that venue citation

(which involves the aggregation of the citations of all of its authors and papers) pre-

diction is at a much coarser granularity, and thus a relatively simple linear model

is sufficient to characterize the correlation between features and outputs (citation

counts).

Efficiency Results

A - Running time comparison: We compare the running time of different methods

with different training sizes and show the result in Figure 3.11 with time in log scale.

38

All the linear methods are very fast (< 0.01s) as the feature dimensionality is only 3.

Our iBall-fast outperforms all other non-linear methods and scales linearly.

0 0.5 1 1.5 2 2.5 3
x 104

10−5

10−4

10−3

10−2

10−1

100

101

102

103

Training Size

R
un

ni
ng

 T
im

e
(s

ec
on

d)

iBall−fast
iBall−kernel
Kernel−separate
Kernel−combine
Linear−separate
iBall−linear
Linear−combine

Figure 3.11: Comparison of running

time of different methods. The time

axis is of log scale.

101 102 103 1040.85

0.9

0.95

1

1.05

1.1

Running Time (second)

R
M

SE

Sum of first 3 years

Kernel−separate

Kernel−combine

≤ 0.1

iBall−kernel

iBall−fast

Figure 3.12: Quality vs. speed with

88,905 training samples.

B - Quality vs. speed: Finally, we evaluate how the proposed methods balance between

the prediction quality and speed. In Figure 3.12, we show the RMSE vs. running

time of different methods with 88,905 total training samples. For iBall-fast, we show

its results using different rank r for the low-rank approximation. Clearly, iBall-fast

achieves the best trade-off between quality and speed as its results all lie in the bottom

left corner.

3.2 Performance Trajectory Forecasting

The emerging research area on the “science of science” (e.g., understanding the

intrinsic mechanism that drives high-impact scientific work, foreseeing the success of

scientific work at an early stage), has been attracting extensive research attention

in the recent years, most of which are centered around the citation counts of the

scholarly entities (e.g., researchers, venues, papers, institutes) [110, 73, 114]. From

39

the prediction perspective, more often than not, it is of key importance to forecast the

pathway to impact for scholarly entities (e.g., how many citations a research paper

will attract in each of several consecutive years in the future). The impact pathway

often provides a good indicator of the shift of the research frontier. For instance, the

rapid citation count increase of the deep learning papers reveals an emerging surge of

this topic. The impact pathway can also help trigger an early intervention should the

impact trajectory step down in the near future. Research resources could be more

judiciously allocated if the impact pathway can be forecast at an early stage. For

example, the research management agency could proactively allocate more resources

to those rising fields.

The state of the art has mainly focused on modeling the long-term scientific im-

pact for the early prediction. For example, Wang et al. [114] integrate preferential

attachment, a temporal citation trend and the underlying “fitness” of the paper into

designing a generative model for the citation dynamics of individual papers. Yan et

al. [119] focus on designing effective scholarly features (e.g., content features, author

features, venue features) for the future citation count prediction. Li et al. [73] propose

a joint predictive model to encourage similar research domains to share similar model

parameters.

Despite their own success, all the existing work on impact forecasting are essen-

tially for point prediction, to predict the number of cumulative citations of a paper in

the future. They are not directly applicable to forecasting the impact pathway, e.g.,

citation counts in each of the next 10 years. One baseline solution is to treat the im-

pacts across different years independently and to train a separate model for each of the

impacts. This treatment might ignore the inherent relationship among different im-

pacts across different years, and thus might lead to sub-optimal performance. Having

this in mind, a better way could be to apply the existing multi-label learning [130] or

40

multi-task learning [29] methods to exploit the relation among impacts across different

years. Nonetheless, these general-purpose multi-label/multi-task learning approaches

might overlook some unique characteristics of the impact pathway prediction, which

is exactly the focus of this work.

In this work, we aim to develop a new predictive model tailored for scholarly entity

impact pathway prediction. To be specific, our model will focus on the following two

design objectives:

• D1. Prediction Consistency. Intuitively, the scholarly impacts at certain

years might be correlated with each other, which, if vetted carefully, could boost

the prediction performance (i.e., multi-label or multi-task learning). Here, one

difficulty for impact pathway prediction is that such a relation structure is often

not accurately known a priori. Thus a good predictive model should be capable

of simultaneously inferring the impact relation structure from the training data

and leveraging such (inferred) relation to improve the prediction performance.

• D2. Parameter Smoothness. For a given feature of the predictive model,

we do not expect its effect on the impacts of adjacent years would change

dramatically. For instance, the effect of “fitness” defined in [114], capturing a

scientific work’s perceived novelty and importance, is unlikely to change greatly

but rather gradually fade away over years. A good predictive model should be

able to capture such temporal smoothness.

We propose a new predictive model (iPath) to simultaneously fulfill these two

design objectives. First, we propose to exploit the prediction consistency (i.e., D1)

in the output space. Second, to encode the parameter smoothness (i.e., D2) between

adjacent time steps, we impose a linear transition process in the parameter space from

one time step to the next. We formulate it as a regularized optimization problem and

41

propose an effective alternating strategy to solve it. Our method is flexible, being

able to handle both linear and non-linear models.

The main contributions can be summarized as follows:

• Problem Definitions. We define a novel scholarly impact pathway prediction

problem, to predict the impact of a scholarly entity at several consecutive time

steps in the future.

• Algorithm and Analysis. We propose and analyze a new predictive model

(iPath) for the impact pathway forecasting problem.

• Empirical Evaluations. We conduct extensive experiments to validate the

effectiveness of the proposed algorithm.

3.2.1 Problem Definition

In this subsection, we first present the notations used (summarized in Table 3.3)

and then formally define the pathway to impact forecasting problem.

We use bold upper-case letters for matrices (e.g., A), bold lowercase letters for

vectors (e.g., v), and lowercase letters (e.g., α) for scalars. For matrix indexing, we

use a convention similar to Matlab’s syntax as follows. We use A(i, j) to denote

the entry at the intersection of the i-th row and j-th column of matrix A, A(i, :) to

denote the i-th row of A and A(:, j) to denote the j-th column of A. Besides, we use

prime for matrix transpose (e.g., A′ is the transpose of A).

For a given scholarly entity (e.g., research papers, researchers, conferences), after

observing the impacts in the first few years, we want to forecast its impacts in the

next several years (e.g., 10 or 20 years) into the future. Formally, denote x ∈ Rd

as the impacts observed in the first d time steps, we want to predict the impact

pathway y = (y1, y2, . . . , yl)
′ afterwards, where yi is the citation count in the i-th

42

Symbols Definition

n number of scholarly entities

d feature dimension, i.e., number of time steps observed

l length of the forecasting horizon into the future

wi model parameter for predicting the i-th impact

X feature matrix

Y impact matrix

A adjacency matrix of the impact graph

A0 prior knowledge of the impact graph structure

B transition matrix

K kernel matrix

E energy function

Φc(·) the potential defined on a maximal clique c

Table 3.3: Symbols for iPath

future time step, and l is the length of the horizon we want to look into the future.

Mathematically, the task is to learn a predictive function f : x→ y from the training

set D = {(xi,yi)|i = 1, 2, . . . , n}, where n is the number of training samples. For

convenience, let X be the feature matrix by stacking all the features (i.e., impact

values of the first d time steps) of the n scholarly entities as its rows, that is, X =

[x1,x2, . . . ,xn]′. Similarly, let Y be the impact matrix by stacking all the impacts

(i.e., values of all the l future time steps) of the n scholarly entities as its rows, that

is, Y = [y1,y2, . . . ,yn]′.

With the above notations, we formally define the pathway to impact forecasting

43

problem as follows:

Problem 3. Pathway to Impact Forecasting

Given: feature matrix X and impact matrix Y of n scholarly entities.

Predict: the impacts in each of the continuous future time steps of a new scholarly

entity.

Remarks: At the high-level, this problem setting bears some similarities to the

classic multi-label learning [130] or multi-task learning [29] (i.e., predicting each im-

pact is treated as a task). Nonetheless, the impact pathway of a scholarly entity

brings several unique characteristics as outlined in the Introduction, which in turn

calls for a new method to solve it.

3.2.2 Proposed Algorithms

In this subsection, we present a predictive model to forecast the pathway to im-

pact. We first formulate it as a regularized optimization problem, and then propose

an effective alternating optimization algorithm to solve it.

iPath Formulations Let us first summarize the key ideas behind our proposed

formulation. First, we want to leverage the relation across the impacts at different

time steps, so that closely related impacts are likely to have consistent predicted

outputs. The relation among the impacts at different time steps is encoded in a non-

negative matrix A, where the entry Aij is a large positive value if the i-th impact

and j-th impact are closely related. The matrix A can be regarded as the weight

matrix of the impact relationship graph, where vertices are impacts at different time

steps and edge exists between two similar impacts. Second, one difficulty is that the

impact relation might not be accurately known a prior. We address this by inferring

44

a good relation that can benefit the prediction performance, while not deviating too

far from the (noisy) prior knowledge of the relation. Third, as we mentioned in the

problem definition, we focus on the impact pathway forecasting, where the effect of

features on the impacts at adjacent time steps is expected to transition smoothly.

To realize such smoothness, we impose a linear transition process B between model

parameters of adjacent time steps wt and wt+1.

Putting all the above aspects together, our model can be formulated as follows:

min
W,B,A

L[f(X,W),Y]︸ ︷︷ ︸
empirical loss

+α
l∑

i=1

l∑
j=1

Aijg(wi,wj)︸ ︷︷ ︸
prediction consistency

+ β
l∑

t=2

‖wt −Bwt−1‖2
2︸ ︷︷ ︸

parameter smoothness

+ γ‖B− I‖2
F + δ

l∑
i=1

Ω(wi) + ε‖A−A0‖2
F︸ ︷︷ ︸

regularizations

(3.20)

where W is the parameter matrix of the prediction parameters for all the impacts

as W = [w1,w2, . . . ,wl]; f(X,W) is the prediction function, which could be linear

or non-linear; L(·) is the empirical loss between the predicted impacts and actual

impacts; g(wi,wj) characterizes the prediction consistency between the i-th impact

and the j-th impact; ‖wt−Bwt−1‖2
2 instantiates the parameter smoothness; the rest

terms are regularizations on B, W and A respectively; A0 is the noisy prior knowledge

about the impact/label relation; and α, β, γ, δ and ε are the trade-off parameters.

Remarks: the second term models the prediction consistency. If the i-th impact

and the j-th impact are similar, i.e., Aij is a large positive number, then the function

value g(·) that measures the consistency between the predicted values for the i-th and

j-th impacts should be small. In addition, to address the challenge of inferring a good

relation, we are learning a relation A in the model by regularizing it not to deviate

too far from our prior knowledge of the impact relation (A0). The third term models

the parameter smoothness by assuming a linear transition process between model

45

parameters at two adjacent time steps. More specifically, the model parameter for

time step t, wt is close (in the form of Euclidean distance) to the model parameter for

the last time step with some linear transition, Bwt−1. When B is an identity matrix,

such smoothness will be a small Euclidean distance between the two parameters

themselves. Our model will learn the model parameters W, linear transition process

B and the impacts relation A jointly.

iPath – linear formulation: in the linear case, the predictions are made by a

linear weighted combination of the features, where the offset is absorbed by adding a

constant to the feature. The linear model can be formulated as follows:

min
W,B,A

‖XW −Y‖2
F + α

l∑
i=1

l∑
j=1

Aij‖Xwi −Xwj‖2
2

+β
l∑

t=2

‖wt −Bwt−1‖2
2 + γ‖B− I‖2

F + δ
l∑

i=1

‖wi‖2
2 + ε‖A−A0‖2

F

(3.21)

In this linear formulation, if Aij is a large positive number, meaning the i-th impact

and the j-th impact are similar, then the predicted values for the i-th impact Xwi

and that for the j-th impact Xwj are consistent.

iPath – non-linear formulation: in the non-linear case, the predicted impact is no

longer a linear combination of the features, but the linear combination of the simi-

larities between the test sample and all the training samples, where the similarities

are expressed in the kernel matrix K. The (i, j)-th entry of K can be computed as

K(i, j) = κ(X(i, :),X(j, :)), where κ(·, ·) is a kernel function that implicitly computes

the inner product in the reproducing kernel Hilbert space (RKHS) [5]. The non-linear

model can be formulated as follows:

min
W,B,A

‖KW −Y‖2
F + α

l∑
i=1

l∑
j=1

Aij‖Kwi −Kwj‖2
2

+β
l∑

t=2

‖wt −Bwt−1‖2
2 + γ‖B− I‖2

F + δ
l∑

i=1

w′iKwi + ε‖A−A0‖2
F

(3.22)

From the objective function, we can see that if Aij is a large positive number,

meaning the i-th impact and the j-th impact are similar, then the predicted values

46

for the i-th impact Kwi and that for the j-th impact Kwj are consistent.

iPath Optimization Solutions In this subsection, we introduce an effective al-

ternating optimization strategy to solve iPath. Since the optimization for linear and

non-linear formulations are very similar, we will focus on the non-linear case and omit

the linear case (referred to as iPath-lin) due to space limit. In non-linear case, we

need to solve Eq. (3.22), which involves the optimization for W, B and A. We apply

an alternating strategy and each time optimize for one group of variables while fixing

the others. The details are as follows:

#1. Optimize for W while others are fixed: when others are fixed, the

objective function becomes:

min
W

‖KW −Y‖2
F + α

l∑
i=1

l∑
j=1

Aij‖Kwi −Kwj‖2
2

+β
l∑

t=2

‖wt −Bwt−1‖2
2 + δ

l∑
i=1

w′iKwi

As it turns out, it has the following fixed point solution:

vec(W) = S−1vec(K′Y) (3.23)

where vec(·) is the vectorization operation on a matrix by stacking the columns of a

matrix into one column vector, and S is a block matrix composed of l× l blocks. The

(i, j)-th block of S, Sij can be written as follows:

Sii =


(1 + α

∑l
j=1 Aij)K

′K + βB′B + δK, if i = 1

(1 + α
∑l

j=1 Aij)K
′K + δK, if i = l

(1 + α
∑l

j=1 Aij)K
′K + β(I + B′B) + δK, otherwise

(3.24)

Sij =


−αAijK

′K− βB′, if i = j − 1

−αAijK
′K− βB, if i = j + 1

−αAijK
′K, otherwise

(3.25)

47

#2. Optimize for B while others are fixed: when others are fixed, the

objective function becomes:

min
B

β
l∑

t=2

‖wt −Bwt−1‖2
2 + γ‖B− I‖2

F

It has the following fixed point solution:

B = (β
l∑

t=2

wtw
′
t−1 + γI)(β

l∑
t=2

wt−1w
′
t−1 + γI)−1 (3.26)

#3. Optimize for A while others are fixed: when others are fixed, the

objective function becomes:

min
A

α
l∑

i=1

l∑
j=1

Aij‖Kwi −Kwj‖2
2 + ε‖A−A0‖2

F

It has the following fixed point solution:

A = A0 −D,where Dij = ‖Kwj −Kwi‖2
2. (3.27)

The optimization solution for the non-linear model can be summarized as in Al-

gorithm 3.

3.2.3 Analysis and Comparisons

In this subsection, we will first analyze the complexity of the proposed iPath,

present some variants of it, and then provide a probabilistic interpretation for it,

followed up by the comparisons with some existing work.

Complexity Analysis We summarize the time complexity of iPath-lin and iPath-

ker in Theorem 3.

Theorem 3. (Time Complexity). iPath-lin takes O(N · (ndl2 + d3l3)) time, and

iPath-ker (Algorithm 3) takes O(N · (n3l3 + n2l2)) time, where N is the number of

iterations.

48

Algorithm 3: iPath-ker – forecasting the pathway to impact

Input: (1)feature matrix X;

(2)impact matrix Y;

(3)prior knowledge of the relation A0;

(4)balance parameters α, β, γ, δ and ε;

Output: model parameters wi, i = 1, . . . , l

1 Initialize W, B and A;

2 Construct kernel matrix K from X;

3 while not converged do

4 Update model parameters W by Eq. (3.23);

5 Update linear transition matrix B by Eq. (3.26);

6 Update impact relation A by Eq. (3.27);

7 end

8 Output model parameters W.

Proof. Omitted for brevity.

Remarks: in both iPath-lin and iPath-ker, the number of iterations is small in

practice (typically in 5-10 iterations, see Sec. 3.2.4 for details). In iPath-lin, each

iteration only takes linear time w.r.t. n. In iPath-ker, the major computational cost

in each iteration is the inverse of a large matrix S in Eq. (3.23), which is of size nl

by nl. One way to speed up is by low-rank approximation on such large matrix [73].

A top-r eigen-decomposition on S takes O(n2l2r), where r is the rank. Then the

inverse will become the multiplication of the eigenvector matrices and the inverse of

the eigenvalue diagonal matrix, which is very easy to compute. Another way to speed

up is to filter out those unpromising training samples. When new training samples

arrive, we can first treat them as test samples and make predictions on them using

49

the existing trained model. Those samples whose prediction error is smaller than a

specified threshold will be discarded. In this way, the size of matrix S will also be

reduced.

Variants The proposed iPath model is comprehensive in handling both the predic-

tion consistency as well as the parameter smoothness. In the case when one or both

aspects are not necessary for the prediction in some applications, our model can be

naturally adapted to accommodate such special cases. In this subsection, we will

discuss two of the variants.

Variant #1: known relation. If the relation among the impacts are accurately

known a priori, we can fix the relation in the model instead of learning it. We can do

this by setting ε to 0 and plug in the known relation matrix A. In the optimization

solution, we only need to optimize for W and B in this variant.

Variant #2: known relation without parameter smoothness. In some cases, the

parameter smoothness might not hold and we do not need to consider the linear

transition process between adjacent parameters. We can set β, γ and ε to 0. This

degenerates to the iBall model proposed in [73]. It is a special case of our iPath

model without considering parameter smoothness and with known relation. Another

difference is that iPath imposes the prediction consistency in the output space, instead

of in the parameter space.

Probabilistic Interpretation In this subsection, we will provide a probabilistic

interpretation for iPath. Our algorithm can be represented by the graphical model

shown in Figure 3.13. The shaded nodes Yi are the impacts observed, and in the

linear formulation they are linear combination of the features with a multivariate

50

Gaussian noise:

Yi = Xwi + e

e ∼ N (0, σ2
yI)

Yi|wi ∼ N (Xwi, σ
2
yI) (3.28)

For the model parameters wt, we assume it is a linear transition of the parameter

for the last time step wt−1, with a multivariate Gaussian noise:

wt = Bwt−1 + ε

ε ∼ N (0, σ2
wI)

wt|wt−1 ∼ N (Bwt−1, σ
2
wI) (3.29)

The relation among the impacts is represented as an undirected graph of different

impacts Yi, with A as the weight matrix. If the i-th impact Yi and the j-th impact

Yj are similar to each other, then the (i, j)-th entry Aij is a large positive number. To

define the distribution over this undirected graph of impacts, we refer to Hammersley-

Clifford theorem in Markov Random Field (MRF) [9] and express it in terms of an

energy function E and clique potentials defined on maximal cliques of the undirected

graph as:

p(Y) =
1

Z
exp(−E(Y)),where E(Y) =

∑
c∈C

Φc(Yc). (3.30)

Here C is the set of maximal cliques of the impact graph, Φc is a non-negative function

defined on the random variables in the clique and Z is the partition function to ensure

that the distribution sums to 1. If we only consider the potentials defined on the edge

of the graph, as follows:

Φe=(Yi,Yj) = Aij‖Yi −Yj‖2
2 = Aij‖Xwi −Xwj‖2

2
(3.31)

51

Then, the distribution over the label graph is:

p(Y) =
1

Z
exp(−

l∑
i=1

l∑
j=1

Aij‖Xwi −Xwj‖2
2) (3.32)

With these distributions defined, we aim to maximize the joint distribution de-

scribed as follows:

arg max
Y,X,W

= p(w1)
∏l
t=2 p(wt|wt−1)

∏l
i=1 p(Yi|wi)p(Y) (3.33)

where we assume p(w1) ∼ N (0, σ2
1I). If we maximize the above joint distribution,

we can obtain the empirical loss, prediction consistency and parameter smoothness

terms in iPath.

Comparison with Existing Work As we point out in Sec. 3.2.3, iBall [73] is a

special case of our iPath model. The idea of iBall is to leverage the relation among

impacts in the parameter space, i.e., if Yi and Yj are similar, then the parameters

wi for predicting Yi and wj for predicting Yj are similar. The multi-label learning

method MLRL [130] also exploits such relation in the parameter space via maximum a

posterior inference by assuming that W follows a matrix-variate normal distribution,

but ignores the parameter smoothness. Our model iPath instead applies such relation

in the output space and defines a linear transition process between two parameters

at adjacent time steps.

3.2.4 Empirical Evaluations

In this subsection, we empirically evaluate the effectiveness of the proposed algo-

rithms for forecasting the pathway to impact.

Datasets To evaluate the performance of the proposed iPath algorithms, we con-

duct experiments on the citation network dataset provided by AMiner [105] 3, which

3https://aminer.org/billboard/citation

52

𝑤𝑖

𝑌𝑖

𝐵 𝐵 𝐵 𝐵

Figure 3.13: Graphical model representation of iPath.

is a rich dataset for bibliography network analysis and mining. The dataset con-

tains information of 2,243,976 papers, 1,274,360 authors and 8,882 computer science

venues. The information about a paper includes its title, authors, references, venue

and publication year. The papers date from year 1936 to year 2013. From these, we

can extract the number of citations each paper/author obtains in each year ever since

its publication year.

Experiment Setup Our primary task is to forecast a paper’s yearly citations from

year 6 to year 15 after its publication, with the first five years’ citation history ob-

served. To ensure the papers are at least 15 years old, we only keep papers published

between year 1960 and 1998. We process the author data in a similar way and keep

those whose research career begins (when they publish the first paper) between year

1960 and 1990. For each scholarly entity (paper and author), we represent it as a

five dimensional feature vector, which is the yearly citation counts in the first five

years. To evaluate our algorithm, we sort the scholarly entities by their starting year

(e.g., publication year), and train the model in the older entities and always test on

the latest ones. In the experiment, we incrementally add the training samples by

this chronological order, and for the paper impact pathway prediction, we reserve the

53

latest 10% samples as the test set; and for the author impact pathway prediction, we

reserve the latest 6% samples as the test set.

Root mean squared error (RMSE) between the actual citations and the predicted

ones is used as our accuracy evaluation. All the parameters, including the Gaussian

kernel’s bandwidth, are chosen through a grid search. All the experiments are run on

a Windows machine with four 3.5 GHz Intel Cores and 256 GB RAM.

Results and Analysis

1. Paper and author impact pathway prediction performance. We compare the

prediction accuracy of the following methods:

• ind-linear: train a liner ridge regression model for the impact in each year

separately.

• ind-kernel: train a kernel ridge regression model for the impact in each year

separately.

• MTL-robust: treat predicting the impact in each year as a task and apply the

robust multi-task learning algorithm proposed in [29].

• MLRL: the multi-label learning method proposed in [130], where model param-

eters are assumed to conform matrix-variate normal distribution.

• iBall-linear: jointly learn the linear regression models as in [73].

• iBall-kernel: jointly learn the kernel ridge regression models as in [73].

• iPath-lin: the proposed linear predictive model with prediction consistency and

parameter smoothness.

• iPath-ker: the proposed non-linear predictive model with prediction consistency

and parameter smoothness.

54

The RMSE results of the above methods for predicting the impact pathway of

both research papers and authors are in Figure 3.14 and 3.15, respectively. We can

make the following observations: (1) the non-linear methods (ind-kernel, iBall-kernel

and iPath-ker) generally perform better than the linear methods (ind-linear, MTL-

robust, MLRL, iBall-linear and iPath-lin), which reflects that the impacts could be

over simplified by a linear combination of the features. (2) Among the linear methods,

we find that MTL-robust does not help improve the prediction over ind-linear. The

possible reason is that MTL-robust has the assumption that the model parameters

admit a low-rank and sparse component, which might not be true in our case. The

iBall-linear performs better than ind-linear, which shows that the impact relation

exploitation can indeed help the forecasting. (3) Furthermore, learning a good relation

can further boost the performance, as MLRL has lower RMSE than iBall-linear. Our

iPath-lin performs the best among all the linear models, by integrating prediction

consistency and parameter smoothness. It is even comparable with ind-kernel when

training size is greater than 30% for the paper impact pathway prediction. (4) We

can make the similar observation in the non-linear case, as our iPath-ker performs

better than iBall-ker, which itself is better than ind-kernel.

To evaluate the statistical significance, we perform a t-test between iPath-ker and

the best competitor iBall-kernel with 30% of the training papers in the paper impact

pathway prediction, and the p-value is 0.01, which suggests the significance of the

improvement.

2. Sensitivity analysis. To investigate parameter sensitivity, we perform paramet-

ric studies with the two most important parameters in iPath, namely, α that controls

the importance of prediction consistency, and β that controls the importance of pa-

rameter smoothness. Figure 3.16 shows that the proposed model is stable in a large

range of both parameter spaces.

55

5 15 30 45 60 75 90
9

10

11

12

13

14

15

16

17

Training Size (%)

R
M

SE

ind−linear
ind−kernel
MTL−robust
MLRL
iBall−linear
iBall−kernel
iPath−lin
iPath−ker

Figure 3.14: RMSE comparison of all the

methods for paper impact pathway pre-

diction.

10 15 20 25 30 35

11.5

12

12.5

13

13.5

14

Training Size (%)

R
M

SE

ind−linear
ind−kernel
MTL−robust
MLRL
iBall−linear
iBall−kernel
iPath−lin
iPath−ker

Figure 3.15: RMSE comparison of all the

methods for author impact pathway pre-

diction.

0.001 0.01 0.1 1 10 100 1000 10000
9

9.5

10

10.5

11

11.5

12

12.5

13

13.5

14

α

R
M
SE

(a) RMSE vs. α

10 20 30 40 50 60 70 80 90 100
9

9.5

10

10.5

11

11.5

12

12.5

13

13.5

14

β

R
M
SE

(b) RMSE vs. β

Figure 3.16: Sensitivity study on iPath-lin: study the effect of the parameters α and

β in terms of RMSE.

3. Performance gain analysis. Let us take a closer investigation on where the

performance gain of the proposed iPath stems from. As we mention above, iPath

integrates both prediction consistency and parameter smoothness. We analyze how

they contribute to the performance gain. Table 3.4 shows the results of iPath-ker

methods on both the paper (60% training) and author (25% training) impact pathway

prediction. ‘Basic form’ sets α, β, γ and ε all to zero, essentially ind-kernel method;

56

‘Basic form + relation’ incorporates the relations among impacts; ‘Basic form +

relation + transition’ incorporates a known relation and the linear transition in the

parameter space; ‘Basic form + relation + transition + inferring’ considers them

all with an inferred relation. From the table, we can see that as we incrementally

incorporate the elements, the RMSE decreases gradually, which confirms that all

these elements are beneficial in improving the prediction performance.

RMSE Paper Impact Author Impact

Basic form 9.602 11.608

Basic form + relation 9.507 11.548

Basic form + relation + transition 9.335 11.489

Basic form + relation + transition + inferring 9.171 11.391

Table 3.4: Performance gain analysis of iPath. Smaller is better.

4. Robustness to noise in label graph. As iPath can learn a good relation for the

prediction from our prior knowledge about the relation, we want to see how robust it

is wrt the noise level in our prior knowledge. To this end, we input the same relation

matrix with noise to iBall (the matrix A) and iPath (the matrix A0). The noise is

added to each entry of the label matrix with value 0.1×NoiseLevel×rand, where

rand is a random number from 0 to 1. Figure 3.17 shows the RMSE results of both

iBall and iPath under different noise levels for paper impact pathway prediction with

30% training samples. We observe a sharp performance drop of iBall when noise is

added. In contrast, the proposed iPath degenerates gradually with the noise level.

This shows that iPath can learn a relatively good relation even if our prior knowledge

is noisy.

5. Convergence analysis. To see how fast the proposed iPath converges in practice,

we plot the objective function value vs. number of iterations for both paper (15%

57

0 1 2 3 4 5
9.5

10

10.5

11

11.5

12

12.5

13

13.5

14

Noise Level

R
M

SE

iBall−linear
iPath−lin

Figure 3.17: Robustness to noise on the label graph.

training samples) and author (10% training samples) impact pathway forecasting as

in Figure 3.18. We observe that iPath converges after 5-10 iterations.

1 5 10 15 20 25
3.64

3.66

3.68

3.7

3.72

3.74

3.76

3.78

3.8

3.82

3.84
x 105

Number of Iterations

O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
e

(a) Objective function value vs. # iterations

on paper impact pathway forecasting.

1 5 10 15 20 25 30
7.995

8

8.005

8.01

8.015

8.02
x 105

Number of Iterations

O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
e

(b) Objective function value vs. # itera-

tions on author impact pathway forecasting.

Figure 3.18: Convergence analysis of iPath.

3.3 Part-Whole Outcome Prediction

The great Greek philosopher Aristotle articulated more than 2,000 years ago that

“the whole is greater than the sum of its parts”. This is probably most evident in

58

teams, which, through appropriate synergy, promise a collective outcome (i.e., team

performance) that is superior than the simple addition of what each individual team

member could achieve (i.e., individual productivity). For example, in the scientific

community, the new breakthrough is increasingly resulting from the teamwork, com-

pared with individual researcher’s sole endevour [117]; in professional sports (e.g.,

NBA), the peak performance of a grass-root team is often attributed to the harmonic

teamwork between the team players rather than the individual player’s capability.

Beyond teams, the part-whole relationship also routinely finds itself in other dis-

ciplines, ranging from crowdsourcing (e.g., Community-based Question Answering

(CQA) sites [121]), collective decision-making in autonomous system (e.g., a self-

orchestrated swarm of drones4), to reliability assessment of a networked system of

components [122, 27].

From the algorithmic perspective, an interesting problem is to predict the outcome

of the whole and/or parts [58]. In organizational teams, it is critical to appraise the

individual performance, its contribution to the team outcome as well as the team’s

overall performance [81]. In the emerging field of the “science of science”, the dream

of being able to predict breakthroughs, e.g. predicting the likelihood of a researcher

making disruptive contributions and foreseeing the future impact of her research prod-

ucts (e.g., manuscripts, proposals, system prototypes) pervades almost all aspects of

modern science [31]. In Community-based Question Answering (CQA) sites, predict-

ing the long-term impact of a question (whole) and its associated answers (parts)

enables users to spot valuable questions and answers at an early stage. Despite much

progress has been made, the existing work either develop separate models for pre-

dicting the outcome of whole and parts without explicitly utilizing the part-whole

4CBS 60 minutes report: http://www.cbsnews.com/news/

60-minutes-autonomous-drones-set-to-revolutionize-military-technology/

59

http://www.cbsnews.com/news/60-minutes-autonomous-drones-set-to-revolutionize-military-technology/
http://www.cbsnews.com/news/60-minutes-autonomous-drones-set-to-revolutionize-military-technology/

0

0.05

0.1

0.15

0.2

0.25

Whole Part Overall

R
oo

t M
ea

n
Sq

ua
re

d
Er

ro
r

Separate

Sum

Lasso

Lasso w/ part-part interdependency

Figure 3.19: Prediction error comparison on Movie dataset. Lower is better. Best

Viewed in Color. The right two bars are the proposed methods, which encode the non-

linear part-whole relationship and the non-linearity with part-part interdependency

respectively.

relationship [73, 79], or implicitly assume the outcome of the whole is a linear sum of

the outcome of the parts [121], which might oversimplify the complicated part-whole

relationships (e.g., non-linearity).

The key to address these limitations largely lies in the answers to the following

questions, i.e., to what extent does the outcome of parts (e.g., individual productiv-

ity) and that of the whole (e.g., team performance) correlated, beyond the existing

linear, independency assumption? How can we leverage such potentially non-linear

and interdependent ‘coupling’ effect to mutually improve the prediction of the out-

come of the whole and parts collectively? This is exactly the focus of this work,

which is highly challenging for the following reasons. First (Modeling Challenge), the

relationship between the parts outcome and whole outcome might be complicated,

beyond the simple addition or linear combination. For example, the authors in [120]

60

empirically identified a non-linear correlation between the impacts of questions and

the associated answers, that is, the impact of a question is much more strongly corre-

lated with that of the best answer it receives, compared with the average impact of its

associated answers. However, how to leverage such non-linear relationship between

the parts and whole outcome has largely remained open. For teams, the team perfor-

mance might be mainly dominated by a few top-performing team members, and/or

be hindered by one or more struggling team members (i.e., the classic Wooden Bucket

Theory, which says that “A bucket (whole) can only fill with the volume of water the

shortest plank (parts) allows”). Moreover, the composing parts of the whole might

not be independent with each other. In a networked system, the composing parts

are connected with each other via an underlying network. Such part-part interdepen-

dency could have a profound impact on both the part outcome correlation as well as

each part’s contribution to the whole outcome. How can we mathematically encode

the non-linear part-whole relationship as well as part-part interdependency? Second

(Algorithmic Challenge), the complicated part-whole relationship (i.e., non-linearity

and interdependency) also poses an algorithmic challenge, as it will inevitably increase

the complexity of the corresponding optimization problem. How can we develop scal-

able algorithms whose theoretic properties are well-understood (e.g., the convergence,

the optimality, and the complexity)?

To address these challenges, in this dissertation, we propose a joint predictive

model named PAROLE to simultaneously and mutually predict the part and whole

outcomes. First, model generality, the proposed model is flexible in admitting a vari-

ety of linear as well as non-linear relationships between the parts and whole outcomes,

including maximum aggregation, linear aggregation, sparse aggregation, ordered sparse

aggregation and robust aggregation. Moreover, it is able to characterize part-part inter-

dependency via a graph-based regularization, which encourages the tightly connected

61

parts to share similar outcomes as well as have similar effect on the whole outcome.

Second, algorithm efficacy, we propose an effective and efficient block coordinate de-

scent optimization algorithm, which converges to the coordinate-wise optimum with

a linear complexity. The main contributions of this section can be summarized as

follows:

• Models. We propose a joint predictive model (PAROLE) that is able to admit a

variety of linear as well as non-linear part-whole relationships and encode the

part-part interdependency.

• Algorithms and Analysis. We propose an effective and efficient block co-

ordinate descent optimization algorithm that converges to the coordinate-wise

optimum with a linear complexity in both time and space.

• Empirical Evaluations. We conduct extensive empirical studies on several

real-world datasets and demonstrate that the proposed PAROLE achieves consis-

tent prediction performance improvement and scales linearly. See Fig. 3.19 for

some sampling results.

3.3.1 Problem Definition

The main symbols are summarized in Table 3.5. We use bold capital letters (e.g.,

A) for matrices and bold lowercase letters (e.g, w) for vectors. We index the elements

in a matrix using a convention similar to Matlab, e.g., A(:, j) is the jth column of

A, etc. The vector obtained by sorting the components in non-increasing order of

x is denoted by x↓. Such sorting operation can be defined by a permutation matrix

Px, i.e., Pxx = x↓. We use Km+ to denote the monotone non-negative cone, i.e.,

Km+ = {x ∈ Rn : x1 ≥ x2 ≥ . . . xn ≥ 0} ⊂ Rn
+. Similarly, we use Km for the

monotone cone.

62

Symbols Definition

Fo, Fp feature matrices for whole and part entities

yo, yp impact vectors for whole and part entities

O = {o1, o2, . . . , ono} set of whole entities

P = {p1, p2, . . . , pnp} set of part entities

φ(·) whole to parts mapping function

Gp the network connectivity among part entities

aij the contribution of part pj to whole oi

no/np number of whole/part entities

Agg(·) the function that aggregates parts outcome

ei predicted whole outcome using whole feature vs. pre-

dicted whole outcome using aggregated parts outcome

Table 3.5: Symbols for PAROLE

We consider predicting the outcome for both the whole and their composing parts.

Fig. 3.20 presents an illustrative example, which aims to predict the popularity (e.g.,

Facebook likes) of a particular movie (whole) and the popularities of the participating

actors/actresses (parts). We denote the set of whole entities by O = {o1, o2, . . . , ono},

and denote the set of part entities by P = {p1, p2, . . . , pnp}, where no and np are

the number of the whole and parts, respectively. To specify the part-whole associ-

ations, we also define a mapping function φ that maps a whole entity to the set of

its composing parts, e.g., φ(oi) = {pi1 , pi2 , . . . , pini
} (i.e., the edges between a movie

and actors/actresses in Fig. 3.20). Note that the two sets φ(oi) and φ(oj) might have

overlap. In the example of movies as whole entities, one actor could participate in

multiple movies. Let Fo be the feature matrix for the whole entities, where the ith row

63

Fo(i, :) is the feature vector for the ith whole entity. Similarly, let Fp be the feature

matrix for the part entities, where the jth row Fp(j, :) is the feature vector for the jth

part entity. The outcome vector of the whole entities is denoted as yo and the out-

come vector of the part entities is denoted as yp. In addition, we might also observe a

network connectivity among the part entities, denoted as Gp. In the movie example,

the network Gp could be the collaboration network among the actors/actresses (the

connections among the actors/actresses in Fig. 3.20).

With the above notations, we formally define our Part-Whole Outcome Pre-

diction problem as follows:

Problem 4. Part-Whole Outcome Prediction

Given: the feature matrix for the whole/part entities Fo/Fp, the outcome vector for

the whole/part entities yo/yp, the whole to part mapping function φ, and the

parts’ network Gp (optional);

Predict: the outcome of new whole and parts’ entities.

3.3.2 Proposed Model – PAROLE

In this subsection, we present our joint predictive model PAROLE to simultaneously

and mutually predict the outcome of the whole and parts. We first formulate it as a

generic optimization problem, and then present the details on how to instantiate the

part-whole relationship and part-part interdependency, respectively.

A Generic Joint Prediction Framework In order to fully embrace the complex-

ity of the part-whole and part-part relationship, our joint predictive model should

meet the following desiderata.

64

Movie (Whole)

Actor/Actress (Part)

𝐹𝑝(1, :)

𝐹𝑝(2, :)

𝐹𝑝(3, :)

𝐹𝑝(4, :)𝐹𝑝(5, :)

𝐹𝑜(1, :) 𝐹𝑜(2, :)

𝑱𝒑𝒑

𝑱𝒑𝒐

𝑱𝒑

𝑱𝒐

Figure 3.20: An illustrative example of part-whole outcome prediction where movies

are the whole entities and the actors/actresses are the part entities. The four shad-

owed ellipses correspond to the key sub-objectives in our proposed PAROLE model

(Eq. (3.34)).

First (part-whole relationship), the outcome of the whole and that of the parts

might be strongly correlated with each other. For example, the team outcome is

usually a collective effort of the team members. Consequently, the team performance

is likely to be correlated/coupled with each individual’s productivity, which might

be beyond a simple linear correlation. This is because a few top-performing team

members might dominate the overall team performance, or reversely, a few struggling

team members might drag down the performance of the entire team. Likewise, in

scientific community, a scientist’s reputation is generally built by one or a few of her

highest-impact work. Our joint predictive model should have the capability to encode

such non-linear part-whole relationships, so that the prediction of the parts outcome

and that of the whole can mutually benefit from each other.

Second (part-part interdependency), the composing parts of a whole entity might

65

be interdependent/interconnected via an underlying network, e.g., the collaboration

network among the actors/actresses. The part-part interdependency could have a

profound impact on the part-whole outcome prediction performance. That is, not

only might the closely connected parts have similar effect on the whole outcome,

but also these parts are very likely to share similar outcomes between themselves.

Therefore, it is desirable to encode the part-part interdependency in the joint model

to boost the prediction performance.

With these design objectives in mind, we propose a generic framework for the

joint predictive model as follows:

min
wo,wp

J =
1

no

no∑
i=1

L[f(Fo(i, :),wo),yo(i))]︸ ︷︷ ︸
Jo: predictive model for whole entities

+
1

np

np∑
i=1

L[f(Fp(i, :),wp),yp(i))]︸ ︷︷ ︸
Jp: predictive model for part entities

+
α

no

no∑
i=1

h(f(Fo(i, :),wo),Agg(φ(oi)))︸ ︷︷ ︸
Jpo: part-whole relationship

+
β

np

np∑
i=1

np∑
j=1

Gp
ijg(f(Fp(i, :),wp), f(Fp(j, :),wp))︸ ︷︷ ︸
Jpp: part-part interdependency

+ γ(Ω(wo) + Ω(wp))︸ ︷︷ ︸
Jr: parameter regularizer

(3.34)

where the objective function is a sum of five sub-objective functions. The first two

sub-objectives Jo and Jp (the two blue shadowed ellipses in Fig. 3.20) minimize the

training loss for whole and parts outcome predictions, where f(·, ·) is the prediction

function parameterized by wo and wp. The prediction function could be either linear

or non-linear; and L(·) is a loss function, e.g., squared loss for regression or logistic loss

for classification. The core of the objective function is the third term Jpo (the green

shadowed ellipse in Fig. 3.20) and the fourth term Jpp (the pink shadowed ellipse in

Fig. 3.20). Jpo characterizes the part-whole relationship, where Agg(·) is a function

that aggregates the predicted outcomes of all the composing parts for the whole to a

66

single outcome, e.g., maximum, summation/mean or more complicated aggregations;

and h(·) function measures the correlation between the predicted whole outcome and

the aggregated predicted parts outcome. In Jpp, the function g(·) characterizes the

relationship of the predicted outcomes of parts i and j based on their connectivity Gp
ij,

such that tightly connected parts would share similar outcomes. Lastly, Jr regularizes

wo and wp to prevent overfitting. The regularization parameters α, β and γ are used

to balance the relative importance of each aspect.

Remarks: Depending on the specific choices of the aggregation function Agg(·)

and the h(·) function, the proposed model in Eq. (3.34) is able to admit a variety of

part-whole relationships, which we elaborate below.

Modeling Part-Whole Relationships

Overview. In this subsection, we give the instantiations for a variety of part-whole

relationships. For each whole entity oi, define ei as follows:

ei = Fo(i, :)wo − Agg(oi) (3.35)

which measures the difference between the predicted whole outcome using whole

features (i.e., Fo(i, :)wo) and predicted whole outcome using aggregated parts out-

come (i.e., Agg(oi)). Our proposed model will be able to characterize a variety of

part-whole relationship, by using (a) different aggregation functions Agg(·) with aug-

mented regularizations; and (b) different loss functions on ei (e.g., squared loss or

robust estimator).

Maximum aggregation. Let us first consider using maximum as the aggre-

gation function, which can model the correlation between the whole outcome and

the maximum parts outcome. Given that the max function is not differentiable, we

propose to approximate it with a differentiable function that will largely facilitate

67

the optimization process. In details, we propose to use the smooth “soft” maxi-

mum function, which was first used in economic literature for consumer choice [100]:

max(x1, x2, . . . , xn) ≈ ln(exp(x1) + exp(x2) + . . . + exp(xn)), where the maximum is

approximated by summing up the exponential of each item followed by a logarithm.

With this, we define the maximum aggregation function as follows:

Agg(oi) = ln(
∑

j∈φ(oi)

exp(Fp(j, :)wp)) (3.36)

which approximates the maximum predicted parts outcome. The part-whole relation-

ship with maximum aggregation can be formulated as follows:

Jpo =
α

2no

no∑
i=1

e2
i (3.37)

where we use the squared loss to measure the difference between the predicted whole

outcome and the predicted approximated maximum parts outcome.

For the remaining part-whole relationships, we instantiate Agg(oi) using a linear

function as follows:

Agg(oi) =
∑

j∈φ(oi)

aijF
p(j, :)wp (3.38)

where each aij is the weight of a particular part j’s contribution to the whole oi’s

outcome. Defining ai as the vector whose components are aij, j ∈ φ(oi) and by

imposing (i) different loss functions on ei, and/or (ii) different norms on ai, we can

model either linear or nonlinear part-whole relationships.

Linear aggregation. In this scenario, the whole outcome is a weighted linear

combination of the parts outcome, where the weights determine each individual part’s

contribution to the whole outcome. The intuition of linear aggregation is that , in

contributing to the final whole outcome, some parts play more important roles than

the others. This part-whole relationship can be formulated as follows:

Jpo =
α

2no

no∑
i=1

e2
i (3.39)

68

where we use the squared loss to measure the difference between the whole outcome

and the aggregated parts outcome.

Remark: this formulation generalizes several special part-whole relationships. The

expression that “the whole is the sum of its parts” is a special case of Eq. (3.39) where

various aij is 1, which we refer to as Sum in the empirical study. The average coupling

formulated in [121] is also its special case with aij = 1
|oi| . Instead of fixing the weights,

Eq. (3.39) allows the model to learn to what extent each part contributes to the

prediction of the whole outcome. Nonetheless, in all these variants, we have assumed

that the part outcomes always have a linear effect on the whole outcome.

Sparse aggregation. The above linear aggregation assumes that each part would

contribute to the whole outcome, which might not be the case as some parts have little

or no effect on the whole outcome. This scenario can be seen in large teams, where

the team performance could be primarily determined by a few members, who could

either make or break the team performance. To encourage such a sparse selection

among the composing parts of a whole entity, a natural choice is to introduce the l1

norm on the vector ai [106]:

Jpo =
α

no

no∑
i=1

(
1

2
e2
i + λ|ai|1) (3.40)

where the l1 norm can shrink some part contributions to exactly zero and the param-

eter λ controls the degree of sparsity.

Ordered sparse aggregation. In some cases, the team performance (i.e., the

whole outcome) is determined by not only a few key members, but also the struc-

tural hierarchy between such key members within the organization. To model such

parts performance ranking in addition to the sparse selection, we adopt the ordered

weighted l1 norm (OWL) [126] that is able to give more weights to those parts with

bigger effect on the whole outcome. Such part-whole relationship can be formulated

69

as follows:

Jpo =
α

no

no∑
i=1

(
1

2
e2
i + λΩw(ai)) (3.41)

where Ωw(x) =
∑n

i=1 |x|[i]wi = wT |x|↓ is the ordered weighted l1 norm, where |x|[i] is

the i-th largest component of the vector |x| and w ∈ Km+ is a vector of non-increasing

non-negative weights.

Robust aggregation. In all the above formulations, we model the difference

between the whole outcome and the aggregated parts outcome using squared loss,

which is prone to outlying parts/wholes. To address this issue, we employ robust

regression models [68] to reduce the effect of outliers as follows:

Jpo =
α

no

no∑
i=1

ρ(ei) (3.42)

where ρ(·) is a nonnegative and symmetric function that gives the contribution of each

residual ei to the objective function. In this work, we consider two robust estimators,

namely Huber and Bisquare estimators as follows:

HH
HHH

HHH
HH

Method

Case
|e| ≤ t |e| > t

Huber ρH(e) 1
2
e2 t|e| − 1

2
t2

Bisquare ρB(e) t2

6

{
1− [1− (e

t
)2]3
}

t2

6

where the value t is a tuning constant. Smaller t values have more resistance to

outliers.

Modeling Part-Part Interdependency As mentioned in Sec. 3.3.2, the part-part

interdependency, if exists, can play two roles in the part-whole outcome predictions,

i.e., closely connected parts would (A) have similar effect on the whole outcome and

(B) share similar part outcomes between themselves.

70

A - The effect on the whole outcome: the closely connected parts might

have similar impact on the whole outcome. It turns out we can use the same method

to model such a part-part effect for various aggregation methods. Let us take sparse

aggregation as an example and instantiate the term Jpo in Eq. (3.34) as follows:

Jpo =
α

no

no∑
i=1

1

2
e2
i + λ|ai|1 +

1

2

∑
k,l∈φ(oi)

Gp
kl(a

i
k − ail)2

 (3.43)

where if the two parts k and l of oi are tightly connected, i.e., Gp
k,l is large, then the

difference between their impacts on the whole outcome, aik and ail, is small.

B - The effect on the parts’ outcomes: the tightly connected parts might

share similar outcomes themselves. Such parts outcome similarity can be instantiated

by a graph regularization as follows:

Jpp =
β

2np

np∑
i=1

np∑
j=1

Gp
ij(F

p(i, :)wp − Fp(j, :)wp)2 (3.44)

where tightly connected two parts i and j with large Gp
k,l is encouraged to be closer

to each other in the output space, i.e., with similar predicted outcomes.

3.3.3 Optimization Algorithm

In this subsection, we propose an effective and efficient block coordinate descent

optimization algorithm to solve the joint prediction framework in Eq. (3.34), followed

by the convergence and complexity analysis.

Block Coordinate Descent Algorithm The proposed Eq. (3.34) is general, being

able to admit a variety of different separate models (Jo and Jp) as well as part-whole

relationship (Jpo). Let us first present our algorithm to solve a specific instance of

Eq. (3.34) by instantiating it using linear predictive functions, squared loss and sparse

71

aggregation as follows:

min
wo,wp

1

2no

no∑
i=1

(Fo(i, :)wo − yo(i))2 +
1

2np

np∑
i=1

((Fp(i, :)wp − yp(i))2

+
β

2np

np∑
i=1

np∑
j=1

Gp
ij(F

p(i, :)wp − Fp(j, :)wp)2 +
γ

2
(‖wo‖2

2 + ‖wp‖2
2)

+
α

no

no∑
i=1

1

2
e2
i + λ|ai|1 +

1

2

∑
k,l∈φ(oi)

Gp
kl(a

i
k − ail)2


(3.45)

In the formulation, we identify three coordinate blocks, namely wo, wp and various

aij. We propose a block coordinate descent (BCD) algorithm to optimize Eq. (3.45)

by updating one coordinate block while fixing the other two.

1. Updating wo while fixing others: Observing that only Jo, Jpo and Jr are

functions of wo, we have

∂J
∂wo

=
∂Jo
∂wo

+
∂Jpo
∂wo

+
∂Jr
∂wo

=
1

no
(Fo)′(Fowo − yo) + γwo +

α

no
(Fo)′(Fowo −MFpwp)

(3.46)

where M is a no by np sparse matrix with M(i, j) = aij, for j ∈ φ(oi). We then update

wo as wo ← wo − τ ∂J
∂wo , where τ is the step size.

2. Updating wp while fixing others: The sub-objective functions that are

related to wp are Jp, Jpp, Jpo and Jr. Therefore,

∂J
∂wp

=
∂Jp
∂wp

+
∂Jpp
∂wp

+
∂Jpo
∂wp

+
∂Jr
∂wp

=
1

np
(Fp)′(Fpwp − yp) +

β

np
(Fp)′LpFpwp + γwp

− α

no
(Fp)′M′(Fowo −MFpwp)

(3.47)

where Lp is the Laplacian of the graph Gp [3]. Similarly, wp can be updated by

wp ← wp − τ ∂J
∂wp .

72

3. Updating aij while fixing others: Let us fix a whole oi and the sub-problem

with respect to ai becomes:

min
ai

1

2
e2
i + λ|ai|1 +

1

2

∑
k,l∈φ(oi)

Gp
kl(a

i
k − ail)2

(3.48)

Observing that the sub-problem is a composite of a non-smooth convex function

(λ|ai|1) and a differentiable convex function (the remaining terms), we update ai

using the proximal gradient descent method [7]. We first take a gradient step by

moving ai along the negative direction of the derivative of the smooth part w.r.t. ai,

as follows:

z = ai − τ [ei(−Fp(φ(oi), :)w
p) + Lpiai] (3.49)

where Lpi is a shorthand notation for the Laplacian of the subgraph Gp(φ(oi), φ(oi)).

Next, we compute the proximal-gradient update for the l1 norm using soft-thresholding

as ai ← Sτλ(z), where the soft-thresholding operator is defined as follows:

[St(z)]j = sign(zj)(|zj| − t)+, (3.50)

where we use (x)+ as a shorthand for max{x, 0}.

We will cycle through the above three steps to update the three coordinate blocks

until convergence. The algorithm is summarized in Algorithm 4.

Remarks: we want to emphasize that Algorithm 4 provides a general optimiza-

tion framework that not only works for the formulation with sparse aggregation in

Eq. (3.45), but is also applicable to the other part-whole relationships introduced in

Sec. 3.3.2. The only difference is that, since Jpo varies for each part-whole relation-

ship, its derivatives w.r.t. the coordinate blocks would also change. Next, for each

of the other part-whole relationships, we give their derivative or proximal gradient

w.r.t. the three coordinate blocks.

73

Algorithm 4: PAROLE - Part-Whole Outcome Predictions

Input: (1) the feature matrix for whole/part entities Fo/Fp, (2) outcome

vector for the whole/part entities yo/yp, (3) the whole to parts

mapping function φ, (4) the part-part network Gp (optional), (5)

parameters α, β, γ, λ, τ .

Output: Model parameters wo and wp.

1 Initialize wo and wp and aj, j ∈ φ(oi), i = 1, . . . , no ;

2 while Not converged do

3 Update wo ← wo − τ ∂J
∂wo ;

4 Update wp ← wp − τ ∂J
∂wp ;

5 Update ai via proximal gradient descent for i = 1, . . . , no;

6 end

1. Maximum aggregation: the derivatives of Jpo w.r.t. wo and wp are as

follows:

∂Jpo
∂wo

=
α

no

no∑
i=1

ei(F
o(i, :))′

∂Jpo
∂wp

=
α

no

no∑
i=1

ei ·
∑

j∈φ(oi)
(Fp(j, :))′ỹpi∑

j∈φ(oi)
ỹpi

where we denote ỹpi = exp(Fp(j, :)wp).

2. Linear aggregation: the derivatives of Jpo w.r.t. wo and wp are the same as

in the sparse aggregation case. Its derivative w.r.t. ai is same as in Eq. (3.49) without

the following proximal-gradient update.

3. Ordered sparse aggregation: the only difference from the sparse aggregation

lies in the proximal-gradient update for the OWL norm, which can be computed as

follows [126]:

proxΩw
(v) = sign(v)�

(
PT
|v|projRn

+
(projKm

(|v|↓ −w))
)

(3.51)

74

In the above equation, to compute proxΩw
(v), we first compute the Euclidean

project of (|v|↓ − w) onto Km using the linear time pool adjacent violators (PAV)

algorithm [87]. This is followed by a projection onto the first orthant by a clipping

operation. The resulting vector is sorted back according to the permutation matrix

P|v| and then element-wisely multiplied by the signs of v.

4. Robust aggregation: we compute the gradient of Jpo using chain rule as

follows:

∂Jpo
∂wo

=
α

no

no∑
i=1

∂ρ(ei)

∂ei

∂ei
∂wo

,
∂Jpo
∂wp

=
α

no

no∑
i=1

∂ρ(ei)

∂ei

∂ei
∂wp

,

∂Jpo
∂ai

=
α

no
[
∂ρ(ei)

∂ei

∂ei
∂ai

+ Lpiai]

where ∂ei
∂wo = Fo(i, :)′, ∂ei

∂wp = −
∑

j∈φ(oi)
ajF

p(j, :)′, and ∂ei
∂ai

= −Fp(φ(oi), :)w
p; and

the gradient of the Huber and Bisquare estimator can be computed as follows:

HHH
HHH

HHHH
Method

Case
|e| ≤ t |e| > t

Huber ∂ρH(e)
∂e

e t · sign(e)

Bisquare ∂ρB(e)
∂e

e[1− (e/t)2]2 0

Proofs and Analysis In this subsection, we analyze the proposed PAROLE algo-

rithm in terms of its convergence, optimality and complexity.

First, building upon the proposition from [107], we have the following theorem

regarding the proposed Algorithm 4, which says that under a mild assumption, it

converges to a local optimum (i.e., coordinate-wise minimum) of Eq. (3.45).

Theorem 4. (Convergence and Optimality of PAROLE). As long as −γ is not an

eigenvalue of α+1
no

Fo′Fo or 1
np

Fp′Fp+βFp′LpFp+ α
no

FpM′MFp, Algorithm 4 converges

to a coordinate-wise minimum point.

75

Proof. Omitted for brevity.

Next, we analyze the complexity of Algorithm 4, which is summarized in Lemma 3.

Lemma 3. (Complexity of PAROLE). Algorithm 4 takes O(T (nodo+npdp+mpo+mpp))

time for linear aggregation, maximum aggregation, sparse aggregation, and robust ag-

gregation, and it takes O(T (nodo + npdp + Cnpdp + mpp)) for ordered sparse aggre-

gation, where do and dp are the dimensionality of the whole and part feature vec-

tors, mpo =
∑

i |φ(oi)| is the number of associations between the whole and parts

and mpp is the number of edges in the part-part network, T is the number of itera-

tions, C = maxi log(|φ(oi)|) is a constant. The space complexity for Algorithm 4 is

O(nodo + npdp +mpo +mpp) for all the part-whole relationships.

Proof. Omitted for brevity.

Remarks: suppose we have a conceptual part-whole graph G = {O,P}, which

has no nodes for the whole entities and np nodes for the part entities, mpo links from

whole nodes to their composing parts nodes and mpp links in the part-part networks.

The Lemma 3 says that PAROLE scales linearly w.r.t. the size of this part-whole graph

in both time and space.

3.3.4 Experiments

In this subsection, we present the empirical evaluation results. The experiments

are designed to evaluate the following aspects:

• Effectiveness: how accurate is the proposed PAROLE algorithm for predicting the

outcomes of parts and whole?

• Efficiency: how fast and scalable is the proposed PAROLE algorithm?

76

Datasets The real-world datasets used for evaluations are as follows:

CQA. We use Mathematics Stack Exchange (Math) and Stack Overflow (SO) data

from [121]. The questions are whole and answers are parts both with voting scores

as outcome. For each question, we treat all the answers it receives as its composing

parts. The extracted features are described in [121].

DBLP. DBLP dataset provides the bibliographic information of computer science

research papers. We treat authors as whole with h-index as outcome and papers as

parts with citation counts as outcome. For each author, his/her composing parts

are the papers s/he has co-authored. Paper features include temporal attributes and

author features include productivity and social attributes.

Movie. We crawl the metadata of 5,043 movies with budget information5 from

IMDb website. The meta information includes movie title, genres, cast, budget, etc.

We treat movies as whole and the actors/actresses as parts both with the number of

Facebook likes as the outcome. For each movie, we treat its cast as the composing

parts. Movie features include contextual attributes and actors/actresses features

include productivity and social attributes.

The statistics of these datasets are summarized in Table 3.6. For each dataset, we

first sort the whole in chronological order, gather the first x percent of whole and their

corresponding parts as training examples and always test on the last 10% percent of

whole and their corresponding parts. The percentage of training x could vary. The

root mean squared error (RMSE) between the actual outcomes and the predicted

ones is adopted for effectiveness evaluation. The parameters are set for each method

on each dataset via a grid search.

Repeatability of experimental results: all the datasets are publicly available. We

have released the datasets and code of the proposed algorithms through authors’

5http://www.the-numbers.com/movie/budgets/all

77

http://www.the-numbers.com/movie/budgets/all

Data Whole Part # of whole # of part

Math Question Answer 16,638 32,876

SO Question Answer 1,966,272 4,282,570

DBLP Author Paper 234,681 129,756

Movie Movie Actors/Actresses 5,043 37,365

Table 3.6: Summary of Datasets for PAROLE.

website. The experiments are performed on a Windows machine with four 3.5GHz

Intel Cores and 256GB RAM.

Effectiveness Results We compare the effectiveness of the following methods:

1. Separate: train a linear regression model for parts and whole separately.

2. Sum: a joint model with Sum part-whole relationship.

3. Linear: our PAROLE with linear aggregation.

4. Max: our PAROLE with maximum aggregation.

5. Huber: our PAROLE with robust Huber estimator.

6. Bisquare: our PAROLE with robust Bisquare estimator.

7. Lasso: our PAROLE with sparse aggregation.

8. OWL: our PAROLE with ordered sparse aggregation.

A - Outcome prediction performance: the RMSE results of all the compar-

ison methods for predicting the outcomes of parts and whole on all the datasets are

shown from Fig. 3.21 to Fig. 3.24. We draw several interesting observations from

these results. First, all the joint prediction models outperform the separate model

78

in most cases, which suggests that the part outcome indeed has a profound impact

on the whole outcome, and vice versa. Second, among the joint prediction models,

in general, the linear methods (Sum and Linear) are not as good as the non-linear

counterparts (Max, Huber, Bisqaure, Lasso and OWL), and in some cases (Fig. 3.21b,

Fig. 3.23b), the linear joint models are even worse than the separate method, which

indicates that the part-whole relationship is indeed more complicated than the linear

aggregation. Third, among the non-linear methods, a consistent observation across

all the datasets is that Lasso and OWL are the best two methods in almost all the

cases. This suggests that the whole outcome is mostly dominated by a few, often

high-performing, parts.

1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Percentage of Training

R
oo

t M
ea

n
Sq

ua
re

d
Er

ro
r

RMSE of Questions

Separate
Sum
Linear
Max
Huber
Bisquare
Lasso
OWL

(a) RMSE of question out-

come prediction.

1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

Percentage of Training

R
oo

t M
ea

n
Sq

ua
re

d
Er

ro
r

RMSE of Answers

Separate
Sum
Linear
Max
Huber
Bisquare
Lasso
OWL

(b) RMSE of answer out-

come prediction.

1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

Percentage of Training

R
oo

t M
ea

n
Sq

ua
re

d
Er

ro
r

Overall RMSE

Separate
Sum
Linear
Max
Huber
Bisquare
Lasso
OWL

(c) Overall RMSE.

Figure 3.21: RMSE comparisons on Math. Best viewed in color. From left to right:

Separate, Sum, Linear, Max, Huber, Bisquare, Lasso and OWL.

B - The effect of part-part interdependency: in the proposed joint pre-

diction model, we have hypothesized that the part-part interdependency might help

boost the predictions in two ways, i.e., regularizing the parts’ contribution to the

whole outcome as well as part outcome correlation. Here, we verify and validate to

what extent these two aspects contribute to the performance gain, when such part-

part interdependency information is available. Fig. 3.25 shows the results of Lasso

79

1 1.5 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Percentage of Training

R
oo

t M
ea

n
Sq

ua
re

d
Er

ro
r

RMSE of Questions

Separate
Sum
Linear
Max
Huber
Bisquare
Lasso
OWL

(a) RMSE of question out-

come prediction.

1 1.5 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Percentage of Training

R
oo

t M
ea

n
Sq

ua
re

d
Er

ro
r

RMSE of Answers

Separate
Sum
Linear
Max
Huber
Bisquare
Lasso
OWL

(b) RMSE of answer out-

come prediction.

1 1.5 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Percentage of Training

R
oo

t M
ea

n
Sq

ua
re

d
Er

ro
r

Overall RMSE

Separate
Sum
Linear
Max
Huber
Bisquare
Lasso
OWL

(c) Overall RMSE.

Figure 3.22: RMSE comparisons on SO. Best viewed in color. From left to right:

Separate, Sum, Linear, Max, Huber, Bisquare, Lasso and OWL.

1 2 3 4
0

0.5

1

1.5

Percentage of Training

R
oo

t M
ea

n
Sq

ua
re

d
Er

ro
r

RMSE of Authors

Separate
Sum
Linear
Max
Huber
Bisquare
Lasso
OWL

(a) RMSE of author out-

come prediction.

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Percentage of Training

R
oo

t M
ea

n
Sq

ua
re

d
Er

ro
r

RMSE of Papers

Separate
Sum
Linear
Max
Huber
Bisquare
Lasso
OWL

(b) RMSE of paper out-

come prediction.

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Percentage of Training

R
oo

t M
ea

n
Sq

ua
re

d
Er

ro
r

Overall RMSE

Separate
Sum
Linear
Max
Huber
Bisquare
Lasso
OWL

(c) Overall RMSE.

Figure 3.23: RMSE comparisons on DBLP. Best viewed in color. From left to right:

Separate, Sum, Linear, Max, Huber, Bisquare, Lasso and OWL.

30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Percentage of Training

R
oo

t M
ea

n
Sq

ua
re

d
Er

ro
r

RMSE of Movies

Separate
Sum
Linear
Max
Huber
Bisquare
Lasso
OWL

(a) RMSE of movie out-

come prediction.

30 40 50 60 70
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Percentage of Training

R
oo

t M
ea

n
Sq

ua
re

d
Er

ro
r

RMSE of Actors

Separate
Sum
Linear
Max
Huber
Bisquare
Lasso
OWL

(b) RMSE of actors/actress

outcome prediction.

30 40 50 60 70
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Percentage of Training

R
oo

t M
ea

n
Sq

ua
re

d
Er

ro
r

Overall RMSE

Separate
Sum
Linear
Max
Huber
Bisquare
Lasso
OWL

(c) Overall RMSE.

Figure 3.24: RMSE comparisons on Moive. Best viewed in color. From left to right:

Separate, Sum, Linear, Max, Huber, Bisquare, Lasso and OWL.

80

on the Movie dataset with 50% training data. The network among the parts, i.e.,

actors/actresses, is their collaboration network. The “PAROLE-Basic” does not use

the network information. The “PAROLE-GraphForWhole” applies the graph regular-

ization on the parts’ contribution to the whole, which brings a 8% overall prediction

error reduction. On top of that, “PAROLE-GraphForWhole&Parts” uses the graph

regularization on the parts’ outcome, which brings a 14.5% decrease in the overall

prediction error.

C - Convergence analysis: Fig. 3.26 shows the objective function value vs. the

number of iterations on the SO dataset using OWL with 5% training data. As we

can see, the proposed PAROLE algorithm converges very fast, after 25-30 iterations.

Whole Part Overall0

0.05

0.1

0.15

0.2

0.25

R
oo

t M
ea

n
Sq

ua
re

d
Er

ro
r

PAROLE−Basic
PAROLE−GraphForWhole
PAROLE−GraphForWhole&Parts

Figure 3.25: Performance gain analysis on

Movie.

0 10 20 30 40 50 60
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
O

bj
ec

tiv
e

Fu
nc

tio
n

Va
lu

e

Number of Iterations

Figure 3.26: Convergence analysis on

SO.

D - Sensitivity analysis: to investigate the parameter sensitivity, we perform

parametric studies with the two most important parameters in PAROLE, i.e., α that

controls the importance of part-whole relationship and β that controls the importance

of part-part interdependency on the parts outcome. The bowl shaped surface in

Fig. 3.27 suggests that the proposed model can achieve good performance in a large

volume of the parameter space.

81

0.10.20.30.40.50.60.70.8
0.9 1 1 2 3 4 5 6 7 8 9 10

0.125

0.13

0.135

0.14

0.145

βα

R
M
SE

Figure 3.27: RMSE with varying α and β

of Lasso on Movie.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 104

0

5

10

15

20

25

30

35

40

45

50

no + np + mpo

R
un

ni
ng

 T
im

e
(S

ec
on

ds
)

Linear
Max
Huber
Bisquare
Lasso
OWL

Figure 3.28: Scalability plot on SO.

Efficiency Results Fig. 3.28 shows the running time of all the proposed methods

with varying size of training data (no + np +mpo). We can see that all the proposed

methods scale linearly, which is consistent with Lemma 3. OWL takes the longest

time due to the additional sorting operation in the proximal-gradient update for the

OWL norm.

82

Chapter 4

TEAM PERFORMANCE OPTIMIZATION

In this chapter, we introduce our work on team performance optimization [75,

77, 76, 20]. We start with the problem of team member replacement, to recommend

a good candidate to replace a churning team member and introduce a graph kernel

based algorithm that considers both the structural matching and skill matching. We

then extend this solution to other team enhancement scenarios. We also work towards

real-time team optimization by leveraging reinforcement learning techniques.

4.1 Team Member Replacement

In his world-widely renowned book “The Science of the Artificial” [104], Nobel

laureate Herbert Simon pointed out that it is more the complexity of the environment,

than the complexity of the individual persons, that determines the complex behavior

of humans. The emergence of online social network sites and web 2.0 applications

provides a new connected environment/context, where people interact and collaborate

with each other as a team to collectively perform some complex tasks.

A promising algorithmic approach to team composition treats a team as a sub-

graph embedded in a larger social network. Prior research has focused on assembling

a team from scratch while satisfying the skill requirements at minimum communica-

tion cost (e.g., diameter and minimum spanning tree) [67]. If the tasks arrive in an

online fashion, the workload balance among the people needs to be considered [2].

In practical scenarios, there are more realistic requirements in the team formation,

e.g., inclusion of a designated leader and size of a team [96]. With the increasing

constraints, the team formation problem is NP-complete. Prior work to formulate

83

automated ways of forming a team has used heuristic approaches (e.g., RarestFirst

and SteinerTree) but so far lacks efficient solutions [67]. Our work differs from pre-

vious efforts in three ways: (1) we alter the composition of an existing team based

on new requirements; (2) we solve the problem in a principled approach with the

notation of graph kernel; and (3) we design a set of efficient algorithms.

Among others, the churn of team members is a common problem across many

application domains. To name a few, an employee in a software or sales team might

decide to leave the organization and/or be assigned to a new task. In a law enforce-

ment mission, a SWAT team might lose certain task force due to the fatality or injury.

In professional sports (e.g., NBA), the rotation tactic between the benches could play

a key role on the game outcome. In all these cases, the loss of the key member (i.e.,

the irreplaceable) might bring the catastrophic consequence to the team performance.

How can we find the best alternate (e.g., from the other members within the organi-

zation), when a team member becomes unavailable? This is the central question this

work aims to answer. However, despite the frequency with which people leave a team

before a project/task is complete and the resulting disruption [125], replacements are

often found opportunistically and are not necessarily optimal.

We conjecture there will be less disruption when the team member who leaves

is replaced with someone with similar relationships with the other team members.

This conjecture is inspired by some recent research which shows that team members

prefer to work with people they have worked with before [54] and that distributed

teams perform better when members know each other [33]. Furthermore, research

has shown that specific communication patterns amongst team members are critical

for performance [24]. Thus, in addition to factors such as skill level, maintaining the

same or better level of familiarity and communication amongst team members before

and after someone leaves should reduce the impact of the departure. In other words,

84

for team member replacement, the similarity between individuals should be measured

in the context of the team itself. More specifically, a good team member replacement

should meet the following two requirements. First (skill matching), the new member

should bring a similar skill set as the current team member to be replaced. Second

(structure matching), the new member should have a similar network structure as the

current team member in connecting the rest of the team members.

Figure 4.1: The team graphs before and after Jiawei Han takes Philip S. Yu’s place.

See subsection 4.1.4 for detailed explanations.

Armed with this conjecture, we formally formulate the Team Member Re-

placement problem by the notation of graph similarity/kernel. By modeling the

team as a labeled graph, the graph kernel provides a natural way to capture both the

skill and structure match as well as the interaction of both. However, for a network

with n individuals, a straightforward method would require O(n) graph kernel compu-

tations for one team member replacement, which is computationally intractable. For

85

example, for the DBLP dataset with almost 1M users (i.e., n ≈ 1, 000, 000), we found

that it would take 6,388s to find one replacement for a team of size 10. To address the

computational challenges, we propose a family of fast algorithms by carefully design-

ing the pruning strategies and exploring the smoothness between the existing and the

new teams. We perform the extensive experimental evaluations to demonstrate the

effectiveness and efficiency of our methods. Specifically, we find that (1) by encoding

both the skill and structural matching, it leads to a much better replacement result.

Compared with the best alternative choices, we achieve 27% and 24% net increase in

average recall and precision, respectively; (2) our fast algorithms are orders of mag-

nitude faster and scale sub-linearly. For example, our pruning strategy alone leads

up to 1,709× speed-up, without sacrificing any accuracy.

The main contributions of this work are as follows.

1 Problem Formulation. We formally define the Team Member Replace-

ment problem, to recommend a good candidate when a team member is un-

available in the context of networks where nodes carrying on multiple labels

(skills) and edges representing social structures.

2 Algorithms and Analysis. We solve the problem by introducing graph ker-

nels and propose a family of effective and scalable algorithms for Team Mem-

ber Replacement; and analyze its correctness and complexity.

3 Experimental Evaluations. We perform extensive experiments, including

user studies and case studies, on real world datasets, to validate the effectiveness

and efficiency of our methods. (See an example in Figure 4.1.)

86

Symbols Definition

G := {A,L} the entire social network

An×n the adjacency matrix of G

Ln×l skill indicator matrix

T the team member index

G(T) the team network indexed by its members T

di the degree of the ith node in A

l the total number of skills

t the team size, i.e., t = |T |

n the total number of individuals in A

m the total number of connections in A

Table 4.1: Symbols of Team Member Replacement

4.1.1 Problem Definitions

Table 4.1 lists the main symbols used throughout this work. We describe the n

individuals by a labelled social network G := {A,L}, where A is an n× n adjacency

matrix characterizing the connectivity among different individuals; and L is n× l skill

indicator matrix. The ith row vector of L describes the skill set of the ith individual.

For example, suppose there are only three skills in total, including {data mining,

databases, information retrieval}. Then an individual with a skill vector [1, 1, 0] means

that s/he has both data mining and databases skills but no skill in terms of information

retrieval. Also, we represent the elements in a matrix using a convention similar to

Matlab, e.g., A(i, j) is the element at the ith row and jth column of the matrix A,

and A(:, j) is the jth column of A, etc.

We use the calligraphic letter T to index the members of a team, which includes a

87

subset of t = |T | out of n individuals. Correspondingly, we can represent the team by

another labelled team network G(T) := {A(T , T),L(T , :)}. Note that A(T , T) and

L(T , :)} are sub-matrices of A and L, respectively. If we replace an existing member

p ∈ T of a given team T by another individual q /∈ T , the new team members are

indexed by Tp→q := {T /p, q}; and the new team is represented by the labelled network

G(Tp→q).

With the above notations and assumptions, our problems can be formally defined

as follows:

Problem 5. Team Member Replacement

Given: (1) A labelled social network G := {A,L}, (2) a team G(T), and (3) a team

member p ∈ T ;

Output: A “best” alternate q /∈ T to replace the person p’s role in the team G(T).

4.1.2 Proposed Solutions

In this subsection, we present our solution for Problem 5. We start with the

design objectives for the Team Member Replacement problem, present graph

kernel as the basic solution to fulfill such design objectives; and finally analyze the

main computational challenges.

Design Objectives Generally speaking, we want to find a similar person q to

replace the current team member p who is about to leave the team. That is, a

good replacement q should not only have a similar skill set as team member p; but

also would maintain the good chemistry of the team so that the whole team can

work together harmonically and/or be less disrupted. In other words, the similarity

between individuals should be measured in the context of the team itself. Often,

the success of a team largely depends on the successful execution of several sub-tasks,

88

each of which requires the cooperation among several team members with certain skill

configurations. For example, several classic tactics often recurringly find themselves

in a successful NBA team, including (a) triangle offense (which is featured by a

sideline triangle created by the center, the forward, and the guard), (b) pick and

roll (which involves the cooperation between two players - one plays as ‘pivot’ and

the other plays as ‘screen’, respectively), etc. Generally speaking, team performance

arises from the shared knowledge and experience amongst team members and their

ability to share and coordinate their work. As noted in the introduction, a specific

pattern of communication is associated with higher team performance. Maintaining

that communication structure should therefore be less disruptive to the team.

If we translate these requirements into the notations defined in Section 4.1.1, it

naturally leads to the following two design objectives for a good Team Member

Replacement:

• Skill matching: the new member should bring a similar skill set as the current

team member p to be replaced that are required by the team.

• Structural matching: the new member should have a similar network structure

as team member p in connecting the rest of the team members.

Basic Solutions In order to fulfill the above two design objectives, we need a simi-

larity measure between two individuals in the context of the team itself that captures

both skill matching and the structural matching as well as the interaction of both.

We refer to this kind of similarity as team context aware similarity. Mathematically,

the so-called graph kernel defined on the current and new teams provides a natural

tool for such a team context aware similarity. That is, we want to find a replacement

89

person q as

q = argmaxj,j /∈T Ker(G(T),G(Tp→j)) (4.1)

In Eq. (4.1), G(T) is the labelled team graph; and G(Tp→j) is the labelled team

graph after we replace a team member p by another individual j; and Ker(.) is

the kernel between these two labelled graphs. Generally speaking, the basic idea

of various graph kernels is to compare the similarity of the sub-graphs between the

two input graphs and then aggregate them as the overall similarity between the

two graphs. As such, graph kernel is able to simultaneously capture both the skill

matching and the structure matching, beyond the simple ad-hoc combination between

the two (e.g., weighted linear combination, multiplicative combination, sequential

filtering, etc). We would like to emphasize that this treatment is important - as we

will show in the experimental section, it leads to much better performance over all the

alternative choices. Let us explain the intuition/rationality of why graph kernel is a

natural choice for team context aware similarity. Here, each subgraph in a given team

(e.g., the dashed triangles in Figure 4.1) might reflect a specific skill configuration

among a sub-group of team members that is required by a certain sub-task of that

team. By comparing the similarity between two subgraphs, we implicitly measure the

capability of the individual j to perform this specific sub-task. Thus, by aggregating

the similarities of all the possible subgraphs between the two input graphs/teams, we

get a goodness measure of the overall capability of the individual j to perform all

the potential sub-tasks that team member p is involved in the original team. Note

that the team replacement scenario is different from team formation [67, 2, 96]. The

existing work on team formation aims to build a team from scratch by optimizing

some pre-chosen metric (e.g., compatibility, diversity, etc). In contrast, we aim to find

a new team member such that the new team resembles the original team as much as

90

possible.

Having this in mind, many of the existing graph kernels can be adopted in

Eq. (4.1), such as random walk based graph kernel, sub-tree based graph kernels

(See Section 2.2 for a review). In this study, we focus on random walk based graph

kernel due to its mathematical elegancy and superior empirical performance. Given

two labelled graphs Gi := {Ai,Li}, i = 1, 2, the random walk based graph kernel

between them can be formally computed as follows [111]:

Ker(G1,G2) = y′(I− cA×)−1L×x (4.2)

where A× = L×(A′1⊗A′2) is the weight matrix of the two graphs’ Kronecker product,

⊗ represents the Kronecker product between two matrices, c is a decay factor, y =

y1 ⊗ y2 and x = x1 ⊗ x2 are the so-called starting and stopping vectors to indicate

the weights of different nodes and are set uniform in our case, L× is a diagonal matrix

where L×(i, i) = 0 if the ith row of (A′1⊗A′2) is zeroed out due to label inconsistency

of two nodes of the two graphs. L× can be expressed as L× =
∑l

k=1 diag(L1(:, k))⊗

diag(L2(:, k)).

Computational Challenges Eq.(4.2) naturally suggests the following procedure

for solving Team Member Replacement problem (referred to as TeamRep-

Basic): for each individual j /∈ T , we compute its score score(j) by Eq.(4.2);

and recommend the individual(s) with the highest score(s). However, this strat-

egy (TeamRep-Basic) is computationally intensive since we need to compute many

random walk based graph kernels and each of such computations could be expensive

especially when the team size is large. To be specific, for a team T of size t and

a graph G with n individuals in total, its time complexity is O(nt3) since we need

to compute a random walk based graph kernel for each candidate who is not in the

91

current team, each of which could cost O(t3) [111]. Even if we allow some approxi-

mation in computing each of these graph kernels, the best known algorithms (i.e., by

[60]) would still give an overall time complexity as O(n(lt2r4 +mr + r6)), where r is

reduced rank after low rank approximation, which is still too high. For example, on

the DBLP dataset with 916,978 authors, for a team with 10 members, it would take

6,388s to find a best replacement.

In the next section, we present our solution to remedy these computational chal-

lenges.

4.1.3 Scale-up and Speed-up

In this subsection, we address the computational challenges to scale-up and speed-

up TeamRep-Basic. We start with an efficient pruning strategy to reduce the

number of graph kernel computations, and then present two algorithms to speed-up

the computation of individual graph kernel.

Scale-up: Candidate Filtering Here, we propose an efficient pruning strategy

to filter out those unpromising candidates. Recall that one of our design objectives

for a good Team Member Replacement is structural matching, i.e., the new

member has a similar network structure as team member p in connecting the rest

team members. Since p is connected to at least some of the rest members, it suggests

that if an individual does not have any connection to any of the rest team members,

s/he might not be a good candidate for replacement.

Pruning Strategy: Filter out all the candidates who do not have any connections

to any of the rest team members.

Lemma 4. Effectiveness of Pruning. For any two persons i and j not in T , if i

is connected to at least one member in T /p and j has no connections to any of the

92

members in T /p, we have that

Ker(G(T),G(Tp→i)) ≥ Ker(G(T),G(Tp→j)).

Proof. Suppose that G(T) := {A0,L0}. Let G(Tp→i) := {A1,L1}, and G(Tp→j) :=

{A2,L2}.

By Taylor expansion of Eq. (4.2), we have

Ker(G(T),G(Tp→i)) =
∑∞

z=0 cy
′(L×1(A′0 ⊗A′1))zx, where L×1 =

∑l
k=1 diag(L0(:

, k))⊗ diag(L1(:, k)),

Ker(G(T),G(Tp→j)) =
∑∞

z=0 cy
′(L×2(A′0 ⊗A′2))zx, where L×2 =

∑l
k=1 diag(L0(:

, k))⊗ diag(L2(:, k)).

Therefore, it is sufficient to show that (L×1(A′0 ⊗ A′1))z ≥ (L×2(A′0 ⊗ A′2))z for

any z > 0, where two matrices A ≥ B if Aij ≥ Bij holds for all possible (i, j). We

prove this by induction.

(Base Case of Induction) When z = 1, we have

L×1(A′0 ⊗A′1) = (
∑l

k=1 diag(L0(:, k))⊗ diag(L1(:, k)))(A′0 ⊗A′1)

=
∑l

k=1(diag(L0(:, k))A′0)⊗ (diag(L1(:, k))A′1)
(4.3)

Because (diag(L1(:, k))A′1) ≥ (diag(L2(:, k))A′2), we have L×1(A′0⊗A′1) ≥ L×2(A′0⊗

A′2).

(Induction Step) Assuming (L×1(A′0 ⊗ A′1))z−1 ≥ (L×2(A′0 ⊗ A′2))z−1, we have

that

(L×1(A′0 ⊗A′1))z ≥ (L×2(A′0 ⊗A′2))z−1(L×1(A′0 ⊗A′1))

≥ (L×2(A′0 ⊗A′2))z

where the first inequality is due to the induction assumption; and the second

inequality is due to the base case. This completes the proof.

93

Remarks. By Lemma 4, our pruning strategy is ‘safe’, i.e., it will not miss any

potentially good replacements. In the meanwhile, we can reduce the number of graph

kernel computations from O(n) to O(
∑

i∈T /p di), which is sub-linear in n.

Speedup Graph Kernel - Exact Approach Here, we address the problem of

speeding up the computation of an individual graph kernel. Let G(T) := {A1,L1}

and G(Tp→q) := {A2,L2}, where A1,A2 are symmetric adjacency matrices of the two

graphs.1 Without loss of generality, let us assume that p is the last team member in

T . Compare A1 with A2, it can be seen that the only difference is their last columns

and last rows. Therefore, we can rewrite A2 as A2 = Ac + Ad2, where Ac is A1

with its last row and column being zeroed out, and the nonzero elements of Ad2 only

appear in its last row and column reflecting the connectivity of q to the new team.

Notice that Ad2 has a rank at most 2, so it can be factorized into two smaller matrices

as Ad2 = Et×2F2×t.

Denote diag(L1(:, j)) as L
(j)
1 and diag(L2(:, j)) as L

(j)
2 for j = 1, ..., l. Compare

L
(j)
1 with L

(j)
2 , the only difference is the last diagonal element. Therefore, we can

write L
(j)
2 as L

(j)
2 = L

(j)
c + L

(j)
d2 , where L

(j)
c is L

(j)
1 with last element zeroed out, and

L
(j)
d2 ’s last element indicates q’s strength of having the jth skill. L

(j)
2 ’s rank is at most

1, so it can be factorized as L
(j)
2 = e

(j)
t×1f

(j)
1×t. Therefore, the exact graph kernel for the

1Although we focus on the undirected graphs in this work, our proposed algorithms can be

generalized to directed graphs.

94

labelled graph can be computed as:

Ker(G(T),G(Tp→q)) = y′(I− c(
∑l

j=1 L
(j)
1 ⊗ L

(j)
2)(A′1 ⊗A′2))−1(

∑l
j=1 L

(j)
1 ⊗ L

(j)
2)x

= y′(I− c(
l∑

j=1

L
(j)
1 ⊗ L(j)

c)(A1 ⊗Ac)︸ ︷︷ ︸
Z: invariant w.r.t. q

−c (

l∑
j=1

(L
(j)
1 ⊗ e(j))(I⊗ f (j)))(A1 ⊗Ac)︸ ︷︷ ︸

PQ(A1⊗Ac)=PY1

−c (

l∑
j=1

L
(j)
1 ⊗ L(j)

c)(A1 ⊗E)(I⊗ F)︸ ︷︷ ︸
X1Y2

−c (

l∑
j=1

(L
(j)
1 ⊗ e(j))(I⊗ f (j)))(A1 ⊗E)(I⊗ F)︸ ︷︷ ︸

X2Y2

)−1(
∑l

j=1 L
(j)
1 ⊗ L

(j)
2)x

(4.4)

Each L
(j)
1 ⊗ e(j) is a matrix of size t2 by t and I ⊗ f (j) is a matrix of size t by

t2. We denote the matrix created by concatenating all L
(j)
1 ⊗ e(j) horizontally as P,

i.e., P = [L
(1)
1 ⊗ e(1), . . . ,L

(l)
1 ⊗ e(l)]; denote the matrix created by stacking all I⊗ f (j)

vertically as Q, i.e., Q = [I⊗ f (1); . . . ; I⊗ f (l)]. Obviously, (
∑l

j=1(L
(j)
1 ⊗e(j))(I⊗ f (j)))

is equal to PQ. We denote (
∑l

j=1 L
(j)
1 ⊗ L

(j)
c)(A1 ⊗ E) by X1; denote (

∑l
j=1(L

(j)
1 ⊗

e(j))(I⊗ f (j)))(A1 ⊗E) by X2; denote Q(A1 ⊗Ac) by Y1 and denote (I⊗F) by Y2.

Let X be [P,X1,X2] and Y be [Y1; Y2; Y2].

With these additional notations, we can rewrite Eq. (4.4) as

Ker(G(T),G(Tp→q)) = y′(Z− cXY)−1(
∑l

j=1 L
(j)
1 ⊗ L

(j)
2)x

= y′(Z−1 + cZ−1X(I− cYZ−1X)−1YZ−1)

((
∑l

j=1 L
(j)
1 ⊗ L

(j)
c)x + (

∑l
j=1(L

(j)
1 ⊗ e(j))(I⊗ f (j)))x)

(4.5)

where the second equation is due to the matrix inverse lemma [49].

Remarks. In Eq. (4.5), Z = I− c(
∑l

j=1 L
(j)
1 ⊗L

(j)
c)(A1 ⊗Ac) does not depend on

the candidate q. Thus, if we pre-compute its inverse Z−1, we only need to update

X(I− cYZ−1X)−1Y and PQx for every new candidate. Notice that compared with

the original graph kernel (the first equation in Eq. (4.4)), (I − cYZ−1X) is a much

95

smaller matrix of (l + 4)t × (l + 4)t. In this way, we can accelerate the process of

computing its inverse without losing the accuracy of graph kernel.

Speedup Graph Kernel - Approx Approach Note that the graph kernel by

Eq. (4.5) is exactly the same as the original method by the first equation in Eq. (4.4).

If we allow some approximation error, we can further speed-up the computation.

Note that Ac is symmetric and its rank-r approximation can be written as Âc =

UV, where U is a matrix of size t by r and V is a matrix of size r by t. A1 can be

approximated as Â1 = Âc + Ad1 = UV + E1F1 = X1Y1, where X1 = [U,E1],Y1 =

[V; F1],E1 = [w1, s],F1 = [s′; w′1], s is a zero vector of length t except that the last

element is 1, and w1 is the weight vector from p to the members in T . Similarly, after

p is replaced by a candidate q, the weight matrix of the new team can be approximated

as Â2 = X2Y2 where X2 = [U,E2],Y2 = [V; F2],E2 = [w2, s],F2 = [s′; w′2] and w2

is the weight vector from q to the members in the new team. The approximated graph

kernel for labeled graphs can be computed as:

K̂er(G(T),G(Tp→q)) = yT (I− cL×(Â′1 ⊗ Â′2))−1L×x

= y′(I− cL×(X1Y1)⊗ (X2Y2))−1L×x = y′(I− cL×(X1 ⊗X2)(Y1 ⊗Y2))−1L×x

= y′(I + cL×(X1 ⊗X2)M(Y1 ⊗Y2))L×x

= y′L×x + cy′(
∑l

j=1 L
(j)
1 X1 ⊗ L

(j)
2 X2)M(Y1 ⊗Y2)L×x

= (
∑l

j=1(y′1L
(j)
1 x1)(y′2L

(j)
2 x2)) + c(

∑l
j=1 y

′
1L

(j)
1 X1 ⊗ y′2L

(j)
2 X2)M(

∑l
j=1 Y1L

(j)
1 x1 ⊗Y2L

(j)
2 x2)

(4.6)

where M = (I − c(
∑l

j=1 Y1L
(j)
1 X1 ⊗ Y2L

(j)
2 X2))−1, the second equation is due to

the kronecker product property; the third equation is again due to the matrix inverse

lemma, the fourth equation is by matrix multiplication distributivity and the last

equation is due to the kronecker product property.

Remarks. The computation of M is much cheaper than the original graph kernel

since it is a matrix inverse of size (r + 2)2 × (r + 2)2. It was first proposed in [60] to

96

explore the low-rank structure of the input graphs to speed-up graph kernel compu-

tations. However, in the context of Team Member Replacement, we would need

to estimate the low-rank approximation many times (O(
∑

i∈T /p di)) when we directly

apply the method in [60]. In contrast, we only need to compute top-r approximation

once by Eq. (4.6). As our complexity analysis (subsection 4.1.3) and experimental

evaluations (subsection 4.1.4) show, this brings a few times additional speed-up.

Putting Everything Together Putting everything together, we are ready to

present our algorithms for Team Member Replacement. Depending on the spe-

cific methods for computing the individual graph kernels, we propose two variants.

Variant #1: TeamRep-Fast-Exact

We first present our algorithm using the exact graph kernel computation in Eq. (4.5).

The algorithm (TeamRep-Fast-Exact) is summarized in Algorithm 5. We only

need to pre-compute and store Z−1, R, b and l for later use to compute each candi-

date’s score (step 2 and 3). In the loop, the key step is to update M involving matrix

inverse of size (l + 4)t× (l + 4)t which is relatively cheaper to compute (step 17).

The effectiveness and efficiency of TeamRep-Fast-Exact are summarized in

Lemma 5 and Lemma 6, respectively. Compared with TeamRep-Basic, Algorithm 5

is much faster without losing any recommendation accuracy.

Lemma 5. Accuracy of TeamRep-Fast-Exact. Algorithm 5 outputs the same set

of candidates as TeamRep-Basic.

Proof. (Sketch) First, according to Lemma 4, we will not miss a promising candidate

during the pruning stage. Second, for each candidate after pruning, Algorithm 5

calculates its graph kernel exactly the same as Eq. (4.5), which is in turn the same

as Eq. (4.4) and hence Eq. (4.2). Therefore, after ranking the scores, Algorithm 5

outputs the same set of candidates as TeamRep-Basic.

97

Lemma 6. Time Complexity of TeamRep-Fast-Exact Algorithm 5 takes O((
∑

i∈T /p

di)(lt
5 + l3t3)) in time.

Proof. (Sketch) After pruning, the number of potential candidates (the number of

loops in Algorithm 5) is O(
∑

i∈T /p di). In every loop, computing X1,X2 and Y1 take

O(lt5); computing M takes O(lt5 + l3t3) and computing the score(q) takes O(lt3).

Putting everything together, the time complexity of Algorithm 5 isO((
∑

i∈T /p di)(lt
5+

l3t3)).

Variant #2: TeamRep-Fast-Approx

By using Eq. (4.6) to compute the graph kernel instead, we propose an even faster

algorithm (TeamRep-Fast-Approx), which is summarized in Algorithm 6. In the

algorithm, we only need to compute the top r eigen-decomposition for Ac once (step

2), and use that to update the low rank approximation for every new team. Besides,

when we update M, a matrix inverse of size (r + 2)2 × (r + 2)2 (step 14), the time is

independent of the team size.

The effectiveness and efficiency of TeamRep-Fast-Approx are summarized

in Lemma 7 and Lemma 8, respectively. Compared with TeamRep-Basic and

TeamRep-Fast-Exact, Algorithm 6 is even faster; and the only place it introduces

the approximation error is the low-rank approximation of Ac (step 2).

Lemma 7. Accuracy of TeamRep-Fast-Approx. If Ac = UΛU′ holds, Algo-

rithm 6 outputs the same set of candidates as TeamRep-Basic.

Proof. Omitted for brevity.

Lemma 8. Time Complexity of TeamRep-Fast-Approx Algorithm 6 takes O((
∑

i∈T /p

di)(lt
2r + r6)) in time.

Proof. Omitted for brevity.

98

4.1.4 Experimental Evaluations

In this subsection, we present the experimental evaluations. The experiments are

designed to answer the following questions:

• Effectiveness: How accurate are the proposed algorithms for Team Member

Replacement?

• Efficiency: How scalable are the proposed algorithms?

Data n m # of teams

DBLP 916,978 3,063,244 1,572,278

Movie 95,321 3,661,679 10,197

NBA 3,924 126,994 1,398

Table 4.2: Summary of Datasets for Team Member Replacement.

Datasets DBLP. DBLP dataset2 provides bibliographic information on major com-

puter science journals and proceedings. We use it to build a co-authorship network

where each node is an author and the weight of each edge stands for the number of

papers the two corresponding authors have co-authored. The network constructed

has n = 916, 978 nodes and m = 3, 063, 244 edges. We use the conferences (e.g.,

KDD, SIGMOD, CVPR, etc) to reflect authors’ skills (e.g., data mining, data base,

computer vision, etc) and for a given author and conference, we define his/her skill

level as the percentage of the papers s/he publishes in that conference. For a given

paper, we treat all of its co-authors as a team. Alternatively, if a set of authors

co-organize an event (such as a conference), we also treat them as a team.

2http://arnetminer.org/citation

99

Movie. This dataset3 is an extension of MovieLens dataset, which links movies

from MovieLens with their corresponding IMDb webpage and Rotten Tomatoes re-

view system. It contains information of 10,197 movies, 95,321 actors/actress and 20

movie genres (e.g., action, comedy, horror, etc.). Each movie has on average 22.8

actors/actress and 2.0 genres assignments. We set up the social network of the ac-

tors/actresses where each node represents one actor/actress and the weight of each

edge is the number of movies the two linking actors/actresses have co-stared. We use

the movie genres that a person has played as his/her skills. For a given movie, we

treat all of its actors/actress as a team.

NBA. The NBA dataset4 contains NBA and ABA statistics from the year of 1946

to the year of 2009. It has information of 3,924 players and 100 teams season by

season. We use players’ positions as their skill labels, including guard, forward and

center. The edge weight of the player network stands for the number of seasons that

the two corresponding nodes/individuals played in the same team.

The statistics of these datasets are summarized in Table 4.2. All the experiments

are run on a Windows machine with 16 GB memory and Intel i7-2760QM CPU.

Repeatability of Experimental Results. All the three datasets are publicly available.

We have released the code of the proposed algorithms through authors’ website.

Effectiveness Results

A. Qualitative Evaluations. We first present some case studies on the three datasets

to gain some intuitions.

Case studies on DBLP. Let us take a close look at Fig. 4.1, which shows a screen-

shot of our current demo system. This prototype system has been developed to a

fully functional system and deployed to real users [20]. The original team is shown

3http://grouplens.org/datasets/hetrec-2011/
4http://www.databasebasketball.com

100

on the left side and the person leaving the team (Philip S. Yu) is represented by a

node (diagram) with larger radius. If the user clicks a replacement from the recom-

mendation list (on the top), the system will show the new team on the right side.

Here, we introduced a novel visualization technique to represent authors’ relation-

ships and their expertise within one unique graph visualization. Particularly, in this

visualization, the authors are shown as voronoi diagrams [41]. The authors’ expertise

is visualized as the voronoi cells inside the diagram, that is, each cell indicates a

type of expertise. We use different color hues to identify different expertise types and

use the color saturations to encode the author’s strength in that expertise type. For

example, if KDD is represented in orange, a bright orange cell in a voronoi diagram

means the author has a strong expertise in KDD. In contrast, a white cell indicates

the author’s lacking of the corresponding expertise. To facilitate visual comparison of

different authors, we fix the position of these expertise cells across different diagrams

so that, for example, KDD is always shown at the left side of the author diagrams.

These voronoi diagrams are connected by links indicating the authors’ relationships.

The strength of the relationship is presented by the line thickness.

Fig. 4.1 visualizes the team structures before and after Philip S. Yu becomes

unavailable in the team writing [94]. Our algorithm’s top recommendation is Jiawei

Han. As we can see, both Han and Yu posses very similar skills and are renowned

for their extraordinary contributions in the data mining and databases community.

Moreover, Han has collaborated with almost each of the rest authors/team members.

Looking more closely, we find Han preserves several key triangle sub-structures in the

original team: one with Ke Wang and Jian Pei, and the other with Haixun Wang and

Jian Pei. These triangle sub-structures might play a critical role in accomplishing

sub-tasks in writing the paper.

We also consider a bigger team, i.e, the organizing committee of KDD 2013. Af-

101

0!

0.1!

0.2!

0.3!

0.4!

0.5!

0.6!

0.7!

Average Recall! Average Precision! Average R@1!

Graph Only!
Skill Only!
Our method!

Figure 4.2: The average recall, average precision and R@1 of the three comparison

methods. Higher is better.

ter filtering those not in DBLP, we have 32 people in the committee team. We use

their co-authorship network as their social network. Suppose one of the research

track co-chairs Inderjit Dhillon becomes unavailable and we are searching for another

researcher who can fill in this critical role in organizing KDD 2013. The top five can-

didates our algorithm recommends are Philip S. Yu, Jiawei Han, Christos Faloutsos,

Bing Liu and Wei Wang. The results are consistent with the intuitions - all of these

recommended researchers are highly qualified - not only have they made remarkable

contributions to the data mining field, but also they have strong ties with the remain-

ing organizers of KDD 2013. For example, Liu is the current chair of KDD executive

committee; Wang is one of the research track program chairs for KDD 2014; and

Faloutsos was the PC co-chair of KDD 2003, etc.

Case studies on Movie. Assuming actor Matt Damon became unavailable when

filming the epic war movie Saving Private Ryan (1998) and we need to find an alter-

native actor who can play Ryan’s role in the movie. The top five recommendations

our algorithm gives are: Samuel L. Jackson, Steve Buscemi, Robert De Niro, Christo-

102

0!
0.1!
0.2!
0.3!
0.4!
0.5!
0.6!
0.7!
0.8!
0.9!

Paper 1!
Paper 2!

Paper 3!
Paper 4!

Paper 5!
Paper 6!

Paper 7!
Paper 8!

Paper 9!
Paper 10!

A
ve

ra
ge

 R
ec

al
l

Graph Only!
Skill Only !
Our method!

Figure 4.3: Recall for different papers.

Higher is better.

0!

0.1!

0.2!

0.3!

0.4!

0.5!

0.6!

0.7!

0.8!

Paper 1!
Paper 2!

Paper 3!
Paper 4!

Paper 5!
Paper 6!

Paper 7!
Paper 8!

Paper 9!

Paper 10!

Av
er

ag
e

Pr
ec

is
io

n

Graph Only!
Skill Only !
Our method!

Figure 4.4: Precision for different papers.

Higher is better.

pher Walken, Bruce Willis. As we know, Saving Private Ryan is a movie of action

and drama genres. Notice that both Damon and Jackson have participated in many

movies of drama, thriller and action genres, hence Jackson has the acting skills re-

quired to play the role in this movie. Moreover, Jackson has co-played with Tom

Sizemore, Vin Diesel, Dale Dye, Dennis Farina, Giovanni Ribisi and Ryan Hurst in

the crew before. The familiarity might increase the harmony of filming the movie

with others.

Case studies on NBA. Let us assume that Kobe Bryant in Los Angeles Lakers was

hurt during the regular season in 1996 and a bench player is badly wanted. The top

five replacements our algorithm recommends are: Rick Fox, A.c. Green, Jason Kidd,

Brian Shaw and Tyronn Lue. As we know, Bryant is a guard in NBA. Among the five

recommendations, Kidd, Shaw and Lue all play as guards. More importantly, Jason,

Brian and Tyronn have played with 9, 7 and 9 of the rest team members on the same

team in the same season for multiple times. Therefore, it might be easier for them

to maintain the moment and chemistry of the team which is critical to winning the

game.

B. Quantitative Evaluations. Besides the above case studies, we also perform

103

quantitative evaluations. Recall that we have two design objectives for our Team

Member Replacement problem, including both the skill match and the structural

match. Our quantitative evaluations focus on the following two aspects. First, we

examine whether simultaneously considering both design objectives outperform only

considering one of them. Second, we evaluate to what extent our graph kernel formu-

lation outperforms other alternative choices, in order to fulfill both design objectives

(i.e., the skill match and the structural match). To be specific, we compare to the

following alternative methods, including (a) only with structure matching and not

including L× in Eq. (4.2) (Graph Only),(b) only with skill matching and using cosine

similarity of skill vectors as scores (Skill Only), (c) using the weighted sum of scores

by ‘Skill Only’ and ‘Graph Only’ (Linear Combination), (d) using the multiplication

of the two (Multiplicative Combination), and (e) first picking those with high ‘Skill

Only’ scores and then ranking them by ‘Graph Only’ scores (Sequential Filtering).

User studies. We perform a user study with 20 people aged from 22 to 35 as

follows. We choose 10 papers from various fields, replace one author of each paper,

run our method and the first two comparison methods, and each of them recommends

top five candidates. Then, we mix the outputs (15 recommendations in total) and

ask users to (a) mark exactly one best replacement; (b) mark all good replacements

from the list of 15 recommended candidates. The results are presented in Fig. 4.2,

Fig. 4.3 and Fig. 4.4, respectively. As we can see from these figures, the proposed

method (the green bar) is best in terms of both precision and recall. For example, the

average recalls by our method, by ‘Graph Only’ and by ‘Skill Only’ are 55%, 28%,

17%, respectively. As for different papers, our method wins 9 out of 10 cases (except

for ‘paper 2’ where ‘Skill Only’ is best).

Author alias prediction. In DBLP, some researchers might have multiple name

identities/alias. For example, in some papers, Alexander J. Smola might be listed

104

0 20 40 60 80 1000

0.2

0.4

0.6

0.8

1

Budget k

Av
er

ag
e

Ac
cu

ra
cy

Ours
Graph Only
Skill Only
Linear Combination
Multiplicative Combination
Sequential Filtering

Figure 4.5: Average accuracy vs. bud-

get k. Higher is better.

1!

10!

100!

1000!

10000!

100000!

DBLP! Movie! NBA!

Tim
e i

n S
ec

on
ds

 (lo
g s

ca
le)
�

without pruning!
with pruning!

1,709x!
faster

12x!
faster

3x!
faster

Figure 4.6: Time Comparisons before and

after pruning on three datasets. Notice

time is in log-scale.

as Alex J. Smola, Zhongfei (Mark) Zhang might be listed as Zhongfei Zhang, etc.

For such an author, we run the team replacement algorithm on those papers s/he

was involved to find top-k replacement. If his/her other alias appears in the top-k

recommended list, we treat it as a hit. The average accuracy of different methods is

shown in Fig. 4.5. Again, our method performs best - it outperforms both the meth-

ods that consider only one design objective (‘skill only’ and ‘graph only’); and that

use alternative ad-hoc methods to combine both skill and structural match (‘linear

combination’, ‘multiplicative combination’ and ‘sequential filtering’).

Efficiency Results

A. The speed-up by pruning. To demonstrate the benefit of our pruning strategy, we

run TeamRep-Basic with and without pruning on the three datasets and compare

their running time. For DBLP, we choose the authors of paper [72] (6 authors); for

Movie, we select the film crew of Titanic (1997) (22 actors/actresses); for NBA, we

pick the players on the Los Angeles Lakers in year 1996 (17 players). The result is

presented in Fig. 4.6. As we can see, the pruning step itself brings significant savings

105

0 20 40 60 80 100
0

1

2

3

4

5x 10
4

Team Size

T
im

e
 in

 S
e

co
n

d
s

TEAMREP−BASIC after pruning

TEAMREP−FAST−EXACT

7x
faster

Figure 4.7: Time Comparison between

TeamRep-Basic and TeamRep-

Fast-Exact. TeamRep-Fast-Exact

is on average 3× faster. TeamRep-

Basic takes more than 10 hours when

team size = 70.

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

Team Size

T
im

e
 in

 S
e

co
n

d
s

Ark−L after pruning

TEAMREP−FAST−APPROX

× 104

Figure 4.8: Time Comparisons be-

tween Ark-L[20] and TeamRep-Fast-

Approx. TeamRep-Fast-Approx is

on average 3× faster.

in terms of running time, especially for larger graphs (e.g., DBLP and Movie). Notice

that according to Lemma 4, we do not sacrifice any recommendation accuracy by

pruning.

B. Further speedup. Next, we vary the team sizes and compare the running time

of TeamRep-Basic with TeamRep-Fast-Exact (exact methods); and Ark-L [60]

with TeamRep-Fast-Approx (approximate methods). For TeamRep-Basic and

Ark-L, we apply the same pruning step as their pre-processing step. The results

on DBLP are presented in Fig. 4.7 and Fig. 4.8, respectively. We can see that the

proposed TeamRep-Fast-Exact and TeamRep-Fast-Approx are much faster

than their alternative choices, especially when team size is large. Notice that Ark-L

is the best known method for approximating random walk based graph kernel.

C. Scalability. To test the scalability of our TeamRep-Fast-Exact and TeamRep-

Fast-Approx algorithms, we sample a certain percentage of edges from the entire

106

0 0.5 1 1.5 2 2.5 3
x 10

6

0

500

1000

1500

2000

of edges

T
im

e
 in

 S
e

co
n

d
s

Team Size=50
Team Size=40
Team Size=30
Team Size=20
Team Size=10

Figure 4.9: Running time of TeamRep-

Fast-Exact vs. graph size. TeamRep-

Fast-Exact scales sub-linearly w.r.t.

the number of edges of the input graph.

0 0.5 1 1.5 2 2.5 3
x 10

6

0

10

20

30

40

50

60

70

of edges

T
im

e
 in

 S
e

co
n

d
s

Team Size=100
Team Size=80
Team Size=60
Team Size=40
Team Size=20

Figure 4.10: Running time vs. graph

size. TeamRep-Fast-Approx scales

sub-linearly w.r.t. the number of edges

of the input graph.

DBLP network and run the two proposed algorithms on teams with different sizes.

The results are presented in Fig. 4.9 and Fig. 4.10, respectively. As we can seen, both

algorithms enjoy a sub-linear scalability w.r.t. the total number of edges of the input

graph (m).

4.2 Beyond Team Member Replacement

Different from Team Member Replacement, Team Refinement considers

refining a team by replacing one member with another with the desired skill sets and

communication connections. In the above two problems, the team size remains the

same. In Team Expansion, we want to expand the team by adding a member with

certain skill sets and communication structure. For instance, a software project team

wants to develop a new feature of natural language search and a new member with

Natural Language Processing (NLP) skill will be recruited. On the contrary, in Team

Shrinkage, the size of a team needs to be reduced in response to new challenge such

as a shortage of the available resource (e.g., a budget cut). In all cases, the resulting

107

disruption [125] should be minimized.

By careful inspection, we identify the problem similarity between Team Refine-

ment, Team Expansion and Team Member Replacement and propose these

problems can be formulated in a way to share common technical solutions. In Team

Refinement, one team member is edited to a desired skill and network structure

configuration. Since such edited member might not exist in the rest of the network, we

call it a ‘virtual member’. By replacing this ‘virtual member’ as in Team Member

Replacement, we can solve Team Refinement. Similarly, in Team Expansion,

the desired new member might also be a ‘virtual member’. After adding this ‘virtual

member’ to the current team and then replacing the ‘virtual member’, we can solve

Team Expansion. We propose to reduce the disruption induced by the team al-

teration by maintaining the team-level similarity (between the original and the new

teams), which includes skill similarity as well as structural similarity. The proposition

is backed by some recent studies which show that team members prefer to work with

people they have worked with before [54] and that distributed teams perform better

when members know each other [33]. Furthermore, research has shown that specific

communication patterns amongst team members are critical for performance [24].

4.2.1 Problem Definitions

In addition to the notations defined in Sec. 4.1.1, we define for the ith individual,

the associated skill vector as l = L(i, :) and communication structure vector as a =

A(i, :). If we lay off an existing member p ∈ T of a given team T , the new team

members are indexed by T/p := {T /p}; and the new team is represented by the

labelled network G(T/p).

With the above notations and assumptions, the other team enhancement problems

can be formally defined as follows:

108

Problem 6. Team Refinement

Given: (1) A labelled social network G := {A,L}, (2) a team G(T), (3) a team

member p ∈ T , and (4) desired skill l and communication structure a for p;

Recommend: A candidate q /∈ T with skill l and communication structure a to

refine the person p’s role in the team G(T).

Problem 7. Team Expansion

Given: (1) A labelled social network G := {A,L}, (2) a team G(T), and (3)

desired skill l and communication structure a for a new member;

Recommend: A new member q /∈ T with skill l and communication structure a to

join the team G(T).

Problem 8. Team Shrinkage

Given: (1) A labelled social network G := {A,L}, and (2) a team G(T);

Recommend: A member p ∈ T to leave the team G(T).

4.2.2 Beyond Team Member Replacement: Team Refinement, Team

Expansion and Team Shrinkage

In this subsection, we discuss how the techniques for Team Member Replace-

ment can be applied to the other team enhancement scenarios, including Team

Refinement, Team Expansion and Team Shrinkage. We note that the fast

solutions developed in Section 4.1.3 also apply to these scenarios, and thus omit the

detailed discussions.

109

Team Refinement In Team Refinement, we want to edit a current team mem-

ber p to have the desired skill l and communication structure vector a. As the person

with the exact skill and communication requirements might not exist in the network,

we aim to find a best-effort match. We define a ‘virtual member’ v to be the person

with skill l and network structure a and a ‘virtual team’ T ′ to be Tp→v. Using graph

kernel, the best-effort match q can be found as:

q = argmaxj,j /∈T Ker(G(T ′),G(T ′v→j)) (4.7)

Team Expansion In Team Expansion, we want to add a team member with the

desired skill l and communication structure vector a. Again, because the exact match

might not exist, we instead find a best-effort match. We define a ‘virtual member’ v

to be the person with skill l and network structure a and a ‘virtual team’ T ′ to be

{T , v}. Using graph kernel, the best-effort match q can be found as:

q = argmaxj,j /∈T Ker(G(T ′),G(T ′v→j)) (4.8)

Team Shrinkage In Team Shrinkage, we want to remove a current team mem-

ber with minimum disruption. Since graph kernel can characterize the team-level

similarity, it can also be applied to Team Shrinkage. The idea is to find a current

team member p so that the new team after p leaves is most similar to the old team.

That is, we want to find a member p ∈ T such that:

p = argmaxj∈T Ker(G(T),G(T/j)) (4.9)

where G(T/j) is the labelled team graph after a team member j leaves. Note that

in Team Shrinkage, the search space is no longer the rest network but the team

itself, which is much smaller.

110

4.2.3 Experimental Evaluations

Case studies on Team Expansion. Suppose we want to expand the organizing

committee of KDD 2013 by hiring a researcher with strong expertise in Artificial

Intelligence, and preferably who has collaborated with as many researchers on the

committee as possible. The top five candidates found by our algorithm are: Qiang

Yang, Zoubin Ghahramani, Eric Horvitz, Thomas G. Dietterich and Raymond J.

Mooney. All the candidates have made significant contributions to the field of artificial

intelligence and Yang, Horvitz, Dietteirch and Mooney are the current AAAI fellows.

Among them, Yang has collaborated with some previous KDD organizing committee

members (e.g., Jian Pei, Ying Li, Geoff Webb and Dou Shen).

Team Shrinkage. In DBLP, we select teams with over 10 members and manually

inject a “noisy” individual to the team such that the individual is connected with

all the team members with random edge weights and has randomly generated skill

vectors. Recall that, in team shrinkage we want to find the “best” member to leave

the team without much disruption to the team. In our setting, we treat the “noisy”

individual as the “best” candidate. For “Skill Only”, we first compute the similarity

matrix among all team members using inner product of their skill vectors and then

apply max-pooling as their score. Figure 4.11 shows the result of our method, “Graph

Only” as well as “Skill Only”. Our method achieves the best Precision@1, Recall@1

and F@1.

4.3 Towards Real Time Team Optimization

Teams can be often viewed as a dynamic system where the team configuration

evolves over time (e.g., new members join the team; existing members leave the

team; the skills of the members improve over time, etc.). It is hypothesized that

111

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Precision@1 Recall@1 F@1

Graph Only
Skill Only
Our method

Figure 4.11: Precision@1, Recall@1 and F@1 of the three comparison methods for

Team Shrinkage. Higher is better.

newly formed teams evolve through a series of development stages, notably forming,

where the formation of the team starts; storming, where team members explore the

situation; norming, where members accommodate, form and accept roles; and per-

forming, where the team produces effective outcomes [109]. Although teams might

take different paths towards maturity, research suggests that the effective cooperation

and coordinations among team members generally brings the team from initial inept-

ness to the final levels of skilled performance [89]. In the context of sports teams and

software development teams, research efforts have been on the relationship between

team dynamics and team performances [115, 39].

Due to the team dynamics, the performance of the team is very likely to be chang-

ing. If a team fails to achieve satisfactory performance or adjustment to environmen-

tal demands are required, changes to the team are necessitated. A natural question

is how to plan the team optimization/re-staffing actions (e.g., recruit a new team

member) at each time step so as to maximize the expected cumulative performance

of the team. Most existing work on team optimization (e.g., team replacement [75]

112

and team enhancement [77]) treat teams as a static system and recommend a single

action to optimize a short-term objective. However, these approaches might fail due

to the unique challenges brought about by the dynamics in team processes. First

(team dynamics), the teams are constantly changing in their compositions and ex-

isting methods are not designed to learn the kind of changes that are effective in

producing the teams’ high performances. A straightforward way of applying existing

methods for team optimization is to recommend one action at one time. However,

this treatment is problematic in two ways: (1) the existing methods are optimizing a

different objective and they cannot adjust their strategy based on the feedback (e.g.,

performance evaluation, team cohesion) to the team; and (2) the existing methods

can not be computed on the fly in situations where real-time decisions are required.

Second (long-term reward), teams are expected to deliver constantly good perfor-

mance in the long run. The actions recommended by existing methods are purposed

to optimize the short-term feedback, but might not lead to a long-term reward.

In this work, we treat the actions a team takes during its development cycles

as sequential interactions between the team agent and the environment and propose

to leverage Reinforcement Learning (RL) to automatically learn the optimal staffing

strategies. Such team optimization based on reinforcement learning have two advan-

tages. First, it is able to continuously update its staffing strategy during the interac-

tions from the feedback at each time step, until it converges to the optimal strategy.

Second, the models are trained via estimating the current value for a state-action

pair with delayed rewards. The optimal strategy is able to maximize the expected

cumulative rewards from the environment. In other words, it might recommend an

action with small short-term rewards but have a big impact of the team performance

in the long run. One challenge here is that the state/action space (e.g., the possible

enhancement operations and their combinations over time) could be large. It is thus

113

Timeline𝑡1 𝑡2 𝑡3

Feedback
Performance
Compatibility

Feedback
Performance
Compatibility

Exploit & Explore

Hire Alice

Exploit & Explore

Remove Bob

Memory
Feedback

Performance
Compatibility

Exploit & Explore

Hire CarolReplay Mini-batch

Update Model

Figure 4.12: Running example of real time team optimization.

infeasible to evaluate the value for every state-action pair. Instead, we leverage value

based approach and use a function approximator to estimate the state-action value

in RL. This model-free approach does not estimate the transition probability nor

explicitly store the Q-value table, making it flexible to handle the large state/action

space in the team optimization scenarios.

4.3.1 Problem Definition

We describe the n individuals by a labelled social network G := {A,L}, where

A is an n × n adjacency matrix characterizing the connectivity among different in-

dividuals; and L is n × l skill indicator matrix. We use the calligraphic letter T to

index the members of a team, which includes a subset of t = |T | out of n individu-

als. Correspondingly, we can represent the team by another labelled team network

G(T) := {A(T , T),L(T , :)}. Note that A(T , T) and L(T , :)} are sub-matrices of A

and L, respectively.

We study the real-time team optimization problem in which a team (agent) inter-

acts with environment by sequentially taking enhancement actions (e.g., hiring a new

114

team member) over a sequence of time steps, so as to maximize its cumulative reward

(see Fig. 4.12 for an example). We model this problem as a Markov Decision Process

(MDP), which includes a sequence of states, actions and rewards. More formally,

MDP consists of a tuple of five elements (S,A,P ,R, γ) as follows:

• State space S: A state st ∈ S is defined as the team configuration at time

step t, which can be described by G(T) := {A(T , T),L(T , :)}.

• Action space A: The action at ∈ A is to take enhancement actions to the

team, e.g., expand/shrink the team, establish collaboration between two team

members, etc. Formally, at could be ∆A(T , T) (perturbation to the team

network structure), ∆L(T , :) (perturbation to the team skill configuration), +q

(hiring q to join the team), and −q (remove q from current team).

• Reward R: After the team takes an action at at the state st, i.e., the team

configuration changes at time t, the team receives rewards r(st, at) according to

the feedback it receives (e.g., performance evaluation, team cohesion).

• Transition probability P : Transition probability p(st+1|st, at) defines the

probability of state transitioning from st to st+1 when the team takes action at.

We assume that the MDP satisfies p(st+1|st, at, . . . , s1, a1) = p(st+1|st, at).

• Discount factor γ: γ ∈ [0, 1] defines the discount factor when we measure

the present value of future reward. In particular, when γ = 0, it only considers

the immediate reward; when γ = 1, all future rewards can be fully taken into

account.

With the notations and definitions above, the problem of real time team optimiza-

tion can be formally defined as follows:

115

Problem 9. Real-Time Team Optimization

Given: the historical MDP, i.e., (S,A,P ,R, γ)

Find: a policy π : S → A, which can maximize the cumulative reward of the team

4.3.2 Proposed Model

In this section, we introduce our proposed model based on reinforcement learning

framework for the purpose of real-time team optimization. We propose to use a

function approximator to estimate the state-action value without explicitly storing

them into a lookup table.

The Classic Model – Q-Learning We follow the standard assumption that de-

layed rewards are discounted by a factor of γ per time step, and define the state-action

value function Q(s, a) as the expected rewards from state s and action a. Using Bell-

man optimality equation [8], the optimal state-action function Q∗(s, a) can be written

as follows via one-step look-ahead:

Q∗(s, a) = Eπ[r + γmax
a′

Q∗(s′, a′)|s, a] (4.10)

We can use Q-learning control algorithm to update the Q values toward the opti-

mal ones at each step of each episode as follows:

Q(s, a)← Q(s, a) + α[r + γmax
a′

Q(s′, a′)−Q(s, a)] (4.11)

where α is the step size.

The limitations with the above standard reinforcement learning model are two

folds: (1) in the real-time team optimization scenarios, the state/action space are

enormous, which makes it infeasible to estimate Q∗(s, a) for every state-action pair

using the above update equation; and (2) many state and action pairs may not appear

116

in the log of the team development, in which case we will not have an accurate estimate

for them.

The proposed Value Function Approximation Framework We propose to use

a parameterized function to approximate the value of Q∗(s, a) as Q∗(s, a) ≈ q(s, a; θ)

parameterized by θ. If we use a linear approximation function, we can represent

q(s, a; θ) as q(s, a; θ) = x(s, a)T θ, where x(s, a) is the feature vector that describe the

state-action pair. If the function cannot be well approximated by a linear one, we

can represent it as a non-linear function, e.g., a deep neural network. The parameters

of the value function approximator can be trained via minimizing the following loss

function L(θ) as:

L(θ) = Es,a,r,s′ [(y − q(s, a; θ))2], (4.12)

where y = Eπ[r + γmaxa′ q(s
′, a′; θt)|s, a] is the target for the current iteration and

θt is the parameters from the last iteration. The derivatives of the loss function L(θ)

with respect to θ can be written as:

∆θL(θ) = Es,a,r,s′ [(r + γmax
a′

q(s′, a′; θt)− q(s, a; θ))∆θq(s, a; θ)] (4.13)

To optimize the loss function, it is more efficient to apply the stochastic gradient

descent instead of the full expectations in the above gradient.

Features for state-action: suppose at state st, the team can be described by

G(T) := {A(T , T),L(T , :)} and the action at is q, i.e., hiring q to join the team.

The features we consider that can describe this state-action pair are:

• the average skill vector of the team at t

• the maximum skill vector of the team at t

• clustering coefficient of the team at t

117

• the average degree of the team at t

• the average network embeddings of the team at t

• the skill vector of q

• the local clustering coefficient of q

• the network embedding of q

Note that we use DeepWalk [95] on the entire social network within the organization

to get the embeddings of all the individuals.

Off-policy training: We train the parameters of the model from the offline log of

different teams’ development, including the actions the team takes and the reward it

gets. The off-policy training algorithm is presented in Algorithm 7.

118

Algorithm 5: TeamRep-Fast-Exact

Input: (1) The entire social network G := {A,L}, (2) original team members

T , (3) person p who will leave the team, (4) starting and ending

probability x and y(be uniform by default), and (5) an integer k (the

budget)

Output: Top k candidates to replace person p

1 Initialize Ac,L
(j)
1 ,L

(j)
2 , j = 1, . . . , l ;

2 Pre-compute Z−1 ← (I− c(
∑l

j=1 L
(j)
1 ⊗ L

(j)
c)(A1 ⊗Ac))

−1;

3 Set R← (
∑l

j=1 L
(j)
1 ⊗ L

(j)
c)x; b← yTZ−1R; l← cyTZ−1;

4 for each candidate q in G after pruning do

5 Initialize s← a zero vector of length t except the last element is 1;

6 Initialize w← weight vector from q to the new team members;

7 Set E← [w, s]; F← [s′; w′] ;

8 Set e(j) ← a t by 1 zero vector except the last element is 1, for j = 1, . . . , dn

;

9 Set f (j) ← a 1× t zero vector except the last element which is label j

assignment for q;

10 Set P← [L
(1)
1 ⊗ e(1), . . . ,L

(l)
1 ⊗ e(l)];

11 Set Q← [I⊗ f (1); . . . ; I⊗ f (l)];

12 Compute X1 ← (
∑l

j=1 L
(j)
1 A1 ⊗ L

(j)
c E);

13 Compute X2 ← (
∑l

j=1 L
(j)
1 A1 ⊗ e(j)f (j)E);

14 Compute Y1 ← Q(A1 ⊗Ac);

15 Compute Y2 ← (I⊗ F);

16 Set X← [P,X1,X2],Y ← [Y1; Y2; Y2];

17 Update M← (I− cYZ−1X)−1;

18 Compute r′ ← Z−1PQx;

19 Compute score(q) = b + yT r′ + lXMY(Z−1R + r′) ;

20 end

21 Return the top k candidates with the highest scores.

119

Algorithm 6: TeamRep-Fast-Approx

Input: (1) The entire social network G := {A,L}, (2) original team members

T , (3) person p who will leave the team, (4) starting and ending

probability x and y (be uniform by default), and (5) an integer k (the

budget)

Output: Top k candidates to replace person p

1 Initialize Ac,L
(j)
1 ,L

(j)
2 , j = 1, . . . , l ;

2 Compute top r eigen-decomposition for Ac: UΛU′ ← Ac ;

3 Set V← ΛU′;

4 Initialize s← a zero vector of length t except the last element is 1;

5 Initialize w1 ← weight vector from p to T ;

6 Set E1 ← [w1, s],F1 ← [s′; w′1] ;

7 Set X1 ← [U,E1] , Y1 ← [V; F1];

8 for each candidate q in G after pruning do

9 Initialize w2 ← weight vector from q to the new team members ;

10 Set E2 ← [w2, s],F2 ← [s′; w′2] ;

11 Set X2 ← [U,E2] , Y2 ← [V; F2];

12 Compute S←
∑l

j=1 y′1L
(j)
1 X1 ⊗ y′2L

(j)
2 X2;

13 Compute T←
∑l

j=1 Y1L
(j)
1 x1 ⊗Y2L

(j)
2 x2);

14 Update M← (I− c(
∑l

j=1 Y1L
j
1X1 ⊗Y2L

j
2X2))−1;

15 Set score(q) = (
∑l

j=1(y′1L
(j)
1 x1)(y′2L

(j)
2 x2)) + cSMT ;

16 end

17 Return the top k candidates with the highest scores.

120

Algorithm 7: Off-policy Training for Real Time Team Optimization

1 Initialize the capacity of replay memory D;

2 Initialize action-value function q with random weights;

3 for episode = 1, . . . ,M do

4 Initialize s0 from some previous episode;

5 for t =1, . . . , T do

6 Observe state st;

7 Execute action at following the off-policy and observe reward rt;

8 Store transition (st, at, rt, st+1) in D;

9 Sample transitions (s, a, r, s′) from D;

10 Minimize (y − q(s, a; θ))2 according to Eq. (4.13)

11 end

12 end

121

Chapter 5

TEAM PERFORMANCE EXPLANATION

In this chapter, we introduce our work on team performance explanation [132, 78].

We start with the explanation model we build for understanding networked prediction

systems, i.e., the team performance prediction models introduced in Chapter 3, and

then continue with our effort on explaining the team performance optimization model

introduced in Chapter 4.

5.1 Towards Explainable Networked Prediction

Networked prediction has attracted lots of research attention in recent years. Net-

works, as a natural data model that captures the relationship among different objects,

domains and learning components, provide powerful contextual information in mod-

eling networked systems, including network of networks [91, 92, 27], network of time

series [18, 19], network of learning models [73, 63]. Networked prediction has been

successfully applied in many application domains, ranging from bioinformatics, envi-

ronmental monitoring, infrastructure networks, to team science.

By leveraging the intrinsic relationship among the networked learning compo-

nents, it often brings significant performance improvement to the mining tasks. In a

network of networks, each node of the main network is itself another domain network.

For example, in the candidate gene prioritization problem where a disease similarity

network is given, a tissue-specific protein interaction network can be associated with a

corresponding disease. The main network can contextualize the mining tasks in each

domain-specific network by providing the consistency constraints across networks for

both ranking [91] and clustering [92]. In the network of coevolving time series, e.g., a

122

Task 1

Task 2 Task 3

Task 4

Macro

Meso

Micro

Figure 5.1: An illustration of networked prediction system.

sensor network where sensors measure the temperature time series in different loca-

tions of a building, encoding the network constraints finds similar latent factors from

similar time series for imputation and classification tasks [18, 19]. In the network of

learning models, the scientific domain similarity network provides natural constraints

to the citation prediction models for each domain such that similar domains would

share a similar regression model [73]; or in the multi-task learning setting, the task

network enables the graph regularized multi-task learning formulation [63].

Despite its superior prediction power, networked prediction is often hard to under-

stand for end users. Compared with traditional learning setting, networked prediction

is even harder to explain due to its coupled, multi-level nature. The learning process

propagates top-down through the underlying network from the macro level (i.e., the

entire learning system), to meso level (i.e., learning tasks), and to micro level (i.e.,

individual learning examples). See Fig. 5.1.

123

• Macro level. At this highest level, we want to study the whole networked

learning system to gain a global view of how the system works. What are the

ingredients that are essential to the system characteristics, e.g., the parameters

of the entire system?

• Meso level. At this level, we focus on one specific learning task and aim to

understand its own learning behavior, e.g., how its own training samples and

those from other learning tasks affect its model parameters via the network as

the bridge.

• Micro level. At this finest granularity, we focus on one specific test example and

want to understand the reasons behind the prediction of this test example given

by the learned models, e.g., how the training examples from the same task and

from the other related tasks affect its prediction.

On the other hand, we envision that the networked prediction setting also offers

rich context to explain the learning process through the lens of various aspects as

follows:

• Example aspect. Each training example could potentially shape the learned

model of the same task and that of the other tasks via the underlying network.

We want to identify the most influential examples at the different levels (i.e.,

macro, meso and micro levels) to have a comprehensive understanding of the

roles the training examples play in the learning process.

• Task aspect. A learning task, if viewed as the aggregation of its training exam-

ples, would affect the learning process of the whole system as well as each of

the other learning tasks. We seek to identify the important learning tasks at

the three different levels.

124

• Network aspect. A task network is essential in the networked learning system

and plays a unique role as it acts as a bridge to connect all the learning tasks

together. Changing the task network would inevitably influence the learning

results of the whole system as well as each individual learning task.

Following the above discussion, we propose a multi-aspect, multi-level approach

to explain networked prediction. The key idea is to efficiently quantify the influence

on different levels of the learning system due to the perturbation of various aspects.

More concretely, the influence score is measured by the changes in the entire learning

system’s parameters (macro), one task’s model parameters (meso), and the loss func-

tion value at a test sample (micro) in response to the changes made to the training

examples, a learning task and the task network, respectively.

The key advantages are (1) multi-aspect, multi-level: we are able to provide a

comprehensive explanation to the workings of networked prediction from the per-

spective of multiple aspects at multiple levels, essentially through the influences of

example-task-network aspects with respect to macro-meso-micro levels; and (2) effi-

ciency: with the help of influence functions which is rooted in robust statistics [32], we

can efficiently evaluate the influences of changes to the networked prediction without

retraining the whole learning system, which is often time consuming. Furthermore,

we observe that the majority of the training examples have negligible influences at

the three different levels, paving the way for us to design a safe pruning strategy to

filter out those examples to further speed up the computations.

The main contributions of this work can be summarized as:

• Problem Definitions. We formulate the problem to demystify the mecha-

nisms behind networked predictions from multiple aspects (example-task-network)

at multiple levels (macro-meso-micro).

125

• Algorithms and Analysis. We propose an algorithm (NEPAL) to measure the

influence of examples, tasks and network at the macro, meso, and micro levels,

and design an effective pruning strategy to filter out the examples with negligible

influence. We also provide theoretical analysis regarding the complexity and

correctness of the proposed algorithm.

• Empirical Evaluations. We carefully design the empirical evaluations on real

world datasets and demonstrate the effectiveness of the proposed multi-aspect,

multi-level approach for understanding the networked prediction.

5.1.1 Problem Definition

In this subsection, we present the notations used throughout the work (summa-

rized in Table 5.1), and formally define the Explainable Networked Prediction

problem. We use bold capital letters (e.g., A) for matrices and bold lowercase letters

(e.g., w) for vectors.

Let us consider a networked learning system with T supervised learning tasks, for

example, recognizing objects from images or predicting the sentiment from texts. The

training data we have for each task is given as {(xti, yti)}nt
i=1 ⊂ Rd × R, t = 1, . . . , T ,

where nt is the number of available training examples for the t-th task, and d is the

dimensionality of the input space, which is assumed to be shared across the tasks. In

this work, we assume a task relationship network described by a non-negative matrix

A is available. In this network, each node represents a task and the edges represent

the relatedness between the connected tasks, i.e., A(i, j) has a higher numerical value

if the i-th and j-th tasks are closely related. The goal of networked prediction is to

learn a prediction function parameterized by θt as ft(x
t
i; θt) for each task jointly in

126

Symbols Definition

T the number of tasks

d feature dimensionality

{(xti, yti)}nt
i=1 training examples for the t-th task

ft(x
t
i; θt) prediction function of the t-th task parameterized

by θt

L(·, ·) loss function

A task relationship network

IG(xt), IG(ft), IG(Aij) macro-level influences of a training sample, a learn-

ing task and task network

Is(xt), Is(ft), Is(Aij) meso-level influences of a training sample, a learn-

ing task and task network w.r.t. the s-th task

Ixs
test

(xt), Ixs
test

(ft), Ixs
test

(Aij) micro-level influences of a training sample, a learn-

ing task and task network w.r.t. a test example

xstest

Table 5.1: Symbols of NEPAL

order to minimize the regularized empirical loss as follows:

min
θ1,...,θT

T∑
t=1

1

nt

nt∑
i=1

L(ft(x
t
i; θt), y

t
i) + λ

T∑
i=1

T∑
j=1

Aij‖θi − θj‖2 (5.1)

where L(·, ·) is the loss function, e.g., squared loss for regression task or cross entropy

loss for classification task, and the last term is to regularize the model parameters

through the task relationships.

Our goal is to demystify the networked learning system by understanding how the

learning process is propagated at different levels from various aspects. In particular,

given the learned models for all the tasks, we want to quantify the influence on

127

different levels of the learning system due to the perturbation of various aspects.

More concretely, the influence score is measured by the changes in the whole learning

system’s parameters, one task’s model parameters, and the loss function value at a

test sample in response to the changes made to the training examples, a learning task

and the task network.

With the above notations, the problem of explaining the networked prediction can

be formally defined as follows:

Problem 10. Explainable Networked Prediction

Given: the training data of all the tasks {(xti, yti)}nt
i=1, the learned models through

joint training ft(·, θ∗t), a query test sample from the t-th task xttest;

Compute: the influence scores of the training samples, the learning tasks and the

task network on the learning system’s parameters, each learning task’s parame-

ters and on the prediction w.r.t. xttest.

5.1.2 Proposed Model

In this subsection, we present our explanation model NEPAL to help explain net-

worked prediction by measuring the influence of the various aspects (i.e., example,

task, network) at multiple levels (i.e., macro/system, meso/task, micro/example). We

start with a brief review of influence functions, and then present our multi-aspect,

multi-level approach to networked prediction, followed by the proof and analysis.

Preliminaries: Influence Function Influence function has been used in a single

learning task to efficiently evaluate the change in model parameters due to the removal

of a training sample without retraining the model [64]. For a single learning task, the

objective is to minimize the empirical loss as θ∗ = arg minθ
1
n

∑n
i=1 L(f(xi; θ), yi). The

128

key idea is to compute the parameter change should a training sample is upweighted

by some small ε, giving us new parameters θ∗ε = arg minθ
1
n

∑n
i=1 L(f(xi; θ), yi) +

εL(f(x; θ), y). The influence of upweighting x on the parameters θ is given by

Iθ(x) =
dθ∗ε
dε

∣∣∣∣
ε=0

= −H−1
θ∗ ∇θL(f(x; θ), y)

where Hθ∗ = 1
n

∑n
i=1∇2

θL(f(xi; θ), yi) is the Hessian. Removing a training sample is

equivalent to upweighting it by ε = − 1
n
, the parameter change (θ∗−x − θ∗) after the

removal of the training sample x can be approximated by − 1
n
Iθ(x) [64].

NEPAL – Building Blocks In this work, we introduce influence functions in the

setting of a networked learning system, in order to evaluate the influences of multiple

aspects at different levels. We first introduce how to use influence function to measure

the learning system’s parameter change due to perturbation of training examples and

task network as two key building blocks.

The influence of training sample on model parameters: Removing a training ex-

ample from one task would change the parameters of the task itself, but also the

parameters of other tasks through the task network. We apply the similar idea

as above to upweight a training example xt from the t-th task and compute the

changes in all the tasks’ model parameters. Define the new parameters of the en-

tire learning system after such upweighting as θ∗ε
def
= (θ∗1,ε, . . . , θ

∗
T,ε) and that θ∗ε =

arg min
∑T

t=1
1
nt

∑nt

i=1 L(ft(x
t
i; θt), y

t
i) + λ

∑T
i=1

∑T
j=1 Aij‖θi − θj‖2 + εL(ft(x

t; θt), y
t).

The influence of the upweighting on all the tasks’ model parameters can be computed

as

Iθ(xt)
def
=

dθ∗ε
dε

∣∣∣∣
ε=0

= −H−1
θ∗ ∇θL(ft(x

t; θt), y
t) (5.2)

where Hθ∗ is the Hessian of the objective function defined in Eq. (5.1). Since removing

the training example xt from the t-th task is the same as upweighting it by ε = − 1
nt

, we

129

can approximate the change of the parameters in the whole learning system (θ∗−xt−θ∗)

by − 1
nt
Iθ(xt). We show the detailed derivation in Sec. 8.

The influence of task network on model parameters: The changes in the task

network A would also affect the whole learning system’s parameters. To measure

the influence of task network on model parameters, we upweight the task connec-

tion between task i and task j, i.e., Aij, and use the influence function to compute

the changes of the model parameters. Define the new parameters after such up-

weighting as θ∗ε
def
= (θ∗1,ε, . . . , θ

∗
T,ε) and that θ∗ε = arg min

∑T
t=1

1
nt

∑nt

i=1 L(ft(x
t
i; θt), y

t
i)+

λ
∑T

i=1

∑T
j=1 Aij‖θi − θj‖2 + εAij‖θi − θj‖2. The influence of the upweighting on all

the tasks’ model parameters can be computed as

Iθ(Aij)
def
=

dθ∗ε
dε

∣∣∣∣
ε=0

= −H−1
θ∗ ∇θAij‖θi − θj‖2 (5.3)

where Hθ∗ is the Hessian of the objective function defined in Eq. (5.1). Since removing

the connection between task i and task j is equivalent to upweighting Aij by ε =

−λ, we can approximate the change of the parameters in the whole learning system

(θ∗−xt − θ∗) by −λIθ(Aij). We show the detailed derivation in Sec. 8.

NEPAL – Multi-Aspect, Multi-Level Based on the different aspects (i.e., training

example, task, and task network) in the learning system, we can answer questions

regarding the influences at different levels. For example, what are the most influential

training samples in the whole learning system? What are the most influential learning

tasks w.r.t. a test sample? See Table 5.2 for an overview.

Macro-level influences of training examples, tasks, and task network: At this

macro level, we are interested in what the most influential training samples, tasks

and task network connections are w.r.t. the whole learning system. We propose to

use the l2-norm of the change in the whole learning system’s parameters as the mea-

sure of the macro-level influence should a training sample, training samples from a

130

HHH
HHH

HHHH
Aspect

Level
Macro/System Meso/Task Micro/Test example

Training exam-

ple xt

globally influen-

tial training sample

(IG(xt))

task specific influen-

tial training sample

(Is(xt))

test specific influen-

tial training sample

(Ixs
test

(xt))

Learning task ft globally influential

task (IG(ft))

task specific influen-

tial task (Is(ft))

test specific influential

task (Ixs
test

(ft)

Task network A globally influential

task connections

(IG(Aij))

task specific influen-

tial task connections

(Is(Aij))

test specific influen-

tial task connections

(Ixs
test

(Aij))

Table 5.2: Multi-Aspect, Multi-Level Explanation in Networked Prediction

task, or a task connection is removed.

(1) Macro-level influence of a training sample xt. We use the l2-norm of the change

in all tasks’ model parameters as the measure of macro-level influence of xt as follows:

IG(xt) =
1

nt
‖Iθ(xt)‖2

(2) Macro-level influence of a learning task. For one learning task ft, we use the

average of the macro-level influences of the training samples from this task as the

macro-level influence of this learning task, which is given as:

IG(ft) =
1

n2
t

nt∑
i=1

‖Iθ(xti)‖2

(3) Macro-level influence of task network connection Aij. We use the l2-norm of

the change in all tasks’ model parameters as the measure of macro-level influence of

Aij as follows:

IG(Aij) = λ‖Iθ(Aij)‖2

Meso-level influences of training examples, tasks, and task network: At this meso

level, we are interested in what the most influential training samples, tasks and task

131

network connections are w.r.t. a specific learning task. We propose to use the l2-norm

of the change in the parameters corresponding to this learning task as the measure of

the meso-level influence should a training sample, training samples from a task, or a

task connection is removed. Recall that we approximate the change of the parameters

in the whole learning system (θ∗−xt − θ∗) by − 1
nt
Iθ(xt). Let us denote − 1

nt
Iθs(xt) as

the change corresponding to the parameters only in the s-th task.

(1) Meso-level influence of a training sample xt. The l2-norm of the change in the

s-th task’s parameters is used as the measure of the meso-level influence of xt to this

task as follows:

Is(xt) =
1

nt
‖Iθs(xt)‖2

(2) Meso-level influence of a learning task. For one learning task s, we use the

average of the meso-level influences of the training samples from the t-th task as the

meso-level influence of learning task t to task s, which is given as:

Is(ft) =
1

n2
t

nt∑
i=1

‖Iθs(xti)‖2

(3) Meso-level influence of task network connection Aij. The l2-norm of the change

in the s-th task’s parameters is used as the measure of the meso-level influence of Aij

to task s as follows:

Is(Aij) = λ‖Iθs(Aij)‖2

Micro-level influences of training examples, tasks, and task network: Both the

removal of a training sample and the task network connections can potentially change

the parameters of all the tasks’ models, which would in turn change the loss at a

particular test sample xstest from the s-th task. We can apply chain rule to measure

the influence of upweighting a training sample or task network connections on the

loss function value at the test sample.

132

(1) Micro-level influence of a training sample xt. Let us first consider upweighting

a training sample from the t-th task and its influence on the loss at xstest can be given

as

Iθ(xt,xstest)
def
=

dL(fs(x
s
test; θ

∗
s,ε), y

s
test)

dε

∣∣∣∣
ε=0

= ∇θL(fs(x
s
test; θ

∗
s), y

s
test)

T dθ∗ε
dε

∣∣∣∣
ε=0

= −∇θL(fs(x
s
test; θ

∗
s), y

s
test)

TH−1
θ∗ ∇θL(ft(x

t; θt), y
t)

The change of the loss function value at the test sample due to the removal of

the training sample is used as the micro-level influence of xt to xstest and can be

approximated as

Ixs
test

(xt) = − 1

nt
Iθ(xt,xstest)

We show the algorithm for computing the micro-level influences of the training sam-

ples from all the tasks in Algorithm 8. Note that it is both computation and mem-

ory intensive to compute the inverse of the Hessian matrix especially for the large-

scale networked learning problems. Instead, we use conjugate gradient optimization

method to efficiently compute the inverse of the Hessian multiplied by a vector (Step

2).

(2) Micro-level influence of a learning task. For one test sample xstest, we use the

average of the micro-level influences of the training samples from the t-th task as the

micro-level influence of this learning task, which is given as:

Ixs
test

(ft) = − 1

n2
t

nt∑
i=1

Iθ(xti,xstest)

(3) Micro-level influence of task network connection Aij. Similarly, we can compute

the influence of upweighting the task network connection Aij on the loss at xstest as

follows

Iθ(Aij ,x
s
test)

def
=

dL(fs(x
s
test; θ

∗
s,ε), y

s
test)

dε

∣∣∣∣
ε=0

= ∇θL(fs(x
s
test; θ

∗
s), y

s
test)

T dθ∗ε
dε

∣∣∣∣
ε=0

= −∇θL(fs(x
s
test; θ

∗
s), y

s
test)

TH−1
θ∗ ∇θAij‖θi − θj‖2

133

The change of the loss function value at the test sample due to the removal of the

connection between task i and j is used as the micro-level influence of Aij and can

be approximated as

Ixs
test

(Aij) = −λIθ(Aij,x
s
test)

Remarks: The above micro-level influences of training samples, tasks and task net-

work, i.e., Ixs
test

(xt), Ixs
test

(ft) and Ixs
test

(Aij), can be either positive or negative. The

sign of the influence value indicates whether it helps the prediction of the test sample

(i.e., reduce the loss at this test sample) or harms the prediction of the test sample

(i.e., increase the loss at the test sample). The magnitude of the influence value,

i.e., |Ixs
test

(xt)|, |Ixs
test

(ft)| and |Ixs
test

(Aij)|, indicates how much the influence is, be it

positive or negative, on the test sample.

Proofs and Analysis In this subsection, we analyze the proposed NEPAL algo-

rithm by giving the complexity analysis, the derivation of the key equations and its

characteristics with some common loss functions for classification.

A – Complexity analysis: we analyze the time complexity of Algorithm 8

where the learning models for each task is logistic regression, i.e., L(ft(x
t; θt), y

t) =

log(1 + exp(−ytθTt xt)).

Theorem 5. (Time complexity of NEPAL). Algorithm 8 takes O(nT 2d2) with logistic

regression model for each task, where n =
∑T

t=1 nt is the total number of training

samples in all tasks and T is the number of tasks.

Proof. The gradient of the loss function in logistic regression is computed as∇θtL(ft(x
t;

θt), y
t) = −σ(−ytθTt xt)ytxt. Step 1 for computing the gradient of the loss at xstest

takes O(d) time. In Step 2, the size of the Hessian matrix Hθ is Td by Td, where

T is the number of tasks. In the worst case scenario conjugate gradient algorithm

(CG) will require Td iterations to converge, thus requiring at most the evaluation

134

Algorithm 8: NEPAL - Networked Prediction Explanation

Input: (1) the training data of all the tasks {(xti, yti)}nt
i=1, (2) the learned

models through joint training ft(·, θ∗t), (3) a query test sample from

the s-th task xstest.

Output: the micro-level influences of the training samples of all the tasks on

the prediction w.r.t. xstest.

1 Compute gradient of the loss at the test sample w.r.t. model parameters:

v← ∂L(fs(xs
test;θ

∗
s),ystest)

∂θ
;

2 Compute x = H−1
θ v by solving minx

1
2
xTHθx− vTx using conjugate gradient

method, where the Hessian-vector product can be exactly computed using the

Rv{·} operator [93];

3 for each task t in all tasks do

4 for i = 1, . . . , nt do

5 Compute the gradient of the objective function at training sample xti

w.r.t. model parameters: u← ∂L(ft(xt
i;θ
∗
t),yti)

∂θ
;

6 Compute the influence score of xti as Ixs
test

(xti) = 1
nt

uTx ;

7 end

8 end

of Td Hessian-vector multiplications, each of which takes O(nTd) without explicitly

forming the Hessian, where n =
∑T

t=1 nt. In total, Step 2 takes O(nT 2d2). In the

for-loops (Line 3 - Line 6), it takes O(d) for each training sample, which totals O(nd).

In summary, the total time complexity is O(nT 2d2).

B – Derivation of the influence functions Iθ(xt) and Iθ(Aij):

Lemma 9. (Correctness of Eq (5.2)). Denote J (θ) =
∑T

t=1
1
nt

∑nt

i=1 L(ft(x
t
i; θt), y

t
i)+

λ
∑T

i=1

∑T
j=1 Aij‖θi − θj‖2, where θ

def
= (θ1, . . . , θT). Assuming J (θ) to be twice-

135

differentiable and strictly convex, the influence of upweighting training sample xt on

the parameters θ can be computed by Iθ(xt).

Proof. The Hessian matrix of J (θ) is defined as:

Hθ
def
= ∇2J =

T∑
t=1

1

nt

nt∑
i=1

∇2
θL(ft(x

t
i; θt), y

t
i) + λ

T∑
i=1

T∑
j=1

∇2
θAij‖θi − θj‖2

Let us upweight a training example xt from the t-th task and the new parameters

after such upweighting is written as θ∗ε = arg minJ (θ) + εL(ft(x
t; θt), y

t). Define the

parameter change ∆ε = (θ∗ε − θ∗) and since θ∗ does not depend on ε, we have the

following

dθ∗ε
dε

=
d∆ε

dε

By the first-order optimality conditions, we have

∇J (θ∗ε) + ε∇L(ft(x
t; θ∗t,ε), y

t) = 0

Because θ∗ε → θ∗ as ε → 0, we can apply Taylor expansion to the left-hand side and

get

[∇J (θ∗) + ε∇L(ft(x
t; θ∗t), y

t)] + [∇2J (θ∗) + ε∇2L(ft(x
t; θ∗t), y

t)]∆ε ≈ 0

Since ∇J (θ∗) = 0, we can solve for ∆ε as

∆ε ≈ −[∇2J (θ∗) + ε∇2L(ft(x
t; θ∗t), y

t)]−1ε∇L(ft(x
t; θ∗t), y

t)

It can be further simplified if we only keep the O(ε) terms:

∆ε ≈ −∇2J (θ∗)−1ε∇L(ft(x
t; θ∗t), y

t)

The influence of the upweighting can be computed as

Iθ(xt)
def
=

dθ∗ε
dε

∣∣∣∣
ε=0

= −H−1
θ ∇L(ft(x

t; θ∗t), y
t)

136

Lemma 10. (Correctness of Eq (5.3)). Assuming J (θ) to be twice-differentiable

and strictly convex, the influence of upweighting task network connection Aij on the

parameters θ can be computed by Iθ(Aij).

Proof. Similarly, let us upweight the task network connection and define the new

parameters after such upweighting as θ∗ε = arg minJ (θ) + εAij‖θi − θj‖2.

By the first-order optimality conditions, we have

∇J (θ∗ε) + ε∇Aij‖θi − θj‖2 = 0

Because θ∗ε → θ∗ as ε → 0, we can apply Taylor expansion to the left-hand side and

get

[∇J (θ∗) + ε∇Aij‖θi − θj‖2] + [∇2J (θ∗) + ε∇2Aij‖θi − θj‖2)]∆ε ≈ 0

Since ∇J (θ∗) = 0, we can solve for ∆ε as

∆ε ≈ −[∇2J (θ∗) + ε∇2Aij‖θi − θj‖2]−1ε∇Aij‖θi − θj‖2

It can be further simplified if we only keep the O(ε) terms:

∆ε ≈ −∇2J (θ∗)−1ε∇Aij‖θi − θj‖2

The influence of the upweighting can be computed as

Iθ(Aij)
def
=

dθ∗ε
dε

∣∣∣∣
ε=0

= −H−1
θ ∇Aij‖θi − θj‖2

C – Analysis for Classification Loss: we analyze the influences from the

aspect of examples at different levels with some common classification loss functions

used for each learning task.

Let us first consider hinge loss used in Support Vector Machine for each task,

i.e., L(ft(x
t; θt), y

t) = max(0, 1− ytθTt xt). Let us consider the non-support vectors in

137

learning task t, i.e., the training samples that satisfy ytθTt xt > 1. For these training

samples, we know L(ft(x
t; θt), y

t) = 0 and hence ∂L(ft(xt;θt),yt)
∂θt

= 0. The influence of

the non-support vectors xt on the parameters is therefore Iθ(xt) = 0. The macro-

level influence of a non-support vector is IG(xt) = 0, and the meso-level influence

of a non-support vector is Is(xt) = 0. This matches our intuition that since non-

support vectors are known to have no influence on the resulting classifiers, removing

them should not change the parameters in the learning task itself and also other

tasks. By the same argument, the micro-level influence of the non-support vectors is

Ixs
test

(xt) = 0.

For logistic loss, L(ft(x
t; θt), y

t) = log(1 + exp(−ytθTt xt)), its gradient w.r.t. θt is

∇θtL(ft(x
t; θt), y

t) = −σ(−ytθTt xt)ytxt. For the training samples with large positive

ytθTt xt, σ(−ytθTt xt) is very small (close to 0), their influences at different levels are

expected to be much smaller than other training samples.

In practice, from the example aspect, we are only interested in inspecting the

training samples with high influence. To speed up the computation, we can first

filter out those examples with large ytθTt xt. Such analysis matches our empirical

observation in Fig. 5.5 (macro-level) and Fig. 5.9 (micro-level).

5.1.3 Empirical Evaluations

In this subsection, we present the empirical evaluation results. The experiments

are designed to evaluate the following aspects:

• Effectiveness: how does the proposed NEPAL algorithm help us understand the

networked predictions?

• Efficiency: how fast and scalable is the proposed NEPAL algorithm?

Datasets The real world datasets used for evaluation are as follows:

138

MNIST. MNIST [69] is a commonly used handwritten digit dataset, containing

images of handwritten numerals (0-9) represented by 28 × 28 pixels in grayscale. We

construct the networked prediction system using logistic regression for three tasks,

where task 1 distinguishes digit 1 from 7, task 2 differentiates digit 2 from 7 and task

3 classifies digit 6 from 9. In the task network, we connect task 1 with task 2 with

A12 = 1 and connect task 2 with task 3 with A23 = 0.1.

Semantic Scholar 1. This open research corpus offers over 20 million published

research papers in computer science, neuroscience, and biomedical. We consider pa-

pers published between 1975 and 2005 with their features generated using information

available only up to 2005. We build networked prediction models for papers published

in venues in data mining, computer vision, NLP, AI and computer networks and a

paper is classified as positive if its accumulative citation counts from 2006 to 2015

exceeds the median accumulative citation counts of the training examples from the

respective domains. The features include author impact (e.g., author h-index), venue

impact (e.g., venue rank). The task network is constructed based on the relevance

between different research domains.

Sentiment 2. This multi-domain sentiment dataset contains product reviews from

Amazon.com for many product types [10]. We build networked prediction models for

reviews from music, video, DVD, book and magazine and a review is labeled as positive

if its rating is greater than 3 and negative if its rating is below 3. We extract both

unigram and bigram features from the review text. The task network is constructed

based on the relevance between different product domains.

Repeatability of experimental results: all the datasets are publicly available. We

release the datasets and code of the proposed algorithms through authors’ website.

1http://labs.semanticscholar.org/corpus/
2http://www.cs.jhu.edu/ mdredze/datasets/sentiment/

139

http://labs.semanticscholar.org/corpus/

The experiments are performed on a MacBook Pro with two 2.4GHz Intel Cores and

8GB RAM.

Results on MNIST

A – Macro-level Influences. For this set of experiments, we study how the

training examples, tasks and task network influences the entire learning system (i.e.,

the second column in Table 5.2).

(1) Macro-level influences of training examples: We compute the macro-level in-

fluences IG(xt) for training examples of all the three learning tasks and plot their

distributions in Fig. 5.2. In all the tasks, the great majority of the examples have no

or negligible influences on the entire learning system and only a few can exert signifi-

cant influence. The top 10 globally influential training examples measured by IG(xt)

is shown in Fig. 5.3 with 7 of them from the second task. The top 2 examples are the

same images of digit 7 from task 2 and 1, respectively. To see how the globally influ-

ential examples affect the learning system’s prediction performance, we flip the labels

of the most influential examples at macro-level, retrain the model and compute the

classification accuracy on the test set. We also test the random picking strategy with

30 repetitions. Fig. 5.4 shows that flipping the labels of the most influential examples

exert larger interruption to the learning system as demonstrated by the significant

drop in the test accuracy for all the three tasks. Our analysis in Sec. 8 shows that

for the training samples with large positive ytθTt xt, their macro-level influences are

expected to be much smaller than other training samples. Fig. 5.5 provides empirical

verification for this analysis.

(2) Macro-level influence of a learning task: the macro-level influences of the three

learning tasks are IG(f1) = 0.0028, IG(f2) = 0.0040 and IG(f3) = 0.0037. The second

task has the highest influence on the entire system as it links task 1 and task 3.

140

0.00 0.02 0.04 0.06

G(xt)

0.1%

1.0%

10.0%

100.0%

P
ro

ba
bi

lit
y

(lo
g-

sc
al

e) Task 1

0.00 0.02 0.04 0.06

G(xt)

Task 2

0.00 0.02 0.04

G(xt)

Task 3

Figure 5.2: The distribution of the macro-level influences of training examples in each

of the three tasks.

G(xt) = 0.0693

From Task 2

G(xt) = 0.0680

From Task 1

G(xt) = 0.0630

From Task 2

G(xt) = 0.0602

From Task 2

G(xt) = 0.0587

From Task 2

G(xt) = 0.0583

From Task 2

G(xt) = 0.0566

From Task 3

G(xt) = 0.0526

From Task 2

G(xt) = 0.0525

From Task 2

G(xt) = 0.0471

From Task 3

Figure 5.3: The top 10 globally influential training samples.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Fraction of training labels flipped

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

Te
st

 a
cc

ur
ac

y

Task 1

Macro-level Influence
Random

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Fraction of training labels flipped

0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96

Te
st

 a
cc

ur
ac

y

Task 2

Macro-level Influence
Random

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Fraction of training labels flipped

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Te
st

 a
cc

ur
ac

y

Task 3

Macro-level Influence
Random

Figure 5.4: Fraction of training labels flipped vs. test accuracy.

(3) Macro-level influence of task network: the macro-level influences of the two

links in the task network are IG(A12) = 0.1898 and IG(A23) = 0.2484. A23 is of more

influence as it connects the two more relevant learning tasks.

B – Meso-level Influences. For this set of experiments, we study how the

141

0 5

yt T
t xt

0

0.02

0.04

0.06

0.08

M
ac

ro
-le

ve
l I

nf
lu

en
ce

s
G
(x

t) Task 1

0 5 10

yt T
t xt

0

0.02

0.04

0.06

0.08
Task 2

0 2 4 6

yt T
t xt

0

0.02

0.04

0.06

0.08
Task 3

Figure 5.5: The macro-level influences of training samples vs. their yθTt x.

training examples, tasks and task network affects the behavior of each learning task

(i.e., the third column in Table 5.2).

(1) Meso-level influences of training examples: The distribution of the meso-level

influences of the training examples w.r.t. the three learning tasks is similar to that

in Fig. 5.2. We omitted these plots due to space limitation. For all the tasks, the

majority of the examples have no or negligible influences on the learning tasks. Ex-

amples from the task itself tend to have a larger influence on this task. The top 5

influential training examples specific to each learning task are shown in Fig. 5.6.

(2) Meso-level influence of a learning task: We compute the meso-level influences

of each learning task and observe that generally the most influential task for one

specific task is the task itself, except that for the first task, task 2 has about the same

influence on it as the task itself possibly due to the same negative training examples

of digit 7 they share. For task 2, the first task has about half the influence as the

task itself.

(3) Meso-level influences of task network: We compute the meso-level influences of

the task network specific to each task. The results are consistent with our intuition.

For task 1, the connection A12 has larger influence than A23; for task 2, the two task

connections have about the same influences; and for task 3, the connection A23 has

larger influence.

142

1(xt) = 0.0538

(a)
From Task 1

1(xt) = 0.0405

From Task 2

1(xt) = 0.0385

From Task 2

1(xt) = 0.0369

From Task 2

1(xt) = 0.0358

From Task 2

2(xt) = 0.0542

(b)
From Task 2

2(xt) = 0.0479

From Task 2

2(xt) = 0.0459

From Task 2

2(xt) = 0.0445

From Task 2

2(xt) = 0.0443

From Task 2

3(xt) = 0.0549

(c)
From Task 3

3(xt) = 0.0459

From Task 3

3(xt) = 0.0447

From Task 3

3(xt) = 0.0442

From Task 3

3(xt) = 0.0437

From Task 3

Figure 5.6: The top 5 influential training examples specific to each of the three

learning tasks in (a), (b) and (c), respectively. The influence score of these training

examples w.r.t. the tasks are shown under the example images.

C – Micro-level Influences. For this set of experiments, we randomly select

one test example from each of the three learning tasks and study how the training

examples, tasks and task network affects their predictions (i.e., the last column in

Table 5.2).

(1) Micro-level influence of training examples: The distribution of the micro-level

influences of the training examples w.r.t. the test examples is also similar to that in

Fig. 5.2. We omitted these plots due to space limitation.

The top 4 influential training examples specific to each test example are shown in

Fig. 5.7. For the purpose of validation, we want to compare how accurately Ixs
test

(xt)

can approximate L(fs(x
s
test; θ−xt))− L(fs(x

s
test; θ)), i.e., the change of loss at the test

sample after retraining without training example xt. We randomly pick a test example

xstest from the first task, and show the predicted and actual changes for the top 100

influential training examples from each of the three tasks in Fig. 5.8. We can see that

143

(a)
Test Image from Task 1

x1
test(xt) = 6.353e-04

From Task 1

x1
test(xt) = 5.525e-04

From Task 1

x1
test(xt) = 5.419e-04

From Task 1

x1
test(xt) = -4.481e-04

From Task 1

(b)
Test Image from Task 2

x2
test(xt) = -1.834e-04

From Task 2

x2
test(xt) = -1.177e-04

From Task 2

x2
test(xt) = 9.833e-05

From Task 2

x2
test(xt) = -9.701e-05

From Task 2

(c)
Test Image from Task 3

x3
test(xt) = -9.166e-05

From Task 3

x3
test(xt) = -8.510e-05

From Task 3

x3
test(xt) = 6.009e-05

From Task 3

x3
test(xt) = 4.765e-05

From Task 3

Figure 5.7: The top 4 influential training examples specific to each of the three test

examples from each of the three tasks in (a), (b) and (c), respectively. The influence

score of these training examples w.r.t. the test examples are shown under the example

images.

the proposed method based on influence function can well approximate the change in

losses, e.g., Pearson’s R=0.99 and 0.98 in the first and second tasks, respectively.

-0.0002 0.0002 0.0006

Actual diff in loss

-0.0002

0.0002

0.0006

P
re

di
ct

ed
 d

iff
 in

 lo
ss

Task 1

-0.0002 0.0002 0.0006

Actual diff in loss

-0.0002

0.0002

0.0006
Task 2

-0.0001 0 0.0001

Actual diff in loss

-0.0001

0

0.0001
Task 3

Figure 5.8: Using influence function to approximate leave-one-out retraining test loss.

Fig. 5.9 plots the relationship between the micro-level influences of the training

examples w.r.t. the test sample from task 1 and their ytθTt xt values. Note here that

the micro-level influences could be either positive or negative, but their magnitude is

very small when ytθTt xt has large positive value, which again supports our analysis

144

in Sec. 8. Fig. 5.10 shows the running time of Algorithm 8 with varying size of the

0 5

yt T
t xt

8

6

4

2

0

2

4

6

8

M
ic

ro
-le

ve
l I

nf
lu

en
ce

s
x1 te

st
(x

t) 1e 4 Task 1

0 5 10

yt T
t xt

4

2

0

2

4

1e 4 Task 2

0 2 4 6

yt T
t xt

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00 1e 4 Task 3

Figure 5.9: The micro-level influences of training samples vs. their yθTt x

total number of training examples n. We can see that the proposed algorithm scales

linearly, which is consistent with Theorem 5.

(2) Micro-level influences of a learning task: We compute the micro-level influences

of each of the learning task w.r.t. the test examples and observe that generally the

task that has the most influence on a particular test example is the one where the test

example is from. One exception is that, for the test example from task 2, both task 1

and task 2 have similar positive influence possibly because task 1 that distinguishes

between digit 1 and 7 can also help with the prediction of the test example of digit 7

in task 2.

(3) Micro-level influences of task network: We compute the micro-level influences

of the task network specific to each test example. For the test example from the first

task, A12 has a much larger negative impact than A23 possibly because connecting

to task 2 does not help with the prediction of digit 1. For the test example of digit

7 from task 2, A12 has a larger positive impact than A23 since connecting to task 1

can help with this prediction.

Case Studies on Semantic Scholar Dataset We use the following test exam-

ple from data mining area: Constraint-Based Query Evaluation in Deductive

145

10000 20000 30000 40000 50000

Total number of training samples: n

10

20

30

40

50

60

70

R
un

ni
ng

 T
im

e
(s

ec
)

Figure 5.10: Running time vs. total number of training examples n for computing

the micro-level influences of training examples.

Databases by Prof. Jiawei Han published in TKDE in 1994. We want to examine

the most helpful training examples from each domain for this particular test example

according to the micro-level influences.

The most helpful training examples from data mining are: Structures, Seman-

tics and Statistics by Alon Y. Halevy published in VLDB in 2004 and The archi-

tecture of complexity: the structure and the dynamics of networks from

the web to the cell by Albert-László Barabási published in KDD in 2005. The most

helpful training examples from computer vision are: SWIM: A Prototype Envi-

ronment for Visual Media Retrieval by HongJiang Zhang published in ACCV

in 1995 and Scene Reconstruction from Multiple Cameras by Richard Szeliski

published in ICIP in 2000. The most helpful training examples from NLP are: Lan-

guage Learning: Beyond Thunderdome published in CoNLL in 2004 and The

segmentation problem in morphology learning published in CoNLL in 1998

both by Christopher D. Manning. The most helpful training examples from AI are:

146

Robustness of Causal Claims by Judea Pearl published in UAI in 2004 and Direct

and Indirect Effects by Judea Pearl published in UAI in 2001.

The helpful training examples from across domains are similar to this particular

test example from data mining in the sense that they are all solo-authored papers

by well-known researchers from respective domains. We want to emphasize that the

influence function is not simply a Euclidean distance in the feature space as evident

in Fig. 5.11, where we plot the micro-level influences Ix1
test

(xt) vs. the Euclidean

distance between the test example and the training examples from each task.

Figure 5.11: Euclidean distance vs. micro-level influence score on Semantic Scholar.

We only show their relationship in data mining and computer vision as similar patterns

are observed in other domains. Green triangles are training examples with the same

label as the test example, and red dots are training examples with opposite label as

the test example.

Case Studies on Sentiment Dataset We use the test example from music cate-

gory and show the most influential training examples from other domains in Table 5.3.

Comparing the test example and the helpful training examples from all the domains,

it seems they are overall towards the positive sentiment despite some negative de-

147

scriptions about the products, e.g., the book “seems really dull” to average readers in

the book domain. The harmful example from music is labeled as negative sentiment

but the descriptions still sound largely positive.

Review Text (positive sentiment is highlighted in bold font and

negative sentiment is highlighted with underline). [...] is used

to omit some sentences without altering the main meaning of

the text.

Label

Test

exam-

ple from

music

I was instantly drawn into her music. What I love about her songs is that they

are so real. ”You Give Me Love” is so real and so strong. ”The Secret of Life” has

taken some getting used to. It is not my absolute favorite on the CD. ”Me” is the song that

means the most to me since I have experienced trying to change for someone else in a

relationship. [...] She has a big voice, and she nails each song on this CD. Give it a try.

+

Harmful

exam-

ple from

music

I liked this when it first came out b/c I was 16.[...]This is their best work since the weird-

ness does get lame after a while. Favorite song is Mongoloid...totally strange but rocking

song. ”Uncontrollable Urge” rocks (in a weird way). Satisfaction is completely unique but

its not a good song. [...] I saw them live (they were horrible) during their hey day. [...]Any-

body that gives this novelty group 5 stars is cheapening what true excellent music

is.

−

Helpful

exam-

ple from

book

Here’s a good litmus test to show how good a book like ”Breathing Lessons” is–nothing

extraordinary happens and yet I did not want to put the book down. [...]To the average reader

this book probably would seem really dull. Heck, if someone told me the plot of this book I’d

think it was really dull too, but I didn’t want to put it down. [...] It’s hard for me

to find any real faults with this book, except for the lengthy flashback near the end that

perhaps goes on too long. Some people may call this boring or dull, but I would call it purely

exceptional. I LOVED this book and highly recommend it

+

Table 5.3: Case study on Sentiment.

148

5.2 Explaining Team Optimization in Networks

The emergence of network science has been significantly changing the landscape

of team-based research in recent years. For example, if an existing team member

becomes unavailable before the completion of the project, who shall we recommend

to replace that individual’s role so that the team would be least impacted due to

the departure of this team member (team member replacement)? If the team leader

perceives the need to expand the current team, who shall we bring into the existing

team (team expansion)? Reversely, in case the team needs to be downsized (e.g., due

to budget reduction), who should leave the team (team shrinkage)?

A cornerstone behind various team recommendation algorithms is random walk

graph kernel [111]. By comparing and aggregating walks of the two input graphs, it

naturally measures the graph similarity that captures both the topologies of the input

graphs as well as the attributes associated with nodes and links. For instance, for team

member replacement, by applying random walk graph kernel to the team networks

before and after replacement, it encodes both the skill match, structure match as

well as the interaction between the two during the replacement process [75]. Team

member replacement further enables other team recommendation scenarios (e.g., team

expansion, team shrinkage, etc.) [77]. Although being effective in answering questions

like who is the best replacement, what is the best team expansion strategy, these

existing methods lack intuitive ways to explain why the underlying algorithm gives

the specific recommendation for a given team optimization scenario.

In this work, we present a prototype system (Extra), a paradigm shift from what

to why, to explain the networked team recommendation results. On the algorithmic

side, we propose an effective and efficient algorithm to explain random walk graph

kernel given its central role in various team recommendation scenarios. The key idea

149

here is to identify the most influential network substructures and/or attributes whose

removal or perturbation will impact the graph kernel/similarity the most. On the

system side, our prototype system is able to explain various team recommendation

scenarios (e.g., replacement, expansion, shrinkage) from a variety of different per-

spectives (e.g., edges, nodes and attributes). For example, given a candidate for team

member replacement, we are able to tell what the key connections are between the

candidate and the existing team members that might make him/her a potentially

good replacement; for team expansion, we are able to identify the key skill sets that

a candidate might bring to benefit the existing team the most.

5.2.1 Functionality Demonstration

In this section, we present the main functionalities of our prototype system (Extra)

to explain three different team recommendation scenarios, including team member

replacement, team expansion and team shrinkage. In our system, we model the un-

derlying data as a large, attributed network, where nodes represent individuals, edges

represent the relationship between different individuals, node attributes represent the

skills of individuals, edge attributes represent the types of relationship (e.g., email

communication, social friends, etc.) and a team is represented by an induced sub-

graph of its team members. The proposed Extra system provides explanations for

different team recommendation scenarios through the lens of this underlying network

from three different aspects, including edges, nodes and attributes. Table 5.4 sum-

marizes the main functionalities of our system. The system allows users to explore

team recommendation in the context of two common types of teams, including col-

laborative academic research teams and competitive sports teams. In addition, the

system provides users with the option to manually assemble a team on-the-fly, and

explore various team recommendation scenarios and the associated explanations.

150

Team Replace-

ment

Team Expansion Team Shrinkage

Edges important common

collaborations shared

by the candidate

and the departure

member

new collaborations

that the new member

might establish

the most important

lacking collabora-

tions the candidate

should have

Nodes most important ex-

isting team members

that both the can-

didate and departure

member collaborate

with

key existing team

members the new

member will work

with

key existing team

members that the

candidate should

have collaborated

with

Attributes common and impor-

tant skills shared by

the candidate and

the departure mem-

ber

the unique skills the

new team member

brings that are criti-

cal to the team’s new

need

the most important

skills that the candi-

date lacks

Table 5.4: Summary of system functionalities. Columns are different team recom-

mendation scenarios and rows are different aspects for explanation.

Explaining Team Replacement A current team member might leave the team

before the completion of the project for reasons like moving to another organization,

being assigned to another project, etc. In this case, we need to find a good replacement

for this member. In order to have the least impact on the entire team due to the

member’s departure so that the new team could continue to perform well, a team

member replacement algorithm [75] often seeks to find a candidate who is most similar

151

to the departure member, in the sense of both skill match, structure match as well as

the interaction between the two. Having this in mind, our prototype system identifies

a few key (1) edges (the relationship between the candidate and other team members),

(2) nodes (other team members) and (3) attributes (the skills of the candidate) that

make the candidate and the departure member most similar. In this way, it could

help the end-user (e.g., the team leader) understand why the underlying replacement

algorithm thinks the given candidate is a potentially good replacement, based on

which s/he can make a more informed decision.

Explaining Team Expansion If the team leader perceives the need to grow the

current team based on the new requirement of the project, we need to find a best

candidate to join the team. An effective team expansion recommendation algorithm

often considers not only (1) if the new team member can bring critical skills to

the team, but also (2) if the new member can collaborate efficiently with some of

the existing team members with complementary skills [77]. Our prototype system

provides the explanations for a recommended new team member from the following

aspects, including (1) what are the unique new skills s/he brings to the team (i.e.,

attribute); and (2) what are the key collaborations the new team member might

establish (i.e., edges) and with whom (i.e., nodes).

Explaining Team Shrinkage On the contrary to team expansion, the team leader

might have to downsize the team (e.g., due to the budget reduction). In this scenario,

a team shrinkage algorithm often chooses a least important team member to leave the

team, so that the remaining team would maximally preserve the functionalities of the

original team [77]. Our prototype system flags the absent skills and connections with

existing team members that makes the candidate most insignificant to the current

152

team. In other words, we want to understand why the dismissal of this particular

candidate would impose the least negative impact on the team.

5.2.2 Technical Details

In this subsection, we present key technical details behind the proposed Extra

prototype system, including (1) the basics of random walk graph kernel, (2) how

to use it for various team recommendation scenarios and (3) how to explain team

recommendation.

Random Walk Graph Kernel Random walk graph kernel is a widely used com-

putational model that provides a natural way to measure the similarity between two

graphs [15]. Given two graphs G = (V,E) and G′ = (V′,E′) (e.g., the two team

networks before and after a replacement), let W and W′ be the adjacency matrices of

G and G′, respectively. Their direct product graph G× = (V×, E×) is a graph with

vertex set V× = {(v, v′) | v ∈ V, v′ ∈ V′} and edge set E× =
{

((vi, v
′
r) , (vj, v

′
s)) |

(vi, vj) ∈ E, (v′r, v
′
s) ∈ E′

}
. We also represent the node attributes (e.g., skills of team

members) as an n× l skill indicator matrix L, where the ith row vector of L describes

the skills that the ith team member has. Performing the simultaneous random walks

on G and G′ is equivalent to a random walk on the direct product graph. Let p

and p′ be the starting probabilities of the random walks on G and G′, respectively.

The stopping probabilities q and q′ are defined similarly. Then, by imposing a decay

factor c to longer walks and summing up all the common walks of different lengths,

the random walk graph kernel for labelled graphs is computed as follows [111]:

k (G,G′) = q×
T (I− cW×)−1 L×p× (5.4)

where q× = q⊗q′, p× = p⊗p′, ⊗ represents the Kronecker product operation, W× =

L× (W ⊗W′) and L× =
∑l

k=1 diag (L (:, k))⊗ diag (L′ (:, k)), where diag (L (:, k)) is

153

a diagonal matrix where each entry indicates whether a team member has the kth

skill or not. L× (i, i) = 0 if there is label inconsistency of two nodes from the two

graphs (i.e. two team members have completely different skills), therefore the ith row

of (W ⊗W′) will be zeroed out. For plain graphs without node attributes, L× can

be omitted from the above equation.

Graph Kernel for Team Recommendation It turns out random walk graph

kernel is the core building block behind a variety of team recommendation scenarios.

We summarize the key idea below. For details, please refer to [77].

In team replacement, the objective is to find a similar person m to replace the

current team member r who is going to leave the team. A good replacement m should

have a similar skill set as the current member r to continue the project and should

have a similar collaboration structure with the existing team members so that the

new team can still work together harmonically with little or no disruption.

Therefore, the similarity between the departure member and the candidate should

be measured in the context of the team networks [75]. Mathematically, it aims to

find a candidate m who satisfies: m = argmaxj,j /∈Gk (G,G′), where G is the current

labelled team graph and G′ is the team graph after replacement.

In team shrinkage, the objective is to find a current team member such that

his/her dismissal will impact the current team as slightly as possible. In other words,

we want the shrunk team as similar as possible to the original team, which leads to the

following team shrinkage strategy, i.e., m = argmaxj,j∈Gk (G,G−j), where G is the

current labelled team graph and G−j is the team graph without the current member

j. In team expansion, the team leader often has an expectation for the configuration

of the ideal new candidate, including the skills s/he has, and the way that s/he

collaborates with the current team members. Thus, the team expansion strategy

154

adopts the following two steps. It first expands the current team by adding a virtual

team member with the ideal configuration in terms of his/her skills as well as how

to connect with the existing team members, and then it calls the team replacement

algorithm to replace this virtual member with an actual person in the network, i.e.,

n = argmaxj,j /∈Gk (G′,Ge), where G′ is the newly expanded team with the actual

candidate n and Ge is the expanded team with the ideal, virtual team member.

Explaining Team Recommendation As mentioned in Section 5.2.1, a unique

feature of our prototype system is to explain why a certain team recommendation

algorithm gives a specific recommendation result, from various perspectives of the

underlying network, including edges, nodes and attributes. Given the central role

that random walk graph kernel plays in various team recommendation scenarios, we

seek to understand the influence of various graph elements w.r.t. the correspond-

ing graph kernels in Eq. (5.4), i.e., to what extent a given graph element (e.g.,

edge/node/attribute) would impact the graph kernel. An intuitive way to measure

the influence of a given graph element would be first removing it from the team graph

and then computing the change of the magnitude of the corresponding graph kernel.

However, this method (referred to as ‘direct computation’) is computationally expen-

sive, as we need to recompute the graph kernel for each possible graph element. To

address this issue, we define the influence score of one specific element as the rate

of the change in k(G,G′). For example, in order to calculate the influence score

of the edge that connects the ith and the jth members in graph G, let Wij be the

corresponding entry of the weighted adjacency matrix W of graph G. Given random

155

walk graph kernel for labelled graph in Eq. (5.4) , we calculate its influence score as

I (Wij) =
∂k (G,G′)

∂Wij

= cq×
TRL×

(
∂W

∂Wij

⊗W′
)

RL×p

= cq×
TRL×

(
(Ji,j + Jj,i)⊗W′)RL×p (5.5)

where R = (I− c W×)−1 and its computation can be accelerated using power method

and Ji,j is a single-entry matrix with one at its (i, j)-th entry and zeros everywhere

else. Edges (i.e., collaborations between team members) with the highest influence

scores can be used to explain the corresponding team recommendation results. In

team replacement, an ideal candidate should have these key collaborations as the

departure member, indicating their similarity in terms of how they collaborate with

existing members. In the scenario of team expansion, these are key collaborations

that the team leader expects the new member to establish. In the team shrinkage

scenario, these are important collaborations that the candidate might lack which in

turns makes his/her dismissal of little negative impact on the team.

The node influence of the ith member is defined as the aggregation of the influence

of all the edges incident to this node, i.e., I (i) =
∑

j|(i,j)∈E I (Wij). Existing team

members with the highest node influence scores are expected to be key members in

the team. In the team replacement scenario, a good candidate should also collaborate

with these key members as the departure member. In team expansion, these are the

key team members the new member will work with. In team shrinkage, these are the

key members that the candidate should have collaborated with.

Likewise, to compute the influence of a team member’s attributes (e.g., skills)

on the graph kernel, we take the derivative of the graph kernel w.r.t. the member’s

skill. Denote the kth skill of the ith team member in graph G as Lk (i), the attribute

influence can be calculated as

I (Lk (i)) =
∂k (G,G′)

∂Lk (i)
= qx

TR

(
∂L×
∂Lk (i)

)
(I + c(W ⊗W′)RL×) p×

156

where ∂L×
∂Lk(i)

= diag (ei)⊗ diag (L′ (:, k)) and ei is a n by 1 vector with one at the ith

entry and zeros everywhere else. Skills with the highest attribute influence scores can

be used to explain the corresponding team recommendation results. These are key

skills that (1) the candidate and the departure member share in team replacement, (2)

the new team member might bring in team expansion, and (3) the dismissal member

might lack in team shrinkage.

5.2.3 System Demonstration

Figure 5.12: An illustrative example of influence analysis.

Figure 5.12 presents the user interface of Extra and an example of visualization of

influence analysis for team member replacement on a co-authorship network3, which

suggests that Dr. Jiawei Han is the best replacement. The influence scores of all

edges for both graphs are calculated by our proposed algorithm in Section 5.2.2 and

the width of edge is proportional to the influence score. The top-4 most influential

3A demo video of the system is available at https://youtu.be/D4gcI-QHtps. System website:

http://144.202.123.224/system.html .

157

https://youtu.be/D4gcI-QHtps
http://144.202.123.224/system.html

edges are those that connect Dr. Yu with the 4 existing members, Lin, Zhao, Chen

and Sun, all of whom are considered as the key members and they also have strong

collaborations with Dr. Han. After replacement, the top-5 most influential edges

with Dr. Han overlap with those of Dr. Yu in the same ranking order. The only

exception is that no edge exists between Dr. Yu and Dr. Zhu because there is no

prior collaboration between them. In addition, the system can provide explanations

from the attribute perspective. The key skills (represented in pie chart) shared by

Dr. Han and Dr. Yu are databases and data mining in this case, which makes the

team replacement recommendation more understandable.

158

Chapter 6

CONCLUSION AND FUTURE WORK

In this chapter, we summarize our key research results and discuss promising future

research directions.

6.1 Conclusion

In this dissertation, we establish effective algorithms and tools for the perfor-

mance prediction and optimization of teams long with explanations, in the context of

composite. We take a multi-disciplinary approach, consisting of supervised learning,

visualization and optimization, to tackle three complementary research tasks, namely,

team performance prediction, team performance optimization, and team performance

explanation.

Team performance prediction For the prediction of long-term impact of scien-

tific work given its citation history in the first few years, we propose iBall – a family of

algorithms. The proposed algorithms collectively address a number of key algorithmic

challenges in impact prediction (i.e., feature design, non-linearity, domain heterogene-

ity and dynamics). It is flexible and general in the sense that it can be generalized to

both regression and classification models; and in both linear and non-linear formu-

lations; it is scalable and adaptive to new training data. For forecasting the impact

pathway of scholarly entities, we propose an effective method (iPath). The proposed

iPath can collectively model two important aspects of the impact pathway prediction

problem, namely, prediction consistency and parameter smoothness. It is flexible for

handling both linear and non-linear models and empirical evaluations demonstrate

159

its effectiveness for forecasting the pathway to impact. To simultaneously and mu-

tually predict the parts and whole outcomes, we propose a joint predictive model

NEPAL . First, model generality, the proposed model is able to (i) admit a variety of

linear as well as non-linear relationship between the parts and whole outcome and

(ii) characterize part-part interdependency. Second, algorithm efficacy, we propose an

effective and efficient block coordinate descent optimization algorithm that converges

to the coordinate-wise optimum with a linear complexity in both time and space.

The empirical evaluations on real-world datasets demonstrate that (i) by modeling

the non-linear part-whole relationship and part-part interdependency, the proposed

method leads to consistent prediction performance improvement, and (ii) the pro-

posed algorithm scales linearly w.r.t. the size of the training data.

Team performance optimization We start with the problem of Team Member

Replacement to recommend replacement when a critical team member becomes un-

available. To our best knowledge, we are the first to study this problem. The basic

idea of our method is to adopt graph kernel to encode both skill matching and struc-

tural matching. To address the computational challenges, we propose a suite of fast

and scalable algorithms. Extensive experiments on real world datasets validate the

effectiveness and efficiency of our algorithms. To be specific, (a) by bringing skill

matching and structural matching together, our method is significantly better than

the alternative choices in terms of both average precision (24% better) and recall (27%

better); and (b) our fast algorithms are orders of magnitude faster while enjoying a

sub-linear scalability. Beyond Team Member Replacement, we have also consid-

ered a number of other team enhancement scenarios, namely, Team Refinement

(to edit an existing member’s skill and communication structure), Team Expansion

(to hire a team member with desired skills and connections), and Team Shrinkage

160

(to remove an existing team member). All these enhancement scenarios can be solved

using the same algorithm developed for Team Member Replacement. The exper-

imental evaluations show the effectiveness of the proposed algorithm. For real-time

team optimization, i.e., to plan the team optimization/re-staffing actions at each time

step so as to maximize the expected cumulative performance, we propose to leverage

Reinforcement Learning to automatically learn the optimal staffing strategies.

Team performance explanation To demystify networked prediction (i.e., iBall

model), we propose a multi-aspect, multi-level approach PAROLE by understanding

how the learning process is diffused at different levels from different aspects. The

key idea is to efficiently quantify the influence on different levels (i.e., macro/system,

meso/task, micro/example) of the learning system due to the perturbation of the

various aspects (i.e., example, task, network). The proposed approach offers two

distinctive advantages: (1) multi-aspect, multi-level: we are able to provide a compre-

hensive explanation to the workings of the networked predictions; (2) efficiency: it has

a linear complexity by efficiently evaluating the influences of changes to the networked

prediction without retraining the whole learning system. The empirical evaluations

on real-world datasets demonstrate the efficacy of the proposed PAROLE algorithm.

As the first step towards explaining team recommendation through the lens of the

underlying network where teams embed, we present a prototype system (Extra).

The key algorithmic idea is to identify the most influential network substructures

and/or attributes that account for the team recommendation results. The system is

able to provide intuitive explanations from different perspectives (i.e., edges, nodes,

attributes) for various team recommendation scenarios, including team replacement,

team expansion and team shrinkage.

161

6.2 Future Work

As an emerging field, the network science of teams is still in its early stage and

remains an active area of exploration. Future directions include modeling the hierar-

chical structure within organizations by extending our PAROLE model and modeling

the heterogeneous goals among the team members. In our team optimization work, we

have the implicit assumption that the original team is performing well and maintain-

ing the similarity with the original team can promise a similar high performance. We

want to point out that when the assumption does not hold, we can leverage the actual

or predicted future performance as feedback to guide the team optimization process,

as in the real time team optimization scenario. Other promising future directions are

presented below:

• Example-based Team Formation. Given historical high-performing as well

as struggling teams, we are interested in forming good teams from the patterns

learned from these teams. We conjecture that a good team can be formed by

maximizing a certain similarity function between the team we want to assemble

and those previously successful teams that have worked on similar tasks; in the

meanwhile, maximizing the distance from those struggling teams.

• Multiple Persons Optimization. In Chapter 4, we only consider single

person in the various team optimization scenarios, including team replacement,

team expansion, team shrinkage, etc. We are interested in extending these to

multiple persons, for example, how to hire another three team members with

various expertise into the team. The challenge now lies in the exponentially large

solution space. A simple heuristic would be to apply our proposed algorithm

for each person one at a time. However, this treatment would be sub-optimal

and ignores the interactions among the multiple persons.

162

• Multiple Teams Optimization. We often need to optimize multiple teams

within an organization and all of these teams are constrained by the same

pool of human resources. For example, if we expand one team by hiring a new

member from another team within the organization, it will inevitably impact the

performance of the second team. We are interested in designing new algorithms

for collectively optimizing multiple teams.

163

REFERENCES

[1] Adler, P., C. Falk, S. A. Friedler, G. Rybeck, C. Scheidegger, B. Smith and
S. Venkatasubramanian, “Auditing black-box models for indirect influence”, in
“ICDM”, pp. 1–10 (2016).

[2] Anagnostopoulos, A., L. Becchetti, C. Castillo, A. Gionis and S. Leonardi,
“Online team formation in social networks”, in “WWW”, pp. 839–848 (2012).

[3] Ando, R. K. and T. Zhang, “Learning on graph with laplacian regularization”,
in “NIPS”, pp. 25–32 (2006).

[4] Anirudh, R., J. J. Thiagarajan, R. Sridhar and T. Bremer, “Influen-
tial sample selection: A graph signal processing approach”, arXiv preprint
arXiv:1711.05407 (2017).

[5] Aronszajn, N., “Theory of reproducing kernels”, Transactions of the American
mathematical society pp. 337–404 (1950).

[6] Balog, K., L. Azzopardi and M. de Rijke, “Formal models for expert finding in
enterprise corpora”, in “SIGIR”, pp. 43–50 (2006).

[7] Beck, A. and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm
for linear inverse problems”, SIAM journal on imaging sciences 2, 1, 183–202
(2009).

[8] Bellman, R., Dynamic programming (Courier Corporation, 2013).

[9] Blake, A., P. Kohli and C. Rother, Markov Random Fields for Vision and Image
Processing (The MIT Press, 2011).

[10] Blitzer, J., M. Dredze, F. Pereira et al., “Biographies, bollywood, boom-boxes
and blenders: Domain adaptation for sentiment classification”, in “ACL”, vol. 7,
pp. 440–447 (2007).

[11] Bogdanov, P., B. Baumer, P. Basu, A. Bar-Noy and A. K. Singh, “As strong as
the weakest link: Mining diverse cliques in weighted graphs”, in “ECML/PKDD
(1)”, pp. 525–540 (2013).

[12] Bollen, J., H. Van de Sompel, A. Hagberg and R. Chute, “A principal compo-
nent analysis of 39 scientific impact measures”, PloS one 4, 6, e6022 (2009).

[13] Borgwardt, K. M. and H.-P. Kriegel, “Shortest-path kernels on graphs”, in
“ICDM”, pp. 74–81 (2005).

[14] Borgwardt, K. M., H.-P. Kriegel, S. V. N. Vishwanathan and N. Schraudolph,
“Graph kernels for disease outcome prediction from protein-protein interaction
networks”, in “Pacific Symposium on Biocomputing”, (2007).

164

[15] Borgwardt, K. M., C. S. Ong, S. Schönauer, S. V. N. Vishwanathan, A. J. Smola
and H.-P. Kriegel, “Protein function prediction via graph kernels”, in “ISMB
(Supplement of Bioinformatics)”, pp. 47–56 (2005).

[16] Bouguessa, M., B. Dumoulin and S. Wang, “Identifying authoritative actors
in question-answering forums: the case of yahoo! answers”, in “KDD”, pp.
866–874 (2008).

[17] Boutell, M. R., J. Luo, X. Shen and C. M. Brown, “Learning multi-label scene
classification”, Pattern Recognition 37, 9, 1757 – 1771 (2004).

[18] Cai, Y., H. Tong, W. Fan and P. Ji, “Fast mining of a network of coevolving
time series”, in “SDM”, pp. 298–306 (2015).

[19] Cai, Y., H. Tong, W. Fan, P. Ji and Q. He, “Facets: Fast comprehensive mining
of coevolving high-order time series”, in “KDD”, pp. 79–88 (2015).

[20] Cao, N., Y.-R. Lin, L. Li and H. Tong, “g-Miner: Interactive visual group
mining on multivariate graphs”, in “CHI”, (2015).

[21] Caruana, R., “Multitask learning”, Machine learning 28, 1, 41–75 (1997).

[22] Caruana, R., Y. Lou, J. Gehrke, P. Koch, M. Sturm and N. Elhadad, “Intel-
ligible models for healthcare: Predicting pneumonia risk and hospital 30-day
readmission”, in “KDD”, pp. 1721–1730 (ACM, 2015).

[23] Castillo, C., D. Donato and A. Gionis, “Estimating number of citations using
author reputation”, in “String processing and information retrieval”, pp. 107–
117 (Springer, 2007).

[24] Cataldo, M. and K. Ehrlich, “The impact of communication structure on new
product development outcomes”, in “CHI”, pp. 3081–3090 (2012).

[25] Chang, B., H. Zhu, Y. Ge, E. Chen, H. Xiong and C. Tan, “Predicting the
popularity of online serials with autoregressive models”, in “CIKM”, pp. 1339–
1348 (2014).

[26] Chang, K. and K. Ehrlich, “Out of sight but not out of mind?: Informal net-
works, communication and media use in global software teams”, in “CASCON”,
pp. 86–97 (2007).

[27] Chen, C., H. Tong, L. Xie, L. Ying and Q. He, “Fascinate: Fast cross-layer
dependency inference on multi-layered networks”, in “KDD”, (2016).

[28] Chen, J., J. Liu and J. Ye, “Learning incoherent sparse and low-rank patterns
from multiple tasks”, in “KDD”, pp. 1179–1188 (2010).

[29] Chen, J., J. Zhou and J. Ye, “Integrating low-rank and group-sparse structures
for robust multi-task learning”, in “KDD”, pp. 42–50 (ACM, 2011).

165

[30] Clare, A. and R. D. King, “Knowledge discovery in multi-label phenotype data”,
in “Principles of data mining and knowledge discovery”, pp. 42–53 (Springer,
2001).

[31] Clauset, A., D. B. Larremore and R. Sinatra, “Data-driven predictions in the
science of science”, Science 355, 6324, 477–480 (2017).

[32] Cook, R. D. and S. Weisberg, Residuals and influence in regression (New York:
Chapman and Hall, 1982).

[33] Cummings, J. N. and S. B. Kiesler, “Who collaborates successfully?: prior expe-
rience reduces collaboration barriers in distributed interdisciplinary research”,
in “CSCW”, pp. 437–446 (2008).

[34] Davletov, F., A. S. Aydin and A. Cakmak, “High impact academic paper predic-
tion using temporal and topological features”, in “CIKM”, pp. 491–498 (2014).

[35] DeLong, C. and J. Srivastava, “Teamskill evolved: Mixed classification schemes
for team-based multi-player games”, in “PAKDD (1)”, pp. 26–37 (2012).

[36] DeLong, C., L. G. Terveen and J. Srivastava, “Teamskill and the nba: applying
lessons from virtual worlds to the real-world”, in “ASONAM”, pp. 156–161
(2013).

[37] Deng, H., I. King and M. R. Lyu, “Formal models for expert finding on dblp
bibliography data”, in “ICDM”, pp. 163–172 (2008).

[38] Dong, Y., R. A. Johnson and N. V. Chawla, “Will this paper increase your
h-index? scientific impact prediction”, in “WSDM”, (2015).

[39] Dorairaj, S., J. Noble and P. Malik, “Understanding team dynamics in dis-
tributed agile software development”, in “International Conference on Agile
Software Development”, pp. 47–61 (Springer, 2012).

[40] Dror, G., N. Koenigstein and Y. Koren, “Web-scale media recommendation
systems”, Proceedings of the IEEE 100, 9, 2722–2736 (2012).

[41] Du, Q., V. Faber and M. Gunzburger, “Centroidal voronoi tessellations: appli-
cations and algorithms”, SIAM review 41, 4, 637–676 (1999).

[42] Elisseeff, A. and J. Weston, “A kernel method for multi-labelled classification”,
in “NIPS”, pp. 681–687 (2001).

[43] Evgeniou, T. and M. Pontil, “Regularized multi–task learning”, in “ACM
SIGKDD”, pp. 109–117 (2004).

[44] Feragen, A., N. Kasenburg, J. Petersen, M. de Bruijne and K. M. Borgwardt,
“Scalable kernels for graphs with continuous attributes”, in “NIPS”, pp. 216–
224 (2013).

166

[45] Fürnkranz, J., E. Hüllermeier, E. L. Menćıa and K. Brinker, “Multilabel classi-
fication via calibrated label ranking”, Machine learning 73, 2, 133–153 (2008).

[46] Gärtner, T., P. A. Flach and S. Wrobel, “On graph kernels: Hardness results
and efficient alternatives”, in “COLT”, pp. 129–143 (2003).

[47] Gärtner, T., J. W. Lloyd and P. A. Flach, “Kernels and distances for structured
data”, Machine Learning 57, 3, 205–232 (2004).

[48] Golshan, B. and E. Terzi, “Minimizing tension in teams”, in “Proceedings of
the 2017 ACM on Conference on Information and Knowledge Management”,
CIKM ’17, pp. 1707–1715 (ACM, New York, NY, USA, 2017).

[49] Golub, G. H. and C. F. Van Loan, Matrix Computations (3rd Ed.) (Johns
Hopkins University Press, Baltimore, MD, USA, 1996).

[50] Haas, M. and M. Mortensen, “The secrets of great teamwork.”, Harvard busi-
ness review 94, 6, 70–6 (2016).

[51] Hackman, J. R. and N. Katz, Group behavior and performance, pp. 1208–1251
(Wiley, New York, 2010).

[52] Hashemi, S. H., M. Neshati and H. Beigy, “Expertise retrieval in bibliographic
network: a topic dominance learning approach”, in “CIKM”, pp. 1117–1126
(2013).

[53] Hido, S. and H. Kashima, “A linear-time graph kernel”, in “ICDM”, pp. 179–
188 (2009).

[54] Hinds, P. J., K. M. Carley, D. Krackhardt and D. Wholey, “Choosing work
group members: Balancing similarity, competence, and familiarity”, in “Orga-
nizational Behavior and Human Decision Processes”, pp. 226–251 (2000).

[55] Horváth, T., T. Gärtner and S. Wrobel, “Cyclic pattern kernels for predictive
graph mining”, in “KDD”, pp. 158–167 (2004).

[56] Huang, S.-J. and Z.-H. Zhou, “Multi-label learning by exploiting label correla-
tions locally”, in “AAAI”, (2012).

[57] Jalali, A., S. Sanghavi, C. Ruan and P. K. Ravikumar, “A dirty model for
multi-task learning”, in “NIPS”, pp. 964–972 (2010).

[58] Jasny, B. R. and R. Stone, “Prediction and its limits”, Science 355, 6324,
468–469 (2017).

[59] Ji, S., L. Tang, S. Yu and J. Ye, “A shared-subspace learning framework for
multi-label classification”, TKDD 4, 2, 8 (2010).

[60] Kang, U., H. Tong and J. Sun, “Fast random walk graph kernel.”, in “SDM”,
pp. 828–838 (2012).

167

[61] Karimzadehgan, M. and C. Zhai, “Constrained multi-aspect expertise matching
for committee review assignment”, in “CIKM”, pp. 1697–1700 (2009).

[62] Karypis, G. and V. Kumar, “A fast and high quality multilevel scheme for
partitioning irregular graphs”, SIAM J. Sci. Comput. 20, 1 (1998).

[63] Kato, T., H. Kashima, M. Sugiyama and K. Asai, “Multi-task learning via conic
programming”, in “Advances in Neural Information Processing Systems”, pp.
737–744 (2008).

[64] Koh, P. W. and P. Liang, “Understanding black-box predictions via influence
functions”, in “ICML”, pp. 1885–1894 (2017).

[65] Kondor, R. I., N. Shervashidze and K. M. Borgwardt, “The graphlet spectrum”,
in “ICML”, p. 67 (2009).

[66] Koren, Y., R. M. Bell and C. Volinsky, “Matrix factorization techniques for
recommender systems”, IEEE Computer 42, 8, 30–37 (2009).

[67] Lappas, T., K. Liu and E. Terzi, “Finding a team of experts in social networks”,
in “KDD”, pp. 467–476 (2009).

[68] Lawrence, K. D. and J. L. Arthur, Robust regression: analysis and applications
(Marcel Dekker Inc, New York, 1990).

[69] LeCun, Y., L. Bottou, Y. Bengio and P. Haffner, “Gradient-based learning
applied to document recognition”, Proceedings of the IEEE 86, 11 (1998).

[70] Lee, D. D. and H. S. Seung, “Learning the parts of objects by non-negative
matrix factorization”, Nature 401, 6755, 788–791 (1999).

[71] Li, H., X. Ma, F. Wang, J. Liu and K. Xu, “On popularity prediction of videos
shared in online social networks”, in “CIKM”, pp. 169–178 (2013).

[72] Li, J.-Z., J. Tang, J. Zhang, Q. Luo, Y. Liu and M. Hong, “Eos: expertise
oriented search using social networks”, in “WWW”, pp. 1271–1272 (2007).

[73] Li, L. and H. Tong, “The child is father of the man: Foresee the success at the
early stage”, in “KDD”, pp. 655–664 (2015).

[74] Li, L. and H. Tong, “The child is father of the man: Foresee the success
at the early stage”, CoRR abs/1504.00948, URL http://arxiv.org/abs/
1504.00948 (2015).

[75] Li, L., H. Tong, N. Cao, K. Ehrlich, Y. Lin and N. Buchler, “Replacing the
irreplaceable: Fast algorithms for team member recommendation”, in “WWW”,
pp. 636–646 (ACM, 2015).

[76] Li, L., H. Tong, N. Cao, K. Ehrlich, Y. Lin and N. Buchler, “TEAMOPT:
interactive team optimization in big networks”, in “CIKM”, pp. 2485–2487
(2016).

168

http://arxiv.org/abs/1504.00948
http://arxiv.org/abs/1504.00948

[77] Li, L., H. Tong, N. Cao, K. Ehrlich, Y. Lin and N. Buchler, “Enhancing team
composition in professional networks: Problem definitions and fast solutions”,
IEEE Trans. Knowl. Data Eng. 29, 3, 613–626 (2017).

[78] Li, L., H. Tong and H. Liu, “Towards explainable networked prediction”, in
“CIKM”, (2018).

[79] Li, L., H. Tong, J. Tang and W. Fan, “iPath: forecasting the pathway to
impact”, in “SDM”, pp. 468–476 (SIAM, 2016).

[80] Li, L., H. Tong, Y. Xiao and W. Fan, “Cheetah: fast graph kernel tracking on
dynamic graphs”, in “SDM”, pp. 280–288 (2015).

[81] Liu, L. and E. Zhao, “Team performance and individual performance: Exam-
ple from engineering consultancy company in china”, in “2011 International
Conference on Management and Service Science”, pp. 1–4 (2011).

[82] Lou, Y., J. Bien, R. Caruana and J. Gehrke, “Sparse partially linear additive
models”, Journal of Computational and Graphical Statistics 25, 4, 1126–1140
(2016).

[83] Lou, Y., R. Caruana and J. Gehrke, “Intelligible models for classification and
regression”, in “Proceedings of the 18th ACM SIGKDD international conference
on Knowledge discovery and data mining”, pp. 150–158 (ACM, 2012).

[84] Lou, Y., R. Caruana, J. Gehrke and G. Hooker, “Accurate intelligible models
with pairwise interactions”, in “Proceedings of the 19th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining”, pp. 623–631
(ACM, 2013).

[85] Ma, J., Z. Zhao, X. Yi, J. Chen, L. Hong and E. H. Chi, “Modeling task rela-
tionships in multi-task learning with multi-gate mixture-of-experts”, in “KDD”,
pp. 1930–1939 (2018).

[86] Mahé, P., N. Ueda, T. Akutsu, J.-L. Perret and J.-P. Vert, “Graph kernels
for molecular structure-activity relationship analysis with support vector ma-
chines”, Journal of Chemical Information and Modeling 45, 4, 939–951 (2005).

[87] Mair, P., K. Hornik and J. de Leeuw, “Isotone optimization in r: pool-adjacent-
violators algorithm (pava) and active set methods”, Journal of statistical soft-
ware 32, 5, 1–24 (2009).

[88] Mimno, D. M. and A. McCallum, “Expertise modeling for matching papers
with reviewers”, in “KDD”, pp. 500–509 (2007).

[89] Morgan Jr, B. B., E. Salas and A. S. Glickman, “An analysis of team evolution
and maturation”, The Journal of General Psychology 120, 3, 277–291 (1993).

[90] Muller, M., K. Ehrlich, T. Matthews, A. Perer, I. Ronen and I. Guy, “Diversity
among enterprise online communities: collaborating, teaming, and innovating
through social media”, in “CHI”, pp. 2815–2824 (2012).

169

[91] Ni, J., H. Tong, W. Fan and X. Zhang, “Inside the atoms: ranking on a network
of networks”, in “KDD”, pp. 1356–1365 (2014).

[92] Ni, J., H. Tong, W. Fan and X. Zhang, “Flexible and robust multi-network
clustering”, in “KDD”, pp. 835–844 (2015).

[93] Pearlmutter, B. A., “Fast exact multiplication by the hessian”, Neural compu-
tation 6, 1, 147–160 (1994).

[94] Pei, J., H. Wang, J. Liu, K. Wang, J. Wang and P. S. Yu, “Discovering frequent
closed partial orders from strings”, IEEE Trans. Knowl. Data Eng. 18, 11,
1467–1481 (2006).

[95] Perozzi, B., R. Al-Rfou and S. Skiena, “Deepwalk: Online learning of social
representations”, in “Proceedings of the 20th ACM SIGKDD international con-
ference on Knowledge discovery and data mining”, pp. 701–710 (ACM, 2014).

[96] Rangapuram, S. S., T. Bühler and M. Hein, “Towards realistic team formation
in social networks based on densest subgraphs”, in “WWW”, pp. 1077–1088
(2013).

[97] Read, J., B. Pfahringer, G. Holmes and E. Frank, “Classifier chains for
multi-label classification”, in “Machine Learning and Knowledge Discovery in
Databases”, vol. 5782, pp. 254–269 (Springer Berlin Heidelberg, 2009).

[98] Ribeiro, M. T., S. Singh and C. Guestrin, “Why should i trust you?: Explaining
the predictions of any classifier”, in “KDD”, pp. 1135–1144 (ACM, 2016).

[99] Saunders, C., A. Gammerman and V. Vovk, “Ridge regression learning algo-
rithm in dual variables”, in “ICML”, ICML ’98, pp. 515–521 (1998).

[100] Schmeidler, D., “Subjective probability and expected utility without additiv-
ity”, Econometrica: Journal of the Econometric Society pp. 571–587 (1989).

[101] Shervashidze, N. and K. M. Borgwardt, “Fast subtree kernels on graphs”, NIPS
(2009).

[102] Shervashidze, N., P. Schweitzer, E. J. van Leeuwen, K. Mehlhorn and K. M.
Borgwardt, “Weisfeiler-lehman graph kernels”, Journal of Machine Learning
Research 12, 2539–2561 (2011).

[103] Shervashidze, N., S. V. N. Vishwanathan, T. Petri, K. Mehlhorn and K. M.
Borgwardt, “Efficient graphlet kernels for large graph comparison”, Journal of
Machine Learning Research - Proceedings Track 5, 488–495 (2009).

[104] Simon, H. A., The Sciences of the Artificial (3rd Ed.) (MIT Press, Cambridge,
MA, USA, 1996).

[105] Tang, J., J. Zhang, L. Yao, J. Li, L. Zhang and Z. Su, “Arnetminer: extraction
and mining of academic social networks”, in “KDD”, pp. 990–998 (2008).

170

[106] Tibshirani, R., “Regression shrinkage and selection via the lasso”, Journal of
the Royal Statistical Society. Series B (Methodological) pp. 267–288 (1996).

[107] Tseng, P., “Convergence of a block coordinate descent method for nondifferen-
tiable minimization”, Journal of optimization theory and applications 109, 3,
475–494 (2001).

[108] Tsivtsivadze, E., J. Urban, H. Geuvers and T. Heskes, “Semantic graph kernels
for automated reasoning”, in “SDM”, pp. 795–803 (2011).

[109] Tuckman, B. W., “Developmental sequence in small groups.”, Psychological
bulletin 63, 6, 384 (1965).

[110] Uzzi, B., S. Mukherjee, M. Stringer and B. Jones, “Atypical combinations and
scientific impact”, Science 342, 6157, 468–472 (2013).

[111] Vishwanathan, S. V. N., K. M. Borgwardt and N. N. Schraudolph, “Fast com-
putation of graph kernels”, in “NIPS”, pp. 1449–1456 (2006).

[112] Vishwanathan, S. V. N., N. N. Schraudolph, R. Kondor and K. M. Borgwardt,
“Graph kernels”, The Journal of Machine Learning Research 99, 1201–1242
(2010).

[113] Wang, C. and D. M. Blei, “Collaborative topic modeling for recommending
scientific articles”, in “KDD”, pp. 448–456 (2011).

[114] Wang, D., C. Song and A.-L. Barabási, “Quantifying long-term scientific im-
pact”, Science 342, 6154, 127–132 (2013).

[115] Warner, S., M. T. Bowers and M. A. Dixon, “Team dynamics: A social network
perspective”, Journal of Sport Management 26, 1, 53–66 (2012).

[116] Wu, S., J. Sun and J. Tang, “Patent partner recommendation in enterprise
social networks”, in “WSDM”, pp. 43–52 (2013).

[117] Wuchty, S., B. F. Jones and B. Uzzi, “The increasing dominance of teams in
production of knowledge”, Science 316, 5827, 1036–1039 (2007).

[118] Yan, R., C. Huang, J. Tang, Y. Zhang and X. Li, “To better stand on the
shoulder of giants”, in “JDCL”, pp. 51–60 (2012).

[119] Yan, R., J. Tang, X. Liu, D. Shan and X. Li, “Citation count prediction:
learning to estimate future citations for literature”, in “CIKM”, pp. 1247–1252
(2011).

[120] Yao, Y., H. Tong, T. Xie, L. Akoglu, F. Xu and J. Lu, “Joint voting prediction
for questions and answers in cqa”, in “ASONAM”, pp. 340–343 (IEEE, 2014).

[121] Yao, Y., H. Tong, F. Xu and J. Lu, “Predicting long-term impact of cqa posts:
a comprehensive viewpoint”, in “KDD”, pp. 1496–1505 (ACM, 2014).

171

[122] Yontay, P. and R. Pan, “A computational bayesian approach to dependency
assessment in system reliability”, Reliability Engineering & System Safety 152,
104–114 (2016).

[123] Yu, K., V. Tresp and A. Schwaighofer, “Learning gaussian processes from mul-
tiple tasks”, in “ICML”, (2005).

[124] Yu, X., Q. Gu, M. Zhou and J. Han, “Citation prediction in heterogeneous
bibliographic networks”, in “SDM”, pp. 1119–1130 (2012).

[125] Zadeh, R., A. D. Balakrishnan, S. B. Kiesler and J. N. Cummings, “What’s in
a move?: normal disruption and a design challenge”, in “CHI”, pp. 2897–2906
(2011).

[126] Zeng, X. and M. A. T. Figueiredo, “The ordered weighted l1 norm: Atomic
formulation, dual norm, and projections”, CoRR abs/1409.4271, URL http:
//arxiv.org/abs/1409.4271 (2014).

[127] Zhang, J., M. S. Ackerman and L. A. Adamic, “Expertise networks in online
communities: structure and algorithms”, in “WWW”, pp. 221–230 (2007).

[128] Zhang, M.-L. and Z.-H. Zhou, “Ml-knn: A lazy learning approach to multi-label
learning”, Pattern recognition 40, 7, 2038–2048 (2007).

[129] Zhang, M.-L. and Z.-H. Zhou, “A review on multi-label learning algorithms”,
TKDE 26, 8, 1819–1837 (2014).

[130] Zhang, Y. and D.-Y. Yeung, “Multilabel relationship learning”, TKDD 7, 2, 7
(2013).

[131] Zhou, G., S. Lai, K. Liu and J. Zhao, “Topic-sensitive probabilistic model for
expert finding in question answer communities”, in “CIKM”, pp. 1662–1666
(2012).

[132] Zhou, Q., L. Li, N. Cao, N. Buchler and H. Tong, “Extra: explaining team
recommendation in networks”, in “RecSys”, pp. 492–493 (2018).

172

http://arxiv.org/abs/1409.4271
http://arxiv.org/abs/1409.4271

BIOGRAPHICAL SKETCH

Liangyue Li is currently a Ph.D. candidate at the School of Computing, In-

formatics and Decision Systems Engineering at Arizona State University. He re-

ceived the B.Eng. degree in Computer Science from Tongji University in 2011.

His current research interests include large-scale data mining and machine learn-

ing, especially for large graph data with application to social network analysis. He

has published over 10 referred articles in top conferences and journals. He has

served as a program committee member in top data mining and artificial intelligence

venues (e.g., SIGKDD, WWW, SDM, AAAI, CIKM, etc). He has given tutorials

at KDD 2018, WSDM 2018, and a keynote talk at CIKM 2016 Workshop on Big

Network Analytics (BigNet 2016). For more details, please refer to his homepage at

http://www.public.asu.edu/~liangyue/.

173

http://www.public.asu.edu/~liangyue/

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Motivations
	Research Objectives and Key Challenges
	Research Tasks Overview
	Impacts and Benefits

	LITERATURE SURVEY
	Literature Survey on Performance Prediction
	Literature Survey on Team Performance Optimization
	Literature Survey on Team Performance Explanation

	TEAM PERFORMANCE PREDICTION
	Long-term Performance Forecasting
	Problem Statement
	Empirical Observations
	Proposed Algorithms
	Experiments

	Performance Trajectory Forecasting
	Problem Definition
	Proposed Algorithms
	Analysis and Comparisons
	Empirical Evaluations

	Part-Whole Outcome Prediction
	Problem Definition
	Proposed Model – PAROLE
	Optimization Algorithm
	Experiments

	TEAM PERFORMANCE OPTIMIZATION
	Team Member Replacement
	Problem Definitions
	Proposed Solutions
	Scale-up and Speed-up
	Experimental Evaluations

	Beyond Team Member Replacement
	Problem Definitions
	Beyond Team Member Replacement: Team Refinement, Team Expansion and Team Shrinkage
	Experimental Evaluations

	Towards Real Time Team Optimization
	Problem Definition
	Proposed Model

	TEAM PERFORMANCE EXPLANATION
	Towards Explainable Networked Prediction
	Problem Definition
	Proposed Model
	Empirical Evaluations

	Explaining Team Optimization in Networks
	Functionality Demonstration
	Technical Details
	System Demonstration

	CONCLUSION AND FUTURE WORK
	Conclusion
	Future Work

	REFERENCES
	BIOGRAPHICAL SKETCH

