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ABSTRACT

The rapid improvement in computation capability has made deep convolutional neu-

ral networks (CNNs) a great success in recent years on many computer vision tasks

with significantly improved accuracy. During the inference phase, many applications

demand low latency processing of one image with strict power consumption require-

ment, which reduces the efficiency of GPU and other general-purpose platform, bring-

ing opportunities for specific acceleration hardware, e.g. FPGA, by customizing the

digital circuit specific for the deep learning algorithm inference. However, deploy-

ing CNNs on portable and embedded systems is still challenging due to large data

volume, intensive computation, varying algorithm structures, and frequent memory

accesses. This dissertation proposes a complete design methodology and framework

to accelerate the inference process of various CNN algorithms on FPGA hardware

with high performance, efficiency and flexibility.

As convolution contributes most operations in CNNs, the convolution accelera-

tion scheme significantly affects the efficiency and performance of a hardware CNN

accelerator. Convolution involves multiply and accumulate (MAC) operations with

four levels of loops. Without fully studying the convolution loop optimization be-

fore the hardware design phase, the resulting accelerator can hardly exploit the data

reuse and manage data movement efficiently. This work overcomes these barriers by

quantitatively analyzing and optimizing the design objectives (e.g. memory access)

of the CNN accelerator based on multiple design variables. An efficient dataflow and

hardware architecture of CNN acceleration are proposed to minimize the data com-

munication while maximizing the resource utilization to achieve high performance.

Although great performance and efficiency can be achieved by customizing the
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FPGA hardware for each CNN model, significant efforts and expertise are required

leading to long development time, which makes it difficult to catch up with the rapid

development of CNN algorithms. In this work, we present an RTL-level CNN compiler

that automatically generates customized FPGA hardware for the inference tasks of

various CNNs, in order to enable high-level fast prototyping of CNNs from software

to FPGA and still keep the benefits of low-level hardware optimization. First, a

general-purpose library of RTL modules is developed to model different operations

at each layer. The integration and dataflow of physical modules are predefined in

the top-level system template and reconfigured during compilation for a given CNN

algorithm. The runtime control of layer-by-layer sequential computation is managed

by the proposed execution schedule so that even highly irregular and complex network

topology, e.g. GoogLeNet and ResNet, can be compiled. The proposed methodology

is demonstrated with various CNN algorithms, e.g. NiN, VGG, GoogLeNet and

ResNet, on two different standalone FPGAs achieving state-of-the art performance.

Based on the optimized acceleration strategy, there are still a lot of design options,

e.g. the degree and dimension of computation parallelism, the size of on-chip buffers,

and the external memory bandwidth, which impact the utilization of computation re-

sources and data communication efficiency, and finally affect the performance and en-

ergy consumption of the accelerator. The large design space of the accelerator makes

it impractical to explore the optimal design choice during the real implementation

phase. Therefore, a performance model is proposed in this work to quantitatively

estimate the accelerator performance and resource utilization. By this means, the

performance bottleneck and design bound can be identified and the optimal design

option can be explored early in the design phase.
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Chapter 1

INTRODUCTION

In recent years, Deep Neural Networks (DNNs) have demonstrated a great suc-

cess on many Artificial Intelligence (AI) applications such as Convolutional Neural

Networks (CNNs) on computer vision Krizhevsky et al. (2012) and Recurrent Neural

Networks (RNNs) on natural language processing Sutskever et al. (2014). Instead of

using hand-crafted features in traditional machine learning algorithms, DNNs take

advantage of the rapidly improved computation capability to learn from much larger

training datasets, leading to exceptional recognition accuracy close to or even better

than human-level perception. With the significantly improved accuracy and expanded

application domains, however, the computation complexity and memory requirement

of deep learning algorithms have dramatically increased, which still challenge the

state-of-art computing platforms to achieve real-time performance with high energy

efficiency.

To realize high throughput, high performance GPUs are often used to accelerate

the training and inference tasks of DNNs, as they can take advantage of the thou-

sands of parallel cores, operating at high clock frequencies at GHz level, and achieve

hundreds of GB/s memory bandwidth. However, their power consumption is too

high (>150W) for power and energy constrained platforms. Furthermore, GPUs are

best suited for achieving high throughput when processing large batches of images.

However, for applications that require very low latency for processing a single im-

age, as in autonomous drive and surveillance, the completion of detection must be

done at the speed of incoming data stream, which degrades GPUs’ performance and

energy-efficiency substantially.
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On the other hand, various deep learning hardware accelerators have been re-

cently proposed based on application specific integrated circuits (ASICs) ? Shin et al.

(2017), system on chips (SoCs) Gokhale et al. (2014) and field-programmable gate ar-

rays (FPGAs) Zhang et al. (2015) targeting at high performance and energy efficiency.

FPGAs have gained increasing interests and popularity in particular to accelerate the

inference tasks, due to their (1) high degree of reconfigurability, (2) faster develop-

ment time compared to ASICs to catch up with the rapid evolving of DNNs, (3) good

performance, and (4) superior energy efficiency compared to GPUs Aydonat et al.

(2017) Wei et al. (2017) Ma et al. (2017a). The high performance and efficiency of

an FPGA can be realized by synthesizing a circuit that is customized for a specific

computation to directly process billions of operations with the customized memory

systems. For instance, hundreds to thousands of digital signal processing (DSP)

blocks on modern FPGAs support the core DNN operations, e.g. multiplication and

addition, with high parallelism. Dedicated data buffers between external off-chip

memory and on-chip processing engines (PEs) can be designed to realize the pre-

ferred dataflow by configuring tens of MByte on-chip block random access memories

(BRAM) on the FPGA chip.

The goal of this dissertation is to deploy DNN inference tasks on FPGA-based

hardware accelerators with high performance, efficiency and flexibility, especially for

CNNs on image classification and object detection tasks.

1.1 Motivation: Challenges and Opportunities

1.1.1 Performance and Efficiency: Loop Optimization

The state-of-the-art CNNs require a large number (> 1 billion) of computationally

intensive task (e.g. matrix multiplications on large numbers), involving a very large

number of weights (> 50 million) Simonyan and Zisserman (2014) He et al. (2016a).
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Deep CNN algorithms have tens to hundreds of layers, with significant differences

between layers in terms of sizes and configurations. The limited computational re-

sources and storage capacity on FPGA make the task of optimal mapping of CNNs

(e.g. minimizing latency subject to energy constraints or vice versa) a complex and

multi-dimensional optimization problem. The high cost of off-chip communication

is another major impediment to achieving higher performance and lower energy. In

fact, the energy cost associated with the large amount of data movements and mem-

ory accesses often exceeds the energy consumption of the computations Chen et al.

(2016) Zhang et al. (2016b). For these reasons, energy-efficient hardware acceleration

of CNNs on a FPGA requires simultaneous maximization of resource utilization and

data reuse, and minimization of data communication.

More than 90% of the operations in a CNN algorithm involve convolutions Krizhevsky

et al. (2012) Simonyan and Zisserman (2014) He et al. (2016a). Therefore, it stands to

reason that acceleration schemes should focus on the management of parallel compu-

tations and the organization of data storage and access across multiple levels of mem-

ories, e.g. off-chip dynamic random-access memory (DRAM), on-chip memory and

local registers. In CNNs, convolutions are performed by four levels of loops that slide

along both kernel and feature maps. This gives rise to a large design space consist-

ing of various choices for implementing parallelism, sequencing of computations, and

partitioning the large data set into smaller chunks to fit into on-chip memory. These

problems can be handled by the existing loop optimization techniques Bacon et al.

(1994) Zhang et al. (2015), such as loop unrolling, tiling and interchange. Although

some CNN accelerators have adopted these techniques Zhang et al. (2015) Suda et al.

(2016) Guo et al. (2018) Motamedi et al. (2016), the impact of these techniques on de-

sign efficiency and performance has not been systematically and sufficiently studied.

Instead, most prior works only explore the design space after hardware architecture
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or parallelism scheme has been determined, and optimize their implementation by

tuning the design variables only within their architecture. Without fully studying

the loop operations of convolutions, it is difficult to efficiently customize the dataflow

and architecture for high-throughput CNN implementations.

Conv1

Pooling

Conv2 Conv3 Conv4

BatchNormConcat

Eltwise

ReLu

FC

BatchNorm

1

2

3

5

4

6

Layer cluster and its 

computing order:

    ,      , …, 1 2 6

• Conv, Pooling and FC are

defined as key-layers.

• Layer cluster = one key-layer

+ multiple affiliated-layers

Figure 1.1: Example of directed acyclic graph (DAG) form layer connections in recent

CNN algorithms with multiple parallel branches involving different types of layers.

1.1.2 Flexibility: Automated CNN Mapping

To pursue higher accuracy and enable various intelligent applications, CNNs with

greater depth, new types of layers and more complex networks are being proposed.

For example, the deep residual networks (ResNets) He et al. (2016a) Szegedy et al.

(2017) He et al. (2016b) can achieve substantially greater accuracy at the cost of

having more than 1, 000 convolution layers (Conv) with widely differing dimensions

and kernel sizes, as well as many other various types of layers. Unlike earlier CNNs

such as AlexNet Krizhevsky et al. (2012), NiN Lin et al. (2013) and VGG Simonyan
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and Zisserman (2014), in which the layers are strung out in a sequence, the layers in

the more recent CNN algorithms such as ResNet, GoogLeNet Szegedy et al. (2015)

and Inception Szegedy et al. (2017), form a directed acyclic graph (DAG), as shown in

Figure 1.1. They have multiple parallel branches and include feedforward connections

between non-adjacent layers.

All these trends, which have increased the complexity of CNN algorithms, have

made it more difficult to design a general-purpose CNN hardware accelerator to ef-

ficiently map a diverse range of CNN algorithms. Previous FPGA implementations

based on high-level synthesis (HLS) tools Zhang et al. (2015) Suda et al. (2016) Ve-

nieris and Bouganis (2016) have achieved good flexibility, easy programmability and

short design time, but their hardware and memory utilization is inefficient and may

not allow exploitation of low-level hardware structures to achieve higher performance

and throughput. Another approach is to undertake custom hardware design at the

register-transfer level (RTL) for each specific CNN with fine-grained hardware level

optimization. Experience has shown that such an approach requires detailed knowl-

edge of both the CNN algorithm and the FPGA system architecture, and many

months of design effort involving numerous design iterations, which makes it diffi-

cult to catch up with the rapidly evolving CNN algorithms and diverse emerging

applications.

On the software side, machine learning researchers have been able to efficiently

develop deep learning algorithms through flexible frameworks, e.g. Caffe Jia et al.

(2014), which run on CPUs or GPUs. These software frameworks have simple expres-

sion and modularity, which allow researchers to efficiently explore various algorithms

and network structures. Unfortunately, the hardware design community does not yet

have such a flexible modular framework for hardware implementation of CNN and

other deep learning algorithms, inevitably spreading out the hardware research efforts
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instead of coalescing them.

In this context, there is a timely need to reform the strategy to automatically

map CNN algorithms onto physical hardware, and to support modular and scalable

hardware customization without sacrificing design performance and flexibility.

1.1.3 Design Space Exploration: Performance Modeling

With the intervals of computation and off-chip communication overlapped using

dual buffering (or ping-pong buffering) technique, the performance of the CNN accel-

erator will be limited by either the computation delay or the DRAM transfer delay,

and the actual bound will be determined by the values of the associated design param-

eters, as described by the roofline model in Zhang et al. (2015) Zhang et al. (2016a).

The computation delay is determined by the number of parallel processing engines

(PEs), their utilization, and the operating frequency. The DRAM transfer latency

is mainly affected by the external memory bandwidth and the number of DRAM

accesses, and the latter is strongly affected by the size of the on-chip buffers. With

regard to the energy efficiency (i.e. performance per watt), the main components

that determine the dynamic power consumption are the computation logic and the

memory traffic, the latter requiring efficient data movement and high data reuse. All

these considerations show that there are numerous design parameters that determine

the performance and energy efficiency of a CNN accelerator, making it impractical

to find their optimal values during the implementation phase, as the synthesis of

one FPGA design may take several hours. Robust and parametric models become a

necessity for efficient design space exploration and selection of the optimal values of

the design parameters. The architectural design space must be numerically charac-

terized by design variables to control the accelerator performance and efficiency. For

instance, loop optimization techniques Zhang et al. (2015) Ma et al. (2018a), such
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as loop unrolling and tiling, are employed to customize the acceleration strategy of

parallel computation and data communication for convolution loops, whose variables

in turn affect the resource utilization and memory access.

1.1.4 Efficiency: Algorithm-Hardware Co-Design

The rapid improvement in computation capability has made CNN algorithms a

great success in recent years on image classification tasks, which has also prospered

the development of objection detection algorithms with significantly improved accu-

racy. The Single Shot Detector (SSD) Liu et al. (2016) algorithm uses VGG-16 CNN

model as the base feature extractor to predict the locations of bounding boxes and

the classification probability of objects, and then uses additional convolution layers

at the end to predict objects from multi-scale feature maps. However, it is a great

challenge to directly implement SSD on mobile hardware, e.g. embedded systems

and edge devices, to achieve real-time detection with high energy efficiency, because

of (1) the large volume of data and operations, (2) the use of complex nonlinear

functions, and (3) the highly varying layer sizes and configurations. Directly imple-

menting the original SSD algorithm onto an FPGA may cause low utilization of the

available computation resources and consequently result in low performance and ef-

ficiency. Therefore, it is essential to tailor the original software-orientated algorithm

for efficient hardware implementation.
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Figure 1.2: The overall compilation flow of the proposed CNN RTL compiler: the

hardware resource usage and the execution schedule of the FPGA accelerator are

configured for the given CNN model; the RTL module library defines the computation

pattern and dataflow of different types of layers with parameterized Verilog templates.

1.2 Contribution and Dissertation Outline

In this dissertation, a complete framework is proposed to automatically map the

inference process of various deep CNN algorithms onto the high-performance FPGA

accelerator, where an efficient dataflow and hardware architecture are designed based

on the convolution loop optimization and the design space is explored through the

proposed performance model. The main contributions of this dissertation include the

following:

• Chapter 3: We provide an in-depth analysis of the convolution loop optimiza-

tion and use corresponding design variables to numerically characterize the ac-
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celeration scheme. An efficient convolution acceleration strategy and dataflow

is proposed aimed at minimizing data communication and memory access. A

data router is designed to handle different settings for convolution sliding oper-

ations, e.g. strides and zero paddings, especially for highly irregular CNNs. A

corresponding hardware architecture is designed that fully utilizes the comput-

ing resources for high performance and efficiency, which is uniform and reusable

for all the layers.

• Chapter 4: A user-friendly and high-level compiler is proposed as in Figure 1.2

to automatically configures the FPGA-based accelerator for various large-scale

CNN algorithms with user-specified hardware resource constraints, such as com-

puting parallelism and buffer usage, targeting FPGA platforms with different

amount of hardware resources. It exploits the reconfigurability of FPGAs and

the fine-grain optimization that is possible with an RTL description. An RTL

module library is designed to accommodate different types of layers with manu-

ally coded Verilog templates, which has been designed to allow incorporation of

new layers or operations for future deep learning algorithms. The flexibility of

the proposed compilation methodology is validated by implementing the infer-

ence task of both conventional CNNs: NiN and VGG-16; and the more complex

DAG networks: GoogLeNet and ResNets with 50 and 152 convolution layers,

respectively.

• Chapter 5: A high-level performance model is proposed to estimate the accel-

erator throughput, on-chip buffer size and the number of external and on-chip

memory accesses. The accelerator design objectives and resource costs are for-

mulated using the hardware design variables of loop unrolling and tiling. Design

space exploration is performed to identify the performance bottleneck and ob-
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tain the optimal design option. The performance model is validated across a

variety of CNN algorithms comparing with the on-board test results on two

different FPGAs.

• Chapter 6: The algorithm-hardware co-design is proposed to tailor the CNN-

based SSD object detection algorithm for efficient hardware realization, and

the low precision fixed-point data with dynamic quantization is employed for

inference to reduce the resource requirements of logic and memory at the cost

of marginal accuracy degradation.

The outline of the dissertation is organized as follows. Chapter 2 overviews the

operations and structures of the recent representative CNN algorithms as well as the

related works on FPGA-based CNN acceleration. Chapter 3 quantitatively analyzes

the convolution loop optimization strategy for high performance and efficient acceler-

ator dataflow and hardware architecture. Chapter 4 presents the RTL compiler that

enables fast and automatic mapping of various deep CNN algorithms from software

deep learning frameworks, e.g. Caffe, onto FPGA hardware. Chapter 5 describes

the proposed high-level performance model to estimate the throughput and resource

utilization of the CNN accelerators allowing design space exploration at early de-

sign stage. Chapter 6 customizes the SSD object detection algorithm to benefit its

hardware implementation with low data precision.
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Chapter 2

BACKGROUND

2.1 Overview of CNN Operations

Convolutional neural networks as illustrated in Figure 2.1 typically incorporate

multiple layers of convolution, pooling/subsampling, and normalization that extract

low-level to high-level features from the input during the feed-forward inference pro-

cess. These features can be categorized into a finite number of output classes by the

final classification layers such as the multi-layer perceptron or fully-connected layers.

Pooling

(Subsampling)

Convolution

+Activation

Fully-connected

(Inner Product)

Convolution (Conv.)

+Activation

Input Image Feature Maps

From a few to >1000 layers

Figure 2.1: Convolutional neural networks incorporate multiple layers to extract fea-

tures for classification during feed-forward inference process.

Convolution (Conv) is the main operation in CNN algorithms, which involves

three-dimensional multiply and accumulate (MAC) operations of input pixels (fea-

tures, neurons, or activations) and kernel weights. As shown in Figure 2.2, multiple

dimensions are used to describe the sizes of the feature and kernel maps of each con-

volution layer for a given CNN. The width and height of one kernel (or filter) window
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is described by (Nkx, Nky). (Nix, Niy) and (Nox, Noy) define the width and height

of one input and output feature map, respectively. Nif and Nof denote the number of

input and output feature maps (or channels), respectively. The detailed convolution

operation is depicted as below:

pixelL(no;x, y) =

Nif∑
ni=1

Nky∑
ky=1

Nkx∑
kx=1

pixelL−1(ni; S× x+ kx, S× y + ky)× weight(ni, no; kx, ky)

+ bias(no);

(2.1)

where S is the sliding stride, x ∈ {1, 2, . . . ,Nox}, y ∈ {1, 2, . . . ,Noy}, no ∈ {1, 2, . . . ,Nof},

L ∈ {1, 2, . . . ,#CONV s}, and #CONV s is the number of convolution layers.

Convolution is implemented by four levels of loops as illustrated in Figure 2.2

and shown in the pseudo codes in Figure 2.3. Loop-1 computes the MAC of pixels

…
…

⊗

Nif
Nix

Niy

Nif
Nkx

Nkx
Nif

Nif

Nof

Nox

Noy

Nkx

Input feature maps

Kernel maps

Output feature maps

=

Loop-1 MAC within a kernel window of Nkx×Nky

Loop-2 Across the input feature maps of Nif.

Loop-3 Scan within one input feature map along Nix×Niy

Loop-4 Across the output feature maps of Nof

Nkx
Nky

Nky

Nky

Nky

Figure 2.2: Four levels of convolution loops and their dimensions.
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and weights within a kernel window of dimension Nkx × Nky. Loop-2 accumulates

the sum of products of MAC across different input feature maps of dimension of Nif.

After finishing Loop-1 and Loop-2, we can obtain one final output pixel by adding

the bias. Loop-3 slides the kernel window within an input feature map of dimension

Nix× Niy. Loop-4 generates different output feature maps with dimension of Nof.

for (no = 0; no < Nof; no ++)

for (y = 0; y < Noy; y =+ S)

for (x = 0; x < Nox; x =+ S)

for (ni = 0; ni < Nif; ni ++)

for (ky = 0; ky < Nky; ky ++)

for (kx = 0; kx < Nkx; kx ++)

pixelL(no; x, y) += pixelL-1(ni; x + kx, y + ky) × weightL-1(ni, no; kx, ky);

pixelL (no; x, y) = pixelL(no; x, y) + bias(no);

Loop-1

Loop-2

Loop-3

Loop-4

Figure 2.3: Four levels of convolution loops, where L denotes the index of convolution

layer and S denotes the sliding stride

The relationship of input and output feature maps is described by Equation 2.2,

Nix = (Nox− 1)S + Nkx,

Niy = (Noy− 1)S + Nky.

(2.2)

where S is the stride of the sliding step. To control the spatial size of output feature

maps (Nox and Noy), sometimes zeros are padded around the border of input feature

maps, and the size of zero padding is included in Nix and Niy.

Pooling (Pool) or subsampling layer is commonly employed after convolution

to reduce the dimensionality of the input features while preserving key information.

This is done by replacing input neurons inside the kernel window (e.g. 2× 2 or 3× 3)

with their maximum or average value as shown in Figure 2.1, depending on the model

definition.

Normalization or local response normalization (LRN) layer implements a form of

lateral inhibition Krizhevsky et al. (2012) by normalizing the neuron value by factors
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of α and β depending on its K neighboring features at the same (x, y) location, as

shown in Equation 2.3:

pixelL(no;x, y) =
pixelL−1(no;x, y)(

1 + α
K

∑no+K/2
ni=no−K/2 pixel

2
L−1(ni;x, y)

)β (2.3)

Batch normalization followed by scale (Bnorm) has been commonly used in

recent CNN models He et al. (2016a) Szegedy et al. (2017), which is applied after

each training batch and normalizes the distribution of the outputs to be uniform

across different layers, enabling high learning rate and fast training convergence.

Their operations are depicted in (2.4) and (2.5):

y =
x− bn0√

bn1
, (2.4)

z = sc0× y + sc1. (2.5)

During the inference process, bn0, bn1, sc0 and sc1 of Bnorm are all constants for

each output feature map along Nof, which provides us the opportunity to simplify its

implementation on hardware.

Element Wise (Eltwise) layer performs element-wise addition or multiplication

of two input layers as shown in Figure 1.1, where the input layers must have the

same size and shape of input feature maps (Nix × Niy × Nif), and ResNet CNNs use

addition in the Eltwise layers.

Concat layer is used to concatenate the outputs of multiple layers together as

shown in Figure 1.1. If the concatenation is along multiple channels and all the

input layers must have the same feature map sizes (Nix×Niy), which is the case for

GoogLeNet Szegedy et al. (2015) and Inception Szegedy et al. (2017).

Fully-connected (FC) or inner-product layers as shown in Figure 2.1 are final

classification layers where the output features are computed as matrix-vector multi-
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plications of the fully-connected weight matrix and the input features. As the kernel

weights of FC are not spatially reused by different input features, the data volume of

FC weights are usually larger than that of convolution layers, even though FC layers

have much less operations, which makes FC layers to be memory intensive.

Activation layers perform non-linear activation functions such as tanh, sigmoid

or Rectified Linear Unit (ReLU) after convolution and fully-connected layers. ReLU,

defined as y = max(x, 0), has become a popular choice for the activation function,

due to faster convergence in training Krizhevsky et al. (2012) as well as compact

hardware implementation.

2.2 CNN Structures

Figure 2.4 shows the structures of several representative CNN algorithms in recent

years for image classification task.

AlexNet Krizhevsky et al. (2012) significantly increases the classification accu-

racy compared with traditional machine learning methods based on hand crafted

features and is the first CNN model winning the ILSVRC contest Russakovsky et al.

(2015) in 2012. AlexNet is comprised of 5 convolution layers and 3 FC layers, has

Conv (+ Bnorm in ResNet)

Pooling

Norm

Fully-connected

Eltwise or Concat

AlexNet (2012)

NiN (2013)

VGG-16 (2014)

GoogLeNet (2014)

ResNet-50 (2015)

×2 ×3 ×5 ×2

×2 ×5 ×2

Figure 2.4: The structures of the representative CNN algorithms in recent years.
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61 million kernel weights (parameters), and requires about 1.4 billion operations of

multiplication and addition. The top-5 accuracy of AlexNet Caffe model on Ima-

geNet Russakovsky et al. (2015) validation dataset is 80.2%. There are three different

kernel sizes (Nkx × Nky) in AlexNet convolution layers: 11× 11, 5× 5, and 3× 3.

NiN Lin et al. (2013) (network-in-network) replaces the FC layers with global

average pooling layer at the end to save a large number of weights, while it can still

reach the same accuracy level as AlexNet on ImageNet. NiN consists of small and

stacked convolution layers (e.g. cccp) with kernel size 1 × 1 for better local feature

abstraction. Like AlexNet, NiN also has kernel sizes of: 11× 11, 5× 5, and 3× 3.

VGG Simonyan and Zisserman (2014) has a very regular structure, with only

3× 3 convolution layers and 2× 2 max pooling layers. However, the three FC layers

need about 123 million weights and the convolution layers in VGG-16 also require

about 15 million weights. The overall VGG-16 needs about 31 billion operations to

process one image in the feed forward process. The top-5 accuracy of VGG-16 Caffe

model on ImageNet validation dataset is 88.7%.

GoogLeNet Szegedy et al. (2015) reaches the same accuracy-level as VGG-16

with 89.0% top-5 accuracy on ImageNet, while demanding only 6.1 million weights

and 3.2 billion operations, which is achieved by a more complex architecture with

inception module as shown in Figure 2.4. One inception module consists of six con-

volution layers with kernel sizes 1× 1, 3× 3 and 5× 5 and one max pooling layer in

four parallel branches. To save space, the inception modules with the same structure

are not exhibited and instead their repeat times are shown, e.g. ×2, in Figure 2.4.

ResNet He et al. (2016a) solves the problem of training very deep CNNs with

hundreds of layers and can still obtain compelling accuracy with top-5 accuracy higher

than 92.2% on ImageNet. Very deep networks are hard to train because the gradients

are vanishing after back-propagated through too many layers. ResNet incorporates
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skip connections (“shortcut”) between two non-adjacent layers so that the gradients

can flow back to the earlier layers more easily during training. ResNet-50 has 53

convolution layers, one max pooling and one FC layer, where each convolution layer

is followed by one Bnorm layer. The kernel sizes used in ResNet are 7 × 7, 3 × 3,

and 1× 1. The number of weights in ResNet-50 is about 26 million and the number

of operations is approximately 7.7 billion. The repeated residual sub-structures are

represented by their repeat times, e.g. ×2, in Figure 2.4.

2.3 FPGA Hardware System

From the aforementioned discussion, recently reported CNN algorithms involve

a large amount of data and weights. For them, the block memory (BRAM) on the

FPGA chip, which is normally smaller than 8 MByte, is insufficient to store all the

data, requiring gigabytes of external off-chip memory (DRAM). Therefore, a typical

CNN accelerator consists of three levels of hierarchy: 1) external memory, 2) on-chip

External 

Memory

(DDR3

DRAM)

On-chip 

Buffers
PE PE PE

Processing Engine

Arrays

Image

Weights

Result

Pixels

Weights

Pixels

FPGA

Loop Unrolling (P*)Loop Tiling (T*)CNN Size (N*)

Direct

Memory

Access

(DMA)

Pixels

Weights

Pixels

Pixels

Weights

Pixels

Size (byte) of DRAM access 

Delay (ms) of DRAM access

Capacity (bit) of buffers

Size (bit) of buffer access

The number of DSPs

Computation delay (ms)

Figure 2.5: A general CNN hardware accelerator with three levels of hierarchy, where

the loop design variables determine the key accelerator metrics, e.g. delay, resource

usage and memory access.
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buffers, and 3) registers and processing engines (PEs) as shown in Figure 2.5. The

basic flow is to fetch data from external memory to on-chip buffers by the direct

memory access (DMA) engine, and then feed them into registers and PEs. After the

PE computation completes, the results are transferred back to on-chip buffers and

to the external memory if necessary, which will be used as input to the subsequent

layer.

2.4 Related Work

The great success of CNNs on computer vision applications has dramatically pros-

pered the research and development of FPGA based CNN inference accelerators, and

these related works are briefly summarized in this section. More comprehensive com-

parisons and discussions will be presented in the following chapters with detailed

experimental results.

Recent FPGA works on hardware acceleration of CNN inference have demon-

strated throughput improvement from 62 GOPS Zhang et al. (2015) to 1,382 GOPS Ay-

donat et al. (2017), while also significantly improving the energy efficiency when com-

pared to GPU based implementations as presented in Zhang et al. (2016a) Guan et al.

(2017). Fast algorithm, e.g. Winograd transform and Fourier transform, has been

applied on FPGA to further boost the computation speed by reducing the multipli-

cation operations in Aydonat et al. (2017) and Zeng et al. (2018). Efforts have been

made to reduce the gap between the rapid development of deep learning algorithms

and the long design time for FPGA hardware implementation. Several FPGA-based

frameworks or compilers have been proposed to automatically map different CNN

algorithms, e.g. AlexNet, VGG and ResNet, onto FPGA hardware Venieris and

Bouganis (2016) Zhang et al. (2016a) Ma et al. (2017a) Ma et al. (2018b) Guan et al.

(2017) Zeng et al. (2018). To speed up the FPGA implementation, approaches based
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on high-level synthesis (HLS) techniques and the use of OpenCL, are becoming in-

creasingly popular, due to their easy programmablity and reduced design time Zhang

et al. (2015) Suda et al. (2016) Wei et al. (2017) Aydonat et al. (2017). However, the

conventional design methodology that relies on manual register-transfer level (RTL)

allows much finer level of optimization of the hardware, resulting in higher perfor-

mance and energy efficiency Qiu et al. (2016) Ma et al. (2017b).
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Chapter 3

OPTIMIZE CONVOLUTION LOOP OPERATIONS ON FPGA

3.1 Acceleration of Convolution Loops

3.1.1 Convolution Loops

As the main operation in CNN algorithms, convoluiton involves three-dimensional

multiply and accumulate (MAC) operations of input feature maps and kernel weights

as illustrated in Figure 2.2. To efficiently map and perform the convolution loops,

three loop optimization techniques Bacon et al. (1994) Zhang et al. (2015), namely,

loop unrolling, loop tiling and loop interchange, are employed to customize the com-

putation and communication patterns of the accelerator with three levels of memory

hierarchy.

Loop unrolling determines the parallelism scheme of certain convolution loops,

and thus the required size of registers and PEs. Loop tiling determines the required

capacity of on-chip buffers. It divides the loops into multiple blocks, and the data

of the execution blocks are read from external memory and stored in on-chip buffers.

Loop interchange determines the computation order of the four loops and thus affects

the dataflow between the adjacent levels of memory hierarchy.

3.1.2 Loop Optimization and Design Variables

In this section, we describe how the design of a CNN is parameterized. These

parameters are numerical quantities that determine the extent to which loop opti-

mization can be done within the limitations of the hardware. They also determine

the size of the functional units that must be synthesized. Subsequently, the quantities
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Table 3.1: Convolution Loop Dimensions and Hardware Design Variables

Kernel Window

(width/height)

Input Feature Map

(width/height)

Output Feature Map

(width/height)

# of Input

Feature Maps

# of Output

Feature Maps

Convolution Loops Loop-1 Loop-3 Loop-3 Loop-2 Loop-4

Convolution
Dimensions (N*)

Nkx, Nky Nix, Niy Nox, Noy Nif Nof

Loop Tiling (T*) Tkx, Tky T ix, Tiy Tox, Toy T if Tof

Loop Unrolling (P*) Pkx, Pky Pix, Piy Pox, Poy P if Pof

to be optimize, e.g. latency or memory access, will be expressed as functions of these

parameters, providing a means to explore the design tradeoffs.

As shown in Figure 2.2, multiple dimensions are used to describe the sizes of the

feature and kernel maps of each convolution layer for a given CNN. The hardware

design variables of loop unrolling and loop tiling will determine the acceleration factor

and hardware footprint. All dimensions and variables used in this work are listed in

Table 3.1.

The loop unrolling design variables are (Pkx, Pky), Pif , (Pox, Poy), and Pof ,

which denote the number of parallel computations along different feature or kernel

map dimensions. The loop tiling design variables are (Tkx, Tky), Tif , (Tox, Toy),

and Tof , which represent the portion of data of the four loops stored in on-chip

buffers. The constraints of these dimension and variables are given by 1 6 P* 6 T*

6 N*, where N*, T* and P* denote any dimension or variable that has a prefix of

capital N, T and P, respectively. For instance, 1 6 Pkx 6 Tkx 6 Nkx. By default,

P*, T* and N* are applied to all convolution layers.

Similar to Equation 2.2, the relationship of input and output variables is constraint

by Equation 3.1 and 3.2, where S is the stride of the sliding window and the zero

padding size is included in Tix and Tiy.
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Tix = (Tox− 1)S + Nkx,

T iy = (Toy − 1)S + Nky.

(3.1)

Pix = Pox,

P iy = Poy.

(3.2)

The dimensions or variables (N*, T*, P*) determine the configurations of the

three levels of memory hierarchy from the external memory to on-chip buffers to

registers and PEs.

Loop Unrolling

As illustrated in Figure 3.1, 3.2, 3.3, and 3.4, unrolling different convolution loops

leads to different parallelization of computations, which affects the optimal PE archi-

tecture with respect to data reuse opportunities and memory access patterns.

…
…

⊗

Input Pixels

Kernel Weights

Pkx
Pky

Pkx
Pky

+ +

D
F

F

Pkx × Pky

Multipliers

Adder 

Tree

Accumulator

Pixel1
Weight1

+

+

×

×

×

×

Pixel2
Weight2

Pixel3
Weight3

Pixel4
Weight4

Unroll Loop-1

Figure 3.1: Unroll Loop-1 and its corresponding computing architecture.

Loop-1 unrolling (Figure 3.1): in this case, the inner product of Pkx × Pky

pixels (or activations) and weights from different (x, y) locations in the same feature
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and kernel map are computed every cycle. This inner product requires an adder tree

with fan-in of Pkx× Pky to sum the Pkx× Pky parallel multiplication results, and

an accumulator to add the adder tree output with the previous partial sum.

…
…

⊗

Kernel Weights
Pif

Pif

+ +

D
F

F

Accumulator

Pixel1
Weight1

+

+

×

×

×

×

Pixel2
Weight2

Pixel3
Weight3

Pixel4
Weight4

Pif

Multipliers

Adder 

Tree
Input Pixels

Unroll Loop-2

Figure 3.2: Unroll Loop-2 and its corresponding computing architecture.

Loop-2 unrolling (Figure 3.2): in every cycle, Pif number of pixels/weights

from Pif different feature/kernel maps at the same (x, y) location are required to

compute the inner product. The inner product operation results in the same com-

puting structure as in unrolling Loop-1, but with a different adder tree fan-in of

Pif .

Loop-3 unrolling (Figure 3.3): in every cycle, Pix×Piy number of pixels from

different (x, y) locations in the same feature map are multiplied with the identical

weight. Hence, this weight can be reused Pix × Piy times. Since the Pix × Piy

parallel multiplication contributes to independent Pix×Piy output pixels, Pix×Piy

accumulators are used to serially accumulate the multiplier outputs and no adder tree

is needed.

Loop-4 unrolling (Figure 3.4): in every cycle, one pixel is multiplied by Pof
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Figure 3.3: Unroll Loop-3 and its corresponding computing architecture.
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Figure 3.4: Unroll Loop-4 and its corresponding computing architecture.

weights at the same (x, y) location but from Pof different kernel maps, and this pixel

is reused Pof times. The computing structure is identical to unrolling Loop-3 using

Pof multipliers and accumulators without an adder tree.

The unrolling variable values of the four convolution loops collectively determine

the total number of parallel MAC operations as well as the number of required mul-

tipliers (Pm):
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Pm = Pkx× Pky × Pif × Pix× Piy × Pof. (3.3)

Loop Tiling

On-chip memory of FPGAs is not always large enough to store the entire data of

deep CNN algorithms. Therefore, it is reasonable to use denser external DRAMs to

store the weights and the intermediate pixel results of all layers.

…
…

⊗

Tif

Input feature maps

Kernel maps

Output feature maps

=
Tix

Tiy

Tky
TkxTif

Tox
Toy

Tof

Buffered data

Figure 3.5: Loop tiling determines the size of data stored in on-chip buffers.

Loop tiling is used to divide the entire data into multiple blocks, which can be

accommodated in the on-chip buffers, as illustrated in Figure 3.5. With proper as-

signments of the loop tiling size, the locality of data can be increased to reduce the

number of DRAM accesses, which incurs long latency and high-power consumption.

The loop tiling sets the lower bound on the required on-chip buffer size. The required

size of input pixel buffer is Tix× Tiy × Tif × (pixel datawidth). The size of weight
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buffer is Tkx × Tky × Tif × Tof × (weight datawidth). The size of output pixel

buffer is Tox× Toy × Tof × (pixel datawidth).

Loop Interchange

Loop interchange determines the order of the sequential computation of the four

convolution loops. There are two kinds of loop interchange, namely intra-tile and

inter-tile loop orders. Intra-tile loop order determines the pattern of data movements

from on-chip buffer to PEs. Inter-tile loop order determines the data movement from

external memory to on-chip buffer.

3.2 Analysis on Design Objectives of CNN Accelerator

In this section, we provide a quantitative analysis of the impact of loop design

variables (P* and T*) on the following design objectives that our CNN accelerator

aims to minimize:

1. Computing latency depends strongly on the loop unrolling factors P*, but can

also be affected by inefficient utilization of PEs and external memory transac-

tions.

2. The requirement of partial sum storage is mainly determined by the computa-

tion order of loops. The earlier the final pixel output can be obtained, the fewer

the number of partial sums will need to be stored.

3. To reduce the number of on-chip buffer accesses, the pixels and weights fetched

from the on-chip buffer need to be reused as much as possible, which is largely

determined by loop unrolling strategy.

4. The number of external memory accesses primarily relies on the size of on-chip

buffers, which is determined by the loop tiling variables T*.
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3.2.1 Computing Latency

The number of multiplication operations per layer (Nm) is

Nm = Nif× Nkx× Nky× Nof× Nox× Noy. (3.4)

Ideally, the number of computing cycles per layer should be Nm/Pm, where Pm

is the number of multipliers. However, for different loop unrolling and tiling sizes,

the multipliers cannot necessarily be fully utilized for every convolution dimension.

The number of actual computing cycles per layer is

#cycles = #inter-tile cycles×#intra-tile cycles, (3.5)

where

#inter-tile cycles =

dNif/T ifedNkx/TkxedNky/TkyedNof/TofedNox/ToxedNoy/Toye,
(3.6)

#intra-tile cycles =

dTif/P ifedTkx/PkxedTky/PkyedTof/PofedTox/PoxedToy/Poye.
(3.7)

Here we assume that the multipliers receive input data continuously without idle

cycles. If the ratio of N* to T* or T* to P* is not an integer, the multipliers or

the external memory transactions are not fully utilized. In addition to considering

computing latency, memory transfer delay must also be considered for the overall

system latency.

3.2.2 Partial Sum Storage

A partial sum (psum) is the intermediate result of the inner product operation

that needs to be accumulated over several cycles to obtain one final output data.

27



Therefore, partial sums need to be stored in memory for the next few cycles and

sometimes have to be moved between PEs. An efficient acceleration strategy has to

minimize the number of partial sums and process them locally as soon as possible to

reduce data movements.

The flow chart to calculate the number of partial sums stored in memory (#psum)

is shown in Figure 3.6. To obtain one final output pixel, we need to finish Loop-1

and Loop-2. Therefore, if both Loop-1 and Loop-2 are fully unrolled, the final output

pixel can be obtained right after the inner product operations with minimal #psum.

If the loop tile size can cover all pixels and weights in Loop-1 (Tkx = Nkx & Tky

= Nky) and Loop-2 (Tif = Nif), then the partial sums can be consumed within this

tile as described in (9.2) – (9.5) inside Figure 3.6. In this case, the number of partial

sums, determined by P* or T*, is small and can be stored in local registers ((9.2)

inside Figure 3.6) or in on-chip buffers ((9.3) inside Figure 3.6). If the loop tile cannot

include all data for Loop-1 and Loop-2, partial sums from one tile need to be stored

in on-chip or off-chip memory until it is consumed by another tile as in (9.6) – (9.9)

inside Figure 3.6. In this case, the partial sums need to be stored in on-chip buffers

((9.6) inside Figure 3.6) or even in external memory ((9.7) inside Figure 3.6). The

loop computing order also affects the number of partial sums, and the earlier Loop-1

and Loop-2 are computed, the fewer is the number of partial sums. The requirement

to store partial sums in different levels of memory hierarchy significantly worsens data

movements and associated energy cost Chen et al. (2016), since partial sums involve

both read and write memory operations and typically require higher precision than

pixels and weights.
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Loop-1&2 are fully unrolled (Pkx = Tkx = Nkx & Pky = Tky = Nky & Pif =Tif = Nif)?

Loop-1&2 are fully buffered (Tkx = Nkx & Tky = Nky & Tif = Nif)?

Intra-tile Loop-1 and Loop-2 are computed first?

Intra-tile Loop-1 or Loop-2 is computed at last?

Intra-tile Loop-3 computed before Loop-4?

Intra-tile Loop-4 computed before Loop-3?

Inter-tile Loop-1 and Loop-2 are computed first?

Inter-tile Loop-1 or Loop-2 is computed at last?

Inter-tile Loop-3 computed before Loop-4?

Inter-tile Loop-4 computed before Loop-3?

#psum = Pof × Pox × Poy (9.2)

#psum = Tof × Tox × Toy (9.3)

#psum = Pkx × Pky × Pif (9.1)

#psum = Pof × Tox × Toy (9.4)

#psum = Tof × Pox × Poy (9.5)

#psum = Tof × Tox × Toy (9.6)

#psum = Nof × Nox × Noy (9.7)

#psum = Tof × Nox × Noy (9.8)

#psum = Nof × Tox × Toy (9.9)

Yes

No

Yes

No

Yes

No

Figure 3.6: Design space exploration of the total number of partial sums that need

to be stored in memory.

3.2.3 Data Reuse

Reusing pixels and weights reduces the number of read operations of on-chip

buffers. There are mainly two types of data reuse: spatial reuse and temporal reuse.

Spatial reuse means that, after reading data from on-chip buffers, a single pixel or

weight is used for multiple parallel multipliers within one clock cycle. On the other
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hand, temporal reuse means that a single pixel or weight is used for multiple consec-

utive cycles.

Having Pm parallel multiplications per cycle requires Pm pixels and Pm weights

to be fed into the multipliers. The number of distinct weights required per cycle is:

Pwt = Pof × Pif × Pkx× Pky (3.8)

If Loop-1 is not unrolled (Pkx = 1, Pky = 1), the number of distinct pixels required

per cycle (Ppx) is:

Ppt = Pif × Pix× Piy (3.9)

Otherwise, Ppx is:

Ppx = Pif × ((Pix− 1)S + Pkx)× ((Piy − 1)S + Pky) (3.10)

Note that ‘distinct’ only means that the pixels/weights are from different feature/kernel

map locations and their values may be the same. The number of times a weight is

spatially reused in one cycle is:

Reuse wt = Pm/Pwt = Pix× Piy (3.11)

where the spatial reuse of weights is realized by unrolling Loop-3 (Pix > 1orP iy > 1).

The number of times of a pixel is spatially reused in one cycle (Reuse px) is:

Reuse px = Pm/Ppx (3.12)

If Loop-1 is not unrolled, Reuse px is:

Reuse px = Pof (3.13)

otherwise, Reusepx is:

Reuse px =
Pof × Pkx× Pky × Pix× Piy

((Pix− 1)S + Pkx)× ((Piy − 1)S + Pky)
(3.14)
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The spatial reuse of pixels is realized by either unrolling Loop-4 (Pof > 1) or unrolling

both Loop-1 and Loop-3 together. Only unrolling Loop-1 (Pix = 1, P iy = 1) or only

unrolling Loop-3 (Pkx = 1, Pky = 1) hampers reusing pixels, and Reuse px = Pof .

If intra-tile Loop-3 is computed first, the weights can be reused for Tox×Toy/(Pox×

Poy) consecutive cycles. If intra-tile Loop-4 is computed first, the pixels can be reused

for Tof/Pof consecutive cycles.

3.2.4 Access of On-chip Buffer

With the data reuse, the number of on-chip buffer accesses can be significantly

reduced. Without any data reuse, the total read operations from on-chip buffers for

both pixels and weights are Nm, as every multiplication needs one pixel and one

weight. With data reuse, the total number of read operations from on-chip buffers

for weights becomes:

#read wt = Nm/Reuse wt (3.15)

and the total number of read operations of buffers for pixels is:

#read px = Nm/Reuse px (3.16)

If the final output pixels cannot be obtained within one tile, their partial sums are

stored in on-chip buffers. The number of write and read operations to/from on-chip

buffers for partial sums per cycle is 2 × Pof × Pox × Poy, where all partial sums

generated by Loop-1 (Pkx, Pky) and Loop-2 (Pif) are already summed together

right after multiplications. The total number of write and read operations to/from

buffers for partial sums is:

#wr rd psum = # cycles× (2× Pof × Pox× Poy) (3.17)

The number of times output pixels are written to on-chip buffers (i.e. #write px)

is identical to the total number of output pixels in the given CNN model. Finally,
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the total number of on-chip buffer accesses is:

#buffer access = #read px+ #read wt+ #wr rd psum+ #write px (3.18)

Tif×Tix×Tiy = Nif×Nix×Niy (all input pixels buffered) or 

Tif×Tkx×Tky×Tof = Nif×Nkx×Nky×Nof (all weights bufferred)?  

Tkx×Tky×Tof = Nkx×Nky×Nof (all required weights for a pixel are buffered)? 

Loop-3 is computed first?

Tix×Tiy = Nix×Niy (all required pixels for a weight are buffered)?  

Loop-4 is computed first?

Yes

No

Yes

#DRAM_px = Nof/Tof, #DRAM_wt = Nox×Noy/(Tox×Toy) (10.7)

#DRAM_px = 1, #DRAM_wt = 1 (10.8)

Loop-3 is computed first?

Loop-4 is computed first?

#DRAM_px = 1, #DRAM_wt = 1 (10.1)

#DRAM_px = 1, #DRAM_wt = Nox×Noy/(Tox×Toy) (10.2)

#DRAM_px = 1, #DRAM_wt = 1 (10.3)

#DRAM_px = Nof/Tof, #DRAM_wt = 1 (10.4)

#DRAM_px = Nof/Tof, #DRAM_wt = 1 (10.5)

#DRAM_px = 1, #DRAM_wt = Nox×Noy/(Tox×Toy) (10.6)
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Figure 3.7: Design space exploration of the number of external memory accesses.

3.2.5 Access of External Memory

In our analysis, both the weights and intermediate results of pixels are assumed

to be stored in external memory (DRAM), which is a necessity when mapping large-

scale CNNs on moderate FPGAs. The costs of DRAM accesses are higher latency and
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energy than on-chip Block RAM (BRAM) memory accesses Chen et al. (2016)Han

et al. (2016a), and therefore it is important to reduce the number of external memory

accesses to improve the overall performance and energy efficiency. The minimum

number of DRAM accesses is achieved by having sufficiently large on-chip buffers

and proper loop computing orders, such that every pixel and weight needs to be

transferred from DRAM only once. Otherwise, the same pixel or weight has to be

read multiple times from DRAM to be consumed for multiple tiles.

The flow chart to estimate the number of DRAM accesses is shown in Figure 3.7,

where #DRAM px and #DRAM wt denote the number of DRAM access of one

input pixel and one weight, respectively. After fetched out of DRAM, all data should

be exhaustedly utilized before being kicked out of the buffer. Therefore, if the tile

size or the on-chip buffer can fully cover either all input pixels or all weights of

one layer, the minimum DRAM access can be achieved as (10.8) inside Figure 3.7.

By computing Loop-3 first, weights stored in buffer are reused and #DRAM wt is

reduced as in (10.1) and (10.5) inside Figure 3.7. Similarly, by computing Loop-4

first, pixels can be reused to reduce #DRAM px as in (10.3) and (10.6) inside Figure

3.7. However, computing Loop-3 or Loop-4 first may postpone the computation of

Loop-1 or Loop-2, which would lead to a large number of partial sums.

The DRAM access of output pixels is not considered in the analysis because it is

constant as every output pixel is written to DRAM only once. As Nkx > S or Nky

> S, there are overlaps of pixels on the boundary of two tiles, and these pixels may

be read twice by the two tiles. Since the number of the additional read is negligible,

we do not include them in the analysis.
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3.3 Loop Optimization in Related Works

In this section, the acceleration schemes of the state-of-the-art hardware CNN

accelerators are compared. The loop unrolling strategy of current designs can be

categorized into the four types:

(A) Unroll Loop-1, Loop-2, Loop-4 Suda et al. (2016) Guo et al. (2018) Li et al.

(2016) Motamedi et al. (2016)

(B) Unroll Loop-2, Loop-4 Zhang et al. (2015) Ma et al. (2016)

(C) Unroll Loop-1, Loop-3 Chen et al. (2017) Chen et al. (2016) Du et al. (2017)

(D) Unroll Loop-3, Loop-4 Ma et al. (2017b) Rahman et al. (2016)

By unrolling Loop-1, Loop-2 and Loop-4 in type-(A), parallelism is employed in

kernel maps, input and output feature maps. However, kernel size (Nkx × Nky) is

normally very small (6 11 × 11) so that it cannot provide sufficient parallelism and

other loops need to be further unrolled. A more challenging problem is that kernel

size may vary considerably across different convolution layers in a given CNN model

(e.g., AlexNet Krizhevsky et al. (2012), ResNet He et al. (2016a)), which may cause

workload imbalance and inefficient utilization of the PEs Du et al. (2017). To address

this, PEs need to be configured differently for layers with different kernel sizes Zhang

et al. (2016b), which increases control complexity. In type-(C), every row in the kernel

window is fully unrolled (Pkx = Nkx) and Loop-3 is also partially unrolled. By this

means, pixels can be reused by the overlapping caused by Loop-1 and Loop-3 as in

3.14, and weight reuse can also be realized by unrolling Loop-3 as in 3.11. However,

Loop-4 is not unrolled and further pixel reuse cannot be achieved. The PE efficiency

issue caused by unrolling Loop-1 also affects type-(C) Du et al. (2017). In type-(A)
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and type-(B), Loop-3 is not unrolled, which implies that weights cannot be reused.

Type-(B) only unrolls Loop-2 and Loop-4, but Nif × Nof of the first convolution layer

is usually small (6 3 × 96) and cannot provide sufficient parallelism, which results

in low utilization and throughput. If the first layer is computation bounded or the

DRAM delay is not overlapped with the computation, the throughput degradation

will affect the overall performance, especially for shallow CNNs, e.g., AlexNet and

NiN. In type-(D), both Loop-3 and Loop-4 are unrolled so that both pixels and weights

can be reused. In addition, Nox×Noy×Nof (> 7×7×64) is very large across all the

convolution layers in AlexNet, VGG and ResNet so that high level of parallelism can

be achieved even for largest FPGA available with ≈ 3,600 DSP slices. By this means,

a uniform configuration and structure of PEs can be applied for all the convolution

layers.

Loop tiling has been used in prior hardware CNN accelerators to fit the large-scale

CNN models into limited on-chip buffers. However, only a few prior works Guo et al.

(2018) Rahman et al. (2016) have shown their tiling configurations that determine the

on-chip buffer size, but the trade-off between the loop tiling size and the number of

external memory accesses is not explored. The tiling size in Rahman et al. (2016) does

not cover Loop-1 and Loop-2, e.g., Tkx = Tky = Tif = 1, which could significantly

increase the number and movements of partial sums.

The impact of loop interchange has not been rigorously studied in prior works,

but it can greatly impact the number of partial sums as well as the resulting data

movements and memory access.

3.4 Proposd Acceleration Scheme

Based on the design objectives and analysis in Section 3.2, the optimization pro-

cess of our proposed acceleration scheme is presented in this section, which includes
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appropriate selection of the convolution loop design variables.

3.4.1 Minimizing Computing Latency

We set variables P* to be the common factors of T* for all the convolution layers

to fully utilize PEs, and T* to be the common factors of N* to make full use of

external memory transactions. For CNN models with only small common factors,

it is recommended to set d N*/T* e − N*/T* and d T*/P*e − T*/P* as small as

possible to minimize the inefficiency caused by the difference in sizes of CNN models.

3.4.2 Minimizing Partial Sum Storage

To reduce the number and movements of partial sums, both Loop-1 and Loop-2

should be computed as early as possible or unrolled as much as possible. To avoid

the drawback of unrolling Loop-1 as discussed in Section 3.3 and maximize the data

reuse as discussed in Section 3.2.3, we decide to unroll Loop-3 (Pox > 1 or Poy > 1)

and Loop-4 (Pof > 1). By this means, we cannot attain the minimum partial sum

storage as (9.1) inside Figure 3.6.

Constrained by 1 6 P* 6 T* 6 N*, the second least number of partial sum storage

is achieved by (9.2) among (9.2) – (9.9) inside Figure 3.6. To satisfy the condition

for (9.2), we serially compute Loop-1 and Loop-2 first and ensure the required data

of Loop-1 and Loop-2 are buffered, i.e., Tkx = Nkx, Tky = Nky and Tif = Nif.

Therefore, we only need to store Pof × Pox × Poy number of partial sums, which

can be retained in local registers with minimum data movements.

3.4.3 Minimizing Access of On-chip Buffer

The number of on-chip buffer accesses is minimized by unrolling Loop-3 to reuse

weights as shown in Equation 3.11 and unrolling Loop-4 to reuse pixels as shown
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in Equation 3.13. As our partial sums are kept on local registers, they do not add

overhead to the buffer access and storage.

3.4.4 Minimizing Access of External Memory

As we first compute Loop-1 and Loop-2 to reduce partial sums, we cannot achieve

the minimum number of DRAM access described in (10.1) and (10.3) inside Figure 3.7,

where neither the pixels nor the weights are fully buffered for one convolution layer.

Therefore, we can only attain the minimum DRAM access by assigning sufficient

buffer size for either all pixels or all weights of each layer as in (10.8) inside Figure

3.7.

Then, the optimization of minimizing the on-chip buffer size while having mini-

mum DRAM access is formulated as below:

minimize bits BUF px wt

subject to #Tile pxL = 1 or #Tile wtL = 1

with ∀L ∈ [1,#CONV s]

(3.19)

where #Tile pxL and #Tile wtL denote the number of tiling blocks for input pixels

and weights of layer L, respectively, and #CONV s is the number of convolution

layers.

bits BUF px wt is the sum of pixel buffer size (bits BUF px) and weight buffer

size (bits BUF wt), which are given by,

bits BUF px wt = bits BUF px+ bits BUF wt. (3.20)

Both pixel and weight buffers need to be large enough to cover the data in one

tiling block for all the convolution layers. This is expressed as:

bits BUF px = MAX(words pxL)× pixel datawidth

withL ∈ [1,#CONV s]

(3.21)
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bits BUF wt = MAX(words wtL)× weight datawidth

withL ∈ [1,#CONV s]

(3.22)

where words pxL and words wtL denote the number of pixels and weights of one tiling

block in layer L, respectively. These are expressed in terms of loop tiling variables as

follows,

words pxL = TixL × TiyL × TifL + ToxL × ToyL × TofL (3.23)

words wtL = TofL × TifL × TkxL × TkyL (3.24)

where words pxL is comprised of both input and output pixels. The number of tiles

in 3.19 is also determined by T* variables,

#Tile pxL = dNifL/T ifLe × dNoxL/ToxLe × dNoyL/ToyLe (3.25)

#Tile wtL = dNkxL/TkxLe × dNkyL/TkyLe × dNifL/T ifLe × dNofL/TofLe (3.26)

By solving 3.19, we can find an optimal configuration of T* variables that result

in minimum DRAM access and on-chip buffer size. However, since we have already

set Tkx = Nkx, Tky = Nky, Tif = Nif as in Section 3.4.2, we can only achieve

a sub-optimal solution by tuning Tox, Toy and Tof , resulting in larger buffer size

requirement. If the available on-chip memory is sufficient, we set Tox = Nox so that

an entire row can be buffered to benefit the DMA transactions with continuous data.

Finally, we have to solve 3.19 by searching Toy and Tof , because it has a non-

linear objective function and constraints with integer variables. Since Toy and Tof

in VGG-16 consist of 2×#CONV s = 26 variables and each variable can have about

4 candidate values constrained by T*/P* = integer and N*/T* = integer, the total

number of Toy and Tof configurations is about 426 = 4.5× 1015, which becomes an

enormous solution space. In ResNet-50/ResNet-152, the #CONV s are increased to

be 53 and 155, respectively, which makes the solution space even larger to be about
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4106 = 6.6 × 1063 and 4310 = 4.4 × 10186, respectively. Therefore, it is impossible to

enumerate all the candidate solutions. In Ma et al. (2017b), we randomly sampled

the configurations of VGG-16, and it took about 10 hours to obtain a relatively

good solution. However, in ResNets, this method becomes infeasible due to the

dramatically increased solution space.

In this work, a new method is proposed to empirically find a satisfactory solution

for a given on-chip memory capacity that takes advantage of the property of CNNs.

CNNs normally have large pixel data volume and small weight sizes in the beginning

few layers. As we proceed into deeper layers, the pixel sizes become smaller with

extracted features, and the weight sizes become larger with more channels. This

trend is illustrated in Figure 3.8, where the bars denote data sizes in each convolution

layer. To benefit from the data distribution property in different layers, we only need

to make pixel buffers fully cover the last few layers and weight buffers fully cover the

beginning few layers. Then, the middle layers with both relatively large pixel and

weight sizes become the constraints of the buffer sizes, and we only need to take care

of these bounding layers, which significantly shrinks the solution space. The dashed

lines in Figure 3.8 are the minimal buffer sizes we found while guaranteeing minimum

DRAM accesses, and the bounding layers are pointed out by arrows. If this buffer

size still cannot be fit into the FPGA on-chip memory, then we need to either change

the tiling strategy or decrease the buffer sizes at the cost of more DRAM accesses as

discussed in Ma et al. (2017b).

3.4.5 Optimized Loop Design Variables

According to the aforementioned optimization process, we propose a convolution

acceleration scheme for a high-performance and low-communication CNN accelerator,

which is visualized in Figure 3.9.
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(a) Pixels and weights distribution of convolution layers in VGG-16

(b) Pixels and weights distribution of convolution layers in ResNet-50
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Figure 3.8: To guarantee minimum DRAM accesses, either all pixels (blue bars) are

covered by pixel buffers (blue dashed lines) or all weights are covered by weight buffers

in one layer. Then, we try to lower the total buffer sizes/lines.

Loop Unrolling

For all the convolution layers, Loop-1 and Loop-2 are not unrolled, which means Pkx

= 1, Pky = 1 and Pif = 1. For VGG-16, we set Pox = 14, Poy = 14 and Pof =

16, which enables Pm = 3,136 parallel multiplications. For ResNets, we set Pox =

7, Poy = 7 and Pof = 32, which needs Pm = 1,568 parallel multiplications. Since

the minimum feature map dimensions (NOX and NOY) of ResNets are 7, Pox and

Poy are reduced to be 7. The more complex structure and new type of layers force

ResNets to use less multipliers than VGG-16. By setting P* to be constant across

all the convolution layers, a uniform structure and mapping of PEs can be realized
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to reduce the architecture complexity.

Loop Tiling

For loop tiling, we set Tkx = Nkx, Tky = Nky, Tif = Nif as in Section 3.4.2 and

shown in Figure 3.9 so that data used in Loop-1 and Loop-2 are all buffered and Tox

= Nox to benefit DMA transfer. Details of Toy and Tof are described in Section

3.4.4.

Loop Interchange

For loop interchange, we first serially compute Loop-1 and then Loop-2 as described in

Section 3.4.2. Finally, we compute Loop-3 and Loop-4, where the exact computation

order of these two loops does not have a pronounced impact on the cost, based on

our P* and T* choices.

3.5 Proposd CNN Accelerator

To implement the optimized convolution acceleration scheme in Section 3.4.5, a

data router is proposed with high flexibility for different convolution sliding settings,

e.g. strides and zero paddings, using variant data buses. A corresponding hardware

PE architecture is also designed that minimizes on/off-chip memory accesses and data

movements.

3.5.1 Data Bus from Buffer to PE (BUF2PE)

In Ma et al. (2017b), a register array architecture is designed to rearrange and

direct the pixel stream from buffers into PEs. This method takes advantage of convo-

lution stride being 1 in VGG-16 so that pixels can be reused by the adjacent register

array in the next computing cycles. However, if stride is 2 or more, which frequently
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In this figure,

Pox × Poy × Pof = 2×2×3

Figure 3.9: The optimized loop unrolling and tiling strategy. The parallelism is within

one feature map (Pox×Poy) and across multiple kernels (Pof). The tiling variables

Tiy, Toy and Tof can be tuned that decide the buffer sizes.

occurs in CNN algorithms Krizhevsky et al. (2012)He et al. (2016a), pixels need to

wait for Nkx × (Stride − 1) cycles to be reused by the neighboring register array.

This makes the control logic and wire routing among registers much more compli-

cated. Therefore, we propose a BUF2PE data bus in Figure 3.10 to implement the

dataflow using FIFO to temporally store pixels to be reused by the adjacent register

array. This method is similar to line buffer design in Bosi et al. (1999), where FIFOs

are used to align pixels from multiple feature rows to a kernel window so that paral-

lelism can be employed within a kernel window, i.e. unrolling Loop-1, whereas this

work unrolls Loop-3 to parallel compute within one feature map. By this means, the

wire routing within and across register arrays is simplified, and the data router can

follow the same pattern for convolution with different strides and zero paddings.

The detailed design of BUF2PE data bus is illustrated in Figure 3.10. Pixels from

42



input buffers are loaded into the corresponding registers as shown by the blue dashed

box to the blue solid box. Then, the pixels are sent to PEs or MAC units and are also

sent to FIFOs during cycles 0 to 5, waiting to be reused by the adjacent register array.

Register arrays except the rightmost one start reading input pixels from FIFOs at

cycle 3, as shown by the purple pixels in Figure 3.10. Meanwhile, the new pixels are

fed into the rightmost register array from buffers. In this work, the offset caused by

west zero padding is handled by shifting the connection between buffers and register

arrays, whereas Ma et al. (2017b) has to change the storage pattern within one address

of input buffer by a padding offset that increases the complexity of transferring data

from DRAM to buffers.

The coarse-grained dataflow is shown in Figure 3.11 at feature map row level for

stride = 1 and stride = 2. The data flow in Figure 3.11(a) is the same as Figure

3.10, where more clock cycles of operation is shown after cycle 8. In Figure 3.11(b),

the dataflow with stride = 2 and zero padding = 3 is shown, which follows the same

pattern as the case with stride = 1. The buffer storage pattern is adjusted according

to different stride and padding settings. Three rows of zeros are added to the buffer

due to the north zero padding of 3. With stride = 2, every two rows of pixels are

continuously distributed across Poy buffer banks. These adjustments are handled by

the buffer write enable and address signals during the reception of pixels from DRAM.

Since the data movement within a register array or a feature map row is different for

different settings of stride and zero padding, various BUF2PE data buses are needed

for each dataflow, and the set of data buses are called data router. If these settings

are identical, one BUF2PE bus can handle different kernel sizes (Nkx × Nky) without

penalty of idle cycles as we serially compute Loop-1. Therefore, the BUF2PE bus in

Figure 3.11(b) can be applied for conv1 in ResNet with kernel size = 7 × 7, stride

= 2 and zero padding = 3. For other sliding settings in ResNet, e.g. stride = 2 and
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Figure 3.10: The BUF2PE data bus directs the convolution pixel dataflow from input

buffers to PEs (i.e. MAC units), where Pox = 3 and Poy = 3.

zero padding = 0, the corresponding variants of BUF2PE buses are designed to direct

the dataflow. The global control logic controls the switch among different BUF2PE

buses inside the data router.

After Nkx × Nky cycles, we complete one kernel window sliding (Loop-1) and

move to the next input feature map with the same dataflow until the last one as

shown in Figure 3.11. After Nkx × Nky × Nif cycles, both Loop-1 and Loop-2 are

completed and we obtain Pox× Poy × Pof final output pixels.

In summary, the proposed dataflow is scalable to Nkx × Nky by changing the
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control logic, and it can handle various sliding settings using variant BUF2PE data

buses inside the data router, whereas the MAC units are reused and kept busy.
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0 – 2 Pad Row01 Row02 Row1
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(b)  kernel size = 5 × 5, stride = 2, zero padding = 3

Figure 3.11: The coarse-grained designs of BUF2PE data buses for (a) strides = 1

and zero padding = 1 and (b) stride = 2 and zero padding = 3.

3.5.2 Convolution PE Architecture

The PE architecture of convolution layers shown in Figure 3.12 is designed ac-

cording to the proposed acceleration strategy and dataflow. It is comprised of Pox×

Poy × Pof PEs, and every PE in our architecture is an independent MAC unit con-
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sisting of one multiplier followed by an accumulator. As Loop-1 and Loop-2 are not

unrolled, no adder tree is needed to sum the multiplier outputs. The partial sum is

consumed inside each MAC unit until the final results are obtained, such that the

data movements of partial sums are minimized. Pixels read from input pixel buffers

are shared by Pof MAC units and sliding overlapped pixels are also reused by the

data router. Weights read from weight buffers are shared by Pox× Poy MAC units.

The proposed architecture is implemented with parameterized Verilog codes and is

highly scalable to different CNN models in FPGAs or even ASICs by modifying design

variables such as Pox, Poy and Pof . After the completion of Loop-1 and Loop-2, the

partial sums need to be added with biases as in Figure 2.3 to obtain the final output

pixels. Therefore, every Nkx × Nky × Nif cycles, MAC units output the partial sums

into the adders to add with biases. Since Poy < Nkx × Nky × Nif for all the layers,

we serialize the Pox×Poy×Pof MAC outputs into Poy cycles. Then, we only need

Pox×Pof adders to add the biases in parallel. The data width of one output buffer

can also be reduced to be Pox and we store the pixels of one output feature map in

one buffer bank, which could need totally Pof output buffers. If Pof is large, e.g.

Pof = 32 in ResNet, it would require many output buffers with shallow depth, re-

sulting in low utilization of on-chip BRAMs (e.g. M20K memory block). In addition,

batch normalization (Bnorm) layers in ResNet still need Pox×Pof adders and mul-

tipliers that are expensive. We further serialize the Pox×Pof parallel outputs to be

Pox× #OUTBUF using multiplexers with neighboring output feature maps stacked

in one output buffer, as illustrated in Figure 3.12. In ResNet, we set #OUTBUF =

16 to ensure Poy×Pof / (#OUTBUF) < Nkx × Nky × Nif or the number of serial

output cycles is smaller than the MAC unit output interval cycles. By this means,

the parallelism of adders and multipliers for bias and Bnorm is significantly reduced,

as well as the output buffer bandwidth and the used M20K BRAMs.

46



M11M11MAC

M11M11MAC

M11M11MAC

M11M11MAC

M11M11MAC

M11M11MAC

M11M11MAC

M11M11MAC

M11M11MAC

M11M11MAC

M11M11MAC

M11M11MAC

M
U

X

O
u
tp

u
t 
B

u
ff

e
r 

2

W
e

ig
h

t 
B

u
ff

e
r

+×+

Batch Norm 

Coefficients

Bias

Bnorm in 

ResNet

M
U

X

O
u

tp
u

t 
B

u
ff

e
r 

1

+×+

Batch Norm 

Coefficients

Bias

# output map

Bnorm in 

ResNet

Poy

Pof

Data Router

Buffer 1 Buffer 3Buffer 2

Pox×Poy parallel outputs 

serialized into Poy cycles

# output map

Pox Pox Pox

Pox

P
o
x

P
o

x Pox

P
o

x
P

o
x

#
O

U
T

B
U

F

Pox

Pox

Pox Pox

P
o

x

Figure 3.12: Convolution acceleration architecture with Pox×Poy×Pof MAC units.

3.5.3 Pooling Layers

Pooling is commonly used to reduce the feature map dimension by replacing pixels

within a kernel window (e.g., 2× 2, 3× 3) by their maximum or average value. The

output pixels from previous convolution layers are stored row-by-row in the output

pixel buffers. As pooling operation only need pixels, after one tile of convolution

is finished, we directly compute pooling with pixels read from output pixel buffers

to eliminate the access of external memory. The unrolling factors of all the pooling

layers are the same. Since the width of output pixel buffer is Pox, we can enable Pox

× #OUTBUF parallel pooling operations, which is large enough considering that

pooling layers involve much less operations compared to convolution layers. Register

arrays are used to reshape the pooling input pixels and ensure continuous feeding
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of pixels into pooling PEs without idle cycles. The PEs are either comparators for

max-pooling or accumulators followed by constant coefficient multipliers for average-

pooling. The outputs of pooling are written back to the output pixel buffers and then

transferred to the external memory.

3.5.4 Fully-connected Layers

The inner-product layer or fully-connected (FC) layer is a special form of the

convolution layer with Nkx = Nky = Nox = Noy = 1, or there are no Loop-1 and

Loop-3. Therefore, we only unroll Loop-4 and reuse the same MAC unit array used in

convolution layers for all the FC layers. Contrary to convolution layers, FC layers have

large amount of weights but small amount of operations, which makes the throughput

of FC layers primarily bounded by the off-chip communication speed. Due to this,

dual FC weight buffers are used to overlap the inner-product computation with off-

chip communication for VGG implementation. In ResNet, the size of FC weights (=

2.0M) is significantly reduced compared to that of VGG (= 123.6M), and we reuse the

convolution weight buffers for FC weights and start the FC computations after the

weights are read from DRAM. FC layer output pixels are directly stored in on-chip

buffers as their size is small (< 20 KB).

3.6 Experimental Results

3.6.1 System Setup

The proposed hardware CNN inference accelerator is demonstrated by implement-

ing NiN Lin et al. (2013), VGG-16 Simonyan and Zisserman (2014) and ResNet-

50/ResNet-152 He et al. (2016a) CNN models on two Intel FPGAs. In NiN, VGG-16

and ResNet-50/ResNet-152, there are 12/13/53/155 convolution layers, 3/5/1/1 max-

48



pooling, 1/0/1/1 average-pooling, 0/3/1/1 FC and 0/0/16/50 element-wise (Eltwise)

layers, respectively. Some convolution layers are followed by batch normalization

(Bnorm) and ReLU layers. The two Intel FPGAs, e.g. Stratix V GXA7 / Arria 10

GX 1150, consist of 234.7K/427.2K adaptive logic modules (ALM), 256/1,518 DSP

blocks and 2,560/2,713 M20K BRAM blocks, respectively. The underlying FPGA

boards for Stratix V and Arria 10 are Terasic DE5-Net and Nallatech 385A, respec-

tively, and both are equipped with two banks of 4GB DDR3 DRAMs.

The overall CNN acceleration system on the FPGA chip shown in Figure 3.13 is

coded in parametrized Verilog scripts and configured by the proposed CNN compiler

in Ma et al. (2017a) for different CNN and FPGA pairs. If a layer does not exist

in the CNN model, the corresponding computing module is not synthesized and the

dataflow just bypasses this module, for example, VGG-16 does not have Eltwise layer

and this layer is not compiled. With two DRAM banks, both kernel and feature

maps are separated into these two banks to enable full off-chip communication. Two

Modular Scatter-Gather DMA (mSGDMA) engines provided by Intel are used to

simultaneously read and write from/to these two DRAM banks. Data scatter and

gather in Ma et al. (2017a) are used to distribute the data stream from DMA into

multiple input buffers and collect data from multiple output buffers into one DMA

stream, respectively. After the input images and weights are loaded into DRAMs,

the CNN inference acceleration process starts. When the computation of one loop

tile completes, the output pixels are transferred to DRAM, and then the weights

and pixels for the next loop tile are loaded from DRAM to on-chip buffers. The

controller governs the iterations of the four convolution loops and the layer-by-layer

sequential computation. The buffer read and write addresses are also generated by

the controller.

The fixed-point data representation is used, and both pixels and weights are 16-
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bit. The decimal points are dynamically adjusted according to the ranges of pixel

values in different layers to fully utilize the existing data width Guo et al. (2018).

By this means, the top-1 and top-5 ImageNet classification accuracy degradation is

within 2% compared with software floating point implementation in Zhang et al.

(2016b) Suda et al. (2016) Aydonat et al. (2017) Guo et al. (2018) Ma et al. (2016).
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Figure 3.13: Overall FPGA-based CNN hardware acceleration system.

3.6.2 Analysis of Experimental Results

The performance and specifications of our proposed CNN accelerators are summa-

rized Table 3.2. In Stratix V and Arria 10, one DSP block can be configured as either

two independent 18-bit × 18-bit multipliers or one multiplier followed by an accumu-

lator, i.e. one MAC. Since one multiplier consumes much more logic than one adder,

we use the DSP as two independent multipliers and implement the accumulator inside

the MAC unit by ALMs. Since Arria 10 has 1.8× more ALMs and 5.9× more DSP
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blocks than the Stratix V we use, larger loop unrolling variables (Pox× Poy× Pof)

can be achieved in Arria 10 to obtain > 2× throughput enhancement than Stratix V.

Compared with Ma et al. (2017b), the unrolling variables, i.e. Pox×Poy×Pof , of

VGG-16 are set to be 7×7×64 on Arria 10 instead of 14×14×16, where the number

of MAC units (= 3,136) are the same and both sets of P∗ variables are the common

factors of the feature/kernel map sizes resulting in the same computation cycles. The

data router in Figure 3.10 and the data buses after MAC units in Figure 3.12 are

only related with Pox and Poy, whereas the data buses related with Pof from weight

buffers to MAC units in Figure 3.12 are relatively simple. To reduce the data bus

width and required logic, we choose smaller Pox × Poy in this work as 7 × 7 with

a larger Pof as 64. Since the greatest common factors of feature/kernel maps, e.g.

Nox × Noy × Nof, of all convolution layers in ResNets are 7 × 7 × 64, we still set

Pox × Poy × Pof to be 7 × 7 × 64. Since ResNets have more complex structure

and more types of layers, e.g. Eltwise and Bnorm, they consume more logic elements

than NiN and VGG-16 on Arria 10 and cannot achieve the same parallel degree as

NiN and VGG-16 on Stratix V. Since the two FPGAs have close capacity of on-chip

BRAMs, the loop tiling variables (T∗) of the same CNN is set to be the same for

both FPGAs, which leads to similar BRAM consumption.

The breakdown of the processing time per image of each CNN is shown in Fig. 17

with batch size = 1. The MAC computation time of convolution layers, e.g. “Conv

MAC”, dominates the total latency by over 50%. “Conv DRAM” includes DRAM

transaction delay of convolution weights and input/output pixels. The FC latency

includes the inner-product computation delay and the DRAM transfer delay of FC

weights. “Others” include the delay of average pooling, Eltwise and pipeline stages.

The logic utilization in ALMs of each module is shown in Figure 3.15. Most

multipliers in MAC units are implemented by DSPs, and logic elements are mainly
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Table 3.2: Our Implementation of Different CNNs on Different FPGAs

CNN NiN VGG-16 ResNet-50 ResNet-152

# Operations (GOP) 2.20 30.95 7.74 22.62

# of Parameters 7.59 M 138.3 M 25.5 M 60.4 M

Precision (fixed) 16 bit 16 bit 16 bit 16 bit

FPGA / Tech. Intel Stratix V GXA7 / 28 nm

Clock 150 MHz 150 MHz 150 MHz 150 MHz

Pox× Poy × Pof 7× 7× 32 7× 7× 32 7× 7× 24 7× 7× 24

# of MAC Units 1,568 1,568 1,176 1,176

DSP Blocks 256 (100%) 256 (100%) 256 (100%) 256 (100%)

Logic (ALMs) 228K (97%) 218K (93%) 176K (75%) 185K (78%)

BRAM (M20K) 1,512 (59%) 2,210 (86%) 1,950 (76%) 2,385 (93%)

Delay/Image (ms) 7.9 88.8 31.8 81.8

Overall Throughput (GOPS) 278.2 348.8 243.3 276.6

FPGA / Tech. Intel Arria 10 GX 1150 / 20 nm

Clock 200 MHz 200 MHz 200 MHz 200 MHz

Pox× Poy × Pof 7× 7× 64 7× 7× 64 7× 7× 64 7× 7× 64

# of MAC Units 3,136 3,136 3,136 3,136

DSP Blocks 1,518 (100%) 1,518 (100%) 1,518 (100%) 1,518 (100%)

Logic (ALMs) 161K (38%) 138K (32%) 221K (52%) 235K (55%)

BRAM (M20K) 1,528 (56%) 2,232 (82%) 1,931 (71%) 2,365 (87%)

Delay/Image (ms) 3.8 43.2 12.7 32.0

Overall Throughput (GOPS) 584.8 715.9 611.4 707.2

used to implement accumulators in MAC units. With the same parallel computation

degree, the MAC units of the four CNNs use about the same amount of ALMs. As

VGG-16 is highly uniform with only one convolution sliding setting, e.g. stride =

1 and padding = 1, only one BUF2PE bus is needed, which leads to less logic and

BRAM consumption of data router compared to NiN and ResNets. Convolution

and FC layers share the MAC units but have their own control logic to govern the
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sequential operations. Eltwise layers use adders to element-wise add pixels from two

branches of layers. “Others” include the system interconnections, global control logic,

bias adders, and configuration registers.
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Figure 3.15: Logic utilization breakdown of ResNet-50/152 and VGG-16.

The breakdown of the on-chip memory usage is shown in Figure 3.16. ResNet-

152 uses more BRAMs than ResNet-50, because more Bnorm coefficients are saved

in BRAMs and the number of instructions for DMA manager is increased due to

the additional layers. FIFOs in data router are implemented by BRAMs. “FC”

in Figure 3.16 only includes the buffer to store intermediate FC pixels. FC and

convolution layers share the weight buffers.
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Figure 3.16: On-chip BRAM breakdown of ResNet-50/152 and VGG-16.

3.6.3 Comparison with Prior Works

The reported results from recent CNN FPGA accelerators are listed in Table 3.3.

Rahman et al. (2016) only implements convolution layers in AlexNet and uses the

similar strategy as us to unroll Loop-3 and Loop-4, which can also achieve high

DSP utilization. However, their loop tiling strategy is only along Loop-3 and Loop-

4, which significantly postpones the acquisition of the final pixels resulting in more

memory accesses and data movements of partial sums. In Zhang et al. (2016b) and

Li et al. (2016), the layer-by-layer computation is pipelined using different part of one

or multiple FPGAs resources to improve hardware utilization and thus throughput.

However, with the highly increasing number of convolution layers He et al. (2016a),

it becomes very difficult to map different layers onto different resources and balance

the computation among all the pipeline stages. In addition, pipelining can increase

the throughput but not necessarily the latency. Batch computing with multiple in-

put images is applied in Chen et al. (2016), Zhang et al. (2016b), Aydonat et al.

(2017), and Li et al. (2016). The biggest advantage of this technique is to share the

weights transferred from off-chip DRAM among multiple images and thus increase the

throughput at the cost of increased latency per image and external memory storage of

multiple images. Benefit from batch computing and using 2,144 DSP slices, which en-
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ables high parallelism degree, Li et al. (2016) also achieves high throughput of 565.94

GOPS for AlexNet. In Aydonat et al. (2017), an OpenCL-based CNN accelerator is

implemented on Arria10 FPGA, where the Intel FPGA SDK for OpenCL provides a

pre-generated platform that ensures timing closure at higher frequency than our RTL

design. The Winograd transform is applied for convolution layers that reduces multi-

plication operations by 2× or improves the throughput by 2× using the same number

of DSPs. The 16-bit floating-point data format is used with shared exponent, which

allows directly using fixed-point 18-bit × 18-bit multipliers for floating-point oper-

ations. Wei et al. (2017) proposed an OpenCL-based systolic array architecture to

implement convolution on Arria 10, which reduces the global PE interconnect fanout

to achieve high frequency and resource utilization. The VGG-16 throughput of Wei

et al. (2017) is higher than ours mainly due to 1) higher frequency, 2) lower precision

of weights, and 3) dual buffer scheme to hide DRAM latency. Guan et al. (2017)

proposed an RTL-HLS hybrid framework to automatically generate FPGA hardware

and implements convolution and FC as matrix multiplication. Although the Stratix-

V GSMD5 (with 1590 DSP blocks) used in Guan et al. (2017) has 6.2× more DSP

blocks than our Stratix-V GXA7, our accelerator on Stratix V can realize 1.2× higher

throughput for ResNet-152 by higher hardware (DSP and logic) utilization through

the proposed loop optimization technique and exploiting logic elements to implement

multipliers as well as DSPs.

With the optimized CNN acceleration scheme and low-communication dataflow,

the proposed CNN accelerator uses uniform unrolling factors for all the convolution

layers and fully utilizes the DSPs. The proposed methodology is also demonstrated

by implementing ResNet, which exhibit a highly irregular and complex structure.
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3.7 Summary

In this chapter, we present an in-depth analysis of convolution loop accelera-

tion strategy by numerically characterizing the loop optimization techniques. The

relationship between accelerator objectives and design variables are quantitatively

investigated, and we provide design guidelines for an efficient acceleration strategy.

A corresponding new dataflow and architecture is proposed to minimize data com-

munication and enhance throughput. Our CNN accelerator implements end-to-end

NiN, VGG-16 and ResNet-50/ResNet-152 CNN models on Stratix V and Arria 10

FPGA, achieving the overall throughput of 348 GOPS and 715 GOPS, respectively.
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Chapter 4

AUTOMATIC COMPILATION OF DIVERSE CNNS ONTO FPGA

4.1 Overview of Proposed CNN RTL Compiler

The dimensions and connections of CNN layers and pre-trained kernel weights are

obtained from Caffe Jia et al. (2014), and provided as inputs to the CNN compiler.

The various dimensional parameters of the CNN algorithm and the accelerator design

variables, e.g. loop unrolling and tiling sizes as shown in Figure 4.1 (described in detail

in Section 4.2), can be tuned by the user to balance the performance and required

hardware resources. Then, a layer-by-layer execution schedule (see Figure 4.2(a)

and Figure 4.2(b)) is generated from the CNN graph representation. The execution

schedule is translated into the global control logic on the FPGA, and it also determines

the order of the reads and writes of certain kernel weights or pixels from different

layers that are stored in external memory. The associated read and write addresses

are generated and sorted to control the transactions between external and on-chip

memories.

The RTL module library consists of manually coded Verilog templates describing

the computations and dataflow of various types of layers. The templates are built on

the optimized CNN acceleration strategy described in Ma et al. (2018a). That strat-

egy is designed to minimize the memory access and data movements while maximizing

the resource utilization. The Verilog parameters that determine the size of PEs and

buffers are configured based on the design variables. The parameters for runtime

control are initialized by compiler and stored in configuration registers. The intra-tile

execution flow of layers, as shown in Figure 4.2(c), is predefined in the templates
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and can be customized by the compiler to enable execution of certain layers during

run time. The top-level accelerator system template, shown in Figure 4.3, integrates

these modules with the reconfigurable dataflow, where only the required computing

modules are compiled for a given CNN model, bypassing the unused modules.

4.2 Acceleration of Convolution Loops

4.2.1 Convolution Loop Optimization and Design Variables

Convolution involves three-dimensional multiply and accumulate operations (MAC)

of input feature maps and kernel weights as illustrated in Figure 4.1, where the param-

eters (N*) prefixed with capital N denote the algorithm-defined dimensions of feature

and kernel maps of one Conv layer. Since convolution dominates the CNN operations,

the acceleration strategy of convolution loops dramatically impacts the parallel com-

putation efficiency and memory access requirements. Therefore, we employ the loop

optimization techniques in Ma et al. (2018a) to customize the convolution computa-

tion and communication patterns. Loop unrolling design variables (P*) determine

the degree of parallelism of certain convolution loops, and thus the required size and

architecture of PEs. Loop tiling increases the data locality by dividing the entire

data of one layer into multiple tiles, which can be fit into the on-chip buffers. The

loop tiling design variables (T*) determine the required minimum sizes of the on-chip

buffers, and affect the required external memory accesses.

4.2.2 Convolution Acceleration Strategy

The design of the module templtes at the RTL is based on the CNN acceleration

strategy described in Ma et al. (2018a). It achieves a uniform mapping of PEs and

reduces the accelerator architecture complexity. Figure 4.1 shows the dimensions
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Figure 4.1: Convolution loop dimensions (N*) and accelerator design variables of loop

unrolling (P*) and loop tiliing (T*). Type: i: input; o: output; k: kernel; f : feature.

of the inputs (input feature maps and kernel maps) and the output feature maps.

The loop unrolling or the parallel computations are only employed within one input

feature map and across multiple kernel maps. The computations shown in Figure 4.1

are as follows.

1. Pix = Pox > 1 and Piy = Poy > 1: in every cycle, Pix×Piy number of pixels

from different (x, y) locations in the same input feature map are multiplied with

one identical weight;

2. Pof > 1: in every cycle, one input pixel is multiplied by Pof weights from Pof

different kernel maps, which contributes to Pof pixels in Pof output feature

maps.
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The total number of parallel operations is Pox×Poy×Pof with Pkx = Pky = Pif =

1. By this means, each PE contributes to one independent output pixel and no adder

tree is needed to total the partial sums of different PEs Ma et al. (2018a). Therefore,

a PE is a MAC unit consisting of one multiplier followed by an accumulator in this

work. Both pixels and weights are reused by multiple MAC units and high degree

of parallelism can be supported with large Nox × Noy × Nof. The data required

to compute one final output pixel are fully buffered to minimize the partial sum

storage, i.e. Tkx = Nkx, Tky = Nky, T if = Nif. We also set Tox = Nox so that an

entire row is buffered to improve the DRAM transactions with data from continuous

addresses. Furthermore, the required buffer sizes can be changed by tuning Toy and

Tof . Following the above optimized settings, different P* and T* design variables

can be adjusted by the user to explore the best trade-off between performance and

hardware resource usage, e.g. DSP blocks and block RAMs (BRAMs), for the target

FPGA platform.

4.3 End-to-end CNN Accelerator

4.3.1 Layer-by-layer Execution Schedule

In conventional CNN algorithms, different layers are connected in sequence, which

allows for a straightforward layer-by-layer serial computation. The recent CNN al-

gorithms (e.g. ResNet He et al. (2016a)) are DAGs, with combinations of serial and

parallel branches. A reconfigurable layer-by-layer execution schedule is designed to

handle the different combinations of stacked layers and the DAG as shown in Fig-

ure 4.2. Therefore, the present mapping of a DAG onto an FPGA still results in a

serial computation of the layers.

There are many types of layers in a CNN algorithm, and the number and order
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Figure 4.2: The execution schedule is designed to handle different CNN topology: (a)

layer-by-layer execution (b) inter-tile execution inside one layer (c) intra-tile process

inside one tile.

of these stacked layers could be quite different. A CNN layer that reads the DRAM

for its input is referred to as a key-layer. Therefore, Conv, Pool and FC are assigned

as key-layers so that the computation or design variable settings between these layers

are relatively independent, while all other layers are affiliated-layers to the key-layers.

The DRAM access of an affiliated-layer can be eliminated, however its computing pat-

tern, e.g. unrolling and tiling variables, must depend on the key-layer configuration,

which hampers its design flexibility. A layer cluster is a subgraph of the DAG that

consists of a key-layer and zero or more affiliated-layers. The example DAG shown

in Figure 1.1 has six clusters, numbered 1© through 6©. The Conv1( 1©), Pooling( 2©)

and FC( 6©) layers in Figure 1.1 are individual key-layers (i.e. clusters with only a
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key-layer) whereas cluster 5© has one key-layer (Conv4) and three affiliated-layers

(Batchnorm, Eltwise and ReLu). The layer-by-layer serial computation is essentially

the serial execution of clusters as illustrated in Figure 1.1 and Figure 4.2(a). The

order of computation of the clusters is set before compilation, and the only rule is to

ensure that all the predecessors of any key-layer is executed prior to that key-layer.

When tiling of loops is performed, each cluster is divided into multiple tiles to

fit into the on-chip buffers. This is illustrated in Figure 4.2(a)(b). As clusters may

contain different kinds of layers, (e.g. layer cluster 4© in Figure 1.1 does not have

BatchNorm and Eltwise), a general intra-tile execution schedule is designed as shown

in Figure 4.2(c) to control whether or not a layer is executed for a specific cluster

during runtime. The select signals, e.g. “is Conv?” in Figure 4.2(c), are stored in

the configuration registers and initialized based on the input CNN topology during

compilation. If a layer does not exist in the given CNN, the select signal becomes

constant to be “No”. This schedule is also flexible as it allows introduction of new

types of layers by the simple addition of new select signals.

Three levels of control logic, namely global, inter-tile, and local control logic,

are required to govern the layer-by-layer, inter-tile and intra-tile sequential execution

(Figure 4.2). The parameters of each layer, e.g. kernel sizes, feature map dimensions,

unrolling and tiling variables, and iteration numbers, are stored in configuration reg-

isters. The global control logic keeps track of the number of executed clusters, and

loads the current layer’s parameters from the configuration registers into the local

control logic registers. Each type of layer module has its own local control logic to

perform the iterations within the layer. By this means, we can just use one set of

control logic for layers with varying dimensions by initializing configuration registers

for different layers during compilation.
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4.3.2 Top-level Acceleration System and Dataflow

The overall CNN acceleration system and dataflow is shown in Figure 4.3, where

different types of layers are modularized to establish the RTL module library. During

compilation, if a certain type of layer does not exist in the given CNN model, its

corresponding module will not be compiled or synthesized to save the hardware re-

sources, and the dataflow just bypasses this module. During runtime, whether or not

a layer is executed is controlled by the global control logic by asserting “start” signal

to the module following the execution schedule. After receiving a “done” signal from

the current layer, global control logic iterates to the next layer.

The reconfigurable computing modules, as shown by the red boxes in Figure 4.3,

are manually coded as maximally parameterized Verilog scripts. Each type of module

template is designed to be reused by any layer of the same type, in any CNN. The

varying layer sizes and loop design variables are handled by initializing the configura-

tion registers based on the layer property. This RTL module library is designed to be

easily extended with new layers for more CNN algorithms and the existing modules

can also be further optimized for performance and efficiency. The detailed design of

the computing modules is discussed in Section 4.5.

The direct memory access (DMA) engine is used to transfer data between external

and on-chip memories. The data scatter module is designed to distribute a data

stream from one DMA write port to multiple input buffers, and the data gather

module is designed to collect data from multiple output buffers into one DMA read

port. The detailed memory system design is presented in Section 4.4.
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Figure 4.3: Reconfigurable top-level CNN acceleration system, where the dataflow is

from external memory to input buffers and then into computing modules, the results

are stored in output buffers and finally sent back to external memory.

4.4 External and On-chip Memory System

4.4.1 Storage Pattern in DRAM

Due to the limited capacity of on-chip BRAMs, both kernel weights and interme-

diate pixel results are stored in external memory, i.e. the DRAM, and the on-chip

BRAMs are used as buffers between DRAM and PEs. The proposed storage pat-

tern of kernel weights and intermediate pixel results in the DRAM are illustrated

in Figure 4.4(a). The pre-trained kernel weights and the input images are loaded

into DRAM before the acceleration. All the intermediate output pixels are organized

in the form from row-by-row, map-by-map to layer-by-layer in continuous DRAM
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Figure 4.4: (a) Storage pattern in DRAM. (b) Data scatter. (c) Data gather, where

mXrY denotes the Y -th row in the X-th feature map.

4.4.2 DMA Manager

The DMA engine is used to communicate data between DRAM and on-chip

BRAMs. A custom DMA manager module is designed to control the DMA operation

using preload descriptors. The descriptor sets the source and destination addresses

and the transaction bytes. Given the CNN parameters, loop design variables and the

order of computation of the layers, the descriptors are generated by the compiler and

stored in the on-chip BRAM. As weights are loaded into the DRAM before acceler-

ation, we have the freedom the reorganize the weight storage pattern during compi-
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lation to enable the continuous DRAM read operations. Therefore, a tile needs only

one descriptor to read the weights. As we compute multiple output feature maps in

parallel, Pof weights from Pof kernel maps are grouped together and continuously

stored in DRAM. The weight groups are stored in the order along Nkx, Nky, Nif

and Nof dimensions. To read/write the pixels from/to the DRAM, one descriptor is

responsible to transfer a portion of one input/output feature map, e.g. Tix×Tiy con-

tinuous pixels. If one entire feature map is buffered, e.g. Tix = Nix, T iy = Niy, one

descriptor can read/write multiple feature maps because these pixels across different

maps are also continuously stored.

4.4.3 Data Scatter and Gather

The accelerator has two memory mapped slave ports to receive/send data from/to

one DMA, respectively. The data stream from the DRAM is in continuous form and

a data scatter is designed to distribute and rearrange data to multiple input pixel

buffers as illustrated in Figure 4.4(b), where mXrY denotes the Y -th row in the X-

th feature map. With different length of feature map rows, one mXrY may occupy

different number of addresses. The data scatter module counts the number of received

pixels based on the received DMA write signal and generates the write addresses and

write enable signal for the buffers. Similarly, the data gather module in Figure 4.4(c)

is designed to collect data from multiple output pixel buffers into continuous form to

benefit DMA transactions.

4.4.4 Dual Buffer Structure

The dual buffer structure (or ping-pong buffer structure) Zhang et al. (2015) is

employed to overlap the PE computation with external memory communication to

decrease the overall latency. By this means, while the DMA is writing/reading one
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buffer, the PE array can read/write the other buffer simultaneously, as illustrated

in Figure 4.5. With one DRAM bank, the DMA is designed not to read and write

DRAM at the same time to avoid potential conflict, and the DMA only sequentially

writes input/weight buffers and reads output buffers at different times.
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Figure 4.5: The dual buffer structure and its pipeline schedule is used to overlap

computation with memory communication to improve the throughput. (a) All the

weights of this layer are fully buffered and the weights only need to be read once from

DRAM. (b) All the pixels of this layer are fully buffered and the pixels only need to

be read once from DRAM.

Figure 4.5(a) illustrates the pipeline schedule when the weight buffers fully cover
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all the weights of this Conv layer, where we only need to read the weights from DRAM

once and different tiles can reuse the weights without reloading them from the DRAM

again. Similarly, the input buffers fully cover all the input pixels of this Conv layer

in Figure 4.5(b), and different tiles can reuse the pixels. If the buffers cannot fully

cover either all pixels or all weights of one layer, the same pixels or weights need to

be read multiple times from the DRAM Ma et al. (2018a).

Before the computation of Tile #1, we need to load both input pixels and weights

of Tile #1 into the buffers. While computing Tile #1, we can start to load the

inputs (Figure 4.5(a)) or weights (Figure 4.5(b)) of Tile #2 into the other buffer and

write outputs to the output buffer. In Figure 4.5(a), the computation time of Tile

#1 is longer than the delay of loading input buffer, so Tile #2 can only start after

the completion of Tile #1 computation, which means its overall delay is bounded

by the computation delay. On the other hand, in Figure 4.5(b), the memory delay

is longer than the computation time of Tile #1, so Tile #2 can only start after

the memory transaction is finished, which makes its delay bounded by the memory

communication delay. Since the DMA can only start reading the output buffer after

the computation of this tile is fully completed, the outputs of Tile #1 are transferred

to DRAM during/after the computation of Tile #2, while the outputs of Tile #2

are written into the other output buffer. To simplify the control logic, the pipeline

of computation and memory transaction is currently only within each layer. By this

means, the write of input/weight buffers of the first tile and the read of output buffer

of the last tile are not overlapped with computation, which limits the efficiency of

dual buffer structure to further improve the throughput.
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4.4.5 Computation Bounded vs. Memory Bounded

The roofline model is introduced in Zhang et al. (2015) to analyze the performance

bottleneck of the CNN accelerator, which is mainly affected by the available compu-

tation resources (DSP or MAC units) and the external memory (DRAM) bandwidth.

When overlapping computations with external memory transactions, if the computa-

tion delay exceeds the memory delay, the design is said to be computation bounded,

with the bound referred to as the computation roof throughput. Otherwise, it is said

to be memory bounded, with the bound referred to as the memory roof throughput.

The computation roof throughput (DSP roof) is defined as:

DSP roof(GOPS) =
#operations(GOP )

DSP delay(s)
,

DSP delay(s) =
#operations

2×#MACs
× clock period(s).

(4.1)

where #operations is the number of operations and #MACs is the number of MAC

units. One MAC unit computes two operations (one multiplication and one addition)

at one clock cycle. Therefore, the DSP roof is determined by the number of MAC

units and the operating clock frequency. The memory roof throughput (DRAM roof)

is defined as:

DRAM roof(GOPS) =
#operations(GOP )

DRAM delay(s)
,

DRAM delay(s) =
#data(GB)

DRAM BW (GB/s)
.

(4.2)

where DRAM BW is the external memory bandwidth, and #data is the data size

of memory accesses including both reading inputs/weights from DRAM and writing

outputs to DRAM. The roof throughputs (DSP roof and DRAM roof) are shown

in Figure 4.6 for each Conv layer of different CNN algorithms. The DSP roof of

Arria 10/Stratix 10 are computed with different number of MAC units at 240/300

MHz, respectively. The DRAM roof is directly proportional to computation to
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communication ratio (CTC) Zhang et al. (2015) by memory bandwidth, e.g. 12 GB/s

in Figure 4.6. If DSP roof is lower than DRAM roof , the design is computation

bounded, otherwise it is memory bounded. Obviously, the attainable throughputs

are lower than both roof throughputs. With relatively large intermediate feature

map dimensions and kernel sizes, VGG-16 has a larger CTC ratio or memory roof

throughput than NiN, GoogLeNet and ResNet, which makes its implementation easier

to be computation bounded as shown in Figure 4.6. By this means, the increase of

hardware resources, e.g. from Arria 10 to Stratix 10, is expected to benefit the

throughput improvements of VGG-16 more than the other three algorithms, which

will be demonstrated in Section 4.6. The DSP roof with 6,272 MAC units on Stratix

10 are already larger thanDRAM roof of most layers in NiN, GoogLeNet and ResNet

as in Figure 4.6 that makes the design memory bounded, which means the increase

of the number of MAC units to be 8,192 will only bring insignificant performance

enhancement. Limited by the utilization of computation resources and the efficiency

of external memory accesses, the real throughput of one layer may not be able to

achieve the roof throughput of this layer.

4.5 Reconfigurable CNN Computing Modules

4.5.1 Convolution Modules (Conv)

Based on our convolution acceleration strategy, the module template of Conv layer

is designed as in Figure 4.7, which follows the computing architecture in Ma et al.

(2018a). There are Pox×Poy×Pof independent PEs in Conv module, and each PE is

a MAC unit consisting of one multiplier followed by an accumulator. With judiciously

chosen loop unrolling scheme, both pixels and weights are reused by multiple MAC

units to reduce buffer read operations. The partial sums are consumed inside each
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Figure 4.6: The roof throughputs are limited by computation resources and memory

bandwidth at different layers of diverse CNN algorithms.

MAC unit so that the movements of partial sums are minimized.

The local control logic inside the Conv module receives the start flag signal from

global control logic and controls the sequential computation of the four convolution

loops. It is composed of multiple counters, which iterates from 0 to the dimensions of

the feature and kernel maps, the number of input and output feature maps, respec-
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tively. These parameters are read from configuration registers by the global control

logic during runtime. By this means, for different Conv layers, the compiler only

needs to generate associated parameters for each layer and maintain the same logic

implementation. The combination of the counter values in local control logic gener-

ates the buffer read and write addresses. Instead of assigning individual Conv module

for each Conv layer as in Ma et al. (2018b), the computing module in this work is

reused by all the layers of the same type, thanks to the uniform mapping of PEs and

shared local control logic.

The data router inside the Conv module is used to reshape the data form and

continuously feed input pixels from buffers into MAC units. It is comprised of multiple

data buses to handle the dataflow of different configurations of sliding strides and

zero paddings for different Conv layers. The control logic governs the switch among

different data buses for the corresponding layer. The data router can easily handle

different kernel sizes without penalty of idle clock cycles and additional logic resources,

which is realized by sequentially sliding the kernel window (Pkx = Pky = 1). The

compiler only needs to change the iteration boundary of the counters inside the control

logic for the corresponding kernel size.

There are Pox × Poy × Pof parallel outputs from the MAC units, and they

are serialized into Poy consecutive clock cycles to reduce the required number of

bias adders and the data width of output buffers. The Pox × Pof outputs are

further serialized to be Pox× #OUTBUF using multiplexers with output feature

maps stacked in the output buffer as shown in Figure 4.7.

4.5.2 Pooling Modules (Pool)

Pooling layer (Pool) is commonly employed to reduce the dimensionality of fea-

ture maps by replacing pixels within a pooling sliding window by their maximum or
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Figure 4.7: Convolution computing module (Conv) including buffers, where one MAC

is comprised of one multiplier followed by an accumulator.

average value. Pool only needs pixels from its previous layer, so it can be treated

as an affiliated layer to eliminate DRAM accesses as in Ma et al. (2018b) Ma et al.

(2018a). However, the loop design variables of Pool must depend on its key layer and

this dependency can worsen the design flexibility. If the key layer has Toy < Noy,

the pixels of one sliding window may be separated into two tiles, which demands

the storage of pixels from the last tile and causes imbalance of pooling operations

across tiles. Therefore, we treat Pool as a key layer to enable independent design

configurations at the cost of DRAM access delay. Considering the small number of
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Pool layers in CNNs, the overhead in the total latency is insignificant. Since average-

pooling (Ave-Pool) is normally at the end, where Noy is small with Toy = Noy, it

is not affected by the tiling problem. To that end, we still implement Ave-Pool as

an affiliated layer by reading input data directly from output buffers of its previous

layer.

The Max-Pool module is shown in Figure 4.8, which consists of local control logic,

register arrays and PEs. The difference from the Ave-Pool module is that the input

data are from output buffers. The counters inside the local control logic control the

sliding within one feature map and across different feature maps, and generate the

buffer read and write addresses. The Pool PEs (“POOL” component in Figure 4.8)

are either comparators for Max-Pool or accumulators followed by constant coefficient

multipliers for Ave-Pool. Pixels from one feature map are stored in one input buffer

and processed by one row of PEs as illustrated in Figure 4.8. The different data

storage pattern in the input buffers from that of Conv layer is handled by the data

scatter module. The column size of PE array is constrained by the input buffer

output width and the row size equals to the number of used input buffers, which

can be adjusted before compilation. The data router in Pool is employed to ensure

continuous feeding of pixels into PEs without idle cycles.

4.5.3 Batch Normalization and Scale (Bnorm)

Batch normalization followed by scale has been commonly used in recent CNN

models He et al. (2016a) Szegedy et al. (2017), enabling fast training convergence.

Their operations are depicted in (4.3) and (4.4):

y =
x− bn0√

bn1
, (4.3)

z = sc0× y + sc1. (4.4)
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Figure 4.8: Max-pooling computing module (Max-Pool) including buffers.

During the inference process, bn0, bn1, sc0 and sc1 are all constants for each output

feature map along Nof. Therefore, we can combine batch normalization with scale

(Bnorm) to be a single equation:

z = A× x+B. (4.5)

where A = sc0/
√
bn1, and B = sc1 − sc0 × bn0/

√
bn1. However, (4.5) still requires

multipliers and adders that are expensive. To further save the computation resources,

we continue to merge Bnorm with its preceding Conv layer. The convolution operation

can be briefly expressed as (4.6):

x(no) =

Nif×Nky×Nkx∑
ni=1

p(ni)× w(ni, no) + bias(no),

no ∈ [1,Nof].

(4.6)

76



where p(ni) is the input pixel and w(ni, no) is the kernel weight, and the Conv output,

e.g. x(no), is the input to Bnorm in (4.5). After applying (4.6) to (4.5), we have:

z(no) =

Nif×Nky×Nkx∑
ni=1

p(ni)× A(no)× w(ni, no)

+A(no)× bias(no) +B(no), no ∈ [1,Nof].

(4.7)

By this mean, the Conv layer merged with Bnorm has new weights asA(no)×w(ni, no)

and new biases as A(no) × bias(no) + B(no), with no ∈ [1,Nof]. Then, we can get

rid of the Bnorm computations during inference, and the new weights and biases of

Conv are pre-computed off-line to replace the original data. Therefore, there is no

Bnorm module in Figure 4.3.

4.5.4 Element Wise (Eltwise)

The Eltwise layer performs element-wise addition to connect two branches of layers

in ResNet CNNs as shown in Figure 1.1. As discussed in Section 4.3, we serially

compute the two branches. Eltwise is treated as an affiliated layer to the key Conv

layer in one branch and the other branch is computed first.

Eltwise is performed after its previous layer in the same branch has stored all the

results into the output buffers. Then, the pixels from the other branch are read from

DRAM and written into the input pixel buffers. Subsequently, the pixels from the

two branches are element-wise added by the adders and finally stored back into the

output pixel buffers, as illustrated in Figure 4.9. The output buffers are implemented

as dual-port RAMs so that the adder results can be written back to the output buffers

at their addends’ original locations without using additional buffers. A few pipeline

stages are introduced in the adders to avoid the conflict of writing and reading at the

same output buffer address.

77



m1r1

m1r2

m1r3

m4r1

m4r2

m4r3

m2r1

m2r2

m2r3

m5r1

m5r2

m5r3

m3r1

m3r2

m3r3

m6r1

m6r2

m6r3

Input Pixel Buffers

Adder

A
d
d
re

s
s

Output Pixel Buffers

Eltwise

Control 

Logic

m
1

r1

m
1

r2

m
1

r3

m
4

r1

m
4

r2

m
4

r3

m
2

r1

m
2

r2

m
2

r3

m
5

r1

m
5

r2

m
5

r3

m
3

r1

m
3

r2

m
3

r3

m
6

r1

m
6

r2

m
6

r3

Read Addr.
Write Addr.

Address

start

done

Adder

Adder

with Eltwise ?

Read pixels of the other 

branch from DRAM & 

write input buffers

Read input and output 

pixel buffers

Eltwise addition

ReLU

Write to output buffers

Yes

(a) (b)

Figure 4.9: (a) Eltwise exectuion schedule (b) Eltwise module architecture.

4.5.5 Concat Layer

The Concat layer is used to concatenate the outputs of multiple layers together as

shown in Figure 1.1. In this work, we assume the concatenation is only along multiple

channels and all the input layers must have the same feature map sizes (Nix× Niy),

which is the case for GoogLeNet Szegedy et al. (2015) and Inception Szegedy et al.

(2017). If the inputs of one layer is from Concat, the compiler generates DMA

descriptors that control DMA to read multiple layers of the Concat from different

DRAM addresses as the inputs. Since there is no computation in Concat, it does not

add overhead to the hardware.

4.5.6 Fully-connected (FC)

The FC layer can be treated as a special form of Conv with kernel size as Nkx×

Nky = 1×1 and feature map size as Nox×Noy = 1×1. As the kernel weights are not
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shared by pixels of one feature map, FC layer normally has a large volume of weights

but with only a few operations, which makes FC layers memory intensive. Therefore,

FC layers reuse the weight buffers with Conv layers, and the dual buffer technique

is still used to overlap the memory delay with computation, which improves the

FC latency especially for VGG implementation with heavy FC layers. The parallel

computation of FC matrix-vector multiplication is only employed across different

output feature maps such that only one pixel is multiplied with multiple weights

simultaneously, and the MAC units in Conv are reused for FC layers.

4.6 Experimental Results

4.6.1 Experimental Setup

The proposed CNN compilation methodology is demonstrated by accelerating

the inference process of both conventional CNNs, e.g. NiN and VGG, and complex

DAG form CNNs, e.g. GoogLeNet and ResNet, on two Intel FPGAs. The two Intel

FPGAs, e.g. Arria 10 GX 1150 / Stratix 10 GX 2800 FPGA, consist of 427K/933K

adaptive logic modules (ALM), 3,036/11,520 fixed-point 18-bit × 18-bit DSP blocks,

and 2,713/11,721 M20K BRAM blocks, where each M20K BRAM exhibits 20 Kbit

storage. The underlying FPGA boards for Arria 10 and Stratix 10 are Nallatech 385A

and Stratix 10 GX FPGA Development Kit, respectively, and both are equipped with

DDR3 DRAM with theoretical peak memory bandwidth of 16.9 GB/s. The compiled

Verilog scripts are synthesized by Quartus Prime. The fixed point data representation

is employed by the compiler with dynamic quantization, which dynamically adjusts

the decimal point according to the ranges of data values in different layers to fully

utilize the existing data width Guo et al. (2018) Ma et al. (2018a). The data precision

can be tuned to trade classification accuracy for hardware utilization and throughput.
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Figure 4.10: The DSP efficiency of different convolution layers in GoogLeNet is shown

to measure the degree of matching between loop dimensions and loop unrolling (Pox×

Poy × Pof), where (a)(b)(c)(d) have the same size of loop unrolling (= 3,136) but

with different shapes, and (e) has larger loop unrolling size with 6,272 MAC units.

4.6.2 Parallel Computation Efficiency

Considering that the DSP blocks in Arria 10 and Stratix 10 can implement 3,036

and 11,520 fixed-point multipliers, respectively, the maximum number of MAC units

on the two FPGAs can be around 3,000 and 11,000, respectively. To achieve better

performance with higher parallelism, we attempt to maximize the usage of DSP blocks

for the MAC operations. Based on the optimized acceleration strategy, the parallel
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or unrolled loop computations are within one feature map (Pox × Poy) and across

multiple output channels (Pof). Since the feature map sizes (Nox × Noy) and the

number of output channels (Nof) vary significantly across different layers in different

CNN algorithms, the loop unrolling degree and shape may not perfectly match the

feature map size and dimension, which causes inefficient utilization of DSP blocks or

MAC units. Therefore, the DSP efficiency Wei et al. (2017) is defined to measure

how well the parallel computation scheme matches the convolution loop dimension:

DSP efficiency =
# effective ops.

# actual performed ops.
. (4.8)

The DSP efficiency of different convolution layers is shown in Figure 6.4 using GoogLeNet

as an example. Although Figure 6.4 (a)(b)(c)(d) have the same number of parallel

MAC units (Pox×Poy×Pof = 3,136) on Arria 10, their loop unrolling shape is dif-

ferent, which results in significant difference of the overall DSP efficiency from 0.63 to

0.93. The first several layers of GoogLeNet have large feature map sizes, e.g. 114×114

and 57× 57, so that the loop unrolling sizes, e.g. 28× 7 and 14× 14, can be easily fit

into the feature maps. The layers at the end has small feature map sizes, e.g. 14× 14

and 7 × 7, which leads to DSP efficiency degradation except for Figure 6.4(c) with

small Pox × Poy = 7 × 7. However, GoogLeNet still has layers with small number

of output channels, e.g. 16 and 32, in the middle, which hurts the DSP efficiency

of Figure 6.4(c) with large Pof = 64. Finally, Figure 6.4(c) and Figure 6.4(d) show

similar overall DSP efficiency, and they are better than the other unrolling scenarios.

Stratix 10 in Figure 6.4(e) has larger parallel degrees (= 14× 7× 64) than Arria 10,

which makes it more difficult to exactly match the loop dimensions of all the layers

and results in lower DSP efficiency.
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Figure 4.11: The throughput of each convolution layer in ResNet-50, GoogLeNet and

VGG-16 with different number of MAC units on Arria 10 (240MHz) and Stratix 10

(300MHz).

4.6.3 Performance Analysis

The throughput of the CNN accelerator is collectively determined by the employed

computation resources and memory bandwidth as discussed in Section 4.4.5, as well

as the DSP efficiency, the number of external memory accesses, and the overlapping of

computation and memory transactions. The throughput of each convolution layer in
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ResNet-50, GoogLeNet, and VGG-16 is shown in Figure 6.5 with different number of

MAC units on Arria 10 (running at 240 MHz) and Stratix 10 (running at 300 MHz).

If the memory bandwidth is unlimited, the shape of the throughput curve should

well match their corresponding DSP efficiency curve. However, with limited memory

bandwidth, layers with small number of operations or small CTC ratios tend to be

memory bounded, e.g. Conv #1 in VGG-16, Conv #7 in GoogLeNet and Conv #3 in

ResNet-50 in Figure 6.5. With the increased number of MAC units, the design is more

likely to be memory bounded with the same memory bandwidth, which limits further

improvement of throughput by using more MAC units. As expected in Section 4.4.5,

layers in VGG-16 have large CTC on Arria 10 and Stratix 10, whose throughputs

can be significantly improved with the increase of MAC units. On the contrary, a lot

of layers in ResNet and GoogLeNet are memory bounded, especially for Stratix 10,

which limits the additional improvement of throughput on Stratix 10.

As mentioned in Section 4.6.2, even if the number of MAC units is the same, the

different loop unrolling shapes may considerably impact the DSP efficiency, which

will further affect the performance. The effect of different loop unrolling shapes on

the throughput of different CNNs is shown in Figure 4.12 on Arria 10 with 3,136

MAC units. Although the loop unrolling of 14 × 14 × 16 has worse DSP efficiency

than 7× 7× 64 for GoogLeNet in Figure 6.4 resulting in longer computation latency,

the throughput of 14 × 14 × 16 is higher than that of 7 × 7 × 64 in Figure 4.12,

which means 14 × 14 × 16 of GoogLeNet allows better overlapping of computation

and memory communication that overcompensates its longer computation time. The

loop unrolling configuration of 14 × 7 × 32 shows supreme throughput than other

configurations for all the CNNs in Figure 4.12, thus we take it as our optimal choice

for the Arria 10 implementation. The normalized convolution throughputs (Conv

GOPS / DSP) are shown in Fig. 4.13(b) to measure the performance provided by
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a single DPS block or MAC unit, which tend to decrease with more MAC units as

the throughputs are saturated due to the lower DSP efficiency and limited memory

bandwidth. VGG-16 exhibits higher normalized throughputs than other algorithms

due to the higher CTC ratio to benefit more from the increase of DSP blocks.
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Figure 4.12: The convolution throughput of different CNNs on Arria 10 with the same

number of MAC units is affected by the shape of loop unrolling (Pox× Poy× Pof).

The convolution throughputs of different CNNs on Arria 10 and Stratix 10 with

different number of MAC units are shown in Figure 4.13. As mentioned before,

most layers in VGG-16 have large CTC ratios that makes them more likely to be

computation bounded, thus the throughput improvement of VGG-16 can benefit more

from the increase of MAC units than the other three CNNs. The implementations

of NiN, GoogLeNet and ResNet with 6,272 MAC units on Stratix 10 are already

memory bounded so that more MAC units can only result in negligible throughput

improvement, meanwhile more hardware resources are needed. If we target at smaller

FPGA devices with less computation resources, e.g. DSP and logic, the compiler is
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scalable to decrease the number of MAC units by assigning smaller loop unrolling

size to reduce the resource requirements at the cost of lower performance.
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Figure 4.13: The compiler is scalable to change the number of MAC units (Pox ×

Poy × Pof) to trade the throughput for resource usage, e.g. DSP blocks. The

increasing of throughputs with more MAC units are saturating due to lower DSP

efficiency and limited memory bandwidth. (b) With the increased number of DSPs,

the convolution throughputs normalized to one DSP (Conv GOPS / DSP) tend to

decrease due to the saturation of throughputs.
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Table 4.1: CNN Accelerators on Arria 10 and Stratix 10 FPGAs (Batch Size = 1)

CNN NiN VGG-16 GoogLeNet ResNet-50 ResNet-152

# Oper. (GOP) 2.2 30.95 3.18 7.74 22.62

# of Parameters 7.59 M 138.3 M 6.07 M 25.5 M 60.4 M

Precision (fixed) 16 bit 8/16 bit 16 bit 16 bit 16 bit

FPGA / Tech. Intel Arria 10 GX 1150 / 20 nm

Clock 240 MHz 240 MHz 240 MHz 240 MHz 240 MHz

Pox× Poy × Pof 14× 7× 32 14× 7× 32 14× 7× 32 14× 7× 32 14× 7× 32

DSP Blocks 3,036 (100%) 3,036 (100%) 3,036 (100%) 3,036 (100%) 3,036 (100%)

Logic (ALMs) 256K (60%) 208K (49%) 277K (65%) 286K (67%) 335K (78%)

BRAM (M20K) 1,605 (59%) 2,319 (85%) 1,849 (68%) 2,356 (87%) 2,692 (99%)

Delay/Image (ms) 3.01 31.97 6.05 12.87 32.37

Overall GOPS 732.36 968.03 524.98 599.61 697.09

GOPS/DSP 0.24 0.32 0.17 0.20 0.23

FPGA / Tech. Intel Stratix 10 GX 2800 / 14 nm

Clock 300 MHz 300 MHz 300 MHz 300 MHz 300 MHz

Pox× Poy × Pof 14× 7× 64 16× 8× 64 14× 7× 64 14× 7× 64 14× 7× 64

DSP Blocks 6,304 (55%) 8,216 (71%) 6,304 (55%) 6,304 (55%) 6,304 (55%)

Logic (ALMs) 487K (52%) 469K (50%) 528K (57%) 559K (60%) 623K (67%)

BRAM (M20K) 1,915 (16%) 2,421 (21%) 1,949 (17%) 3,014 (26%) 3,350 (29%)

Delay/Image (ms) 2.56 19.29 5.70 11.85 28.59

Overall GOPS 858.66 1604.57 557.08 651.49 789.44

GOPS/DSP 0.14 0.20 0.09 0.10 0.13
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4.6.4 Results of the CNN Inference Accelerator

The specifications and performance of the proposed compiler configured CNN

FPGA accelerators are compared in Table 4.1. As discussed before, although Stratix

10 provides > 3.3× higher computation capability than Arria 10, the overall through-

put improvements of Stratix 10 over Arria 10 are from 1.06× to 1.66× due to the

lower DSP efficiency and limited external memory bandwidth, which considerably

reduce the normalized throughputs (GOPS/DSP) of Stratix 10. Suffered from heavy

FC layers, which are memory bounded, the overall throughput of VGG-16 on Ar-

ria 10/Stratix 10 (968/1,604 GOPS) is much lower than the convolution throughput

(1,402/3,309 GOPS), respectively. The latency improvements brought by dual buffer

structure is shown in Figure 4.14. Since the computation and the memory transaction

cannot be perfectly fully overlapped as mentioned in Section 4.4.4, the actual total

latency is larger than the theoretical minimum latency, which equals to the larger one

of computation delay and DRAM delay. As the Stratix 10 FPGA board has only one

DRAM bank, we also keep using one DRAM bank for the Arria 10 implementation for

comparison purposes in this work. Therefore, the throughput of ResNet on Arria 10

is lower than that in Ma et al. (2017a) using two DRAM banks, even though the dual

buffer structure is used in this work. If the Arria 10 implementations in Ma et al.

(2017a) also use one DRAM bank, the throughputs of ResNet-50 and ResNet-152

could be decreased to 440 GOPS and 530 GOPS, which are 1.36× and 1.32× worse

than this work, respectively. Although the external memory bandwidth in this work

is only half of that in Ma et al. (2017a), the throughputs of NiN and VGG-16 are still

1.25× and 1.34× higher than Ma et al. (2017a), respectively, mainly due to the dual

buffer structure, higher frequency and lower precision of weights in VGG-16. Despite

of smaller loop tiling sizes used in this work, the on-chip memory usage of M20K on
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Arria 10 is still higher than Ma et al. (2017a) due to the dual buffer structure, which

directly doubles the M20K consumption of buffers.

Aimed at deep CNNs, our compiler stores all the weights and intermediate pixel

results in DRAM by default. Considering current trends towards compressed CNNs

with dramatically reduced data bit-width and small CNNs for simpler applications,

it would be possible to fit the entire CNN model into FPGA on-chip BRAM. The

potential modification of our compiler is to connect the DMA engine with a large

enough BRAM instead of DRAM serving as the global memory, while retaining the

computing architecture the same. With decreased data size and precision, more MAC

units, higher frequency and less memory access delay could be possible to obtain

higher throughput.
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Figure 4.14: The dual buffer structure is used to overlap compuation delay with

DRAM dealy to reduce the overall total delay.
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4.6.5 Comparision with Prior Works

GPUs have been widely used to accelerate the training and inference tasks of CNN

algorithms, which are realized by thousands of parallel processing cores, high operat-

ing clock frequencies at GHz level, and large memory bandwith of hundreds of GB/s.

However, the power consumption of high performance GPUs is too high (>150W) for

power constrained applications Guo et al. (2018)Zhang et al. (2016a). Furthermore,

GPUs are best suited to process large batches of images together to fully utilize all

the resources and realize high throughput (>1TFLOPS) at the cost of longer latency

per image, which does not benefit the latency-critical applications, e.g. autonomous

drive, that require real-time recognition results. On the other hand, numerous hard-

ware accelerators based on application specific integrated circuits (ASICs) are recently

developed achieving impressively high energy efficiency, e.g. up to 10 TOPS/W with

4-bit precision in Moons et al. (2017) or even higher for fixed custom accelerators

with binary precision Bankman et al. (2018). However, CNNs with binary precision

often incur accuracy loss, the ASIC based accelerators are too specific to efficiently

handle various CNN algorithms, and the long development time of ASIC makes it

difficult to catch up with the rapid evolution of CNN algorithms.

Benefited from the high reconfigurability and the freedom to customize the ar-

chitecture, FPGAs have gained increasing popularity and there have been several

works on automatically generating FPGA accelerators for CNN algorithms Ma et al.

(2018b) Wang et al. (2016) Guo et al. (2018) Sharma et al. (2016) Zhang et al.

(2016a) Venieris and Bouganis (2016) Guan et al. (2016) Wei et al. (2017) Zeng et al.

(2018). The performance and hardware utilization of these related state-of-the-art

works are listed in Table 4.2. Compared with previous works, our RTL compiler

exhibits higher flexibility by handling not only conventional CNNs but also highly
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complex and irregular CNNs, e.g. GoogLeNet and ResNet, through reconfigurable

execution schedule, on two different scale FPGAs, e.g. Arria 10 and Stratix 10.

Our compiled CNN accelerators also significantly outperform prior works in terms

of performance, which is achieved by hardware level optimization to accelerate con-

volution loops as in Ma et al. (2018a) with high hardware utilization and low data

communication.

In Wang et al. (2016), AlexNet and NiN are implemented to evaluate their FPGA

accelerator generators. Our NiN implementation on Arria 10 (20 nm and 3,036 DSP

blocks) obtains ∼ 17.3× speedup compared to [14], which needs over 50 ms runtime

on Xilinx Zynq-7045 (28 nm and 900 DSP slices). Guo et al. (2018) presents a pro-

grammable and flexible CNN accelerator architecture, where the fixed 3×3 convolver

used to parallel compute a kernel window could significantly degrade the DSP effi-

ciency and throughput for irregular CNNs with varying kernel sizes, e.g. GoogLeNet

and ResNet. Zhang et al. (2016a) proposes a HW/SW co-designed CNN FPGA ac-

celerator based on high level synthesis (HLS). Our VGG-16 implementation on Arria

10 provides 2.7× and 3.6× overall throughput enhancement compared to Zhang et al.

(2016a) using Virtex7 690t (28 nm and 3,600 DSP slices) and Ultrascale KU060 (20

nm and 2,760 DSP slices) FPGAs, respectively. Guan et al. (2016) proposes FP-

DNN framework to automatically generate FPGA hardware to accelerate DNN with

RTL-HLS hybrid templates. Although the Stratix V GSMD5 (28 nm and 3,180 DSP

blocks) used in Guan et al. (2016) has more DSP blocks than our Arria 10, our ac-

celerator on Arria 10 can achieve 3.1× higher throughput for ResNet-152 by higher

frequency and DSP utilization through the loop optimization technique Ma et al.

(2018a). Wei et al. (2017) proposes an OpenCL-based automation flow to generate

CNN design from high level C code to FPGA using systolic array architecture, which

reduces the global PE interconnect fanout to achieve high frequency and resource
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utilization. The VGG-16 implementation on Arria 10 in Wei et al. (2017) has 1.19×

better latency than ours, probably because they have more efficient pipeline of dual

buffering and can achieve higher memory bandwidth, e.g. 19 GB/s, which is especially

important for memory bounded FC layers that comprise 28% of our Arria 10 VGG-16

total latency. However, Wei et al. (2017) only evaluated two conventional CNNs, e.g.

AlexNet and VGG-16, which have relatively regular data shape and network struc-

ture. The framework proposed in Zeng et al. (2018) automatically generates CNN

accelerators on a CPU+FPGA heterogeneous computing platform, i.e. Intel HARP,

where only the convolution layers are performed on FPGA except the first convolu-

tion layer in AlexNet. By reducing the convolution operation complexity by about 3×

in frequency domain through algorithm optimization, Zeng et al. (2018) can achieve

high normalized throughputs, e.g. 1.31 GOPS/DSP, with a small number of DSPs,

e.g. 512. In Venieris and Bouganis (2016), the fpgaConvNet framework for mapping

a CNN onto a Zynq-7000 FPGA platform is designed based on HLS and evaluated on

several relatively small CNN models, e.g. Convolutional Face Finder (CFF), LeNet-

5 and MPCNN. The automatic CNN accelerator generation framework proposed in

Sharma et al. (2016) is designed based on proposed instruction set architecture and

accelerator template for both Intel and Xilinx FPGAs. The absolute performance

numbers are not reported in Sharma et al. (2016) so that direct comparison cannot

be made. Since our compiler generated accelerator is coded in Verilog, it is not diffi-

cult to implement on FPGAs from other vendors by changing FPGA board specified

components, e.g. external memory controller.

4.7 Summary

In this chapter, a library-based RTL compiler is proposed to automatically gen-

erate customized FPGA accelerator for the inference task of a given CNN algorithm,
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which enables high-level mapping of CNN from software to FPGA and keeps the ben-

efit of low-level hardware optimization. An RTL library is developed to modularize

the commonly used layers in CNNs with hand coded Verilog templates. These build-

ing block modules are built on the optimized acceleration strategy and configured

by the hardware design variables to be scalable for different FPGAs. The topology

of the given CNN is transformed into a DAG to configure the proposed execution

schedule that controls runtime layer-by-layer serial processing. The flexibility of the

proposed CNN compilation methodology is demonstrated on two Intel FPGAs, e.g.

Arria 10 and Stratix 10, with different computing resources to implement both tra-

ditional CNNs, e.g. NiN and VGG-16, and complex CNNs, e.g. GoogLeNet and

ResNets. Our compiled CNN accelerators on Stratix 10 exhibit superior performance

compared to prior automation-based works by > 1.4× for various well-known CNNs

algorithms.
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Chapter 5

PERFORMANCE MODELING FOR CNN INFERENCE ON FPGA

5.1 Introduction

In this chapter, a high-level performance model is proposed to estimate the FPGA-

based CNN inference accelerator throughput, on-chip buffer size and the number of

external and on-chip memory accesses, which enables the efficient exploration of the

design space to identify the performance bottleneck and obtain the optimal design

configurations. The performance model is validated for a specific design strategy

across a variety of CNN algorithms comparing with the on-board test results on two

different FPGAs. The techniques that may further enhance the performance of our

current design by improving the efficiency of DRAM transactions and PE utilization

are also evaluated throughput the performance model.

The starting point of this work is a general system-level model of a CNN acceler-

ator shown in Figure 2.5, which includes the external memory, on-chip buffers, and

PEs. The hardware architectural parameters, e.g. buffer sizes, are determined by the

design variables that control the loop unrolling and tiling. Combining the design con-

straints and the choices of the acceleration strategy, a more fine-grained performance

model is built to achieve better prediction for a specific design implementation, e.g.

the design strategy in Ma et al. (2018a). By this means, the proposed performance

model makes it possible to identify the performance bottleneck and design limitations

in the early development phase by exploring the design space through unrolling and

tiling variables.
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5.2 Coarse-grained Performance Model

In this section, a coarse-grained performance model of a general CNN accelera-

tor that is independent of a specific acceleration strategy, is presented. Then, more

detailed design choices and constraints (e.g. unrolling and tiling variable settings,

memory storage pattern, and computation dataflow) are introduced to create a more

precise and fine-grained model in the following sections. Table 5.1 lists the mainly

used abbreviations and units in this chapter, which indicate the meaning of the vari-

ables discussed afterwards.

Table 5.1: List of Abbreviations and Units

Abbreviation Description Abbreviation Description

Px Pixel Rd Read

Wt Weight Wr Write

Buf Buffer InBuf Input Buffer

WtBuf Weight Buffer OutBuf Output Buffer

BW Bandwidth 1T One Tile

Unit Description Unit Description

bit / byte Data Size word RAM Depth

ms Delay Time MHz Frequency

5.2.1 Computation Latency

The number of multiplication operations per layer is Nm = Nif×Nkx×Nky×Nof×

Nox×Noy. The number of PEs that determines the degree of parallel computations by

unrolling is Pm = Pif×Pkx×Pky×Pof×Pox×Poy. A similar reasoning is applied

to determine the number of clock cycles for one buffered tile (1T ) of convolution. This
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is denoted by #cycles 1T , and is expressed as follows,

#cycles 1T =

⌈
Tif

P if

⌉⌈
Tkx

Pkx

⌉⌈
Tky

Pky

⌉⌈
Tof

Pof

⌉⌈
Tox

Pox

⌉⌈
Toy

Poy

⌉
. (5.1)

The number of tiles for one convolution layer is

#tiles =

⌈
Nif

Tif

⌉⌈
Nkx

Tkx

⌉⌈
Nky

Tky

⌉⌈
Nof

Tof

⌉⌈
Nox

Tox

⌉⌈
Noy

Toy

⌉
. (5.2)

The total number of computation clock cycles of one convolution (CV ) layer is

#cycles 1CV = #tiles×#cycles 1T. (5.3)

5.2.2 On-chip Buffer Size

Determined by the tiling variables, the input buffer (InBuf) size (bit) requirement

to store one tile of input pixels is

bit InBuf = Tix× Tiy × Tif × bit Px, (5.4)

where bit Px is the bit width of one pixel (Px). Similarly, the size (bit) requirement

of weight buffer (WtBuf) to store one tile of weights is

bit WtBuf = Tkx · Tky · Tif · Tof · bit Wt, (5.5)

where bit Wt is the bit width of one weight (Wt). The output buffer (OutBuf) size

(bit) requirement to store one tile of output pixels is

bit OutBuf = Tox× Toy × Tof × bit Px. (5.6)

The theoretical sizes of the input, weight and output buffers are the maximum

possible values of bit InBuf , bit WtBuf and bit OutBuf of all the convolution lay-

ers, respectively. In an actual implementation, the sizes of the buffers used may be

larger than these values due to inefficient storage pattern and extra garbage data.
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5.2.3 DRAM Access and Latency

In theory, the size of one tile of data read from or written to the external DRAM

should be the same as the size of buffered data. Therefore, the size (bytes) of in-

put pixels (Px) read (Rd) from DRAM for one convolution tile is byte RdPx =

bit InBuf/8. The size (bytes) of one tile of weights (Wt) read from the DRAM is

byte RdWt = bit WtBuf/8. The size (bytes) of one tile of output pixels written

(Wr) to the DRAM is byte WrPx = bit OutBuf/8. The latency (milliseconds or

ms) of DRAM transactions of one tile (1T ) of data is determined by the size of DRAM

access and the memory bandwidth. This is given by

ms DRAM 1T =
byte DRAM 1T

BW Memory × 106
, (5.7)

whereBW Memory is the external memory bandwidth (GByte/s), and byte DRAM 1T

is the size of DRAM access of one tile, which can be byte RdPx, byte RdWt, or

byte WrPx.

5.2.4 On-chip Buffer Access

The size (bits) of on-chip buffer access (bit Buf Access) is computed by multi-

plying the number of access clock cycles (#cycles Access) with the total bit width

of the corresponding buffers (width Buf).

bit Buf Access = #cycles Access× width Buf. (5.8)

During computation, it is assumed that data are continuously read from input

and weight buffers and the results are written into the output buffers every clock

cycle. Then, to estimate the buffer access during computation, #cycles Access equals

the number of computation cycles, and width Buf can be the total bit width of

input/weight/output buffers. The size (bits) of buffer access by DMA that writes
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into input and weight buffers and reads from output buffers is the same as the size

of external memory access. The data stored in the input or weight buffers may be

read multiple times during computation, hence the size of data read from buffers may

be larger than the size of data written into buffers from DRAM. Since each result is

written into output buffers only once, the size of write and read operations of output

buffers are the same.

5.3 Modeling of DRAM Access

In this section, more accurate models of the DRAM access are constructed by

including the design constraints and the variables of loop acceleration described in

Section 3.4.5.

5.3.1 Data Size of Convolution DRAM Access

The direct memory access (DMA) engine shown in Figure 2.5 is used to transfer

data to and from off-chip DRAM. To achieve the maximum bandwidth, the data

width of both the DMA (bit DMA) and the DRAM controller (bit DRAM) are set

to be 512 bits.

Pox represents the number of pixels that are computed in parallel in each output

feature map. For the feature map transfer, the number of groups of Pox pixels

associated with one DMA address is then given by #PoxGroup = bbit DMA/(Pox×

bit Px)c, where bit Px is the bit width per pixel. The effective or actual DMA

bandwidth (as a fraction of the maximum) is then given by

eff DMA Px =
#PoxGroup× Pox× bit Px

bit DMA
. (5.9)

For example, if Pox = 7, bit DMA = 512 and bit Px = 16, then there are #PoxGroup

= 4 groups of Pox pixels in one DMA address, and 4 × 7 × 16 = 448 bits are
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the effective number of bits out of the DMA bit width of 512 bits, resulting in

eff DMA Px = 0.875.

The intermediate pixel results stored in DRAM are arranged row-by-row, map-

by-map, and layer-by-layer. One convolution tile needs Tix×Tiy×Tif input pixels.

Then, the size (bytes) of the input pixels read (Rd) from the DRAM for one tile is

byte RdPx =
Tix× Tiy × Tif × bit Px

eff DMA Px× 8
. (5.10)

Note that if eff DMA Px < 1, it implies more bytes are read than necessary, due

to the alignment of data storage. Similarly, the size (bytes) of output pixels written

(Wr) to DRAM for one convolution tile is

byte WrPx =
Tox× Toy × Tof × bit Px

eff DMA Px× 8
. (5.11)

For convolution weights, the ratio of effective DRAM bandwidth to the maximum

of reading weights from DRAM is

eff DMA Wt =
bbit DMA/bit Wtc × bit Wt

bit DMA
. (5.12)

The size (bytes) of input weights read from DRAM for one convolution tile is

byte RdWt =
Tkx · Tky · Tif · Tof · bit Wt

eff DMA Wt× 8
. (5.13)

5.3.2 DRAM Access Delay of One Tile (1T )

The data width of the DRAM controller interface to the FPGA is assumed

to be bit DRAM , running at frequency of MHz DRAM . This means the theo-

retical maximum DRAM bandwidth (BW DRAM in GB/s) is (bit DRAM/8) ×

(MHz DRAM/103), which is normally very difficult to sustain due to the non-

contiguous DRAM access. For example, if bit DRAM = 512 bits, with MHz DRAM
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= 266 MHz, then BW DRAM = (512/8)× (266/103) = 17.0 GB/s as the maximum

DRAM bandwidth.

In the CNN acceleration system described in Ma et al. (2018a), DMA is oper-

ated at the same clock frequency as the CNN accelerator (i.e. MHz Accelerator)

with read/write data-width (bit DMA) of 512 bits. An asynchronous FIFO can be

inserted between DMA and the DRAM controller to synchronize data across the

two clock domains. Then, the DMA bandwidth (BW DMA) is (bit DMA/8) ×

(MHz Accelerator/103). By this means, the bandwidth of the external memory is

bounded by the effective bandwidth of both the DRAM controller and the DMA as

BW Memory = min(BW DRAM,BW DMA), which is used in Equation (5.7) to

calculate the DRAM latency.

The more accurate and specific DRAM access sizes of one tile (byte DRAM 1T )

are discussed in this section, including byte RdPx, byte WrPx, and byte RdWt.

Then, we can use Equation (5.7) to compute their corresponding DRAM access delay

(ms DRAM 1T ), e.g. ms RdPx, ms WrPx, and ms RdWt, respectively.

5.3.3 DRAM Access of Other Layers

The DRAM access and performance of other layers, e.g. max-pooling, fully-

connected (FC) and Eltwise, are also investigated and included in our performance

model. Since the analysis process of theses layers are similar to the convolution

layer, for simplicity, their detailed formulas used in the performance model are not

presented.

The pixels of max-pooling layers are also transferred to and from the DRAM with

loop tiling performed, depending on the adopted design choices Ma et al. (2018a)Ma

et al. (2017a). For max-pooling, the calculation of the DRAM transfer sizes of input

and output pixels are similar to byte RdPx in Equation (5.10) and byte WrPx in
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Equation (5.11), respectively.

The weights of fully-connected (FC) layers are stored in DRAM in the same way

as convolution, and reuse the same weight buffers. Since the intermediate results of

FC layers are small (< 20KB), they are always kept in the on-chip RAMs.

The Eltwise layer performs element-wise summation of the output pixels of two

convolution layers. We identify one convolution layer as the key layer Ma et al.

(2017a), so that Eltwise is executed directly after its key layer, and this key layer is

executed after the other convolution layer. Eltwise layer can directly read the outputs

of its key layer, which are stored in the output buffers, without accessing DRAM.

However, Eltwise layer also needs to read the outputs of the other convolution layer

from DRAM as the output buffers were already refreshed. Therefore, the size of pixels

read from DRAM for one Eltwise tile equals to byte WrPx of its key convolution layer.

5.4 Modeling of Latency

5.4.1 Computation Delay (ms) of One Convolution Tile

Setting Pif = Pkx = Pky = 1, Tif = Nif, Tkx = Nky, Tkx = Nky, and

Tox = Nox as described in Section 3.4.5, Equation (5.1) can be written as

#cycles 1T = Nif · Nkx · Nky ·
⌈
Tof

Pof

⌉
·
⌈

Nox

Pox

⌉
·
⌈
Toy

Poy

⌉
. (5.14)

Then, the computation delay (ms) of one convolution tile is

ms Compute =
#cycles 1T

MHz Accelerator × 103
, (5.15)

where MHz Accelerator is the clock frequency of the accelerator in MHz. The num-

ber of tiles of one convolution layer (#tiles) is dNof/TofedNoy/Toye based on Equa-

tion (5.2) with Nif = Tif , Nkx = Tkx, Nky = Tky, and Nox = Tox as described in

Section 3.4.5.
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Figure 5.1: The tile-by-tile delay of one convolution layer, and the DRAM access

delay is overlapped with the computation delay due to dual buffering technique. (a)

Both inputs and weights fully buffered, (b) only weights fully buffered, (c) only inputs

fully buffered, (d) neither inputs nor weights fully buffered.

5.4.2 Overall Delay (ms) of One Convolution Layer

With dual buffering technique, the DRAM access delay is overlapped with the

computation delay to improve the performance Zhang et al. (2015)Wei et al. (2017).

The overall tile-by-tile delay of one convolution layer is illustrated in Figure 5.1. Since

the dual buffering pipeline is only within one layer with the current design choice,

after the start of one layer and before the computation of the first tile, both the

input pixels and weights (Wt) of one tile are first read from DRAM. This is shown

as “Input+Wt” at the beginning of one layer in Figure 5.1. Similarly, after the

completion of the last tile’s computation, its output pixels are transferred back into
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DRAM, which is shown as “Output” at the end in Figure 5.1. Therefore, for each

convolution layer, the delay of transferring inputs of the first tile and outputs of the

last tile cannot be overlapped with the computation, and this delay is denoted as

ms Mem = ms RdPx+ms RdWt+ms WrPx. (5.16)

If the convolution layer has only one tile that is Tiy = Niy and Tof = Nof, there

is no overlapping of memory transfer and computation as shown in Figure 5.1(a),

and the delay of this tile (e.g. t = 1 in Figure 5.1(a)) is only determined by the

computation delay as in Algorithm 1 (line 2).

If the convolution layer has multiple tiles and all its weights are fully buffered, i.e.

Tiy < Niy and Tof = Nof, then the weights only need to be read from DRAM once

and can be reused by different tiles as illustrated in Figure 5.1(b). The procedure to

estimate the delay of this convolution layer is summarized in Algorithm 1 (line 3 to

line 12). The computation of the first tile (e.g. t = 1 in Figure 5.1(b)) is overlapped

with fetching the input pixels of the next tile, and there is no DMA transfer of output

pixels of the previous layer, thus the delay of this tile is determined by Algorithm 1

(line 6). The computation of the last tile (e.g. t = 3 in Figure 5.1(b)) is overlapped

with transferring the output pixels of its previous tile, and its delay is calculated by

Algorithm 1 (line 8). For the other tiles (e.g. t = 2 in Figure 5.1(b)), the communi-

cation with DRAM includes both reading input pixels and writing output pixels, and

the delay of one tile is expressed by Algorithm 1 (line 10). The overall delay of this

convolution layer is the sum of all the tiles as well as the DRAM access delay before

the first tile and after the last tile, i.e. ms Mem.

If the convolution layer has multiple tiles and all its pixels are fully buffered, i.e.

Tiy = Niy and Tof < Nof, then the pixels only need to be read from DRAM once and

can be reused by different tiles as illustrated in Figure 5.1(c). Similarly, the procedure
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Algorithm 1: Delay estimation of one convolution layer (ms 1CV ), where
C = ms Compute, I = ms RdPx, W = ms RdWt, and O = ms WrPx.

input : C, I, W , O, #tiles, #tiles y, #tiles f
output: ms 1CV

1 if Tiy = Niy and Tof = Nof then
2 T [1] = C
3 else if Tiy < Niy and Tof = Nof then
4 for t = 1 to #tiles do
5 if t = 1 then
6 T [t] = max(C, I)
7 else if t = #tiles then
8 T [t] = max(C,O)
9 else

10 T [t] = max(C, I +O)
11 end
12 end
13 else if Tiy = Niy and Tof < Nof then
14 for t = 1 to #tiles do
15 if t = 1 then
16 T [t] = max(C,W )
17 else if t = #tiles then
18 T [t] = max(C,O)
19 else
20 T [t] = max(C,W +O)
21 end
22 end
23 else
24 for tf = 1 to #tiles f do
25 for ty = 1 to #tiles y do
26 t = ty + (tf − 1)×#tiles y;
27 if ty = 1 and tf = 1 then
28 T [t] = max(C, I)
29 else if t = #tiles then
30 T [t] = max(C,O)
31 else if ty = #tiles y then
32 T [t] = max(C, I +W +O)
33 else
34 T [t] = max(C, I +O)
35 end
36 end
37 end
38 end

39 ms 1CV =
∑#tiles

t=1 T [t] +ms Mem
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to estimate the delay of this convolution layer is summarized in Algorithm 1 (line 13

to line 22).

If neither the weights nor the pixels of the convolution layer can be fully buffered,

i.e. Tiy < Niy and Tof < Nof, its pipeline schedule is shown in Figure 5.1(d) and

the associated delay is estimated in Algorithm 1 (line 23 to line 37). In this case,

either the pixels or the weights need to be re-fetched multiple times from the DRAM.

In our current design, the input pixels are re-fetched and the weights only need to

be read once. If the DRAM access requirement of input pixels is more than weights,

we can also re-fetch weights instead and only read input pixels once by changing the

DMA instructions and associated control logic. Before the computation, the first tile

of weights are loaded and reused by the following consecutive #tiles y = dNiy/T iye

tiles of pixels to perform convolution. Then, the next tile of weights are loaded and

reused by the following #tiles y tiles of pixels. This process iterates by #tiles f =

dNof/Tofe times to complete the computation with all the #tiles f tiles of weights.

By this means, the pixels are re-fetched by #tiles f times. A normal tile needs to

read input pixels of the next tile from DRAM and write output pixels of the previous

tile into DRAM, where the required weights are already loaded during the previous

tile and reused. Therefore, the delay of a normal tile is estimated as in Algorithm 1

(line 34). As the first tile does not have a previous tile, there is no transfer of output

pixels back to DRAM as in Algorithm 1 (line 28). For the last tile, there is no need to

read input pixels for the next tile as in Algorithm 1 (line 30). When #tiles y tiles of

weights are finished (e.g. ty = 3 and tf = 1 in Figure 5.1(d)), the new tile of weights

are loaded from DRAM, and the DRAM access also includes the transfer of pixels as

in Algorithm 1 (line 32).
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Figure 5.2: The tile-by-tile delay of one pooling/fully-connected layer, and the DRAM

access delay is overlapped with the computation delay due to the dual buffering

technique.

5.4.3 Delay Estimation of Other Layers

With dual buffering technique employed, the overall tile-by-tile process of one

max-pooling layer is illustrated in Figure 5.2(a)(b), which is similar to the convolution

layer except that pooling does not need weights. If the pooling layer has only one

tile, which means the inputs of one pooling layer can be fully buffered, there is no

overlapping between memory transfer and computation as shown in Figure 5.2(a).

Figure 5.2(b) illustrates the dual buffering pipeline of one pooling layer with multiple

tiles. Similar to Algorithm 1, we can compute the overall latency of max-pooling

layers according to the tile-by-tile execution schedule, with the delay of max-pooling

computation and DRAM access calculated similar to the convolution layer.

Figure 5.2(c) shows the pipeline schedule of FC layer, where weights are fetched
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before the corresponding computation and no outputs are transferred back to DRAM.

The storage format of FC weights in the weight buffer allows us to read Pof weights

simultaneously every clock cycle to parallel compute Pof outputs. Then, the com-

putation cycles of one FC tile equal to the depth of buffered FC weights. The overall

delay of FC is bounded and determined by the computation delay or the DRAM

access delay of weights.

The delay of Eltwise layer is comprised of the DRAM access delay of pixels from

the second convolution layer and the computation time of element-wise addition. The

same size of pixels of the two convolution layers are separately stored in the input and

output buffers Ma et al. (2017a). Every clock cycle, pixels are continuously read from

the input and output buffers and computed in parallel. The number of computation

cycles of one Eltwise tile equals to the depth of its key convolution layer’s results in

the output buffers. Then, the overall delay of one Eltwise layer is the product of the

delay of one Eltwise tile and the number of tiles of its key convolution layer.

5.5 Size Requirement of On-chip Memory

With the specific data storage pattern of buffers, we can more precisely calculate

the required on-chip buffer sizes than the rough estimation in Section 5.2.2.

5.5.1 Size and Storage of Input Buffers

Figure 5.3 illustrates the proposed storage pattern of convolution input pixels,

which benefits the dataflow of Pox × Poy pixels from buffers into MAC units Ma

et al. (2018a). The width of one input buffer is determined by Pox to feed data for

parallel computation of Pox pixels in one feature map row. The number of input

buffers is determined by Poy to feed data for parallel computation of Poy multiple

output rows. In Figure 5.3, c(x) denotes one input pixel in the x-th column of a
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Figure 5.3: The convolution data storage pattern in the input pixel buffers.

certain row, where x ∈ {1, 2, . . . , T ix− 2× padding} and Tix includes both the east

and west zero padding. The east and west zero paddings are not stored in buffers

and instead they are masked out by control logic before loading into the MAC units.

The number of addresses or words occupied by one row is

word 1Row = d(Tix− 2× padding)/Poxe. (5.17)

In Figure 5.3, r(i, y) is the y-th row of the i-th input feature map, where i ∈

{1, 2, . . . , T if} and y ∈ {1, 2, . . . , T iy}. The Tiy rows of one input feature map

including north and south zero paddings if they exist are distributed across the Poy

number of input buffers. With stride = 2 as in Figure 5.3, two adjacent rows are

continuously stored in the same buffer according to the dataflow requirement. Then,
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the number of rows of one feature map, i.e. r(i, y), in one buffer is

#rows 1Map = ddTiy/stridee/Poye × stride. (5.18)

The storage location of the subsequent input feature maps are aligned with the first

feature map to simplify the address generation logic, which causes some overhead due

to the noncontinuous storage pattern as shown by the blank spaces in the buffers

in Figure 5.3. By this means, the depth or words requirement of one input buffer

(InBuf) storing Tif input feature maps for one convolution layer is expressed as

word InBuf = word 1Row ·#rows 1Map · Tif. (5.19)

The data width of one input buffer is Pox×bit Px and the number of input buffers is

Poy×Dual with Dual = 2, where Dual represents doubling of the number of buffers

due to the dual buffer structure. Therefore, in every clock cycle, Pox × Poy pixels

can be fed into the MAC units. The input buffer size requirement of one convolution

layer is

bit InBuf = Dual × Poy × Pox× bit Px× word InBuf. (5.20)

The final input buffer size is the maximum bit InBuf of all the convolution layers.

The actual input buffer size in Equation (5.20) is larger than the rough estimation

in Equation (5.4) due to the mismatch of tile and buffer dimensions caused by the

specific storage pattern.

5.5.2 Size and Storage of Weight Buffers

The storage pattern of weight buffer is illustrated in Figure 5.4. The k(x, y)

in Figure 5.4 denotes one weight inside the Nkx × Nky kernel window, where x ∈

{1, 2, . . . , Tkx} and y ∈ {1, 2, . . . , Tky}. In the chosen design, we always have Tkx =
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Figure 5.4: The convolution data storage pattern in the weight buffer.

Nkx and Tky = Nky, so that one kernel window is fully buffered. These Tkx× Tky

weights, i.e. k(x, y), are stored in continuous addresses as we serially compute one

kernel window, e.g. Pkx = Pky = 1. In Figure 5.4, w(i, o) denotes one kernel window

of the i-th input channel and o-th output channel, which is comprised of Tkx× Tky

weights. Weights from different input channels (Tif) are stacked in different addresses

as we serially compute each input channel. To compute Pof output channels in

parallel, the weights of Pof output channels are stored at the same address of the

weight buffer. Therefore, the bit width of the weight buffer is Pof × bit Wt. The

words or depth of the weight buffer (WtBuf) is

word WtBuf = Tkx× Tky × Tif × dTof/Pofe. (5.21)
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With dual buffering, the number of weight buffers is two. The weight buffer size

requirement of one convolution layer is

bit WtBuf = Dual · Pof · bit Wt · word WtBuf. (5.22)

If Tof/Pof is not an integer, some blank spaces in the weight buffer are wasted as

in Figure 5.4. The final weight buffer size is the maximum bit WtBuf of all the

convolution layers.

5.5.3 Size and Storage of Output Buffers

After every Nkx×Nky ×Nif clock cycles, there are Pox× Poy × Pof outputs

from MAC units. To reduce the bit width of data bus and the bandwidth requirement

of output buffers as in Figure 5.5, the parallel outputs are serialized into Poy ×

dPof/#OutBufe clock cycles, where #OutBuf is the number of output buffers

excluding the dual buffer structure with #OutBuf 6 Pof . By this means, the data

width of one output buffer is Pox × bit Px, as shown in Figure 5.5, to store the

parallel Pox outputs from the same feature map.

The output buffer storage pattern is illustrated in Figure 5.5, where c(x) is the

x-th column element in one row with x ∈ {1, 2, . . . , T ox} and r(o, y) is the y-th row

in the o-th output feature map with o ∈ {1, 2, . . . , T of} and y ∈ {1, 2, . . . , T oy}.

The outputs of the same feature map are continuously stored in the same buffer in a

row-major order. One row (r(o, y)) is comprised of Tox elements (c(x)) continuously

stored in dTox/Poxe addresses, and we set Tox = Nox so that one entire row is

processed while maintaining the row-major order. One feature map has Toy number

of rows stored in one buffer and it occupies Toy×dTox/Poxe addresses. One output

buffer stores dTof/#OutBufe number of feature maps. Then, the number of words
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or the depth of one output buffer (OutBuf) for one convolution layer is

word OutBuf = dTof/#OutBufe × Toy × dTox/Poxe. (5.23)

The output buffer size requirement of one convolution layer is

bit OutBuf = (Dual ×#OutBuf)× (Pox× bit Px)× word OutBuf. (5.24)

If Tof/#OutBuf is not an integer, the blank spaces in the output buffers as in

Figure 5.5 are wasted.
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Figure 5.5: The convolution data storage pattern in the output pixel buffers.

5.5.4 Size and Storage of Pooling Buffers

The max pooling layers share the input and output buffers with convolution layers.

Due to the different dataflow requirement, the max-pooling input storage pattern in

the input buffers is different from convolution inputs, but it is the same as the output
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storage pattern of convolution outputs in Figure 5.5. In addtion, the output buffer

storage pattern of max-pooling layers is also the same as the convolution outputs in

Figure 5.5. The pixels from the same feature map are stored in the same buffer, and

different feature maps are distributed across different buffers. Therefore, the input

and output buffer depth of one tile of max pooling is similar to Equation (5.23).

The buffer size requirement of pooling layers is ensured to be smaller than that of

the convolution layers by using smaller pooling tiling variables so that there is no

overflow of pooling data.

5.6 Modeling of On-chip Buffer Access

The energy cost of accessing data in the buffers dominates the on-chip memory

energy consumption Chen et al. (2016) Han et al. (2016b), so it is essential to reduce

the size of buffer accesses for energy-efficient design. To reduce the buffer access size,

data should be reused as much as possible either by multiple PEs or by different

execution tiles, which will be discussed in this section.

5.6.1 Read Input and Weight Buffers of Convolution

Based on Equation (5.8) to estimate the buffer access, we need to compute

#cycles Access first. In this case, #cycles Access is the MAC computation clock

cycles of one tile, which is #cycles 1T in Equation (5.14). Then, the computation

clock cycles of all the convolution layers are

#cycles C =

#CONV s∑
L=1

#cycles 1T [L]×#tiles[L], (5.25)

where #CONV s is the number of convolution layers and #tiles is the number of

tiles. The size (bit) of data read (Rd) from input buffers (InBuf) for convolution

layers is computed by multiplying the read clock cycles with the total input buffer
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data width as

bit RdInBuf = #cycles C · (Pox · Poy · bit Px), (5.26)

where every Pox×Poy pixels are reused by Pof MAC units and the number of input

buffer accesses is reduced by Pof times. Similarly, the size (bit) of data read (Rd)

from weight buffers (WtBuf) for all the convolution layers is

bit RdWtBuf = #cycles C × (Pof × bit Wt), (5.27)

where every Pof weights are reused by Pox × Poy MAC units and the number of

weight buffer accesses is reduced by Pox× Poy times.

5.6.2 Write Input and Weight Buffers of Convolution

Before computation, the input data are written into the input and weight buffers

from DMA. As discussed in Section 5.4.2, not every tile needs to read both pixels and

weights from DRAM, because some pixels or weights of one tile can be reused by the

following adjacent tiles. The number of tiles of one convolution layer that write new

weights (Wt) to the weight buffer is

#tiles Wt = dNof/Tofe. (5.28)

The number of tiles of one convolution layer that write new input pixels (In) to the

input buffers is

#tiles In =


dNoy
Toy
edNof

Tof
e, if Toy < Noy and Tof < Nof

dNoy
Toy
e, otherwise

(5.29)

When neither weights nor pixels are fully buffered, i.e. Toy < Noy and Tof <

Nof, the same pixels are re-loaded dNof/Tofe times into input buffers as shown in
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Figure 5.1(d). Similar to Equation (5.20), the size (bit) of one tile (1T ) of pixels

written into the input buffers is

bit WrIn 1T = word InBuf · Poy · Pox · bit Px. (5.30)

The size (bit) of data loaded into the input buffers of all the convolution layers is

bit WrInBuf =

#CONV s∑
L=1

bit WrIn 1T [L]×#tiles In[L]. (5.31)

Similarly, the size (bit) of one tile of weights written into the weight buffers is

bit WrWt 1T = word WtBuf × Pof × bit Wt, (5.32)

and the size (bit) of data written into the weight buffers of all the convolution layers

is

bit WrWtBuf =

#CONV s∑
L=1

bit WrWt 1T [L]×#tiles Wt[L]. (5.33)

5.6.3 Data Access of Output Buffers of Convolution

The number of clock cycles to write outputs into output buffers during one tile is

the same as word OutBuf , where one word of data is written into one output buffer

in one cycle. Since every tile of one layer has outputs to be saved, the clock cycles of

writing outputs to output buffers is word OutBuf×#tiles. Then, the total cycles to

load outputs into output buffers (OutBuf) are summed up across all the convolution

layers as

#cycles WrOutBuf =

#CONV s∑
L=1

word OutBuf [L]×#tiles[L]. (5.34)

The size (bit) of results written into the output buffers is

bit WrOutBuf = #cycles WrOutBuf ×#OutBuf × Pox× bit Px. (5.35)
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Since each output is written into and read from the output buffers only once, the

size (bit) of data read from output buffers (bit RdOutBuf) by DMA equals to

bit WrOutBuf .

5.6.4 Data Access of Buffers of Other Layers

During the max-pooling computation, input pixels are read from input buffers

every clock cycle similar to the convolution layer. Then, the size (bit) of data read

from input buffers for max-pooling layers is computed by multiplying the read clock

cycles with the total input buffer data width similar to Equation (5.26). The size of

one tile of pooling inputs written into the input buffers is the same as the input buffer

size requirement of one pooling tile similar to Equation (5.31). The data access of

output buffer of pooling layers is computed similar to that of the convolution layer,

e.g. bit RdOutBuf and bit WrOutBuf , which is determined by the tiling size of

max-pooling outputs.

The buffer access of FC layer is mainly from weights. Each FC weight is loaded

into the weight buffer from DRAM only once, and every FC weight is read from the

weight buffer only once during the computation. Then, the sizes of read and write of

the weight buffer of FC layers are the same, which are determined by the FC weight

size and the buffer storage utilization.

5.7 Experiments and Analysis

In this section, the proposed performance model is used to explore the design space

by tuning the key design variables, e.g. unrolling and tiling sizes, DRAM bandwidth

and accelerator frequency, to identify the performance bottleneck and obtain the

optimal design configurations.
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5.7.1 Design Space Exploration of Tilling Variables

The loop tiling strategy determines how many data of each layer are buffered,

which affects the buffer capacity requirement, the number of DRAM accesses, and

the accelerator performance. Although we have fixed Tkx = Nkx, Tky = Nky,

Tif = Nif and Tox = Nox, the remaining two tiling variables Toy and Tof still give

us a huge design space as mentioned in Ma et al. (2018a). For example, VGG-16 has

13 convolution layers, and there are 13 × 2 = 26 tiling variables and each variable

can have 4 or more candidate values determined by Noy/Poy or Nof/Pof , then the

total number of Toy and Tof choices is roughly 426 = 4.5× 1015, which results in an

enormous solution space that cannot be enumerated. Therefore, we randomly sample

30,000 tiling configurations for different CNN algorithms to explore their impact on

the memory access and performance as in Figure 5.6, Figure 5.7 and Figure 5.8, where

we set loop unrolling variables as Pox× Poy × Pof = 7× 7× 32.

The relationship between tiling variables and the number of DRAM accesses is

investigated in Figure 5.6 with 16-bit data. The total convolution DRAM access size

is computed by

byte DRAM =

#CONV s∑
L=1

(
byte RdPx ·#tiles In+

byte RdWt ·#tiles Wt+ byte WrPx ·#tiles
)
,

(5.36)

where the right-hand side variables are computed by Equation (5.10) (5.11) (5.13)

(5.28) (5.29). The DRAM accesses of other layers are also included in Figure 5.6. One

circle in Figure 5.6 represents one design point of the tiling variables Toy and Tof .

Since the buffer size is determined by the layer with the maximum tiling size, there

could be multiple different tiling configurations in other layers leading to the same

buffer size. The buffer size in Figure 5.6 includes input/weight/output buffers, which

equals to max(bit InBuf) + max(bit WtBuf) + max(bit OutBuf) from Equation
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(a) NiN

(c) GoogLeNet

(b) VGG-16

(d) ResNet-50

Our 

design 

point

Figure 5.6: The tiling variables (Toy and Tof) are swept to explore the relationship

between the size of DRAM accesses and the total input/weight/output buffer size

requirement, where Pox× Poy × Pof = 7× 7× 32 with 16-bit data.

(5.20) (5.22) (5.24). With the increase of tiling and buffer sizes, the number of DRAM

accesses is decreasing as shown by the dashed line in Figure 5.6. After the buffer size

is increased to be large enough, we can achieve the minimum DRAM accesses. The

red dot in Figure 5.6 is our optimal design choice of Toy and Tof that balances the

buffer size requirement and the number of DRAM accesses.

Figure 5.7 shows the relationship between tiling sizes and the convolution through-

puts, where the accelerator operating frequency is 240 MHz and the DRAM band-
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(c) GoogLeNet (d) ResNet-50

(a) NiN (b) VGG-16

Our 

design 

point

Figure 5.7: The tiling variables (Toy and Tof) are swept to explore the relation-

ship between the convolution throughputs and the total input/weight/output buffer

size requirement, where Pox × Poy × Pof = 7 × 7 × 32, MHz Accelerator = 240,

BW DRAM = 14.4 GB/s.

width is 14.4 GB/s. The throughput is computed by #operations/delay, where

#operations = 2Nm including both multiply and addition, and delay is the sum of

ms 1CV over all the convolution layers. If the tiling or buffer size is too small, the

number of DRAM access and the associated latency is significantly increased, which

degrades the throughput. If the tiling size is too large or there is only one tile in

one layer, the DRAM access latency cannot be well overlapped with the computation
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delay as mentioned in Section 5.4.2, which results in lower throughput. This trend is

shown by the dashed line in Figure 5.7. The dashed lines of GoogLeNet and ResNet-

50 are not as smooth as those of NiN and VGG-16. It is mainly because GoogLeNet

and ResNet-50 have more layers resulting in much larger design space, which makes

it more difficult to cover all the design choices through random sampling. The red

dots in Figure 5.7 are our design choices of Toy and Tof , which are the same in

Figure 5.6, to achieve the best throughputs.

(c) GoogLeNet (d) ResNet-50

(a) NiN (b) VGG-16

Our 

design 

point

Figure 5.8: The tiling variables (Toy and Tof) are swept to explore the relationship

between the size of on-chip buffer accesses and the size requirement of buffers, where

Pox× Poy × Pof = 7× 7× 32.
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Figure 5.8 shows the relationship between tiling sizes and the number of on-

chip buffer accesses for different CNN algorithms, which include both read and write

operations of input/weight/output buffers of all the layers in a given CNN algorithm.

Based on our acceleration strategy Ma et al. (2018a), the partial sums are accumulated

inside the MAC units, which do not involve buffer access. The estimation of the

number of on-chip buffer accesses is discussed in Section 5.6. Our design choices of

Toy and Tof shown by red dots in Figure 5.8 can achieve close to the optimal number

of buffer accesses while having best throughputs and low level of DRAM accesses.

5.7.2 Design Space Exploration for Performance

As convolution dominates the CNN operations Krizhevsky et al. (2012) Lin et al.

(2013) Simonyan and Zisserman (2014) He et al. (2016a), we focus on the design

space exploration of convolution throughputs. The convolution throughput is af-

fected by several factors, namely the accelerator operating frequency, external memory

bandwidth and the loop unrolling variables, These are explored in Figure 5.9 using

GoogLeNet as an example. With a small number of MAC units and high DRAM

bandwidth (BW DRAM) as shown in Figure 5.9(a), the accelerator throughput is

mainly bounded by computation, and thus the throughput is almost linearly increas-

ing with the frequency when BW DRAM > 12.8GB/s. If the DRAM bandwidth

is too low, e.g. 3.2 GB/s, the design is more likely to be memory bounded and the

throughput stops increasing with the frequency. With more MAC units and higher

frequency, the throughputs are tend to increase, as shown in Figure 5.9, until the

design touches the memory roof which is illustrated in Figure 5.10.

The memory roof throughput Zhang et al. (2015) in Figure 5.10 is the maximum
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(a) Pox = 7, Poy = 7, Pof = 8

(c) Pox = 7, Poy = 7, Pof = 32

(b) Pox = 7, Poy = 7, Pof = 16

(d) Pox = 14, Poy = 7, Pof = 32

Figure 5.9: The convolution throughput is affected by the accelerator operating fre-

quency, DRAM bandwidth, and the number of MAC units. GoogLeNet is shown as

an example here.

achievable throughput under a certain memory bandwidth, which is defined as,

DRAM roof(GOPS) =
#operations(GOP )

DRAM delay(s)

=
#operations(GOP )

#data(GByte)
BW Memory(GB/s),

(5.37)

where #data is the data size of DRAM accesses. Since the computation-to-communication

ratio (CTC), i.e. #operations/#data, is a constant under a certain tiling setting,
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DRAM roof is directly proportional to BW Memory. With the same setting of

BW Memory for GoogLeNet and VGG-16, the shape of the curves in Figure 5.10(a)

and (b) are similar. Since VGG-16 has a higher CTC, its memory roof through-

put is much higher than GoogLeNet in Figure 5.10. As discussed in Section 5.3.2,

the memory bandwidth (BW Memory) is bounded by both the DRAM controller

(BW DRAM) and the DMA (BW DMA). At low frequency, BW Memory is lim-

ited by BW DMA, and DRAM roof is linearly increasing with the increase of fre-

quency as in Figure 5.10. After BW DMA is larger than BW DRAM , BW Memory

is limited by BW DRAM instead, and DRAM roof stops growing with the fre-

quency. The saturated throughputs in Figure 5.9 are lower than DRAM roof in

Figure 5.10, which is mainly because there are redundant DRAM transfers and the

computation delay is not fully overlapped with the DRAM latency.

(a) GoogLeNet (b) VGG-16

Figure 5.10: The external memory roof throughput (DRAM roof) is the maximum

achievable throughput under a certain memory bandwidth.

5.7.3 Performance Model Validation

Figure 5.11 shows the comparison of throughput and latency between the perfor-

mance model and the on-board test results on Arria 10 and Stratix 10 with different
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number of MAC units, where both pixels and weights are 16-bit fixed point data.

The differences between the estimation and on-board results are about 5%, which

are mainly due to the DRAM transfer latency mismatch, minor layers (e.g. average

pooling), and some pipeline stages in the real implementation. The compilation of

our FPGA design using Quartus Pro 17.1 on 16-core Intel Xeon CPU E5-2650 v3

normally takes six to eight hours, while the performance model running on laptop

Intel Core i7-7500U CPU using MATLAB takes about 1 to 5 seconds per design.
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Figure 5.11: The performance model results are compared with on-board test results

of Arria 10 and Stratix 10 on overall (a) throughput and (b) latency.

5.8 Further Improvement Opportunities

In this section, we use the proposed performance model to evaluate the opportu-

nities that may further enhance the performance of the accelerator by improving the

124



efficiency of DRAM transactions and DSP utilization.

5.8.1 Improving DRAM Bandwidth Utilization

To maximize the bandwidth of DRAM access with bit DRAM = 512, we need to

set the DMA datawidth (bit DMA) to be 512 bits, which means one DMA transfer

address can accommodate bbit DMA/bit Pxc number of pixels. To simplify the

control logic of data bus from DMA to input buffers, different feature map rows are

aligned in different addresses in our current design. By this means, if the number

of pixels in one row is smaller than bbit DMA/bit Pxc, the successive row directly

starts from the next address instead of continuously using the same address resulting

in the waste of DMA datawidth. For example, with bit Px = 16, one address can

accommodate 512/16 = 32 pixels, if the width of the feature map is Nix = 14,

then the actual number of pixels of one row read from DRAM in Equation (5.10)

is Tix = 32, where 32 − 14 = 20 data are redundant. Some CNN models, e.g.

GoogLeNet and ResNet, have a lot of convolution layers with small Nix, e.g. 7 or 14,

then their throughputs are significantly affected by the inefficient utilization of DMA

datawidth.

To improve the DRAM bandwidth utilization, one method is to store multiple rows

in one DMA address, which involves the modifications of control logic and extra data

paths from DMA to input buffers. The other method is to keep the data aligned, but

narrow the bit width of the data bus between DMA and input buffers. To attain the

same data transfer rate, higher frequency is needed, and asynchronous FIFO may be

used. In the performance model, we reduce bit DMA to be 256 and 128 and increase

their corresponding frequency of the data bus to predict the potential throughput

improvements. With bit Px = 16 in our experiments as shown in Figure 5.12, setting

bit DMA to be 256 or 128 has the same effect as supporting two or four rows in
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(a) NiN (b) GoogLeNet

(c) VGG-16                                                     (d) ResNet-50
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Figure 5.12: Performance model predicts that the throughput will be improved by

increasing the DRAM bandwidth utilization, which is achieved by decreasing the

DMA bit width to reduce the redundant DRAM accesses.

one address with bit DMA = 512, respectively. In Figure 5.12, our current design

(DMA 512-bit) serves as the baseline with data aligned. Figure 5.12 shows that NiN,

GoogLeNet and ResNet can benefit a lot from decreasing the DMA bit width or

improving the DRAM bandwidth utilization, mainly because they have many layers

with small Nix and the layers with small Nix are memory bounded. On the contrary,

VGG-16 cannot benefit from higher DRAM bandwidth utilization as the design is

still computation bounded. Based on the prediction of the performance model, it is

compelling to improve our design for higher DRAM bandwidth utilization.

5.8.2 Merging the First Layers

In GoogLeNet and ResNet, there are multiple parallel branches of layers, and the

first layer of each branch reads input pixels from the same precedent layer. If these

126



(a) GoogLeNet (b) ResNet-50

460

500

540

580

620

660

700

14 × 7 × 32 PEs 14 × 7 × 64 PEs

T
h

ro
u

g
h

p
u

t 
(G

O
P

S
) Normal

First Layers Merged

600

620

640

660

680

700

720

14 × 7 × 32 PEs 14 × 7 × 64 PEs

T
h

ro
u

g
h

p
u

t 
(G

O
P

S
) Normal

First Layers Merged

(Our current design)

(Model predication)

(Model predication)

(Our current design)

Figure 5.13: Performance model predicts that the throughput will be improved by

merging the first layers of different parallel branches, which read from the same prece-

dent layer, to eliminate the repeated DRAM access, where “Normal” denotes our

current design as baseline.

convolution layers also have the same kernel size and stride, they can be merged into

one layer along the output feature map dimension (Nof). By this means, the input

pixels can be shared by the first layers of different branches and only need to be read

from DRAM once, as proposed in Lin et al. (2018). We change the corresponding

settings of our performance model, e.g. byte RdPx in Equation (5.10), to estimate

the effect of eliminating the repeated DRAM accesses of the precedent layer as shown

in Figure 5.13. Since GoogLeNet and ResNet are already memory-bounded in our

current design, reducing the DRAM access can considerably improve the throughputs.

The required modifications of our current design to merge the first layers involve

changing the control logic and the descriptors of DMA transactions, and there is no

significant overhead of additional hardware resources.

5.8.3 Improving PE Efficiency

Due to the highly varying dimensions of different convolution layers in a given

CNN algorithm, it is a challenge task to efficiently distribute workloads across PEs,
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Figure 5.14: Uniform: our current design as baseline with uniform PE mapping;

Adjustable: dynamically adjust the unrolling variables for different layers to improve

PE utilization; Ideal: force PE utilization to be 100%.

or we need to make the loop dimensions (N∗) divisible by their corresponding unrolling

variables (P∗). In Song et al. (2016) Putic et al. (2018), adaptive parallelism scheme

is proposed to dynamically adjust the mapping of operations on different PEs, or the

unrolling variables can be changed for each layer to maximize the PE utilization. This

requires the ability to dynamically redirect the data flow from buffers to PEs, which

may need complex control logic, incur penalty of additional resources, and aggravate

the burden on timing closure.

Instead of using uniform PE mapping and unrolling variables in the current de-

sign, we adjust the unrolling variables (Pox × Poy × Pof) for different layers to

achieve better PE utilization in the performance model as shown by “Adjustable” in

Figure 5.14. We also force the PE utilization to be 100% by removing the ceiling

functions in Equation (5.1), which is denoted by “Ideal” in Figure 5.14. However, the
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throughput improvements from adjustable unrolling strategy are very limited (< 10%)

for our design, mainly because 1) the Nox × Noy × Nof dimensions of most layers

have already been able to provide large enough parallelism for our uniform unrolling

strategy, and 2) most of our layers are memory-bounded and the reduction of com-

putation latency has little effect on the throughput. Considering the large amount of

necessary design efforts for adjustable PE mapping and low expected improvements,

we surmise it is not a primary task in our future work to adopt this technique.

5.9 Summary

In this chapter, a high-level performance model is proposed to estimate the key

specifications, e.g. throughput, of FPGA accelerators for CNN inference, which en-

ables the design space exploration to identify performance bottleneck in the early

development phase. The design strategy and resource costs are formulated using

the design variables of loop unrolling and tiling. The proposed performance model

is validated for a specific acceleration strategy across a variety of CNN algorithms

comparing with on-board test results on two different FPGAs.
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Chapter 6

ALGORITHM-HARDWARE CO-DESIGN OF DEEP LEARNING

6.1 Algorithm Customization for FPGA

The recently achieved substantial improvements in speed and accuracy of CNN for

image recognition are now being demonstrated in object detection algorithms. The

Single Shot Detector (SSD) Liu et al. (2016) algorithm uses VGG-16 CNN as the base

feature extractor to predict the bounding boxes and classification probability, and

then uses additional convolution layers at the end to predict objects from multi-scale

feature maps. With its simplified architecture, the SSD algorithm demonstrates faster

performance with higher accuracy, compared to Faster RCNN Ren et al. (2015) and

YOLO Redmon et al. (2016). However, it is still very difficult to directly implement

SSD on hardware accelerator to achieve real-time detection with high energy efficiency,

due to (1) the large volume of data and operations, (2) the use of complex nonlinear

functions, and (3) the highly varying layer sizes and configurations. Therefore, in this

chapter, we propose to customize the deep learning based detection algorithm, e.g.

SSD, to benefit its hardware implementation with low data precision at the cost of

marginal accuracy degradation.

Unlike software (CPU-GPU) implementations, direct hardware implementation

normally favors performing massive numbers of linear computations in parallel, and

with a uniform dataflow, as this maximizes the utilization of the hardware resources

and reduces the complexity of the control logic. Therefore, it is necessary to tailor

the original software implementation of SSD object detection algorithm to benefit the

hardware implementation, while maintaining sufficient accuracy. The modification
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methods and their corresponding accuracies are shown and summarized in Figure 6.1

and Table 6.1.
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Figure 6.1: Customization of SSD300 to be hardware-friendly SSD300 HW by (1)

replacing dilated convolution, (2) using constant scale instead of normalization and

(3) using uniform convolution stride.

6.1.1 Dilated Convolution

To speed up the training and inference time in the original SSD algorithm Liu

et al. (2016), the fully connected layers, e.g. fc6 and fc7, are converted to convolution
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Table 6.1: Experiments of SSD customization for hardware inference with mAP tested

on VOC07+12 test database Everingham et al. (2012)

Model
Dilated Conv.

(fc6)
Norm Constant Scale

Different Conv.

Strides
mAP

SSD300
√ √

-
√

77.30%

SSD300 1 ×
√

-
√

77.34%

SSD300 2
√

× 0.01
√

77.81%

SSD300 3
√

× 0.015
√

77.88%

SSD300 4
√

× 0.02
√

77.19%

SSD300 5
√ √

- × 77.41%

SSD300 HW × × 0.015 × 77.10%

layers. In addition, the fc6 layer is implemented as dilated convolution to expand the

receptive field without loss of resolution or coverage Yu and Koltun (2015). However,

the change of the computation pattern in convolution makes the dataflow into the

PEs significantly different from the original convolution, which requires new data bus

and control logic in hardware.

One solution is to implement the dilated convolution as original convolution, filling

the intervals inside the kernel window with zeros. The cost of this increases redundant

computation. In SSD, the configuration of fc6 is kernel size = 3, dilation = 6, and

zero-pad = 6. These can be implemented as a normal convolution with kernel size =

3 + 2 × (6 − 1) = 13, dilation = 1 and zero pad = 6. By this means, the number of

fc6 operations is dramatically increased from 3.4 GOP to 64 GOP. This is even larger

than the total number of operations in the original SSD algorithm, i.e. 62 GOP, and

is obviously unacceptable.

Another solution is to change the dilated convolution into a normal convolution
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directly and make the convolution configurations uniform with other layers. There-

fore, we set fc6 to be kernel size = 3, dilation = 1, and zero-pad = 1. This makes the

output feature map size have the same number of operations. After retraining the

SSD model, the mAP of SSD300 with the modified fc6, e.g. SSD300 1, is 77.34% as

shown in Table 6.1. This is even slightly better than the original one as 77.30%. By

this means, we can keep using the existing data bus and control logic to implement

fc6 without any performance penalty.

6.1.2 Normalization

Since conv4 3 in SSD has a different feature scale compared to the other layers,

Liu et al. (2016) applies the L2 normalization combined with scale at each location

in the feature map and learn the scale during back propagation. The normalization

operation of conv4 3 norm in SSD is expressed as:

out(x, y,m) =
scale(m)× input(x, y,m)√∑M

m=1 input(x, y,m)2
,

x ∈ [1, X], y ∈ [1, Y ],m ∈ [1,M ],

(6.1)

where X and Y are the feature map width and height, respectively, and M is the

number of feature map channels. Computing Equation 6.1 requires sum of squares,

square root and division operations, which are complex in hardware and require large

number of logic resources. Instead of directly implementing hardware for these com-

putations, we can alternatively approximate this nonlinear function by using lookup

tables to store limited points of the function, which also requires significant amount

of on-chip memory and logic. Since conv4 3 norm is only used to scale the feature

values to be the same level as other layers, we directly scale all the conv4 3 features

with a constant number during training and use the same scale value for inference.

As shown in Table 6.1, we have tried several scale values, e.g. 0.01 for SSD300 2,
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0.015 for SSD300 3, and 0.02 for SSD 4, and find that 0.015 scale results in the best

mAP of 77.88% (SSD300 3), which is even better than the original 77.30%. By this

means, we can directly scale all the features of conv4 3 by a constant number, which

significantly simplifies the control logic and reduces the required hardware computing

resources.

6.1.3 Convolution with Different Sliding Strides

Different sliding strides and zero padding in convolutions lead to different dataflow

of input features into the PEs. This requires different databus and control logic to

govern the dataflow and ensure that the proper input data are continuously fed into

PEs without idle clock cycles. Therefore, the hardware design favors regular and uni-

form convolution structures, e.g. VGG-16, to reduce the design efforts and complexity

as well as the required hardware resources. In the original SSD, conv6 2 and conv7 2

use stride of 2 to scale down the output feature map size for multi-scale detection

and all other convolution layers have stride of 1, which is not favored by hardware

design. Therefore, we change the stride of conv6 2 and conv7 2 to be 1 and add a

subsequent max pooling layer with stride of 2 to downsample the feature map. The

additional max pooling layers reuse the existing hardware module for the previous

pooling layers, which does not add overhead to the hardware resources. This modi-

fication adds about 0.64 GOP operations (≈ 1.0% of the total SSD operations) and

does not affect the overall performance noticeably. The accuracy of this modification

is shown in Table 6.1 to be 77.41% as SSD300 5.

6.1.4 Hardware-friendly SSD300 HW

After collectively applying all the aforementioned modifications of (1) removing

dilated convolution, (2) using constant scale instead of normalization and (3) employ-
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ing uniform convolution stride, we obtain the final hardware-friendly SSD300 HW as

shown in Table 6.1 with mAP of 77.10%, which is slighlty lower than the original

SSD300 by 0.20%.

6.2 FPGA Inference with Limited Precision

Although 32-bit floating point precision may be required for the training phase,

such a high precision is not necessary for inference, and thus most of the hardware

inference works to date use fixed-point data precision without significant loss of ac-

curacy Suda et al. (2016) Qiu et al. (2016) Wei et al. (2017) Ma et al. (2017b) ? Shin

et al. (2017).

Using data with low precision reduces considerably the requirement of on-chip

memory capacity and external memory bandwidth. It also improves the hardware

efficiency and performance by allowing the use of fixed-point arithmetic operations,

which demands significantly fewer FPGA computing resources, e.g. logic and DSP,

compared to floating-point operations.

6.2.1 Fixed-point Data Representation

Quantization is one of the most commonly used method to convert floating-point

represented real numbers into fixed-point format with lower precision. The bit width

of a signed fixed-point number (bit total) is comprised of one sign bit (bit sign),

integer bits (bit int) and fractional bits (bit fra) as shown by Equation 6.2:

bit total = bit sign+ bit int+ bit fra. (6.2)

In conventional fixed-point hardware implementation, the decimal point is fixed, and

defines the portion between the integer and fractional bits of all the numbers. The
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integer bit of all the numbers (x) is determined as:

bit int = dlog2 max(|x|)e . (6.3)

If bit int is larger than bit total− 1, it causes overflow error due to the large scale of

the numbers. If bit int is smaller than 1 − bit total, there is underflow problem due

to the small scale of the numbers, which may lead to significant precision loss. The

fixed-point integer number X can be obtained by rounding to the nearest integer as

Equation 6.4:

Rounding : XR =
[
x× 2bit fra

]
, (6.4)

or truncated to the largest previous integer as Equation 6.5, which is easier to imple-

ment in hardware by right shifting or discarding the least significant bits (LSB):

Truncation : XT =
⌊
x× 2bit fra

⌋
. (6.5)

6.2.2 Dynamic Quantization

Due to the large range and variance in the data in a given CNN algorithm, the

conventional fixed-point representation has to increase bit total to solve the issue of

overflow and underflow resulting in higher usage of hardware resources, e.g. memory

and logic.

To overcome this problem, we employ the dynamic quantization method in Qiu

et al. (2016) Ma et al. (2017b) Shin et al. (2017) to use fixed-point representation

within one layer and vary the decimal point across different layers. This exploits the

characteristic that the range of data in one layer is much smaller than the range across

all the layers as shown by Figure 6.2. By this means, all the weights or all the features

of one layer share the same exponent, e.g. bit fra, and have at most bit total − 1

bits of significand, whereas in a floating-point representation each number has its

own exponent and fixed bits of significand. The constraint on the bit int is relaxed
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Figure 6.2: The range of absolute values of each convolution layer’s kernel weights in

SSD300 and their corresponding bit int.

to be any integer number, which allows for a wide range of values. For example, if

the maximum absolute value of the weights in one layer is 567810 and bit total = 8,

then bit int = 13 according to Equation 6.3 and bit fra = 8 − 1 − 13 = −6. For

one weight in this layer, e.g. x = 2345.62510 = 100100101001.1012, its corresponding

fixed point number after truncation is XT = 3610 = 1001002 by Equation 6.5, where

we have 6 bit significand with the rest LSB discarded.

6.2.3 Dynamic Quantization on Hardware

In Intel Arria 10 and Stratix 10 FPGAs, there are limited number of DSP blocks

to implement multipliers for convolution operations. One DSP block can support

either one single-precision floating-point multiplier or two 18-bit × 18-bit fixed-point

multipliers. Based on this, fixed-point arithmetic can potentially achieve at least twice

the throughput compared to floating-point arithmetic by more efficiently utilizing the

available DSP resources Aydonat et al. (2017). Moreover, lower precision also benefits

the memory transactions to reduce the memory access delay and energy cost.

The design of the MAC units to compute convolution and fully-connected layers
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Example bit_total bit_sign bit_int bit_frac
Real 

number

Fixed-point

integer

Input Pixel 16 1 13 2 6789.625 27158

Weight 8 1 -2 9 0.203125 104

Output Pixel 16 1 12 3 1379.142 11033

× +

R
e
g
is

te
r

M
U

X

Input Pixel

Weight

16-bit

8-bit 24-bit

27-bit

27-bit

16-bit
Output 
Pixel

16-bit27-bit

[26:11]

[25:10]

[24:09]

[23:08]

Right shift by 8 bit

2715810

10410

010

1103210

282443210 282443210

× +

R
e
g
is

te
r

M
U

X

Input Pixel

Weight

16-bit

8-bit 24-bit

27-bit

27-bit

16-bit
Output 
Pixel

16-bit27-bit

[26:11]

[25:10]

[24:09]

[23:08]

Right shift by 8 bit

2715810

10410

010

1103210

282443210 282443210

Figure 6.3: The design of one MAC unit with dynamic quantization for convolution

and FC operations, where the multiplier is implemented by DSP and the adder is

implemented by logic.

are shown in Figure 6.3 with an example to illustrate dynamic quantization. The

inputs, weights and outputs are assumed to have bit total = 16, 8, and 16 and bit fra

= 2, 9, and 3, respectively, as listed in the table inside Figure 6.3, where the multiplier

has 24 (=16+8) bit of outputs and the adder has 27 bit of outputs with 3 redundant

bit for accumulation. Since the data range of weights and features in one layer could

be quite different, we set independent exponents or bit fra for weights and features.

The different bit fra of inputs and outputs is caused by the different feature value

ranges between different layers, or the decimal point is floated across different layers.

In order to fit the 27 bit MAC output into the same number of bits as the 16 bit

input, the 27 bit output must be truncated or right shifted. The number of bit to be

right shifted (bit right) is determined by the bit fra of input, weight and output:

bit right =

bit frainput + bit fraweight − bit fraoutput.
(6.6)
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In the example inside Figure 6.3, the MAC output 2,824,432 needs to be right shifted

by 8 (= 2 + 9− 3) bits or discarding the 8 LSB to be 11032, which is different from

11033 in the table because of the error caused by truncation and limited precision.

Since different layers may have different bit right, a multiplexer is needed at the

end to choose different truncated outputs with different bit right, which is the only

hardware overhead caused by dynamic quantization compared to the static fixed point

design. For the inference phase, the weights are pre-trained so that we can calculate

bit fra and bit int of each layer off-line before execution as shown in Figure 6.2.

Then, all the weights are dynamically quantized by rounding to be fixed point integer

numbers as in Equation 6.4 and stored in external DRAM to be used by the hardware

CNN accelerator. The ranges of feature values are obtained from testing the overall

dataset, and then bit fra and bit int of each layer are calculated. By this means, the

bit right of each layer is calculated by Equation 6.6 to control the multiplexer inside

the MAC unit.

The detection accuracies of floating-point arithmetic, dynamic quantization and

conventional fixed point arithmetic on VOC07+12 test dataset are compared in Ta-

ble 6.2 for original SSD300 and hardware friendly SSD300 HW. 16-bit precision with

dynamic quantization can provide the same level of accuracy compared with single-

precision floating-point arithmetic for both original and modified SSD algorithms.

For conventional fixed-point arithmetic, bit int has to be large enough to cover the

wide range of data of the entire SSD algorithm leading to fewer bit fra and lower pre-

cision. Compared with weights, features are more sensitive to precision and require

more bit width. Since 8-bit weights do not reduce the accuracy significantly and can

save a considerable amount of logic and memory usage, we decide to use 8-bit weights

and 16-bit features with dynamic quantization.
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Table 6.2: The accuracies of original SSD300 and hardware-friendly SSD300 HW with

different inference precisions are compared on VOC07+12 test set, and the highlighted

precision is chosen for FPGA implementation.

Model Weight Precision Pixel Precision
Dynamic

Quantization
mAP

SSD300 FP-32 FP-32 - 77.30%

SSD300 16 16
√

77.29%

SSD300 8 16
√

77.06%

SSD300 16 8
√

59.36%

SSD300 8 8
√

58.82%

SSD300 16 16 × 75.21%

SSD300 8 16 × 74.68%

SSD300 HW FP-32 FP-32 - 77.10%

SSD300 HW 16 16
√

77.11%

SSD300 HW 8 16
√

76.94%

SSD300 HW 6 16
√

35.12%

SSD300 HW 16 8
√

53.60%

SSD300 HW 8 8
√

53.23%

SSD300 HW 16 16 × 74.85%

SSD300 HW 8 16 × 74.10%

6.3 Experiments

6.3.1 Experimental Setup

CPU and GPU: The baseline CPU used in the experiment is Intel Core i7-

5930K with 6 cores, and the GPU is NVIDIA GeForce GTX 1080 Ti. Their detailed

specifications are listed in Table 6.4. The software deep learning framework we used

is Caffe Jia et al. (2014).

FPGA: The two Intel FPGAs used in the experiment are Arria 10 GX 1150 and
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Stratix 10 GX 2800. The main FPGA computation resources are DSP blocks and

adaptive logic modules (ALM). The main memory resource on FPGA chip is the block

random-access memory (BRAM) in terms of M20K with each M20K having 20 Kbit

capacity. There are 1,518/5,760 DSP blocks, 427K/933K ALMs, and 2,713/ 11,721

M20K BRAMs on the used Arria 10 and Stratix 10, respectively. The underlying

FPGA boards for Arria 10 and Stratix 10 are Nallatech 385A and Stratix 10 FPGA

Development Kit, respectively, and both are equipped with DDR3 DRAM with peak

memory bandwidth of 16.9 GB/s.
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Figure 6.4: The DSP efficiency of each convolution layer in SSD300 HW is used

to measure the match degree between parallel computation scheme and the feature

maps.

6.3.2 Discussion of Results

Parallel Computation Efficiency

To achieve better performance with higher parallelism, we attempt to maximize the

usage of DSP blocks for the MAC operations. Each DSP supports two fixed-point
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Figure 6.5: The throughput of each convolution layer in SSD300 HW is constrained

by the DSP efficiency and memory bandwidth.

multipliers in two MAC units. Constrained by the number of available DSP blocks,

we set the number of MAC units on Arria 10 and Stratix 10 to be 3,072 (= 8×6×64)

and 8,192 (= 16 × 8 × 64), respectively. This means 8 × 6 or 16 × 8 features within

the same output feature map are processed in parallel and such 64 output feature

maps are simultaneously computed. Since the feature map sizes and output channel

numbers vary significantly across different layers in SSD, the parallel degree and shape

may not perfectly match the feature map size and dimension, which causes inefficient

utilization of DSP blocks or MAC units. Therefore, the DSP efficiency Wei et al.

(2017) is defined to measure how well the parallel computation scheme matches the

feature maps:

DSP eff. =
# effective ops.

# actual performed ops.
. (6.7)

The DSP efficiency of each convolution layer is shown in Figure 6.4. The first several

layers in SSD300 have large feature map sizes, e.g. 300× 300 and 150× 150, so that

the parallel dimension can easily fit into the feature maps. The layers at the end for
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multi-scale detection have much smaller feature maps, e.g. 10× 10 and 5× 5, which

leads to considerable degradation of DSP efficiency. Fortunately, the first several

layers account for most of the total operations as shown in Figure 6.4, which makes

the overall DSP efficiency still high as 81.8% on Arria 10 and 71.5% on Stratix 10.

Stratix 10 has larger parallel degrees than Arria 10, which makes it more difficult to

match all the feature maps and results in lower DSP efficiency.

Table 6.3: Comparison of SSD300 HW with baseline SSD300 3 on Arria 10 and

Stratix 10 FPGAs

FPGA Arria 10 GX 1150 Stratix 10 GX 2800

Model SSD 300 3 SSD 300 HW SSD 300 3 SSD 300 HW

Precision 8-16 bit 8-16 bit 8-16 bit 8-16 bit

mAP 77.45% 76.94% 77.45% 76.94%

Clock (MHz) 200 240 240 300

# MAC units 3,072 3,072 8,192 8,192

DSP Block 1,518 1,518 4,370 4,363

Logic (ALM) 220K 175K 618K 532K

BRAM (M20K) 2,586 2,581 3,862 3,844

Latency (ms) 72.2 61.4 35.2 29.1

GOPS 876 1,032 1,798 2,178

Throughput

The throughput of each convolution layer in SSD300 HW, which is determined by the

number of MAC units, DSP efficiency, buffer sizes, and external memory bandwidth,

is shown in Figure 6.5. If there is unlimited memory bandwidth, the shape of the
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throughput curve in Figure 6.5 should match the DSP efficiency curve in Figure 6.4.

With limited memory bandwidth, the memory access delay may be larger than the

computation delay in some layers, or these layers are memory-bounded. For example,

the first convolution layer (conv1 1) is memory bounded for both Arria 10 and Stratix

10. Although Stratix 10 can compute the MAC operations faster, it can only achieve

the same throughput as Arria 10, because both of them are memory bounded with

the same memory bandwidth. With higher computation speed and the same memory

bandwidth, Stratix 10 encounters memory-bounded situations more often than Arria

10, which poses limitations on the throughput improvements of Stratix 10. With 8,192

MAC units operated at 300 MHz, the theoretical maximum throughput of Stratix 10

is 4,915 GOPS, which is 3.3× larger than the Arria 10 maximum throughput of 1,474

GOPS. However, Stratix 10 achieves 2.1× enhancement of throughput over Arria 10

due to the limited memory bandwidth and lower DSP efficiency.

SSD300 HW vs. Baseline SSD300 3

To evaluate the effect of tailoring SSD300 to achieve an efficient hardware imple-

mentation , e.g. SSD300 HW, we also implement SSD300 3 as in Table 6.1, where

dilated convolution (fc6) and different convolution strides are unchanged. The de-

tailed comparison results are listed in Table 6.3, including resource utilization and

throughput. Due to the special dataflow of dilated convolution, dedicated control

logic and data path router are designed in SSD300 3, which need extra design time

and efforts. To support convolution layers with strides of two, additional data buses

are used to feed proper data into the PEs. Therefore, SSD300 3 implementations on

Arria 10 and Stratix 10 consume about 26% and 16% more logic elements (ALMs)

than SSD300 HW, respectively, as in Table 6.3. Even worse, the additional data buses

tighten the critical path and decrease the operating frequency leading to 1.17× and
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1.21× throughput reduction compared to SSD300 HW, on Arria 10 and Stratix 10,

respectively. The complex nonlinear function involved in the normalization of conv4 3

is expected to require considerably more design efforts and hardware resources that

may result in even lower performance. Hence we did not continue to implement nor-

malization for the baseline design. The example detection results of SSD300 HW are

shown in Figure 6.6.

Figure 6.6: Example detection results of SSD300 HW.

FPGA vs. CPU, GPU

In Table 6.4, we compare our FPGA-based inference engine with CPU and GPU plat-

forms, for SSD300 implementation. Many latency-critical inference applications, e.g.

autonomous drive and surveillance, require the completion of detection at the speed

of incoming data stream. Although the high batch size can improve the throughput

by sharing the memory transfer delay, it worsens the latency between one input image

and its detection result. Therefore, we set the batch size to be 1 for all the platforms

to achieve the minimum latency per image. The results of CPU and GPU are based
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Table 6.4: SSD300 Inference Performance and Efficiency Comparison on Different

Platforms with Batch Size = 1

Platform Intel Core

i7-5930K

CPU

NVIDIA

GeForce GTX

1080 Ti GPU

Intel Arria 10

GX 1150

FPGA

Intel Stratix

10 GX 2800

FPGA

Technology 22 nm 16 nm 20 nm 14 nm

Clock Frequency 3.50 GHz 1.48 GHz 240 MHz 300 MHz

Max. Memory BW 68 GB/s 484 GB/s 16.9 GB/s 16.9 GB/s

Precision FP-32 bit FP-32 bit fixed 8-16 bit fixed 8-16 bit

mAP of SSD300 77.30% 77.30% 76.94% 76.94%

Latency/Image (ms) 3,272.2 32.58 61.45 29.11

Overall Throughput 19.5 GFLOPS 1,956 GFLOPS 1,032 GOPS 2,178 GOPS

Power (W) 140 250 40 100

Energy/Image (J) 458 8.1 2.4 2.9

Efficiency (GOP/J) 0.14 7.82 25.8 21.8

Note that we employed the SSD300 algorithm with data augmentation, which shows 77.3%

mAP but GPU performance was not reported in Liu et al. (2016). For SSD300 without data

augmentation, 46 fps was reported for Titan X GPU, but mAP was degraded to 74.3%.

on the original SSD300 algorithm using single-precision floating-point numbers, and

the FPGA results are based on the hardware-friendly SSD300 HW as in Table 6.2,

which uses 8-bit weights and 16-bit features with dynamic quantization to achieve the

same accuracy level as software. Aided by the customized hardware architecture spe-

cific for CNN inference acceleration, Arria 10 achieves 53× higher performance than

CPU and Stratix 10 obtains 1.12× better throughput than GPU, even if FPGAs suffer
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from lower clock frequency and much less memory bandwidth. Due to the difficulty of

directly measuring the power of CPU, GPU and FPGA, the listed power numbers are

from their datasheet specifications for only rough estimation. Based on this, Arria 10

and Stratix 10 FPGAs can achieve 3.3× and 2.8× better energy-efficiency compared

to GPU with 6.3× and 2.5× less power consumption, respectively.

6.4 Summary

In this chapter, we presents an efficient hardware implementation of the SSD300

object detection algorithm, tailored for an FPGA. The proposed design, SSD300 HW,

achieves this through three basic innovations. These are: 1) replacing the dilated con-

volution with a normal convolution, 2) using a constant scale instead of normalization,

and 3) using a uniform convolution sliding stride. Fixed-point arithmetic is employed

to reduce the computation resource usage, which significantly enhances the FPGA

inference performance, and the dynamic quantization is used to remain the detection

accuracy of floating-point representation. The proposed FPGA-based inference en-

gines achieve 1.03 TOPS and 2.18 TOPS throughput for SSD300 HW on Intel Arria

10 and Stratix 10 FPGA, respectively, and they also consume 6.3× and 2.5× less

power and obtain 3.3× and 2.8× better energy efficiency, respectively, compared to

a high-end GPU.
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Chapter 7

CONCLUSION

Many reported successes of deep learning algorithms for computer vision tasks

have motivated the development of hardware implementations of CNNs. In particular,

there has been increased interest in FPGAs as a platform to accelerate the post-

training inference computations of CNNs. To achieve high performance and low

energy cost, a CNN accelerator must 1) fully utilize the limited computing resources

to maximize the parallelism, 2) exploit data locality by saving only the required data

in on-chip buffers to minimize the cost of DRAM accesses, and 3) manage the data

storage patterns in buffers to increase the data reuse.

In this dissertation, a complete framework is proposed to compile the software

deep CNN algorithms and automatically map the inference processes onto the high-

performance FPGA accelerator, where an efficient dataflow and hardware architecture

are designed based on the convolution loop optimization and the design space is

explored through the proposed performance model.

The convolution loop optimization strategy is quantitatively analyzed in Chapter 3

aimed at efficient accelerator dataflow and high performance hardware architecture.

Chapter 4 presents the RTL compiler that enables fast and automatic mapping of

various deep CNN algorithms from software deep learning frameworks, e.g. Caffe,

onto FPGA hardware. A high-level performance model is proposed in Chapter 5 to

estimate the throughput and resource utilization of the CNN inference accelerators

allowing design space exploration at early design stage. Chapter 6 performs software-

hardware co-design to customize the SSD object detection algorithm to benefit its

hardware implementation with low data precision.
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