
Locating Arrays: Construction, Analysis, and Robustness

by

Stephen Seidel

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved November 2018 by the
Graduate Supervisory Committee:

Violet R. Syrotiuk, Chair
Charles J. Colbourn

Douglas C. Montgomery

ARIZONA STATE UNIVERSITY

December 2018

ABSTRACT

Modern computer systems are complex engineered systems involving a large

collection of individual parts, each with many parameters, or factors, affecting system

performance. One way to understand these complex systems and their performance is

through experimentation. However, most modern computer systems involve such a

large number of factors that thorough experimentation on all of them is impossible.

An initial screening step is thus necessary to determine which factors are relevant to

the system’s performance and which factors can be eliminated from experimentation.

Factors may impact system performance in different ways. A factor at a specific

level may significantly affect performance as a main effect, or in combination with

other main effects as an interaction. For screening, it is necessary both to identify the

presence of these effects and to locate the factors responsible for them. A locating array

is a relatively new experimental design that causes every main effect and interaction

to occur and distinguishes all sets of d main effects and interactions from each other

in the tests where they occur. This design is therefore helpful in screening complex

systems.

The process of screening using locating arrays involves multiple steps. First, a

locating array is constructed for all possibly significant factors. Next, the system

is executed for all tests indicated by the locating array and a response is observed.

Finally, the response is analyzed to identify the significant system factors for future

experimentation. However, simply constructing a reasonably sized locating array for a

large system is no easy task and analyzing the response of the tests presents additional

difficulties due to the large number of possible predictors and the inherent imbalance

in the experimental design itself. Further complications can arise from noise in the

system or errors in testing.

i

This thesis has three contributions. First, it provides an algorithm to construct

locating arrays using the Lovász Local Lemma with Moser-Tardos resampling. Second,

it gives an algorithm to analyze the system response efficiently. Finally, it studies the

robustness of the analysis to the heavy-hitters assumption underlying the approach as

well as to varying amounts of system noise.

ii

DEDICATION

I dedicate this thesis to my mom for being my only elementary school teacher, to

my dad for being my only high school teacher, and to both for instilling all of my

values and, by their examples, teaching me how to act in every aspect of my life.

iii

ACKNOWLEDGMENTS

First and foremost, I would like to acknowledge and thank my supervisor and

committee chair, Dr. Violet Syrotiuk, for constantly supporting me. She reviewed

every chapter of this thesis multiple times, and provided direction throughout the

entire process. Without her, this thesis would not have been completed and I would

never have even applied to graduate school. I am greatly indebted to her for all of

her help and support. Special thanks also goes to my co-supervisor and committee

member, Dr. Charles Colbourn, for his valuable insight in combinatorics.

I would like to thank Dr. Douglas Montgomery for also serving on my committee,

and providing his insight and expertise in statistics.

My dad, Dr. Mark Seidel, has been my mentor throughout graduate school and

took time to proofread this thesis and provide feedback as well.

Thank you to my best friend for keeping me sane by talking to me daily on the

phone, and convincing me to continue when I had every intention of dropping out.

This work is supported in part by the U.S. National Science Foundation under

Grant No. 1421058.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . x

CHAPTER

1 INTRODUCTION . 1

2 RELATED WORK . 8

2.1 Construction Work . 8

2.2 Analysis Work . 10

2.2.1 Orthogonal Matching Pursuit . 13

2.2.2 Statistical Approach . 14

2.3 Summary . 14

3 CONSTRUCTION . 16

3.1 Desirable Properties . 16

3.2 Initial Greedy Approach . 20

3.3 Randomized Approaches . 25

3.3.1 Moser-Tardos Resampling . 31

3.3.2 Directed Moser-Tardos Resampling . 33

3.4 Summary . 37

4 ANALYSIS . 39

4.1 Analysis Motivation . 40

4.2 Introducing a New Approach . 40

4.3 Counting Occurrences . 43

4.4 Validation . 44

4.5 Summary . 48

v

CHAPTER Page

5 ROBUSTNESS . 51

5.1 “Heavy-Hitters” Requirement . 51

5.2 Effects of Noise . 59

5.3 Separation to Cope with Noise . 67

5.4 Systems Involving a Large Number of Terms . 75

5.5 Summary . 84

6 CONCLUSION . 86

REFERENCES . 90

vi

LIST OF TABLES

Table Page

1. Covering Array - First Example . 4

2. Locating Array - First Example . 6

3. Compressive Sensing Matrix - First Example . 12

4. Separation Example - δ = 2 . 19

5. Separation Example Continued - δ = 3 . 20

6. Separation Example Continued - δ = 4 . 20

7. Locating Array Sizes - Generated by the Initial Greedy Approach 24

8. Separation Checker Example - Compressive Sensing Matrix 27

9. Locating Array Sizes Using Directed Moser-Tardos Resampling. 36

10.Significant Factors Impacting Voice Quality from Data Collected from the

W-ILab.t Testbed. 45

11.Significant Two-Way Interactions Impacting Voice Quality from Data Col-

lected from W-ILab.t. 46

12.Significant Factors Impacting RF Exposure from Data Collected from the

W-ILab.t Testbed. 46

13.Significant Factors Impacting TCP Throughput from Data Collected from a

Wireless Network Simulation. 49

14.Significant Two-Way Interactions Impacting TCP Throughput in a Wireless

Network Simulation. 50

15.Robustness Scenario 1A - Without Heavy-Hitters . 52

16.Robustness Scenario 1B - With Heavy-Hitters . 54

17.Robustness Scenario 2A - Heavy-Hitters (0% Decrease) . 57

18.Robustness Scenario 2B - Heavy-Hitters (9% Decrease) . 58

vii

Table Page

19.Robustness Scenario 2C - Heavy-Hitters (33% Decrease) 59

20.Robustness Scenario 2D - Heavy-Hitters (50% Decrease) 60

21.Robustness Scenario 2E - Heavy-Hitters (60% Decrease) 61

22.Robustness Scenario 2F - Scenario 2A with Noise (10%) . 63

23.Robustness Scenario 2G - Scenario 2C with Noise (10%) 64

24.Robustness Scenario 2H - Scenario 2D with Noise (10%) 65

25.Robustness Scenario 2I - Scenario 2E with Noise (10%) . 66

26.Robustness Scenario 3A - Separation to Cope With Noise 67

27.Separation to Cope With Noise (No Noise) . 68

28.Separation to Cope With Noise (10%) . 69

29.Separation to Cope With Noise (20%) . 69

30.Separation to Cope With Noise (30%) . 70

31.Separation to Cope With Noise (40%) . 71

32.Separation to Cope With Noise (50%) . 71

33.Separation to Cope With Noise (60%) . 71

34.Separation to Cope With Noise (70%) . 72

35.Separation to Cope With Noise (80%) . 73

36.Robustness Scenario 3B - Adding Separation to Scenario 2G. 73

37.Robustness Scenario 3C - Adding Separation to Scenario 2H 75

38.Robustness Scenario 3D - Adding Separation to Scenario 2I 76

39.Robustness Scenario 4A - Systems Involving a Large Number of Terms (16

Terms, nTerms = 11) . 78

40.Robustness Scenario 4B - Systems Involving a Large Number of Terms (14

Terms, nTerms = 11) . 79

viii

Table Page

41.Robustness Scenario 4C - Systems Involving a Large Number of Terms (12

Terms, nTerms = 11) . 80

42.Robustness Scenario 4D - Systems Involving a Large Number of Terms (10

Terms, nTerms = 11) . 82

43.Robustness Scenario 4E - Systems Involving a Large Number of Terms (10

Terms, nTerms = 8) . 83

44.Robustness Scenario 4F - Systems Involving a Large Number of Terms (8

Terms, nTerms = 8) . 84

ix

LIST OF FIGURES

Figure Page

1. Separation Checker Example - Binary Tree Corresponding to Sorted Com-

pressive Matrix . 28

2. LA Score after Each Iteration Using Moser-Tardos Resampling. 33

3. LA Score after Each Iteration Using Directed Moser-Tardos Resampling. 34

x

Chapter 1

INTRODUCTION

Large complex engineered systems involve many separate components interacting

to ensure the proper functionality of the whole system. Examples of these complex

engineered systems are computer networks such as the internet. Computer networks

include separate components in many layers spanning from the physical to the applica-

tion layer that all affect the proper functionality of the network. There are parameters

(factors) at every layer that can be adjusted to different values (levels) to affect the

output (response) of the system. Levels can therefore be assigned to the factors of the

system, and a response can be observed.

Suppose we are interested in maximizing throughput for a particular network.

Many network factors at multiple layers can affect the response (the throughput of

the network). For example, the type of cable at the physical layer, the protocol at the

transport layer, and the number of sockets at the application layer all might affect

the network throughput. The effects of these factors may be due to the assignment of

a particular level to one factor (main effect), or it may be due to a combination of

multiple assignments (interaction). For example, the assignment of an optical fiber

as the type of cable may significantly affect throughput as a main effect, while the

combination of assigning TCP as the transport protocol and at the same time using

a high number of sockets may significantly affect throughput as an interaction. We

refer to a factor or interaction as significant when its effects are noticeable over any

noise in the system.

Experimentation is crucial to understanding the behavior of complex engineered

1

systems, because analytical approaches are no longer feasible when the system is large.

But before experiments can be performed, we must determine the factors on which

to perform the experimentation. This initial step of choosing the significant factors

to include in experimentation, and eliminating the insignificant factors, is known as

screening. In this work, we explore techniques for screening a large number of system

factors, using initial experimentation with locating arrays, to determine the significant

factors and interactions. Once screening has been performed, further experimentation

should be done on the significant factors to determine how they affect the system. Our

interest, however, is purely on the initial screening step that finds significant factors.

Similarly to [1], [2], we define k system factors F1, F2, . . . , Fk. Each factor Fj has

a set Lj = {vj1, . . . , vj`j} of `j possible levels (values). A test is an assignment of a

level from Lj to Fj for each factor. For the purpose of conciseness, this work generally

omits the factor index when referring to factor levels in assignments, i.e., we use vi

instead of vji. A t-way interaction in a test is any collection of t assignments, and

is said to have strength t. An assignment of vji to Fj is written as Fj = vi, and a

t-way interaction is written as the t assignments separated by t− 1 ampersands. For

example, Fa = vx & Fb = vy is a 2-way interaction, and is said to have strength 2.

A main effect is a single assignment that is simply a 1-way interaction. Each test

therefore includes (covers)
(
k
t

)
t-way interactions. An experimental design of size n is

a collection of n tests. When running the system, a test results in one or more output

response measurements. An experiment consists of running the system for every test

in the experimental design. Usually, an experiment is represented as an n×k array, A,

with tests corresponding to rows and factors corresponding to columns. An element in

the i-th row and j-th column contains a level from Lj assigned to Fj in the i-th test.

2

Following [1], for a t-way interaction T , denote the set of rows (tests) in A where T is

covered as ρ(A, T), and for a set T of interactions, define ρ(A, T) =
⋃

T∈T ρ(A, T).

Experimental designs used for screening fall into many different categories. Full-

factorial designs include all possible combinations of levels of each factor [3] and

cover all t-way interactions where 1 ≤ t ≤ k. The size of a full-factorial design is

exponential in the number of factors. Fractional-factorial designs contain a fixed

fraction of the tests in a full-factorial design and therefore also grow exponentially

in the number of factors. In general, complex engineered systems involve a large

number of factors, making full-factorial and fractional-factorial experimental designs

impractical for screening.

Saturated designs include a number of tests equal to one more than the number of

factors [3], i.e., n = k + 1. Saturated designs are helpful when only a small fraction of

the system factors are expected to contribute to the response. Supersaturated designs

employ even fewer tests than saturated designs [3], i.e., n < k + 1. While they are

not widely used, supersaturated designs are potentially useful when very few factors

are expected to contribute to the response [3]. Both saturated and supersaturated

designs conveniently involve running a small number of tests, but they only attempt to

estimate main effects. It may be impossible to estimate the effects of all interactions

with these designs because a significant interaction may be missing completely from

the design, or it may be indistinguishable from (confounded with) another interaction.

These designs often require advanced analysis techniques as well.

Covering arrays of strength t are experimental designs that cover every t-way

interaction in at least one test [1]. Covering arrays can reveal the presence of an

interaction that has a significant impact on the system response, but they do not

necessarily identify the specific significant interaction [1]. Suppose a system has k = 3

3

factors, F1, F2, F3 and the number of levels are `1 = 2, `2 = 3, `3 = 3. Table 1 is a

covering array A of strength 2 for this system. Define T1 = (F3 = v3 & F1 = v2) and

T2 = (F3 = v3 & F2 = v2). Then ρ(A, T1) = {4} and ρ(A, T2) = {4}. Suppose that

T1 is significant but T2 is insignificant. Thus test 4 produces a significantly different

response (because of T1) and the covering array reveals the presence of a significant

interaction. However, it is impossible to determine, from only the tests in Table 1,

whether T1 or T2 is significant (or if both are). For the purpose of screening, we must

determine the factors that are significant, and therefore must determine exactly which

interaction is significant.

Table 1. Covering Array - First Example
Covering Array A

Test F1 F2 F3

1 v2 v3 v2
2 v2 v1 v1
3 v1 v1 v2
4 v2 v2 v3
5 v2 v3 v1
6 v1 v3 v3
7 v1 v2 v1
8 v2 v2 v2
9 v1 v1 v3

This work focuses on using a new experimental design for screening - a locating

array (LA) [1]. As discussed by Colbourn and McClary [1], an experimental design is

(d, t)-locating if ρ(A, T1) = ρ(A, T2)⇔ T1 = T2 whenever T1, T2 are any sets of t-way

interactions where |T1| = d, and |T2| = d. When |T1| ≤ d and |T2| ≤ d and T1, T2

are any sets of interactions with strength at most t, the array is (d, t)-locating. Thus

while the covering array in Table 1 is unable to distinguish between T1 and T2 because

ρ(A, T1) and ρ(A, T2) are equal, both a (d, t) and (d, t)-locating array guarantee that

4

ρ(A, T1) and ρ(A, T2) must be different when T1 and T2 are different sets. For the

purpose of screening, a locating array provides a set of tests to locate any set T

of interactions that significantly affect the response. Locating arrays are covering

arrays with additional desirable properties, and are especially useful because they

grow logarithmically in the number of factors when the number of levels is fixed for

all factors [4].

In this work, we focus on locating arrays where d = 1 because we make the

assumption that the most significant interaction stands out in the response (more

significant than all other significant interactions) and it is not necessary to locate more

than one interaction at the same time. We also assume that after the most significant

interaction is located and its effect is removed from the response, then the second

most significant interaction again stands out. This assumption of a “heavy-hitters”

pattern in the significant interactions has been used with locating arrays [5], [6],

and is discussed in more detail in Chapter 4 and tested in Chapter 5. Without this

assumption, one needs to examine locating arrays with d ≥ 1, and this investigation

is reserved for future work. We also focus on interactions with strength at most

2, and ignore interactions with strength 3 or higher because the sparsity of effects

principle indicates that most higher strength interactions are often negligible [3], [7].

However, much of this work pertaining to interactions of strength 2 can be extended

to interactions with higher strength. For the remainder of this work, we refer to a

1-way interaction as a main effect and to a 2-way interaction as simply an interaction.

We refer to both main effects and interactions as terms that can be included in a

linear model of a response.

Table 2 is an example of a (1, 2)-locating array for the same system used in Table 1,

and is constructed by adding 3 extra rows to the covering array A to create a locating

5

array A′. The 3 extra rows are separated from the others by a horizontal line. All

further locating arrays discussed in this work are (1, 2)-locating arrays.

Table 2. Locating Array - First Example
Locating Array A′

Test F1 F2 F3

1 v2 v3 v2
2 v2 v1 v1
3 v1 v1 v2
4 v2 v2 v3
5 v2 v3 v1
6 v1 v3 v3
7 v1 v2 v1
8 v2 v2 v2
9 v1 v1 v3
10 v1 v3 v1
11 v2 v1 v2
12 v1 v2 v3

Recall T1 = (F3 = v3 & F1 = v2) and T2 = (F3 = v3 & F2 = v2). Now

ρ(A′, T1) = {4} and ρ(A′, T2) = {4,12}. The sets of rows where the two interactions

are covered is now different because the three additional rows have created a locating

array. Thus the two interactions are now distinguishable from each other and it is

possible to determine which is significant.

Screening using locating arrays involves the following steps. First, a locating array

is constructed for the possible significant factors. Second, the system is executed for

every test indicated by the locating array and a response is measured. Third, the

response is analyzed to determine which factors are significant and which are not. The

final screening result is the set of significant factors.

This thesis contributes to the screening process in three areas: construction of

locating arrays, analysis of the response, and robustness of the analysis. Two con-

struction algorithms for locating arrays are discussed in Chapter 3. Tables containing

6

locating array sizes for different numbers of factors and levels are also provided in

Chapter 3. An efficient analysis algorithm that employs linear models to determine the

significant factors in the system is discussed in Chapter 4 and its results are validated

with previous analysis approaches. Because response measurements in real systems

include noise, the effects of noise in the screening process and coping strategies are

investigated in Chapter 5. Robustness to violation of the “heavy-hitters” assumption

is also tested in Chapter 5. Finally, directions for future work are discussed in Chapter

6. Some of the work presented in Chapters 3 and 4 has been published in [2] and [8].

7

Chapter 2

RELATED WORK

This chapter investigates other work related to the construction of locating arrays

and analysis of their response. Randomized approaches for construction of covering

and locating arrays are introduced in Section 2.1, while relevant approaches for

response analysis, including two approaches designed exclusively for locating arrays,

are discussed in Section 2.2.

2.1 Construction Work

General construction strategies for locating arrays are found in [4]. These strategies

include using the Stein-Lovász-Johnson framework and using the Lovász Local Lemma

with Moser-Tardos resampling. In [4], the requirements for a locating array are

presented as events that can be either good or bad. Good events are requirements that

are satisfied and bad events are requirements that are violated. A collection of tests

is a locating array when no bad events occur. The events are classified and further

divided into patterns, and then the probability of a pattern being good is calculated

for each pattern [4]. One can then determine the expected number of bad events when

n tests are randomly chosen, and a locating array with no bad events is guaranteed

to exist when this expectation is less than one [4]. Graphs in [4] give the necessary

locating array sizes for the expectation of bad events to be less than one for different

numbers of columns in the array.

Following [2], the Stein-Lovász-Johnson framework [9]–[11] indicates that a test

8

(row) be added that reduces the number of bad events by at least the reduction that

would be expected from a test chosen randomly from all possible tests. A locating array

can thus be constructed by selecting one row at a time and ensuring at each selection

that the number of bad events in the array does not exceed the expected number of

bad events for a random array of the same size [4]. Graphs in [4] provide bounds on

locating array sizes for the row-at-a-time approach for different numbers of columns

in the array. These graphs also show that locating array sizes grow logarithmically in

the number of factors when the number of levels is fixed for all factors.

The Lovász Local Lemma [12] is used in [13] for the construction of covering

arrays with Moser-Tardos resampling [14] and can be applied to the construction of

locating arrays as well [4]. The construction process is also modeled as avoiding bad

events (situations where the array is not a valid covering or locating array) [13] and

these events depend on the columns of the array. Moser-Tardos resampling indicates

that when the sufficient condition for the Lovász Local Lemma is satisfied, then a

solution can be found (where no bad events occur) with a randomized polynomial

time algorithm [14].

Following [13], suppose E is a bad event to be avoided, then denote vbl(E) as

the minimum subset of array columns on which E depends. For construction, the

Moser-Tardos randomized polynomial time algorithm searches for any bad event E,

and then randomly resamples all columns of vbl(E). This process of searching and

resampling is repeated until no more bad events exist and the array is a valid covering

or locating array. The sufficient condition for the lemma, however, requires that the

event probabilities be sufficiently small. To reduce these probabilities, tests (rows)

must be added to the array.

9

2.2 Analysis Work

After construction is complete, the tests indicated by the locating array must be

run, and analysis must be performed on the results to determine the significant factors.

Analysis therefore uses the response of the tests and the corresponding locating array

to determine factor significance. The result of the analysis step is the set of significant

factors.

Locating arrays, however, provide unique challenges in analysis. First, the number

of potentially significant main effects and interactions is large. For example, a (1, 2)-

locating array with k = 100 factors and ` = 5 levels for every factor, distinguishes

approximately 125,000 main effects and interactions. Any analysis strategy for locating

arrays would thus need to analyze all of these possible terms. Second, locating arrays

may exhibit high imbalance. All main effects and interactions are covered in a locating

array, but some terms are covered much more than others. In the locating array in

Table 2, some interactions appear three times (e.g., F3 = v3 & F1 = v1) while others

appear just once (e.g., F3 = v3 & F2 = v3). Analysis strategies for locating arrays

should not be biased towards terms that are covered more often than others.

Many approaches exist to determine which terms are significant when the number

of possible terms, or predictors, is large. There are model-based approaches, where

models are built to explain the response, and model-free approaches, where the

significant terms are found without building an explicit model [15]. In model-based

approaches, there are different types of models that can be built. Among others, there

are linear models, along with models that use parameterization to produce complex

models [15].

Colbourn et al. [6] introduce the use of a compressive sensing matrix with a

10

locating array to generate prospective terms for linear modeling. The compressive

sensing matrix contains a separate column for each term. Table 3 is the compressive

sensing matrix for the locating array in Table 2. For each column, +1 is placed in the

rows where the term is covered (the rows in ρ(A′, T), where T is the main effect or

interaction), and −1 is placed in the remaining rows. To conserve space, every +1 is

written as + and every −1 is written as − in the table. We also include a column

with +1 in every row as the INTERCEPT to account for any effects that exist in the

system regardless of the factor assignments. Interestingly, in any compressive sensing

matrix corresponding to a locating array, every column must be unique because the

set of rows covered by each term must be unique. This work exclusively investigates

linear modeling of the response using the columns of a compressive sensing matrix.

While transformations can be applied to the predictors (columns of the compressive

sensing matrix) to produce complex models [15], this work focuses exclusively on

screening using linear models with an optional transformation applied to the response.

Sure independence screening (SIS) is a screening approach for a high number of

terms using linear models [15]. In SIS, a response vector (response of the locating

array tests) is modeled with terms chosen from a pool of predictor vectors (columns of

the compressive sensing matrix). Predictor vectors are individually ranked using the

dot product of the predictor vector and the response vector divided by the length of

the vectors, known as the Pearson correlation [15]. This ranking of predictor vectors

indicates their correlation with the response vector. Finally, the predictors that are

highly correlated with the response are chosen as the result of the screening process.

11

Table 3. Compressive Sensing Matrix - First Example
Compressive Sensing Matrix

IN
T

E
R

C
E

P
T

F
1
=
v 1

F
1
=
v 2

F
2
=
v 1

F
2
=
v 2

F
2
=
v 3

F
3
=
v 1

F
3
=
v 2

F
3
=
v 3

F
2
=
v 1

&
F
1
=
v 1

F
2
=
v 1

&
F
1
=
v 2

F
2
=
v 2

&
F
1
=
v 1

F
2
=
v 2

&
F
1
=
v 2

F
2
=
v 3

&
F
1
=
v 1

F
2
=
v 3

&
F
1
=
v 2

F
3
=
v 1

&
F
1
=
v 1

F
3
=
v 1

&
F
1
=
v 2

F
3
=
v 1

&
F
2
=
v 1

F
3
=
v 1

&
F
2
=
v 2

F
3
=
v 1

&
F
2
=
v 3

F
3
=
v 2

&
F
1
=
v 1

F
3
=
v 2

&
F
1
=
v 2

F
3
=
v 2

&
F
2
=
v 1

F
3
=
v 2

&
F
2
=
v 2

F
3
=
v 2

&
F
2
=
v 3

F
3
=
v 3

&
F
1
=
v 1

F
3
=
v 3

&
F
1
=
v 2

F
3
=
v 3

&
F
2
=
v 1

F
3
=
v 3

&
F
2
=
v 2

F
3
=
v 3

&
F
2
=
v 3

+ - + - - + - + - - - - - - + - - - - - - + - - + - - - - -
+ - + + - - + - - - + - - - - - + + - - - - - - - - - - - -
+ + - + - - - + - + - - - - - - - - - - + - + - - - - - - -
+ - + - + - - - + - - - + - - - - - - - - - - - - - + - + -
+ - + - - + + - - - - - - - + - + - - + - - - - - - - - - -
+ + - - - + - - + - - - - + - - - - - - - - - - - + - - - +
+ + - - + - + - - - - + - - - + - - + - - - - - - - - - - -
+ - + - + - - + - - - - + - - - - - - - - + - + - - - - - -
+ + - + - - - - + + - - - - - - - - - - - - - - - + - + - -
+ + - - - + + - - - - - - + - + - - - + - - - - - - - - - -
+ - + + - - - + - - + - - - - - - - - - - + + - - - - - - -
+ + - - + - - - + - - + - - - - - - - - - - - - - + - - + -

In some cases, however, issues can arise in SIS. For example, if an insignificant

term is highly correlated with a significant term [16], then SIS is likely to rank both

terms highly and fails to eliminate the insignificant term. Iterative SIS [16] is similar

to the SIS screening approach but is done in steps. In the i-th step, iterative SIS uses

the SIS approach to select ki relevant terms, and the residual vector that remains

after selecting the terms replaces the response vector in the (i+ 1)-st step [16]. The

ki variable for each step can be chosen in a variety of ways, but if it is always equal to

one, then iterative SIS is a form of matching pursuit [16].

The critical aspect of SIS is how correlation is determined between the predictor

vectors (columns of the compressive sensing matrix) and the response vector. Pre-

viously, we discussed the use of the Pearson correlation to determine the ranking

of the predictors. However, other ranking strategies also exist in SIS, including the

12

marginal rank correlation which can behave better than the Pearson correlation in

some situations [15].

We now discuss two screening experiments using locating array designs in Section

2.2.1 [6] and Section 2.2.2 [5]. In both, the analysis of the associated data resembles

a “heavy-hitters” algorithm to construct a response model. Both maintain a current

model and a current residual vector. The model is initialized as an intercept term

with coefficient equal to the mean of the measured response data, while the residuals

are equal to the data minus the model’s predictions of it.

In each iteration, the most significant term impacting the response vector is selected

to add to the model. The two analysis methods differ, however, in how the most

significant term is selected. Least squares is then used to update the model coefficients.

As in iterative SIS, the residuals are then calculated and replace the response vector

in the next iteration. These steps are repeated until a stopping criterion is met. The

two analysis methods make use of a limit on the number of terms and a desired R2

(coefficient of determination) threshold.

2.2.1 Orthogonal Matching Pursuit

Orthogonal matching pursuit (OMP) is a compressive sensing-based analysis

approach used for term selection in [6]. In each iteration, a term is selected to add to

the model based on the dot product of the normalized residuals with each candidate

term’s normalized column in a compressive sensing matrix. The term yielding the

highest-magnitude dot product is added to the model, after which ordinary (linear)

least squares is used to update the model coefficients. A dot product is used because

a dot product of zero indicates a complete lack of correlation between a term and

13

the data, a dot product of 1 indicates perfect correlation, and a dot product of −1

indicates a perfect anti-correlation. Also, the dot product is linear in each argument

fitting well with using least squares to update the model coefficients. This approach is

similar to iterative SIS with k = 1 and using the Pearson correlation. Because OMP

can only add terms to a model, a tree is developed in [6] in a depth-first manner to

represent terms that have been added, and backjumping provides a mechanism for

exploring alternative models.

2.2.2 Statistical Approach

Along with the challenge of a large number of possible terms, locating arrays also

present difficulties because of their imbalance. In [5], to cope with the imbalance

in coverage, the factors are grouped according to the number of times each value is

covered in the locating array. In each iteration of the heavy hitters algorithm, the first

step selects the most significant main effect or two-way interaction from each group

using the Wilcoxon rank sum test and the Mann-Whitney U-test [17]–[19]. Then from

these candidates, the most significant main effect or two-way interaction overall is

selected using the Akaike information criterion [20]. Weighted least squares is also

used to update the model coefficients.

2.3 Summary

The Lovász Local Lemma with Moser-Tardos resampling has been used for covering

array construction [13]. Chapter 3 focuses on using the same resampling strategy,

but for locating array construction. Analysis results are also presented from several

14

locating arrays constructed using this approach. Chapter 4 explores the analysis step

by extending the work in [5], [6].

15

Chapter 3

CONSTRUCTION

The first step in screening using locating arrays is to construct the locating array. In

this step, one chooses k factors F1, F2, . . . , Fk, to be used in screening and determines

the number of levels `j for each factor Fj, and then constructs a valid locating array.

Producing any locating array is trivial. A full-factorial screening experiment is a

locating array since every possible combination of level-to-factor assignments exists in

the design. However, we focus on cases where many possible factors have been chosen

for screening. In such cases, the size of a full-factorial experiment is extremely large.

The large system introduced in Section 2.2 with k = 100, for example, contains over

1069 tests if a full-factorial experiment were to be used. Such sizes are infeasible, and

this chapter discusses strategies to construct locating arrays that are more useful in

practice.

3.1 Desirable Properties

Certain desirable properties exist when considering the construction of locating

arrays along with their usages. First, it is desirable for locating arrays to have few

rows (or tests). Because every test takes some amount of time to complete, locating

arrays with billions of rows are undesirable and likely impossible to use. However,

“few” is a relative attribute, and this property is therefore strongly dependent on

how practical it is to run multiple tests in a particular environment. Second, it is

desirable for locating arrays to produce accurate results when they are used. This

16

second property is intuitive, but it is not completely clear what types of locating arrays

produce accurate results. We hypothesize that locating arrays can be constructed to

produce more accurate results through the use of a particular attribute that we refer

to as separation. We first motivate separation with an example and then formally

define it.

Suppose we construct a locating array with hundreds of rows. Next, we construct

the associated compressive sensing matrix, but observe that two of its columns are

quite similar and differ in only a single row. If we then attempt to use this compressive

sensing matrix to produce accurate results, the two similar columns are likely (almost)

indistinguishable. Furthermore, if the term corresponding to one column is truly

significant while the term corresponding to the other column is insignificant, then it

is likely difficult to determine which of the two is the important term (and which to

discard). Finally, if an error in measurement occurs in the unique test where the two

columns differ, then the locating property of the array is lost entirely. Therefore, we

hypothesize that it is beneficial for every column in the compressive sensing matrix

to differ from every other column in at least δ rows. In this case, we refer to the

associated locating array as exhibiting separation δ.

A formal definition of separation δ is the minimum difference between any two

columns of an associated compressive sensing matrix in the number of rows where the

columns differ. Thus it is the number of rows in which any two terms are guaranteed

to differ for a particular locating array. If a locating array, A, exhibits separation δ,

then for every two terms T1, T2 where T1 6= T2, we have that |(ρ(A, T1) ∪ ρ(A, T2)) \

(ρ(A, T1) ∩ ρ(A, T2))| ≥ δ.

For example, Table 4 shows a locating array for factors F1, F2 both with levels

v1, v2, v3, followed by three columns from the corresponding compressive sensing matrix.

17

In this example we focus on only these three columns for simplicity and do not show

the remainder of the compressive sensing matrix. Three unique pairs of columns exist

from the three compressive sensing columns shown. The first pair is columns one and

two, and this pair of columns differs in four rows (5, 12, 13, and 16). The second pair

is columns one and three, and this pair of columns differs in two rows (5 and 12).

The third pair is columns two and three, and this pair of columns differs in two rows

(13 and 16). The minimum difference between these three pairs is two rows, and the

locating array in Table 4 therefore exhibits separation δ = 2.

Table 5 continues the example in Table 4 by adding another row to the locating

array (and compressive sensing matrix). The second and third pairs both differ in

the additional test. The minimum difference between the pairs is now 3 rows and the

separation of this locating array is δ = 3.

Finally, we repeat the test added in Table 5 to continue the separation example

in Table 6. The second and third pairs both differ again in the additional test. The

minimum difference between the pairs is now 4 rows and the separation of this locating

array is δ = 4. This example shows how strategically adding rows to a locating array

can increase its separation.

18

Table 4. Separation Example - δ = 2
Locating Array

Test F1 F2

1 v1 v3
2 v2 v2
3 v2 v3
4 v3 v3
5 v3 v1
6 v1 v3
7 v3 v2
8 v3 v2
9 v1 v2
10 v2 v2
11 v2 v3
12 v3 v1
13 v2 v1
14 v3 v3
15 v1 v2
16 v2 v1

Partial Compressive Sensing Matrix
Test F2 = v1 F2 = v1 & F1 = v1 F2 = v1 & F1 = v2
1 -1 -1 -1
2 -1 -1 -1
3 -1 -1 -1
4 -1 -1 -1
5 1 -1 -1
6 -1 -1 -1
7 -1 -1 -1
8 -1 -1 -1
9 -1 -1 -1
10 -1 -1 -1
11 -1 -1 -1
12 1 -1 -1
13 1 -1 1
14 -1 -1 -1
15 -1 -1 -1
16 1 -1 1

19

Table 5. Separation Example Continued - δ = 3
Locating Array

Test F1 F2

17 v1 v1
Partial Compressive Sensing Matrix

Test F2 = v1 F2 = v1 & F1 = v1 F2 = v1 & F1 = v2
17 1 1 -1

Table 6. Separation Example Continued - δ = 4
Locating Array

Test F1 F2

18 v1 v1
Partial Compressive Sensing Matrix

Test F2 = v1 F2 = v1 & F1 = v1 F2 = v1 & F1 = v2
18 1 1 -1

Note that an array must have separation of at least one to satisfy the locating

property. However, we hypothesize that when locating arrays exhibit higher separation,

they produce more accurate results when used. Evidence supporting this hypothesis

is presented in Section 5.3.

3.2 Initial Greedy Approach

A greedy approach can be used to quickly create a simple locating array without

extra separation. This approach begins with any array of tests, A, that does not have

the locating property (it can be empty), and adds rows in a greedy fashion until the

locating property is satisfied. This greedy fashion of adding rows relies on a score

indicating how close A is to having the locating property. One possible, and effective,

way to achieve this scoring, is to count the unique pairs of identical columns in the

compressive sensing matrix, M , for A. This scoring approach yields a lower score

when A improves and is closer to having the locating property.

20

Suppose that A is an empty array. Then all columns in M are also empty and are

therefore all identical. Any combination of two columns in M is a pair of identical

columns, and there are then
(
m
2

)
unique pairs of identical columns where m is the

number of columns in M . It is not possible for the number of identical columns in M

to be more than
(
m
2

)
so this is the largest possible score for A. Intuitively, an empty

array is as far as possible from having the locating property and therefore exhibits

the maximum score.

Suppose now that A is a valid locating array. Then not a single pair of identical

columns exists in M because the locating property is satisfied, and the score of A is

0, the minimum score. Therefore, the score simply counts the deficiencies in A, and

once the score is 0, A has no deficiencies and construction is complete.

Algorithm 1 lists the detailed steps of this greedy approach. The algorithm begins

with an empty array, A, with 0 rows and then adds rows until A is a locating array.

It is important to note that adding any row to A cannot worsen its score (adding a

row cannot create more unique pairs of duplicate columns in the compressive sensing

matrix). First, a row of random factor assignments corresponding to the factors

parameter is generated and added to A. The entries of this row are origininally

marked as not finalized which means they can still be changed to improve the score of

the locating array. All pairs of duplicate columns in the compressive sensing matrix

are then found, and all columns included in these pairs are iterated through. For

each column, the algorithm attempts to update and finalize the factor assignments

affecting this column so that the column entry in the most recently added row changes,

and the column is no longer part of a duplicate pair. This update is the crux of

the algorithm, and only occurs if the affecting factor assignments have not yet been

marked as finalized. The score of A is checked after the update and then the array

21

is reverted to its previous state. After all columns have been checked, the algorithm

keeps the column updates that produced the best score improvement in A. The most

recently added row now contains factor assignments that are marked as finalized and

these assignments can no longer change. The algorithm then repeats the process of

checking all pairs of duplicate columns until the score cannot be further improved.

Finally, another row is added and the entire process repeats until the array contains

no deficiencies and is a valid locating array.

This approach promises continuous improvements to the score since every row

can be used to fix at least one problem, and perhaps more if they exist. The score

continues to get better as rows are added and, therefore, this approach is guaranteed to

complete the creation of a locating array. The algorithm is greedy because it chooses,

and keeps, a current best option at every iteration.

When Algorithm 1 first begins to execute, before many rows have been added to

the array, a large number of duplicate pairs exist and the loop on line 12 can take

an unreasonable amount of time. In this situation, however, any random row likely

eliminates a large portion of these duplicates and improves the score significantly. It

is then of little consequence if all iterations of the loop on line 12 are not performed

when a large number duplicate pairs exist. Thus, adding a time bound to the loop is

a reasonable approach to decrease execution time with little change to the resulting

locating array.

Unfortunately, this approach would require significant modification to construct

locating arrays with separation greater than one, because it only attempts to eliminate

all duplicate columns. When no duplicate columns exist in the compressive sensing

matrix, the locating property is satisfied, but the resulting locating array is only

22

Algorithm 1 Greedy_Construction(factors)

Require: List of factors (including their levels)
Ensure: A valid locating array
1: A← [empty array with 0 rows]
2: while A.getScore() > 0 do
3: row ← [random row of valid factor assignments for factors]
4: for assignment ∈ row do
5: assignment.finalized← False
6: end for
7: Add row to A, and keep row as reference
8: while True do
9: M ← createCSM(A)

10: dPairs← [all pairs of duplicate columns in M]
11: bestA← A
12: for pair ∈ dPairs do
13: for column ∈ pair.columns do
14: Acopy ← [copy of A]
15: for factor ∈ column.factors do
16: assignment← row.assignments(factor)
17: if NOT assignment.finalized then
18: Update assignment to change final entry of column in M
19: assignment.finalized← True
20: end if
21: end for
22: if A.getScore() < bestA.getScore() then
23: bestA← A
24: end if
25: A← Acopy
26: end for
27: end for
28: if bestA.getScore() < A.getScore() then
29: A← bestA
30: else
31: break
32: end if
33: end while
34: end while
35: return A

23

guaranteed to have separation of one. Our initial greedy approach needs to be changed

for creating locating arrays with specific properties including higher separation.

Table 7 shows factor and level inputs in the first column, and the sizes, in terms

of rows, of the successfully created locating arrays using our initial approach in the

second column. In the first column, the exponent refers to the number of factors in

the locating array, while the base refers to the number of levels for each factor, i.e.,

310 means 10 factors with 3 levels each.

Table 7. Locating Array Sizes - Generated by the Initial Greedy Approach
Type Number of Rows, δ = 1
210 13
215 16
220 18
250 23
275 27
2100 29
310 30
315 33
320 37
350 47
375 54
3100 60
410 47
415 54
420 60
450 81
475 95
4100 105
510 71
515 83
520 90
550 127
575 149
5100 165
510210 72

24

3.3 Randomized Approaches

Randomized approaches to locating array construction allow for additional con-

straints with minimal changes to their algorithms and implementations. In a random-

ized approach, parts of the array are randomly generated repeatedly until the result

is a valid locating array that also satisfies any possible constraints. For example, we

might generate a random array repeatedly until it is a locating array with separation

δ = 2 or 3. We might specify additional constraints as well, but the main randomized

approach remains the same. It provides the significant benefit that one can change

the constraints, and even the type of array to generate, with minimal changes. This

also contrasts sharply with our initial greedy approach that was highly specific to the

construction of locating arrays with separation δ = 1.

The core of a randomized approach lies in what we refer to as the checker. The

checker verifies that the array is a locating array and that it satisfies any additional

constraints. Because a randomized approach may take many iterations, it is important

for the checker to be efficient. Slow checkers will likely cause the randomized approach

to be ineffective.

A checker for a locating array with separation δ = 1 might simply sort the columns

of the compressive sensing matrix, and then search for duplicate columns in a linear

fashion which are adjacent because of the sort. However, this approach would not

work when checking for locating arrays with separation δ = 2 or higher. In these cases,

a pair of columns may differ only once in the first row, and then these columns are

not adjacent after a sort and are much more difficult to find. A simple solution is to

25

check all pairs of columns in the compressive sensing matrix and then iterate through

all rows of the locating array to check for differences, but this can be time consuming.

The number of pairs to check is
(
m
2

)
= m·(m−1)

2
= m2

2
− m

2
where m is the number of

columns in the compressive sensing matrix. This approach has runtime O(m2 · n)

where the compressive sensing matrix is n×m, and it is not useful for checking large

locating arrays.

We propose a more efficient recursive checker in Algorithm 2 for locating arrays

with higher separation that eliminates many of the pairs to check. A prerequisite for

the algorithm is that the compressive sensing matrix must be sorted and converted

into a binary tree format. Table 8 displays a partial compressive sensing matrix

example along with the same matrix but with sorted columns and merged cells. The

columns are sorted in increasing order by row from top to bottom, and horizontally

adjacent cells are merged when their corresponding column entries are identical in

every row, excluding the rows below the cells to be merged.

The cells are then converted to nodes in the binary tree structure in Figure 1, where

the height of the tree corresponds to the number of rows in the compressive sensing

matrix. The tree structure allows the compressive sensing matrix to be traversed

and analyzed efficiently in Algorithm 2. Every node in the tree represents a group of

columns from the sorted matrix whose entries are identical in the first ` rows where `

is the number of levels between the root and the node. For example, Node1 represents

the first three columns of the sorted matrix, and these columns are identical in the

first row because this node is one level below the root of the tree. The Root node

encompasses all columns because all columns of the sorted matrix are identical in

the first zero rows (there are no entries in the first zero rows and so all columns are

26

identical). Paths from the Root node to the leaf nodes correspond to column entries

in the compressive sensing matrix.

Table 8. Separation checker example - Compressive sensing matrix
Partial CS Matrix

T0 T1 T2 T3 T4
1 1 -1 -1 -1
1 -1 1 -1 -1
1 -1 -1 1 -1
1 -1 -1 -1 1

Sorted Partial CS Matrix
T4 T3 T2 T1 T0
-1 -1 -1 1 1
-1 -1 1 -1 1
-1 1 -1 -1 1
1 -1 -1 -1 1

Sorted Partial CS Matrix with Merged Cells
T4 T3 T2 T1 T0

-1 1
-1 1 -1 1

-1 1 -1 -1 1
1 -1 -1 -1 1

Algorithm 2 checks for any pairs of columns that violate the separation constraint

parameter, δ, where one column of the pair belongs to nodeA and the other belongs

to nodeB . The two nodes passed to the algorithm are assumed to be on same level in

the tree. If a violating pair exists, then the two columns must both belong to the Root

node, and the algorithm is therefore first called as Separation_Checker(δ,Root ,Root).

The algorithm then takes the two node arguments, and searches for pairs of columns

that violate the separation constraint in their child nodes.

Initially, Algorithm 2 checks four terminating conditions in the following order.

First, true is returned, meaning the checker did not find any violating pairs, if δ = 0,

27

Figure 1. Separation checker example - Binary tree corresponding to sorted
compressive matrix

Root

Node1
T4, T3, T2

-1

Node2
T1, T0

1

Node3
T4, T3

-1

Node4
T2

1

Node5
T1

-1

Node6
T0

1

Node7
T4

-1

Node8
T3

1

Node9
T2

-1

Node10
T1

-1

Node11
T0

1

Node12
T4

1

Node13
T3

-1

Node14
T2

-1

Node15
T1

-1

Node16
T0

1

28

Algorithm 2 Separation_Checker(δ, nodeA, nodeB)

Require: Separation constraint, the two groups of columns to check against each
other

Ensure: Whether the locating array satisfies the constraints
1: if δ = 0 then
2: return True
3: else if nodeA = NIL OR nodeB = NIL then
4: return True
5: else if |nodeA.columns ∪ nodeB.columns| = 1 then
6: return True
7: else if [current level] = n then
8: return False
9: end if

10: satLL← Separation_Checker(δ, nodeA.childL, nodeB .childL)
11: satRR ← Separation_Checker(δ, nodeA.childR, nodeB .childR)
12: satLR ← Separation_Checker(δ − 1, nodeA.childL, nodeB .childR)
13: if nodeA.columns ∪ nodeB.columns = ∅ then
14: satRL← Separation_Checker(δ − 1, nodeA.childR, nodeB .childL)
15: else
16: satRL← True
17: end if
18: return satLL AND satRR AND satLR AND satRL

because all pairs of columns satisfy the separation requirement of being different in

at least zero rows. Second, true is returned if one of the nodes is NIL, because no

violating pair of columns can exist when one column from the pair must be part of an

empty group (NIL node). Third, true is returned if the cardinality of the union of

both groups is one, because any violating pair requires at least two columns. Fourth,

false is returned, meaning the checker did find violating pairs, if the current level is

equal to the total height of the tree, because this means the final level of the tree has

been explored, and no more children exist to satisfy the separation requirement.

Finally, Algorithm 2 conquers the two nodes, or groups of columns, with recursive

calls. For any nodeA and nodeB , four children exist after the four terminating

conditions are checked:

29

1. nodeA.childL (the left child of nodeA)

2. nodeA.childR (the right child of nodeA)

3. nodeB .childL (the left child of nodeB)

4. nodeB .childR (the right child of nodeB)

Because the algorithm is searching for a violating pair with one column in nodeA and

the other in nodeB , this pair can exist in four ways among the children:

1. between nodeA.childL and nodeB .childL (both left children)

2. between nodeA.childR and nodeB .childR (both right children)

3. between nodeA.childL and nodeB .childR (left child and right child)

4. between nodeA.childR and nodeB .childL (right child and left child)

The first and second possibilities are between children going the same direction (both

left or both right), and no extra information is obtained to separate the child groups

of columns by traveling one more level down the tree. However, the third and fouth

possibilities are between children going in opposite directions, and these groups are

therefore separated by one more row by traveling one more level down the tree.

Therefore, the third and fourth recursive calls pass the argument δ − 1. When nodeA

is the same as nodeB, then the third and fourth possibilities are identical, and the final

if-statement in Algorithm 2 ensures that both possibilities are not checked in this case.

All four recursive calls must return true, indicating all child group combinations satisfy

the separation constraint, for the entire algorithm to return true. The algorithm

ensures that if a violating pair of columns exists, then it is found and false is returned,

and if not, then true is returned.

Algorithm 2 works efficiently by eliminating possible violating pairs from the

search. For example, suppose it is used to check for separation δ = 1 in the tree in

30

Figure 1. There are m2

2
− m

2
pairs to check where m is the number of columns in the

compressive sensing matrix. The first call is Separation_Checker(1,Root ,Root). This

call spawns three recursive calls because nodeA and nodeB are the same node:

1. Separation_Checker(1,Node1 ,Node1)

2. Separation_Checker(1,Node2 ,Node2)

3. Separation_Checker(0,Node1 ,Node2) (terminates because δ = 0)

The third recursive call terminates because it is checking for δ = 0 and this eliminates

all the pairs with one column in Node1 and the other in Node2 . If we assume that

Node1 and Node2 both have approximately m
2
columns, then (m

2
)2 = m2

4
pairs are

eliminated from the search when the third recursive call is terminated. Therefore,

more than half of the possible pairs are eliminated almost immediately, and more

quickly follow as the algorithm continues.

3.3.1 Moser-Tardos Resampling

The first randomized approach is Moser-Tardos resampling and is given in Algo-

rithm 3. Before calling the algorithm, we guess what size (n×k) might be appropriate

for a locating array with the required constraints. The algorithm then generates a

random n×k array, A. Following the Moser-Tardos resampling strategy in Section 2.1,

it checks (runs the checker on the compressive sensing matrix M) each requirement to

be a locating array with the required constraints in an arbitrary but fixed order. If

no requirement is violated, then A is a solution. Otherwise, it finds the first pair of

columns in M violating the required constraints and all columns of A involved in the

violating pair, and randomly resamples these entire columns in A. After resampling

31

part of A, M is updated, and then it checks each requirement again and continues

until no requirements are violated.

Algorithm 3 Moser− Tardos_Construction(factors , n, k, constraints)

Require: List of factors (including their levels), rows in array, columns in array, extra
constraints

Ensure: A valid locating array
1: A← [random n× k array of valid factor assignments for factors]
2: M ← createCSM(A)
3: while M violates any constraints do
4: pair ← the first pair of columns in M violating constraints.
5: for column ∈ pair.columns do
6: for factor ∈ column.factors do
7: A.columns(factor).resample()
8: end for
9: M ← createCSM(A)

10: end for
11: end while
12: return A

One important detail of this approach is that it is not guaranteed to complete.

Unlike our initial approach, it may not make continuous progress. When columns are

resampled, more requirements may be violated, and the array may never satisfy the

locating property or any other constraints.

Suppose we hope to construct a locating array for 100 factors with five levels

each with separation δ = 1 using Moser-Tardos resampling. Our initial approach

successfuly found a locating array satisfying these constraints with 165 rows.

We now implement the scoring system in Section 3.2 to monitor the progress

of Algorithm 3. Figure 2 shows the array score at each iteration of the while loop

using Moser-Tardos resampling for an array with 215 rows. Through 1000 iterations,

however, it does not successfully construct a valid locating array although it comes

close. The score starts at 237, rises to 308, and dips as low as 30 at one point before

rising again.

32

Figure 2. LA score after each iteration using Moser-Tardos resampling.

Therefore, in order to construct a valid locating array in this case, one would need

to either increase the number of iterations or increase the number of rows in the array.

However, we also consider making a minor change to the approach itself to direct the

array towards a valid solution instead of resampling purely at random. The updated

approach is discussed next.

3.3.2 Directed Moser-Tardos Resampling

Figure 2 shows the array score changing at random to all appearances. In other

words, some changes improve the score, while others worsen the score. We therefore

33

introduce a new directed construction approach that differs only slightly from Moser-

Tardos resampling in that it does not accept any changes that worsen the score of

the array. After every change, the directed approach checks the array score, and if

the score worsens, the change is rolled back. It then resamples randomly repeatedly

until it finds a change that does not worsen the array score. Figure 3 shows the array

score through 1000 iterations for the same construction scenario as Figure 2. The

score, in this case, decreases sharply and a locating array is successfully constructed

after 234 iterations. Similar to pure Moser-Tardos resampling, however, the directed

resampling approach is not guaranteed to finish.

Figure 3. LA score after each iteration using directed Moser-Tardos resampling.

34

Directed Moser-Tardos resampling can also be easily modified to construct locating

arrays with additional constraints such as higher separation. Only the scoring system

must be modified to indicate how close the array is to a valid locating array with a

separation value δ.

We modify the scoring approach described in Section 3.2 to score an array, A, with

a constraint, separation δ, as well. The modified scoring approach first finds the unique

pairs in the compressive sensing matrix, M , for A, where the separation requirement

is violated (the violating pairs). Then, for every violating pair, the deficiency of that

pair is the number of additional row differences needed for the pair to have δ row

differences. Following the example in [2], if a pair of terms T1, T2 exists where T1 6= T2

but |(ρ(A, T1) ∪ ρ(A, T2)) \ (ρ(A, T1) ∩ ρ(A, T2))| = µ < δ, then T1, T2 is a violating

pair with deficiency δ − µ. The score of A is the same as the total deficiency of A

which is the sum of the deficiencies of all violating pairs. In other words, the score

counts the total additonal row differences that all violating pairs collectively need for

the separation constraint to be satisfied. Interestingly, when the only constraint for A

is separation δ = 1, then this scoring approach is no different from the one described

in Section 3.2.

An interesting aspect of Algorithm 2 is that it is easily modified to score the

locating array as well as check its validity. When the fourth terminating condition of

the algorithm is satisfied, then the number of pairs with one column in nodeA and

the other in nodeB is multiplied by the remaining separation needed, δ. This is then

added to a global variable with the total score which is initialized to zero before the

initial call to the checker. When all recursive calls are completed, the global variable

holds the correct total score for a locating array with any separation constraint δ.

35

Furthermore, this scoring change is implemented with almost no additional runtime

cost.

Table 9 shows factor and level inputs in the first column, and the separation

requirements in the second row. The remainder of the table indicates the size, in terms

of rows, needed for directed Moser-Tardos resampling to construct a valid locating

array within 1000 iterations, satisfying the separation requirement.

Table 9. Locating array sizes using directed Moser-Tardos resampling.
Number of Rows

Type δ = 1 δ = 2 δ = 3 δ = 4
210 14 19 24 30
215 17 22 29 34
220 19 26 31 37
250 26 33 40 47
275 28 36 44 50
2100 31 39 46 53
310 34 46 57 66
315 40 52 65 73
320 44 57 69 79
350 57 70 83 95
375 62 76 90 103
3100 67 81 94 107
410 65 86 104 122
415 76 96 116 133
420 82 104 122 141
450 106 129 148 168
475 116 138 159 179
4100 123 146 166 188
510 110 141 165 194
515 126 156 185 212
520 138 169 198 225
550 173 208 236
575 189 223 256
5100 202 235 266
510210 110 139 172 197

36

Table 9 was generated using a binary search technique on the locating array size.

We began with an upper bound on the number of rows in the array that easily satisfied

all constraints, and a lower bound, an empty array with 0 rows. A binary search

technique was then used to find the smallest possible size for a locating array to be

constructed in 1000 iterations under the specified constraints. In the column under

δ = 4, some of the cells are blank because the checker took an extended amount of

time in these cases. Not surprisingly, the locating arrays in Table 9 with separation

δ = 1 produced by directed Moser-Tardos resampling are larger than those shown in

Table 7 and produced by Algorithm 1 which chooses every row carefully to minimize

the array score, and ultimately the final array size.

3.4 Summary

The initial greedy approach presented in Algorithm 1 is convenient for creating

arrays that satisfy the locating property. It adds rows as needed, and the only

necessary input parameter is factor information. However, it is unable to construct

locating arrays with additional constraints including higher separation. Instead of

modifying Algorithm 1 to incorporate separation, we present randomized approaches

that can be applied to construct locating arrays with any additional constraints.

Moser-Tardos resampling given in Algorithm 3 constructs locating arrays with

additional constraints. The main requisite of the algorithm is an efficient checker used

repeatedly to check if the array satisfies all requirements. Additionally, the algorithm

requires an input parameter indicating the size of the locating array.

A modification to Moser-Tardos resampling is directed Moser-Tardos resampling

37

discussed in Section 3.3.2. As shown in Figure 2 and Figure 3, directed Moser-Tardos

resampling may construct a locating array in fewer iterations than Moser-Tardos

resampling. However, it requires an additional scoring system to indicate how close

the array is to satisfying all requirements. Finally, we provide Table 9 to indicate

the approximate locating array sizes for several different array types and separation

constraints.

38

Chapter 4

ANALYSIS

Following the construction of a locating array, the experiments indicated by the

array are performed, and results are measured as one or more output variables.

The results must now be analyzed to determine which factors are relevant. As

discussed in Chapter 1, locating arrays grow logarithmically in the number of factors,

making the consideration of an order of magnitude more factors in experimentation

practical. However, to achieve the logarithmic growth rate, locating arrays can be

highly unbalanced, and thus new techniques for the analysis of locating arrays are

required.

This chapter discusses two existing approaches for analyzing data collected from

experimentation based on a locating array introduced in Section 2.2.2 and Section

2.2.1. It also describes a new time- and space-efficient analysis technique that is

able to support large-scale experimentation and cope with noise in measurements.

The new analysis technique is then used to validate the results from two screening

experiments based on locating arrays, one conducted on the w-iLab.t wireless network

testbed in Belgium varying 24 factors, and the other conducted in a wireless network

simulator varying 75 factors. Our experimental design and analysis techniques are

available for use [21] in large-scale screening experiments, the first phase of any goal

of experimentation.

39

4.1 Analysis Motivation

Section 2.2.2 describes an initial existing analysis technique using a statistical

approach. The approach could be generalized and automated for analysis in other

screening experiments, but does not consider alternate explanations for noise in

the system. A second existing analysis technique in Section 2.2.1 provides another

approach using a depth-first search (DFS) of an explicit tree. This second approach is

general and considers noise, but the algorithm provided is inefficient. The recursive

backjumping employed by the DFS algorithm requires many models and decisions

to be tracked which makes memory-efficient implementations difficult. The DFS

algorithm also provides very little control over the runtime of the algorithm. Our aim

is to provide a general, simple, and efficient algorithm for analysis that allows for easy

implementation and optimization.

4.2 Introducing a New Approach

We propose a new approach that achieves the same analysis using the same basic

“heavy-hitters” method as in existing approaches. However, the algorithm is novel in

that it uses a branch-and-bound approach, conducting the search in a breadth-first

manner, storing the tree implicitly in a number of priority queues. It bounds the

number of models in each queue using R2. Bounds on the number and size of the

queues provide parameters to trade running time and space to achieve exploration of a

larger portion of the tree. Pseudocode for the new branch-and-bound BFS tree-based

analysis is given in Algorithm 4.

Our new approach borrows many ideas from the previous two approaches, but also

40

introduces new ideas in the process. It uses the same type of “heavy-hitters” algorithm

and OMP technique as the existing DFS technique. However, the approach discussed

in Section 2.2.1 [6] uses a safety parameter to dictate where to perform back-jumping

on the implicit tree. This parameter helps compare multiple other alternative models

that each may contain a different number of terms. We eliminate this parameter to

simplify the process and switch to a BFS approach, eliminating the need to compare

alternative models that may each contain a different number of terms.

Algorithm 4 BFS_Analysis(terms ,M, data, nTerms , nNewModels , nModels)

Require: List of candidate terms, compressive sensing matrix, vector of performance
data, terms per model, number of new models to generate for a particular model,
number of models to return

Ensure: nModels best models with nTerms terms each
1: Initialize nTerms+ 1 priority queues, each with maximum nModels
2: modelnew ← [empty model with no terms]
3: residualsnew ← data
4: enqueue(queue0, (modelnew, residualsnew))
5: for `← 0, ..., nTerms− 1 do
6: while queue` has models do
7: (model, residuals)←dequeue(queue`)
8: for i← 1, ..., nNewModels do
9: k ← [ith most significant term from M]

10: modelnew ← LS(terms(model) ∪ [termsk], data)
11: residualsnew ← residuals−modelnew
12: enqueue(queue`+1, (modelnew, residualsnew))
13: end for
14: end while
15: end for
16: return queuenTerms

Ultimately, the new BFS tree analysis algorithm attempts to find the models with

the highest R2 values, each with nTerms terms, in a straightforward manner. It

starts by initializing the zeroth priority queue to hold the empty model with R2 = 0.

The algorithm then removes the model from the zeroth priority queue, and generates

nNewModels models, each with one term from the most significant terms of the

41

compressive sensing matrix, M , selected by OMP. This differs from the DFS tree

algorithm by considering multiple models rather than exploring a single model at a

time. Least squares is run on each of these models to obtain their R2 values, and they

are then placed in the first priority queue, ranked by R2.

The process is repeated on the first priority queue to generate new models, each

with two terms, that are added to the second priority queue. Each queue only stores

the best models by R2 up to its bound, nModels. If a queue is full, then an attempt

to enqueue a model with R2 lower than the model with the lowest R2 does not succeed.

Similarly, an attempt to enqueue a model with R2 greater than the model with the

lowest R2 evicts that model from the queue. The process is repeated until the final

priority queue contains nModels models each with nTerms terms.

The parameters of the BFS tree algorithm, nModels, nNewModels, and nTerms

can be adjusted as desired. Higher values of nNewModels result in more models fit

using least squares, thus increasing execution time, but also increasing the likelihood

that the models with the best R2 values are found. Lower values of nNewModels

result in fewer models fit, decreasing execution time but possibly resulting in models

with lower R2 values found. Similarly, higher values of nModels lead to a larger bound

on the number of models stored and analyzed, increasing execution time. Lower values

of nModels risk discarding a model that might become much better, with respect

to R2, when more terms are added. Finally, the parameter nTerms must be chosen

carefully to propery fit the model. When nTerms is too small, the analysis does not

find all terms relevant to the system and produces poor models, and when nTerms is

too large, the analysis overfits the models. In Chapter 6, we discuss choosing nModels,

nNewModels, and nTerms dynamically in future work.

Another issue that must be accounted for is that of duplicate models. It is possible

42

that multiple models with identical terms, but in different orders, are added to the

same priority queue. The algorithm must discard such duplicate models.

When the algorithm completes, the final priority queue holds, at most, the number

of models given by nModels. These models are ordered by R2 and given as the best

models each with nTerms terms.

The execution time and memory usage of Algorithm 4 can be easily adjusted

using the parameters nModels, nNewModels, and nTerms. Our approach iterates

through nTerms priority queues, extracts nModels from each, finds the best terms

using OMP dictated by nNewModels, and performs least squares after adding each

term. Assuming least squares takes, in the worst case, time nTerms, the execution

time for this algorithm is O(nTerms2 · nModels · nNewModels). This approach also

considers one priority queue at a time, each with size nModels. Assuming each model

takes constant space, the memory usage is O(nModels).

In screening, we are interested in identifying the most significant factors and two-

way interactions impacting performance. One way to determine the screening results

is to examine occurrences of the factors in these models and select those occurring

most often. We discuss this next.

4.3 Counting Occurrences

The new BFS analysis approach produces and returns the top nModels models.

In the top models generated, many factors are included multiple times in multiple

models. We count the occurrences of each factor in the top nModels models, and rank

the factors by number of occurrences. Because terms in a model can be interactions

between factors, or a factor can appear with different levels, the same factor may

43

occur multiple times in the same model. A factor occurrence is defined as any time a

factor appears in a model, no matter its level, or if it is part of an interaction. An

interaction occurrence is defined as any time a pair of factors appear in a model as

an interaction, no matter the level of either factor. In the following section, we rank

all factors by how often they occur in the top nModels models. Interactions are also

examined but with a separate ranking. We hypothesize that a significant factor occurs

frequently in the top models and is therefore highly ranked, while an insignificant

factor rarely appears in the ranking, if at all.

4.4 Validation

We compare our BFS tree algorithm to the DFS tree algorithm in [6]. We use a

C++ implementation to generate the top 50 models, with 11 terms each, using our

BFS tree algorithm for both voice quality and RF exposure. Finally, we count the

occurrences of each factor in the top 50 models and rank all factors by the number of

occurrences. We use the same testbed data collected and used in [6]. The full-factorial

design for this factor space has over 1013 tests while the locating array has only 109

tests.

Table 10 shows the factors ranked by the number of occurrences in our BFS tree

results for the voice quality performance metric. The table also indicates the factors

selected by the DFS algorithm [6]. Three of the four significant factors for voice

quality listed in [6] are the top three factors in our BFS tree results. This indicates a

strong correspondence between the output of the DFS and BFS algorithms with the

difference likely due to the DFS algorithm exploring a different, or smaller, portion of

44

Table 10. Significant factors impacting voice quality from data collected from the
w-iLab.t testbed.

BFS Occurrence Counts
Count Factor In [6]
150 intCOR

√

136 band
√

133 txpower
√

100 sensing
71 rate
48 udp_mem_pressure
48 ipfrag_low_thresh
34 wmem_max
22 codecBitrate

√

16 txqueuelen
15 mtu
14 channel
12 frameLen
9 wmem_default
7 ROHC
6 codec
5 ipfrag_high_thresh
5 udp_wmem_min
4 udp_rmem_min
3 rmem_max
3 qdisc
1 rmem_default
1 udp_mem_min

the search tree since it stops after generating 1024 models. This also likely accounts

for the BFS algorithm not agreeing with the fourth significant factor.

Interestingly, our BFS tree analysis identified some potential two-way interactions

for voice quality that the DFS tree analysis did not identify. Table 11 shows the top

interactions; in this case, they exhibit strong heredity.

Table 12 shows the factors ranked by the number of occurrences in our BFS tree

results for the RF exposure performance metric. For exposure, five of the top six

45

Table 11. Significant two-way interactions impacting voice quality from data collected
from w-iLab.t.

BFS Occurrence Counts
Count Interaction
51 intCOR & band
49 intCOR & sensing
49 sensing & band
48 udp_mem_pressure & ipfrag_low_thresh
33 rate & band
30 rate & wmem_max
11 txqueuelen & frameLen
9 txpower & channel
9 wmem_default & codecBitrate
8 mtu & txpower

factors match in the two algorithms. The largest number of occurrences of any two-way

interaction for exposure was only six, so we do not consider any interaction to be

significant.

Table 12. Significant factors impacting RF exposure from data collected from the
w-iLab.t testbed.

BFS Occurrence Counts
Count Factor In [6]
156 rate

√

152 txpower
√

98 codecBitrate
√

60 frameLen
√

56 band
√

4 codec
4 ROHC
2 wmem_max
2 ipfrag_low_thresh
2 udp_mem_min
2 qdisc
2 channel

The factors screened as significant are plausible. For example, one would expect

46

that transmission power (txpower) should have an effect on both exposure and audio

quality, and that interference should have an effect on audio quality but not exposure.

Our comparisons show a strong correspondence to the results obtained from the

DFS tree algorithm in [6] and our BFS tree algorithm therefore validates the screening

analysis in [6]. In addition, our new approach is more memory efficient and provides

parameters to control runtime. Indeed, the BFS tree algorithm is able to analyze the

even larger-scale data collected from experimentation in simulation described next,

where the DFS tree algorithm was unable to complete the analysis because of memory

constraints.

In [5], 75 factors of the protocols spanning the MAC to the transport layer, as

well as the wireless environment and the simulation environment, having from two

to ten values each, were screened in a simulation model of a mobile wireless network.

The goal was to determine the significant factors and two-way interactions impacting

TCP throughput. The full-factorial design for this factor space is even larger than the

testbed experiment; it has over 1043 tests in the array! In contrast, the locating array

has only 421 tests.

Aldaco et al. [5] perform screening analysis on the data collected from simulation

using the method described in Section 2.2.2. A model with 13 terms having 9 unique

factors are identified as significant. We use our BFS tree algorithm to perform

screening analysis on the same data set. The parameters for our algorithm were set to

produce 50 models, each with 13 terms; these models differed very little in R2 values.

We again counted the occurrences of each factor in the top 50 models and ranked

all factors by the number of occurrences. Table 13 shows the resulting ranking and

an indicator when the factor is also identified as significant in [5]. Interestingly, the

top eight factors, by number of occurrences, are also factors identified by Aldaco et

47

al. [5] as significant. Therefore, eight of the nine factors identified by Aldaco et al.

were the top eight factors identified by the BFS tree algorithm. We also counted the

occurrences of interactions between two factors and ranked all interactions by the

number of occurrences.

Table 14 shows the interactions ranked by the number of occurrences in the BFS

tree results and an indicator when the interaction is also identified in [5] as significant.

Interestingly, three of the top four interactions, by number of occurrences, were also

interactions identified by Aldaco et al. as significant. However, Aldaco et al. did

identify a fourth interaction that was not found by the BFS tree algorithm.

Again, our comparisons show a strong correspondence to the results presented in

Aldaco et al. [5]. It is therefore reasonable to conclude that our BFS tree analysis

algorithm successfully identifies those factors and two-way interactions, that are

most significant to the TCP throughput of the mobile wireless network. It is also

reasonable to conclude that counting occurrences is a valid approach for determining

what factors are most significant from the top nModels. A better approach than

counting occurrences may exist but we leave this problem for future work in Chapter

6.

4.5 Summary

Algorithm 4 is a simple, general, and efficient analysis approach for the output

measurements from locating arrays. The algorithm can be used to analyze any

locating array with its corresponding output measurements to find significant factors

and interactions. It uses three input parameters that control how many models are

48

Table 13. Significant factors impacting TCP throughput from data collected from a
wireless network simulation.

BFS Occurrence Counts
Count Factor In [5]
148 MAC_RTSThreshold

√

142 ErrorModel_unit
√

100 TCP_packetSize
√

100 TCP_min_RTO
√

100 ErrorModel_ranvar
√

98 RWP_Area
√

53 ErrorModel_rate
√

50 ARP_flows
√

27 Propagation
26 DSSS_CWMin_CWMax
25 TCP_slow_start_restart
16 TCP_RTTvar_exp

√

15 TCP_maxburst
13 Queue_acksfirst
12 AODV_TTL_START
8 ENER_initialEnergy
8 MAC_ProbeDelay
8 TCP_updated_rttvar
5 TCP_numdupacksFrac
3 AODV_HELLO_INTERVAL
3 TCP_decrease_num
3 MAC_ScanType
3 Queue_DT_queue_in_bytes
3 Queue_interleave
2 Queue_ackfromfront
2 TCP_rttvar_init
1 Queue_DT_summarystats
1 TCP_TRTTVAR_BITS

49

Table 14. Significant two-way interactions impacting TCP throughput in a wireless
network simulation.

BFS Occurrence Counts
Count Interaction In [5]
56 RWP_Area & MAC_RTSThreshold
50 ErrorModel_rate & ErrorModel_unit

√

50 MAC_RTSThreshold & ErrorModel_ranvar
√

50 ErrorModel_unit & ErrorModel_ranvar
√

42 MAC_RTSThreshold & ErrorModel_unit
26 DSSS_CWMin_CWMax & Propagation
16 TCP_min_RTO & TCP_slow_start_restart
14 TCP_maxburst & TCP_RTTvar_exp
8 ARP_flows & TCP_slow_start_restart
8 RWP_Area & Queue_acksfirst

stored, how many alternative models to check, and how many terms to add to each

model. These parameters are currently static throughout the analysis execution.

Future work includes the possibility of modifying these parameters to be dynamic.

Furthermore, the algorithm assumes that the significant system factors and interactions

follow a “heavy-hitters” pattern. The next chapter investigates this assumption and

how the algorithm behaves when the system does not follow this pattern.

50

Chapter 5

ROBUSTNESS

During the discussion of our new analysis technique in Section 4.2, an assumption

was made that the system factors must follow a “heavy-hitters” pattern. We also did

not discuss how noise might affect our analysis technique, although noise is always

present in real-world applications and often introduced in simulated systems. In

this chapter, we discuss “heavy-hitters” and see how robust our analysis is when the

assumption is violated. We also discuss the effects of noise in the system on the

analysis algorithm. Chapter 3 introduces separation and hypothesizes that higher

separation leads to more accurate results in analysis. This chapter investigates how

separation might help, particularly when a large amount of noise is introduced. Finally,

Section 5.4 discusses an interesting phenomenon that was coincidentally discovered

when investigating the effects of noise.

5.1 “Heavy-Hitters” Requirement

In Chapter 4, we discussed how our analysis algorithm assumes a “heavy-hitters”

scenario. We call this the “heavy-hitters” requirement. The analysis is thus a method

that relies on the assumption that there is one term, a main effect or interaction,

that affects the output more significantly than all remaining terms, and when this

significant term is removed, there again exists one main effect or interaction that

affects the output more significantly than all remaining terms. In other words, the

significance of the factors and interactions follows an exponentially decreasing pattern

51

Table 15. Robustness Scenario 1A - Without Heavy-Hitters
True Model - Does not satisfy “heavy-hitters”

Coefficient Term
1 INTERCEPT
1 T3
1 T4

Partial CS Matrix and Responses
INTERCEPT T1 T2 T3 T4 Response
1 1 -1 -1 -1 1
1 -1 1 -1 -1 1
1 -1 -1 1 -1 -1
1 -1 -1 -1 1 -1

that allows them to be easily identified, one by one, over all other terms. In this

section, we begin with a simple example of when the “heavy-hitters” requirement is

satisfied, and when it is not. We then move on to more complex examples.

Suppose the true model for a system is given in Table 15. This means that the

output of the system is determined by the specific terms listed, along with their

coefficients, i.e., the output is a function of the form a · T3 + b · T4 + c · INTERCEPT .

We then attempt to use our analysis algorithm to recover the true terms of the model

using only the output of the system. A partial CS matrix along with the output

(responses) of the system are also given in Table 15.

A trace of the analysis using Algorithm 4 proceeds:

1. The algorithm begins with a model consisting of only the intercept which is the

average of all output values:

0 · INTERCEPT

2. The residuals are: [
1 1 −1 −1

]T

52

3. Absolute dot products calculated for T1 to T4 are:

2, 2, 2, 2

4. Because all absolute dot products are the same, any term may be added depend-

ing on noise. Suppose the first term, T1, is added.

5. Least squares is now run and the model becomes:

1

3
· INTERCEPT +

2

3
· T1

6. The residuals are: [
0 4

3
−2

3
−2

3

]T
7. Absolute dot products calculated for T2 to T4 are:

8

3
,
4

3
,
4

3

8. T2 has the largest absolute dot product and it is added to the model.

9. Least squares is now run and the model becomes:

1 · INTERCEPT + 1 · T1 + 1 · T2

10. The residuals are: [
0 0 0 0

]T
The analysis using Algorithm 4 stops because it has now explained the response

completely. However, the terms in the model recovered do not equal the terms in the

true model listed in Table 15. This is because the coefficients are all so close together

that they can easily hide each other’s effects. Suppose now we use the true model in

Table 16 which satisfies the “heavy-hitters” requirement with the same experiments.

A trace of the analysis using Algorithm 4 proceeds:

53

Table 16. Robustness Scenario 1B - With Heavy-Hitters
True Model - Does satisfy “heavy-hitters”

Coefficient Term
1 INTERCEPT
4 T3
10 T4

Partial CS Matrix and Responses
INTERCEPT T1 T2 T3 T4 Response
1 1 -1 -1 -1 -13
1 -1 1 -1 -1 -13
1 -1 -1 1 -1 -5
1 -1 -1 -1 1 7

1. The algorithm begins with a model consisting of only the intercept which is the

average of all output values:

−6 · INTERCEPT

2. The residuals are: [
−7 −7 1 13

]T
3. Absolute dot products calculated for T1 to T4 are:

14, 14, 2, 26

4. T4 has the largest absolute dot product and it is added to the model.

5. Least squares is now run and the model becomes:

−5

3
· INTERCEPT +

26

3
· T4

6. The residuals are: [
−8

3
8
3

16
3

0

]T
7. Absolute dot products calculated for T1 to T3 are:

16

3
,
16

3
,
32

3

54

8. T3 has the largest absolute dot product and it is added to the model.

9. Least squares is now run and the model becomes:

1 · INTERCEPT + 4 · T3 + 10 · T4

10. The residuals are: [
0 0 0 0

]T
The analysis using Algorithm 4 has now explained the response completely, and it

has recovered the same terms as the true model listed in Table 16. Table 15 illustrates

how failure to meet the “heavy-hitters” requirement can lead to the recovery of models

that appear good, but are not the actual model. Table 16 then shows how meeting

the “heavy-hitters” requirement can lead to the recovery of the actual model. However,

these scenarios are extremely basic, and we now turn to more interesting and realistic

examples. We use a systematic study on synthetic data because the limitations of our

recovery must be understood. In real systems, the function we are trying to recover is

unknown.

In our more complex examples, we first create a locating array for a set of factors

and their levels. Next, we create a model with a set of main effects or interactions.

Artificial experimental output measurements are then generated using the chosen true

model. The output measurements are initially generated without any noise. Finally,

we run our analysis software with the constructed locating array and the measured

responses, and evaluate how well the analysis can recover the chosen true model.

Suppose we are interested in a screening experiment with 100 factors,

F1, F2, . . . , F100. Each of these factors can be set to 3 levels, v1, v2, v3. Signifi-

cant terms can be main effects or interactions. The locating array constructed with

separation parameter δ = 1 has just 70 rows. This locating array is used in the sequel

unless specified otherwise.

55

Consider the scenario with the true network model in Table 17. The true system

model is shown at the top of the table, and includes main effects as well as interactions

which are indicated by two main effects separated by an ampersand. The parameters

for the analysis algorithm are provided just below the true system model. Finally, the

occurrence counts are shown at the bottom, and the checkmarks in the last column

indicate the factors that can also be found in the true model. The “heavy-hitters”

requirement indicates that the coefficients should follow an exponentially decreasing

pattern, but it is clear that the true model completely fails to satisfy this. In fact,

every single term carries the same coefficient, 0.1, and the coefficients exhibit 0%

decrease between them. Yet the analysis found all nine factors in the true model and

placed them first. However, the four factors ranked six through nine have occurrence

counts that are less than 50 indicating that these factors did not appear in every

model. Therefore, although it ranked them first, the true factors were not included in

all of the generated models.

The scenario in Table 18 uses a true system model in which coefficients decrease

by approximately 9%. The true model is now closer to satisfying the “heavy-hitters”

requirement as the term coefficients are no longer the same. Again, the analysis found

all nine factors in the true model and placed them first. Of those, only the factors

ranked eight and nine have occurrence counts that are less than 50. This means that

only two of the true factors were not found in all of the generated models. This is

an improvement over the previous scenario. The last two factors on the occurrence

count list are F23 and F69. These factors are only found in one interaction with a

small coefficient (0.12) in the true model. Hence it is not surprising that they were

listed last.

56

Table 17. Robustness Scenario 2A - Heavy-Hitters (0% Decrease)
True Model - Coefficients exhibit 0% decrease

Coefficient Term
0.1 F29 = v1
0.1 F98 = v3 & F34 = v2
0.1 F50 = v2
0.1 F22 = v1
0.1 INTERCEPT
0.1 F69 = v1 & F23 = v1
0.1 F10 = v2
0.1 F82 = v1

Analysis Parameters
nModels = 50 nNewModels = 50 nTerms = 8

Occurrence Counts
Rank Count Factor True
1 50 F82

√

2 50 F50

√

3 50 F29

√

4 50 F22

√

5 50 F10

√

6 38 F23

√

7 35 F34

√

8 34 F98

√

9 30 F69

√

10 6 F6

The scenario in Table 19 brings the true model even closer to satisfying the “heavy-

hitters” requirement. All coefficients decrease by 33%. Furthermore, the analysis now

not only finds all nine factors in the true model, but all significant factors are now

found 50 times, and the tenth factor listed is found only twice. This is an extremely

sharp drop-off and delineates the nine significant factors from the tenth insignificant

factor. Such a table of occurrence counts appears useful for screening.

The next section (5.2) explores how noise affects occurrence counts, and we explore

scenarios that satisfy the “heavy-hitters” requirement even more strongly. For the sake

57

Table 18. Robustness Scenario 2B - Heavy-Hitters (9% Decrease)
True Model - Coefficients exhibit 9% decrease

Coefficient Term
0.19 F29 = v1
0.18 F98 = v3 & F34 = v2
0.16 F50 = v2
0.15 F22 = v1
0.13 INTERCEPT
0.12 F69 = v1 & F23 = v1
0.11 F10 = v2
0.1 F82 = v1

Analysis Parameters
nModels = 50 nNewModels = 50 nTerms = 8

Occurrence Counts
Rank Count Factor True
1 50 F98

√

2 50 F82

√

3 50 F50

√

4 50 F34

√

5 50 F29

√

6 50 F22

√

7 50 F10

√

8 23 F23

√

9 13 F69

√

10 10 F2

of completeness, however, and because we contrast against them in the next section,

we provide here two more scenarios in Table 20 and Table 21. The scenario in Table

20 changes the coefficients to decrease by 50%, and the coefficients in Table 21 exhibit

a 60% decrease.

These final two scenarios both satisfy the “heavy-hitters” requirement. Unsurpris-

ingly, in both cases the analysis finds all nine factors that are present in the true

models. Furthermore, the drop-off in occurrence counts between the ninth factor and

the tenth factor is clear and indicates which factors are significant. We can therefore

58

Table 19. Robustness Scenario 2C - Heavy-Hitters (33% Decrease)
True Model - Coefficients exhibit 33% decrease

Coefficient Term
1.71 F29 = v1
1.14 F98 = v3 & F34 = v2
0.76 F50 = v2
0.51 F22 = v1
0.34 INTERCEPT
0.23 F69 = v1 & F23 = v1
0.15 F10 = v2
0.1 F82 = v1

Analysis Parameters
nModels = 50 nNewModels = 50 nTerms = 8

Occurrence Counts
Rank Count Factor True
1 51 F69

√

2 51 F50

√

3 51 F34

√

4 51 F23

√

5 51 F22

√

6 51 F10

√

7 50 F98

√

8 50 F82

√

9 50 F29

√

10 2 F99

conclude that when no noise is introduced into the system and the coefficients satisfy

“heavy-hitters”, the analysis algorithm is able to recover the true model accurately.

However, when the coefficients do not satisfy “heavy-hitters”, the analysis algorithm

can produce results from which it can be difficult to draw conclusions with confidence.

5.2 Effects of Noise

In the previous section, we explored how the analysis algorithm can perform better

when the true model satisfies the “heavy-hitters” requirement. In the best cases, for

59

Table 20. Robustness Scenario 2D - Heavy-Hitters (50% Decrease)
True Model - Coefficients exhibit 50% decrease

Coefficient Term
12.8 F29 = v1
6.4 F98 = v3 & F34 = v2
3.2 F50 = v2
1.6 F22 = v1
0.8 INTERCEPT
0.4 F69 = v1 & F23 = v1
0.2 F10 = v2
0.1 F82 = v1

Analysis Parameters
nModels = 50 nNewModels = 50 nTerms = 8

Occurrence Counts
Rank Count Factor True
1 51 F69

√

2 51 F50

√

3 51 F34

√

4 51 F23

√

5 51 F22

√

6 51 F10

√

7 50 F98

√

8 50 F82

√

9 50 F29

√

10 2 F99

example in Table 21, the analysis finds all significant factors and indicates those

that are insignificant. This is shown by the extreme drop-off in the occurrence count

between the ninth and tenth factors in the ranking. However, such a clear drop-off in

occurrence counts is not seen in the analysis of many screening experiments. Noise in

the system often affects the data collected in all experiments causing the drop-off to

be more gradual, making it more difficult to distinguish the factors that are significant

from those that are insignificant.

In this section, we explore how noise affects our analysis and how different types of

true models are affected in different ways. Random uniform noise is therefore added

60

Table 21. Robustness Scenario 2E - Heavy-Hitters (60% Decrease)
True Model - Coefficients exhibit 60% decrease

Coefficient Term
61.04 F29 = v1
24.41 F98 = v3 & F34 = v2
9.77 F50 = v2
3.91 F22 = v1
1.56 INTERCEPT
0.63 F69 = v1 & F23 = v1
0.25 F10 = v2
0.1 F82 = v1

Analysis Parameters
nModels = 50 nNewModels = 50 nTerms = 8

Occurrence Counts
Rank Count Factor True
1 51 F69

√

2 51 F50

√

3 51 F34

√

4 51 F23

√

5 51 F22

√

6 50 F98

√

7 50 F82

√

8 50 F29

√

9 50 F10

√

10 2 F99

to our output data measurements and we then attempt to recover the significant

factors. The magnitude of the noise is characterized as a percentage of the range of

all output measurements. For example, if the smallest output measurement is 1 and

the greatest is 11 (before adding artificial noise), then the range is 11− 1 = 10. And

if 10% artificial noise is added, then 10% of 10 is 1, and the smallest measurement

(that was previously 1) becomes a uniform random variable with mean 1, U(0.5,1.5).

Similarly, 20% artificial noise causes the smallest output measurement to become a

uniform random variable U(0,2). For a given run of our analysis, all random variables

are sampled, and their values are used during the execution. In the extreme case

61

with 100% artificial noise, all output measurements could be the same in any given

analysis run, in which case no knowledge at all could be discerned from the data by

any algorithm.

In this section, we investigate how earlier scenarios might change with the addition

of noise. We investigate adding 10% noise to scenarios 2A, 2C, 2D and 2E. This shows

us how noise affects true models that satisfy the “heavy-hitters” requirement and how

it affects those that do not. In particular, we observe an interesting phenomenon

when noise is added to a model that strongly satisfies the “heavy-hitters” requirement.

First we produce scenario 2F in Table 22 by adding 10% noise to scenario 2A

in Table 17 which does not satisfy the “heavy-hitters” requirement. The occurrence

counts look similar to those from scenario 2A where no noise was added. Here, a

gradual drop-off is seen in the occurrence counts, and some of the true factors have

slightly different occurrence counts. Particularly, the factors involved in interactions,

F34, F98, F23, F69, show uncertainty in the occurrence counts because they each must

share a coefficient with another factor. However, the top nine factors listed correspond

to the nine factors in the true model, and the noise does not have a major effect.

We produce the scenario 2G in Table 23 by adding 10% noise to scenario 2C which

better satisfies the “heavy-hitters” requirement. In this scenario, not only are the

occurrence counts smaller than those from scenario 2C, but three of the true factors

do not appear on the list while two factors not in the true model do. This is in sharp

contrast to scenario 2C where all nine true factors appeared as the first nine factors

in the occurrence counts table and there was an extremely sharp drop-off after the

nine factors. The three factors in the true model missing from the occurrence counts,

F69, F23, F82 have the smallest coefficients, and are replaced by two factors that are

not in the true model at all, F14, F7. This scenario is more affected by noise than

62

Table 22. Robustness Scenario 2F - Scenario 2A with Noise (10%)
True Model : Noise 10%

Coefficient Term
0.1 F29 = v1
0.1 F98 = v3 & F34 = v2
0.1 F50 = v2
0.1 F22 = v1
0.1 INTERCEPT
0.1 F69 = v1 & F23 = v1
0.1 F10 = v2
0.1 F82 = v1

Analysis Parameters
nModels = 50 nNewModels = 50 nTerms = 8

Occurrence Counts
Rank Count Factor True
1 50 F82

√

2 50 F50

√

3 50 F29

√

4 50 F22

√

5 50 F10

√

6 41 F34

√

7 40 F98

√

8 23 F23

√

9 21 F69

√

10 8 F2

scenario 2F in Table 22 because the noise tends to “drown” out terms with coefficients

that are small in comparison to the others.

The third scenario adds 10% noise to scenario 2D to produce scenario 2H in Table

24 which satisfies the “heavy-hitters” requirement fairly well. Now, only five factors

from the true model appear as the first five factors in the occurrence counts table.

There is no indication from the occurrence counts that the other four factors in the

true model are significant at all. This is again in sharp contrast with scenario 2D

where all nine true factors are clearly significant from the occurrence counts table.

63

Table 23. Robustness Scenario 2G - Scenario 2C with Noise (10%)
True Model : Noise 10%

Coefficient Term
1.71 F29 = v1
1.14 F98 = v3 & F34 = v2
0.76 F50 = v2
0.51 F22 = v1
0.34 INTERCEPT
0.23 F69 = v1 & F23 = v1
0.15 F10 = v2
0.1 F82 = v1

Analysis Parameters
nModels = 50 nNewModels = 50 nTerms = 8

Occurrence Counts
Rank Count Factor True
1 58 F10

√

2 55 F29

√

3 50 F98

√

4 50 F50

√

5 50 F34

√

6 50 F22

√

7 34 F14

8 24 F7

Again, the four true factors missing from the occurrence counts, F69, F23, F10 and F82

have the smallest coefficients.

Scenario 2I adds 10% noise to scenario 2E which most strongly satisfies the “heavy-

hitters” requirement. Similar to the previous scenario, only the five factors with the

largest coefficients from the true model are the top five factors in the occurrence counts.

The four factors with the smallest coefficients cannot be found in the occurrence

counts table. This is again in sharp contrast with scenario 2F where all nine factors

in the true model were clearly found significant in the occurrence counts table.

These previous four scenarios 2F, 2G, 2H and 2I show an interesting trend. As

the “heavy-hitters” requirement is more and more strongly satisfied in scenarios

64

Table 24. Robustness Scenario 2H - Scenario 2D with Noise (10%)
True Model : Noise 10%

Coefficient Term
12.8 F29 = v1
6.4 F98 = v3 & F34 = v2
3.2 F50 = v2
1.6 F22 = v1
0.8 INTERCEPT
0.4 F69 = v1 & F23 = v1
0.2 F10 = v2
0.1 F82 = v1

Analysis Parameters
nModels = 50 nNewModels = 50 nTerms = 8

Occurrence Counts
Rank Count Factor True
1 68 F29

√

2 60 F50

√

3 52 F34

√

4 50 F98

√

5 50 F22

√

6 32 F92

7 21 F42

8 20 F44

9 14 F14

10 13 F64

11 12 F76

12 12 F66

13 9 F70

with noise, the true factors with smallest coefficients (least affecting the true model)

start to disappear from the occurrence counts and it becomes harder, or impossible,

to distinguish them as significant factors. This is interesting because when these

same models are not affected by noise, it is easiest to distinguish the less significant

factors when the “heavy-hitters” requirement is most strongly satisfied. Therefore,

it appears that noise more highly affects the true models that more strongly satisfy

the “heavy-hitters” requirement. This is simply because even small amounts of noise

65

Table 25. Robustness Scenario 2I - Scenario 2E with Noise (10%)
True Model : Noise 10%

Coefficient Term
61.04 F29 = v1
24.41 F98 = v3 & F34 = v2
9.77 F50 = v2
3.91 F22 = v1
1.56 INTERCEPT
0.63 F69 = v1 & F23 = v1
0.25 F10 = v2
0.1 F82 = v1

Analysis Parameters
nModels = 50 nNewModels = 50 nTerms = 8

Occurrence Counts
Rank Count Factor True
1 51 F98

√

2 51 F34

√

3 50 F50

√

4 50 F29

√

5 50 F22

√

6 36 F15

7 28 F32

8 28 F12

9 27 F30

10 26 F95

11 12 F55

12 11 F42

13 11 F5

14 9 F87

15 8 F66

easily overpower and drown out the less significant factors. More specifically, when a

coefficient is not greater than the noise in the system (dictated by the term with the

largest coefficient), then its effects are likely unrecoverable.

66

Table 26. Robustness Scenario 3A - Separation to Cope With Noise
True Model

Coefficient Term
0.5 INTERCEPT
0.78 F4 = v1
4.02 F9 = v1
0.99 F5 = v2 & F2 = v1
2.49 F8 = v2 & F4 = v1

Analysis Parameters
nModels = 25 nNewModels = 50 nTerms = 5

5.3 Separation to Cope with Noise

In Section 5.2, there are scenarios where noise causes serious problems in recovery of

the true model with the analysis algorithm. More specifically, when the “heavy-hitters”

requirement is satisfied, it is difficult to recover all true factors in the presence of

noise. However, in Chapter 3, we introduced the possibility that higher separation in

the locating array might provide more trustworthy results. This section explores this

possibility and strives to illustrate how higher separation can help our analysis. We

use the parameter δ to define the separation of the locating array.

We begin with a few scenarios to illustrate the basic effects of separation. We use

the same true model and factors, and compare how two locating arrays respond to

different levels of noise when running analysis. Both locating arrays have 10 factors,

F1, F2, . . . , F10, each with three levels, v1, v2, v3. The first locating array has separation

δ = 1 (a standard locating array) and contains 28 rows, while the second locating

array has separation δ = 3 and contains 58 rows. The true model along with the

analysis parameters are given in scenario 3A in Table 26. This scenario satisfies the

“heavy-hitters” requirement fairly well since most coefficients are well differentiated.

The analysis is first executed with no noise and the occurrence counts are shown

67

Table 27. Separation to Cope With Noise (No Noise)
Occurrence Counts (δ = 1)

Rank Count Factor True
1 49 F4

√

2 28 F8

√

3 27 F9

√

4 24 F2

√

5 23 F5

√

6 3 F10

7 3 F7

8 2 F3

9 2 F1

10 1 F6

Occurrence Counts (δ = 3)
Rank Count Factor True
1 51 F4

√

2 29 F8

√

3 28 F9

√

4 15 F5

√

5 14 F2

√

6 5 F7

in Table 27. Those for δ = 1 are shown first followed by those for δ = 3. Next, Table

28, Table 29 and Table 30 show occurrence counts for noise increasing from 10% to

30% for δ = 1 and δ = 3. Table 28 shows all true factors first and then a distinct

drop-off. Interestingly, Table 29 misses one of the true factors when δ = 1, but Table

30 again shows all of the true factors first and then a drop-off. The missing factor F5

in Table 29 is because the noise is random and eliminated its effects in that particular

run. F5 is also part of an interaction with a smaller coefficient and is therefore more

susceptible to noise.

With 40% noise in Table 31, the locating array with separation δ = 1 fails to find

68

Table 28. Separation to Cope With Noise (10%)
Occurrence Counts (δ = 1)

Rank Count Factor True
1 48 F4

√

2 28 F9

√

3 26 F8

√

4 23 F5

√

5 23 F2

√

6 6 F3

Occurrence Counts (δ = 3)
Rank Count Factor True
1 47 F4

√

2 28 F9

√

3 28 F8

√

4 26 F5

√

5 26 F2

√

6 4 F10

Table 29. Separation to Cope With Noise (20%)
Occurrence Counts (δ = 1)

Rank Count Factor True
1 57 F4

√

2 34 F8

√

3 26 F9

√

4 26 F2

√

5 6 F1

Occurrence Counts (δ = 3)
Rank Count Factor True
1 41 F4

√

2 30 F8

√

3 27 F5

√

4 26 F9

√

5 26 F2

√

6 6 F3

69

Table 30. Separation to Cope With Noise (30%)
Occurrence Counts (δ = 1)

Rank Count Factor True
1 48 F4

√

2 33 F9

√

3 29 F8

√

4 20 F5

√

5 16 F2

√

6 8 F7

Occurrence Counts (δ = 3)
Rank Count Factor True
1 59 F4

√

2 40 F8

√

3 26 F9

√

4 18 F2

√

5 11 F5

√

6 6 F10

all true factors and it introduces a false factor. However, the locating array with

separation δ = 3 continues to show all five true factors as the top five factors. The

locating array with higher separation appears to do a better job of finding true factors

as the other locating array begins to fail.

Now we see how much noise the locating array with higher separation can tolerate

before its occurrence counts begin to break down. Table 32 shows the occurrence

counts for 50% noise. These occurrence counts are still correct. Those in Table 33

are for 60% noise. A false factor has now been introduced with 60% noise, but the

occurrence counts still show all five true factors, though not as the top five.

The occurrence counts in Table 34 are for 70% noise. These occurrence counts still

show all five true factors but they are now significantly off. Multiple false factors are

found and are ranked fairly high. As expected, the true factors are ranked lower in the

70

Table 31. Separation to Cope With Noise (40%)
Occurrence Counts (δ = 1)

Rank Count Factor True
1 49 F4

√

2 31 F8

√

3 28 F9

√

4 17 F6

5 17 F2

√

6 8 F3

Occurrence Counts (δ = 3)
Rank Count Factor True
1 38 F5

√

2 27 F9

√

3 26 F8

√

4 26 F4

√

5 26 F2

√

6 10 F6

Table 32. Separation to Cope With Noise (50%)
Occurrence Counts (δ = 3)

Rank Count Factor True
1 34 F9

√

2 26 F4

√

3 24 F5

√

4 24 F2

√

5 23 F8

√

6 16 F7

7 8 F10

Table 33. Separation to Cope With Noise (60%)
Occurrence Counts (δ = 3)

Rank Count Factor True
1 34 F5

√

2 29 F9

√

3 26 F8

√

4 26 F4

√

5 15 F7

6 14 F2

√

71

Table 34. Separation to Cope With Noise (70%)
Occurrence Counts (δ = 3)

Rank Count Factor True
1 44 F9

√

2 32 F7

3 25 F3

4 22 F8

√

5 15 F4

√

6 13 F5

√

7 11 F2

√

8 11 F1

9 2 F10

occurrence counts as more noise is added to the system. Furthermore, the drop-off in

the occurrence counts becomes less distinct as more noise is added. Therefore, when

the true model is unknown, the drop-off in the occurrence counts can indicate the

certainty of the results.

Table 35 shows the occurrence counts with 80% noise. The occurrence counts

from 80% noise also introduce false factors, but all five true factors still seem to be

significant. Therefore, while the locating array with separation δ = 1 begins to fail

with 20% and 40% noise, the locating array with separation δ = 3 still performs well

through 60% noise. This supports the hypothesis that higher separation, at least in

some cases, leads to more accurate recovery.

Recall that in Section 5.2, scenarios 2G, 2H, and 2I were heavily affected by noise

and many true factors were not found in the occurrence counts. In the remainder of

this section, a new locating array with a higher level of separation δ = 4 is used to

check if separation improves the recovery. The same true models are used and the

first is given in Table 36.

72

Table 35. Separation to Cope With Noise (80%)
Occurrence Counts (δ = 3)

Rank Count Factor True
1 31 F9

√

2 28 F3

3 26 F8

√

4 24 F6

5 22 F4

√

6 15 F5

√

7 11 F2

√

8 7 F1

Table 36. Robustness Scenario 3B - Adding Separation to Scenario 2G
True Model : Noise 10%

Coefficient Term
1.71 F29 = v1
1.14 F98 = v3 & F34 = v2
0.76 F50 = v2
0.51 F22 = v1
0.34 INTERCEPT
0.23 F69 = v1 & F23 = v1
0.15 F10 = v2
0.1 F82 = v1

Analysis Parameters
nModels = 50 nNewModels = 50 nTerms = 8

Occurrence Counts (δ = 4)
Rank Count Factor True
1 51 F82

√

2 51 F34

√

3 51 F22

√

4 50 F98

√

5 50 F69

√

6 50 F50

√

7 50 F29

√

8 50 F23

√

9 44 F10

√

10 13 F6

73

The occurrence counts in Table 36 rank all nine true factors as the top nine

significant factors. This is a significant improvement over the locating array with

δ = 1 used that resulted in only six true factors occurring. It is apparent that higher

separation helps recover more true factors.

The second true model that caused trouble previously in Section 5.2 is shown in

Table 37 with the new occurrence counts after using a locating array with separation

δ = 4. Now, the occurrence counts show six true factors even with separation δ = 4.

This is a very slight improvement over the locating array with separation δ = 1 in

Section 5.2 where just five true factors were shown. It is interesting that even though

higher separation was used, the true factors could still not be recovered from a true

model that strongly satisfies the “heavy-hitters” requirement. This is because the

noise in the system (dictated by the term with the largest coefficient), overwhelms

the terms with smaller coefficients regardless of the separation.

The third true model that caused issues in Section 5.2 is shown in Table 38 along

with the new occurrence counts. These occurrence counts are almost identical to

those from the locating array with lower separation. The same five true factors are

selected as the top five significant factors, but the four remaining true factors are lost.

This suggests that even with higher separation, if a true model strongly satisfies the

“heavy-hitters” requirement, then the true factors with smallest coefficients may not

be recovered. Furthermore, although higher separation helps recovery in many cases,

there are some scenarios where it does not seem to help as much such as in Table 38,

where the terms with smaller coefficients are overwhelmed by the noise in the system

which is determined by the terms with larger coefficients.

74

Table 37. Robustness Scenario 3C - Adding Separation to Scenario 2H
True Model : Noise 10%

Coefficient Term
12.8 F29 = v1
6.4 F98 = v3 & F34 = v2
3.2 F50 = v2
1.6 F22 = v1
0.8 INTERCEPT
0.4 F69 = v1 & F23 = v1
0.2 F10 = v2
0.1 F82 = v1

Analysis Parameters
nModels = 50 nNewModels = 50 nTerms = 8

Occurrence Counts (δ = 4)
Rank Count Factor True
1 53 F34

√

2 53 F22

√

3 52 F29

√

4 51 F98

√

5 50 F50

√

6 49 F3

7 45 F78

8 36 F10

√

9 19 F59

5.4 Systems Involving a Large Number of Terms

This section discusses an interesting observation that was encountered when

investigating robustness and factor recovery. These final scenarios show how a large

number of terms in the true model can cause issues with the recovery, even with

no actual noise added to the true model. We use a locating array with 100 factors,

F1, F2, . . . , F100, and each of these factors can be set to three levels, v1, v2, v3. None of

the scenarios in this section introduces any noise into the system.

The first scenario is given in Table 39 and uses a true model with 16 terms

consisting of both main effects and interactions. The true model does not strongly

75

Table 38. Robustness Scenario 3D - Adding Separation to Scenario 2I
True Model

Coefficient Term
61.04 F29 = v1
24.41 F98 = v3 & F34 = v2
9.77 F50 = v2
3.91 F22 = v1
1.56 INTERCEPT
0.63 F69 = v1 & F23 = v1
0.25 F10 = v2
0.1 F82 = v1

Analysis Parameters
nModels = 50 nNewModels = 50 nTerms = 8

Occurrence Counts (δ = 4)
Rank Count Factor True
1 62 F29

√

2 56 F22

√

3 50 F98

√

4 50 F50

√

5 50 F34

√

6 33 F78

7 33 F25

8 24 F4

9 18 F82

10 18 F66

11 17 F83

12 16 F39

13 13 F76

14 11 F60

76

satisfy the “heavy-hitters” requirement since some coefficients are close to others. But

without any noise, scenario 2A in Table 17 suggests that the significant factors might

still be ranked at the top of the occurrence counts. However, the occurrence counts

completely fail to recover the significant factors, and instead, show factors that are

seemingly random. Only five of the top ten ranked factors are actually significant in

the true model.

Table 39 is likely unable to recover the significant factors because the many terms

obscure the effects of each other. In the remainder of this section, we remove two

terms at a time, beginning with the terms with the smallest coefficients, and observe

how the recovery is affected. As terms are removed, they stop obscuring the effects of

each other and the recovery is much more successful.

The second scenario is given in Table 40 and uses the same true model as the

previous scenario but without the two interactions with the smallest coefficients.

There are now 14 terms in the true model and the analysis is run once again with

all parameters remaining the same. Now, seven of the top ten ranked factors in the

occurrence counts are significant in the true model. Although this is an improvement

over the previous scenario, the occurrence counts still fail to recover all significant

factors.

The next scenario given in Table 41 uses the same true model as the previous

scenario 4B but without the two main effects with the smallest coefficients. There are

now 12 terms in the true model and everything else remains the same. The occurrence

counts, however, again fail to recover the significant factors.

The scenario in Table 42 uses the same true model as the previous scenario 4C but

77

Table 39. Robustness Scenario 4A - Systems Involving a Large Number of Terms (16
Terms, nTerms = 11)

True Model
Coefficient Term
1.68472 INTERCEPT
4.74096 F50 = v2
4.61089 F98 = v1
3.51114 F22 = v1
3.06619 F41 = v1
2.88918 F68 = v2
2.70801 F2 = v3
2.02174 F82 = v1
1.66709 F10 = v2
0.645456 F29 = v1
0.505764 F43 = v3
3.84451 F74 = v2 & F1 = v1
2.65065 F67 = v3 & F12 = v2
2.6396 F45 = v2 & F12 = v2
1.90092 F69 = v1 & F23 = v1
0.113597 F98 = v3 & F34 = v2

Analysis Parameters
nModels = 50 nNewModels = 50 nTerms = 11

Occurrence Counts
Rank Count Factor True
1 97 F5

2 79 F1

√

3 77 F22

√

4 64 F57

5 64 F34

√

6 50 F98

√

7 50 F88

8 50 F50

√

9 50 F11

10 48 F70

11 48 F62

12 48 F47

13 46 F39

14 33 F31

15 14 F77

16 12 F12

√

17 10 F68

√
...

...
...

78

Table 40. Robustness Scenario 4B - Systems Involving a Large Number of Terms (14
Terms, nTerms = 11)

True Model
Coefficient Term
1.68472 INTERCEPT
4.74096 F50 = v2
4.61089 F98 = v1
3.51114 F22 = v1
3.06619 F41 = v1
2.88918 F68 = v2
2.70801 F2 = v3
2.02174 F82 = v1
1.66709 F10 = v2
0.645456 F29 = v1
0.505764 F43 = v3
3.84451 F74 = v2 & F1 = v1
2.65065 F67 = v3 & F12 = v2
2.6396 F45 = v2 & F12 = v2

Analysis Parameters
nModels = 50 nNewModels = 50 nTerms = 11

Occurrence Counts
Rank Count Factor True
1 77 F41

√

2 59 F2

√

3 54 F98

√

4 50 F50

√

5 50 F22

√

6 38 F8

7 38 F1

√

8 37 F12

√

9 35 F37

10 34 F88

11 34 F67

√

12 32 F73
...

...
...

19 17 F64

20 16 F82

√

21 14 F97

22 14 F21

23 13 F94

24 10 F74

√
...

...
...

79

Table 41. Robustness Scenario 4C - Systems Involving a Large Number of Terms (12
Terms, nTerms = 11)

True Model
Coefficient Term
1.68472 INTERCEPT
4.74096 F50 = v2
4.61089 F98 = v1
3.51114 F22 = v1
3.06619 F41 = v1
2.88918 F68 = v2
2.70801 F2 = v3
2.02174 F82 = v1
1.66709 F10 = v2
3.84451 F74 = v2 & F1 = v1
2.65065 F67 = v3 & F12 = v2
2.6396 F45 = v2 & F12 = v2

Analysis Parameters
nModels = 50 nNewModels = 50 nTerms = 11

Occurrence Counts
Rank Count Factor True
1 53 F67

√

2 53 F12

√

3 52 F10

√

4 51 F99

5 50 F50

√

6 50 F31

7 49 F13

8 48 F80
...

...
...

16 26 F47

17 24 F93

18 22 F98

√

19 18 F64

20 15 F26

21 15 F20

22 12 F40

23 12 F2

√
...

...
...

80

without the two main effects with the smallest coefficients. There are now ten terms

in the true model and everything else remains the same. The true model contains 11

unique significant factors. The occurrence counts display nine significant factors but

the remaining two significant factors do not appear.

The scenario in Table 43 uses the same true model as the previous scenario, but

the input parameter nTerms is reduced from 11 to eight to stop possible overfitting

of the true model that has ten significant terms. The resulting rankings of occurrence

counts are almost identical to those in the previous scenario. The top six factors in

both scenarios are the same while other factors in the ranking are similar as well.

The final scenario in Table 44 again uses the same true model as the previous

scenario 4E but without the two terms with the smallest coefficients. The number of

terms in the true model has therefore reduced from 16 in scenario 4A to eight terms

in the current scenario. The true model now also contains eight unique significant

factors. Interestingly, all eight significant factors are recovered as the top eight factors

in terms of occurrence counts. Furthermore, there is a sharp drop-off from the eighth

factor in the ranking to the ninth factor. Therefore, this scenario correctly indicates

what factors are significant in the true model and which ones are insignificant.

The difference between the first scenario and the final scenario is striking. The

first scenario completely fails to recover the significant factors, while the final scenario

does so very well. This is interesting because the main difference between these two

scenarios is the number of terms in the true model. While the first scenario has 16

terms in the true model, the final scenario has eight terms.

81

Table 42. Robustness Scenario 4D - Systems Involving a Large Number of Terms (10
Terms, nTerms = 11)

True Model
Coefficient Term
1.68472 INTERCEPT
4.74096 F50 = v2
4.61089 F98 = v1
3.51114 F22 = v1
3.06619 F41 = v1
2.88918 F68 = v2
2.70801 F2 = v3
2.02174 F82 = v1
3.84451 F74 = v2 & F1 = v1
2.65065 F67 = v3 & F12 = v2

Analysis Parameters
nModels = 50 nNewModels = 50 nTerms = 11

Occurrence Counts
Rank Count Factor True
1 63 F22

√

2 62 F41

√

3 56 F2

√

4 52 F50

√

5 50 F98

√

6 50 F1

√

7 44 F97

8 41 F68

√

9 35 F26

10 34 F56

11 33 F8

12 32 F31

13 30 F88

14 30 F29

15 28 F67

√

16 23 F82

√

17 16 F92

18 15 F38

19 13 F58
...

...
...

82

Table 43. Robustness Scenario 4E - Systems Involving a Large Number of Terms (10
Terms, nTerms = 8)

True Model
Coefficient Term
1.68472 INTERCEPT
4.74096 F50 = v2
4.61089 F98 = v1
3.51114 F22 = v1
3.06619 F41 = v1
2.88918 F68 = v2
2.70801 F2 = v3
2.02174 F82 = v1
3.84451 F74 = v2 & F1 = v1
2.65065 F67 = v3 & F12 = v2

Analysis Parameters
nModels = 50 nNewModels = 50 nTerms = 8

Occurrence Counts
Rank Count Factor True
1 78 F22

√

2 66 F41

√

3 56 F2

√

4 51 F50

√

5 50 F98

√

6 46 F1

√

7 35 F67

√

8 25 F37

9 19 F68

√

10 15 F97

11 15 F58

12 13 F31

13 11 F88
...

...
...

83

Table 44. Robustness Scenario 4F - Systems Involving a Large Number of Terms (8
Terms, nTerms = 8)

True Model
Coefficient Term
1.68472 INTERCEPT
4.74096 F50 = v2
4.61089 F98 = v1
3.51114 F22 = v1
3.06619 F41 = v1
2.88918 F68 = v2
2.70801 F2 = v3
3.84451 F74 = v2 & F1 = v1

Analysis Parameters
nModels = 50 nNewModels = 50 nTerms = 8

Occurrence Counts
Rank Count Factor True
1 52 F41

√

2 51 F68

√

3 51 F50

√

4 51 F2

√

5 50 F98

√

6 50 F22

√

7 38 F1

√

8 37 F74

√

9 5 F12
...

...
...

5.5 Summary

We began this chapter with a discussion of the “heavy-hitters” requirement. The

scenarios in Tables 17, 18, 19, 20, and 21 show how, without any noise, more heavily

satisfying the requirement leads to more accurate results. However, the scenarios in

Tables 22, 23, 24, and 25 show how, with noise in the system, more heavily satisfying

the requirement causes the recovery to fail completely.

Next, the topic of separation in locating arrays is revisited. The scenarios in Tables

84

27, 28, 29, 30, 31, 32, 33, 34, and 35 show how higher separation helps recovery with

noise in the system. However, the scenarios in Tables 36, 37, and 38 show that the

benefit of separation has limits and it does not help recovery in some cases.

Finally, the scenarios in Tables 23, 24, and 25 show how noise can cause difficulty

in recovering all significant terms. This is likely because the noise can overwhelm some

significant factors with small coefficients. In Section 5.4, although no artificial noise is

added, the many terms in the true model likely obscure each other’s effects and block

the recovery. Hence, when the number of terms in the true model is decreased in the

final scenario, the analysis is able to recover all significant terms.

85

Chapter 6

CONCLUSION

This thesis began by introducing locating arrays and providing motivation for

their use in the screening process. It showed how covering arrays are useful in

determining the presence of a significant t-way interaction, but that coverage is not

enough. Screening requires that significant t-way interactions be distinguished from

each other so that the relevant system factors may be identified. Locating arrays

are therefore a natural solution for the screening process. Next, this thesis discussed

construction of locating arrays, analysis strategies, and robustness.

However, throughout this thesis, we only examined locating arrays with d = 1

because of a “heavy-hitters” assumption. However, one cannot be sure that the effects

of all t-way interactions always follow this pattern. We therefore leave it for future

work to examine locating arrays with d ≥ 1 to cope with terms that do not conform

to the “heavy-hitters” pattern.

We also assumed in this thesis that interactions of strength greater than 2 are

not significant. But there are certainly situations where interactions of strength 3 or

higher significantly affect the response. In this case, the work in this thesis may seek

to estimate these effects with main effects and 2-way interactions likely leading to

false screening results. We leave it for future work to examine locating arrays with

interactions of strength greater than 2.

Following the introduction of locating arrays, this thesis discussed construction

approaches for locating arrays. Building on related work, this work showed that

locating arrays can be created using the Lovász Local Lemma with Moser-Tardos

86

resampling, and that the construction process can be accelerated by using a scoring

procedure for the array. Furthermore, Moser-Tardos resampling can be used to

construct locating arrays that have additional constraints including separation δ.

Next, a new analysis approach for locating arrays was presented in Algorithm 4.

We build on iterative SIS and OMP in related work to create an algorithm that is

both useful and easy to implement. However, several aspects of our analysis algorithm

should be investigated in future work. Our analysis approach in Algorithm 4 always

keeps the same number of models, nModels, in its queues, and always explores the

same number of alternatives, nNewModels . But there may be certain iterations where

it is better to explore more options because of high uncertainty and other iterations

where this is not required because of high certainty. Ultimately, while there may be

benefits to keeping these as constant parameters to the algorithm, one might instead

want to vary these parameters dynamically. Furthermore, one might also want the

parameter nTerms to be chosen automatically to correct possible overfitting issues

with analysis. This might be done by setting a threshold for R2, or the analysis might

be updated to stop adding terms when R2 does not improve significantly. Yet another

possibility is to track the occurrence counts as more terms are added and stop adding

terms based on the drop-off in the factor rankings. This work does not explore these

possibilities but leaves them for future work.

One important aspect of locating arrays affecting analysis is their imbalance.

Although all main effects and interactions (up to strength t) are covered in a (d, t)-

locating array, some terms are covered much more than others. Analysis strategies for

locating arrays should not be biased towards terms that are covered more often than

others. However, OMP uses a dot product that treats all tests equally and ignores the

imbalance that is inherent to locating arrays. Suppose a locating array A contains

87

hundreds of tests but a particular interaction T1 is covered in exactly one test. If T1

is relevant to the system under test, then it is likely that OMP, which treats all tests

equally, will be biased towards terms that affect the response in several tests and T1

will experience discrimination. There also exist limitations with using R2 to measure

the goodness of models. All tests are again treated equally when calculating R2, and

thus it is likely that the effects of T1 are ignored with little change to R2.

One possible solution might be to weight the tests of a locating array based on

the percentage of coverage for a particular interaction that each test accounts for.

Yet each test involves many interactions that are each covered differently leading to

more challenges. To complicate matters even further, system noise affects all tests

equally, and placing a higher weight on a particular test will exacerbate noise in that

test. In [5], strategies are employed to specifically cope with imbalance in the locating

array. Interestingly, this thesis produces nearly identical results for the same screening

experiment in [5] even though we do not consider imbalance. It may be interesting to

investigate why these approaches that are quite different produce the same results, and

if there are other experiments where the approaches might produce different results.

We leave this difficult issue of balance and unfair bias of tests to future work.

Algorithm 4 analyzes the locating array response and generates a list of nModels

best models. But screening must indicate what factors are significant to include

in experimentation. This thesis determines the significant factors by counting the

occurrences of each factor in the list of best models generated by the analysis algorithm.

Although counting occurrences of factors might be simple, this approach may not be

the best way to determine significance. For example, a factor appearing in a main

effect with a large coefficient is likely more significant than a factor appearing in a

main effect with a small coefficient. A factor is also likely more important when it

88

appears in a main effect than when it appears in an interaction. And the significance

of a factor likely also depends on the goodness of the model it appears in (the R2

of the model). However, this thesis ignores coefficients and model goodness when

counting factor occurrences. A factor appearing in an interaction is also counted

exactly the same as when it appears in a main effect. However, we leave it for future

work to examine and resolve these issues.

Finally, this thesis discussed robustness of our screening approach using locating

arrays. We discussed negative effects that may occur when the “heavy-hitters” assump-

tion is not satisfied. Scenarios were provided with systems satisfying the “heavy-hitters”

assumption to varying degrees. Furthermore, artificial noise was introduced in several

scenarios and the results were compared to the same scenarios but without noise.

We showed how separation can help fight against the effects of noise. Scenarios were

also given showing systems that included a large number of terms, and these terms

obscuring each other’s effects.

89

REFERENCES

[1] C. J. Colbourn and D. W. McClary, “Locating and detecting arrays for in-
teraction faults,” Journal of Combinatorial Optimization, vol. 15, pp. 17–48,
2008.

[2] S. A. Seidel, K. Sarkar, C. J. Colbourn, and V. R. Syrotiuk, “Separating inter-
action effects using locating and detecting arrays,” in Combinatorial Algorithms
[IWOCA 2018], Lecture Notes in Computer Science, C. Iliopoulos, H. W. Leong,
and W.-K. Sung, Eds., vol. 10979, Springer International Publishing, 2018,
pp. 349–360.

[3] D. C. Montgomery, Design and Analysis of Experiments, 9th. John Wiley and
Sons, Inc., 2017.

[4] C. J. Colbourn and V. R. Syrotiuk, “On a combinatorial framework for fault
characterization,” Mathematics in Computer Science, vol. 12, no. 4, pp. 429–451,
Dec. 2018.

[5] A. N. Aldaco, C. J. Colbourn, and V. R. Syrotiuk, “Locating arrays: A new ex-
perimental design for screening complex engineered systems,” SIGOPS Operating
Systems Review, vol. 49, no. 1, pp. 31–40, Jan. 2015.

[6] C. J. Colbourn, E. De Poorter, M. T. Mehari, I. Moerman, and V. R. Syrotiuk,
“An efficient screening method for identifying parameters and interactions that
impact wireless network performance,” Submitted for publication,

[7] X. Li, N. Sudarsanam, and D. D. Frey, “Regularities in data from factorial
experiments,” Complexity, vol. 11, no. 5, pp. 32–45, 2006.

[8] S. A. Seidel, M. T. Mehari, C. J. Colbourn, E. De Poorter, I. Moorman, and V. R.
Syrotiuk, “Analysis of large-scale experimental data from wireless networks,”
in IEEE INFOCOM International Workshop on Computer and Networking
Experimental Research Using Testbeds (CNERT), 2018.

[9] S. K. Stein, “Two combinatorial covering theorems,” Journal of Combinatorial
Theory, Series A, vol. 16, no. 3, pp. 391–397, 1974, issn: 0097-3165.

[10] L. Lovász, “On the ratio of optimal integral and fractional covers,” Discrete
Mathematics, vol. 13, no. 4, pp. 383–390, 1975, issn: 0012-365X.

[11] D. S. Johnson, “Approximation algorithms for combinatorial problems,” Journal
of Computer and System Sciences, vol. 9, no. 3, pp. 256–278, 1974.

90

[12] P. Erdős and L. Lovász, “Problems and results on 3-chromatic hypergraphs and
some related questions,” Infinite and finite sets (Colloq., Keszthely, 1973 Vol.
II, pp. 609–627. Colloq. Math. Soc. János Bolyai), vol. 10, pp. 609–627, 1975.

[13] K. Sarkar, “Covering arrays: Algorithms and asymptotics,” PhD thesis, Arizona
State University, 2016.

[14] R. A. Moser and G. Tardos, “A constructive proof of the general Lovász local
lemma,” J. ACM, vol. 57, no. 2, Art. 11, 15, 2010.

[15] J. Y. Liu, W. Zhong, and R. Z. Li, “A selective overview of feature screening for
ultrahigh-dimensional data,” Science China Mathematics, vol. 58, pp. 2033–2054,
2015.

[16] J. Fan and J. Lv, “Sure independence screening for ultrahigh dimensional
feature space,” Journal of the Royal Statistical Society: Series B (Statistical
Methodology), vol. 70, no. 5, pp. 849–911, 2008.

[17] M. Fay and M. Proschan, “Wilcoxon-Mann-Whitney or t-test? on assumptions
for hypothesis tests and multiple interpretations of decision rules,” Statistics
Surveys, vol. 4, pp. 1–39, 2010.

[18] H. B. Mann and D. R. Whitney, “On a test of whether one of two random vari-
ables is stochastically larger than the other,” Annals of Mathematical Statistics,
vol. 18, no. 1, pp. 50–60, 1947.

[19] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics Bulletin,
vol. 1, no. 6, pp. 80–83, Dec. 1945.

[20] H. Akaike, “A new look at the statistical model identification,” IEEE Transac-
tions on Automatic Control, vol. 19, no. 6, pp. 716–723, Dec. 1974.

[21] M. Mehari, A. Shahid, I. Moerman, and E. De Poorter, “Demo abstract: An
intuitive drag and drop framework for wireless network experimentation,” in
Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems,
ser. SenSys ’17, Delft, Netherlands: ACM, 2017. doi: 10.1145/3131672.3136971.

91

http://dx.doi.org/10.1145/3131672.3136971

	Table of Contents
	List of Tables
	List of Figures
	Chapter
	1 Introduction
	2 Related Work
	3 Construction
	4 Analysis
	5 Robustness
	6 Conclusion
	References

