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ABSTRACT 

Timing performance is sensitive to fluctuations in time and motivation, thus 

interval timing and motivation are either inseparable or conflated processes. A 

behavioral systems model (e.g., Timberlake, 2000) of timing performance (Chapter 1) 

suggests that timing performance in externally-initiated (EI) procedures conflates 

behavioral modes differentially sensitive to motivation, but that response-initiated (RI) 

procedures potentially dissociate these behavioral modes. That is, timing performance in 

RI procedures is expected to not conflate these behavioral modes. According to the 

discriminative RI hypothesis, as initiating-responses become progressively discriminable 

from target responses, initiating-responses increasingly dissociate interval timing and 

motivation. Rats were trained in timing procedures in which a switch from a Short to a 

Long interval indexes timing performance (a latency-to-switch, LTS), and were then 

challenged with pre-feeding and extinction probes. In experiments 1 (Chapter 2) and 2 

(Chapter 3), discriminability of initiating-responses was varied as a function of time, 

location, and form for rats trained in a switch-timing procedure. In experiment 3 

(Chapter 4), the generalizability of the discriminative RI hypothesis was evaluated in rats 

trained in a temporal bisection procedure. In experiment 3, but not 1 and 2, RI enhanced 

temporal control of LTSs relative to EI. In experiments 1 and 2, the robustness of LTS 

medians to pre-feeding but not extinction increased with the discriminability of 

initiating-responses from target responses. In experiment 3, the mean LTS was robust to 

pre-feeding in EI and RI. In all three experiments, pre-feeding increased LTS variability 

in EI and RI. These results provide moderate support for the discriminative RI 

hypothesis, indicating that initiating-responses selectively and partially dissociate 

interval timing and motivation processes.  Implications for the study of cognition and 

motivation processes are discussed (Chapter 5).   
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Chapter 1: Introduction 

Defining, Measuring, and Describing Interval Timing 

 
“What then is time? If no one asks me, I know what it is. If I wish to explain it to him [or 

her] who asks, I do not know” ~ Saint Augustine 

Interval timing is the entrainment of behavior to periodicities of biologically 

significant events in the timescale of seconds-to-minutes, signaled by some stimulus 

(i.e., a time-marker; Buhusi & Meck, 2005; Gibbon, 1977, Sanabria & Killeen, 2007). 

Such entrainment is not just a feature of behavior, it is a critical ability leveraged in 

many disparate contexts (Marshall & Kirkpatrick, 2015; McMillan, Spetch, Sturdy, & 

Roberts, 2017). Interval timing is critical for both learning (Gallistel & Gibbon, 2000; 

Holland, Hamlin, & Parsons, 1997) and decision making (Gruart, Meck, & Doyere, 2012; 

Wittmann & Paulus, 2008). For example, animals use the passage of time to infer the 

structural and causal links between different stimuli (Kirkpatrick & Balsam, 2016; Ward, 

Gallistel, & Balsam, 2013). Individuals with impaired timing, as in individuals diagnosed 

with schizophrenia, are unable to structure their daily routines and thus often engage in 

activities out of sequence (Bonnot, Montalembert, Kermarrec, Botbol, Walter, & Coulon, 

2011; Elvevåg, Egan, & Goldberg, 2000; Ueda, Maruo, & Sumiyoshi, 2018). Interestingly, 

individual differences in decision making are related to individual differences in interval 

timing (Galtress, Garcia, & Kirkpatrick, 2012) and can be improved by training 

individuals to more accurately and precisely estimate the passage of time (Bailey, 

Peterson, Schnegelsiepen, Stuebing, & Kirkpatrick, 2018). Recently, researchers have 

argued that interval timing plays a critical role in forming our conscious experience (Yin, 

Terhune, Smythies, & Meck, 2016). Thus, interval timing is both an interesting 



2 
 

phenomenon per se and a useful diagnostic tool, a window into regulated and 

dysregulated cognition (Ward, Kellendonk, Kandel, & Balsam, 2012). 

Interval timing procedures can be classified into at least two different categories: 

immediate and retrospective timing (Killeen, Fetterman, & Bizo, 1997; Killeen & 

Fetterman, 1988) 1. In immediate timing, subjects are trained to continuously estimate 

whether reinforcement will occur now or later, and thus when to start responding. 

Examples of immediate timing include fixed-interval (FI) schedules of reinforcement, 

the peak procedure, and the switch-timing procedure. In retrospective timing, subjects 

are trained to indicate whether a just elapsed interval is longer or shorter than some 

standard(s). Examples of retrospective timing include but are not limited to the temporal 

bisection procedure. 

Figure 1.1 shows schematics of these immediate and retrospective timing 

procedures. In FI (Figure 1.1A), reinforcement is delivered following the first response 

after some interval t has elapsed. Following time-marker presentation, FI responding 

typically starts at a relatively low-rate and then transitions abruptly to a high-rate 

(Guilhardi & Church, 2004; Schneider, 1969). The time of this transition—also known as 

the break point—serves as an index of timing performance. Another index is the time to 

the first response following time-marker presentation, which is referred to as either the 

post-reinforcement pause or latency (e.g., Daniels & Sanabria, 2017a; Shull, 1971). All 

three indices approximate two-thirds t.  

                                                           
1 There is a third category: prospective timing. In prospective timing procedures, subjects 
are trained to choose between different times to reinforcement. However, performance 
in prospective timing procedures is outside the scope of the current dissertation.  
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Figure 1.1. Schematic of typical immediate and retrospective interval timing 
procedures (Panel A = immediate timing: fixed-interval (FI) and peak procedure; 
Panel B = immediate timing: switch-timing procedure; and retrospective timing: 
temporal bisection procedure). Timing performance indices are indicated by a bracket 
and labeled (i.e., latency, peak-time, latency-to-switch [LTS]). Note that for the temporal 
bisection procedure, the index is the point-of-subjective equality (a.k.a, mean LTS) 
which is inferred by fitting a sigmoid-like function to the data relating choices ‘long’ to 
the Short, Long, and intermediate intervals.  

A variant of FI, referred to as the peak procedure (Figure 1.1A; Roberts, 1981; 

Sanabria & Killeen, 2007), intermixes trials that are equal to 3t or 4t and terminate 

without reinforcement. In these peak-trials, responding initially accelerates and peaks 
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around the expected time of reinforcement (i.e., t) and then declines to some low level as 

the expected time of reinforcement recedes. Three timing performance indices can be 

calculated from this pattern of responding (Church, Meck, & Gibbon, 1994; Sanabria, & 

Killeen, 2007). The time at which responding transitions from a low- to a high-state is 

referred to as the start-time (similar to latencies in FI), which approximates two-thirds t. 

The time at which response rate is maximal is referred to as the peak-time, which 

approximates t. And the time at which responding transitions from a high-state to a low-

state is referred to as the stop-time, which approximates 1.75-2t. 

 Recently, research has focused on two different, but complementary interval 

timing procedures: the switch-timing procedure and the temporal bisection procedure. 

In the switch-timing procedure (Figure 1.1B; e.g., Balci, Freestone, & Gallistel, 2009; 

Fox, Prue, & Kyonka, 2016; Stubbs & Pliskoff, 1969), reinforcement is delivered 

following the first response after either a Short FI or Long FI. Both the Short FI and 

Long FI are each associated with a unique manipulandum but nondifferentially signaled 

when active. Following time-marker presentation, well-trained subjects start responding 

on the Short FI and, if reinforcement is not forthcoming, switch over to the Long FI. In 

Long FI trials, the time to the first response on the Long FI indexes timing performance 

and is referred to as the latency-to-switch (LTS). LTSs approximate the geometric mean 

of the Short and Long FIs (Fox et al., 2016).  

In the temporal bisection procedure (Figure 1.1B; e.g., Kopec & Brody, 2009; 

Church & Deluty, 1977; Raslear, 1985), subjects are trained to categorize a Short interval 

as ‘short’ by pressing, for example, the left lever, and a Long interval as ‘long’ by 

pressing, for example, the right lever. After sufficient training, subjects are tested with 

intermediate intervals to ascertain the degree to which subjects categorize these 
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nonreinforced, intermediate intervals as ‘long’. A function is fit to the data relating 

choices ‘long’ to the Short, Long, and intermediate intervals. Typically, this function is 

sigmoidal, reflecting the fact that subjects choose ‘long’ more frequently as the interval 

increases. From this function, the interval at which subjects choose ‘short’ equally as 

often as ‘long’ indexes timing performance and is referred to as the point-of-subject-

equality. Like LTSs, the point-of-subjective equality approximates the geometric mean of 

the Short and Long intervals (Church & Deluty, 1977).  

 

Figure 1.2. Schematic of the fundamental components of the pacemaker-

accumulator (PA) family of interval timing models. Components of PA model in 

immediate (Panel A) and retrospective (Panel B) interval timing procedures adapted 

from the schematic proposed by Daniels, Fox, Konyka, & Sanabria (2015b). See text for 

details.  
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Interestingly, certain implementations of the temporal bisection procedure 

promote behavioral sequences akin to that observed in animals trained in the switch-

timing procedure. When the ‘short’ and ‘long’ responses are in fixed locations, pigeons 

(Machado & Keen, 2003; Oliveira & Machado, 2009), rats (Gouvêa et al. 2014), and 

humans (Cambraia, Vasconcelos, & Machado, 2018) appear to make choices based on 

their relative position to the ‘short’ and ‘long’ responses at the end of the interval. At the 

beginning of an interval, subjects start in front of the ‘short’ response and then, as time 

elapses, switch over to the ‘long’ response; when the interval ends, subjects choose the 

closer of the two responses. This behavioral sequence is like the switching observed in 

Long FI trials in animals trained in the switch-timing procedure, suggesting that 

underlying choices ‘long’ are latent LTSs. To emphasize the similarity between 

performance in the switch-timing and temporal bisection procedures, the point-of-

subjective equality will also be referred to as the mean LTS.  

Performance in both immediate and retrospective timing procedures is typically 

studied within the same predominant theoretical framework: the pacemaker-

accumulator (PA) family of computational timing models (Gibbon 1977, Treisman, 1963; 

Simen, Rivest, Ludvig, Balci, & Killeen, 2013; for some limitations see Dragoi, Staddon, 

Palmer & Buhusi, 2003; Machado, Malheiro, & Erlhagen, 2009; Staddon & Higga, 1999). 

Figure 1.2 shows a schematic of the fundamental components of PA models for 

immediate and retrospective timing in the context of switch-timing and temporal 

bisection procedures, respectively2. Briefly, PA models generally assume that following 

                                                           
2 The model described in Figure 1.2 is not unique to the switch-timing and temporal 
bisection procedures. These models can be reorganized to account for performance in 
almost any interval timing procedure. To account for performance in FI and peak 
procedures, it can be assumed that subjects switch from engaging in other, non-timing 
behaviors to responding on the FI (Sanabria, Thrailkill, & Killeen, 2009). Such an 
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onset of a time-marker, a pacemaker emits pulses at some rate (1/c, where c = average 

inter-pulse interval), which are counted by an accumulator (A). In switch-timing 

procedures (Figure 1.2A), it is assumed that the pulse count in A is continuously 

compared to a pulse count sampled from memory (m) such that when the pulse count in 

A becomes sufficiently like the pulse count sampled from m, target responses switch 

from the Short FI to the Long FI (e.g., lever presses). Likewise, in temporal bisection 

procedures (e.g., location variant of temporal bisection; Figure 1.2B), it is assumed that 

subjects continuously compare whether A is similar to m and thus transition from the 

‘short’ response to the ‘long’ response in the form of a latent LTS, with choice expressed 

at the end of the interval3.  

Performance indices of both immediate and retrospective timing procedures are 

derived from target responses. Depending on how PA models are instantiated, PA 

models predict that performance indices are best described by either a gamma (Killeen & 

Fetterman, 1988; Machado 1997), normal (Gibbon, 1977; Machado, Malheiro, & 

Erlhagen, 2009), or Wald distribution (Simen, Rivest, Ludvig, Balci, & Killeen, 2013). 

For example, according to the behavioral theory of timing (Killeen & Fetterman, 1988), 

pulses are behavioral states differentially associated with target responses. The rate at 

which subjects transit behavioral states proceeds according to an endogenous Poisson 

clock at some rate (1/c). As such inter-pulse intervals are exponentially distributed and 

                                                           
assumption is consistent with the notion that responding, even in single schedules of 
reinforcement, reflects a choice between two alternatives (Herrnstein, 1974) 
3 Other decision rules have been suggested. For example, Gibbon (1981) suggested a ratio 
similarity decision rule in which subjects compare the similarity of A to samples of m 
associated with the Short interval and samples of m associated with the Long interval, 
with subjects choosing ‘short’ or ‘long’ based on whether A was most similar to the Short 
or Long interval (Allan & Gibbon, 1991; Meck & Church, 1983). However, this ratio 
similarity rule is less parsimonious than the decision rule depicted in Figure 1.2 (it 
requires two rather than one memory store), and previous research indicates that this 
decision rule is limited in applicability (see Siegel, 1986). 
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the sums of inter-pulse intervals preceding target response emission are gamma 

distributed. Thus, performance indices are gamma distributed4. This timing process is 

assumed to take a minimal amount of time to complete, requiring performance index 

distributions be shifted by the minimum performance index (δ). This variant of the PA 

model may be formally expressed as, 

1

(performance index | ) 0

1
(performance index | ) ( )

( )

1; , , , 0

M c
M

p

p e
M c

M M c

 




  

    


  

−
−

−

=  =

=  = −


 

     

(1.1) 

where parameters are as described above and Γ is the gamma function.  

Scalar and Motivated Timing Performance 
 

Of critical interest is whether performance index distributions are selectively 

sensitive to the passage of time. Performance indices (i.e., latencies, peak-times, LTSs, 

mean LTS) adhere to the scalar property (Gibbon, 1977). The scalar property states that 

the mean and standard deviation of indices linearly scale with programmed intervals 

(i.e., t or the geometric mean of Short and Long FIs in the switch-timing procedure and 

Short and Long intervals in the temporal bisection procedure) such that if the standard 

deviation is normalized by the mean, the resulting quotient (i.e., the coefficient of 

                                                           
4 Technically, such a process gives rise to an Erlang distribution, which is a special case 

of the gamma distribution in which the shape parameter 1M   rather than 

1M  and thus states that the requisite number of accumulated pulses for a target 

response denoting a performance index must be an integer. Fractional pulse counts gives 
the gamma distribution greater flexibility in describing performance indices than the 
Erlang distribution.  
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variation) is constant over a wide range of intervals. Adherence to the scalar property can 

also be assessed by determining if performance index distributions superimpose across a 

range of t. This scaling is consistent with Weber’s law, which generally states that the 

discrimination threshold of two stimuli is a linear function of stimulus intensity 

(Dehaene, 2003). This indicates that time perception follows regularities evident in other 

modalities, such as vision and audition (Howard & Shankar, 2018). Evidence for the 

scalar property is relatively ubiquitous across species (Lejeune & Wearden, 1991; cf. Bizo, 

Chu, Sanabria, & Killeen, 2006) suggesting that scalar timing performance is highly 

conserved across evolution. This also indicates that regulated and dysregulated interval 

timing can be studied in model species (e.g., laboratory rats) to directly probe both 

behavioral and neurological mechanisms.  

Surprisingly, performance indices are also sensitive to fluctuations in motivation 

(for reviews see Balci, 2014 and Galtress, Marshall, & Kirkpatrick, 2013). According to 

Bailey, Simpson, & Balsam (2016), motivation may be conceptualized as the set of 

processes governing the intensity and direction of goal-directed action. Whereas 

intensity may describe the vigor, that is the rate, at which some action is emitted, 

direction refers to whether subjects work for food over milk, water over milk, etc. (also 

see Niv, Joel, & Dayan, 2006). For example, a satiated subject may work for the same 

goal as when it is hungry but will do so at a slower pace (e.g., Corbit & Balleine, 2005; 

Dickinson, 1985). Similarly, augmenting dopaminergic signaling via administration of 

dopaminergic drugs or modulating genes related to dopaminergic signaling appears to 

alter the rate at which subjects work for goals (e.g., Beeler, Daw, Frazier, Zhuang, 2010; 

Balci 2014; Niv, Daw, Noel, & Dayan, 2007; Niv, Joel, & Dayan, 2006). In contrast, if the 

number of lever presses to obtain a goal is increased or if a goal is devalued due to 

pairing the goal with illness, then subjects will work at a similar pace but opt for the less 
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effortful and more valuable alternative (e.g., Corbit & Balleine, 2005; Dickinson, 1985; 

Johnson, Gallagher, & Holland, 2009).  

Interestingly, performance indices are sensitive to changes in food deprivation 

(e.g., Daniels & Sanabria, 2017a; Plowright, Church, Behnke, & Silverman, 2000) and 

goal costs (e.g., Bickel, Higgins, Kirby, & Johnson, 1988; Zeiler & Buchman, 1979), 

contingencies (e.g., Buriticá & dos Santos, 2017; Machado & Cevik, 1998; Ward & Odum, 

2006), and relative value. The relative value of goals may be altered by changes in 

magnitude (e.g., Balci, Wiener, Çavdaroğlu, & Coslett, 2013; Daniels, Garcia, Watterson, 

Mazur, Brackney, & Sanabria, 2015; Daniels, Fox, Kyonka, & Sanabria, 2015; Ludvig, 

Balci, & Spetch, 2011; Ludvig, Conover, & Shizgal, 2007), presence of alternative sources 

of reinforcement (e.g., Sanabria, Thrailkill, & Killeen, 2009), inducing illness by pairing 

goals with lithium chloride (e.g. Galtress & Kirkpatrick, 2009; cf. Delamater, Desouza, 

Rivkin, & Derman, 2014; Delamater, Chen, Nasser, & Elayouby, 2018 ), administration 

of psychostimulants thought to modulate dopaminergic output (e.g., Balci, Papachristos, 

Gallistel, Brunner, Gibson, & Shumyatsky, 2008; Buhusi & Meck, 2002; Daniels et al., 

2015a; Drew, Fairhurst, Malapani, Horvitz, & Balsam, 2003; for a reviews see Meck, 

1996 and Balci et al., 2014), and genetic differences in dopamine release (e.g., Balci, 

Wiener, Çavdaroğlu, & Coslett, 2013; Meck, Cheng, MacDonald, Gainetdinov, Caron, & 

Çevik, 2012; Wiener, Lohoff, & Coslett, 2011). Thus, timing performance appears to be 

sensitive to fluctuations in both the vigor and direction of goal-directed action.  

Pre-feeding Affects Timing Performance 

 

The present dissertation is concerned with pre-feeding-induced reductions in 

motivation, which reduces the vigor but not the direction of goal-directed action. In most 

published studies, pre-feeding promotes longer and more varied performance indices 
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relative to baseline (Daniels & Sanabria, 2017a; Eskin & Bitterman, 1960; Galtress & 

Kirkpatrick, 2009; Galtress, Marshall, & Kirkpatrick, 2012; Grace & Nevin, 2000; 

Plowright, et al. 2000; Shull & Brownstein, 1968). This effect has been predominantly 

observed in immediate timing procedures such as FI and the peak procedure across a 

wide range of intervals (10 s to 100 s) in a variety of animals with a variety of feeding 

regimens. Interestingly, the effect of pre-feeding on performance indices appears 

permanent so long as the reduced motivational state is maintained. 

In some cases, however, the effect of pre-feeding on timing performance appears 

transient. In rats trained on the peak procedure, Roberts (1981) observed that pre-

feeding results in later peak times at the beginning but not at the end of the session. Such 

transience could reflect learning under a new motivational state. Recently, however, 

Daniels, Overby, and Sanabria (2018) showed that within-session elongation of latencies 

in rats trained in FI is present regardless of motivational state and is not modulated by 

motivational state or the programmed FI. A similar process has also been observed on 

peak times in mice trained in the peak procedure (Balci, Ludvig, & Brunner, 2010). 

Although whether the within-session elongation of peak times is sensitive to fluctuations 

in motivation or to the programmed FI has not been tested, the data of Daniels et al. 

(2018) suggests that the transiency of the effect reported by Roberts (1981) could be due 

to the within-session elongation of peak times swamping the pre-feeding-induced later 

peak times. This interpretation indicates that the effect of pre-feeding on peak times is 

permanent but potentially obscured by processes prevalent in the latter part of sessions, 

giving the appearance of transience. 

Longer and more varied performance indices are not always observed 

simultaneously following pre-feeding. This appears particularly true in retrospective 
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timing procedures such as the temporal bisection procedure, where data on pre-feeding 

effects are scant and equivocal. For example, whereas Ward & Odum (2006) reported 

that pre-feeding resulted in a flatter psychophysical function and no shift in the mean 

LTS, McClure, Saulsgiver, & Wynne (2009) reported that pre-feeding resulted in a later 

mean LTS but not a flatter psychophysical function. McClure et al. (2009) suggest that 

this discrepancy could be due to differences in implementation of the temporal bisection 

procedure. Whereas Ward & Odum (2006) trained pigeons to associate different key 

colors with choices ‘short’ and ‘long’, with key colors counterbalanced between locations 

across trials, McClure et al. (2009) trained pigeons in the location variant of the 

temporal bisection procedure, in which choices ‘short’ and ‘long’ are in fixed locations. 

Thus, pre-feeding-induced shifts in the mean LTS might only be observed when 

temporal bisection procedures facilitate behavioral sequences akin to the behavioral 

sequences observed in animals trained in the switch-timing procedure. Surprisingly, 

even though there is some evidence indicating that overt LTSs in subjects trained in the 

switch-timing procedure are sensitive to fluctuations in motivation (e.g., Daniels et al., 

2015 a, b; Balci, Papchristos, Gallistel, Brunner, Gibson, & Shumyatsky, 2008), no study 

to-date has investigated whether such LTSs are sensitive to pre-feeding.  

There have also been a few cases in which the effects of pre-feeding have not been 

observed on performance indices. For example, McClure et al. (2009) only observed pre-

feeding effects when pigeons were pre-fed 40 g rather than 20 g of food. Studies in which 

subjects were pre-fed 20 g or less of food may therefore represent weak manipulations. 

Interestingly, the studies that used relatively weak pre-feeding manipulations are the 

same studies that used relatively long FIs, where 60 s < t < 180 s (e.g., Powell, 1972; 

Weiss & Moore, 1956; cf. Daniels & Sanabria, 2017a; Eskin & Bitterman, 1960; Shull & 

Brownstein, 1968). This suggests that whether pre-feeding yields longer, and more 
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varied performance indices depends on the degree to which subjects are pre-fed and the 

programmed intervals. It may be that the amount of pre-feeding required for effects on 

performance indices to emerge scales with the length of the programmed interval.  

Methods for Dissociating Interval Timing and Motivation Processes 
 

The sensitivity of timing performance to fluctuations in time and motivation—

specifically pre-feeding-induced reductions in motivation—suggests that most 

performance indices are not selectively sensitive to the passage of time. That is, most 

performance indices do not provide a “pure” characterization of interval timing 

(Plowright et al., 2009). Some researchers have interpreted this relationship as 

indicating that “cognition [interval timing] and motivation are inseparable mental 

operations” (Avlar et al., 2015, p. 586). However, it is unclear whether interval timing 

and motivation are “inseparable”. It is possible that interval timing and motivation are 

conflated, resulting in the appearance that interval timing and motivation are linked.  

Conflation of interval timing and motivation is evident in the assumptions of PA 

models. PA models do not allow for the possibility that interval timing and motivation 

are dissociable. The tacit assumption of all PA models is that all target responses are the 

output of a timing process and thus all performance indices characterize that timing 

process. Therefore, changes in performance indices induced by changes in motivation 

indicate, according to PA models, that motivation processes are inherent to timing 

processes. Such a relationship has influenced theory development, procedure design, 

and analyses of performance indices. For example, many theories explain the sensitivity 

of performance indices to motivation by drawing a direct link between parameters of PA 

models and motivation, such as the response threshold (θ; e.g., Balci, 2014) and the 

speed of the clock (1/c; e.g., Killeen & Fetterman, 1988; Killeen, 1995). In turn, such 
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assumptions result in procedures designed to facilitate detection of only target responses 

and analyses that assume that all performance indices characterize the output of PA 

models (i.e., all performance indices are well described by a single distribution, Equation 

1.1). The purpose of the present dissertation is to test the assumption that interval timing 

and motivation processes are inseparable.   

A Computational Approach to Dissociating Interval Timing and Motivation 

 
Interval timing procedures are relatively complex, making it unlikely that target 

responses are always under temporal control. To quote Stubbs, Dreyfus, Fetterman, 

Boynton, Locklin, & Smith (1994), “with complex stimulus arrangements, like those used 

in much current nonhuman animal research [on interval timing], multiple aspects of 

complex stimuli affect behavior and complex stimuli exert multiple effects on behavior” 

(p. 31).  Such complexity suggests that the assumption that all target responses are the 

output of a timing process is untenable. Indeed, recent research suggests that although 

temporal information is always available and may even be learned within the first few 

trials (e.g., Balsam & Gallistel, 2009; Balsam, Dew, & Yang, 2002; Ward, Gallistel, 

Jensen, Richards, Fairhurst, & Balsam, 2012), target responses are not always under 

temporal control (e.g., Daniels & Sanabria, 2017a; Daniels, Fox, Kyonka, & Sanabria, 

2015; Freestone, Balci, Simen, & Church, 2015; Sanabria & Killeen, 2008). Interestingly, 

target responses may flexibly alternate between temporal and non-temporal control 

based on whether temporally-controlled target responses maximize reinforcement (e.g., 

MacDonald & Roberts, 2018; Rayburn-Reevees, Qadri, Brooks, Keller, & Cook 2017). 

Thus, performance indices should be analyzed assuming that some target responses are 

the output of a non-timing process. 
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The assumption that target responses fluctuate in and out of temporal control 

implies that not all performance indices characterize the timing process. Fluctuations in 

the generative process underlying target responses can be accounted for by analyzing 

performance indices under the assumption that performance indices are best described 

by a mixture of timed and non-timed performance indices. Such a mixture distribution 

assumes that, at the beginning of some trials, animals enter a timing state with 

probability q and emit timed target responses, and in other trials they enter a non-timing 

state with complementary probability 1-q and emit non-timed target responses. 

 

Figure 1.3. Schematic of the gamma-exponential mixture model. When target 

responses are the output of a timing process, performance indices are described by a 

gamma distribution; when target responses are the output of a non-timing process, 

performance indices are exponentially distributed. Distributions are represented as 

cumulative rather than probability density functions. See Figure 1.2 for description of the 

timing process.   

Figure 1.3 shows a schematic of this mixture model of timing and non-timing 

processes. Timed target responses are assumed to be generated by a PA-like timing 

process and thus yield gamma distributed performance indices (Equation 1.1; Killeen & 

Fetterman, 1988). In contrast, non-timed target responses are assumed to be generated 

randomly such that non-timed target responses are emitted at any given time with some 

constant probability. This is equivalent to a timing process wherein a target response 
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occurs after a single inter-pulse interval, because θ = 1 and M = 1, with an average mean 

of K (Daniels et. al., 2015a, b). Thus, non-timed performance indices are expected to be 

exponentially distributed. This revised PA model is expressed formally as, 

       

 

(1.2) 

where parameters are as described in Equation 1.1, the probability of a performance 

index of length τ is equal to the mixture weight of a shifted gamma distribution and the 

complementary mixture weight of a shifted exponential distribution described by mean 

parameter K.  

 Fits of Equation 1.2 to performance indices (e.g., latencies and LTSs) have 

revealed that there is indeed a small subset of non-timed target responses, and thus non-

timed performance indices, in many interval timing procedures (Balci, Freestone, & 

Gallistel, 2009; Daniels et al., 2015a,b; Daniels & Sanabria, 2017a; Laude, Daniels, & 

Zentall, 2016; Sanabria & Killeen, 2008; Watterson et al., 2015). Non-timed 

performance indices even occur in animals trained in the switch-timing procedure and 

the temporal bisection procedure, suggesting that there are few interval timing 

procedures in which target responses are exclusively under temporal control (Laude et 

al., 2016). Whereas non-timed performance indices appear shorter than timed 

performance indices in immediate timing procedures (Berkay, Freestone, & Balci, 2016; 

Daniels et al., 2015b; Daniels & Sanabria, 2017a; Hill, Covarrubias, Terry, & Sanabria, 

2012; Sanabria & Killeen, 2008), in retrospective timing procedures non-timed 

performance indices appear much longer than timed performance indices (unreported 
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data from Laude et al., 2016). For example, when subjects are not timing in the switch-

timing procedure, subjects produce very short LTSs, engaging the long FI relatively 

quickly. In contrast, when subjects are not timing in the temporal bisection procedure, 

subjects tend to choose ‘short’ rather than ‘long’. This suggests that the expression of 

non-timing depends on whether subjects were trained in immediate or retrospective 

timing procedures.  

Importantly, the parameters of Equation 1.2 are differentially sensitive to timing 

and motivational manipulation. Whereas parameters of timed performance indices are 

selectively sensitive to time, parameters of non-timed performance indices are selectively 

sensitive to fluctuations in motivation, specifically pre-feeding (Berkay et al., 2016; 

Daniels & Sanabria, 2017a; Daniels, Overby, & Sanabria, 2018; Mazur, Wood-Isenberg, 

Watterson, & Sanabria, 2014; Watterson et al., 2015; Sanabria & Killeen, 2008). For 

example, Daniels & Sanabria (2017a) found that increasing the FI selectively slowed 

down the speed of the internal clock, resulting in a scalar increase in timed latencies. In 

contrast, they found that five consecutive days of pre-feeding resulted in an increase in 

the prevalence and mean of non-timed performance indices. These effects are robust to 

parameter estimation techniques, indicating that such effects are reliable and do not 

depend on arbitrary analytic choices (Daniels, et al. 2018).  

However, there are instances in which fluctuations in motivation alter 

parameters of both timed and non-timed performance indices. For example, fits of 

Equation 1.2 revealed that increasing the reward magnitude following completion of the 

Long FI in the switch-timing procedure decreases the mean timed LTSs by reducing the 

response threshold, while also decreasing the prevalence of timed LTSs in both pigeons 

and rats (Daniels et al., 2015a, b). Increasing the reward magnitude also increased the 
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mean non-timed LTSs for rats (Daniels et al. 2015b). Likewise, nicotine—a 

psychostimulant known for, among other things, increasing relative reward value by 

enhancing dopamine release in the mesolimbic system (e.g., Barr, Pizzagalli, Culhaen, 

Goff, & Evins 2008; Olausson, Jentsch, & Taylor, 2004; Overby, Daniels, Del Franco, 

Goenaga, Powell, Gipson, & Sanabria, 2018)—reduces the mean timed LTSs by speeding 

up the clock, while increasing the prevalence and mean non-timed LTSs (Daniels et al., 

2015a). Thus, whereas some motivation manipulations such as pre-feeding affect the 

prevalence and mean of non-timed performance indices, other motivation manipulations 

modulate both timed and non-timed performance indices. Importantly, when 

fluctuations in motivation do affect parameters of timed and non-timed performance 

indices, the effect on non-timed performance indices is often larger than or at least 

equivalent to the effect on timed performance indices.   

The ability of Equation 1.2 to at least partially dissociate timing and motivation 

processes is reinforced by the success of a special case of Equation 1.2 (Brackney, 

Cheung, Neisewander, & Sanabria, 2011; Daniels & Sanabria, 2017b; Romero, Daniels, 

Gipson, & Sanabria, 2018; Shull, 2004, 2011; Shull, Grimes, & Bennet, 2004). When 

trained in variable interval (VI) schedules of reinforcement, animals tend to respond in a 

bout-like structure wherein clusters of responses are separated by relatively long pauses. 

The special case of Equation 1.2 (where θ = 1 and M = 1, reducing the gamma to an 

exponential distribution) is a biexponential mixture distribution that suggests a 

relatively simple generative process that controls VI performance: bouts are initiated at 

some constant but low probability and within-bout responses are emitted at some 

constant but high probability. Whereas bout-initiation rate appears uniquely sensitive to 

motivation, within-bout responding is relatively robust and only changes when response 

topography or reinforcer contingencies are altered (for a review see Brackney & 
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Sanabria, 2015; Brackney, Cheung, & Sanabria, 2017; Daniels & Sanabria, 2017b; or 

Shull 2011). Likewise, the length and duration of a bout is relatively insensitive to 

fluctuations in motivation. Such effects have also been observed on the bout-structure of 

schedule-induced polydipsia following administration of psychostimulants (Íbias, 

Daniels, Miguéns, Pellón, 2017; Íbias, Pellón, & Sanabria, 2015) and the bout-structure 

of post-latency FI performance following pre-feeding (Daniels & Sanabria, 2017a). It 

thus appears that, in general, motivation and schedule-controlled performance can be 

computationally dissociated.  

Despite the utility of mixture models, there has been very little systematic 

research investigating the sensitivity of timing and non-timing processes to independent 

and selective manipulation. More problematic is that mixture models inherently conflate 

structural and parameter uncertainty (Daniels & Sanabria, 2017b). Whereas structural 

uncertainty refers to whether the correct underlying generative process and thus 

distribution (model of interval timing) has been identified, parameter uncertainty refers 

to whether the probability of entering a timing state, the response threshold, etc. are 

accurately estimated. For example, consider that some models of timing predict that 

timed performance indices are normally distributed (Gibbon, 1977), others predict that 

timed performance indices are gamma distributed (Equation 1.1; Killeen & Fetterman, 

1988), and yet others predict that timed performance indices are Wald distributed 

(Simen et al., 2013). If performance indices are better described by a normal than a 

gamma distribution, then parameter estimates of Equation 1.2 will be partly based on 

misidentifying some performance indices as timed when they are in fact non-timed, and 

vice versa. Misidentification could, and in some cases does, result in misleading 

inferences (e.g., Daniels & Sanabria, 2017b). Although such uncertainty may be 
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ameliorated by parametrically varying the distributions that comprise Equation 1.2 (e.g., 

Tanno, 2016) and selecting the version of Equation 1.2 that yields the best overall fit, the 

conflation of structural and parameter uncertainty can never be fully reduced. Thus, such 

models should be accompanied by experimental validation (e.g., Daniels & Sanabria, 

2017b).  

A Procedural Approach to Dissociating Interval Timing and Motivation 

Process 

 

Behavioral Systems Activated in Interval Timing.  

 

The success of mixture models in dissociating interval timing and motivation 

processes suggests that interval timing and motivation may also be procedurally 

dissociable. Importantly, procedural dissociations allow for validation of assumptions 

underlying computational models (i.e., Equation 1.2) while simultaneously avoiding the 

limitations inherent in computational models (e.g., Daniels & Sanabria, 2017b). 

Procedural dissociations may be developed by considering the ecology and ethology of 

subjects in appetitive experimental contexts (Barnett, 1975; Collier, 1981; Timberlake, 

1984, 1993, 1994, 2000; Timberlake & Lucas, 1989; Timberlake & Washburne, 1989; 

Tinbergen, 1951). When foraging, unique behavioral and sensory systems are activated. 

For example, in rats, stimuli predicting imminent food activate the predatory subsystem, 

consisting of, but not limited to, general locomotion, sniffing, and orienting towards 

relevant stimuli (e.g., Barnett, 1975; Timberlake, 2000). These systems are activated in 

both natural and experimental contexts, suggesting that interval timing procedures 

(Figure 1.1; and indeed, any procedure designed for assessing animal cognition) entrain 

and modify the expression of these systems.  
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For example, the length of FIs determines which behavioral mode is 

predominantly expressed: relatively Short FIs condition lever pressing and relatively 

Long FIs condition locomotion and sniffing (for a review see Timberlake, 2000). 

Likewise, whether subjects are working for solid or liquid reinforcers modulates how 

subjects search for reinforcement and interact with stimuli predicting imminent 

reinforcement (e.g., Cleland & Davey, 1983; Davey & Cleland, 1982; Goeders, Murnane, 

Banks, & Fantegrossi, 2009). Whereas solids facilitate lever pressing, liquids promote 

lever licking and head-entries into the reinforcement receptacle. This indicates that the 

structure and sensitivity of activated behavioral and sensory systems to time and 

motivation can guide the development of procedures that dissociate interval timing and 

motivation.  
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Figure 1.4. Schematic of the predatory subsystem of rats in interval timing 
procedures. Dynamics of behavioral systems are depicted for when rats are hungry 
(Panel A) and when rats are pre-fed (satiated; Panel B) based on schematics suggested by 
Timberlake (2000) and Staddon & Simmelhag (1971). See text for details. Note that the 
static transition probabilities are for illustrative purposes only, some probabilities are 
likely dynamic and may shift to 1 given certain experimental events, such as the 
probability of transitioning into the consumption\handling mode upon reinforcer 
delivery. Underlined transition probabilities illustrate the predicted effect of pre-feeding, 
with thicker and thinner arrows further indicating whether pre-feeding increased or 
decreased a specific probability. 

 

Figure 1.4A shows a schematic of both the trial-by-trial and average dynamics of 

the predatory subsystem of a hungry rat activated by the presentation of a time-marker 

signaling imminent food delivery (Silva, Timberlake, & Cevik, 1998; Timberlake & Lucas, 
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1989; Staddon & Ayres, 1975)5. This subsystem is composed of four modes of behavior: 

general search, pre-food focal search, handle/consumption, and post-food focal search. 

In individual trials, each mode appears to be independently controlled by its own 

dynamics and characterized by modules of behavior related to specific actions (Lucas, 

Timberlake, & Gawley, 1988; Timberlake, 1994). For example, whereas general search is 

characterized by locomoting, crawling, scanning, and sniffing, pre-food focal search is 

characterized by pawing, tracking, and interacting with stimuli or manipulanda, which 

may be the same as or different from the time-marker (Timberlake & Lucas, 1989). 

Likewise, whereas consumption/handling is characterized by capturing, manipulating, 

and ingesting food, post-food focal search is characterized by digestion, grooming, and 

sometimes interacting with stimuli or manipulanda if still available (Silva & Timberlake, 

1998; Staddon & Ayres, 1975). Transitions between these modes is bidirectional and 

probabilistic rather than unidirectional and deterministic (Innis, Simmelhag-Grant, & 

Staddon, 1983; Staddon & Simmelhag, 1971). When averaged over trials, the states and 

transitions may be jointly expressed in the form of probability distributions as a function 

of time.  

Interestingly, general search and pre-food focal search appear to be the most 

readily conditioned to various stimuli, including the intervals signaled by time-markers. 

For example, Timberlake and colleagues (Lucas, Timberlake, Gawley, 1988; Silva & 

Timberlake, 1998a, b, 1999, 2005; Timberlake, 1994) have shown that the amount of 

time spent in general search and pre-food focal search scales with intervals; general 

                                                           
5 The behavioral systems approach is largely described using laboratory rats as examples 
because most of the behavioral systems research has been conducted with rats 
(Timberlake, 2000) and some analogous work in pigeons (Staddon & Simmelhag, 1971). 
However, it is assumed that the behavioral systems approach transcends species and 
thus can be appropriated for the study of cognition in any species of interest.  
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search becomes more prevalent with relatively long intervals. Additionally, Timberlake 

and colleagues have argued forcefully that what animals learn in interval timing 

procedures is to time general-search-to-pre-food-focal-search transitions (Silva & 

Timberlake, 1998a, b, 1999, 2005). In contrast, the timing and duration of 

consumption/handling and post-food focal search are less malleable and appear 

insensitive to intervals signaled by time-markers (Staddon & Ayres, 1975; Staddon & 

Simmelhag, 1971; Timberlake, 2000; cf. Silva, Timberlake, & Cevik 1998). However, 

post-food focal search appears to be directly related to reward magnitude (Timberlake, 

2000; Staddon, 1974), suggesting that it may be sensitive to motivation. 

Because time-marker presentation (and thus interval onset) is typically 

controlled by the experimenter rather than by subjects, subjects may not always be in a 

behavioral mode receptive to time-marker presentation. Receptive behavioral modes are 

those in which rats are engaged in behaviors that allow for detection and subsequent 

attending of time-markers. The receptiveness of behavioral modes is assumed to be 

related to the degree to which behavioral modes are readily conditioned. Thus, general 

search and pre-food focal search are receptive behavioral modes, but 

handling/consumption and post-food focal search are not receptive behavioral modes.  

The potential asynchronization between time-markers and general search 

provides an intuitive explanation for why mixture models have been useful in describing 

operant performance in general (e.g., Brackney et al., 2017), and in interval timing 

specifically (e.g., Daniels & Sanabria, 2017a). For example, hungry rats are typically in 

general search, and thus search for and attend the extension of a lever predicting food in 

30 s. As the time to food approaches, rats transition to pre-food focal search via a timed 

target response denoting timed performance indices. In pre-food focal search, rats 
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investigate and capture food by approaching and interacting with the extended lever. 

Alternatively, extension of the lever may occur while rats are in post-food focal search. In 

this mode, the time-marker may not be attended and thus rats transition to general 

search and then pre-food focal search randomly. Thus, as the time to food approaches, 

rats transition to pre-food focal search via non-timed target response denoting non-

timed performance indices. Once the reinforcer is delivered, rats transition into 

handle\consumption. Following food consumption, rats transition into post-food focal-

search and then return to general-search. Whereas synchronization of time-markers and 

general search enhances attention and thus promotes generation of timed performance 

indices, asynchronization diminishes attention and thus promotes generation of non-

timed performance indices.  

Figure 1.4B shows how the behavioral systems approach may accommodate 

fluctuations in motivation, specifically the effect of pre-feeding on performance indices. 

Given that the time spent in post-food focal search appears to be sensitive to reward 

magnitude (Timberlake, 2000), the present dissertation posits that fluctuations in 

motivation are reflected in the time spent in post-food focal search. Specifically, the 

present dissertation hypothesizes that pre-feeding increases the time spent in post-food 

focal search, which (a) delays onset of general search which subsequently (b) reduces 

synchronization of time-markers and general search and (c) increases the frequency with 

which subjects switch between general search and pre-food focal search. Therefore, pre-

feeding reduces the prevalence of and delays emission of timed target responses, 

resulting in longer and more variable non-timed performance indices. Obviously, when 

performance indices are analyzed as arising from just a timing process pre-feeding 

generally results in longer and more variable performance indices. Because post-food 

focal search is relatively insensitive to conditioning the pre-feeding-induced increase in 
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time spent in post-food focal search is not expected to recalibrate with feedback. That is, 

the effect of pre-feeding is expected to be permanent so long as the reduced motivational 

state is maintained.    

 The ability of the behavioral systems approach to account for the effects of pre-

feeding on performance indices suggests a route by which to dissociate interval timing 

and motivation processes. In interval timing procedures, there is no overt response that 

demarcates when subjects transition from post-food focal search to general search. 

Without an overt response demarcating post-food focal search and general search, 

performance indices reflect the sensitivities of both behavioral modes. To avoid 

performance indices conflating post-food focal search and general search and thus 

fluctuations in motivation with interval timing, subjects may be trained to emit a post-

food-focal-search-to-general-search transiting response that also produces the time-

marker. Thus, training rats to self-pace trials in interval timing procedures would 

circumscribe the effects of pre-feeding, and, in general, fluctuations in motivation, to 

post-food focal search, protecting general search and pre-food focal search.  

Response-Initiated Interval Timing  

 

The behavioral systems model implies that training subjects to self-pace interval 

timing procedures may dissociate post-food focal search and general search, thus 

protecting general search and pre-food focal search from fluctuations in motivation. 

Protection of general search and pre-food focal search would result in performance 

indices robust to motivational fluctuations. Such training procedures already exist in the 

form of response-initiated (RI) schedules of reinforcement. Interval timing procedures 

are typically externally-initiated (EI) and are thus programmed such that time-markers 

are activated by the experimenter or, in yoked designs, by another subject. In contrast, 
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RI procedures are programmed such that subjects produce the time-markers. For 

example, whereas in EIFI an experimenter programs a light to turn on, signaling 

activation of an FI 30-s in a lever, in RIFI an experimenter programs a response to turn 

on a light, signaling activation of an FI 30-s in a lever.  

If RI effectively demarcates post-food focal search and general search then, 

compared to EI, RI is hypothesized to (a) reduce the degree to which pre-feeding effects 

on post-food focal search delay onset of general search and subsequently (b) ensure 

synchronization of time-markers and general search and (c) reduce switching between 

general search and pre-food focal search. Collectively, these hypotheses are called the RI 

hypothesis. The RI hypothesis predicts that RI interval-timing procedures should 

facilitate attention to time-makers and, thus, temporal control of target responses. RI 

interval timing procedures should also dissociate interval timing and motivation such 

that target responses are robust to pre-feeding. RI procedures are thus expected to 

circumscribe the effect of pre-feeding to the time it takes to emit an initiating-response—

the latency-to-initiate (LTI)—while leaving performance indices robust to pre-feeding.  

Although performance in RI interval-timing procedures has been studied (Chung 

& Neuringer, 1967; Cherek, Thompson, & Heistad, 1973; Innis, Mitchell, & Staddon, 

1993; Kim, Jung, Byun, & Jung, 2009; Lowe, Davey, & Harzem, 1974; Mechner, 

Guevrekian, & Mechner, 1963; Shull, 1970; Todorov, Couto, & Carvalho, 2013), few 

studies have explicitly compared performance indices in RI and EI, let alone tested 

whether performance indices in RI and EI are differentially sensitive to fluctuations in 

motivation. To-date, there are only a few published studies in which RI and EI interval 

timing are compared. Caetano & Church (2009) compared performance of rats trained in 

a differential-reinforcement-of-low rates (DRL) 20-s schedule of reinforcement (RI) to 
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performance of rats trained in a yoked fixed-time (FT) 20-s (EI). Whereas in DRL 

subjects are trained to wait interval t between two consecutive responses (e.g., lever 

presses), in FT subjects are trained that response-independent reinforcement arrives 

every interval t. They found no systematic differences in performance indices between 

DRL or yoked FT performance. Caetano (2009) replicated this null effect in performance 

indices produced in RI and EI DRL, FT, and FI. Unfortunately, sensitivity of 

performance indices to motivation was not compared between RI and EI.  

Fox and Kyonka (2013, 2015, 2016) trained pigeons in both RIFI and EIFI 

procedures with and without peak trials. They found that in RIFI, pigeons responded at a 

higher rate than in EIFI, but that performance indices were largely similar between RIFI 

and EIFI. When they introduced peak trials, they found that pigeons started responding 

much sooner and stopped responding much later in RI compared to EI. 

Correspondingly, peak times had similar means but were more variable in RI than EI. 

Interestingly, reduced temporal control of peak times was observed even when 

discriminative stimuli signaled an effective FI initiating-response and, thus, activation of 

the FI. LTIs were sensitive to the FI (Fox & Kyonka, 2013, 2015, 2016) and to pre-feeding 

(Fox & Kyonka, 2014). Unfortunately, the sensitivity of performance indices to 

motivation were not compared between RIFI and EIFI procedures.  

It is important to highlight that in the studies reported by Fox and Kyonka (2013, 

2015, 201), Caetano and Church (2009), and Caetano (2009), initiating-responses were 

not identifiably different from target responses. The only difference between initiating-

responses and target responses was the passage of time, except in Fox & Kyonka (2016), 

where an initiating-response changed the color of the pecking key to signal activation of 

the FI. This suggests that, even when paired with discriminative stimuli, individual 
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responses differing as a function of only time are not easily discriminated from target 

responses. Poor discrimination of initiating and target responses may have resulted in 

encoding initiating-responses as target responses, and vice versa. Fluctuations in 

encoding leads to fluctuation in whether initiating and target responses are differentially 

controlled by their respective associations: trial activation and time, respectively.  

Revealed operants and the discriminative RI hypothesis 

 

 The dearth of support for the RI hypothesis appears attributable to poor 

discriminability of initiating-responses from target responses. This conclusion is 

reinforced by an independent line of research conducted by Mechner and colleagues 

(e.g., Jones & Mechner, 2013; Mechner, Hyten, Field, & Madden, 1997; Mechner & 

Guevrekian, 1962; Mechner, & Guevrekian, & Mechner, 1963). In concurrence with the 

behavioral systems approach, Mechner (1994) argues that the traditional approach to 

measuring operant responses—i.e., measuring the occurrence of single responses as 

instantaneous discrete events—is limiting, because it conflates many measures of 

performance (e.g., latency, response-duration, IRT, etc.) that are differentially sensitive 

to underlying psychological processes. For example, it is well documented that the rate at 

which subjects respond decreases within-session (Killeen, 1995; McSweeney & Murphy, 

2009), implying that response rate is sensitive to some within-session process such as 

satiation or reinforcer habituation. However, Daniels, Overby, & Sanabria (2018) showed 

that within-session response rate reductions are driven by within-session latency 

lengthening rather than within-session run rate reductions. Further, they showed that 

within-session latency lengthening is insensitive to both motivation and time, concluding 

that within-session latency lengthening likely reflects recovery from between-session 
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forgetting. Thus, decomposing response rate into its constituents revealed dissociable 

aspects of performance that were otherwise missed. 

To overcome these limitations, Mechner suggests using a revealed operant 

technique. In this technique, an operant is initiated at some manipulandum (Ra) and 

terminated at another (Rc). In the interim, the operant (Rb) is expressed on the same 

manipulandum as Ra, Rc, or some other manipulandum. Alternatively, Rb may be 

unspecified so long as it does not contaminate expression of Ra or Rc. In most revealed 

operants, Ra emission also activates the schedule of reinforcement (cf. Daniels & 

Sanabria, 2017b). Thus, most RI schedules inherently involve revealed operants.  

Figure 1.5 shows schematics of two different RI procedures: fixed-minimum 

interval (FMI) and DRL. In both schedules, a waiting interval t between two consecutive 

responses is reinforced, with t activated by the first of the two responses. Although both 

FMI and DRL are RI, only FMI reveals operants. In the original implementation of FMI 

(Mechner & Guevrekian, 1962), a lever press at one location initiates an operant and an 

interval t (Ra), a lever press at another location terminates the operant and the interval 

(Rc), and the operant (Rb) is unspecified. The duration of the operant is measured as an 

IRT (the time between Ra and Rc) and is reinforced if the IRT is greater than t. 

Importantly, LTIs (the time between Rc and Ra) and not IRTs are sensitive to pre-

feeding. By contrast, in DRL, Ra and Rc are both lever presses at the same location, 

differentiated only as a function of time. In DRL, LTIs only follow reinforcement and 

IRTs are sensitive to pre-feeding (Daniels, Stephens, et al. 2018; Romero et al., 2016). 
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Figure 1.5. Schematic of response-initiated (RI) schedules of reinforcement: 
differential-reinforcement-of-low-rates (DRL) and fixed-minimum-interval (FMI), 
respectively. Performance indices are indicated by a bracket and labeled (i.e., IRTs).   

The comparison of FMI with DRL suggest how RI may dissociate interval timing 

and motivation. First, Ra must produce the time-maker and activate the interval. Second, 

Ra, Rb, and Rc must be discriminable from each other. Differentiating responses by both 

timing and location ensures that transitions into each behavioral mode are associated 

with a specific and easily discriminated response. Maintaining the discriminability of 

initiating-responses and target responses ensures that initiating-responses and target 

responses are accurately encoded. That is, preserving discriminability of initiating and 

target responses ensures that there is no fluctuation in whether initiating and target 

responses are controlled by their respective associations: trial activation and time, 

respectively.   

Discriminability of initiating and target responses is likely a positive function of 

the number of dimensions on which initiating-responses and target responses differ. 

Thus, as initiating-responses become progressively different from target responses, RI is 

expected to increasingly enhance temporal control and dissociate interval timing and 

motivation. This revised RI hypothesis is referred to as the discriminative RI hypothesis. 
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The purpose of the present dissertation is to test the discriminative RI hypothesis, and 

thus whether interval timing and motivation are dissociable.   

 General Outline of Experiments 

 

In the present dissertation, three experiments were conducted to test the 

discriminative RI hypothesis and, thus, whether interval timing and motivation are 

dissociable. In all experiments, rats were trained and tested in RI and EI variants of the 

switch-timing procedure and the location variant of the temporal bisection procedure. 

These procedures were chosen because of (a) the dearth of data on whether pre-feeding 

affects overt and latent LTSs, and (b) the similarity of the behavioral sequences 

entrained by both procedures. The dearth of data allows for the present dissertation to 

assess the generality of pre-feeding effects across immediate and retrospective timing 

procedures. And the similarity of performance entrained in the switch-timing and 

location variant of the temporal bisection procedures facilitates comparison of pre-

feeding effects between procedures. 

Experiment 1 (Chapter 2), tested whether initiating-responses differing from 

target responses as a function of time and location would enhance temporal control of 

overt LTSs and protect overt LTSs from pre-feeding in rats trained in the switch-timing 

procedure (Figure 1.1B). Experiment 2 (Chapter 3) replicated experiment 1 and tested 

whether initiating-responses differing from target responses as a function of time, 

location, and form would enhance temporal control of overt LTSs and protect overt LTSs 

from pre-feeding and extinction in rats trained in the switch-timing procedure. 

Experiment 3 (Chapter 4) tested the generalizability of the discriminative RI hypothesis 

by testing whether initiating-responses differing from target responses as a function of 

time, location, and form would enhance temporal control of latent LTSs and protect 
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latent LTSs from pre-feeding and extinction in rats trained in the location variant of the 

temporal bisection procedure (Figure 1.1B). It was expected that as initiating-responses 

become progressively more discriminable from target responses, temporal control of 

LTSs and robustness of LTSs to pre-feeding would increase.  

Extinction probes were included to determine whether RI selectively dissociates 

interval timing and motivation, or generally dissociates interval timing and non-timing 

processes. Previous research indicates that extinction does not result in unlearning. 

Instead, extinction results in a context dependent reduction in motivation and new, 

inhibitory learning (Bouton, 2004; Redish, Jensen, Johnson, & Kurth-Nelson, 2007). 

Motivation is reduced because the reinforcer supporting interval timing is no longer 

delivered at the end of trials. New, inhibitory learning occurs as subjects engage in other 

non-timing behaviors that become associated with no-reinforcement. The reduction in 

motivation presumably occurs before subjects engage in new behaviors (e.g., Brackney, 

Cheung, Herbst, Hill, & Sanabria, 2012; Katz, 1981), suggesting that extinction effects, 

like pre-feeding effects, should be circumscribed to post-food focal search and, thus, to 

LTIs. It was expected that initiating-responses should protect LTSs from extinction. 

Thus, as initiating-responses become progressively discriminable from target responses 

it was expected that RI would increasingly and generally dissociate interval timing and 

non-timing processes rather than selectively dissociate interval timing and motivation.  

A secondary purpose of the present dissertation was to clarify the results of 

previous RI studies. Previous studies conducted by Fox and Kyonka (2013, 2015, 2016) 

suggest that RI reduces rather than enhances temporal control of FI and peak-timing 

performance. In Experiments 1 and 2, rats are trained to initiate some switch-timing 

trials via a single response on the Short FI (Short FI lever response-initiation, SL-RI). 
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SL-RI is discriminable from target responses denoting Long FI performance (i.e., LTSs) 

as a function of time and location, but is only discriminable from target responses 

denoting Short FI performance as a function of time. Generalization between SL-RI and 

Short FI performance is expected to occur more readily than generalization between SL-

RI and Long FI performance. Thus, SL-RI is expected to reduce temporal control of 

Short FI performance but enhance temporal control of LTSs and protect LTSs from pre-

feeding and extinction.  

Another secondary purpose of the present dissertation was to test the 

generalizability of the conclusions of Daniels & Sanabria (2017a). They found that pre-

feeding increased the mean and variability of FI latencies because it increased the 

prevalence and mean of non-timed latencies. Pre-feeding did not alter parameters of 

timed latencies. Fitting Equation 1.2 to LTSs is expected to reveal the same pattern of 

effects in EI but not RI. Specifically, that pre-feeding increases the prevalence and mean 

of non-timed LTSs without affecting timed LTSs.  

Chapter 2:  Experiment 1 - Response-Initiated Discrete-Trials Switch-Timing 

Introduction 

 

Mechner and Guevrekian (1962) developed two RI procedures that dissociate 

schedule performance from changes in motivation: fixed-consecutive number (FCN) and 

fixed-minimum interval (FMI). In both procedures, initiating-responses are distinct 

from target responses denoting performance indices. In FMI (Figure 1.5), a lever press at 

one location starts an IRT (initiating-response) and a lever press at another location 

terminates the IRT (target response). In FCN, a lever press starts (initiating-response) 

and counts towards completion of an FR requirement (target responses) that, once 

completed, is terminated at another lever. These original implementations of FMI and 
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FCN (also see Çavdaroğlu & Balci, 2016) suggest that initiating-responses discriminable 

from target responses as a function of time and location should dissociate interval timing 

and motivation processes.  

Experiment 1 sought to test whether initiating-responses discriminable from 

target responses as a function of time and location dissociate interval timing and 

motivation processes. To test this hypothesis, rats were trained in a discrete-trials 

switch-timing FI 8-s FI 16-s (Figure 2.1A). Some rats were trained to initiate trials via a 

single response on the Short FI (SL-RI group) and other rats were trained with initiation 

yoked to SL-RI rats (EI group). Following acquisition of stable performance, rats were 

exposed to a single 1 h pre-feeding probe.  

Compared to EI, SL-RI was expected to enhance temporal control of LTSs and 

yield LTSs robust to pre-feeding. SL-RI LTIs were expected to lengthen following pre-

feeding. Additionally, SL-RI was expected to reduce temporal control of Short FI 

performance. Fits of the gamma-exponential mixture model (Equation 1.2) to LTSs were 

expected to reveal that the pre-feeding-induced longer and more variable LTSs is 

explained by an increase in the prevalence and mean of non-timed LTSs without 

affecting timed LTSs in EI but not SL-RI.     

Methods 

Subjects 

 
Twenty-four male Wistar rats (Charles River Laboratories, Hollister, CA) served 

as subjects. Rats arrived on postnatal day 60 and were triple-housed immediate upon 

arrival. Rats were housed on a 12:12 h light cycle, with dawn at 1900 h; all behavioral 

training was conducted during the dark phase of the light cycle starting at approximately 

0800 h and ending at approximately 1000 h. Following four days of acclimation to the 
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colony room, food access was reduced daily from 24 to 18, 12, and finally 1 hour per day. 

Food was placed on home-cages 30 min after the end of each experimental session and 

taken away 1 hour later. This ensured that at the beginning of the next session weights 

were, on average, 85% of ad libitum weights, as estimated from growth charts provided 

by the breeder. Water was always available in home-cages. All animal handling 

procedures used during this study followed National Institutes for Health Guidelines and 

were approved by the Arizona State University Institutional Animal Care and Use 

Committee. 

Apparatus 

 

Experiments were conducted in 12 MED associates (ST. Albans, VT, USA) 

modular test chambers (8 chambers measured 305 mm long, 241 mm wide, and 210 mm 

high; 4 chambers measured 305 mm long, 241 mm wide, and 292 mm high), each 

enclosed in a sound- and light-attenuating box equipped with a ventilation fan that 

provided masking noise of approximately 60 dB. The front and back walls and the ceiling 

of test chambers were made of Plexiglas; the front wall was hinged and served as a door 

to the chamber. One of the two aluminum side panels served as a test panel. The floor 

consisted of thin metal bars positioned above a catch pan. The reinforcer receptacle was 

a square opening (51-mm sides) located 15 mm above the floor and centered on the test 

panel. The receptacle provided access to a dipper (MED Associates, ENV-202M-S) fitted 

with a cup (MED Associates, ENV-202C) that could hold 0.01 cc of a liquid reinforcer 

(~33% sweetened condensed milk diluted in tap water; Kroger, Cincinnati, OH). The 

receptacle was furnished with a head-entry detector (ENV-254-CB). A multiple-tone 

generator (MED associates, ENV-223) was used to produce a 15-kHz tone at 

approximately 75 dB through a speaker (MED Associates, ENV-224 AM) centered on the 
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top of the wall opposite the test panel and 240 mm above the floor of the chamber. Two 

retractable levers (ENV-112CM) flanked the reinforcer receptacle. Lever presses were 

recorded when a force of approximately 0.2 N was applied to the end of the lever. Three-

color light stimuli (ENV-222 M) were mounted above each lever; they could be 

illuminated yellow, green, and red (only yellow was used in the present experiment). A 

house light located behind the wall opposite to the test panel could dimly illuminate the 

test chambers. Experimental events were arranged via a MED PC® interface connected 

to a PC controlled by MED-PC IV® software. 

Procedure 

 

Training sessions occurred 7 days/week during the dark phase at 0800 h, 1 h 

after the end of the light phase. Each session began with a 3-min warmup period during 

which the houselight was illuminated.  

Lever shaping. Immediately following the warmup, the houselight was turned off and 

the first trial began with the delivery of 5 s of access to reinforcement, which was counted 

from the detection of a head-entry into the reinforcement receptacle. Further 

reinforcement was scheduled on a variable time 45-s inter-trial interval (ITI). Both the 

left and right levers were extended for 8 s prior to the delivery of and retracted just 

before reinforcement. If either lever was pressed during the 8-s presentation, the levers 

were immediately retracted, and reinforcement delivered. This phase continued until 

rats were reliably obtaining reinforcement from the reinforcement receptacle and 

pressing at least one of the levers. The houselight remained lit throughout the entire 

session.  

Yoked-Trials Training. Rats were randomly assigned to group Short FI-lever 

response-initiated (SL-RI; n = 12) and externally-initiated (EI; n = 12). Trials in groups 
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SL-RI and EI were mutually yoked: For each yoked pair of SL-RI and EI rats, the SL-RI 

rat initiated every trial for both rats but could not initiate trials until both the SL-RI and 

the EI rat had completed the preceding trial and ITI. Trial availability was signaled to 

SL-RI rats by turning off the houselight and extending both levers. One lever was 

designated the initiation lever (left for half of the SL-RI rats, right for the other half). 

Initiating-responses illuminated the yellow light above both levers for the SL-RI and 

yoked EI rat and turned off the houselight and extended both levers for the yoked EI rat. 

Initiating-responses also activated a fixed-interval (FI) 2-s schedule of reinforcement on 

either the left or right lever (selected by sampling without replacement from a 6-item 

list) for both rats; extinction was programmed in the other lever. Completion of the 

schedule turned off the houselight; a subsequent head-entry activated the dipper for 2.5 

s. After reinforcement, a lit ITI commenced that was at least 2-s long but continued until 

both rats completed the preceding trial. SL-RI rats then initiated the next trial as 

described above. The ITI was thus equal to the time it took SL-RI rats to initiate trials. 

ITIs of SL-RI rats are also referred to as the latencies-to-initiate (LTIs). Taken together, 

ITIs and LTIs are referred to as the time-to-initiate. This phase continued until SL-RI 

rats were reliably initiating trials and all rats in both groups were reliably lever pressing.  
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Figure 2.1. Experiment 1 Schematic of the SL-RI and yoked EI switch-timing procedures and timeline of 
experiment 1. At the beginning of the session (Panel A), levers were extended for SL-RI but not EI rats. Following a single 
Short FI response by an SL-RI rat, either the Short FI or Long FI was activated for SL-RI and yoked EI rats. For SL-RI rats, 
activation of either FI was signaled by turning on the yellow LEDs above both levers, and for yoked EI rats, turning off the 
house-light, extending the levers, and turning on the yellow LEDs above both levers. After the active FI elapsed, the first 
response on the lever associated with the active FI retracted the levers, turned off the yellow LED, and activated the dipper. 
Once a head-entry into the reinforcement receptacle confirmed reinforcer receipt, the dipper was lowered 2.5-s later. After a 
lit 2-s ITI had elapsed and both SL-RI and yoked EI rats completed the preceding trials, the house-light was turned off and 
levers were extended for SL-RI rats to initiate the next trial.  Once switch-timing performance stabilized (Panel B), rats were 
exposed to a single session 1 h pre-feeding probe. 
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FI 8-s FI 16-s Baseline Training.  Figure 2.1 shows a schematic and timeline of 

training. Rats were trained on a dependent concurrent FI 8-s FI 16-s schedule of 

reinforcement. Trials were organized as described in Yoked-Trials Training, except that 

the FI 2-s FI 2-s was replaced with FI 8-s FI 16-s. For SL-RI rats, FI 8-s was programmed 

on the initiation lever; for half of the EI rats, FI 8-s was programmed on the left lever; for 

the other half, FI 8-s was programmed on the right lever. This training continued for a 

minimum of 20 sessions and until the median, interquartile range (IQR = difference 

between third and first quartile, or Q3-Q1), and coefficient of quartile variance (CQV = 

Q3 + Q1) of latencies to switch (LTSs; first response on the FI 16-s) were deemed stable. 

Stability was defined as a non-significant regression over the last 5 days for LTS 

medians, IQRs, and CQVs.  

Prefeeding Probe. In a single session immediately following detection of stability rats 

were provided access to food for an hour prior to, instead of after, the session.  

Data Analysis 

 

LTSs stabilized after 29 training sessions. The last five days of training were used 

to characterize baseline performance and the single session pre-feeding probe 

characterized the effect of pre-feeding. For each feeding regimen (baseline, pre-feeding), 

the dependent measures listed in Table 2.1 were directly tagged or calculated from the 

distribution of responses across the Short FI and Long FI in Long FI trials; Short FI trials 

were not included because LTSs are not observed in Short FI trials. 
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Table 2.1 

Switch-timing performance dependent measures  

Dependent Measure Definition 

Time-to-initiate  Time to initiate a trial (LTIs and ITIs) following onset of initiation 

stimulus* 

Discrimination Ratio** Proportion of trials in which the first response was the correct initiating-response 

Latency-to-First Response 

(LFR)† 

Time to first response on the Short FI after trial initiation 

Latency-to-Depart (LTD) † Time to last response on the Short FI after trial initiation 

Latency-to-Switch (LTS) † Time to first response on the Long FI after trial initiation 

Start Ratio  Proportion of trials in which the LTS was longer than the LFR  

Persistence Ratio  Proportion of trials in which the LTS was longer than the LTD 

Note. Bolded dependent measures test the primary predictions of the discriminative RI hypothesis. All other dependent 
measures are either of relevance to secondary predictions (e.g., SL-RI will reduce temporal control of short FI performance) 
or are control variables that can clarify and/or qualify interpretations. *The initiation stimulus was lever extension in 
experiment 1 (Chapter 2) and tones differing in frequency (3-, 8-, and 15-kHz) in experiments 2 (Chapter3) and 3 (Chapter 4). 
**Discrimination ratios are not reported in experiment 1 (Chapter 2) because rats were exposed to only one initiation type or 
experiment 3 (Chapter 4) because rats did not have as many responses available during the ITI. †For LFRs, LTDs, and LTSs, 
the median, inter-quartile range (IQR: 3rd quartile – 1st quartile), and coefficient of quartile variation [CQV: [IQR/(3rd quartile 
+ 1st quartile)]] were calculated to characterize LFR, LTD, and LTS distributions because such metrics are robust to outliers 
and proportional to the mean, standard deviation (SD), and coefficient of variation (CV) when data are approximately 
normally distributed (Huber, 1972).  

  



 

42 
 

 

Analysis of Descriptive Statistics  

 

All dependent measures were log or log-odds transformed and then analyzed via 

Bayesian variants of traditional null hypothesis significance tests (ANOVA and t-tests) in 

JASP (Love et al. 2016). Bayesian analyses were conducted because they reduce the 

impact of outliers, missing data, and allow for evidential support to be quantified for 

both the alternative and null hypotheses (for in-depth descriptions of these tests, see 

Kruschke, 2014; Rouder, Morey, Speckman, & Province, 2012; Rouder, Morey, 

Verhagen, Swagman, & Wagenmakers, 2016). Briefly, in Bayesian analyses, posterior 

distributions of parameters of a likelihood function are generated through the 

convolution of a likelihood function (e.g., the equations and distributions specified by 

ANOVA and t-tests) and prior distributions characterizing prior knowledge about the 

parameters of those likelihood functions. Although JASP allows for some level of control 

over the prior distribution in these tests, default settings of JASP were retained. The 

default settings assume diffuse priors reflecting little knowledge of potential effects, 

thereby letting the data determine the outcome of analyses.  

 A model-selection approach was implemented wherein information from the 

Bayesian analyses are used to calculate Bayes Factors (BF)—a model selection metric 

that characterizes the strength of evidence for a given alternative (i) model relative to the 

null model (0). More formally, a BF is the ratio of the probability of a model given the 

data over the probability of a competing alternative model, such as the null hypothesis, 

given the same data (Kass & Raftery, 1995). Importantly, each potential effect contained 

within an analysis can be recast as a model embodying that effect. For example, in a 

dependent samples t-test assessing the effect of feeding regimen (baseline, pre-feeding) 
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there is a null-hypothesis model that assumes no effect of feeding regimen, and an 

alternative hypothesis model that assumes an effect of feeding regimen. Similarly, in a 2 

(initiation type: EI, SL-RI) × 2 (feeding regimen: baseline, pre-feeding) repeated 

measures Bayesian ANOVA there are five potential models: a null-hypothesis model, an 

initiation type model, a feeding regimen model, an initiation type + feeding regimen 

model, and an initiation type × feeding regimen model.  

Typically, a BF ≥ 3 is taken as an indication of substantial evidence for a specific 

model. BFs were natural-log transformed such that models with a natural-log BF (lnBFi0, 

nomenclature adopted from Jarosz & Wiley, 2014) ≥ +1.098 were considered as having 

substantial evidential support and models with a lnBFi0 ≤ - 1.098 were considered as 

having no substantial evidential support and in fact indicate substantial evidential 

support for the null model. Any lnBFi0s between +1.098 and -1.098 were considered as 

not providing enough evidential support to make any strong claims; however, the 

direction may indicate a tendency toward supporting the alternative or null hypothesis.  

In each analysis, each ith model was compared to the null (0) model; models with 

a lnBFi0 ≥ 1.098 were considered candidate models. If there was more than one 

candidate, the lnBFi0s were compared among candidate models, with the simplest 

candidate model, the candidate model with fewest free parameters6, serving as a 

reference. For a more complex model to be chosen, the lnBFi0 of the more complex model 

had to be at least 1.098 units larger than the lnBFi0 of the simpler model. This process 

                                                           
6 Whereas a model containing only a feeding regimen parameter has 1 free parameter, a 
model containing an initiation type × feeding regimen parameter has 3 free parameters. 
This is because of the hierarchical nature of ANOVA, a model with an interaction 
parameter must also contain parameters for the main effects.  
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continued until the model with the largest lnBFi0 and the fewest number of free 

parameters was selected.  

Note that wherever there existed a priori predictions in baseline, models were 

selected in two stages. In the first stage, models were selected from an omnibus ANOVA 

or t-tests describing performance with parameters only available in baseline (e.g., 

initiation type). In the second stage, models were selected from an omnibus ANOVA 

describing performance with parameters available in both feeding regimens (e.g., 

initiation type and feeding regimen); however, the null model of this analysis included all 

the parameters from the baseline analysis such that what was estimated was whether 

adding feeding regimen to or having feeding regimen interact with parameters of the 

previous model improved the overall fit. Otherwise, tests were conducted in a manner 

consistent with experimental design and available data.  

Mixture Model Analysis 

 

To assess the secondary prediction that LTS sensitivity to pre-feeding in EI is 

explained by a pre-feeding-induced increase in the prevalence and mean of non-timed 

LTSs rather than parameters of timed LTSs, Equation 1.2 was rewritten below as 

Equation 2.1, 

       

 

(2.1) 

where parameters are as described for Equation 1.2, except ε = θM and is thus the 

criterion pulse count for emitting a target response denoting an LTS.  
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Parameters of Equation 2.1 were estimated for each rat via maximum likelihood 

estimation (MLE; Myung, 2003) using custom written Matlab® code. From these 

parameter estimates, the following derived statistics were calculated: the mean timed 

LTS (εc+δ), standard deviation of timed LTSs (SD; cε0.5), timed LTS coefficient of 

variation (CV; ε-0.5); also calculated from Equation 2.1 is the mean non-timed LTS (K+δ). 

Parameter estimates, and derived statistics were log or log-odds transformed for 

statistical analysis via Bayesian t-tests and ANOVA. MLE parameter estimation can 

sometimes yield extreme estimates (Cheung, Neisewander, & Sanabria, 2012); thus, 

prior to analysis, parameter estimates, and derived statistics were submitted to two-

tailed Grubb’s tests with α = .01. Outliers were removed until none were detected.  

Results 

 

Is switch-timing performance differentially sensitive to initiation type as a 

function of feeding regimen? 

 

Figure 2.2 shows the median, IQR, and CQV of LFRs, LTDs, and LTSs of each rat 

as a function of initiation type (EI, SL-RI). SL-RI was predicted to enhance temporal 

control of LTSs. To assess this prediction, LTS dependent measures were submitted to 

independent samples t-tests comparing initiation type (EI, SL-RI). There was little 

evidence for an initiation type model describing either LTS IQRs (lnBFi0 = -0.892) and 

CQVs (lnBFi0 = -0.931) suggesting that SL-RI and EI rats produced similarly variable 

LTSs. Likewise, there was little evidence for an initiation type model describing LTS 

medians (lnBFi0 = -0.985), suggesting that SL-RI and EI rats produced similar median 

LTSs. 
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Figure 2.3 shows the pre-feeding – baseline median, IQR, and CQV of LFRs, 

LTDs, and LTSs of each rat as a function of initiation type (SL-RI, EI). SL-RI was also 

predicted to result in LTSs robust to changes in motivation. To assess this prediction, 

LTS dependent measures were submitted to a 2 (initiation type: SL-RI, EI) × 2 (feeding 

regimen: baseline, pre-feeding) Bayesian repeated measures ANOVA. There was little 

evidence supporting the addition of an initiation type × feeding parameter to the model 

describing LTS medians, IQRs, or CQVs (largest lnBFi0 = -0.407), suggesting that the 

effect of pre-feeding on LTSs did not depend on initiation type. Indeed, there was 

substantial evidence for adding a feeding regimen parameter to the model describing 

LTS medians (lnBFi0 = 2.184), indicating that pre-feeding increased LTS medians 

regardless of initiation type. In contrast, there was little evidence for adding a feeding 

regimen parameter to the model describing LTS IQRs or CQVs (largest lnBFi0 = -0.285), 

suggesting that LTS variability was robust to pre-feeding.  
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Figure 2.2. Experiment 1 baseline switch-timing performance. Median (Panels 
A-C), IQR (Panels D-F), and CQV (Panels G-I) of LFRs (Panels A, D, and G), LTDs 
(Panels B, E, and H), and LTSs (Panels C, F, and I) of each rat as a function of initiation 
type (EI = white squares; SL-RI = grey circles) overlaid with the median and inter-
quartile range. *Indicates substantial evidence (i.e., lnBFi0 = 1.098) for an initiation type 
model describing the difference between SL-RI and EI.   

 

SL-RI was also predicted to reduce temporal control of Short FI performance 

(Figure 2.2). To assess this prediction, LFR and LTD dependent measures submitted to 

independent samples t-tests comparing initiation type (EI, SL-RI). These revealed 

substantial evidence for an initiation type model describing LFR medians (lnBFi0 = 

2.503) and CQVs (lnBFi0 = 1.327), indicating that SL-RI rats started responding on the 

Short FI sooner and produced more variable LFRs than EI rats. There was little evidence 

for an initiation type model describing LFR SDs (lnBFi0 = 0.062), suggesting that the 

higher variability of LFRs produced by SL-RI rats is explained by the shorter LFR 
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medians rather than larger LFR IQRs.  In contrast, there was little evidence for an 

initiation type model describing LTD medians, IQRs, or CQVs (largest lnBFi0 = 0.713), 

suggesting that though SL-RI rats started responding on the Short FI before EI rats, SL-

RI rats stopped responding on the Short FI around the same time as EI rats.   

 The sensitivity of LFRs and LTDs to pre-feeding (Figure 2.3) was also assessed by 

submitting LFR and LTD dependent measures to 2 (initiation type: EI, SL-RI) × 2 

(feeding regimen: baseline, pre-feeding) Bayesian repeated measures ANOVAs. These 

analyses revealed little evidence for adding a feeding regimen parameter to the models 

describing LFRs and LTDs (largest lnBFi0 = 0.566), suggesting that neither LFRs or 

LTDs were sensitive to pre-feeding.  

Taken together, these data suggest that SL-RI does not result in LTSs under 

greater temporal control or robust to pre-feeding compared to EI. Consistent with 

predictions, SL-RI reduced temporal control of Short FI performance: LFRs following 

SL-RI were much shorter and variable than LFRs following EI. LTDs were not affected 

by initiation type; Short FI performance was insensitive to pre-feeding.  
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Figure 2.3. Experiment 1 pre-feeding switch-timing performance. Pre-feeding 
(PF) – baseline (B) median (Panels A-C), IQR (Panels D-F), and CQV (Panels G-I) of 
LFRs (Panels A, D, and G), LTDs (Panels B, E, and H), and LTSs (Panels C, F, and I) of 
each rat as a function of initiation type (EI = white squares; SL-RI = grey circles) 
overlaid with the median and inter-quartile range. Dotted lines indicate differences equal 
to zero. ^Indicates substantial evidence (i.e., lnBFi0 = 1.098) for a feeding regimen model 
describing the difference between pre-feeding and baseline. 

Are times-to-initiate, start ratios, and persistence ratios affected by 

initiation type or feeding regimen? 

 

 Figure 2.4 shows the median and pre-feeding – baseline median LTI and mean 

and pre-feeding – baseline mean start and persistence ratios of each rat as a function of 

initiation type (EI, SL-RI). LTIs were predicted to increase with pre-feeding. To assess 

this prediction, median LTIs were submitted to a Bayesian dependent samples t-test 

comparing feeding regimens (baseline, pre-feeding). This revealed substantial evidence 
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for the null model describing LTIs (lnBFio = -1.246), indicating that LTIs were robust to 

pre-feeding.  

 

Figure 2.4. Experiment 1 baseline and pre-feeding times-to-initiate, start 
ratios, and persistence ratios. Median and pre-feeding (PF) – baseline (b) median 
time-to-initiate (Panel A & B) and mean and PF – B mean start ratio (Panel C & D) and 
persistence ratio (Panel E & F) of each rat as a function of initiation type (EI = white 
squares; SL-RI = grey circles) overlaid with the median and inter-quartile range. Note 
that whereas dotted lines in Panels C & E indicate ratios equal to 0.5, dotted lines in 
Panels B, D, & F indicate differences equal to zero.  

 It is possible that the feeding regimen model describing LTSs or initiation type 

model describing LFRs is due to a difference in start or persistence ratios. To assess this 

possibility, start ratios and persistence ratios were submitted to 2 (initiation type: EI, SL-
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RI) × 2 (feeding regimen: baseline, pre-feeding) Bayesian repeated measures ANOVAs. 

These analyses revealed little evidence for a feeding, initiation type, or initiation type × 

feeding regimen model describing start or persistence ratios (largest lnBFi0 = 0.076), 

suggesting that SL-RI and EI rats started just as often on the short FI and switched back 

to the short FI after an LTS equally as often.  

 Taken together, these data suggest that LTIs were not sensitive to pre-feeding as 

predicted. Importantly, however, the effect of feeding regimen on LTSs or initiation type 

on LFRs is not attributable to differences in how frequently rats started on the Short FI 

or switched back to the Short FI after an LTS.  

Is the sensitivity of LTS medians to pre-feeding explained by an increase in 

the prevalence and mean of non-timed LTSs? 

 

Grubb’s test revealed a few outliers: rat 3 (SL-RI rats) for q in baseline; rat 10 (EI 

rats) for ε, mean timed LTS, timed LTS SD, and timed LTS CV in pre-feeding; rat 16 (EI 

rats) for q, c, mean timed LTS and timed LTS SD in pre-feeding; and rat 24 (EI rats) for 

ε, the mean timed LTS, and non-timed LTS in pre-feeding. These data were removed 

from analysis. 
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Figure 2.5. Experiment 1 gamma-exponential mixture model fits to 
empirical cumulative LTS distributions. Mean LTS cumulative distributions 
(Panel A), LTS cumulative distribution of a representative rat (Panel B) and fits of 
Equation 2.1 as a function of feeding regimen (baseline = filled black circles, solid line; 
pre-feeding = filled white circles, dashed line). Representative rat was defined as the rat 
with the median pre-feeding-induced increase in median LTS.  

  

Figure 2.5 shows the mean LTS cumulative distribution, LTS cumulative 

distribution of a representative rat and fits of Equation 2.1 as a function of feeding 

regimen (baseline, pre-feeding); data were collapsed across initiation types because 

there was no evidence for an initiation type model describing LTSs in the previous 

analysis. Table 2.2 shows median (IQR) baseline and the median (IQR) pre-feeding - 

baseline parameter estimates. Equation 2.1 appears to adequately track the data, 

showing little deviation from the observed mean cumulative distribution of LTSs or the 

cumulative distribution of LTSs of the representative rat.  
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Table 2.2 

Experiment 1 Median (IQR: 1st Quartile, 3rd Quartile) baseline and pre-feeding – 

baseline Parameter estimates of Equation 2.1 

Parameter Baseline Pre-feeding - Baseline 

q .66 (.46, .81) 0.06 (-0.01, 0.11) 

ε (pulses) 37.69 (28.09, 52.28) -15.88 (-22.26, 0.14) 

c (s) 0.32 (0.21, 0.42) 0.11 (0.03, 0.27) 

δ (s) 0.38 (0.16, 0.83) 0.57 (0.09, 0.92) 

Derived Statistics   

Mean Timed LTS (s) 12.37 (11.83, 12.82) 0.66 (-0.26, 1.09) 

Timed LTS SD (s) 1.89 (1.51, 2.24) 0.41 (-0.09, 0.87) 

Timed LTS CV 0.16 (0.14, 0.20) 0.04 (-0.01, 0.07) 

Mean non-timed LTS (s) 5.83 (2.94, 7.91) 1.75 (-0.05, 66.42) 

Note. Parameter estimates and derived statistics in bold indicate substantial evidence for 
a feeding regimen model describing those parameters and derived statistics.  

The effect of pre-feeding on median LTS was predicted to be explained as an 

increase in the prevalence and mean of non-timed LTSs. To assess this prediction, 

parameter q and the mean non-timed LTS were submitted to Bayesian dependent t-tests 

comparing feeding regimens (baseline, pre-feeding). These analyses revealed little 

evidence for a feeding regimen model describing either parameter (largest lnBFi0 = -

0.150), suggesting that both the probability of entering a timing state and the mean non-

timed LTS were insensitive to pre-feeding.  

 To further isolate the potential mechanism by which pre-feeding lengthens LTSs, 

the remainder of the parameters and derived statistics were submitted to Bayesian 
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dependent t-tests comparing feeding regimens (baseline, pre-feeding). These revealed 

substantial evidence for a feeding regimen model describing ε (lnBFi0 = 1.789), 

indicating that pre-feeding reduced the criterion pulse count for emission of a target 

response. Consistent with this model, there was substantial evidence for a feeding 

regimen model describing the timed LTS SD (lnBFi0 = 1.328) and CV (lnBFi0 = 1.789), 

indicating that the pre-feeding-induced reduction in the criterion pulse count increased 

timed LTS variability. There was little evidence for a feeding regimen model describing 

the mean timed LTS (lnBFi0 = -0.315), suggesting that the pre-feeding-induced reduction 

in the criterion pulse count was not enough to alter the mean timed LTS. That is, the 

mean timed LTS was insensitive to pre-feeding.   

The effects observed thus far do not explain the pre-feeding-induced lengthening 

of LTSs. Thus, the minimum LTS was also submitted to a Bayesian dependent t-test 

comparing feeding regimens (baseline, pre-feeding). This revealed that there was 

substantial evidence for a feeding regimen model describing the minimum LTS (lnBFi0 = 

4.748), indicating that pre-feeding increased the minimum LTS.  

Taken together, these data suggest that pre-feeding-induced lengthening of LTSs 

is not due to an increase in the prevalence and mean of non-timed LTSs. Instead it 

appears that much of the increase in LTSs is due to a lengthening of the minimum LTS, 

shifting the entire distribution of LTSs by about .60 s. Interestingly, pre-feeding 

increased the variability but not the mean of timed LTSs by reducing the criterion pulse 

count.  
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Discussion 

 

Experiment 1 revealed little evidence for the discriminative RI hypothesis. LTSs 

in SL-RI were not under greater temporal control or robust to pre-feeding compared to 

LTSs in EI. Indeed, LTS medians and variability were similar in both SL-RI, and LTS 

medians in both SL-RI and EI were equally sensitive to pre-feeding. Additionally, LTIs 

were not sensitive to pre-feeding. SL-RI did not dissociate interval timing and 

motivation. 

The insensitivity of SL-RI LTIs to pre-feeding suggests that Short FI initiating-

responses are not sensitive to changes in motivation. This insensitivity is incongruent 

with FMI and FCN procedures developed by Mechner & Guevrekian (1962), which also 

required a lever initiating-response. The critical difference between the present 

implementation of the SL-RI switch-timing procedure and the RI procedures developed 

by Mechner & Guevrekian (1962) is that in their procedures, the manipulanda are always 

available and in the present implementation of SL-RI switch-timing the manipulanda are 

not always available. That is, whereas in Mechner & Guevrekian (1962) the levers did not 

serve as discrete cues for reinforcement, in the present study the levers did serve as 

discrete cues for reinforcement. Lever insertion signals to both SL-RI and EI rats that 

food will arrive in either 8-s or 16-s. Associating lever insertion with imminent 

reinforcement is known to promote the attribution of value to levers (Beckmann & Chow, 

2015; Davey & Cleland, 1982; Holland, 1977), which in turn promotes interaction with 

the levers and facilitation of habit development (Everitt & Robbins, 2005; Vandaele, 

Pribut, & Janak, 2017); habits are insensitive to manipulation by disruptors such as pre-

feeding (Dickinson & Balliene, 1994; Vandaele, Pribut, & Janak, 2017). Given that habit 

development is also facilitated with extended training (Dickinson & Balliene, 1994; Yin & 
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Knowlton, 2006), it is likely that Short FI initiating-responses were insensitive to pre-

feeding because (a) the SL-RI switch-timing procedure was programmed as a procedure 

in which lever insertion was a reliable cue for both trial initiation and imminent 

reinforcement, and (b) the Short FI initiating-response was extensively trained prior to 

pre-feeding. This suggests that a design in which initiating-responses are unlikely to 

become habits would restore the sensitivity of SL-RI, and thus SL-RI LTIs, to pre-

feeding.   

Habit development of Short FI initiating-responses may also explain why SL-RI 

did not protect LTSs in SL-RI from changes in motivation. Habit development of 

initiating-responses likely fail to circumscribe the effect of pre-feeding to the post-food 

focal search mode. As a result, pre-feeding effects on post-food focal search are expected 

to perturb general search and subsequently pre-food focal search (Figure 1.4B). Such 

effects predict that performance indices become longer and more variable. Although it is 

unclear why initiating-responses but not target responses became habits, target 

responses denoting performance indices appear to require substantial training to 

become habits. For example, Cheng, Hakak, & Meck (2007) found peak-times were most 

sensitive to methamphetamine administration after 20 sessions of training, less sensitive 

after 60 sessions of training and not sensitive after 120 sessions of training. In the 

present study, rats were only trained for 29 sessions prior to the single session pre-

feeding probe. This suggests that target responses were not trained long enough to 

become habits, allowing pre-feeding to affect target responses and thus performance 

indices.    

It is also possible that there was still some generalization between Short FI 

initiating-responses and target responses. Short FI initiating-responses are 
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discriminable from Long FI target responses as a function of time and location but 

identical as a function of form. Indeed, Short FI and Long FI responses are both 

measured as lever presses. Despite turning on a localized yellow LED easily detected by 

rats (Burn, 2008; Graham & Riggs, 1935; Prusky, Harker, Douglas, & Whishaw, 2002; 

Walton, 1933) to signal an effective initiating-response, the identical form of the 

response may have promoted generalization between Short FI initiating-responses and 

target responses7. This suggestion is also consistent with the observation that pairing 

discriminative cues with initiating-responses does not enhance temporal control of RIFI 

and RI peak performance relative to EIFI and EI peak performance (Fox & Kyonka, 

2016).  Thus, it may be that discriminability of initiating-responses from target 

responses needs to be a function of time, location, and form.   

Chapter 3: Experiment 2 - Response-Initiated Free-Operant Switch-Timing 
 

Introduction 

 

The results of experiment 1 suggest that (a) the discrete-trials switch-timing 

procedure or (b) the identical form of Short FI initiating-responses and target responses 

resulted in a failure to demarcate post-food focal search from general search. Whereas 

the discrete-trials switch-timing procedure may have facilitated Short FI initiating-

responses becoming habits, the identical form of Short FI initiating-responses and target 

responses may have facilitated generalization between Short FI initiating-responses and 

                                                           
7 An alternative hypothesis may be offered from the perspective of PA models. In Figure 
1.2, every Short FI response is followed by another query of the timing process to 
determine whether it is time to switch over to the Long FI. Subjects may thus encode 
every Short FI response as a query of the timing process. That is, as a prelude to 
completing an LTS.  
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target responses. Regardless of the route by which Short FI initiating-responses failed to 

demarcate the post food-focal search from general search, this failure suggests either 

that interval timing and motivation are not dissociable or that initiating-responses need 

to differ from target responses as a function of time, location, and form.  

Comparison of contemporary implementations of FMI to DRL confirms that this 

other dimension is likely the form of the response. IRTs of both rats (e.g., Hill et al. 

2012) and mice (e.g., Daniels et al., 2018; Romero, 2016) trained in FMI relative to DRL 

are under greater temporal control and robust to pre-feeding (Daniels et al., 2018; 

Romero et al. 2016; Mazur et al., 2014; Watterson et al., 2015). The critical difference 

between contemporary implementations of FMI and DRL, is that in contemporary 

implementations of FMI, IRTs are initiated, for example, via a lever-press and 

terminated via a head-entry. That is, initiating-responses in FMI differ from target 

responses as a function of time, location, and form. In DRL, IRTs are both initiated and 

terminated via the same response (e.g., lever press, nose-poke, head-entry). The exact 

form of initiating-responses in FMI does not appear to be important, as IRTs initiated 

via nose-pokes are similar to IRTs initiated via lever-presses (Daniels et al., 2018; 

Romero et al., 2016).   

Thus, experiment 2 sought to test whether initiating-responses discriminable 

from target responses as a function of time, location, and form dissociate interval timing 

and motivation. To test this hypothesis, rats were trained in a multiple RI EI switch-

timing procedure (Figure 3.1) in which manipulanda were always available, and active 

manipulanda were signaled by discriminative stimuli. Initiating-responses were 

discriminable from target responses as a function of either two or three dimensions. Rats 

were trained with EI, SL-RI and nose-poke RI (NP-RI) where SL-RI is discriminable 
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from target responses as a function of time and location (as in experiment 1, Chapter 2), 

and NP-RI is discriminable from target responses as a function of time, location, and 

form. Motivation was manipulated via 1 h and 24 h pre-feeding probes; the different pre-

feeding durations were included to determine whether effects differed with 1 h and 24 h 

pre-feeding. Extinction probes were also included to determine whether RI selectively 

dissociates interval timing and motivation or more generally dissociates interval timing 

and non-timing processes.   

Compared to EI, NP-RI was predicted to improve temporal control of LTSs and 

protect LTSs from pre-feeding and extinction. SL-RI was predicted to have the same 

effects, but to a lesser degree. NP-RI and SL-RI LTIs were predicted to be sensitive to 

pre-feeding and extinction, but LTIs in NP-RI were predicted to be more sensitive to pre-

feeding and extinction than SL-RI. Additionally, SL-RI was predicted to reduce temporal 

control of Short FI performance. Fits of Equation 2.1 to LTSs was expected to reveal that 

pre-feeding increases the prevalence and mean of non-timed LTSs in EI but not SL-RI or 

NP-RI.    

Methods 
Subjects 

 
Eight naïve male Sprague Dawley rats (Charles River Laboratories, Hollister, CA) 

served as subjects. Subjects arrived on post-natal day (PND) 61 and were immediately 

pair-housed in a vivarium on a reverse 12:12 h light cycle, with lights on at 1900 h. All 

behavioral training was conducted during the dark phase of the cycle, starting at 

approximately 1130 h and ending approximately at 1330 h. Following four days of 

acclimation to the colony room, food access was reduced daily from 24 to 18, 12, and 

finally 1 hour per day. Food was placed on home-cages 30 min after the end of each 
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experimental session and taken away 1 hour later. This ensured that at the beginning of 

the next session weights were, on average, 85% of ad libitum weights, as estimated from 

growth charts provided by the breeder. Water was always available in home-cages. All 

animal handling procedures used during this study followed National Institutes for 

Health Guidelines and were approved by the Arizona State University institutional 

Animal Care and Use Committee. 

Apparatus 

 
 Experiments were conducted in 8 of the 12 MED Associates (St. Albans, VT, USA) 

modular test chambers detailed in Experiment 1 (Chapter 2; 2 chambers were 305 mm 

long, 241 mm wide, and 210 mm high; 4 chambers were 305 mm long, 241 mm wide, and 

292 mm high). Chambers were modified to include a nose-poke device (ENV-114M) at 

the bottom of the panel opposite the response panel containing the levers and 

reinforcement receptacle, flush with the floor. This device could be internally illuminated 

with green, yellow, and/or red LEDs.   

Procedure 

 
 All experimental sessions were 2 hours in duration and began with a 3-min 

warm-up. During this warm-up period, no stimuli were activated.  

Reinforcer Shaping. Rats were initially acclimated to the operant chambers and 

trained to obtain reinforcement. After the 3-min warm-up, a single reinforcer was 

delivered by raising the liquid dipper. A single head-entry into the reinforcement 

receptacle broke an infrared beam, 10 s later the liquid dipper was lowered and a fixed-

time 90-s inter-trial interval (ITI) commenced.  
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Manipulandum Shaping. After a single day of Reinforcer Shaping, rats were shaped 

to press levers and nose poke the nose-poke device using a Pavlovian conditioned 

approach procedure. After the 3-min warm-up, a 1-kHz tone was activated, and a single 

reinforcer was delivered. A single head-entry into the reinforcement receptacle broke an 

infrared beam; 5 s later the liquid dipper was lowered, the 1-kHz tone deactivated, and a 

variable-time 45-s ITI commenced. At the end of each ITI, a single manipulandum (i.e., 

left lever extended, right lever extended, or turning on all lights in the nose-poke device) 

was pseudo-randomly selected from a list, such that no manipulandum could be selected 

in more than six consecutive trials; the selected manipulandum was activated. If 8 s 

elapsed after manipulandum activation, the manipulandum was deactivated (i.e., left 

lever retracted, right lever retracted, all lights in the nose-poke device turned off), the 1-

kHz tone was turned on, and a single reinforcer delivered. Alternatively, if a response 

was made on the active manipulandum before 8-s elapsed (i.e., a lever press on the 

activated lever, or a nose poke on the nose-poke device) the manipulandum was 

deactivated, the 1-kHz tone was turned on, and a single reinforcer delivered.  

Lever Press and Nose Poke Training. After four days of Manipulandum Shaping, 

rats were trained to press the left and right lever and nose poke the nose-poke device for 

reinforcement. After the 3-min warmup, a single manipulandum was pseudo-randomly 

selected and activated, as described in Manipulandum Shaping. Following a single 

response on the active manipulandum, the manipulandum was deactivated, the 1-kHz 

tone was activated, and a single reinforcer delivered. A head-entry into the 

reinforcement receptacle deactivated the 1-kHz tone and lowered the liquid dipper 2.5 s 

later. After the liquid dipper was lowered, a fixed-time 5-s ITI commenced.  
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Response-Initiated Switch-Timing Shaping: Response-Initiation. Figure 3.1 

shows a schematic of the multiple RI EI switch-timing procedure. After four days of 

Lever Press and Nose Poke Training, rats were trained to initiate switch-timing trials. 

After the 3-min warmup, both levers and the nose-poke device were activated. Initiation 

types were signaled by activating one of three tones (3-kHz, 8-kHz, or 15-kHz), pseudo-

randomly sampled from a list such that no initiation type could occur in more than six 

consecutive trials. Each tone indicated whether the trial was initiated by nose poking the 

nose-poke device (NP-RI), pressing the Short-FI lever (SL-RI; see Switch Timing below), 

or waiting for the experimenter to initiate the trial (EI). EI trials were initiated after 2.5 s 

since tone onset, and until rats had ceased to press the levers and nose poke the nose-

poke device for 0.25 s. The initiation type signaled by each tone was counterbalanced 

across all rats such that no tone served as the signal for a specific initiation type in more 

than 2-3 rats.  

Switch-Timing. Following trial initiation, the active tone was deactivated, the 

houselight illuminated for either a fixed-interval (FI) 1-s (Short FI) or a FI 4-s (Long FI), 

pseudo-randomly sampled from a list such that neither FI occurred in more than four 

consecutive trials within an initiation type, and in no more than 12 consecutive trials 

across initiation types. For some rats, the left lever delivered reinforcement according to 

the Short FI and the right lever delivered reinforcement according to the Long FI, and 

vice versa for the other rats. This assignment was also counterbalanced across tone-

initiation assignment, such that within each pattern of tone-initiation assignment there 

was at least one rat for which the Short FI was programmed on the left lever and one rat 

for which the Long FI was programmed on the left lever. The first press on the active FI 

lever after the active FI elapsed turned off the houselight and delivered a single 

reinforcer. A head-entry into the reinforcer receptacle broke an infrared beam and then 
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deactivated the dipper 2.5 s later. This was immediately followed by a tone signaling the 

next initiation type. The ITI was thus equal to the time it took rats to initiate trials in NP-

RI and SL-RI, and equal to the time it took rats to quit lever pressing or nose poking in 

EI, with a minimum ITI of 2.5 s. The SL-RI and NP-RI ITIs are also referred to as the 

latency-to-initiate (LTI). Taken together, ITIs and LTIs are referred to as the time-to-

initiate.  

 

  



 

 
 

5
9

 

 

Figure 3.1. Experiment 2 Schematic of the multiple RI EI switch-timing procedure. At the beginning of the 
session, the nose-poke device was illuminated, and the levers extended. The initiation type was then selected and indicated by 
a tone. Following correct initiating-responses, the tone was turned off and either the Short FI or Long FI was activated, 
nondifferentially signaled by turning on the houselight. In nose-poke (NP-RI) and Short FI (SL-RI), rats nose-poked and 
responded on the Short FI, respectively, to initiate trials; in externally-initiated (EI), nose-pokes and lever presses delayed 
trial initiation by 0.25 s but were otherwise initiated after 2.5 s. Once a trial was initiated, performance was checked against 
the optimal behavioral sequence (see text for details); if the optimal sequence was not followed, the trial was terminated, and 
the trial reinitiated either by the subject or the experimenter, depending on the initiation type. After the active FI elapsed, the 
first response on the lever associated with the active FI turned off the houselight and activated the dipper. Once a head-entry 
into the reinforcement receptacle confirmed receipt of the reinforcer, the dipper was lowered 2.5 s later and the next initiation 
type selected. 
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Punishment. Optimal performance in the switch-timing procedure involves 

responding first on the Short FI and eventually switching over to the Long FI. To 

encourage this sequence, trials were terminated without reinforcement if (a) the first 

response after trial initiation was on the long FI, (b) if the Short FI was active and a 

response was made on the Long FI at any point during the trial, or (c) if the Long FI was 

active and a response was made on the Short FI after a response on the Long FI.  

Training Order. Rats were trained such that reinforcement was initially 

contingent upon FI 1-s FI 4-s only in EI; NP-RI and SL-RI were terminated with 

reinforcement following initiating-responses. Reinforcement contingent upon FI 1-s FI 

4-s in NP-RI and SL-RI was slowly introduced as rats learned to correctly respond in the 

presence of the tone and engage in switch-timing FI 1-s FI 4-s in the presence of the 

houselight. This was assessed by inspecting the number of obtained reinforcers in the 

previous two sessions; if rats earned more than 600 reinforcers, FI 1-s FI 4-s was 

introduced following SL-RI and then following NP-RI.  

Switch-Timing Training. Once rats were trained on FI 1-s FI 4-s in all initiation 

types, rats were trained up to the timing conditions of interest in the following order: FI 

4-s FI 12-s A, FI 6-s FI 18-s, and FI 4-s FI 12-s B. All rats experienced the same order of 

conditions; the two FI 4-s FI 12-s conditions allowed for assessment of potential order 

effects. Punishment continued as described in Response-Initiation and Switch-Timing 

Shaping, until subjects had experienced a minimum of 5 sessions of training with 

punishment in each condition and until performance was deemed stable. Punishment 

was then removed, and subjects were trained for a minimum of 7 sessions and until 

performance was again deemed stable. Stability was assessed visually and confirmed via 
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a non-significant regression of the critical dependent measures listed in Data Analysis & 

Results over the last 5 sessions of training. 

Single-Initiation Type Testing: Pre-feeding. Figure 3.2 shows a schematic of 

training and testing. Table 3.1 shows the order of testing for each rat. Following 

confirmation of stable performance in the FI 4-s FI 12-s A and the FI 6-s FI 18-s timing 

conditions, rats were tested for 15 sessions in a counterbalanced order within each 

timing condition for 5 sessions within each initiation type. In each single-initiation type 

testing condition, the first, second, and fifth sessions served as baselines and the third 

and fourth sessions served as 1-h and 24-h pre-feeding probes, respectively. In the 1-h 

PF, rats were given continual access to food at their home-cages 1 h immediately prior to 

testing. In 24-h PF, rats were given continual access to food at their home-cages 24 h 

prior to testing. To return to baseline performance on the fifth session, rats were not 

given 1 h of post-experimental feeding after the 24 h pre-feeding probe. At the end of 

testing, rats were returned to Switch-Timing Training. 

Single-Initiation Type Testing: Yoked-ITI Pre-feeding. Following confirmation 

of stable performance in the FI4-s FI 12-s B schedule, rats were tested as described in 

Single-Initiation Type Testing: Pre-feeding. However, EI ITIs for each rat were changed 

from 2.5 s to a list containing the 1st, 2nd (median), and 3rd quartiles of the same rats’ NP-

RI LTIs during the pre-feeding portion of Single-Initiation Type Testing: Pre-feeding in 

the FI 4-s FI 12-s (first determination) condition.  

Single-Initiation Type Testing: Extinction. Immediately following: Single-

Initiation Type Testing: Yoked-ITI Pre-feeding, rats started another round of Single-

Initiation Type Testing; EI ITIs were returned to their original length of 2.5 s. However, 
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pre-feeding probes were substituted with extinction sessions, wherein the liquid dipper 

normally containing sweetened condensed milk was empty.  

Data Analysis and Results 

 

Single-Initiation Type Testing began on session 51 for FI 4-s FI 12-s A, session 

104 for FI 6-s FI 18, and session 136 for FI4-s FI 12-s B. Dependent measures were 

analyzed and calculated as described in experiment 1 (Chapter 2). Note that dependent 

measures calculated based on LFRs were not included for rat 1, because almost all LFRs 

for rat 1 were equal to 0.2 s, indicating most LFRs were the product of lever bounces 

following SL-RI. To determine whether the sensitivity of LTSs to pre-feeding can be 

explained by an increase in the prevalence and mean of non-timed LTSs in EI, parameter 

estimates, and derived statistics of the gamma-exponential were estimated and analyzed 

as described in experiment 1 (Chapter 2). 

The number of completed trials under 1 h and 24 h pre-feeding was substantially 

less than baseline, on average a 2- to 3-fold decrease. To determine whether 1 h and 24 h 

pre-feeding sessions could be collapsed into a single pre-feeding factor for analysis, the 

effect of feeding duration on LTSs and LTIs was assessed via Bayesian dependent t-tests 

within each switch-timing condition and initiation type. There was little evidence for a 

feeding duration model describing LTS dependent measures or LTIs (largest lnBFi0 = -

0.300), suggesting that switch-timing performance was similar across pre-feeding 

durations. Thus, the 1 h and 24 h pre-feeding sessions were collapsed into a single factor 

of pre-feeding for all dependent measures. Data were analyzed as described in 

experiment 1 (Chapter 2). 
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Figure 3.2. Experiments 2 and 3 schematic of training and testing timeline. In experiment 2 (multiple RI EI 
Switch-Timing), rats were trained in a fixed order on FI 4-s FI 12-s A, FI 6-s FI 18-s, and then FI 4-s FI 12-s B. In experiment 
3 (multiple RI EI Temporal Bisection), rats were trained in a fixed order on Short 4-s Long 12-s A, Short 6-s Long 18-s, and 
then Short 4-s Long 12-s B. At the end of the first two timing conditions, rats were tested in Single-Initiation Type Testing: 
Pre-feeding with the order of initiation types counterbalanced within and across rats. In the Single-Initiation Type Testing: 
Yoked-ITI Pre-feeding, EI ITIs during the 1 h and 24 h pre-feeding probes were yoked to NP-RI LTIs from the 1 h and 24 h 
pre-feeding probes the Single-Initiation Type Testing: Pre-feeding condition. In the Single-Initiation Type Testing: Extinction, 
pre-feeding probes were replaced with extinction probes, and EI ITIs were reprogrammed to 2.5 s. Note that the experimental 
timeline is not to scale. 
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Table 3.1 

Experiment 2 Order of Single-Initiation Type Testing  

  Rat 

Single-Initiation Type Testing Condition Session 1 2 3 4 5 6 7 8 

FI 4-s FI 12-s A: Pre-feeding 1-5 NP-RI SL-RI EI NP-RI SL-RI EI EI NP-RI 

 6-10 SL-RI NP-RI NP-RI EI EI SL-RI NP-RI EI 

 11-15 EI EI SL-RI SL-RI NP-RI NP-RI SL-RI SL-RI 

FI 6-s FI 18-s: Pre-feeding 1-5 EI EI SL-RI SL-RI NP-RI NP-RI SL-RI SL-RI 

 6-10 NP-RI SL-RI EI NP-RI SL-RI EI EI NP-RI 

 11-15 SL-RI NP-RI NP-RI EI EI SL-RI NP-RI EI 

FI 4-s FI 12-s B: Yoked-ITI Pre-feeding 1-5 SL-RI NP-RI NP-RI EI EI SL-RI NP-RI EI 

 6-10 EI EI SL-RI SL-RI NP-RI NP-RI SL-RI SL-RI 

 11-15 NP-RI SL-RI EI NP-RI SL-RI EI EI NP-RI 

FI 4-s FI 12-s B: Extinction 1-5 NP-RI EI EI SL-RI NP-RI SL-RI NP-RI SL-RI 

 6-10 EI NP-RI SL-RI NP-RI SL-RI EI SL-RI EI 

 11-15 SL-RI SL-RI NP-RI EI EI NP-RI EI NP-RI 

Note. The third and fourth sessions in each Single-Initiation Type Testing condition (i.e., sessions 3, 4, 8, 9, 13, and 14) were 
preceded by 1 h and 24 h pre-feeding, respectively. 
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Is switch-timing performance differentially sensitive to initiation type as a 

function of feeding regimen? 

 

 Figure 3.3 shows the median, IQR, and CQV of LFRs, LTDs, and LTSs for each rat 

as a function of the Long FI in each timing condition (FI 12-s A, FI 18-s) and initiation 

type (EI, SL-RI, NP-RI). NP-RI was predicted to enhance temporal control of LTSs 

relative to SL-RI and EI, SL-RI was predicted to enhance temporal control of LTSs 

relative to EI. To asses this prediction, LTS dependent measures were submitted to a 3 

(initiation type: EI, SL-RI, NP-RI) × 2 (timing: FI 4-s FI 12-s A, FI 6-s FI 18-s) Bayesian 

repeated measures ANOVAs. These revealed substantial evidence for a timing model 

describing LTS medians (lnBFi0 = 43.275) and IQRs (lnBFi0 = 7.508), indicating that LTS 

medians and IQRs scaled with the timing condition; there was substantial evidence 

against an initiation type model describing LTS IQRs (lnBFi0 = -1.104), indicating that 

LTSs were equally variable across initiation types. Consistent with these models, there 

was no substantial evidence for a timing, initiation type, timing + initiation type, or a 

timing × initiation type model describing LTS CQVs (largest lnBFi0 = -0.055), suggesting 

that CQVs were invariant to both initiation type and timing conditions.  

 Figure 3.4 shows the pre-feeding – baseline median, IQR, and CQV of LFRs, 

LTDs, and LTSs for each rat as a function of the Long FI in each timing condition (FI 12-

s A, FI 18-s), and each initiation type (EI, SL-RI, NP-RI). NP-RI was also predicted to 

protect LTSs from changes in motivation more than SL-RI and EI, SL-RI was predicted 

to protect LTSs from changes in motivation more than EI. To assess these predictions, 

LTS dependent measures were submitted to 3 (initiation type: EI, SL-RI, NP-RI) × 2 

(feeding regimen: baseline, pre-feeding) × 2 (timing: FI 12-s A, FI 18-s) Bayesian 

repeated measures ANOVAs. These analyses revealed substantial evidence for adding an 

initiation type × feeding regimen parameter to the model describing LTS medians 
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(lnBFi0 = 16.681), indicating that whether LTSs were affected by pre-feeding depended 

on initiation type. Dependent t-tests probing this interaction revealed substantial 

evidence for adding a feeding regimen parameter to the model describing LTS medians 

in EI (lnBFi0 = 7.960) and SL-RI (lnBFi0 = 2.677) but not NP-RI (lnBFi0 = 0.259), 

indicating that pre-feeding increased the median LTSs in EI and SL-RI but not NP-RI. In 

contrast, there was substantial evidence for adding a feeding regimen parameter to the 

model describing LTS IQRs (lnBFi0 = 24.870) and CQVs (lnBFi0 = 20.528), indicating 

that pre-feeding resulted in more variable LTSs in all initiation types. Thus, only LTS 

medians were robust to pre-feeding in only NP-RI. 

 

Figure. 3.3 Experiment 2 baseline switch-timing performance. Median (Panels 
A-C), IQR (Panels D-F), and CQV (Panels G-I) of LFRs (Panels A, D, & G), LTDs (Panels 
B, E, & H), and LTSs (Panels C, F, & I) for each rat as a function of Long FI in each 
timing condition (12-s A, 18-s) and each initiation type (EI = white squares; SL-RI = grey 
circles; NP-RI = black triangles). *Indicates substantial evidence (i.e., lnBFi0 = 1.098) for 
an initiation type model. **Indicates substantial evidence for a timing condition model.   
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SL-RI was predicted to reduce temporal control of Short FI performance (Figure 

3.3). To assess this prediction, LFR and LTD dependent measures were submitted to 3 

(initiation type: EI, SL-RI, NP-RI) × 2 (timing: FI 12-s A, FI 18-s) Bayesian repeated 

measures ANOVAs. These revealed substantial evidence for an initiation type × timing 

condition model describing LFR medians (lnBFi0 = 11.634), indicating that whether LFRs 

increased with the timing condition depended on initiation type. Probes of the initiation 

type × timing model describing LFR medians revealed substantial evidence for a timing 

model describing LFR medians in EI (lnBFi0 = 5.426) and NP-RI (lnBFi0 = 3.969) but not 

SL-RI (lnBFi0 = 0.446), indicating that median LFRs scaled with the timing condition in 

EI and NP-RI but not SL-RI. There was substantial evidence for a timing condition 

model describing LFR IQRs (lnBFi0 = 1.612), indicating that LFR IQRs scaled with the 

timing condition. Interestingly, there was substantial evidence for an initiation type 

model describing LFR CQVs (lnBFi0 = 15.521). Post-hoc dependent samples t-tests 

probing the initiation type model describing LFR CQVs revealed substantial evidence for 

initiation type models describing LFR CQVs when comparing EI to NP-RI (lnBFi0 = 

6.596) and SL-RI to NP-RI (lnBFi0 = 8.207) but not EI to SL-RI (lnBFi0 = 8.207, 

indicating the LFR CQVs were higher in EI and SL-RI than NP-RI. Additionally, there 

was substantial evidence for a timing model describing LTD medians (lnBFi0 = 7.292) 

and IQRs (lnBFi0 = 3.225) but not CQVs (lnBFi0 = -1.159) indicating that LTDs scaled 

with the timing condition.   

 LFR and LTD dependent measures were also assessed for their sensitivity to pre-

feeding (Figure 3.4) by submitting LFR and LTD dependent measures to 3 (initiation 

type: EI, SL-RI, NP-RI) × 2 (feeding regimen: baseline, pre-feeding) × 2 (timing: FI 12-s 

A, FI 18-s) Bayesian repeated measures ANOVAs. These analyses revealed substantial 

evidence for adding a feeding regimen parameter to the model describing LFR medians 
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(lnBFi0 = 19.384) and IQRs (lnBFi0 = 14.188) indicating that LFR median and variability 

increased with pre-feeding in all initiation types. There was also substantial evidence for 

adding a feeding regimen × timing condition parameter to the model describing LFR 

CQVs (lnBFi0 = 1.127), indicating that whether LFR CQVs increased with pre-feeding 

depended on timing condition. Post-hoc dependent t-tests probing this interaction 

revealed substantial evidence for adding a feeding regimen parameter to the model 

describing LFR CQVs in FI 4-s FI 12-s A (lnBFi0 = 2.629) but not FI 6-s FI 18-s (lnBFi0 = 

-1.074), indicating that LFR CQVs increased with pre-feeding in FI4-s FI 12-s A but not 

FI 6-s FI 18-s. Additionally, there was substantial evidence for adding a feeding regimen 

parameter to the model describing LTD medians (lnBFi0 = 10.776), IQRs (lnBFi0 = 

18.439), and CQVs (lnBFi0 = 5.329), indicating that LTDs also increased with pre-

feeding.  
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Figure. 3.4 Experiment 2 pre-feeding switch-timing performance. Pre-feeding 
(PF) – baseline (B) median (Panels A-C), IQR (Panels D-F), and CQV (Panels G-I) of 
LFRs (Panels A, D, & G), LTDs (Panels B, E, & H), and LTSs (Panels C, F, & I) for each 
rat as a function of the Long FI in each timing condition (12-s A, 18-s) and each initiation 
type (EI = white squares; SL-RI = grey circles; NP-RI = black triangles).  ^Indicates 
substantial evidence (i.e., lnBFi0 = 1.098) for a feeding regimen describing the difference 
between pre-feeding and baseline. Dotted lines indicate differences equal to zero.  

Taken together, these data suggest that LTSs, LTDs, and to an extent LFRs scaled 

as expected from FI 4-s FI 12-s A to FI 6-s FI 18-s. Although LTSs in SL-RI and NP-RI 

were not under greater temporal control relative to LTSs in EI, LTS medians in NP-RI 

but not SL-RI or EI were robust to pre-feeding. LTS medians in SL-RI were less robust to 

pre-feeding than LTS medians in NP-RI but more robust to pre-feeding than LTS 

medians in EI. Interestingly, LTS variability increased with pre-feeding in all three 

initiation types. Consistent with predictions, temporal control of Short FI performance in 

SL-RI was reduced relative to Short FI performance in EI and NP-RI: LFR medians did 
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not increase from FI 4-s FI 12-s to FI 6-s FI 18-s. Short FI performance was also affected 

by pre-feeding: LFR and LTD medians, IQRs, and CQVs were all elevated with pre-

feeding.  

Are times-to-initiate, discrimination ratios, start ratios, and persistence 

ratios affected by initiation type, feeding regimen, or timing condition? 

 

  Figure 3.5 shows the median and pre-feeding - baseline median time-to-initiate, 

and mean and pre-feeding – baseline mean discrimination ratio, start ratio, and 

persistence ratio for each rat as a function of the Long FI in each timing condition (FI 12-

s A, FI 18-s), and each initiation type (EI, SL-RI, NP-RI). LTIs were predicted to be 

sensitive to pre-feeding, but NP-RI LTIs were expected to be more sensitive to pre-

feeding than SL-RI LTIs. To assess this prediction, LTIs were submitted to a 2 (initiation 

type: SL-RI, NP-RI) × 2 (feeding regimen: baseline, pre-feeding) × 2 (timing: FI 12-s, FI 

18-s) Bayesian repeated measures ANOVA; EI ITIs were not assessed because despite 

nose-pokes and lever-presses delaying trial onset in EI, the median ITI was equal to the 

programmed ITI of 2.5 s. This analysis revealed substantial evidence for an initiation 

type + feeding regimen + timing model describing LTIs (lnBFi0 = 24.676), indicating that 

NP-RI LTIs were longer than SL-RI LTIs and that both NP-RI LTIs and SL-RI LTIs 

increased with pre-feeding and timing conditions. This suggests that NP-RI LTIs and SL-

RI LTIs are equally sensitive to pre-feeding.  



 

76 
 

 

Figure 3.5. Experiment 2 baseline and pre-feeding times-to-initiate, 
discrimination ratios, start ratios, and persistence ratios. Median and pre-
feeding (PF) – baseline (B) median time-to-initiate (Panel A & B), and mean and PF – B 
mean discrimination (Panel C & D), start (Panel E & F), and persistence ratio (Panel G & 
H) for each rat as a function of the Long FI in each timing condition (12-s A, 18-s) within 
each initiation type (EI = white squares; SL-RI = grey circles; NP-RI = black triangles).  
Note that whereas the dotted line in Panels C, E, and G indicates ratios of 0.5, the dotted 
line in Panels B, D, F, and H indicate differences equal to zero. *Indicates substantial 
evidence (i.e., lnBFi0 = 1.098) for an initiation type model. **Indicates substantial 
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evidence for a timing condition model. ^Indicates substantial evidence (i.e., lnBFi0 = 
1.098) for a feeding regimen describing the difference between pre-feeding and baseline.   

Discrimination ratios were well above 0.5 for all rats in all initiation types. This 

indicates that rats adequately learned to discriminate tone-initiation type associations. 

To determine whether discrimination of these tone-initiation type associations was 

affected by initiation type, feeding regimen, or timing condition, discrimination ratios 

were submitted to 3 (initiation type: EI, SL-RI, NP-RI) × 2 (feeding regimen: baseline, 

pre-feeding) × 2 (timing: FI 12-s, FI 18-s) Bayesian repeated measures ANOVAs. These 

analyses revealed substantial evidence for an initiation type × timing + initiation type × 

feeding regimen model describing discrimination ratios (lnBFi0 = 15.791). Probes of the 

initiation type × timing interaction comparing timing conditions within each initiation 

type via dependent samples t-tests revealed substantial evidence for a timing model 

describing EI (lnBFi0 = 1.386) but not SL-RI (lnBFi0 = 0.423) or NP-RI (lnBFi0 = -1.085) 

discrimination ratios, indicating that EI discrimination ratios increased between timing 

conditions. That is, with extended training the ability of rats to withhold responding for 

2.5 s increased. Probes of the initiation type × feeding regimen model comparing feeding 

regimen within each initiation type via dependent samples t-tests revealed substantial 

evidence for a feeding regimen model describing EI (lnBFi0 = 5.273) and NP-RI(lnBFi0 = 

2.357) but not SL-RI (lnBFi0 = -0.091) discrimination ratios, indicating that EI 

discrimination ratios increased with pre-feeding and NP-RI discrimination ratios 

decreased with pre-feeding. Thus, whereas pre-fed rats were better able to withhold 

responding for 2.5 s, pre-fed rats lever pressed more when the initiation tone signaled a 

nose-poke initiating-responses.  

It is possible that some of the selected models containing parameters for 

initiation type and/or feeding regimen describing LTS, LTDs, and LFRs are attributable 
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to differences in start and or persistence ratios. To assess whether any of these ratios 

were sensitive to initiation type, feeding regimen, or timing condition the start and 

persistence ratios were submitted to 3 (initiation type: EI, SL-RI, NP-RI) × 2 (feeding 

regimen: baseline, pre-feeding) × 2 (timing: FI 12-s, FI 18-s) Bayesian repeated 

measures ANOVAs. There was substantial evidence for an initiation type + feeding 

model describing start (lnBFi0 = 6.544) and persistence ratios (lnBFi0 = 15.096), 

indicating that both start and persistence ratios were sensitive to initiation type and 

reduced by pre-feeding. Post-hoc tests revealed that start ratios were well described by 

an initiation type model when comparing NP-RI and EI (lnBFi0 = 1.781), NP-RI and SL-

RI (lnBFi0 = 3.318), but not EI and SL-RI (lnBFi0 = 0.724), indicating that start ratios 

were higher in NP-RI than EI or SL-RI. Post-hoc tests also revealed that persistence 

ratios were well described by an initiation type model when comparing EI and SL-RI 

(lnBFi0 = 2.805), NP-RI and SL-RI (lnBFi0 = 7.601), and NP-RI and EI (lnBFi0 = 2.102), 

indicating that persistence ratios were highest in NP-RI, lowest in SL-RI, and 

intermediate in EI.  

 Taken together, these data suggest that both NP-RI LTIs and SL-RI LTIs 

increased with pre-feeding and from FI 4-s FI 12-s to FI 6-s FI 18-s. Contrary to 

expectations, SL-RI LTIs were just as sensitive as NP-RI LTIs to pre-feeding. 

Importantly, rats learned to respond appropriately in the presence of initiation tones and 

continued to respond appropriately even with pre-feeding. Although rats adequately 

learned to discriminate tone-initiation type associations, discrimination ratios were 

sensitive to the timing condition and pre-feeding. Whereas extended training and pre-

feeding improved the ability of rats to wait 2.5 s for trial initiation, pre-feeding increased 

the probability rats pressed levers when the tone signaled a nose-poke initiating-

response. Interestingly, the initiation type models describing LFR and LTD dependent 
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measures may be attributable to rats starting on the Short FI and persisting on the Long 

FI less in EI and SL-RI than NP-RI. Likewise, the feeding regimen models describing 

LTS, LFR, and LTD dependent measures may be attributable to pre-feeding-induced 

reductions in how often rats started on the short FI and persisted on the long FI after an 

LTS.  

Are LTS medians robust to pre-feeding when EI ITIs are yoked to pre-

feeding-induced longer LTIs in NP-RI FI 4-s FI 12-s A? 

 

 The previous analysis indicates that LTS medians but not IQRs and CQVs were 

robust to pre-feeding in NP-RI but not SL-RI or EI. This suggests that RI protects LTS 

medians from changes in motivation as initiating-responses become progressively more 

discriminable from target responses. However, it is also possible that such protection 

was merely due to pre-feeding-induced increase of NP-RI LTIs in the Single Initiation 

Type: Pre-feeding FI 4-s FI 12-s A condition. To assess this possibility, rats were trained 

in a second determination of FI 4-s FI 12-s (FI 4-s FI 12-s B) and were then tested in 

Single-Initiation Type Testing: Yoked-ITI Pre-feeding, wherein EI ITIs in pre-feeding 

probes were yoked to NP-RI LTIs in pre-feeding probes from Single-Initiation Type 

Testing: Pre-feeding.  

 Figure 3.6 shows the median LTI and pre-feeding – baseline LTS as a function of 

FI 4-s FI 12-s determination (A, B), within each initiation type (EI, SL-RI, NP-RI). To 

assess the success of the yoking procedure, yoked EI ITI medians and IQRs were 

compared to NP-RI LTI medians and IQRs in Single Initiation Type Testing: Pre-feeding 

and Yoked-ITI Pre-feeding conditions via Bayesian dependent t-tests comparing 

initiation types (EI, NP-RI). These revealed substantial evidence for an initiation type 

model describing the difference between EI ITI medians and NP-RI LTI medians in 
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Single Initiation Type Testing: Pre-feeding (lnBFi0 = 5.488), indicating that EI ITI 

medians were much longer than NP-RI LTI medians. All other comparisons revealed 

little evidence for an initiation type model (largest lnBFi0 = -0.183). Thus, the yoking 

procedure adequately, and to an extent over yoked EI ITIs to pre-feeding lengthened NP-

RI LTIs from Single Initiation Type Testing: Pre-feeding.    

 

Figure 3.6. Experiment 2 pre-feeding switch-timing performance with yoked 
EI ITIs. Median LTI and pre-feeding (PF) – baseline (B) LTS as a function of FI 4-s FI 
12-s determination (A: EI ITIs = 2.5 s, B: EI ITIs = Pre-feeding Lengthened NP-RI LTIs 
from FI 4-s FI 12-s A), within each initiation type (EI = white square; SL-RI = grey 
circles; NP-RI = black triangles). *Indicates substantial evidence (i.e., lnBFi0 = 1.098) for 
an initiation type model. 

To determine whether LTSs in EI were robust to pre-feeding when EI ITIs were 

yoked to NP-RI LTIs, LTS medians were analyzed via 3 (initiation type: EI, SL-RI, NP-

RI) × 2 (feeding regimen: baseline, pre-feeding) × 2 (determination: FI 4-s FI 12-s A, FI 

4-s FI 12-s B) Bayesian repeated measures ANOVAs. The null model of this analysis 
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contained all the parameters of a 2 (feeding regimen: baseline, pre-feeding) × 3 

(initiation type: EI, SL-RI, NP-RI) repeated measures ANOVA to determine the extent to 

which adding a determination or determination interaction parameter improved model 

fit. These analyses revealed substantial evidence for adding a determination (lnBFi0 = 

2.429) but not determination × feeding  (lnBFi0 = 1.381) or determination × feeding × 

initiation type (lnBFi0 = -1.838) parameter to the initiation type × feeding regimen model 

describing LTSs, indicating that LTSs increased by 0.5 s between FI 4-s FI 12-s 

determinations but that the effect of pre-feeding within each initiation type was 

independent of FI 4-s FI 12-s determinations. Thus, the robustness of LTS medians in 

NP-RI to pre-feeding is attributable to response initiation per se rather than longer and 

more variable NP-RI LTIs.   

 Figure 3.7 shows the average pre-feeding – baseline median LTS as a function of 

feeding regimen for each rat following initiation type; data were collapsed across 

determinations and timing conditions because of the lack of evidence for an interaction 

with either determination or timing condition. These data were submitted to Bayesian 

dependent measures t-tests to characterize the overall magnitude of the effect of pre-

feeding on LTS medians. These analyses revealed substantial evidence for a feeding 

regimen model describing median LTSs in EI (lnBFi0 = 4.039) and SL-RI (lnBFi0 = 

3.247) but not NP-RI (lnBFi0 = 0.523), indicating that LTSs were sensitive to pre-feeding 

in EI and SL-RI but not NP-RI. Interestingly, lnBFi0s scaled as predicted by the 

discriminative RI hypothesis: EI > SL-RI > NP-RI.    
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Figure 3.7. Experiment 2 average pre-feeding effect on median LTS in each 
initiation type. Pre-feeding (PF) – baseline (B) median LTS collapsed across FI 4-s FI 
12-s determinations and FI 4-s FI 12-s, FI 6-s FI 18-s timing conditions for each rat as a 
function of each initiation type (EI = white squares; SL-RI = grey circles; NP-RI = black 
triangles). 

 

Are times-to-initiate and LTSs differentially sensitive to extinction as a 
function of initiation type? 

 

In addition to yielding LTSs robust to pre-feeding, NP-RI was predicted to yield 

LTSs robust to extinction more than SL-RI and EI, SL-RI was predicted to yield LTSs 

robust to extinction more than EI. Additionally, NP-RI LTIs were expected to be more 

sensitive to extinction than SL-RI LTIs; although nose-pokes and lever-presses delay 

trial onset following EI, EI ITIs were not expected to be sensitive to extinction. These 

predictions were assessed visually because inspection of performance under extinction 

revealed that idiosyncratic changes in LTIs and LTSs.  

Figure 3.8 shows the mean median LTI and LTS as a function of trial under both 

baseline and extinction sessions in all three initiation types. Whereas NP-RI LTIs and 

SL-RI LTIs lengthened with extinction, EI ITIs did not. EI ITIs are initially longer than 

the programmed 2.5 s under baseline and extinction sessions, indicating that at the 
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beginning of the session subjects respond on the levers and nose-poke device when EI is 

signaled and thus delay onset of trials following EI. NP-RI LTIs were initially 7-s and 

then stepped up to about 35-s. SL-RI LTIs were initially 1.5-s but did not lengthen in a 

systematic manner, oscillating between very short and very long LTIs. Both NP-RI and 

SL-RI LTIs returned to 1.5-s and 7-s, respectively, at the beginning of the second 

extinction session, suggesting the spontaneous recovery of LTIs between consecutive 

extinction sessions. LTIs do not appear to show evidence of extinction bursts, which 

would be indicated by a transient shortening of LTIs at the beginning of extinction. 

Taken together, these data suggest that both NP-RI LTIs and SL-RI LTIs are sensitive to 

extinction; NP-RI LTIs may be more sensitive to extinction than SL-RI LTIs.   

LTSs in all three initiation types lengthened with extinction. LTSs were initially 8 

s and then increased to about 50 s by the end of each extinction session. LTSs returned 

to 8 s at the beginning of the second extinction session, suggesting spontaneous recovery 

of LTSs.  Although the rate of the extinction process was not characterized, there appears 

to be a difference in the rate at which LTSs lengthen, with LTSs in EI lengthening faster 

in the first extinction session than LTSs in SL-RI or NP-RI. Despite the possibility that 

the rate of extinction depends on initiation type, these data indicate that neither NP-RI 

or SL-RI yield LTSs robust to extinction.  
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Figure 3.8. Experiment 2 extinction switch-timing performance. Mean median LTI (Panels A-C) and LTS (Panels 
D-F) back transformed from the log scale as a function of trial in FI 4-s FI 12-s Baseline (filled circles, solid line) and 
Extinction sessions 1 (white squares, dashed line) and 2 (white triangles, dashed line) within EI (Panels A & D), SL-RI (Panels 
B & E), and NP-RI (Panels C & F). Note that the data was truncated at the median number of trials completed within each 
initiation type, and thus the data for the last trial shown is the mean median of four rats. 
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Is the sensitivity of LTS medians and variability to pre-feeding following EI 

and SL-RI explained by an increase in the prevalence and mean of non-

timed LTSs? 

 

Grubb’s test revealed a few outliers: rat 3 for K in SL-RI FI 4-s FI 12-s baseline, q 

and K in EI FI 6-s FI 18-s baseline; rat 2 for q and K in SL-RI FI 4-s FI 12-s pre-feeding; 

rat 4 for K in NP-RI FI 6-s FI 18-s baseline; and rat 6 for q in SL-RI FI 6-s FI 18-s pre-

feeding. These data were removed.    

Figure 3.9 shows the mean LTS cumulative distribution and fits of Equation 2.1 

as a function of feeding regimen (baseline, pre-feeding) within each initiation type. Table 

3.2 shows median (IQR) baseline parameter estimates and Table 3.3. shows the median 

(IQR) pre-feeding – baseline parameter estimates.  Equation 2.1 appears to adequately 

track the data, showing little deviation from the observed cumulative distribution of 

LTSs.  

The effect of pre-feeding on LTS medians and variability was predicted to arise 

from an increase in the prevalence and mean of non-timed LTSs. To assess this 

prediction parameter q and the mean non-timed LTS were submitted to 3 (initiation 

type: EI, SL-RI, NP-RI) × 2 (feeding regimen: baseline, pre-feeding) × 2 (timing: FI 12-s, 

FI 18-s) Bayesian repeated measures ANOVAs. These analyses revealed substantial 

evidence for a feeding regimen model describing q (lnBFi0 = 2.225) indicating that pre-

feeding reduced the probability with which rats entered timing states regardless of 

initiation type. There was also substantial evidence for a feeding regimen model × 

initiation type describing the mean non-timed LTS (lnBFi0 = 9.531) indicating that 

whether pre-feeding increased the mean non-timed LTSs depended on initiation type. 

Dependent t-tests probing this interaction revealed substantial evidence for a feeding 

regimen model describing the mean non-timed LTS in EI (lnBFi0 = 2.750) but not SL-RI 
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(lnBFi0 = 0.706) or NP-RI (lnBFi0 = 0.371), indicating that pre-feeding-induced increases 

in the mean non-timed LTSs in EI but not SL-RI or NP-RI. Thus, at least some of the 

effects of pre-feeding on LTS medians and variability are due to a reduction in the 

probability of entering a timing state in all initiation types and an increase in the mean 

non-timed LTS following EI. 

To further isolate the potential mechanism by which pre-feeding lengthens LTSs, 

the remainder of the parameters and derived statistics were submitted to 3 (initiation 

type: EI, SL-RI, NP-RI) × 2 (feeding regimen: baseline, pre-feeding) × 2 (timing: FI 4-s 

FI 12-s, FI 6-s FI 18-s) Bayesian repeated measures ANOVAs. These revealed substantial 

evidence for a feeding regimen model describing ε (lnBFi0 = 14.792), indicating that pre-

feeding reduced the criterion pulse count.  

There was also substantial evidence for a timing + initiation type × feeding 

regimen model describing c (lnBFi0 = 20.502) indicating that the speed of the clock 

decreased between timing conditions and whether it changed with pre-feeding depended 

on initiation type. Dependent t-tests probing the initiation type × feeding interaction 

parameter revealed substantial evidence for a feeding regimen model describing c in EI 

(lnBFi0 = 3.772), SL-RI (lnBFi0 = 2.602), and NP-RI (lnBFi0 =2.676), indicating that 

although pre-feeding reduced the speed of the clock following all initiation types, the 

speed of the clock was most sensitive to pre-feeding following EI. To clarify these effects, 

further dependent t-tests probing the interaction revealed substantial evidence for an 

initiation type model describing c when comparing EI to SL-RI (lnBFi0 = 2.312), EI to 

NP-RI (lnBFi0 = 2.855), but not NP-RI to SL-RI (lnBFi0 = 0.732), confirming that the 

speed of the clock was most sensitive to pre-feeding in EI. In baseline, there was little 

evidence for an initiation type model describing estimates of c (largest lnBFi0 = 0.437), 

suggesting that in baseline the speed of the clock was similar across initiation types. 
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Thus, some of the effects of pre-feeding on LTS medians and variability are also 

explained by reductions of speed of the clock.  

Consistent with the effects observed on the criterion pulse count and speed of the 

clock, there was substantial evidence for a timing + initiation type × feeding regimen 

model describing the mean timed LTS (lnBFi0 = 86.597), indicating that LTS means 

scaled with timing condition and increased with pre-feeding depending on initiation 

type. Dependent t-tests probing the interaction parameter revealed substantial evidence 

for a feeding regimen model describing the mean timed LTS in EI (lnBFi0 = 3.842) and 

SL-RI (lnBFi0 = 3.855) but not NP-RI (lnBFi0 = 0.641), indicating that despite pre-

feeding slowing down the speed of the clock in all initiation types, pre-feeding only 

lengthened the mean timed LTS in EI and SL-RI.  
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Figure 3.9. Experiment 2 gamma-exponential mixture model fits to empirical cumulative LTS distribution. 
Mean LTS cumulative distributions, LTS cumulative distributions of a representative rat, and fits of Equation 2.1 as a function 
of feeding regimen (baseline = black symbols, solid line; pre-feeding = white symbols, dashed line) and Long FI in each timing 
condition (12-s = circles, 18-s = squares) within EI (Panel A & D), SL-RI (Panel B & E), and NP-RI (Panel C & F) initiation 
types. Representative rat was defined as the rat with the median pre-feeding-induced increase in median LTS in all three 
initiation types. 
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Table 3.2 

Experiment 2 Median (IQR: 1st Quartile, 3rd Quartile) baseline parameter estimates of Equation 2.1 

 FI 4-s FI 12-s FI 6-s FI 18-s 

Parameters EI SL-RI NP-RI EI SL-RI NP-RI 

q .88 (.84, .94) .90 (.89, .92) .91 (.93, .88) .88 (.80, .91) .88 (.83, .93) .92 (.88, .95) 

ε (pulses) 28.09 (19.52, 36.35) 22.37 (20.93, 24.71) 24.85 (33.32, 17.03) 15.24 (13.06, 24.37) 22.10 (18.69, 29.67) 16.70 (12.32, 20.98) 

c (s) 0.27 (0.22, 0.47) 0.29 (0.25, 0.33) .20 (0.47, 0.17) 0.57 (0.38, 0.68) 0.45 (0.28, 0.56) 0.48 (0.36, 0.74) 

δ (s) 0.16 (0.05, 0.33) 1.31 (1.24, 1.52) 1.70 (2.60, 1.52) 1.74 (0.46, 5.03) 1.91 (1.16, 2.27) 3.19 (1.52, 5.08) 

Derived Statistics       

Mean Timed LTS (s) 8.13 (7.62, 8.89) 7.83 (7.54, 8.42) 7.98 (7.46, 8.89) 12.08 (10.48, 12.92) 11.60 (9.75, 12.27) 12.21 (10.48, 12.97) 

Timed LTS SD (s) 1.48 (1.23, 2.07) 1.37 (1.20, 1.51) 1.13 (0.89, 1.63) 2.26 (1.41, 2.70) 2.14 (1.42, 2.50) 2.31 (1.38, 2.76) 

Timed LTS CV 0.19 (0.17, 0.23) 0.21 (0.20, 0.22) 0.20 (0.17, 0.25) 0.26 (0.20, 0.28) 0.21 (0.18, 0.23) 0.24 (0.22, 0.28) 

Mean non-timed LTS (s) 10.22 (8.76, 11.67) 8.04 (6.96, 9.13) 9.02 (8.65, 10.68) 10.75 (9.33, 12.55) 10.15 (7.18, 15.51) 15.51 (11.82, 17.35) 

Note. Parameter estimates and derived statistics in italics indicate substantial evidence for an initiation type model and in 
bold indicate substantial evidence for a timing condition model describing those parameters and derived statistics.  
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Table 3.3 

Experiment 2 Median (IQR: 1st Quartile, 3rd Quartile) pre-feeding – baseline parameter estimates of Equation 2.1 

 FI 4-s FI 12-s FI 6-s FI 18-s 

Parameters EI SL-RI NP-RI EI SL-RI NP-RI 

q -.02 (-.12, .06) -.11 (-.12, -.04) -.12 (-.16, -.06) -.04 (-.13, -.01) -.05 (-.12, -.01) -.09 (-.16, -.01) 

ε (pulses) -23.75 (-26.42, -13.17) -7.62 (-9.94, -6.71) -6.93 (-17.89, -3.85) -5.10 (-11.16, -1.57) -6.18 (-16.07, 1.32) -6.33 (-10.22, -1.11) 

c (s) 0.72 (0.60, 1.67) 0.27 (0.19, 0.38) 0.22 (0.06, 0.31) 0.63 (0.38, 0.78) 0.31 (0.03, 0.50) 0.19 (0.09, 0.33) 

δ (s) 0.73 (0.33, 1.16) -0.55 (-2.05, 0.13) 0.43 (0.01, 1.16) 0.08 (-0.89, 0.45) 0.5 (0.19, 1.24) 0.54 (-0.04, 1.89) 

Derived Statistics       

Mean Timed LTS (s) 1.29 (0.83, 1.67) 0.91 (0.55, 1.26) 0.58 (0.15, 0.98) 1.86 (1.68, 2.09) 1.26 (0.73, 1.47) 0.76 (-0.17, 1.12) 

Timed LTS SD (s) 1.38 (0.99, 2.67) 0.68 (0.48, 0.84) 0.34 (0.21, 0.54) 1.30 (1.09, 1.76) 0.54 (0.19, 0.81) 0.32 (0.06, 0.60) 

Timed LTS CV 0.19 (0.11, 0.27) 0.05 (0.04, 0.09) 0.07 (0.01, 0.08) 0.07 (0.01, 0.10) 0.06 (-0.01, 0.12) 0.05 (0.01, 0.07) 

Mean non-timed LTS (s) 60.44 (11.76, 168.58) 2.43 (0.96, 5.55) 5.37 (0.79, 7.03) 16.36 (8.18, 19.73) 2.71 (1.38, 5.17) (-2.46, 4.78) 

Note. Parameter estimates and derived statistics in bold indicate substantial evidence for a feeding regimen model describing 
those parameters and derived statistics. 
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Correspondingly, there was also substantial evidence for a timing + initiation 

type × feeding regimen model describing timed LTS SDs (lnBFi0 = 28.859), indicating 

that timed LTS variability scaled with timing conditions and that whether timed LTS 

variability increased with pre-feeding depended on initiation type. Dependent t-tests 

probing the initiation type × feeding regimen interaction parameter revealed that there 

was substantial evidence for a feeding regimen model describing the timed LTS SDs in EI 

(lnBFi0 = 4.442), SL-RI (lnBFi0 = 3.256), and NP-RI (lnBFi0 = 1.269), indicating that the 

pre-feeding-induced reduction in clock speed increased LTS variability for all initiation 

types, but that the LTS variability was most sensitive to pre-feeding in EI and least 

sensitive to pre-feeding in NP-RI. To clarify these effects, further dependent t-tests 

probing the interaction revealed substantial evidence for an initiation type model 

describing LTS SDs when comparing EI and SL-RI (lnBFi0 = 1.314), EI and NP-RI (lnBFi0 

= 2.176), and SL-RI and NP-RI (lnBFi0 = 1.269) in pre-feeding but not baseline (largest 

lnBFi0 = -0.049), indicating that timed LTS SDs were similar across initiation types in 

baseline but that timed LTS SDs increased following pre-feeding in EI.  

Additionally, there was substantial evidence for a feeding regimen model (lnBFi0 

= 14.784) but not a timing model (lnBFi0 = -1.553) describing the timed LTS CVs, 

indicating that pre-feeding increased timed LTS CVs following all initiation types; the 

LTS CV was also invariant across timing conditions.  

In contrast to experiment 1, there was substantial evidence for a timing + 

initiation type model describing the minimum LTS (lnBFi0 = 17.537), but no evidence for 

a feeding regimen model (lnBFi0 = -0.285).  

Taken together, these data indicate that pre-feeding reduced the prevalence of 

timed LTSs in all initiation types and increased the mean of non-timed LTSs in EI. 

However, there were also effects on parameter estimates and derived statistics of timed 
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LTSs. These effects were similar or greater in magnitude to the effects observed on q and 

the mean non-timed LTS. Interestingly, effects on the mean non-timed LTS and mean 

timed LTS were largely observed only in EI. In contrast, effects on timed LTS variability 

were observed across all initiation types, but these effects scaled as predicted by the 

discriminative RI hypothesis: EI > SL-RI > NP-RI. Thus, these data suggest that pre-

feeding effects on LTSs are not exclusively attributable to an increase in the prevalence 

and mean of the non-timed LTS but reinforce the hypothesis that as initiating-responses 

become progressively discriminable from target responses, interval timing and 

motivation are increasingly dissociated.  

Discussion 

 

Experiment 2 revealed some evidence supporting the discriminative RI 

hypothesis. Although temporal control of LTSs in baseline was similar across initiation 

types, the sensitivity of LTS medians, and to a lesser degree LTS variability, to pre-

feeding increased with discriminability of initiating-responses from target responses, 

such that LTS medians and variability in EI > SL-RI > NP-RI. Despite NP-RI and SL-RI 

LTIs having a similar sensitivity to pre-feeding, only pre-feeding effects in NP-RI were 

circumscribed to LTIs. LTS medians in SL-RI were sensitive to pre-feeding. In contrast, 

LTSs were sensitive to extinction regardless of initiating-responses. These data suggest 

that, as initiating-responses become progressively discriminable from target responses, 

initiating-responses increasingly and selectively dissociate interval timing and 

motivation.   

The present data also indicate that the data obtained in Experiment 1 are 

consistent with the discriminative RI hypothesis. Although the sensitivity of SL-RI LTIs 

to pre-feeding depends on whether the switch-timing procedure is programmed as a 
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discrete-trials or free-operant procedure, the sensitivity of LTSs in SL-RI does not. 

Indeed, pre-feeding lengthened SL-RI LTIs in experiment 2 but lengthened LTSs in SL-

RI in both experiments 1 and 2. Short FI initiating-responses in experiment 1 likely 

became habits because of an interaction between prolonged training and the levers 

acting as time-markers. This suggests that, for initiating-responses to be sensitive to 

motivation, they must be emitted on manipulanda that do not also serve as time-

markers. In contrast, LTSs in SL-RI are likely sensitive to pre-feeding because Short FI 

initiating-responses and target responses are identical in form, which promotes 

generalization between Short FI initiating-responses and target responses. Initiating-

responses thus need to be highly discriminable and uniquely associated with trial 

activation.   

Although NP-RI protected LTS medians from pre-feeding, pre-feeding increased 

LTS variability in all initiation types. Fits of Equation 2.1 revealed that the effect of pre-

feeding on timed LTS variability scaled such that EI > SL-RI > NP-RI. A similar effect 

has been observed on IRTs of rats and mice trained in FMI: pre-feeding increases IRT 

variability without affecting its average (e.g., Daniels et al., 2018; Watterson et al., 2015). 

This consistent sensitivity of performance index variability to pre-feeding suggests that 

initiating-responses may only partially dissociate interval timing and motivation. 

However, the discriminative RI hypothesis and, more generally, the differences in RI and 

EI performance, has thus far only been tested in immediate timing procedures. This 

limits the generalizability of the conclusion that initiating-responses partially dissociate 

interval timing and motivation and calls for a need to evaluate the discriminative RI 

hypothesis in other interval timing procedures.  

  



 

94 
 

Chapter 4: Experiment 3 - Response-Initiated Discrete-Trials Temporal 
Bisection 

Introduction 

 

The discriminative RI hypothesis states that as initiating-responses become 

progressively different from target responses, initiating-responses increasingly enhance 

temporal control of performance indices and protect performance indices from 

fluctuations in motivation. Although neither experiment 1 (Chapter 2) nor experiment 2 

(Chapter 3) revealed evidence supporting the notion that RI enhances temporal control 

of LTSs in rats trained in the switch-timing procedure, experiment 1 and 2 revealed that 

the robustness of median LTS to pre-feeding was proportional to the discriminability of 

initiating from target responses. NP-RI protected LTSs more than SL-RI, SL-RI 

protected LTSs more than EI. Although such scaling was also evident in timed LTS 

variability, LTS variability in general and timed LTS variability in particular increased 

with pre-feeding, regardless of initiating-responses. This outcome is consistent with 

recent research on the effects of pre-feeding on IRTs in FMI: average IRT, but not IRT 

variability, is robust to pre-feeding (e.g., Daniels et al., 2018; Watterson et al., 2015). 

This suggests RI schedules may only partially dissociate interval timing and motivation.  

It is currently unclear, however, whether this conclusion generalizes to other 

interval timing procedures. Studies of RI have focused on immediate rather than 

retrospective timing procedures, thus limiting current conclusions to interval timing 

procedures in which subjects continuously judge whether to start responding (as in FI) 

or whether to switch from a Short FI to a Long FI (as in the switch-timing procedure; 

Figure 1.2). A retrospective timing procedure complementary to the switch-timing 

procedure is the temporal bisection procedure (Figure 1.1B). Briefly, subjects are trained 

to classify a just-elapsed interval as ‘short’ or ‘long’ compared to some Short and Long 
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intervals. Interestingly, pre-feeding lengthens the mean LTS in the location variant of the 

temporal bisection procedure, which promotes behavioral sequences analogous to those 

observed in animals trained in the switch-timing procedure because choices ‘long’ and 

‘short’ are associated with manipulanda in fixed locations (Gouvêa et al. 2014; McClure 

et al., 2009; cf. Ward & Odum, 2006). Thus, training rats in the location variant of the 

temporal bisection procedure provides an opportunity to test the generalizability of the 

discriminative RI hypothesis. It is expected that as initiating-responses become 

progressively discriminable from target responses, initiating-responses will enhance 

temporal control of latent LTSs and protect latent LTSs from pre-feeding.  

Choices ‘short’ and ‘long’ are thought to be the output of a PA-like model in which 

choices ‘short’ and ‘long’ are embedded within the timing process (Figure 1.2B); that is, 

as the subject continually evaluates whether to choose ‘long’ or ‘short’ as pulses 

accumulated and are compared to memory. Recent work suggests, however, that choices 

‘long’ and ‘short’ are the output of a timing process that subsequently influences a 

decision process (Balci & Simen, 2014). In the timing process, pulses accumulate as 

described by the PA-family of timing models. In the decision process, the rate at which 

information accumulates, and thus drives a subject to choose ‘short’ or ‘long’, is a 

function of (a) the pulses accumulated in the first stage and (b) the effort and costs 

associated with each choice. The time it takes for the decision process to complete is 

indexed by choice latencies. Whereas the timing process is sensitive to the Short and 

Long intervals (Balci & Simen, 2014), the decision-making process is sensitive to 

stimulus probability (Akdoğan & Balci, 2016; Çoşkun, Sayalı, Gürbüz, & Balci, 2015) 

and differences in reinforcement associated with choices ‘short’ and ‘long’ (Akdoğan & 

Balci, 2016). This model predicts that choice latencies should be relatively longer when 
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categorizing intermediate intervals than the Short and long intervals. Additionally, when 

taken together with the behavioral systems model (Figure 1.4) and the discriminative RI 

hypothesis it follows that highly discriminable initiating-responses also protect choices 

latencies from pre-feeding.  

Experiment 3 thus sought to test the generalizability of the discriminative RI 

hypothesis. To test the discriminative RI hypothesis, rats were trained in a multiple RI 

EI discrete-trials temporal bisection procedure (Figure 4.1). In this procedure, levers 

served as choice manipulanda and were thus in fixed locations to promote behavioral 

sequences akin those observed in animals trained in the switch-timing procedure. Rats 

were trained with EI and NP-RI, where NP-RI is discriminable from target responses 

denoting LTSs as a function of time, location, and form. Motivation was manipulated via 

1 h and 24 h pre-feeding probes; the different pre-feeding durations were included to 

determine whether effects differed with 1 h and chronic 24 h pre-feeding. Extinction 

probes were also included to determine whether RI selectively dissociates interval timing 

and motivation, or more generally dissociates interval timing and non-timing processes.   

Compared to EI, NP-RI was predicted to improve temporal control of LTSs and 

to yield LTSs and choice latencies robust to pre-feeding and extinction. NP-RI LTIs were 

predicted to be sensitive to pre-feeding and extinction. Equation 2.1 was rewritten such 

that what was fit to the choice data was a mixture of a cumulative gamma and cumulative 

exponential distribution. Fits of the cumulative gamma-exponential mixture to choice 

data was expected to reveal that the pre-feeding increases the prevalence and mean of 

the mean non-timed LTS in EI but not in NP-RI.    
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Methods 

Subjects 

 

Eight naïve male Sprague Dawley rats (Charles River Laboratories, Hollister, CA) 

served as subjects. Subjects arrived on post-natal day (PND) 61 and were immediately 

pair-housed in a vivarium on a reverse 12:12 h light cycle, with lights on at 1900 h. All 

behavioral training was conducted during the dark phase of the cycle (i.e. the active 

phase) starting at approximately 1330 and ending approximately at 1530 h. Following 

four days of acclimation to the colony room, food access was reduced daily from 24 to 18, 

12, and finally 1 hour per day. Food was placed on home-cages 30 min after the end of 

each experimental session and taken away 1 hour later. This ensured that at the 

beginning of the next session, weights were, on average, 85 % of ad libitum weights, as 

estimated from growth charts provided by the breeder. Water was always available in 

home-cages. All animal handling procedures used during this study followed National 

Institutes for Health Guidelines and were approved by the Arizona State University 

Institutional Animal Care and Use Committee. 

Apparatus 

 

 Experiments were conducted in the same 8 modified MED Associates (St. Albans, 

VT, USA) modular test chambers described in Experiment 2 (Chapter 3).   

Procedure 

 

 Experimental sessions, the 3-min warm-up, Reinforcer Shaping, Manipulandum 

Shaping, and Lever Press and Nose Poke Training were conducted as in Experiment 2 

(Chapter 3).   

Response-Initiated Temporal Bisection Shaping: Response-Initiation. 

Figure 4.1 shows a schematic of the multiple RI EI temporal bisection procedure. After 
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four days of Lever Press and Nose Poke Training, rats were trained to initiate temporal 

bisection trials. After the 3-min warmup, the nose-poke device was activated. Initiation 

types were signaled by activating one of two tones (3-kHz or 15-kHz) pseudo-randomly 

by sampling from a list such that no initiation type could occur in more than six 

consecutive trials. Each tone indicated whether rats initiated the trial by nose-poking the 

nose-poke device (NP-RI) or waiting for the experimenter to initiate the trial (EI). In EI, 

trials started 2.5 s after tone onset and if rats were not nose poking the nose-poke device 

for 0.25 s. The initiation type signaled by each tone was counterbalanced across all rats 

such that no tone served as the signal for a specific initiation type in more than 4 rats.  

Temporal Bisection. Following trial initiation, the active tone was deactivated, and 

the houselight illuminated for either a Short interval 1-s or a Long interval 4-s. Intervals 

were selected by pseudo-randomly selecting from a list such that neither interval 

occurred in more than four consecutive trials within an initiation type, or in more than 8 

consecutive trials across initiation types; the selected interval is referred to as the active 

interval. At the end of the active interval, the houselight was turned off and both the left 

and right levers extended. For some rats, choice of the left lever was reinforced following 

the Short interval and choice of the right lever was reinforced following the Long 

interval; and vice versa for the other rats. This assignment was counterbalanced across 

tone-initiation assignment such that, within each pattern of tone-initiation assignment, 

there were two rats for which choice of the left lever was reinforced following the Short 

interval and two rats for which choice of the left lever was the reinforced following the 

Long interval. Correct choices following the active interval resulted in a single delivery of 

reinforcement by activating the dipper. A head-entry into the reinforcer receptacle broke 

an infrared beam and then deactivated the dipper 2.5 s later. Incorrect choices following 

the active interval resulted in a 2.5-s timeout. Both outcomes were immediately followed 
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by a tone signaling the next initiation type. The ITI was thus equal to the time it took rats 

to initiate trials following NP-RI, and equal to the time it took rats to quit nose poking 

preceding trials in EI, with a minimum ITI of 2.5 s. The ITI preceding NP-RI is also 

referred to as the latency-to-initiate (LTI). Taken together, ITIs and LTIs are referred to 

as the time-to-initiate. 

 

Punishment. Because temporal bisection performance is indexed via choices at 

the end of intervals rather than continuously throughout FIs, no punishment was needed 

as in Experiment 2 (Chapter 3) to ensure rats engaged in an optimal behavioral 

sequence.   

Training Order. Rats were trained such that initially reinforcement was 

contingent upon choosing ‘short’ or ‘long following EI; NP-RI terminated in 

reinforcement following initiating-responses. Reinforcement contingent upon choosing 

‘short’ or ‘long’ following NP-RI was slowly introduced as rats learned to correctly 

respond in the presence of the tone and the houselight. This was assessed by inspecting 

the number of obtained reinforcers in the previous two sessions; if rats earned more than 

600 reinforcers, choosing ‘short’ or ‘long’ following NP-RI was introduced.  



 

 
 

9
2

  

Figure 4.1. Experiment 3 schematic of the multiple RI EI temporal bisection procedure. At the beginning of the 
session, the nose-poke device was illuminated, and the initiation type was then selected and indicated by a tone. Following 
correct initiating-responses, the tone was turned off and either the Short, Long, or an intermediate interval was activated, 
nondifferentially signaled by turning on the houselight. In nose-poke (NP-RI), rats nose-poked to initiate trials; in externally-
initiated (EI), nose-pokes delayed trial initiation by 0.25 s but were otherwise initiated after 2.5 s. After the active interval 
elapsed, the houselight turned off and the levers extended. If the interval was the Short or Long interval, choice of the lever 
associated with the active interval retracted the levers and activated the dipper; once a head-entry into the reinforcement 
receptacle confirmed reinforcer receipt, the dipper was lowered 2.5 s later and the next initiation type selected. If the interval 
was the Short or Long interval, choice of the lever not associated with the active interval retracted the levers and started a 2.5-
s timeout, which was immediately followed by selection of the next initiation type. If the interval was an intermediate interval, 
choice of either lever retracted the levers and started a 2.5-s timeout, which was immediately followed by selection of the next 
initiation type.
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Temporal Bisection Training. Once rats were initiating temporal bisection Short 1-s 

Long 4-s trials following all initiation types, rats were trained up to the timing conditions 

of interest in the following order: Short 4-s Long 12-s A, Short 6-s Long 18-s, and Short 

4-s Long 12-s B. All rats experienced the same order of conditions; the Short 4-s Long 12-

s A and B conditions allowed for assessment of potential order effects. Training with only 

Short and Long intervals continued until subjects had experienced a minimum of 5 

sessions of training in each timing condition and until performance was deemed stable. 

After performance was deemed stable, training with intermediate intervals commenced; 

Table 4.1 shows the intermediate intervals, which were equally spaced on a logarithmic 

scale. Non-reinforced intermediate intervals were added two per session, starting with 

the extremes and continuing until all 6 intermediate intervals were added to the daily 

experimental sessions. As intermediate intervals were added, pseudo-randomly 

sampling of intervals within each initiation type (NP-RI and EI) was altered such that 

within a block of trials, each intermediate interval was presented once, and each Short 

and Long interval was presented four times. Thus, after all intermediate intervals had 

been added to the session, blocks of trials consisted of 14 intervals: 4 Short intervals, 4 

Long intervals, and 6 non-reinforced intermediate intervals. Subjects were trained with 

intermediate intervals for a minimum of 7 sessions and until performance was again 

deemed stable. Stability was assessed visually and confirmed via a non-significant 

regression of the critical dependent measures listed in Data Analysis & Results over the 

last 5 sessions of training. 
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Table 4.1 

Intervals of each Timing Condition 

Timing Condition Intervals (s) 

Short 4-s Long 12-s A & B 4 4.68 5.47 6.41 7.49 8.77 10.26 12 

Short 6-s Long 18-s 6 7.02 8.21 9.61 11.24 13.15 15.39 18 

Note. The intervals corresponding to the Short and Long durations were differentially 
reinforced as described in the text; intermediate intervals were tested in extinction.  

Single-Initiation Type Testing: Pre-feeding. Following confirmation of stable 

performance in each timing condition, rats were tested for 10 sessions in a 

counterbalanced order within each timing condition for 5-sessions in each initiation type 

as described in Experiment 2 (Chapter 3). Figure 3.2 shows a schematic of training and 

testing. Table 4.2 shows the order of testing for each rat. At the end of testing, rats were 

returned to Temporal Bisection Training. 

Single-Initiation Type Testing: Yoked-ITI Pre-feeding. Following confirmation 

of stable performance in the Short 4-s Long 12-s B timing condition, rats were tested 

with longer ITIs as described in Experiment 2 (Chapter 3).  

Single-Initiation Type Testing: Extinction. Immediately following Single-Trial 

Type Testing: Yoked-ITI Pre-feeding, rats started another round of Single-Trial Type 

Testing and tested in an extinction procedure rather than pre-feeding probes as 

described in Experiment 2 (Chapter 3).   
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Table 4.2 

Experiment 3 Order of Single-Initiation Type Testing  

  Rat 

Temporal Bisection Condition Sessions 1 2 3 4 5 6 7 8 

Short 4-s Long 12-s A 1-5 EI NP-RI NP-RI EI EI EI NP-RI NP-RI 

 6-10 NP-RI EI EI NP-RI NP-RI NP-RI EI EI 

Short 6-s Long 18-s 1-5 NP-RI EI EI NP-RI NP-RI NP-RI EI EI 

 6-10 EI NP-RI NP-RI EI EI EI NP-RI NP-RI 

Short 4-s Long 12-s B-Yoked EI ITIs 1-5 EI EI NP-RI NP-RI NP-RI EI NP-RI EI 

 6-10 NP-RI NP-RI EI EI EI NP-RI EI NP-RI 

Short 4-s Long 12-s B-Extinction 1-5 EI NP-RI EI NP-RI EI EI NP-RI NP-RI 

 6-10 NP-RI EI NP-RI EI NP-RI NP-RI EI EI 

Note. In each Single-Initiation Type Testing condition, sessions 1,2, and 5 served as Baselines (B1, B2, and B3) sessions 3 and 
4 served as 1 h and 24 h pre-feeding probes (1 h PF, 24 h PF). 
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Data Analysis 

 

Single-Trial Type Testing began on session 40 for FI 4-s FI 12-s A, session 93 for 

FI 6-s FI 18, and session 129 for FI4-s FI 12-s B. To estimate dependent measures of 

latent LTSs, a psychophysical function relating choices ‘long’ to the Short, Long, and 

intermediate intervals was fit to trial-by-trial data of each rat from the two baseline 

sessions immediately preceding and including the pre-feeding and extinction probes via 

MLE. To keep analyses of temporal bisection performance consistent with analyses of 

switch-timing performance, while maintaining parsimony and consistency with previous 

temporal bisection research (e.g., Blough, 1996; McClure et al., 2009), the following 

psychophysical function was fit, 
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where the probability of choosing ‘long’ given some interval (τ) is described by a shifted 

(m) and scaled (r) cumulative gamma distribution. Γ is the gamma function, γ is the 

lower incomplete gamma function, ε = θM and is thus the criterion pulse count, c is the 

average inter-pulse interval (1/c is the speed of the clock), m is the minimum probability 

of choosing ‘long’; r is the range, and m + r is the maximum probability of choosing long. 

From the cumulative gamma distribution, the same derived statistics—LTS mean, SD, 

and CV—were calculated as described for Equation 2.1 (Chapter 2); unlike Equation 2.1, 

Equation 4.1 does not contain parameter δ because LTSs are latent rather than overt. 

Calculated directly from initiating-responses and choices ‘short’ and ‘long’ were 

latencies-to-initiate in NP-RI and choice latencies.  
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Descriptive Statistics Analysis 

 

Log or log odds transformed parameter estimates (m and r), derived statistics 

(LTS mean, SD, and CV), and dependent measures (LTIs, choice latencies) were 

analyzed via Bayesian variants of t-tests and ANOVAs as described in experiment 1 

(Chapter 2). MLE parameter estimation can sometimes yield extreme estimates; thus, 

prior to analysis, parameter estimates, and derived statistics were submitted to two-

tailed Grubb’s tests with α = .01. Outliers were removed until none were detected. 

Mixture Model Analysis 

  

To assess the secondary prediction that LTS sensitivity to pre-feeding in EI is 

explained by a pre-feeding-induced reduction in the prevalence of timed LTSs and an 

increase in the mean of non-timed LTSs, Equation 2.1 was rewritten such that what was 

estimated were parameters of a mixture of a cumulative gamma and cumulative 

exponential distributions with δ = 0. Parameter estimates, and derived statistics were 

analyzed as described in experiment 1 (Chapter 2).  

Results 

 

The number of completed trials under 1 h and 24 h pre-feeding was substantially 

less than baseline, on average a 2- to 3-fold decrease. To determine whether 1 h and 24 h 

pre-feeding sessions could be collapsed into a single pre-feeding factor for analysis, the 

effect of pre-feeding duration on LTSs and LTIs was assessed via Bayesian dependent t-

tests within each condition and initiation type. There was little evidence supporting the 

feeding duration model (largest lnBFi0 = 0.684) suggesting that temporal bisection 

performance was similar across pre-feeding durations. Thus, the 1 h and 24 h pre-
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feeding sessions were collapsed into a single factor of pre-feeding for all dependent 

measures.  

Grubb’s test revealed rat 3 as an outlier for m in EI and NP Short 4-s Long 12-s A 

baseline and LTS CV in EI Short 4-s Long 12-s B; rat 2 for r in EI Short 4-s Long 12-s B 

pre-feeding; rat 4 for m in NP Short 4-s Long 12-s B pre-feeding; rat 5 for the LTS mean 

in NP Short FI 4-s Long 12-s A pre-feeding, in NP  Short 6-s Long 18-s baseline and pre-

feeding, and for r in NP Short 6-s Long 18-s. pre-feeding; rat 8 for m in EI Short 4-s 

Long 12-s A baseline. These data were removed.   

Is temporal bisection performance differentially sensitive to initiation type 

as a function of feeding regimen? 

 

 Figure 4.2 shows the mean psychophysical functions, psychophysical functions of 

a representative rat, and fits of Equation 4.1. The cumulative gamma distribution 

adequately described choice behavior on average and for the representative rat in both 

timing conditions and feeding regimens. Indeed, there were no substantial deviations 

from the obtained psychophysical functions.  

Figure 4.3 shows the pre-feeding – baseline derived statistics of Equation 4.1 for 

each rat as a function of the Long interval in each timing condition (12-s A, 18-s) and 

initiation type (EI, NP-RI). NP-RI was predicted to enhance temporal control of LTSs 

relative to EI. To asses this prediction, parameter estimates, and derived statistics were 

submitted to a 2 (initiation type: EI, NP-RI) × 2 (timing: 12-s A, 18-s) Bayesian repeated 

measures ANOVAs. These analyses revealed substantial evidence for a timing model 

describing r (lnBFi0 = 1.592) and mean LTSs (lnBFi0 = 30.117), indicating that maximum 

probability (m+r) decreased between timing conditions and that the mean LTS scaled 

with the timing condition. Interestingly, there was also substantial evidence for an 
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initiation type + timing model describing LTS SDs (lnBFi0 = 5.761), indicating that LTS 

SDs were smaller in NP-RI compared to EI and scaled with the timing condition. 

Consistent with these selected models, there was substantial evidence for an initiation 

type (lnBFi0 = 1.731) but not a timing model (lnBFi0 = -1.314) describing LTS CVs, 

indicating that CVs were invariant across timing conditions, but smaller in NP-RI 

compared to EI.   

 

Figure 4.2. Experiment 3 fits of the cumulative gamma to baseline and pre-
feeding psychophysical functions. Mean psychophysical functions (Panels A & B), 
psychophysical functions of a representative rat (Panels C & D) and fits of Equation 4.1 
within each initiation type (EI: Panels A & C; NP: Panels B & D) as a function of timing 
condition (12-s A: circles; 18-s: squares) and feeding regimen (baseline = filled symbols, 
solid line; pre-feeding = white symbols, dashed line). Representative rat was defined as 
the rat with the median pre-feeding-induced increase in mean LTS in both initiation 
types.  
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Figure 4.3. Experiment 3 baseline and pre-feeding temporal bisection performance. Derived statistics (Panels A-C: 
mean LTS, LTS SD, and LTS CV, respectively) and pre-feeding (PF) – baseline (B)derived statistics (Panels D-F: mean LTS, 
LTS SD, and LTS CV, respectively) for each rat as a function of the Long interval in each timing condition (12-s, 18-s) and 
initiation type (EI = white squares, NP-RI = black triangles)5. *Indicates substantial evidence (i.e., lnBFi0 = 1.098) for an 
initiation type model. **Indicates substantial evidence for a timing condition model. ^Indicates substantial evidence (i.e., 
lnBFi0 = 1.098) for a feeding regimen describing the difference between pre-feeding and baseline. 
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NP-RI was also predicted to protect LTSs from changes in motivation compared 

to EI. To test this prediction, parameter estimates, and derived statistics were submitted 

to 2 (initiation type: EI, NP-RI) × 2 (feeding regimen: baseline, pre-feeding) × 2 (timing: 

FI 4-s FI 12-s, FI 6-s FI 18-s) Bayesian repeated measures ANOVAs within each initiation 

type. These analyses revealed substantial evidence for adding a feeding regimen 

parameter to the models describing LTS SDs (lnBFi0 = 3.127) and CVs (lnBFi0 = 1.179), 

indicating that pre-feeding increased LTS variability regardless of initiation type. There 

was little evidence for adding an initiation type × feeding regimen or feeding regimen 

parameter to the model describing the mean LTS, m or r (largest lnBFi0 = 0.427) 8.  

Taken together, these data suggest that LTSs scaled with the timing condition 

and that NP-RI enhances temporal control of LTSs. Interestingly, parameter r decreased 

between timing condition, suggesting a loss of temporal control as Short and Long 

intervals increased. LTS variability but not mean reliably increased with pre-feeding 

regardless of initiation type. This suggests that pre-feeding does not increase the mean 

latent LTSs in temporal bisection and confirms that NP-RI does not protect against pre-

feeding-induced increases in LTS variability.  

Are times-to-initiate and choice latencies affected by initiation type, feeding 

regimen, or timing condition? 

 

                                                           
8 Note the EI and sometimes NP-RI psychophysical functions of rats 4 and 5 were mostly 
flat in pre-feeding. Despite Grubb’s test not always detecting rats 4 and 5 as outliers, to 
determine the reliability of the obtained pre-feeding effects, analyses were reconducted 
with both rats 4 and 5 removed from analyses. Analysis of LTS SDs (lnBFi0 = 1.630) and 
CVs (lnBFi0 = 1.419) did not depend on whether rat 4 and 5 were included. Analysis of 
mean LTSs depended on whether rats 4 and 5 were included (lnBFi0 = 2.123). Thus, the 
pre-feeding-induced increased in latent LTS variability is reliable and the pre-feeding-
induced increase in the latent mean LTS is unreliable.     
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 Figure 4.4 shows the median LTI and choice latency and pre-feeding – baseline 

median LTI and choice latency for each rat as a function of the Long interval in each 

timing condition (12-s A, 18-s) and initiation type (EI, NP-RI). NP-RI LTIs were 

predicted to be sensitive to pre-feeding and NP-RI choice latencies were predicted to be 

robust to pre-feeding compared to EI choice latencies. To assess these predictions, LTIs 

were submitted to a 2 (feeding regimen: baseline, pre-feeding) × 2 (timing: 12-s A, 18-s) 

Bayesian repeated measures ANOVA; EI ITIs were not assessed because despite nose-

pokes delaying trial onset in EI, the median ITI was always equal to the programmed EI 

ITI of 2.5 s. Choice latencies were submitted to a 2 (initiation type: EI, NP-RI) × 2 

(feeding regimen: baseline, pre-feeding) × 2 (timing: 12-s A, 18-s) Bayesian repeated 

measures ANOVA; choice latencies were collapsed across the Short, Long, and 

intermediate intervals because there was little evidence that choice latencies varied 

systematically within each subject as predicted by the model proposed by Balci and 

Simen (2014). These analyses revealed substantial evidence for a timing + feeding model 

describing NP-RI LTIs (lnBFi0 = 13.393), indicating that LTIs scaled with the timing 

condition and increased with pre-feeding. Similarly, there was substantial evidence for a 

timing + feeding model describing choice latencies (lnBFi0 = 11.585), indicating that 

choice latencies also scaled with the timing condition and increased with pre-feeding 

regardless of initiation type.  

 Taken together, these data indicate that both LTIs and choice latencies scale with 

the timing condition and are increased by pre-feeding. Although the sensitivity of LTIs to 

pre-feeding is consistent with predictions, choice latencies were expected to be 

insensitive to pre-feeding in NP-RI. This suggests that NP-RI does not protect the 

decision process from slowing down with pre-feeding.  
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Figure 4.4. Experiment 3 Baseline and pre-feeding times-to-initiate and 
choice latencies. Median LTI (Panel A) and choice latency (Panel B) and pre-feeding 
(PF) – baseline (B) median LTI (Panel C) and choice latency (Panel D) for each rat as a 
function of the Long interval in each timing condition (12-s, 18-s) and initiation type (EI 
= white squares, NP-RI = black triangles). *Indicates substantial evidence (i.e., lnBFi0 = 
1.098) for an initiation type model. **Indicates substantial evidence for a timing 
condition model. ^Indicates substantial evidence (i.e., lnBFi0 = 1.098) for a feeding 
regimen describing the difference between pre-feeding and baseline.  

Does the sensitivity of LTS variability depend on whether EI ITIs are yoked 

to pre-feeding-induced longer NP-RI LTIs from Short 4-s Long 12-s A? 

 

The previous analyses indicate LTS variability but not the mean LTS was 

sensitive to pre-feeding. The main effect of pre-feeding suggests that the effect of feeding 

regimen on LTS variability is not attributable to the pre-feeding-induced lengthening of 

NP-RI LTIs. To confirm that the effect of feeding regimen does not depend on LTI 

length, rats were trained in a second determination of Short 4-s Long 12-s (Short 4-s 

Long 12-s B) and then tested in: Single-Initiation Type Testing: Yoked-ITI Pre-feeding 

wherein EI ITIs were yoked to pre-feeding-induced longer NP-RI LTIs from Single-

Initiation Type Testing: Pre-feeding.  
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Figure 4.5. Experiment 3 pre-feeding times-to-initiate with yoked EI ITIs. 
Median LTI as a function of Short 4-s Long 12-s determination (A: EI LTI = 2.5 s, B: EI 
LTI = Pre-feeding Lengthened NP-RI LTI from Short 4-s Long 12-s A) and initiation type 
(EI = white squares, NP = black triangles).  

Figure 4.5 shows the median LTI for each rat as a function of Short 4-s Long 12- 

determination (A, B) and initiation type (EI, NP-RI). To assess the success of the yoking 

procedure, yoked EI ITI medians and IQRs were compared to NP-RI LTI medians and 

IQRs in Single Initiation Type Testing: Pre-feeding and Yoked-ITI Pre-feeding via 

Bayesian dependent samples t-tests comparing initiation type (EI, NP-RI). These 

revealed substantial evidence for an initiation type model describing the difference 

between EI ITI IQRs compared to NP-RI LTI IQRs in Single Initiation Type Testing: Pre-

feeding (lnBFi0 = 3.539), indicating that NP-RI LTI IQRs in Single Initiation Type 

Testing: Pre-feeding were larger than EI ITI IQRs. All other comparisons revealed little 

evidence for an initiation type model (largest lnBFi0 = 0.755). Thus, the yoking procedure 

adequately yoked the mean LTI but not LTI variability to pre-feeding lengthened NP-RI 

LTIs in Single Initiation Type Testing: Pre-feeding.    
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Figure 4.6. Experiment 3 baseline and pre-feeding with yoked EI ITIs fits of 
cumulative gamma model to psychophysical functions and temporal 
bisection performance. Mean psychophysical functions (Panels A & B), fits of 
Equation 4.1 (Panels A & B), and pre-feeding (PF) – baseline (B) LTS SDs (Panel C) and 
LTS CVs (Panel D) of Equation 4.1 previously affected by pre-feeding as a function of 
Short 4-s Long 12-s  determination (A: EI LTI = 2.5 s, B: EI LTI = Pre-feeding 
Lengthened NP-RI LTI from Short 4-s Long 12-s A) and initiation type (EI = white 
squares, NP = black triangles). ^Indicates substantial evidence (i.e., lnBFi0 = 1.098) for a 
feeding regimen describing the difference between pre-feeding and baseline. 

Figure 4.6 shows the mean psychophysical functions, fits of Equation 4.1, and the 

pre-feeding – baseline LTS SDs and LTS CVs for each rat as a function of Short 4-s Long 

12-s determination (A, B) and initiation type (EI, NP-RI). To determine whether the 

effect of pre-feeding on LTS variability changed when EI LTIs were yoked to NP-RI LTIs, 

LTS SDs and CVs were analyzed via 2 (initiation type: EI, NP-RI) × 2 (feeding regimen: 

baseline, pre-feeding) × 2 (determination: Short 4-s Long 12-s A, Short 4-s Long 12-s B) 

Bayesian repeated measures ANOVAs. The null model of these analyses contained all the 

parameters of a 2 (feeding regimen: baseline, pre-feeding) × 2 (initiation type: EI, NP-
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RI) repeated measures ANOVA to determine the extent to which adding a determination 

or determination interaction parameter improved model fit. These analyses revealed 

evidence against adding a determination, determination × feeding regimen, or 

determination × feeding regimen × initiation type parameter to the model describing 

LTS SDs (largest lnBFi0 = -1.378), or LTS CVs (largest lnBFi0 = -1.160) indicating that 

there were no effects of Short 4-s Long 12-s determination on LTS variability. 

 Figure 4.7 shows the pre-feeding - baseline LTS SD and CV for each rat; data 

were collapsed across determinations and timing conditions because of the lack of 

evidence for an interaction with either determination or timing condition.  These data 

were submitted to Bayesian dependent measures t-tests to characterize the overall 

magnitude of the effect of pre-feeding on LTS variability. These revealed substantial 

evidence for a feeding-regimen model describing LTS SDs (lnBFi0 = 1.109) and CVs 

(lnBFi0 = 1.826) confirming that pre-feeding increased LTS variability. 

 

Figure 4.7. Experiment 3 average pre-feeding effect on LTS variability. Pre-
feeding (PF) – baseline (B) LTS SD (Panel A) and CV (Panel B) for each rat collapsed 
across Short 4-s Long 12-s determinations, timing conditions, and initiation types and 
overlaid with the median and inter-quartile range.   ^Indicates substantial evidence (i.e., 
lnBFi0 = 1.098) for a feeding regimen describing the difference between pre-feeding and 
baseline. 
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Are times-to-initiate, choice latencies, and LTSs differentially sensitive to 

extinction as a function of initiation type? 

 

NP-RI was also predicted to yield LTSs and choice latencies robust to extinction. 

NP-RI LTIs were expected to be sensitive to extinction. Although nose-pokes could delay 

onset of trials following EI, EI ITIs were not expected to be sensitive to extinction. These 

predictions were assessed visually because inspection of performance under extinction 

revealed that changes in LTIs, choice latencies, and probability of choice ‘long’ across 

rats were idiosyncratic.  

Figure 4.8 shows the mean median LTI and choice latency as a function of trial 

under both baseline and extinction sessions in EI and NP-RI, and the mean 

psychophysical function with fits of Equation 4.1 as a function of baseline and extinction 

(collapsed across trials and sessions). NP-RI LTIs but not EI ITIs increased with 

extinction. Interestingly, NP-RI LTIs appear to initially shorten and then lengthen; such 

shortening suggests a kind of ‘extinction burst’ in NP-RI LTIs. NP-RI LTIs also return to 

baseline levels at the beginning of the second extinction session, suggesting evidence of 

spontaneous recovery. Similarly, both NP-RI and EI choice latencies initially shorten and 

then increase with extinction, returning to baseline levels at the beginning of the second 

extinction session. Taken together, this suggests NP-RI LTIs and choices latencies in EI 

and NP-RI are sensitive to extinction.   

Interestingly, the effect of extinction on LTSs appears to depend on initiation 

type. Whereas extinction in EI results in an overall flattening corresponding to an 

increase in the minimum and reduction in the range of the psychophysical function, 

extinction in NP-RI results in a less severe flattening corresponding to a smaller increase 

in the minimum and reduction in the range of the psychophysical function. The 
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probability of choice ‘long’ in EI ranges between 0.2 and 0.6, compared to between 0.1 

and 0.8 in NP. This suggests that LTSs become more variable in extinction to a greater 

extent in EI than NP-RI. In NP-RI, there is a clear leftward shift of the psychophysical 

function, indicating that LTSs lengthen in extinction. In contrast, the severe flattening of 

the psychophysical function in EI makes it difficult to ascertain any shift in the 

psychophysical function. Taken together, these data suggest that both mean LTS and 

LTS variability increases with extinction but LTS variability may do so to a lesser degree 

in NP-RI.  

Is the sensitivity of LTS variability to pre-feeding in EI and NP-RI explained 

by an increase in the prevalence and mean of non-timed LTSs? 

 

Grubb’s test revealed as an outlier rat 5 for ε, c, timed LTS SD, and timed LTS CV 

in NP-RI Short 4-s Long 12-s pre-feeding, the mean timed LTS in NP-RI Short 6-s Long 

18-s and q in NP-RI Short 6-s Long 8-s pre-feeding; rat 4 for K in EI Short 4-s Long 12-s 

pre-feeding; rat 8 for K in EI Short 4-s Long 12-s baseline and Short 6-s Long 18-s pre-

feeding. These data were removed from analysis. 

Figure 4.9 shows the mean psychophysical function, psychophysical function of a 

representative rat, and fits of Equation 2.1 as a function of feeding regimen (baseline, 

pre-feeding) within each initiation type (EI, NP). Table 4.3 shows the baseline and Table 

4.4 shows pre-feeding – baseline parameter estimates of the gamma-exponential 

(Equation 2.1) mixture model. Equation 2.1 appears to track the data just as well as 

Equation 4.1, with no significant deviations from the psychophysical functions.  
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Figure 4.8. Experiment 3 extinction temporal bisection performance. Mean 
median LTI (Panels A & B) and choice latency (Panels C & D) back transformed from the 
log scale as a function of trial in Short 4-s Long 12-s Baseline (filled circles, solid line) 
and Extinction sessions 1 (white squares, dashed line) and 2 (white triangles, dashed 
line) within EI (Panels A & C) and NP-RI (Panels B & D). Also shown is the mean 
psychophysical function and fits of Equation 4.1 as a function of Short, Long, and 
intermediate intervals in Baseline (filled circles, sold line) and Extinction (white circles, 
dashed line; collapsed across both extinction sessions) within EI (Panel E) and NP-RI 
(Panel F).  Note that for Panels A-D, the number of visualized trials is the median 
number of trials completed within each initiation type, and thus by the last visualized 
trial each data point is the mean median of four rats.  
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Figure 4.9. Experiment 3 cumulative gamma-exponential mixture model fits 
to baseline and pre-feeding psychophysical functions. Mean psychophysical 
functions (Panels A & B), psychophysical functions of a representative rat (Panels C & D) 
and fits of Equation 2.1 within each initiation type (EI: Panels A & C; NP: Panels B & D) 
as a function of timing condition (12-s: circles; 18-s: squares) and feeding regimen 
(baseline = filled symbols, solid line; pre-feeding = white symbols, dashed line). 
Representative rat was defined as the rat with the median pre-feeding-induced increase 
in mean LTS in both initiation types. Note that the fits of Eq. 4.1 and 2.1 are not visually 
distinguishable.  

To assess whether pre-feeding effects on LTSs are explained by a reduction in the 

prevalence of timed LTSs and mean of non-timed LTSs, all dependent measures were 

submitted to 2 (initiation type: EI, NP-RI) × 2 (feeding regimen: baseline, pre-feeding) × 

2 (timing: 12-s, 18-s) Bayesian repeated measures ANOVAs. These analyses revealed 

substantial evidence for a feeding model (lnBFi0 = 5.593) describing q, indicating that 

pre-feeding reduced the probability of entering a timing state. Additionally, there was 

subthreshold evidence for also including an initiation type parameter in the feeding 

model (initiation type + feeding, lnBFi0 = 6.682; ΔlnBFi0 = 1.089), suggesting that rats 
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may enter timing states more often in NP-RI than EI. There was also substantial 

evidence for an initiation type model (lnBFi0 = 5.487) describing the mean non-timed 

LTS, indicating that when not timing rats were less likely to respond ‘short’ in NP-RI 

than EI. There was substantial evidence for the null model (lnBFi0 = -1.155) describing 

the mean non-timed LTS, suggesting that the mean non-timed LTS is insensitive to pre-

feeding.  

To further isolate the potential mechanism by which pre-feeding increases LTS 

variability, the remainder of the parameters and derived statistics were submitted to 2 

(initiation type: EI, NP-RI) × 2 (feeding regimen: baseline, pre-feeding) × 2 (timing: 12-

s, 18-s) Bayesian repeated measures ANOVAs. These revealed substantial evidence for an 

initiation type + feeding regimen + timing model (lnBFi0 = 11.989) describing c, 

indicating that the speed of the clock was higher in NP-RI than EI, reduced by pre-

feeding, and scaled with the timing condition. There was also evidence for an initiation 

type + feeding regimen (lnBFi0 = 8.043) model describing ε, indicating that the criterion 

pulse count was higher for NP-RI than EI and reduced by pre-feeding.  

Consistent with the effects observed on the speed of the clock and criterion pulse 

count, there was substantial evidence for an initiation type + feeding regimen + timing 

model (lnBFi0 = 13.636) describing timed LTS SDs, indicating that timed LTS SDs were 

smaller in NP-RI than EI, increased by pre-feeding, and scaled with the timing 

condition. There was also substantial evidence for an initiation type + feeding regimen 

model (lnBFi0 = 8.013) describing timed LTS CVs, indicating that LTS CVs were higher 

in NP-RI than EI and increased by pre-feeding. In contrast, there was only substantial 

evidence for a timing model (lnBFi0 = 8.711) describing timed mean LTSs, indicating 



 

120 
 

mean LTSs scaled with the timing condition. There was no substantial evidence for a 

feeding regimen (lnBFi0 = -0.224) model describing timed LTS means9. 

Taken together, these data suggest that rats produced more timed and less 

variable LTSs in NP-RI than EI. The less variable LTSs appears to be due to a faster clock 

speed in NP-RI than EI. Although pre-feeding reduced the prevalence of timed LTSs, it 

did not affect the mean non-timed LTS as predicted. Instead, pre-feeding reduced the 

speed of the clock and the criterion pulse count, suggesting that timed and not non-

timed LTSs are sensitive to pre-feeding. Thus, these data suggest that the pre-feeding 

effects on LTSs are not attributable to an increase in the prevalence and mean of non-

timed LTS. Additionally, these data reinforce the notion that although NP-RI enhances 

temporal control of latent LTSs in rats trained in the temporal bisection procedure, NP-

RI does not protect LTSs from motivational fluctuations.    

 

 

 

  

                                                           
9 As with analysis of free parameters and derived statistics of fits of Eq. 4.1, to determine 
the reliability of the obtained pre-feeding effects, analyses were reconducted with both 
rats 4 and 5 removed. Analysis of timed LTS SDs (lnBFi0 = 10.156) and CVs (lnBFi0 = 
7.938) did not depend on whether rat 4 and 5 were included. Analysis of timed mean 
LTSs depended on whether rats 4 and 5 were included (lnBFi0 = 4.087). Thus, the pre-
feeding-induced increased in latent LTS variability is reliable and the pre-feeding-
induced increase in the latent mean LTS is unreliable.      



 

 
 

112
 

Table 4.3 

Experiment 3 Median (IQR: 1st Quartile, 3rd Quartile) baseline parameter estimates of Equation 2.1 

 Short 4-s Long 12-s Short 6-s Long 18-s 

Parameters EI NP-RI EI NP-RI 

q .91 (.82, .93) .93 (.89, .97) .80 (.72, .89) 0.93 (0.89, 0.94) 

ε (pulses) 24.03 (19.12, 26.93) 27.58 (24.32, 35.82) 21.89 (14.29, 45.07) 30.02 (24.64, 45.47) 

c (s) 0.28 (0.26, 0.36) 0.24 (0.18, 0.27) 0.49 (0.26, 0.68) 0.32 (0.21, 0.45) 

Mean non-timed LTS (K) (s) 14.02 (11.98, 27.49) >100 (27.78, >100) 32.86 (20.37, >100) >100 (>100, > 100) 

Derived Statistics     

Mean Timed LTS (s) 6.96 (6.51, 7.09) 6.44 (6.27, 6.86) 10.15 (9.81, 10.49) 9.68 (9.19, 9.80) 

Timed LTS SD (s) 1.41 (1.29, 1.55) 1.25 (1.10, 1.32) 2.22 (1.60, 2.54) 1.73 (1.41, 2.06) 

Timed LTS CV 0.20 (0.19, 0.23) 0.19 (0.17, 0.20) 0.22 (0.16, 0.27) 0.18 (0.15, 0.21) 

Note. For temporal bisection Equation 2.1 was expressed as a cumulative density rather than a probability density function 
with δ = 06. Parameter estimates and derived statistics in italics indicate substantial evidence for an initiation type model and 
in bold indicate substantial evidence for a timing condition model describing those parameters and derived statistics. *The 
estimate of K determines at what duration rats choose ‘long’ over ‘short’: durations less than K are categorized as ‘short’ and 
all durations greater than K are categorized as ‘long’. Thus, as K increases, the bias to categorize a duration as ‘short’ 
increases, and as K decreases, the bias to categorize a duration as ‘long’ increases. Estimates of K were inordinately large for 
most subjects, particularly in NP-RI. Nevertheless, estimates were still analyzed and are reported as means or > 100, 
whichever was most informative. 
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Table 4.4 

Experiment 3 Median (IQR: 1st Quartile, 3rd Quartile) pre-feeding – baseline parameter estimates of Equation 2.1 

 Short 4-s Long 12-s Short 6-s Long 18-s 

Parameters EI NP-RI EI NP-RI 

q -.14 (-.19, -.04) -.11 (-.16, -0.01) -.01 (-0.06, .06) -.11 (-.20, -.02) 

ε (pulses) -6.79 9(-13.31, -2.57) -13.24 (-22.83, -4.55) -11.01 (-28.73, -4.24) -19.55 (-26.30, -9.7) 

c (s) 0.16 (0.09, 0.93) 0.21 (0.07, 0.33) 1.48 (0.85, 3.19) 0.37 (0.24, 0.81) 

Mean non-timed LTS (K) (s) -2.24 (-13.71, 7.98) -1.87 (<-100, >100) -25.55 (<-100, 2.79) <-100 (<-100, <-100) 

Derived Statistics     

Mean Timed LTS (s) 0.66 (0.29, 1.49) 0.89 (0.20, 1.02) 1.74 (0.28, 29.34) 1.31 (-0.01, 1.99) 

Timed LTS SD (s) 0.68 (0.34, 1.49) 0.60 (0.18, 0.92) 2.65 (1.49, 8.29) 1.06 (0.84, 1.66) 

Timed LTS CV 0.04 (0.02, 0.16) 0.06 (0.02, 0.11) 0.14 (0.03, 0.18) 0.08 (0.06, 0.13) 

Note. For temporal bisection Equation 2.1 was expressed as a cumulative density rather than a probability density function 
with δ = 0. Parameter estimates and derived statistics in bold indicate substantial evidence for a feeding regimen model 
describing those parameters and derived statistics6. *The estimate of K determines at what duration rats choose ‘long’ over 
‘short’: durations less than K are categorized as ‘short’ and all durations greater than K are categorized as ‘long’. Thus, as K 
increases, the bias to categorize a duration as ‘short’ increases, and as K decreases, the bias to categorize a duration as ‘long’ 
increases. Estimates of K were inordinately large for most subjects, particularly in NP-RI. Nevertheless, estimates were still 
analyzed and are reported as described for the other parameter estimates or > 100, whichever was most informative. 
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Discussion 

 

Experiment 3 revealed some evidence supporting the discriminative RI 

hypothesis. LTS variability was smaller in NP-RI than in EI, indicating that highly 

discriminable initiating-responses enhance temporal control of latent LTSs in rats 

trained in the temporal-bisection procedure. Despite the sensitivity of NP-RI LTIs to 

pre-feeding, NP-RI did not yield mean LTSs or choice latencies robust to pre-feeding or 

extinction. Whereas pre-feeding consistently and reliably increased LTS variability and 

choice latency regardless of which outlier data were included in analyses, it did not 

reliably lengthen LTSs. Pre-feeding increased the mean LTS in both EI and NP-RI only if 

rats with flat psychophysical functions following pre-feeding in EI were removed despite 

not being detected by Grubb’s test. Thus, it appears that the RI temporal bisection 

procedure enhances temporal control of interval timing but does not protect interval 

timing from motivational fluctuations or extinction.  

Chapter 5: General Discussion 

The present dissertation sought to determine whether interval timing and 

motivation are dissociable processes. Timing performance appears sensitive to 

fluctuations in both motivation and time, suggesting that interval timing and motivation 

are inseparable processes. According to a behavioral systems model of timing 

performance (e.g., Timberlake, 2000), behavioral modes underlying timing performance 

are differentially sensitive to fluctuations in time and motivation: post-food focal search 

is sensitive to motivation, general search and pre-food focal search are sensitive to time 

(Figure 1.4). This suggests that training subjects to emit a response when transiting from 

post-food focal search to general search should circumscribe pre-feeding effects to post-

food focal search without affecting timing performance. Thus, training subjects to 
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response-initiate (RI) trials rather than having the experimenter determine when trials 

are initiated (EI) is expected to dissociate interval timing and motivation processes. 

Specifically, according to the discriminative RI hypothesis, training subjects to initiate 

their own trials should dissociate interval timing and motivation processes as a function 

of the discriminability of initiating-responses from target responses.  

This hypothesis was evaluated in three experiments. In experiments 1 (Chapter 2) 

and 2 (Chapter 3), rats were trained in the switch-timing procedure (Figure 1.1B), an 

immediate timing procedure in which subjects continuously judge whether to switch 

from a Short fixed-interval (FI) schedule of reinforcement to a Long FI. In experiment 3, 

rats were trained in the location variant of the temporal bisection procedure (Figure 

1.1B), a retrospective timing procedure in which subjects continuously judge whether to 

categorize an interval ‘short’ or ‘long’, with choice of either ‘short’ or ‘long’ expressed 

after the interval has elapsed. In the switch-timing procedure the latency-to-switch 

(performance index: LTS; Figure 1.2) is indicated by the first response on the Long FI 

(target response); in the location variant of the temporal bisection procedure LTSs are 

latent, only indicated by choosing ‘long’ over ‘short’ (target response). Some trials were 

EI, and others RI, initiated via the first response on the Short FI (SL-RI) or via a nose-

poke in a nose-poke device (NP-RI). In two timing conditions (4-s 12-s, 6-s 18-s), 

subjects were challenged with 1-h and 24-h pre-feeding probes. To control for the 

possibility that the dissociating effects of RI compared to EI is attributable to pre-

feeding-induced longer latencies-to-initiate (LTIs) trials and not RI per se, subjects were 

also challenged with pre-feeding probes with EI inter-trial intervals (ITIs) yoked to NP-

RI LTIs. Additionally, to determine whether initiating-responses generally dissociate 

interval timing and non-timing processes or selectively dissociate interval timing and 

motivation processes, subjects were challenged with two-session extinction probes.    
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Table 5.1 shows a summary of and support for the predictions derived from the 

discriminative RI hypothesis. Initiating-responses enhanced temporal control of latent 

LTSs but not of overt LTSs, and SL-RI reduced but NP-RI enhanced temporal control of 

Short FI performance. The robustness of overt median LTS but not LTS variability from 

pre-feeding increased with the discriminability of initiating-responses from target 

responses. Latent mean LTS but not latent LTS variability was robust to pre-feeding in 

both EI and NP-RI. LTSs were sensitive to extinction in EI, SL-RI, and NP-RI. 

Importantly, the protective effects of NP-RI were not an artifact of longer NP-RI LTIs, 

indicating that highly discriminable response-initiation per se protects median LTSs 

from pre-feeding-induced reductions in motivation. LTIs were sensitive to the timing 

condition, and pre-feeding so long as manipulanda also did not predict imminent 

reinforcement. Similarly, a gamma-exponential mixture model provided only a partial 

dissociation of interval timing and motivation: parameters of timed LTSs were just as 

sensitive to pre-feeding as parameters of non-timed LTSs. Taken together, these data 

provide moderate support for the discriminative RI hypothesis, indicating that as 

initiating-responses become progressively discriminable from target responses, 

initiating-responses selectively but only partially dissociate interval timing and 

motivation.  
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Table 5.1 

Summary and support for predictions derived from the discriminative RI hypothesis 

 Experiment 1 

(Chapter 2) 

Experiment 2 

(Chapter 3) 

Experiment 3 

(Chapter 4) 

Prediction: As initiating-responses become more discriminable 

from target responses 

Switch-timing Switch-timing Temporal Bisection 

1 Temporal control of LTSs will increase No No Yes 

2 Robustness of LTSs to pre-feeding will increase No Moderate* Moderate** 

3 LTIs will be sensitive to pre-feeding No Yes Moderate*** 

4 Robustness of LTSs to extinction will increase NA No No 

5 LTIs will be sensitive to extinction NA Yes Yes 

Prediction: Compared to EI, in SL-RI but not NP-RI    

6 Temporal control of Short FI performance will be reduced Moderate& Moderate& NA 

Prediction: In EI,     

7 Interval timing and motivation will be computationally 

dissociable 

No Moderate† Moderate† 

Note. NA = Not applicable. *Only overt LTS medians were robust to pre-feeding; pre-feeding increased LTS variability in all 
initiation types. ** Latent mean LTS but not latent LTS variability was insensitive to pre-feeding. **Despite NP-RI but not SL-
RI protecting over LTSs medians from pre-feeding, SL-RI and NP-RI LTIs were equally sensitive to pre-feeding as long as 
manipulandum on which initiating responses were emitted did not serve as a discriminative stimulus for some other 
component of the task. &Only temporal control of LFRs was reduced. †Pre-feeding affected parameters of both timed and non-
timed LTSs.  
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Discriminability of Initiating-Responses Modulates Temporal Control of 

Target Responses 

 

The differential effects of SL-RI and NP-RI on temporal control of Short FI 

performance, as indexed by the latency-to-the-first-response (LFR) on the Short FI, 

indicates moderate support for the notion that the discriminability of initiating-

responses modulates temporal control of target responses (Figure 2.2 and Figure 3.3). 

Whereas SL-RI differs from Short FI target responses only as a function of time, NP-RI 

differs from Short FI target responses as a function of time, location, and form. As such, 

generalization between SL-RI and target responses is more likely to occur than between 

NP-RI and target responses. Such generalization would promote encoding of initiating-

responses as target responses and vice versa, thereby reducing control of both responses 

by their respective associations: starting trials and timing intervals, respectively. In turn, 

this is predicted to result in poorer temporal control of timing performance. The SL-RI-

induced reduction in temporal control of LFRs suggests that the results obtained by Fox 

and Kyonka (2013, 2015, and 2016)—poor temporal control in RI compared to EI fixed-

interval and peak interval performance—is likely due to generalization between 

initiating-responses and target responses. Pigeons were trained to initiate fixed-interval 

and peak trials via a single peck on the FI key; initiating-responses differed from target 

responses only as a function of time.  

As expected, NP-RI enhances temporal control of LTSs relative to EI. However, 

this enhancement is limited to latent LTSs in animals trained in the temporal bisection 

procedure (Figure 4.3; cf. Figure 3.3), suggesting that initiating-responses enhance 

temporal control in retrospective but not immediate timing performance. Although 

consistent with Caetano & Church (2009) and Caetano (2009), such an outcome is 

inconsistent with the behavioral systems model (Figure 1.4). According to this model, 
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initiating-responses dissociate post-food focal search and general search in all interval-

timing procedures, enhancing synchronization of time-markers and general search and, 

thus, temporal control of target responses. It might be that whether initiating-responses 

enhance temporal control depends on the extent to which EI retrospective and EI 

immediate timing procedures gain temporal control over target responses. If temporal 

control is already relatively high, perhaps at a ceiling, then initiating-responses may not 

enhance temporal control; if temporal control is relatively low, then initiating-responses 

may enhance temporal control. This suggests that, when externally initiated, immediate 

timing procedures gain greater temporal control of target responses than retrospective 

timing procedures. Consistent with this notion, the probability of entering a timing state  

appears to be slightly higher in EI switch-timing (Experiment 2: median =.90; IQR = 

.80-.91) than in EI temporal bisection procedures (median =.85; IQR = .79-.91; cf. Tables 

3.3 and 4.3), and the LTS CQVs appear to be smaller in EI switch-timing (Experiment 2: 

median =.13; IQR = .11-.17) than in EI temporal bisection procedures (median =.22; IQR 

= .21-.26; cf. Figure 3.3 and Figure 4.3).  Thus, temporal control may be a function of the 

degree of time-marker and general search synchronization and the basal temporal 

control of target responses gained by an EI interval timing procedure.  

There are two critical differences between EI switch-timing and EI temporal 

bisection procedures that may explain why temporal control was higher in the former 

than the latter. First, expression of switch-timing performance is less variable than 

expression of temporal bisection performance. Performance in switch-timing trials is 

mostly expressed as Short FI or Long FI responding (Daniels et al., 2015b). Performance 

in temporal bisection trials is expressed as choosing ‘short’ or ‘long’ at the end of a trial, 

and as latent LTSs during a trial. Expression of these latent switches, however, likely 

consists of many different behaviors including but not limited to grooming, sniffing, 
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investigating, head-entries, etc. (Gouvêa et al. 2014; Timberlake, 2000; Staddon & 

Simmelhag, 1971). Increased variability in the expression of these latent LTSs suggests 

that, when a reinforcer is delivered, more than just target responses (choices ‘short’ and 

‘long’) compete for reinforcer credit assignment. Increased credit assignment 

competition decreases temporal control of target responses (Killeen, 2011; Killeen & 

Pellón, 2013; Sanabria, Thrailkill & Killeen, 2009).  

Variability in the expression of performance also potentially explains why 

temporal control of LFRs but not the latencies-to-depart (LTDs) is differentially sensitive 

to discriminability of initiating-responses. At the beginning of switch-timing trials the 

Short FI is the only source of reinforcement. At the end of switch-timing trials both the 

Short and Long FI are sources of reinforcement. The lack of an alternative source of 

reinforcement at the beginning but not the end of switch-timing trials suggests that 

expression of performance is more variable at the beginning than at the end of switch-

timing trials. Increased variability in the expression of switch-timing performance at the 

beginning but not at the end switch-timing trials suggests that more responses compete 

for reinforcer credit assignment at the end of Short FI but not Long FI trials. Likewise, 

Sanabria, Thrailkill, & Killeen (2009) showed that providing an alternative source of 

reinforcement to pigeons trained on the peak procedure resulted in later and less 

variable start-times, and sooner and less variable stop-times. This strengthens the notion 

that explicitly programming multiple sources of reinforcement reduces credit 

assignment competition and thus enhances temporal control of performance indices.  

Second, the probability of reinforcement at the end of the switch-timing trials 

(1.0) is much higher than in temporal bisection trials (.57). Extant theories of attention 

suggest that attention is a function of either or both reinforcement predictability 
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(Mackintosh, 1965, 1975; also see Fortes, Pinto, Machado, & Vasconcelos, 2018) and 

reinforcement uncertainty (Pearce & Hall, 1980; Daniels & Sanabria, 2018; for a review, 

see Esber & Haselgrove, 2011). For example, according to the predictability theory, 

attention is a positive function of the probability of reinforcement signaled by a stimulus. 

Thus, as the probability of reinforcement signaled by a time-marker increases, so does 

attention; likewise, as the probability of reinforcement signaled by a time-marker 

decreases, so does attention. Temporal control of LTSs in EI temporal bisection may be 

lower than in EI switch-timing procedures because of the lower probability of 

reinforcement at the end of a trial. Future research may explore the relationship between 

the probability of reinforcement at the end of a trial, the expression of performance 

during trials, and RI enhancement of temporal control.    

Discriminability of Initiating-Responses Modulates the Selective and Partial 

Dissociation of Interval Timing and Motivation 

 

 Interval Timing and Motivation 

 

The selective but partial dissociation of interval timing and motivation (Figure 

2.3, Figure 3.4) is moderately consistent with the discriminative RI hypothesis and the 

posited behavioral systems model (Figure 1.4). Taken together, these predict that as 

initiating-responses become progressively discriminable from target responses, 

initiating-responses increasingly dissociate post-food focal search and general search, 

which is predicted to manifest as an increasing robustness of both median LTS and LTS 

variability to pre-feeding. However, only median LTS was increasingly robust to pre-

feeding as initiating-responses became progressively discriminable from target 

responses. 
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The consistent effect of pre-feeding on LTS variability suggests that, although 

pre-feeding increases the time spent in post-food focal search, it also alters the 

probability of transiting between general search and both the post-food focal search and 

pre-food focal search. Figure 5.1 shows a schematic of this ad hoc revision of the 

behavioral systems model. In this revised behavioral systems model, pre-feeding still (1) 

increases the time spent in post-food focal search, but also (2) increases the probability 

of transiting back to post-food focal search from general search, and (3) decreases the 

probability of transiting to pre-food focal search from general search. Importantly, this 

revised model still predicts that pre-feeding increases the mean and variability of 

performance indices. Taken together with the discriminative RI hypothesis, the revised 

behavioral systems model predicts that pre-feeding increases both median LTS and LTS 

variability in EI but only LTS variability in NP-RI.  

 In addition to accounting for the consistent effect of pre-feeding on LTS 

variability, this revised model accounts for the concomitant pre-feeding-induced 

reduction in the probability of entering a timing state (Table 3.3), and the reduction in 

start and persistence ratios (Figure 3.5). If pre-feeding increases the probability of 

transiting back to post-food focal search, then synchronization of time-markers and 

general search will decrease, resulting in subjects entering non-timing states more 

frequently than in baseline. Additionally, an increase in the probability of returning to 

post-food focal search entails engaging in post-food focal search behaviors, which 

includes but is not limited to grooming, digesting, and interacting with still available 

manipulanda (e.g., Timberlake, 2000). Interaction with manipulanda in post-food focal 

search, however, is not under the control of time as in general-search and pre-food focal 

search. Subjects are thus likely to start on the Long FI rather than the Short FI (reduced 
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start ratio) and persist less on the Long FI than on the Short FI (reduced persistence 

ratio).   

 

Figure 5.1. Schematic of the ad hoc revision of the predatory subsystem of 
rats in interval timing procedures. Schematic shows trial dynamics of a hungry rat 
(Panel A) compared to the original predicted pre-feeding effects (Panel B) and the ad hoc 
revision of the predicted pre-feeding effects (Panel C). The ad hoc revision of the 
behavioral systems model is motivated by the consistent effect of pre-feeding on LTS 
variability across initiation types. See text for details. Note that the static transition 
probabilities are for illustrative purposes only, some probabilities are likely dynamic and 
may shift to 1 given certain experimental events, such as the probability of transitioning 
into the consumption\handling mode upon reinforcer delivery. Underlined transition 
probabilities illustrate the predicted effect of pre-feeding, with thicker and thinner 
arrows further indicating whether pre-feeding increased or decreased a specific 
probability. Note that the shift of general search is intentional, indicating that post-food 
focal search delays onset of general search.  

This revised model also explains the pre-feeding-induced increase in LFR and 

LTD median and variability (Figure 3.4). The higher probability of transiting back to 

post-food focal search is followed by spending more time in post-food-focal search. As 

such, emission of general-search-to-pre-food-focal-search transiting responses (i.e., 

LFRs, LTDs, and LTSs) becomes delayed. Taken together with the discriminative RI 

hypothesis, this suggests that the sensitivity of median LFR and LTD should be 
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proportional to the discriminability of initiating-responses from target responses. 

Despite analyses revealing only main effects of pre-feeding on median LFR and LTD, 

post hoc analyses within each initiating type indicates that the effect of pre-feeding on 

LFRs and LTDs scales as expected: EI (average lnBFi0 = 5.522) > SL-RI (average lnBFi0 = 

2.47) > NP-RI (average lnBFi0 = 1.69). This is further corroborated by visual inspection 

of Figure 3.4, where the pre-feeding-induced increase in median LTD is larger for EI 

than for NP-RI switch-timing procedures; scaling of the effect is less clear for median 

LFR. Thus, most of the pre-feeding effects observed in this dissertation are explained 

following a slight ad hoc modification of the behavioral systems model.   

This revised model also makes a prediction consistent with timing theories that 

suggest the speed of the clock is a function of arousal (e.g., Killeen & Fetterman, 1988), 

which is a function of motivation (Killeen, 1995; Killen & Sitomer, 2003). Because 

general search is more sensitive to conditioning than post-food focal search, the effect of 

pre-feeding on general search, but not on post-food focal search, is expected to be 

transient. That is, to the extent that all performance indices (i.e., LFRs, LTDs, and LTSs) 

are timed (i.e., the output of a PA-like model), extended training under the pre-feeding-

induced reduction in motivation is expected to result in recalibration of performance 

indices to baseline levels. LTIs, in contrast, are expected to remain lengthened. In EI, 

and to a lesser extent in SL-RI, full recalibration of performance indices is not expected 

because post-food focal search and general search are still conflated. Likewise, many PA 

models suggest that clock-speed-induced perturbations in interval timing are transient 

because reinforcement updates memory with new pulse counts (Meck, 1996). Although it 

is possible for this recalibration to occur within-session, previous research suggests that 

such recalibration typically takes 3-7 sessions of training (Meck, 1996), thus testing this 

prediction is outside the scope of the present dissertation.  
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Unfortunately, the revised model does not explain why mean LTS but not LTS 

variability was robust to pre-feeding in both NP-RI and EI temporal bisection (Figure 

4.3). This outcome also argues against McClure et al.’s (2009) suggestion that that 

training subjects in the location variant of temporal bisection, which associates choices 

‘short’ and ‘long’ with fixed locations and thus facilitates behavioral sequences akin those 

observed in animals trained in the switch-timing procedure, promotes lengthening of the 

mean LTS. Indeed, the reliable pre-feeding-induced increases in LTS variability is 

inconsistent with McClure et al. (2009) but consistent with the data reported by Ward & 

Odum (2006). Ward & Odum (2006) trained pigeons with choices ‘short’ and ‘long’ 

counterbalanced across locations. Importantly, these equivocal effects are not 

attributable to differences in the ratio of the Short and Long intervals or variations in 

pre-feeding protocols. Whereas in the present dissertation the ratio of the Short and 

Long intervals was 1:3, in Ward & Odum (2006) and McClure et al. (2009) the ratio of 

the Short and Long intervals was 1:4. Although McClure et al. (2009) conducted single 

session pre-feeding manipulations and Ward & Odum (2006) conducted 5-session pre-

feeding manipulations, in the present dissertation there was little evidence for a 

difference between 1 h and 24 h pre-feeding. Taken together, these data suggest that the 

effect of pre-feeding in the temporal bisection procedure depends on some 

unappreciated procedural variable.  

McClure et al. (2009) also suggested that the effect of pre-feeding depends on the 

complexity of experimental procedures. Complex experimental procedures reduce 

temporal control of target responses because stimuli signal many different attributes of 

response-reinforcer associations and control of target responses is likely to fluctuate 

among attributes within and between stimuli (e.g., Daniels et al., 2015b; Delamater et al. 

2014; Stubbs et al., 1994). Such fluctuation may obfuscate potentially interesting effects. 
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Whereas Ward & Odum (2006) trained and tested pigeons in the temporal bisection 

procedure, FI, and a color-discrimination task within the same session, McClure et al. 

(2009) trained and tested pigeons only in the location variant of the temporal bisection 

procedure. In the present dissertation, despite testing rats with single initiation types, 

rats were trained with multiple initiation types, making the location variant of the 

temporal bisection procedure in the present dissertation more complex than the 

procedure employed by McClure et al. (2009). This increased complexity likely increased 

fluctuation in the temporal control of target responses. Visual comparison of 

psychophysical functions across studies suggests that McClure et al. (2009) obtained 

steeper psychophysical functions (higher slope), and thus less variable performance, 

than Ward and Odum (2006) and the present dissertation. Despite the inherent 

problems with such cross-study comparisons, this indicates that training and testing rats 

in only the EI location variant of the temporal bisection procedure should enhance 

temporal control of temporal bisection performance and thus promote a pre-feeding-

induced lengthening of the mean LTS.  

The hypothesis that the effect of pre-feeding depends on the degree of temporal 

control potentially explains the inconsistent effects of pre-feeding between experiments 1 

and 2, and 1 and 3. In experiment 1, pre-feeding only lengthened LTSs (Figure 1.3); in 

experiment 2 pre-feeding increased LTS variability and, depending on initiation type, 

also lengthened LTSs (Figure 3.4, 3.7); in experiment 3, pre-feeding only reliably 

increased LTS variability (Figure 4.3, 4.7). Temporal control was much lower in 

experiment 1 than in experiments 2 and 3. In experiment 1, rats started on the Short FI 

and persisted on the Long FI less than rats in experiment 2; in experiment 1 rats entered 

timing states less frequently than in experiments 2 and 3. These data suggest that 

temporal control is a function of both task complexity and training regimen. Whereas in 
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experiment 1 rats had to merely complete the active FI, in experiment 2 rats had to 

follow a behavioral sequence to obtain reinforcement, and in experiment 3 rats had to 

correctly categorize the Short and Long intervals. Future research may parametrically 

investigate the relationship between interval timing procedures, temporal control, and 

fluctuations in motivation.      

Interval Timing and Extinction 

 

The selective but partial dissociation of interval timing and motivation is 

inconsistent with the expectation that RI generally dissociates interval timing and non-

timing processes. RI was expected to dissociate interval timing and extinction because 

extinction results in a substantial reduction in motivation followed by new, inhibitory 

learning (Bounton, 2004; Reddish et al., 2007; Katz, 1981). The initial reduction in 

motivation (e.g., Katz, 1981) was expected to circumscribe new, inhibitory learning to 

LTIs. If a trial was initiated, interval timing was expected to remain intact. However, 

extinction lengthened both LTIs and LTSs, which showed evidence of spontaneous 

recovery by returning to baseline levels at the beginning of the second extinction session 

(Figure 3.8 and 4.8). Interestingly, LTIs and choice latencies—the time to choose ‘short’ 

or ‘long’ in the temporal bisection procedure— showed evidence of extinction bursts, an 

initial shortening, prior to extinction (Figure 4.8)-induced lengthening. 

The sensitivity of LTIs, LTSs, and choice latencies to extinction indicates that 

initiating-responses do not generally dissociate timing and non-timing process. 

Extinction is thought to promote exploration of alternative sources of reinforcement 

while previously learned behaviors remain intact, just not expressed (Gershman, Blei, & 

Niv, 2010; Lattal, St. Peter, & Escobar, 2013; Todd, Vubric, & Bouton, 2014). For 

example, following VI schedules of reinforcement, where responding clusters in bouts 
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(e.g., Brackney et al., 2011; Daniels & Sanabria, 2017b; Shull, 2011), extinction reduces 

the bout-initiation rate, which also spontaneously recovers between extinction sessions, 

without altering within-bout responding or the number of responses emitted in a bout 

(Brackney et al., 2017; Brackney, Cheung, Herbst, Hill, & Sanabria, 2012; Cheung et al., 

2012). Bout-initiation responses are thought to demarcate general-search-to-pre-food-

focal-search transitions just as initiating-responses demarcate post-food-focal-search-to-

general-search transitions and target responses demarcate general-search-to-pre-food-

focal-search transitions. Likewise, just as within-bout responding is thought to 

characterize performance within behavioral modes, response runs in animals trained in 

the switch-timing procedure should characterize performance within behavioral modes. 

This suggests that responses demarcating behavioral mode transitions, but not responses 

within a behavioral mode, are sensitive to extinction, and thus should show classic 

extinction effects, including but not limited to spontaneous recovery, extinction bursts, 

and, more generally, context specificity (see Bouton, Winterbauer, & Todd, 2012). 

Although speculative, this hypothesis predicts that in animals trained in the switch-

timing procedure, response runs, but not LTSs, should be robust to extinction. Testing 

this hypothesis is outside the scope of the present dissertation. 

The prevalence of extinction bursts in the temporal bisection procedure, but not 

in the switch-timing procedure, may be related to the probability of reinforcement 

associated with lever pressing. Although there is little research investigating the 

determinants of extinction bursts, these appear to occur when extinction follows training 

on rich rather than lean schedules of reinforcement (Lattal et al., 2013; Lerman & Iwata, 

1995; Lerman, Iwata, & Wallace, 1999). Such schedule effects are likely driven by the 

relative discriminability of extinction from training: whereas extinction is easily 

discriminated from training on rich schedules, extinction is not easily discriminated 



 

138 
 

from training on lean schedules. Consistent with this notion, the probability of 

reinforcement associated with each individual lever press is higher in the temporal 

bisection than in the switch-timing procedures. In the temporal bisection procedure, 

subjects correctly categorize Short and Long Intervals in about 90 and 95 % of trials such 

that the probability of reinforcement following a lever press is close to the programmed 

probability of reinforcement at the end of a trial: .57. In switch-timing procedures, 

subjects typically respond about in bouts 5 responses long (consistent with extant data 

on the length of response runs in FI, Daniels & Sanabria, 2017a; Guilhardi, Yi, & Church, 

2007; Kirkpatrick, 2002) such that in the Short FI only 1-2 bouts occur and in the Long 

FI 2-4 bouts occur. At the low end of these estimates, this indicates that the probability 

of reinforcement following a lever press is lower than .57, approximately between .25 and 

.10. This suggests that extinction is more easily discriminated from training in the 

temporal bisection procedure than in the switch-timing procedure. Given the relative 

dearth of basic research on determinants of extinction bursts, future research may seek 

to determine whether extinction bursts can be explained by extant computational models 

of extinction that assume that what drives extinction is the discriminability of the 

training and extinction contexts (e.g., Gershman et al., 2010).  

Mixture Models Only Partially Dissociate Interval Timing and Motivation 

 

 The observation that pre-feeding affects almost all parameters of the gamma-

exponential mixture model (Tables 3.3 and 4.4) indicates that, like initiating-responses, 

the gamma-exponential mixture model partially dissociates interval timing and 

motivation. Consistent with Daniels and Sanabria (2017a) and the behavioral systems 

model (Figure 1.4 and 5.1), pre-feeding increased both the prevalence and mean of non-

timed LTSs in EI switch-timing procedures. However, pre-feeding also decreased the 
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speed of the clock and reduced the criterion pulse count. The magnitude of pre-feeding 

effects on the prevalence and mean of non-timed LTSs was similar to the magnitude of 

pre-feeding effects on parameters of timed LTSs. Additionally, the pre-feeding effects on 

parameters of timed LTSs, such as the speed of the clock, scaled as predicted by the 

discriminative RI hypothesis:  EI > SL-RI > NP-RI. This suggests that, although the 

gamma-exponential mixture model only partially dissociates interval timing and 

motivation, the effect of pre-feeding on parameters of timing supports the hypothesis 

that as initiating-responses become progressively discriminable from target responses, 

interval timing and motivation become increasingly dissociated.    

The sensitivity of the speed of the clock to pre-feeding was inversely related to 

discriminability of initiating-responses from target responses such that EI > SL-RI > NP-

RI. This outcome is consistent with the behavioral theory of timing (Beam, Killeen, Bizo, 

& Fetterman, 1998; Bizo & White, 1995, 1994; Killeen & Fetterman, 1988). The 

behavioral theory of timing states that the clock is embodied in behavioral state 

transitions and that the rate at which subjects transition between behavioral states is 

proportional to arousal, which is modulated by motivation (Killeen, 1995; Killeen & 

Sitomer, 2003). As motivation increases, so does arousal and the rate of behavioral state 

transitions; likewise, as motivation decreases, so does arousal and the rate of behavioral 

state transitions. From the perspective of the behavioral theory of timing, initiating-

responses may be viewed as fixing motivation at a relatively high level prior to trial 

initiation, thereby reducing the degree to which behavioral state transitions are modified 

by fluctuations in motivation.  

Importantly, reframing the results of the present dissertation within the context 

of the behavioral theory of timing is consistent with both the proposed revision of the 
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behavioral systems model (Figure 5.1) and the discriminative RI hypothesis. Indeed, the 

predicted pre-feeding-induced reduction in the rate of behavioral state transitions may 

manifest as transiting more often into states weakly associated with reinforcement and 

remaining in those states for a longer time. Additionally, because initiating-responses 

dissociate post-food focal search and general search, initiating-responses are expected to 

attenuate the pre-feeding-induced reduction in the rate of behavioral state transitions. 

However, it is worth noting that the behavioral theory of timing accounts for fewer 

effects than the revised behavioral systems model. Whereas both the behavioral theory of 

timing and the revised behavioral systems model can account for pre-feeding-induced 

effects on the median and variability of performance indices (i.e., LFRs, LTDs, and 

LTSs), the behavioral theory of timing cannot explain the reduced start and persistence 

ratios. Only the revised behavioral systems model can explain all these effects.  

  The clock-speed account of pre-feeding effects is also incomplete because the 

pre-feeding-induced reduction in the criterion pulse count likely reflects pre-feeding 

effects on both the response-threshold and memory. The criterion pulse count is the 

product of the response-threshold and memory, where memory, but not the response 

threshold, is expected to recalibrate with feedback following a change in the clock speed 

(e.g, Daniels et al., 2015a; Meck, 1996). The pre-feeding-induced reduction in the speed 

of the clock suggests that memory is repopulated with lower pulse counts. However, it is 

unclear whether the reduction in the criterion pulse count also reflects a reduction in the 

response-threshold.  

To determine whether and how pre-feeding affects the response-threshold, the 

response threshold under baseline and pre-feeding for each initiation type was estimated 

by dividing the estimated criterion pulse counts by the pulse counts in memory implied 
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by the estimated clock speeds. The difference between the pre-feeding and baseline 

response-thresholds indicates whether pre-feeding increases or decreases the response-

threshold. In experiment 2, the differences between the pre-feeding and baseline 

response-thresholds were 0.17, 0.08, and -0.01 for EI, SL-RI, and NP-RI, respectively. In 

experiment 3, the differences between the pre-feeding and baseline response-thresholds 

were 3.51 and 0.09 for EI and NP-RI, respectively. Pre-feeding appears to slow down the 

clock, which updates memory with smaller pulse counts, and elevates the response-

threshold in EI and SL-RI, and to a lesser extent in NP-RI. Thus, from the perspective of 

timing models, performance does not recalibrate with extended training in pre-feeding 

because even after memory recalibrates, the response-threshold is still elevated. This is 

consistent with the behavioral systems model and with recent research suggesting that 

the administration of dopaminergic agonists and antagonists affects the response-

threshold without impairing acquisition of peak-interval performance (Balci 2014; 

Sanchez-Castillo, Taylor, Ward, Paz-Trejo, Castillo, & Balsam, 2015).  

Importantly, this pattern of effects is consistent with the observation that the 

response-threshold is robust to pre-feeding in FMI but not in DRL (Watterson et al., 

2015; Daniels et al., 2018; Romero et al., 2016). In both FMI and DRL, subjects are 

trained to wait t-s between two consecutive responses; the time between the two 

consecutive responses is an inter-response time (IRT).  In FMI, the IRTs are initiated via 

a lever press (initiating-response) in one location and terminated via a head-entry 

(target-response) into the reinforcement receptacle. In DRL, IRTs are initiated and 

terminated as lever presses (initiating-response and target response) on the same lever. 

Although FMI and DRL are both RI interval timing procedures, only in FMI are 

initiating-responses highly discriminable from target responses. Thus, just like the speed 
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of the clock, the degree to which pre-feeding elevates the response-threshold is also a 

function of the discriminability of initiating-responses from target responses.  

Implications for The Study of Cognition and Motivation 

 

The data obtained in the present dissertation informs more than just interval 

timing research; it also provides guidance on the study of cognition and motivation. 

First, the selective and partial dissociation of interval timing and motivation suggests 

that, even if cognition and motivation are inseparable, training subjects in RI procedures 

still protects cognitive performance from fluctuations in motivation, while providing a 

within-subject and within-procedure index of motivation independent of cognitive 

performance. The within-subject and within-procedure index of motivation eliminates 

the need to estimate motivation in other procedures, which may be unrelated to the 

cognitive function of interest and may thus inaccurately indicate whether an intervention 

affects both cognition and motivation. Given such a benefit of RI procedures, it is 

surprising that, although RI procedures increasingly implemented to reduce 

idiosyncrasies and biases in behavior (e.g., Hintze et al., 2018), few studies have verified 

that LTIs are sensitive to fluctuations in motivation, let alone analyze LTIs to qualify 

obtained effects. An effect on cognition would manifest in post-initiating-response 

performance; an effect on motivation would manifest in LTIs. For example, in the 

present dissertation, whereas LTIs were sensitive to both pre-feeding (largest lnBFi0 = 

17.45) and to reductions in reinforcement rate (interval length; largest lnBFi0 = 10.01), 

LTS medians were substantially more sensitive to interval length (average lnBFi0 = 

43.28) than to pre-feeding (Figure 3.7, EI lnBFi0 = 4.039; SL-RI lnBFi0 = 3.247; NP-RI 

lnBFi0 = 0.523). This indicates that, although fluctuations in time and motivation appear 
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to affect both timing and motivation, LTIs are substantially more sensitive to motivation 

and LTSs are substantially more sensitive to time.  

Second, the relationship between discriminability of initiating-responses and 

degree of dissociation of interval timing and motivation suggests that, consistent with 

Mechner’s revealed-operant procedure (e.g., Mechner, 1994), initiating-responses must 

be identifiably different from other procedure-relevant responses. In the present 

dissertation, only discriminability of initiating-responses from target responses was 

investigated. It is worth highlighting that the most discriminable initiating-response, 

NP-RI, was not confounded with any other responses. Recent implementations of RI 

procedures have used head-entries into the reinforcement receptacle to initiate trials 

(e.g., Chow, Smith, Wilson, Zentall, & Beckmann, 2017; Hurtubise, Marks, Davies, 

Catton, Baker, & Howland, 2017; Liu, Wilkinson, & Robbins, 2017). Associating head-

entries into the reinforcement receptacle with both trial initiation and reinforcer receipt 

likely limits the hypothesized benefits of initiating-responses. Such conflicting 

associations may result in premature trial initiation, or an insensitivity of initiating-

responses to fluctuations in motivation. Consistent with this line of reasoning, SL-RI was 

insensitive to fluctuations in motivation when initiating-responses were emitted on a 

lever that signaled both trial activation and imminent reinforcement (experiment 1, 

Chapter 2, Figure 2.3). Thus, to obtain accurate and independent estimates of 

motivation, initiating-responses should ideally not be confounded with other procedure 

relevant responses, such as reinforcer receipt.   

These implications suggest that RI procedures with highly discriminable 

initiating-responses are necessary for research in which cognition and motivation need 

to be disentangled. For example, it has been notoriously difficult for researchers to find 
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behavioral and psychopharmacological therapeutics for the treatment of positive, 

cognitive, and negative symptoms in individuals diagnosed with schizophrenia (for a 

review see Aleman, et al. 2017; Downs et al. 2018). For example, antipsychotics attenuate 

positive and rescue cognitive symptoms via antagonism of D2 dopamine receptors but 

fail to rescue negative symptoms such as amotivation (Keefe et al. 2007; Krause et al. 

2018). This failure may be partially attributable to procedures not providing accurate 

within-subject and within-procedure indices of motivation and cognition. RI procedures 

provide such indices and thus would characterize how well novel therapeutics rescue 

both motivation and cognition while simultaneously reducing the time needed to 

complete such assessments.  

Similarly, RI procedures with highly discriminable initiating-responses may 

overcome difficulties inherent to testing and developing therapeutics for addiction. 

Typically, drug self-administration procedures program drug infusion contingent upon 

responses on an active lever and nothing on an inactive lever; responses on the active 

lever measure the strength of drug-response associations and responses on the inactive 

lever measure overall arousal, which is modulated by motivation (Killeen, 1995). 

However, this procedure does not adequately dissociate the strength of drug associations 

from motivation for the drug. Previous work indicates that psychostimulants, such as 

nicotine, increase arousal and motivation for nicotine despite not altering responding on 

the inactive lever (e.g., Barrett & Bevins, 2013). RI procedures would overcome this 

limitation by training subjects to activate the active lever via an initiating-response. 

Whereas changes in responding on the active lever would index the strength of drug-

response associations, changes in LTIs would provide an index of motivation for the 

drug. This index of motivation may also reflect drug craving, which is notoriously 

difficult to define and model in non-human animals (for reviews see Ahmed, 2010; 
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Arnold & Roberts, 1997; Drummond, Litten, Lowman, & Hunt, 2000; Katz & Higgins, 

2003). Specifically, as with motivation, high craving would be indicated by shorter LTIs 

and low craving would be indicated by longer LTIs. Importantly, recent research 

suggests that rats can be trained in relatively complex RI self-administration procedures 

without noticeable schedule strain (Singer, Fadanelli, Kawa, & Robinson, 2017).   

RI procedures with highly discriminable initiating-responses may also be useful 

in studies leveraging smartphones to increase ecological validity and avoid demand 

effects common to human studies conducted in laboratories (Bless, Westerhausen, 

Kompus, Gudmudsen, & Hugdahl, 2014; Dufau et al., 2011; Rutledge, Skandali, Dayan, & 

Dolan, 2014). A typical study conducted via smartphone alerts subjects on a regular basis 

to participate in the study. Subjects are alerted via a message on their phone that once 

tapped with a finger begins the cognitive assessment. In this seminatural experimental 

setup, the time it takes an individual to start a cognitive assessment is an important 

variable. Individual differences in the time it takes subjects to start participating may be 

of theoretical interest, providing an index of motivation that informs observed cognitive 

performance. When collected simultaneously with other data, including but not limited 

to daily schedules and stressors, LTIs may provide an opportunity to relate how daily life 

interferes with cognition. Alternatively, the time it takes subjects to start participating 

may provide a proxy by which to filter or slice data. Subjects who start the cognitive 

assessment too fast or too slow may show interesting and informative patterns in their 

cognitive performance compared to those waiting an average amount of time to start the 

cognitive assessment.  
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Limitations and Future Directions 

 

Despite the implications of the present dissertation for research on the 

relationship between cognition and motivation, there are a few potential limitations. For 

example, it is possible that some of the obtained effects in the present dissertation are an 

artifact of the concomitant pre-feeding-induced reduction in the number of completed 

trials. Rats completed fewer trials in 1 h than in 24 h pre-feeding, and the number of 

trials completed scaled such that EI > SL-RI > NP-RI in both baseline and pre-feeding. 

This suggests that LTS variability should have been greater in 1 h than 24 h pre-feeding 

and scale such that NP-RI > SL-RI > EI. However, it is important to highlight that there 

was little evidence that LTS variability differed between feeding durations, and LTS 

variability in NP-RI was similar to or less than LTS variability in SL-RI or EI. 

Additionally, in other RI procedures such as FMI, IRT variability but not mean IRT was 

sensitive to pre-feeding even when the number of obtained reinforcers was held 

approximately constant (e.g., Watterson et al., 2015). Thus, though it is possible, it seems 

unlikely that the effects of pre-feeding are merely explained by a pre-feeding-induced 

reduction in the number of completed trials.   

The pre-feeding-induced reduction in the number of completed trials, however, 

may explain some of the difficulties in analyzing temporal bisection performance. Pre-

feeding effects on the mean LTS were unreliable, dependent on which rats were included 

in analyses. In the temporal bisection procedure, latent LTSs are inferred by fitting a 

psychophysical function to trial-by-trial data informing a limited number of potential 

LTS lengths (Table 4.1). In contrast, in the switch-timing procedures overt LTSs are 

observed in every Long FI trial and can be of any length. Whereas in the temporal 

bisection procedure the distribution of responses may change substantially following a 
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reduction in sample size, in the switch-timing procedure the shape of the distribution 

may still be intact following a reduction in sample size. The substantial pre-feeding-

induced reduction in the number of completed trials is thus more detrimental for 

temporal bisection than switch-timing procedures. Indeed, pre-feeding reduced the 

number of trials comprising each potential LTS from around 20-30 to 5-15 trials and in 

extreme cases resulted in a complete flattening of the psychophysical function. Because 

MLE only relies upon the data of each subject to inform parameter estimates, it is highly 

sensitive to changes in sample size (e.g., Anderson & Gerbing, 1984; Cheung et al., 2012), 

resulting in extreme, outlier estimates as sample size decreases. Although steps were 

taken to limit the influence of outlier parameter estimates (i.e., Grubb’s test and 

Bayesian t-tests and ANOVAs), MLE parameter estimation likely contributed to the 

unreliability of pre-feeding effects on the mean LTS in the temporal bisection procedure.  

Another limitation of the present dissertation is that it only investigated pre-

feeding-induced reductions in motivation. Motivation can be manipulated via many 

routes, including but not limited to the magnitude of reinforcement, administration of 

dopaminergic agonists and antagonists, and pairing reinforcers with lithium chloride. 

Increasing the magnitude of reinforcement on the Long FI appears to result in shorter 

and more varied LTSs (e.g., Daniels et al., 2015b). Administration of dopaminergic 

agonists such as methamphetamine appears to yield short and less varied mean LTSs in 

the temporal bisection procedure (Cheng, Etchegaray, & Meck, 2007; Maricq & Church, 

1983). Pairing reinforcers with lithium chloride appear to result in longer peak-times in 

the peak procedure (Galtress & Kirkpatrick, 2009; cf. Delamater et al., 2014, 2018). The 

degree to which these changes in performance reflect alterations in interval timing and 

motivation is currently unclear. Future research may systematically investigate the 
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degree to which different manipulations of motivation differentially affect LTIs and 

performance indices.  

 Additionally, the present dissertation only focused on maintenance of EI, SL-RI, 

and NP-RI interval timing. As such, there is at least one untested prediction of the 

discriminative RI hypothesis. As initiating-responses become progressively 

discriminable from target responses, acquisition of target responses is increasingly 

facilitated. Such facilitation is expected to occur for the same reason RI enhances 

temporal control of target responses: dissociation of post-food focal search and general 

search, enhancing time-marker and general search synchronization. Experiment 1 does 

not provide an adequate test of this hypothesis because SL-RI and EI were differentially 

signaled by lever insertion and a dark operant chamber, respectively. SL-RI also 

promotes starting on the Short FI, which is consistent with the optimal behavioral 

sequence of starting and remaining on the Short FI until reinforcement is not 

forthcoming and then switching to the Long FI. Any effect of SL-RI on acquisition of 

target responses thus could be attributable to differential signaling of initiation types 

between groups or confounding of SL-RI with the optimal behavioral sequence. 

Experiments 2 and 3 also do not adequately test the acquisition hypothesis because 

subjects were reinforced for the same behavioral sequence across all initiation types, 

which were presented within-session for each subject. Given the sensitivity of behavior to 

training and order effects (e.g., Freeman & Lattal, 1992; Pattij, Broersen, Peter, & Olivier, 

2004; Tatham & Wanchisen, 1998), stringent reinforcement contingencies and 

intermixing initiation types within-subject likely has different effects on acquisition of 

target responses compared to training single initiation types and loose reinforcement 

contingencies between-subject.  
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Conclusion 

 

Nonetheless, the present dissertation provides some evidence in support of the 

discriminative RI hypothesis, indicating that interval timing and motivation are partially 

dissociable. Pre-feeding appears to affect the post-food focal search and general search 

modes of the predatory subsystem entrained by interval timing procedures. As initiating-

responses become more discriminable from target responses, RI increasingly dissociates 

post-food focal search from general search modes. As such, training subjects to initiate 

their own trials enhances temporal control and largely circumscribes the effect of pre-

feeding to the latency to trial initiation, leaving mean post-initiation performance 

relatively intact. Consistent with the notion of a partial dissociation, fitting a gamma-

exponential mixture model to LTSs revealed that pre-feeding affects both timing and 

non-timing processes. However, the sensitivity of these processes to pre-feeding depends 

on whether subjects initiate their own trials. These data have potentially important 

implications for the study of cognition and motivation; specifically, it suggests that 

subjects should be trained to self-pace experiments via highly discriminable initiating-

responses to ensure that fluctuations in motivation can be measured independently of 

cognitive performance. Thus, to quote Richard Feynman: 

“Maybe it is just as well if we face the fact that time [cognition] is one of the things we 

probably cannot define… What really matters anyways is not how we define time 

[cognition], but how we measure it.” 
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