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ABSTRACT  

   

 I examined how competition affects the way animals use thermal resources to 

control their body temperature. Currently, biologists use a cost benefit analysis to predict 

how animals should regulate their body temperature. This current theory of 

thermoregulation does not adequately predict how animals thermoregulate in the wild. 

While the model works well for animals in low cost habitats, it does not work as well for 

animals in high cost habitats. For example, animals that are in habitats of low thermal 

quality thermoregulate more precisely than predicted by the current model. One reason 

these predictions may be wrong is that they do not account for interactions between 

animals. By including these interactions in future predictions, a more accurate model of 

thermoregulatory behavior can be created.  

Before developing a theory for all animals, a model needs to be developed for a 

single model animal, such as fruit flies, that can be used to empirically examine how 

organisms thermoregulate under competition.  My work examines how flies behave 

around other flies and develops a game theory model predicting how they should 

optimally behave. More specifically, my research accounts for competition among larvae 

by using game theory to predict how mothers should select sites when laying eggs. 

Although flies prefer to lay their eggs in places that will offer suitable temperatures for 

the development of their larvae, these sites become less suitable when crowded. 

Therefore, at some density of eggs, cooler sites should become equally beneficial to 

larvae when considering both temperature and competition. Given this tradeoff, an 

evolutionarily stable strategy (ESS) emerges where some flies should lay eggs in cooler 

sites while other flies should lay eggs at the warmer temperature. By looking at the 
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fitness of genotypes in habitats of differing quality (competition, temperature, food 

quality, space), I modeled the ESS for flies laying eggs in a heterogeneous environment. I 

then tested these predictions by observing how flies compete for patches with different 

temperatures.  
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CHAPTER 1 

INTRODUCTION TO THE DISSERTATION 

Organisms use behavior and physiology to keep their body temperature within a tolerable 

range. One way that organisms can alter their thermoregulatory behavior is by changing 

how much time they spend in patches that differ in temperature. Other common, 

behavioral mechanisms include basking in the sun and flattening one’s body against a 

warm rock to warm up.  

Thermoregulation is important to animals because many physiological processes 

are dependent upon the body temperature of the animal. An animal that is closer to its 

optimal temperature may be able to run faster, digest food more quickly, or even increase 

their growth rate. While a colder animal may see a reduction in its performance – 

sometimes this reduction can be beneficial, such as a decreased metabolism, which can 

allow organisms to conserve energy and even enter a hibernation-like state.  

 It is especially important for us to know how animals will continue to 

thermoregulate as they experience changes in their environment due to climate change. 

As temperatures across the globe are rapidly changing, we need to understand how 

organisms will respond to these changes. Since many organismal performances depend 

on temperature, we can expect organisms to be impacted by these changing temperatures. 

Consequently, we need to be capable of predicting how these organisms will respond to 

changes in their environment.   

 I looked at how animals control their body temperature when they compete with 

other animals. Currently, what we know about how animals control their temperature is 

primarily based on studying isolated animals. Thus, when we attempt to predict how 
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animals should control their temperature, these predictions may use incorrect 

assumptions about animal behavior. One reason these predictions may be wrong is that 

they do not account for interactions between animals. By including these interactions in 

future predictions, we can more accurately predict animals’ behavior towards temperature 

and how climate change will affect these behaviors.  

My work looks at how flies behaviorally thermoregulate around other flies and 

develops a game theory model predicting how they should optimally behave. More 

specifically, my research accounts for biotic interactions by using game theory to predict 

how fruit flies should select sites when laying eggs. Although flies prefer to lay their eggs 

in places that offer suitable temperatures for the development of their larvae, these sites 

become less suitable as larvae become crowded. Therefore, at some density of eggs, sites 

that are sub-optimal in temperature should become equally beneficial to larvae when 

considering both temperature and competition. Given this tradeoff, an evolutionarily 

stable strategy (ESS) emerges where some flies should lay eggs in sites that are sub-

optimal in temperature while other flies should lay eggs at sites that are the optimal 

temperature. By using the fitness of isofemale fly lines under different scenarios, I 

developed an ESS model predicting how flies should behave. I then tested these 

predictions by allowing flies from the same isofemale line to compete for patches that 

vary in thermal quality.  

Additionally, I examined how other factors such as food quality, space 

availability, and flies’ past thermal environments further affect this relationship. By 

examining these additional factors, I could see how flies from different types of habitats 

were impacted by these changes and whether different ecological factors compounded or 
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reduced the role that temperature played in oviposition site selection. Lastly, by 

examining how flies from different populations chose their oviposition site in relation to 

the thermal history that these flies were exposed, I was able to see how different fly 

populations might differ in their ability to thermoregulate.  

 Understanding how these additional abiotic factors influence thermoregulatory 

behavior under varying degrees of competition is very important as we attempt to predict 

how climate change and land use changes might affect organisms. This additional 

knowledge about how organisms thermoregulate is important because even a small 

change can have a drastic impact on predictions made by models. Mechanistic models are 

a common model that is used to predict how organisms respond to environmental change. 

To create a mechanistic model, we require physiological and ecological data to be 

inputted for each organism. Consequently, we need to know how different biological 

factors can have an integrative effect on each other in order to make accurate predictions.  

 An example of how changing the assumptions of mechanistic models affect their 

predictions can be seen with my work looking at how quickly animals’ digest and 

assimilate energy at different temperatures. Animals have optimal temperatures at which 

they maximize the rate at which they digest and assimilate energy. However, if animals 

spend increased amounts of time at these optimal temperatures, they begin to see reduced 

energetic benefits from continuing to spend more time at this temperature. As a result, 

even if animals spend a long time at this optimal temperature, they may see little to no 

additional energetic benefit from this behavior after a set amount of time has passed. 

However, most mechanistic models that are used for predicting species ranges assume 

that this relationship between assimilation rate and temperature is linear. Therefore, we 
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parameterized the assimilation rates of lizards within our mechanistic model using both a 

linear function and an asymptotic, plateauing function to see how this changes the 

predictions of the model. By incorporating more realistic functions, such as an asymptotic 

function for assimilation rates, we can significantly alter predictions made by mechanistic 

models.  

 

Making quantitative predictions for how temperature affects animals 

Quantitative models enable us to make predictions about how organisms should respond 

to different environmental factors. Being able to make predictions about how organisms 

should respond to temperature is especially important both for our understanding of the 

natural world and for understanding how organisms will respond to a changing world. 

My dissertation examines how organisms’ thermoregulatory strategies are altered as they 

experience temperature variation. Previous work at creating quantitative predictions of 

how organisms’ thermoregulate has resulted in very useful, but simplistic, models that 

make general assumptions about how organisms should thermoregulate. While these 

models have been very useful and important, they also are not as accurate as they could 

be when applying them to animals that are found in nature (Blouin-Demers and Nadeau 

2005, Levy et al. 2017). Consequently, we need to create more complex, quantitative 

models to help predict how organisms thermoregulate in nature. My dissertation attempts 

to do this by trying to understand how factors such as competition, space availability, 

food quality, and food assimilation are affected by temperature for organisms that have 

experienced different thermal backgrounds. I developed quantitative predictions for these 

ecological factors using natural populations of both flies (Chapters 2-4) and lizards 
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(Chapter 5) from different regions of the US, each population having experienced 

different temperature variations within their evolutionary histories. By creating 

quantitative models that account for variation in abiotic and biotic factors, we will be able 

to better understand and predict how temperature variation affects animals both currently 

and in the future.  

 

Introduction to the attached chapter 

My attached paper (Chapter 5) was originally published in the Journal of Ecology and 

examines how organisms see diminishing energetic returns from spending time at optimal 

temperatures, which ultimately affects the predictions of mechanistic models. If 

organisms spend a large amount of time at their optimal temperatures, they see reduced 

energetic benefits from continuing to spend time at this temperature. As a result, even if 

organisms continue to spend time at this temperature, they may see little to no additional 

energetic benefit from this behavior. However, most mechanistic models that are used for 

predicting species ranges assume that this relationship between assimilation rate and 

temperature is linear. Therefore, we parameterized our mechanistic model using both a 

linear function and our asymptotic function for assimilation rate to see how this changes 

the predictions of the model. By incorporating functions with diminishing returns, we can 

significantly alter predictions being made by mechanistic models.  

This project had both a modeling and empirical component. I headed the 

empirical component, while Dr. Ofir Levy headed the modeling component. I worked as 

part of a team of five people. Dr. Travis Rusch helped to collect the study organisms and 

perform data collection. Dr. Mike Angilletta and Dr. Lauren Buckley oversaw the 
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completion of the project and provided funding. Ofir and Lauren created the mechanistic 

model. Ofir and Mike revised the final version of the manuscript along with feedback 

from Lauren, Travis, and me.  

My duties included developing the experimental protocol for the project. 

Additionally, I trained/organized Travis and the undergraduates that were helping with 

the data collection. I led the work on collecting the study organisms as well as collecting 

the assimilation, consumption, and other physiological data for the study. I then 

performed the data analyses on the physiological data. I also wrote the first several drafts 

of the manuscript. Further, I presented the work at the Society of Integrative and 

Comparative Biology Conference.  

This project originally started simply as a project to collect data for a mechanistic 

model. I was involved in the discussions and feedback as the data I was collecting was 

coming in and being analyzed. Because of these statistical analyses, the scope of the 

project changed. As the data began to show that it violated some of the basic assumptions 

of mechanistic models, we decided to change the type of question we were looking at. 

Rather than simply using the data to parameterize a mechanistic model, we decided to see 

if using a more realistic assimilation rate for the lizards altered the predictions being 

made by the model. We then brought Ofir on board with the project and began to test our 

new question about how non-linear assimilation rate affects the assumptions made by 

mechanistic models.  
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CHAPTER 2 

THE HUNGER GAMES: FLIES CHOOSE OVIPOSITION SITES THAT BENEFIT 

THEIR YOUNG 
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CHAPTER 2: The hunger games: flies choose oviposition sites that benefit their 

young  

Summary 

I used game theory to predict how fruit flies, Drosophila melanogaster, should 

compete for oviposition sites. As both temperature and competition affect the fitness 

of an organism, the covariance between these variables should influence behavior. I 

modeled how flies can maximize fitness when choosing between patches that differ 

in surface temperature and intraspecific competition. Under low competition for 

food and space, flies should lay their eggs in a warm patch that promotes growth 

and development. However, as competition increases, flies benefit by laying some 

eggs in a cooler patch, which offers more food and space for their offspring. In other 

words, competition should cause mothers to choose less crowded patches despite the 

thermal cost. To look at this tradeoff, I observed where flies laid eggs given various 

densities of competitors. Flies at low-density laid eggs almost exclusively at 25°C. 

However, flies at high-density laid a greater proportion of eggs at 16°C than flies at 

low-density did. Surprisingly, flies did not avoid laying at 25°C when eggs were 

already present, suggesting that females responded to the presence of other females 

rather than the presence of eggs. By drawing on game theory to make quantitative 

predictions, this research builds on previous empirical studies of competition among 

thermoregulating animals.  
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Introduction 

The current theory of thermoregulation predicts how an organism should thermoregulate 

within a heterogeneous environment. Mathematical models define the costs and benefits 

of a behavior given the frequency of thermal patches and the thermal sensitivity of 

performance (Huey and Slatkin 1976). However, researchers have noted that the theory 

does not adequately predict how organisms thermoregulate in nature. For example, 

Blouin-Demers and Nadeau (2005) concluded that lizards thermoregulate in low thermal 

quality environments much more accurately than predicted by an optimality model. This 

more precise thermoregulation may be due to costs ignored by the basic theory. Sears and 

Angilletta (2015) showed that the energetic cost of thermoregulation depends on the 

spatial distribution of preferred patches as much as their frequency. Still, non-energetic 

costs of thermoregulation, such as those imposed by competition, might also account for 

the unexpected behaviors of animals. Animals interact with each other during 

thermoregulation, and these interactions may influence the optimal behavior. 

Unfortunately, the role of competition has largely been ignored when modeling optimal 

thermoregulation (Angilletta 2009).  

Game theory enables one to incorporate competition into a model of 

thermoregulation. Game theory describes how organisms allocate time to different 

patches when the preferences and frequencies of competitors determine the benefits of 

patch choice (Sih 1998, Brown et al. 1999). The ideal free distribution (IFD) describes 

how organisms should distribute themselves within their environment. Under the IFD, all 

organisms’ strategies should be receiving an equal payoff within the game. In a density-

independent environment, organisms are going to want to exploit resource rich patches. 
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However, if these resources are density-dependent, these patches are going to decrease in 

quality as more organisms move into the patch. Therefore, at some density, some 

percentage of organisms should begin to switch over to exploiting patches that are poorer 

in resources as the payoff from exploiting this patch equilibrates the payoff from the 

other patch (Křivan et al. 2008). For antagonistic competitors to coexist, the behaviors of 

these competitors must reach a stable equilibrium where the fitness of each competitor is 

equal to each other, referred to as an evolutionarily stable strategy, or ESS (Maynard 

Smith 1982, Nowak and Sigmund 2004). An ESS explains why multiple strategies 

coexist in a population when each strategy confers equal fitness and is not exploitable by 

a single mutant strategy. In these situations, where the fitness of a strategy depends on its 

frequency in the population, each organism’s best strategy depends on what other 

organisms are doing (Nowak and Sigmund 2004).  

A thermal game is a type of evolutionary game in which competitors choose 

habitat patches based on their temperatures (Angilletta 2009). Viewing a system in the 

context of a thermal game has delivered novel insight into how predators and prey 

interact in a thermal landscape, such as dragonfly larvae and tadpoles in a heterogeneous 

pond (Hammond et al. 2007). Studies have also begun to use game theory to examine 

how social dominance can cause subordinate crayfish to choose suboptimal 

thermoregulatory strategies (Tattersall et al. 2012) and how differences in food density 

can cause beetles to shift their thermoregulatory strategy based on food availability 

(Halliday and Blouin-Demers 2014). These empirical studies were partly inspired by 

models in which organisms must choose thermal patches in the presence of others.  
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An early model of a thermal game, developed by Hugh’s and Grand (2000), 

defines the ideal free distribution of an ectothermic species that chooses thermal patches 

to maximize its growth rate. In this model, growth depends on the temperature of the 

patch, the availability of food, and the density of competing organisms. According to this 

model, organisms should prefer warm patches when there is high-food availability. 

However, when food is scarce, ectotherms should prefer cool patches due to the 

ectotherm having decreased metabolic functions. As the density of the population 

increases, the ESS includes a greater proportion of individuals that use the cooler patch, 

because the warm patch imposes d a certain threshold level of individuals. This model is 

a significant improvement over past models since most models tend to only consider the 

possible food consumption of an organism and do not examine how temperature and 

density levels may affect food rate intake, which will ultimately translate into growth and 

development. Here, I extend the model of Hughes and Grand to understand how abiotic 

and biotic factors interact to influence the behavior of fruit flies (Drosophila 

melanogaster). These flies must choose where to lay eggs given that temperature and 

competition affect the performance of offspring (Krebs and Loeschcke 1994, Gilchrist 

and Huey 2001). Flies prefer to lay eggs at select temperatures, that vary depending upon 

the developmental temperatures experienced by the flies (Dillon et al. 2009), choosing to 

avoid cooler or warmer sites (Schnebel and Grossfield 1986, Feder et al. 1997a). 

However, flies do not change their likelihood of oviposition on a necrotic fruit based on 

whether that same necrotic fruit has previously reached lethally high temperatures (Feder 

et al. 1997b) The fitness of fruit flies is also influenced by the densities of flies at a site 

due to an Allee effect at low-density followed by decreased survival at higher densities 
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(Wertheim et al. 2002). Consequently, fruit flies likely play a thermal game when 

deciding where to lay eggs in an environment with patches of food and temperature.  

I will examine how fruit flies choose between microclimates when laying eggs 

under different levels of competition. I will develop a quantitative game theoretical 

model that will predict how I expect flies to alter the frequency in which they choose to 

lay their eggs in a patch. I will then empirically test the model by allowing flies to choose 

between two patches under varying levels of competition.  By treating the behavior of 

flies as a thermal game, we should better predict their behavior in real environments, 

which vary in density, food, and temperatures. In this way, I hope to increase our 

understanding of how organisms thermoregulate when faced with competition for 

resources in a patchy environment. 

 

A Game Theoretical Model of Oviposition Behavior 

I found the ideal free distribution of the egg distribution using a method based on 

maximizing population growth between the two patches similar to the patch-choice 

model of Fretwell and Lucas (1969a). This model finds an ESS for these flies when 

choosing a thermal patch for their eggs in the presence of competing females. Flies 

choose to lay their eggs in either a warm or cool patch based on the growth rate, 

survivorship, and fecundity in each patch. As flies lay eggs in the patch that confers the 

greatest fitness, competition becomes more intense in that patch, which in turn, decreases 

the value of that patch. At a low-density, flies should choose the patch with the best 

temperature for their young. As the density of eggs increases in the patch, flies should lay 

some eggs in a cooler patch with fewer competitors (Figure 2.1). Thus the fitness of each 
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fly is represented by its fitness generating function, or G-function (Vincent and Brown 

1988). This function accounts for a given fly’s strategy and the strategies of all other 

flies. 

To calculate the fitness of flies, I used the Euler equation: 

1 = ∑ 𝜆−𝑎𝑙(𝑥)𝑏(𝑥)
𝜔

𝑥=1
,     (1) 

where α is time it takes a fly to develop from an egg to an adult, x is age, 𝑙 is survivorship 

from egg to adult, and 𝑏 is the fecundity of the transferred eggs. 

I used the ideal free distribution to model the ESS. First, I created a null strategy 

by dividing the number of eggs equally between patches. If the number of eggs was odd, 

the cold patch started with one additional egg. I then calculated the fitness of this null 

strategy using the Euler equation. I created mutant strategies by shifting a single egg 

between patches. Then, I compared the fitness of the mutant strategies with the fitness of 

the null strategy. If a mutant strategy was fitter than the null strategy, the mutant strategy 

became the null strategy. I continued to compare strategies until I could not find a fitter 

mutant strategy. I coded the model in Python Version 3.5 (code available upon request). 

Since offspring develop in the area where their mother deposits them, flies should 

choose beneficial environments for their young. Therefore, although flies prefer to lay 

their eggs in places that will offer prefer microclimates that speed the development of 

their offspring, these sites will become less suitable as larvae become crowded and 

consequently have less food and space available to them. Consequently, there is an 

optimal temperature at which flies should choose to lay their eggs in a density-

independent environment. However, in an environment where flies experience density-

dependent effects, sites that differ in temperature from the density-independent optimal 
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temperature should become equally beneficial to larvae at some density when flies are 

considering both temperature and competition. Given this tradeoff, an evolutionarily 

stable strategy should emerge in which some flies lay eggs at the density independent 

optimal temperature sites while other flies will lay eggs at their eggs at an assortment of 

other temperatures when laying eggs in mass.  

 

Methods 

Maintenance of Drosophila melanogaster 

I used flies descended from females collected in Beasley Orchid, Indiana, during the fall 

of 2011. Cooper and colleagues created twelve isofemale fly lines by mating a single 

adult virgin female fly with a male sibling for two generations (Cooper et al. 2014). The 

isofemale lines descended from these experimental populations capture aspects of the 

genetic variation of these populations. I maintained the isofemale lines on a standard 

cornmeal-yeast diet (recipe of the Bloomington Stock Center, Bloomington, IN) in 25 x 

90 mm vials (Genesee Scientific, San Diego, CA) inside of an incubator (Percival 

Scientific, Perry, IA) at a temperature of 21°C and a light cycle of 12:12 L:D. Flies were 

transferred to new vials with fresh food approximately every three weeks.  

Two males and two females from the same isofemale line were added to a vial for 

48 hours to partially control for egg and larval density. When the next generation of flies 

emerged in these vials, I transferred two males and two females to a new vial for 48 

hours. I repeated this protocol for three generations. Adult females from the third 

generation were used in the experiments described below.  

 



15 

Parameterizing the model 

I used data collected from flies in the lab to parameterize of my model (Figure 2.2). To 

estimate the fitness of flies at each combination of density and temperature, I measured 

the survivorship, fecundity, and developmental time. To obtain flies for my experiment, I 

allowed females from 12 isofemale lines to lay eggs in petri dishes with a grape agar and 

yeast solution for 8 hours at 23°C. I then transferred either 1, 5, 15, or 50 eggs to new 

petri dishes (35mm diameter) containing the grape agar and 0.033g of yeast. These petri 

dishes were kept an incubator at 16 °, 20°, 25°, or 30°C with a 12:12 light cycle. I 

measured developmental time by checking the flies daily to record the number of days for 

adult flies to emerge. I measured survivorship by counting the proportion of adults that 

survived to adulthood.  

To measure fecundity, I outbred adult female flies from my treatments with male 

flies from a control line (Cantonese, Bloomington Stock Center, Bloomington, IN) to 

capture only variation in fecundity because egg production, not sperm production, is 

typically the limiting factor for population growth. Additionally, since I was concerned 

about the effect of larval developmental temperature and adult flies would be able to 

freely move to new patches that varied in temperature, I moved all vials to a common 

temperature of 20°C for my fecundity experiments. I placed each pair of flies into a vial 

(25 x 95 cm) containing a standard cornmeal-yeast medium for four days in an incubator 

at 20°C with a 12:12 light cycle. I then removed the adult breeding pair and allowed any 

eggs laid by these fly pairs to develop to adulthood. From the adult flies that emerged 

within each of these vials, I again recorded developmental time (egg to adult) to the 

nearest day and counted the total number of flies emerged (fecundity). 
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I estimated how density and temperature related to fecundity and developmental 

time using a generalized linear modeling while I estimated survivorship using a logistic 

regression curve. I then used  Akaike information criterion (AIC) to pick the best 

polynomial fit for each curve in R (Version 3.3.1, R-Core-Team 2016) (Zuur 2009). I 

then developed additional models based on predictions of how one might expect the 

fitness of flies to vary under different circumstances. I used the best fitting curve 

developed from the raw parameters to find an initial curve that describes how 

survivorship and fecundity change with increasing density. Furthermore, I hypothesized 

additional parameter data that was in line with findings on fitness data to create additional 

models regarding how you would expect flies to behave if their survival parameters were 

slightly altered. To create this additional parameter data, I also increased or decreased 

how quickly survivorship changed under increased competition since in nature you might 

have conditions changing within these patches causing survivorship to differ from what 

we measured. For example, resources might be replenished within these patches, which 

would cause survivorship to decline more slowly. Alternatively, predators might be 

attracted to higher densities of prey, which would cause survivorship to decline more 

quickly and possibly at an exponential rate. 

 

Experimental tests of the model 

To determine oviposition site preference in adults under different levels of competition, I 

created 2 identical thermal arenas in which flies chose between two petri dishes of agar 

medium (Figure 2.3).  My thermal arena consisted of a Plexiglas container that consisted 

of six lanes by running copper tubing below small aluminum plates. Each lane 60mm 
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wide by 175mm long and had two aluminum plates on opposite ends of the lane where I 

could place an agar-filled petri dish with a drop of yeast. Flies could easily move between 

these patches when laying eggs. The temperature of each patch was controlled by 

conduction and convection between the agar medium and a metal plate. The plate was 

heated or cooled by water flowing through the copper tubing from a digital water bath 

(VWR, Radnor, PA).  

I used the thermal arenas to test where flies from 15 isofemale lines chose to lay 

their eggs under different intensities of competition. In each arena, a fly could choose 

between a petri dish at a preferred temperature of 25°C and a petri dish at 20°C. For each 

isofemale line, I ran trials in which either 4 or 15 adult females were in an arena at a time. 

After 4 hours, I removed the flies and froze the petri dishes from each side of the arena. 

Later, these dishes were thawed, and the number of eggs was counted under a dissecting 

scope (Zeiss Stemi 2000-C) at each temperature.  

I ran a second experiment in which eggs were added manually to the petri dish at 

the preferred temperature. In half of the trials, I added 100 eggs to the warm dish before 

placing females in the arena. In the other half, no eggs were added. In both cases, four 

females were allowed to lay eggs for a period of 4 hours. Eggs were counted as in the 

previous experiment. 

I performed a linear mixed effects model to estimate the expected number of eggs 

laid under each combination of density and temperature. I assumed a Poisson distribution 

of error and adjusted the model for zero-inflated data (Zuur 2009). Models were fit using 

the glmmADMB package (Fournier et al. 2012) of R (Version 3.3.1, R-Core-Team 

2016).  The fixed factors in my model were temperature and density/treatment. I used 
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trial as a random factor to compare eggs laid in the two sides of the arena while 

accounting for variation in the number of eggs among trials. Using AIC values, the 

experimental date and isofemale line was dropped from my model due to poor fit.  

 

Results 

I modeled the fitness of flies using data on survivorship, development time, and 

fecundity. The survivorship (Figure 2.4) and fecundity (Figure 2.5) of flies depended on 

density and temperature during larval development. However, flies’ development time 

only differed at different temperatures (Figure 2.6). Flies had slightly higher survival at 

20°C than 25°C. Flies also had a slight Allee effect in 20°C, but not 25°C patches. Flies 

had higher fecundity at low densities in 25°C patches than in 20°C patches, but had 

higher fecundity at high densities in 20°C patches. The developmental time of flies 

decreased sharply with increased temperatures.  

My game theoretical model (Figure 2.7) illustrates how competition affects the 

fitness of fruit flies. The model predicts that under scenarios where survivorship in hot 

patches falls quickly, fruit flies should lay eggs in the colder patch at lower density 

levels. In scenarios where survivorship in cold patches falls quickly, fruit flies should lay 

fewer total eggs in the cold patch. At low densities in the model, flies should lay their 

eggs in the hot patch. As the density of eggs in the hot patch increases, flies should then 

begin to also lay eggs in the cold patch. 

 I found that temperature and competition both affected patch choice in flies, but 

that pre-existing eggs did not alter their patch choice. Flies at low-density laid eggs 

almost exclusively at 25°C (P < 0.001), but those at high-density laid a significantly 
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greater proportion of eggs at 20°C than did flies at low-density (P < 0.01). At low 

densities, flies laid about 1.6x as many eggs in the warm patch (median=2.75) than in the 

cold patch (median=0.25). While at high densities, flies laid almost equal number of eggs 

in the warm patch (median=0.467) and in the cold patch (median=0.60). I found no 

differences in the proportion of eggs laid between sites when eggs were added pre-trial to 

their preferred temperature (P=0.43) (Figure 2.8, Table 2.1). When eggs were added pre-

trial to the preferred, warm patch, flies still predominantly laid their eggs in the warm 

patch (median=1) as opposed to the cold patch (median=0). Flies laid the most total eggs 

per fly in the low-density treatment with no added eggs (median=3), while both the high-

density treatment (median=1.07) and treatment with eggs added pre-trial (median=1) had 

about the same number of total eggs per fly.  

 In trials without any added eggs, flies laid their eggs in accordance with our 

model. Both our model predictions and empirical findings show flies primarily laying 

their eggs in the hot patch at low densities. At high densities, both the model and 

empirical findings show flies laying their eggs in both the hot and cold patch. However, 

in trials with pre-added eggs, flies did not behave in accordance with our model. Flies 

instead behaved as though no eggs were already present on the media and laid their eggs 

in a similar manner as the low-density treatment. 

 

Discussion 

Flies preferred to lay their eggs in the 25°C patch when there were few flies present. This 

finding is in line with where we would expect a fly to lay its eggs in the absence of 

competition. Under higher densities, however, flies began to spread their eggs between 
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patches, laying about 56% of their eggs in the 20°C patch. These finding accords with the 

model’s prediction that flies should choose to lay some eggs in patches at suboptimal 

temperatures as density increases.  

I found that female flies appear to respond to other adults in the thermal arena and 

not to the presence of eggs already laid in the patch.  By comparing the number of eggs 

between trials with four females and trials with 15 females, I saw whether females 

responded to the level of competition. Furthermore, by comparing the number of eggs 

between trials that started with zero eggs and those that started with 100 eggs, I could see 

whether females responded to the presence of other adults or eggs. Flies did not avoid 

laying at 25°C when eggs were present, suggesting that flies responded to the presence of 

competing females rather than cues associated with the presence of eggs. This result is 

surprising given that flies in previous experiments have been shown to actively probe 

sites for food quality and substrate hardness before choosing where to oviposit (Yang et 

al. 2008a), to find carbohydrate (Young et al. 2018) or acetic acid (Joseph et al. 2009) 

rich media, and to avoid toxins such as ethanol (Miller et al. 2011). Given that flies did 

not respond to the eggs, this change in their behavior was probably due to the presence of 

other adult flies.  

Game theory predicts that flies will alter their behavior and lay some eggs in both 

patches as density increases. In our experiments, the flies seem to shift their behavior and 

patch preferences as density increases, but a single isofemale line of flies does not appear 

to follow the patterns predicted by our model if it is a game where each player can 

perform a mixed strategy. Often when people think of players performing a game, they 

imagine that each player will change their strategy to optimize their fitness – this is a 
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game where each player can perform a mixed strategy. However, this scenario of each 

player being able to play a mixed strategy is not always the case.  

Sometimes each player in the game has a pure strategy where they can only 

perform a single, fixed strategy and cannot or does not change their own strategy. If 

proportions of individuals within a population each exhibit a different fixed strategy, you 

should still see a mixed strategy across the population scale (Dawkins 1980). When 

different players each have a single, fixed strategy, like in our flies, you might find 

something that more closely resembles the ‘shotgun blast’ strategy that we see in our 

flies. Rather than each fly individually choosing to lay their eggs in different patches, you 

see some flies choose a single patch to primarily lay their eggs. But since each fly is 

choosing a different patch to primarily lay their eggs, we see a disbursement of eggs that 

is spread out between the patches as you would expect from our game model. This 

pattern is then maintained across the population because if one strategy starts to become 

rarer within the population, those flies will begin to have a higher fitness level and will 

increase their relative proportion in the population within the next generation. In this 

scenario, some flies will have different fixed preferred temperatures that they choose for 

their young. This variation in preferred temperatures across flies may explain some of the 

discrepancies we see when applying the Huey and Slatkin (1976) cost and benefit model 

of thermoregulation.  

Flies may also want to lay their eggs where other larvae already exist. Flies rely 

on current environmental conditional when choosing oviposition sites (Levins 1969) and 

do not avoid sites that have previously experienced lethal temperatures (Feder et al. 

1997b). While some studies which appear to show that flies in nature are choosing sites 
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based on temperature may actually only be picking up changes based on larval survival at 

different sites (Jones et al. 1987a, Huey 1991). Consequently, flies may not be able to 

rely solely on current environmental data if they want to maximize their fitness. Further, 

some species of Drosophila have been shown to preferentially lay their eggs at sites 

where larvae are already present (Solar and Palomino 1966) which lends credence to the 

idea that flies are gaining a benefit from choosing oviposition sites where eggs have 

already been laid. Additionally, fly fitness has been demonstrated to show an Allee effect 

with small increases in density causing increased fly survivorship as the presence of 

additional fly larvae can help break down and soften the substrate media (Wertheim et al. 

2002). However, other insects, such as weevils, have demonstrated very strong avoidance 

and fitness effects of laying eggs near other eggs (Mitchell 1975), while some butterflies 

even use egg mimics to deter other eggs from being laid near their own eggs (Williams 

and Gilbert 1981).  

However, this behavior may also be non-adaptive for survival of the fly’s young. 

It is possible that flies avoid crowded sites to evade aggression from the other adult flies. 

In this scenario, flies are changing their patch choice not to maximize the fitness of their 

young, but simply to avoid any potential aggression from other flies present near the 

patch at the optimal temperature. Drosophila larvae are believed to use methods to 

exclude other larval competitors even when food resources remain constant in the 

environment (Gilpin 1974). Consequently, if fly larvae are using interference 

competition, it would make sense that the adult flies could also be engaging in 

interference competition when choosing their sites. Additionally, numerous other studies 

have found examples of interference competition in insects for oviposition sites 
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(reviewed in Denno et al. 1995). However, if flies are responding to aggression from 

other flies in the crowded treatment, you would expect each individual trial of flies to 

produce a near even split between the two patches. However, given that what you see at 

the individual trial level almost appears to be a ‘shotgun blast’, it suggests that it is not 

only due to the flies spreading themselves out to try to avoid aggression from other flies.  

It is also possible that within these crowded situations that my flies are simply 

trying to make the best of a bad situation and just trying to reproduce while they still can. 

In the crowded thermal arena environment, the flies might be aware that there are far too 

many flies present relative to suitable areas for their young. Consequently, the flies may 

just be making an immediate decision to lay their eggs immediately wherever they can 

without attempting to use any decision-making process since they are worried that any 

delay in starting their reproduction would be more costly than waiting and trying to find a 

more suitable habitat. This problem can be seen in butterfly populations that choose to 

lay their eggs before they necessarily learn their surrounding environments and benefits 

of other patches (Papaj 1986). This problem could be further compounded by their 

previous existence living and reproducing within crowded vials in the lab. Granted even 

if they are engaging in this behavior and simply laying anywhere, in the crowded 

environment this still enables them to lay at their ESS where they should be spreading 

their effort between patches.  

Previous studies that have applied game theoretical ideas to resource distribution 

give us further insight into our findings. In Hammond et al. (2007) study looking at 

predator-prey games in dragonflies and tadpoles, they found that the size of the individual 

relative to other predators and prey also affected how individuals distribute themselves 
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within space. Even though all of a fly’s competitors were from the same isofemale line, I 

did not control directly for size across our competition treatments so I may also be seeing 

the artifacts of different sized competitors forcing individuals to choose sites that differ 

from the density independent optimal temperature. This finding is also further backed by 

another study that found they could predict how a pair of competing crayfish chose 

thermal habitats depending on whether the crayfish were previously habituated or naïve 

to each other. In this study, the subordinate crayfish chose suboptimal temperatures under 

the habituated treatment  (Tattersall et al. 2012). A further study found that red flour 

beetles were more commonly found in cold patches that had higher food, but overall 

offered a lower fitness, than warmer patches that conferred a higher fitness. However, it 

is also possible that this pattern was a function of the beetles shuffling back and forth 

between the patches of varying thermal quality (Halliday and Blouin-Demers 2014). This 

finding thus further provides credence to the idea that the flies rely on their offspring to 

find and move to an optimal patch during the larval stage.  

Flies change their thermoregulatory strategy in the presence of other flies which 

gives us a fundamentally different result than that predicted by a model that ignores biotic 

factors. By incorporating predictions from game theory, we can make better predictions 

about these flies’ behavior than we could have made with classical models of 

thermoregulation. By taking into account how other competitors affect the benefits 

received in the environment, we can develop a better framework for predicting how 

organisms’ thermoregulate in their environment and how these organisms will respond to 

climate change. Consequently, I believe we are a point where we need to start making 

more game theoretical models to predict how organisms thermoregulate by incorporating 
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in biotic factors such as competition. Behavioral thermoregulation is important for 

ectotherms since they live in thermally heterogeneous environments that differ in 

temperatures on a small spatial scale. Additionally, many researchers expect organisms 

counter climate change through behavioral thermoregulation (Clusella-Trullas and 

Chown 2011, Gvoždík 2012, Huey et al. 2012). While we know that many ectotherms 

attempt to maintain a certain temperatures (Cowles 1944, Dillon et al. 2009), we still do 

not know how important thermoregulation is when it is only one of many factors that an 

organism must consider in its environment.  

Competition may alter the way an organism thermoregulates by causing 

organisms to move more frequently throughout patches or by causing the organism to 

spend more time in a thermally detrimental patch since resource extraction might be too 

great in thermally preferred microclimates due to large aggregations of competitors. It 

has previously been found that organisms shift their thermoregulatory strategy due to 

competitive interactions such as social dominance (Magnuson et al. 1979, Rusch and 

Angilletta 2017); however, this shift in thermoregulatory behavior has not been examined 

within a game theoretical context. Particularly given the impacts of climate change, we 

need to create integrative models that enable us to predict how organisms will respond to 

changes in their thermal environment, especially as organisms attempt to behaviorally 

thermoregulate and begin to shift their ranges or niches. 
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Figure 2.1. The amount of competition affects how flies should choose sites to oviposit 

their eggs. When there are low levels of competition, flies should prefer to lay their eggs 

in the patch that is most thermally beneficial to their young (a). When there is a high 

amount of competition, flies should begin to lay their eggs in less thermally beneficial 

patches to avoid high competition (b).  
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Figure 2.2. To estimate the fitness of flies at a variety of temperatures and densities, I 

transferred 1, 5, 15, or 50 eggs collected from a single isofemale line to 35mm petri 

dishes containing grape agar and 0.033g of yeast. These petri dishes were kept an 

incubator at 16 °, 20°, 25°, or 30°C with a 12:12 light cycle. I measured developmental 

time by checking the flies daily to record the number of days for adult flies to emerge. I 

measured survivorship by counting the proportion of adults that survived to adulthood. 

To measure fecundity, I mated dult female flies from my treatments with male flies from 

a control line (Cantonese) at a common temperature of 20°C for 4 days. I then removed 

the adult breeding pair and counted the number of adult flies emerged from any eggs laid 

by these fly pairs to estimate fecundity. 
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Figure Figure 2.3. My thermal arena consisted of a Plexiglas container that consisted of 

six independent lanes by running copper tubing below small aluminum plates. Each lane 

within the arena had two aluminum plates on opposite ends of the lane where I could 

place an agar-filled petri dish with a drop of yeast. Flies could fly between and choose to 

lay their eggs in either the 20°C petri dish or the 25°C petri dish. 
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Figure 2.4. To parameterize my game theoretical model, I used survivorship data from 

12 isofemale lines created from wild caught flies collected in Indiana. I transferred either 

1, 5, 15, or 50 eggs to a petri dish and maintained the flies in an incubator kept at either 

20°C (black) or 25°C (red) with a 12:12 light cycle. I measured survivorship by counting 

the proportion of adults that survived to adulthood. Each dot represents data from one 

isofemale line. For densities kept at either one or five individuals, the number of overlaid 

dots at each proportion is denoted with a number above the dot. Each bar represents the 

predicted model fit from the logistic regression curve. While survivorship was similar for 

both temperatures at low-density, survivorship dropped off much quicker as density 

increased for flies that were kept at 25°C. 
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Figure 2.5 To parameterize my game theoretical model, I used fecundity data from 12 

isofemale lines created from wild caught flies collected in Indiana. I transferred either 1, 

5, 15, or 50 eggs to a petri dish and maintained the flies in an incubator kept at either 

20°C (black) or 25°C (red) with a 12:12 light cycle. I measured fecundity, by outbreeding 

adult female flies from my treatment trays with a male fly from a control line (Cantonese) 

for four days at a common temperature of 20°C and counting the total number of 

emerged flies from the vial. Each dot represents data from one female fly. Each bar 

represents the predicted model fit from the generalized linear model. The fecundity of 

flies at 25°C was higher at low densities, but decreased faster than the fecundity of flies 

at 20°C as densities increased, causing flies at 20°C to have a higher fecundity at high 

densities. 
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Figure 2.6. I used data on developmental time from egg to adult to set the parameter 

values for the game theoretical model. To parameterize my game theoretical model, I 

used 12 isofemale lines created from wild caught flies collected in Indiana. I transferred 

either 1 (red), 5 (green), 15 (yellow), or 50 (green) eggs to a petri dish and maintained the 

flies in an incubator kept at 16°C, 20°C, 25°C, or 30°C with a 12:12 light cycle. I then 

measured by checking the flies daily to determine time to adult stage. Each circular dot 

represents a data point, medians are represented by triangles and lines are the predicted 

values of the generalized linear model. Flies developed faster at warmer temperatures, but 

there was no effect of density. 
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Figure 2.7.  My models predict that flies should predominately lay their eggs in the warm 

patch as long as competition is low. As competition increases, flies should begin to lay 

more eggs in the cold patch especially if the rates or survival in the warm patch decline 

rapidly or if the flies in the cold patch experience only a slow decline in its survival rate 

under increased densities. The straight black line represents a trend line where the portion 

of eggs in each patch should be equal. The red line shows where my model predicts the 

flies to lay their eggs based on varying levels of survivorship if future fecundity and 

developmental time remain constant. The predicted model fit that most closely resembles 

the empirical data collected on fly fitness is denoted with a green apostrophe. The 

average egg density laid in the empirical, low-density fly treatment is represented with a 

burgundy circle and the average egg density laid in the empirical, high-density fly 

treatment is represented with an olive circle.  
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Figure 2.8. I added either 4 flies (low-density) or 15 flies (high-density) to each lane 

within a thermal arena. Flies then chose to oviposit their eggs in a 20°C patch (black) or a 

25°C patch (red) within the thermal arena. For the treatment with added eggs, I added 

100 eggs to the 25°C patch prior to adding flies to the thermal arena. Each dot in the 

graph represents the raw data for where flies chose to lay their eggs, while the triangles 

represents the median of where each fly laid their eggs, and each bar represents the 

predicted model fit for a linear mixed-effects model adjusted for zero-inflated data (Zuur 

2009). Enclosed circles represent where flies in a low-density treatment laid their eggs 

after 100 eggs were placed in the warm patch. Flies laid eggs almost exclusively at 25°C 

when female density was low (P < 0.001). Flies laid more eggs at 20°C when female 

density was high than they did when female density was low (P < 0.001). Flies laid eggs 

almost exclusively at 25°C even when many eggs were already present at this site; laying 

behavior did not differ from that observed when no eggs were present at the start of the 

trial (P = 0.43). 
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Table 2.1: Results from a linear mixed-effects model adjusted for zero-inflated data. We 

found significant differences from our low-density treatment in relation to temperature 

and amount of competition from adult flies, but did not find a significant difference when 

eggs were already present at sites. 

 Estimate SE P 

Intercept                  

High-Density                   

Additional Eggs              

25°C                  

High-Density:25°C             

Additional Eggs:25°C 

0.5767 

1.9040   

-0.4305 

0.9145     

-0.9206      

0.1681                    

0.5338   

0.7354   

0.7857 

0.1135   

0.1302   

0.2118    

0.27994    

0.00963 

0.58376     

P < 0.001 

P < 0.001 

0.42732 
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CHAPTER 3 

HOW THERMAL HISTORY OF FLY POPULATIONS INFLUENCES WHERE THEY 

CHOOSE OVIPOSITION SITES FOR THEIR YOUNG 
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Chapter 3: How thermal history of fly populations influences where they choose 

oviposition sites for their young  

Summary 

Most studies of thermoregulation focus on the behavior of individuals without 

considering how these individuals compete for thermal resources. We need a theory 

of thermoregulation that accounts for variation in the local adaptation of organisms. 

Animals from different geographical regions and populations may thermoregulate 

differently due to having experienced different thermal conditions in the past. To 

test how thermal history influences thermoregulatory behavior, I examined how 

flies should oviposit their eggs when choosing between patches that vary in 

temperature and competition. To test this question, I used flies that were both 

experimentally evolved at different temperatures (16°C and 25°C) and natural 

populations of flies from different regions (Vermont and Southern Indiana). I 

created a model that looked at how each set of flies should optimally behave, given 

their genotype, when they must compete to lay their eggs in patches that vary in 

temperature and density of flies. I predicted that flies that had experienced colder 

temperatures, whether they evolved naturally or in the lab, would be more likely to 

shift their oviposition preference to colder patches as competition increased. We 

found that Vermont flies more readily shifted to colder patches than flies from 

Southern Indiana. Lab selected lines, however, did not behave the way we expected 

as neither the flies selected for 25°C or 16°C altered their oviposition preference as 

density increased.  



37 

Introduction 

The Huey and Slatkin (1976) theory of thermoregulation predicts how an 

organism should thermoregulate within its environment by calculating the costs and 

benefits an organism experiences due to the availability and time spent in patches that 

differ in temperature from the organisms optimal temperature. In addition to the basic 

cost-benefit model of thermoregulation (Huey and Slatkin 1976), we have more complex 

thermoregulation models that predict how animals should choose different behavioral 

strategies based on variation in their environment (Sears and Angilletta 2015), predators 

(Polo et al. 2005, Angilletta and Mitchell 2009), and food (Hughes and Grand 2000). 

Further, organisms that have experienced different thermal histories are expected to 

thermoregulate differently under each of these models.  

Organisms from different regions experience different thermal histories and 

consequently have varied thermal preferences and optimums (Bennett 1980, Huey 1982, 

Dillon et al. 2009). Consequently, animals from different geographical regions respond to 

temperature fluxes differently (Davis et al. 1998, Buckley 2008, Deutsch et al. 2008, 

Tewksbury et al. 2008, Kearney and Porter 2009). Organisms should attempt to maintain 

their thermal preferences to varying degrees based on how quickly their fitness changes 

with temperature. Organisms that are thermal generalists tend to have a wide thermal 

performance curve while organisms that are thermal specialists tend to have a high 

thermal optimum, but narrow thermal breadth (Levins 1968, Slatkin and Lande 1976, 

Huey and Hertz 1984, Angilletta et al. 2002b). Consequently, organisms whose fitness 

quickly changes with temperature can be thought of as thermal specialists, while 

organisms whose fitness changes more gradually along a thermal cline, can be thought of 



38 

as thermal generalists.  As a result, it is important for us to understand how organisms 

with different performance curves fit into our current models of thermoregulation.   

Thermal generalists can perform at a wider range of temperatures and often come 

from more thermally variable environments and higher latitudes (Janzen 1967, 

Ghalambor et al. 2006, Deutsch et al. 2008, Tewksbury et al. 2008) Further, the 

metabolic rates of organisms also vary predictably along with its thermal performance 

curve as many metabolic processes are thermally dependent (Gillooly et al. 2001, 

Gillooly et al. 2002, Savage et al. 2004). These variations in thermal performance 

influence growth rate (Berrigan and Charnov 1994, van der Have and de Jong 1996, 

Angilletta and Dunham 2003), sprint speed (Hertz et al. 1982, Angilletta et al. 2002a, 

Pinch and Claussen 2003, Zamora-Camacho et al. 2015), and many other physiological 

processes (Brett et al. 1969, Brett 1971, Huey 1982, Berrigan and Koella 1994, Sibly and 

Atkinson 1994, McCabe and Partridge 1997, Reeve et al. 2000, Robinson and Partridge 

2001). Thermal specialists and generalists can be found in geographical regions that 

differ in their thermal heterogeneity. Consequently, in a thermal game, you expect 

organisms from thermally heterogeneous environments to more readily switch their 

strategy and choose a patch that is sub-optimal in temperature than a thermal specialist. 

Thermal specialists should be less likely to switch between patches that differ in 

temperature since specialists will see their benefits degrade faster as they move away 

from their thermal optima.  

However, the importance of the interplay between the competitive interactions 

and their thermal environment should depend on the co-adaptation between the 

physiology and behavior of the organisms. One can use the g function to determine how 2 
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traits that covary can be used to predict a changing genotype (Houle 1991). When using 

the idea of a g function, to model co-adaptation of thermal physiology and behavior, 

organisms should change their thermal sensitivity based on variation in the temperatures 

they experience (Angilletta et al. 2006). Under ideal scenarios, organisms’ behavior and 

thermal preferences should correlate with the temperatures at which they perform best, 

such as in some reptiles (Dawson 1975) and fish (Beitinger and Fitzpatrick 1979). 

However, some organisms do not perform the way that the theory would expect. Species 

of lacertid lizards that are thermal generalists thermoregulate more precisely than those 

species that are thermal specialists (Bauwens et al. 1995). This result is shocking because 

specialists are typically thought to be more precise thermoregulators than are thermal 

generalists. Other times behavior and physiology are only partially co-adapted. For 

example, skinks were found to prefer a temperatures that change in conjunction with their 

critical thermal maximum (Huey and Bennett 1987), but not with their critical thermal 

minimum or optimum (Garland et al. 1991). Consequently, even though we expect the 

genotypes that prefer certain temperatures to function best at the same temperatures, we 

do not always see this pattern. However, by bringing in evolutionary game models to 

look at how behavior and physiology are co-adapted, we might be able to see patterns 

that are not straightforward in a system where density is static.  

By incorporating game theory into existing models of thermoregulation, we can 

better predict how animals will regulate their temperature (Angilletta 2009). Game theory 

describes how organisms allocate time to different patches when the preferences and 

frequencies of competitors determine the benefits of patch choice (Sih 1998, Brown et al. 

1999). For antagonistic competitors to coexist, the behaviors of these competitors must 
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reach a stable equilibrium where the fitness of each competitor is equal to each other, 

referred to as an evolutionarily stable strategy (Nowak and Sigmund 2004). We know 

that biotic interactions can affect how animals disperse themselves in respect to 

temperature within their environment due to competition (Beitinger et al. 1975, 

Magnuson et al. 1979, Medvick et al. 1981, Seebacher and Grigg 2000, Stapley 2006, 

Rusch and Angilletta 2017) and predation (Lampert 1989, Downes 2001, Webb and 

Whiting 2005, Amo et al. 2007, Herczeg et al. 2008). Therefore, by using game theory, 

we can make novel predictions about how animals with different genotypes should 

optimally behave when they have to also worry biotic factors. 

I tested these ideas using isofemale lines of fruit flies derived from both natural 

and experimental populations. The natural fly lines enabled me to test flies whose 

progenitors had experienced realistic thermal conditions while the experimental lines 

enabled me to test for a population that only diverged in regards to temperature. It has 

previously been found that flies along a latitudinal gradient vary in their fecundity (Peter 

et al. 2013), body size (James et al. 1997, Bochdanovits and de Jong 2003),  and 

development (James and Partridge 1995, McCabe and Partridge 1997, James and 

Partridge 1998). Additionally, flies from selection lines that were experimentally evolved 

at different temperatures have also been shown to have variation in their fecundity 

(Partridge et al. 1995), body size (Reeve et al. 2000), development (James and Partridge 

1995, Crill et al. 1996, McCabe and Partridge 1997), thermal limits (Hoffmann 2010), 

and specialist generalist tradeoffs (Latimer et al. 2011). The thermal physiology and 

membrane lipids have been found to differ across these specific isofemale lines for both 

the experimentally selected (Cooper et al. 2012) and natural populations (Cooper et al. 
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2014).  Additionally, these specific fly selection lines show variation in their thermal 

breadth, as the fly lines that experienced varying thermal temperatures are better thermal 

generalists than those fly lines that experienced constant temperatures (Condon et al. 

2014). Lastly, flies had better flight performance at the temperatures for which they were 

experimentally evolved (Le Vinh Thuy et al. 2016). Do these fly populations that have 

experienced different thermal conditions also exhibit differences in how they alter their 

thermoregulatory strategies for their young in response to competition? 

I used my game theoretical model of oviposition behavior (Chapter 2), with data 

from both the natural and experimental fly lines, to predict how flies should optimally 

behave under varying degrees of competition. I then empirically tested this model by 

allowing flies, from both the natural populations and selection lines, to choose between 

two sites that varied in temperature. I hypothesized that flies will be more likely to utilize 

temperatures of which they had historically been exposed. I predicted that flies 

historically experiencing colder temperatures would alter their thermoregulatory strategy 

to begin choosing cooler oviposition sites under increased competition faster than flies, 

which have historically experienced warmer temperatures. Flies from populations that 

experienced a wide range of temperatures should also alter their thermoregulatory 

strategy to choose cooler oviposition sites than flies that have experienced more 

consistent warm temperatures. Therefore, I predicted that flies from higher latitudes 

would be more likely to use both warm and cold patches than flies from lower latitudes, 

while flies that were experimentally selected for cold temperatures would be more likely 

to use the cold patch than the flies experimentally selected for hot temperatures (Figure 

3.1). Due to the known differences in thermal sensitivity and fitness in organisms from 
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different thermal backgrounds, it is important for us to determine how these principles 

affect the development of a more general theory of thermoregulation that is accurate for 

species and populations from different backgrounds. 

 

Methods 

Maintenance of Drosophila melanogaster 

I used flies descended from females collected in Beasley Orchid, Indiana and East Calais, 

Vermont, during the fall of 2011. Twelve isofemale lines were created by mating a single 

adult virgin female fly with a male sibling for 2 generations (Cooper et al. 2014). 

Additionally, I also used ten isofemale lines that were evolved from five different 

populations of fly lines that were experimentally selected and allowed to evolve at either 

hot (25°C) or cold (16°C) temperatures. The experimental fly lines were collected by 

Yeaman et al. (2010) during September 2005 from an organic orchard near Cawston, BC. 

400 virgin female flies were collected from an initial population of approximately 2000 

adults to create the experimental lines. Each replicate population had two cages assigned 

to either a constant 16°C or 25°C and kept on a 12:12 L:D light cycle. Bottles located in 

each cage were transferred between cages from the same population and same 

temperature every four weeks to encourage random mating between cages. The lines 

were then allowed to evolve at their selected, constant temperature for over three years. 

During this time, the population size within each cage varied between 800 and 2000 flies. 

Detailed descriptions of how the experimental populations were developed is available in 

Yeaman et al. (2010). The isofemale lines descended from these experimental 

populations capture aspects of the genetic variation of these populations. I maintained the 
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isofemale lines on a standard diet (recipe of the Bloomington Stock Center, Bloomington, 

IN) in 25 x 90 mm vials (Genesee Scientific, San Diego, CA) inside of an incubator 

(Percival Scientific, Perry, IA) at a temperature of 21°C and a light cycle of 12:12 L:D. 

Flies were transferred to new vials with fresh food approximately every three weeks.  

Two males and two females from the same isofemale line were added to a vial for 

48 hours, to partially control for egg density. When the next generation of flies emerged 

in these vials, I transferred two males and two females to a new vial for 48 hours. I 

repeated this protocol for three generations. Adult females from the third generation were 

used in the experiments described below.  

 

Parameterize the model 

I used data collected from flies in the lab to parameterize of my model. To estimate the 

fitness of flies at each combination of density and temperature, I measured the 

survivorship and fecundity. To obtain flies for my experiment, I allowed females from 12 

isofemale lines to lay eggs in petri dishes with a grape agar and yeast solution for 8 hours 

at 23°C. I then transferred either 1, 5, 15, or 50 eggs to new petri dishes (35mm diameter) 

containing the grape agar and 0.033g of yeast. These petri dishes were kept an incubator 

at 16°, 20°, 25°, or 30°C with a 12:12 light cycle. I measured survivorship by counting 

the number of adults that survived to adulthood.  

To measure fecundity, I outbred adult female flies from my treatments with male 

flies from a control line (Cantonese, Bloomington Stock Center, Bloomington, IN) to 

capture only variation in fecundity because egg production, not sperm production, is 

typically the limiting factor for population growth. Additionally, since I was concerned 
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about the effect of larval developmental temperature and adult flies would be able to 

freely move to new patches that varied in temperature, I moved all vials to a common 

temperature of 20°C for my fecundity experiments. I placed each pair of flies into a vial 

(25 x 95 cm) containing a standard cornmeal-yeast medium for 4 days in an incubator at 

20°C with a 12:12 light cycle. I then removed the adult breeding pair and allowed any 

eggs laid by these fly pairs to develop to adulthood. From the adult flies that emerged 

within each of these vials, I again recorded developmental time (egg to adult) to the 

nearest day and counted the total number of flies emerged (fecundity). 

I estimated how density and temperature related to fecundity using a generalized 

linear model while I estimated survivorship using a logistic regression curve. I then used 

AIC to pick the best polynomial fit for each curve in R (Version 3.3.1 R-Core-Team 

2016) (Zuur 2009). I then developed additional models based on predictions of how one 

might expect the fitness of flies to vary under different circumstances. I used the best-

fitting curve developed from the raw parameters to find an initial curve, which could 

explain how survivorship and fecundity change with increasing density. Furthermore, I 

hypothesized additional parameter data that was in line with findings on fitness data to 

create additional models regarding how you would expect flies to behave if their survival 

parameters were slightly altered. To create this additional parameter data, I also increased 

or decreased how quickly survivorship changed under increased competition since in 

nature you might have conditions changing within these patches causing survivorship to 

differ from what we measured. For example, resources might be replenished within these 

patches, which would cause survivorship to decline more slowly. Alternatively, predators 
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might be attracted to higher densities of prey, which would cause survivorship to decline 

more quickly and possibly at an exponential rate.  

Experimental tests of the model 

I used the same Plexiglas thermal arena for the experimental tests of the model as in 

Chapter 2 (Figure 2.3). I used the thermal arenas to test where flies chose to lay their eggs 

under different intensities of competition. In each arena, a fly could choose between a 

petri dish at a preferred temperature of 25°C and a petri dish at 20°C. For each isofemale 

line, I ran trials in which either 4 or 15 adult females were in an arena at a time. 

Additionally, I concurrently ran equal number of cross-comparison treatment groups of 

flies in the arenas. During each trial, I would run either (i) an equal number of low 

latitude and high latitude flies of each density type or (ii) an equal number of cold 

selected and hot selected flies of each density type simultaneously within the arena. After 

4 hours, I removed the flies and froze the petri dishes from each side of the arena. Later, 

these dishes were thawed, and the number of eggs was counted under a dissecting scope 

(Zeiss Stemi 2000-C) at each temperature.  

I performed a linear mixed-effects model adjusted for zero-inflated data (Zuur 

2009) using the glmmADMB package (Fournier et al. 2012) in R (Version 3.2.3, R-Core-

Team 2016) to determine whether the number of eggs laid in each patch in each treatment 

type differed. The fixed factors in my model were temperature and density/treatment. I 

used trial as a random factor to compare eggs laid in the two sides of the arena while 

accounting for variation in the number of eggs among trials. The experimental date and 

isofemale line was dropped from my model due to poor fit using AIC values.  
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Results 

I modeled the fitness of different genotypes of flies using data on survivorship and 

fecundity. Survival of flies at different densities and temperatures depended on the 

genotype of the fly (see Figures 3.2-3.5). For isofemale lines derived from low latitude 

populations, the survivorship of flies was similar at both 20°C and 25°C. For isofemale 

lines derived from high latitude populations, survivorship was higher in the 20°C patch 

than the 25°C at low densities, but similar for both the 20°C and 25°C patches at high 

densities. Survivorship of isofemale lines from cold selected lines was similar at both 

temperatures except that when there was either 1 or 50 flies, 25°C patches had slightly 

higher survivorship when there were 5 flies, 20°C patches had slightly higher 

survivorship. Hot selected flies had slightly higher survivorship at 20°C than 25°C and 

followed a very consistent pattern across density treatment. The fecundity of flies also 

changed at different densities and temperatures depending upon the genotype of the fly 

(see Figures 3.6-3.9). Low latitude flies’ fecundity was highest in 25°C patches at low-

density. While flies from high latitude flies were most fecund at intermediate densities in 

25°C patches. Cold selected flies had much higher fecundity in the 20°C patch than the 

25°C at all densities. Hot selected flies had similar fecundity at low densities in both the 

20°C and 25°C patches, but at higher densities had higher fecundity in the 20°C patch.   

My game theoretical models illustrate how competition affects the fitness of fruit 

flies. The models for both the low latitude (Figure 3.10) and high latitude (Figure 3.11) 

flies predicts that flies will initially lay eggs in the hot patch then shift to the cold patch as 

the density of eggs increases. Additionally, the model predicts that high latitude flies will 

begin shifting their effort to the cold patch at lower densities of eggs than the flies at low 
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latitudes. The models for the cold selected (Figure 3.12) and hot selected (Figure 3.13) 

flies both predict that flies should initially lay in one patch and then begin to spread out 

their effort, however, they differ between which temperature they should initially lay 

their eggs in at low densities. Hot selected flies are also expected to initially lay their 

eggs in the warm patch and then begin to spread their effort to the cold patch as the 

density of eggs in the hot patch continues to increase. However, due to having higher 

rates of fecundity when developed at cold temperatures, cold selected flies are expected 

to initially lay their eggs in the cold patch. In models where there is a slow decline of 

survival in the cold patch than in the hot patch, cold selected lines should continue to 

predominantly lay their eggs in the cold patch. Only in high-density scenarios, where 

there is also an exponential or relatively rapid decline of survival in the warm patch, 

should cold selected flies start laying eggs predominantly in the hot patch. 

I found that temperature and competition both affected patch choice in flies from 

a high latitude, but only temperature affected patch choice in flies from a low latitude. 

Low latitude flies, at low-density, laid eggs almost exclusively at 25°C (P = 0.004) while 

flies at high-density did not significantly differ in laying their eggs at 20°C than flies at 

low-density (P =0.21). When comparing across the high-density treatments, I found a 

significant difference between the number of eggs laid by low and high latitude flies for 

both the 20°C (P=0.003) and 25°C patches (P=0.01) (Table 3.1). High latitude flies at 

low-density laid eggs almost exclusively at 25°C (P < 0.001) and at high-density 

significantly increased the number of eggs laid at 20°C (P=0.004) (Figure, 3.13, Table 

3.2). Isofemale lines derived from the high latitude populations behaved differently when 

laying eggs at low vs high densities. At low-density, high latitude flies laid a median of 
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five eggs at 25°C but zero eggs at 20°C. At high-density, high latitude flies laid a median 

of one egg at 20°C and three eggs at 25°C.  Genotypes from the low latitude did not 

behave differently when laying eggs at low vs high densities. At low-density, low latitude 

flies laid a median of 1.5 eggs at 25°C and 0 eggs at 20°C. At high-density, low latitude 

flies laid a median of two eggs at 25°C and still zero eggs at 20°C.  

The natural populations of flies behaved in partially in accordance with the 

model. Both the low and high latitude flies primarily laid their eggs in the hot patch at 

low densities in accordance with the model. At high densities, the high latitude flies 

starting spreading their effort to the cold patches as predicted by the model. However, the 

low latitude flies did not begin to lay their eggs in the cold patch as predicted by the 

model.  

I found that flies experimentally evolved at either hot or cold temperatures, 

changed their egg laying behavior based on temperature, but not competition. Cold 

selected flies at low-density laid eggs almost exclusively at 25°C (P < 0.001) and 

increased competition did not alter this relationship (P =0.68) (Table 3.3). Hot selected 

flies at low-density laid eggs almost exclusively at 25°C (P < 0.001) and did not change 

their behavior under increased competition (P =0.99) (Figure 3.14, Table 3.4). Genotypes 

from flies that were selected for hot temperatures behaved differently when laying eggs at 

low vs high densities. At low-density, hot selected flies laid a median of four eggs at 

25°C but zero eggs at 20°C. At high-density, hot selected flies laid a median of one egg at 

20°C and four eggs at 25°C.  Genotypes from flies that were selected for cold 

temperatures did not behave differently when laying eggs at low vs high densities. At 

low-density, cold selected flies laid a median of 7.5 eggs at 25°C and 0 eggs at 20°C. At 
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high-density, cold selected flies laid a median of 8eggs at 25°C and still zero eggs at 

20°C.  

The experimentally selected flies did not behave in accordance with the model. 

Both the cold and hot selected flies primarily laid eggs in the hot patch regardless of 

density type. The model predicted that the cold selection lines should have primarily laid 

eggs in the cold patch and switched to the hot patch at high densities; instead, the 

isofemale lines derived from cold-selected lines preferred to lay at 25°C regardless of 

density. The model predicted that the hot selected lines should prefer to lay at 25°C but 

allocate some eggs to 20°C at high densities; however, the flies in the choice experiment 

did not actually alter their behavior under increased competition.  

 

Discussion 

Flies from high latitudes behaved in accordance with our model. However, flies from low 

latitude did not change their behavior as predicted by the model. High latitude flies were 

predicted to see a competition effect at lower densities and to thus begin laying eggs at 

colder temperatures at lower densities than low latitude flies though so it is possible that 

the densities were not high enough in the low latitude experiment. Flies, from both the 

hot and cold selection lines, preferred the warmer patch at both low and high densities 

despite our model predicting that both should see an effect from competition. 

Additionally, flies from cold patches were predicted to prefer the cold patch to the warm 

patch at low densities.   

High latitude organisms experience greater thermal variation as well as lower 

temperatures than low latitude organisms (Janzen 1967, Stearns 1976, Stearns 1992, 
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Ghalambor et al. 2006). Consequently, based on life history, my model predicted that 

high latitude flies would more readily switch to colder patches as competition increases 

relative to low latitude flies. This prediction of the model was observed; the high latitude 

fly lines did switch more readily to cold patches than low latitude lines. Further 

supporting the idea that flies prefer to lay eggs in sites similar to temperatures they have 

previously experienced, in an experiment by Nevo and colleagues (1998), flies collected 

from a warm, dry site were allowed to lay eggs in vials that varied in their temperature 

and moisture content and found that warm, dry vials that were most similar to their 

natural site had the most flies emerge. However, there was not a control to test whether 

this was due to oviposition selection or survival within the vials. My findings further 

support the idea that high latitude organisms are thermal generalists (Levins 1968, Slatkin 

and Lande 1976, Huey and Hertz 1984, Angilletta et al. 2002b).  

Additionally, it has been previously found that along a latitudinal gradient that the 

critical thermal minimum and maximum are both positively correlated with highest and 

lowest temperatures experienced by a fly population (Hoffmann et al. 2002). This finding 

is in accordance, with how survivorship is the primary driver of the fitness function in my 

game theoretical model. While there was not a strong relationship between the fecundity 

of my high and low latitude flies, there was a difference in survivorship at different 

temperatures. Based on the empirical data used to parameterize my model, high latitude 

flies had a higher survivorship at 20°C than low latitude flies and low latitude flies had a 

higher survivorship at 25°C than high latitude flies.  

Surprisingly, cold selected flies did not prefer the cold patch in either the low- or 

high-density treatment, which was in direct contrast to my model. It has previously been 
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found that cold-adapted flies have a smaller decrease in fitness when switching to colder 

patches (Huey et al. 1991). Due to this previous work, plus the fitness data that I 

collected, I expected to see an effect from increased competition with the cold selected 

flies even if I did not see it in the hot selected flies. An additional factor that could 

explain why we are not seeing differences could be due to both fecundity and 

survivorship of the selection line flies having antagonistic effects upon each other. The 

cold selection lines have slightly better survivorship at both temperatures while hot 

selected lines have greater overall fecundity at both temperatures. However, hot selected 

flies have much higher fecundity at 25°C than 20°C. Cold selected flies have a higher 

fecundity at 20°C than 25°C, but have a faster development time at 25°C. These 

differences in survivorship and fecundity thus could explain the pattern we are seeing at 

the fitness level.  

These results for fecundity are similar to those previously found at cooler 

temperatures, but not at warmer temperatures. Condon and colleagues (2014) previously 

found an inverse relationship between the temperatures the flies were evolved at and the 

temperatures at which they had maximal fecundity. They found that cold selected flies 

had greater fecundity than hot selected flies at high temperatures while hot selected flies 

had greater fecundity at low temperatures than cold selected flies. While my results are 

similar for low temperatures, I found hot selected flies still had greater fecundity than 

cold selected flies at high temperatures. This difference could be due to intra-population 

variation in the hot selected isofemale fly lines that we used. More importantly though, 

this difference could be due to how we both measured fecundity. While we both 

developed each population at either colder or warmer temperatures, in my study the flies 
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were then able to lay their eggs at a common temperature of 20°C, while the flies in 

Condon’s study (2014) remained at their developmental temperature. Therefore, we may 

have simply found different rates of fecundity given that we used different methods to 

estimate fecundity in the lab raised flies.  

This greater variation within natural populations of flies as opposed to lab raised 

flies has been previously found when looking at size differences due to temperature 

(James et al. 1997). While thermal sensitivity has been demonstrated to evolve rapidly in 

artificial fly populations in the lab (Huey and Bennett 1990), thermal preferences of 

oviposition site preferences have been shown to have a very low heritability (Fogleman 

1979). Consequently, my selection lines may have not had enough time pass to see an 

alteration in their oviposition site preference at the population level even if they had a 

change in their fitness. Additionally, these lines were created by keeping a breeding 

population of flies in cages at constant temperatures for 3 years. It is possible that 

selection was primarily taking place within these populations due to other factors such as 

being in a crowded cage and access to food rather than temperature. Since fly larvae are 

believed to competitively exclude other larvae from food (Gilpin 1974), it is possible that 

selection was primarily occurring in regards to their ability to access food and not due to 

oviposition site selection for preferred tempered temperatures.  

The flies from the selection lines may not have experienced any selection for 

behaviors that changed their oviposition choice preferences. In other words, these flies 

may have only experienced selection for changes in their fitness at different temperatures, 

but not for behavioral selection of oviposition sites. The flies were allowed to evolve at 

different temperatures; however, their environment was uniform in temperature. 
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Therefore, flies did not have had the option to choose between sites that differed in 

temperature and therefore may not have experienced selection for choosing oviposition 

sites that offered the greatest fitness to their young. Flies in these cages received the most 

benefit from laying their eggs anywhere there was food since the entire environment was 

one temperature and there was no choice to be made regarding sites that differed in 

temperature. Consequently, there might not have been any selection for choosing 

oviposition sites that reflected optimal temperatures for fitness in the new environment. 

Organisms from different populations may also depend on different food sources 

or preferences that are naturally variable within their environment. For example, insects 

populations can incorporate different plants (Thomas et al. 1987) and derive different 

benefits from certain foods (Chew 1977). Further, different diets can affect 

thermoregulation strategies (Underwood 1991, Pulgar et al. 2003) and insects are known 

to see various fitness benefits and costs associated with the type and timing of their diet 

(Raubenheimer and Simpson 1999, David et al. 2009, Meunier et al. 2017).  Therefore, 

even though these flies are feeding on the same diet in the experiment, if they are adapted 

to different diets that they are used to feeding on in nature, they may have a different 

thermoregulatory strategy when feeding on foods that differ in food quality or have a 

specific carbohydrate to protein ratio. A population level difference in food preference 

could also explain why we only saw a difference between the natural populations of flies 

and not the experimentally selected flies. Consequently, we may also be seeing 

differences in these flies due to variation in local thermoregulatory strategies in regards to 

food preference or food quality.   



54 

Perhaps the most surprising thing about my results is that I found different 

oviposition preferences of flies that were from the same population (Chapter 2 and 

Chapter 3 low latitude flies). The flies in the low latitude treatment did not experience a 

density effect despite flies from that same population displaying a density effect in 

Chapter 2. In the first experiment, the flies changed their behavior as competition 

increased while the flies in the second experiment did not change their behavior under 

increased competition. These differences in results could be due to a couple of reasons. 

The two experiments were performed almost two years apart from each other and had to 

use different isofemale lines. These isofemale lines may have differed from the earlier 

isofemale lines that I previously used in how they respond to temperature or competition 

differences. Further, these isofemale lines might have just differed in their food or 

humidity preferences, which would have introduced a confounding factor. As a result, I 

may not have been able to pick up some of the same differences that I could with the 

earlier experiment.  

It is possible that the flies are not behaving the way I expect them too because the 

fly genotypes used in my model were not an accurate representation of the natural genetic 

variation of these flies. For example, it has been found that for lab raised flies kept at 

18°C and 25°C, larger females lived longer and had greater reproductive success, while 

small flies delay reproduction until later in life (McCabe and Partridge 1997). Since I 

only allowed flies to lay eggs for the first 4 days of their adult life cycle and flies develop 

smaller at hotter temperatures, I may not have captured the full scope of these flies’ 

fecundity in particular smaller flies that delay their reproduction until later in life. 

Further, studies found only minor differences in fecundity due to population and that 
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fecundity was mostly a byproduct of developmental temperature with thermal reaction 

norms primarily similar across populations (Peter et al. 2013). Since all the flies were 

kept at a constant temperature prior to analyzing their oviposition site preferences, I may 

not have been able to see the expected variation due to developmental temperature being 

a primary driver of oviposition site selection (Fogleman 1979).  

By adding in local thermal adaptation to the models from chapter 2, we can better 

understand how different populations of organisms might shift their thermoregulatory 

strategy. I found that flies from high latitude regions are more likely to switch their 

thermal strategy than flies from low latitude populations. However, I found no 

differences in oviposition site selection between populations that were experimentally 

selected for either hot or cold temperatures. In conclusion, we need to reassess how local 

adaptation and environmental stochasticity influence how organisms respond to 

temperature changes. We need to develop a localized theory of thermoregulation that 

account for regional climate. Ultimately, by incorporating these patterns into our 

thermoregulatory models we can better predict how these organisms should be 

thermoregulating presently in the environment as well as in the future as temperatures 

continue to change. 
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Figure 3.1. Generic predicted performance curves for flies from different thermal 

backgrounds. Flies from high latitude regions should have a wider performance curve 

than flies from lower latitudes since flies from high latitudes experience a wider range of 

temperatures than flies at lower latitudes. Flies that were experimentally evolved at cold 

temperatures should prefer colder temperatures than flies that were experimentally 

evolved at hot temperatures.  
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Figure 3.2. To parameterize my game theoretical model, I used survivorship data from 

12 isofemale lines created from wild caught flies collected in Indiana. I transferred either 

1, 5, 15, or 50 eggs to a petri dish and maintained the flies in an incubator kept at either 

20°C (black) or 25°C (red) with a 12:12 light cycle. I measured survivorship by counting 

the proportion of adults that survived to adulthood. Each dot represents data from one 

isofemale line. For densities kept at either one or five individuals, the number of overlaid 

dots at each proportion is denoted with a number above the dot. Each bar represents the 

predicted model fit from the logistic regression curve. While survivorship was similar for 

both temperatures at low-density, survivorship dropped off much quicker as density 

increased for flies that were kept at 25°C. 
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Figure 3.3. To parameterize my game theoretical model, I used survivorship data from 

10 isofemale lines created from wild caught flies collected in Vermont (high latitude). I 

transferred either 1, 5, 15, or 50 eggs to a petri dish and maintained the flies in an 

incubator kept at either 20°C (black) or 25°C (red) with a 12:12 light cycle. I measured 

survivorship by counting the proportion of adults that survived to adulthood. Each dot 

represents data from one isofemale line. For densities kept at either one or five 

individuals, the number of overlaid dots at each proportion is denoted with a number 

above the dot. Each bar represents the predicted model fit from the logistic regression 

curve. Flies kept at 20°C had higher survivorship at low densities and had a slight 

increase in their survivorship as density increased while flies kept at 25°C saw a decline 

in their survivorship as density increased.  
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Figure 3.4. To parameterize my game theoretical model, I used survivorship data from 

10 isofemale lines created from fly lines that were experimentally selected and allowed to 

evolve at cold (16°) temperatures for multiple years. Detailed descriptions of how the 

experimental populations were developed is available in Yeaman et al. (2010). I 

transferred either 1, 5, 15, or 50 eggs to a petri dish and maintained the flies in an 

incubator kept at either 20°C (black) or 25°C (red) with a 12:12 light cycle. I then 

measured survivorship by counting the proportion of adults that survived to adulthood. 

Each dot represents data from one isofemale line. For densities kept at either one or five 

individuals, the number of overlaid dots at each proportion is denoted with a number 

above the dot. Each bar represents the predicted model fit from the logistic regression 

curve. Flies at 20°C had higher survivorship at low densities than flies from 25°C. 

However, flies at 25°C saw a more gradual decline of their survivorship as density 

increased than flies at 20°C resulting in flies at 25°C to have higher survivorship at high 

densities than flies at 20°C. 
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Figure 3.5. To parameterize my game theoretical model, I used survivorship data from 

10 isofemale lines created from fly lines experimentally selected and allowed to evolve at 

hot (25°C) for multiple years. Detailed descriptions of how the experimental populations 

were developed is available in Yeaman et al. (2010). I transferred either 1, 5, 15, or 50 

eggs to a petri dish and maintained the flies in an incubator kept at either 20°C (black) or 

25°C (red) with a 12:12 light cycle. I measured survivorship by counting the proportion 

of adults that survived to adulthood. Each dot represents data from one isofemale line. 

For densities kept at either one or five individuals, the number of overlaid dots at each 

proportion is denoted with a number above the dot. Each bar represents the predicted 

model fit from the logistic regression curve. While survivorship was similar for both 

temperatures at low-density, survivorship dropped off much quicker as density increased 

for flies that were kept at 25°C. 
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Figure 3.6 To parameterize my game theoretical model, I used fecundity data from 12 

isofemale lines created from wild caught flies collected in Indiana. I transferred either 1, 

5, 15, or 50 eggs to a petri dish and maintained the flies in an incubator kept at either 

20°C (black) or 25°C (red) with a 12:12 light cycle. I measured fecundity, by outbreeding 

adult female flies from my treatment trays with a male fly from a control line (Cantonese) 

for four days at a common temperature of 20°C and counting the total number of 

emerged flies from the vial. Each dot represents data from one female fly. Each bar 

represents the predicted model fit from the generalized linear model. The fecundity of 

flies at 25°C was higher at low densities, but decreased faster than the fecundity of flies 

at 20°C as densities increased, causing flies at 20°C to have a higher fecundity at high 

densities. 
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Figure 3.7. To parameterize my game theoretical model, I used fecundity data from 10 

isofemale lines created from wild caught flies collected in Vermont (high latitude). I 

transferred either 1, 5, 15, or 50 eggs to a petri dish and maintained the flies in an 

incubator kept at either 20°C (black) or 25°C (red) with a 12:12 light cycle. I measured 

fecundity, by outbreeding adult female flies from my treatment trays with a male fly from 

a control line (Cantonese) for four days at a common temperature of 20°C and counting 

the total number of emerged flies from the vial. Each dot represents data from one female 

fly. Each bar represents the predicted model fit from the generalized linear model. While 

fecundity was similar for both temperatures at high densities, fecundity of flies at 25°C 

was higher at lower densities. 
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Figure 3.8. To parameterize my game theoretical model, I used fecundity data from 10 

isofemale lines created from fly lines that have been experimentally selected and allowed 

to evolve at cold (16°) temperatures for multiple years. Detailed descriptions of how the 

experimental populations were developed is available in Yeaman et al. (2010). I 

transferred either 1, 5, 15, or 50 eggs to a petri dish and maintained the flies in an 

incubator kept at either 20°C (black) or 25°C (red) with a 12:12 light cycle. I measured 

fecundity, by outbreeding adult female flies from my treatment trays with a male fly from 

a control line (Cantonese) for four days at a common temperature of 20°C and counting 

the total number of emerged flies from the vial. Each dot represents data from one female 

fly. Each bar represents the predicted model fit from the generalized linear model. Flies 

kept at 20°C had higher fecundity at low densities than flies kept at 25°C. The flies kept 

at 25°C surprisingly saw a slight increase in their fecundity as density increased, while 

flies kept at 20°C saw a slight decrease in their fecundity as density increased.  
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Figure 3.9. To parameterize my game theoretical model, I used fecundity data from 10 

isofemale lines created from fly lines that have been experimentally selected and allowed 

to evolve at hot (25°C) for multiple years. Detailed descriptions of how the experimental 

populations were developed is available in Yeaman et al. (2010). I transferred either 1, 5, 

15, or 50 eggs to a petri dish and maintained the flies in an incubator kept at either 20°C 

(black) or 25°C (red) with a 12:12 light cycle. I measured fecundity, by outbreeding adult 

female flies from my treatment trays with a male fly from a control line (Cantonese) for 

four days at a common temperature of 20°C and counting the total number of emerged 

flies from the vial. Each dot represents data from one female fly. Each bar represents the 

predicted model fit from the generalized linear model. Flies kept at 20°C had higher 

fecundity than flies kept at 25°C at all densities. Flies at both temperatures saw a decline 

in their fecundity at higher densities. 
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Figure 3.10.  My models predict that flies from a low latitude environment should 

predominately lay their eggs in the warm patch as long as competition is low. As 

competition increases, flies should begin to lay more eggs in the cold patch especially if 

the rates or survival in the warm patch decline rapidly or if the flies in the cold patch 

experience only a slow decline in its survival rate under increased densities. The straight 

black line represents a trend line where the portion of eggs in each patch should be equal. 

The red line shows where I predict the flies to lay their eggs based on varying levels of 

survivorship if future fecundity and developmental time remain constant. The predicted 

model fit that most closely resembles the empirical data collected on fly fitness is denoted 

with a green apostrophe.   The average egg density laid in the empirical, low-density fly 

treatment is represented with a burgundy circle and the average egg density laid in the 

empirical, high-density fly treatment is represented with an olive circle.  
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Figure 3.11. My models predict that flies from a high latitude environment should 

predominately lay their eggs in the warm patch as long as competition is low. As 

competition increases, flies should begin to lay more eggs in the cold patch especially if 

the rates or survival in the warm patch decline rapidly or if the flies in the cold patch 

experience only a slow decline in its survival rate under increased densities. Predictions 

for how flies from a high latitude should choose to lay their eggs based upon a game 

theoretical model that predicts flies’ behavior as their fitness changes. The straight black 

line represents a trend line where the portion of eggs in each patch should be equal. The 

red line shows where we predict the flies to lay their eggs based on varying levels of 

survivorship if future fecundity and developmental time remain constant. The predicted 

model fit that most closely resembles the empirical data collected on fly fitness is denoted 

with a green apostrophe.   The average egg density laid in the empirical, low-density fly 

treatment is represented with a burgundy circle and the average egg density laid in the 

empirical, high-density fly treatment is represented with an olive circle.  
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Figure 3.12. My models predict that cold selected flies should initially lay their eggs in 

the cold patch when competition is low. As competition increases, flies should continue 

to primarily lay their eggs in the cold patch if there is a fast or exponential decline of 

survival in the hot patch. However, if there is a slow decline of survival in the hot patch, 

flies should quickly switch to predominantly laying their eggs in the warm patch. The 

straight black line represents a trend line where the portion of eggs in each patch should 

be equal. The red line shows where we predict the flies to lay their eggs based on varying 

levels of survivorship if future fecundity and developmental time remain constant. The 

predicted model fit that most closely resembles the empirical data collected on fly fitness 

is denoted with a green apostrophe.   The average egg density laid in the empirical, low-

density fly treatment is represented with a burgundy circle and the average egg density 

laid in the empirical, high-density fly treatment is represented with an olive circle.  
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Figure 3.13. My models predict that hot selected flies should predominately lay their 

eggs in the warm patch as long as competition is low. As competition increases, flies 

should quickly switch to primarily laying eggs in the cold patch except in cases where 

there is a slow decline of survival in the hot patch and an exponential decline of survival 

in the cold patch. The straight black line represents a trend line where the portion of eggs 

in each patch should be equal. The red line shows where we predict the flies to lay their 

eggs based on varying levels of survivorship if future fecundity and developmental time 

remain constant. The predicted model fit that most closely resembles the empirical data 

collected on fly fitness is denoted with a green apostrophe.   The average egg density laid 

in the empirical, low-density fly treatment is represented with a burgundy circle and the 

average egg density laid in the empirical, high-density fly treatment is represented with 

an olive circle.  
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Figure 3.14. I added either 4 flies (low-density) or 15 flies (high-density) to each lane 

within a thermal arena. Flies then chose to oviposit their eggs in a 20°C patch (black) or a 

25°C patch (red) within the thermal arena. Each dot in the graph represents the raw data 

for where flies chose to lay their eggs, while the triangles represents the median of where 

each fly laid their eggs, and each bar represents the predicted model fit for a linear 

mixed-effects model adjusted for zero-inflated data (Zuur 2009). I found significant 

differences from our low latitude, low-density treatment in relation to temperature (P = 

0.004) and compared to flies from a high latitude and high-density (P = 0.003). I found 

significant differences from my high latitude, low-density treatment in relation to 

temperature (P < 0.001) and amount of competition (P = 0.004) from adult flies. 
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Figure 3.15. I added either 4 flies (low-density) or 15 flies (high-density) to each lane 

within a thermal arena. Flies then chose to oviposit their eggs in a 20°C patch (black) or a 

25°C patch (red) within the thermal arena. Each dot in the graph represents the raw data 

for where flies chose to lay their eggs, while the triangles represents the median of where 

each fly laid their eggs, and each bar represents the predicted model fit for a linear 

mixed-effects model adjusted for zero-inflated data (Zuur 2009). I found significant 

differences from our cold selected, low-density treatment in relation to temperature (P < 

0.001) and when compared to flies from the hot selection lines at 25°C for both low (P = 

0.024) and high (P = 0.041) densities. I found significant differences from my hot 

selected, low-density treatment in relation to temperature (P < 0.001), but did not find 

any significant differences due to competition (P = 0.79).                     
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Table 3.1. Results from a linear mixed-effects model adjusted for zero-inflated data for 

number of eggs laid by a fly in a patch that differed in temperature. Treatment groups 

differed in the number of female flies (4 or 15) and whether the isofemale line was 

created from flies found in a high latitude environment (Vermont) or low latitude 

(Southern Indiana). I found significant differences from our low latitude, low-density 

treatment in relation to temperature and high latitude, high-density, but did not find a 

significant difference with low latitude, high-density or high latitude, high-density. 

 

 Estimate SE P 

Intercept                  

High-Density                 

High Latitude  

High Latitude High-Density   

25°C                         

High-Density:25°C        

High Latitude:25°C        

High Latitude High-Density:25°C        

-2.5267    

1.4465    

1.1765    

3.1326   

2.9958    

-1.0863   

-0.0469  

-2.6391   

1.0265  

1.1582  

1.1961 

1.0672   

1.0247    

1.1563   

1.1859    

1.0635   

0.0138 

0.2117 

0.3253 

0.0033 

0.0035  

0.3475    

0.9684    

0.0131 
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Table 3.2. Results from a linear mixed-effects model adjusted for zero-inflated data for 

number of eggs laid by a fly in a patch that differed in temperature. All flies were from 

isofemale lines collected from the same natural, high latitude environment (Vermont) and 

only differed in the number of female flies (4 or 15). I found significant differences from 

my low-density treatment in relation to temperature and amount of competition from 

adult flies. 

 Estimate SE P 

Intercept                  

High-Density                   

25°C                  

High-Density:25°C    

 -1.341 

1.952 

2.949 

-2.593 

0.620 

0.684 

0.597 

0.661 

0.0305 

0.0043 

P < 0.001 

P < 0.001 
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Table 3.3. Results from a linear mixed-effects model adjusted for zero-inflated data for 

number of eggs laid by a fly in a patch that differed in temperature. Treatment groups 

differed in the number of female flies (4 or 15) and whether the isofemale line was 

created from artificially selected flies that were allowed to evolve in either a constant 

cold environment (16°C) or a hot environment (25°C). I found significant differences 

from our cold selected, low-density treatment in relation to temperature but did not find a 

significant difference due to competition alone. 

 

 Estimate SE P 

Intercept                    

High-Density                

Hot Selection  

Hot Selection High-Density   

25°C                           

High-Density:25°C         

Hot Selection:25°C          

Hot Selection High-Density:25°C        

-1.046       

.301       

.845       

0.824       

2.859       

-0.232       

-1.424       

-1.291       

0.571    

0.742    

0.704     

0.696    

0.526     

0.675    

0.633    

0.631 

0.067 

0.685 

0.230 

0.236 

P<0.001 

0.731 

0.024 

0.041 
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Table 3.4. Results from a linear mixed-effects model adjusted for zero-inflated data for 

number of eggs laid by a fly in a patch that differed in temperature. All flies were from 

isofemale lines evolved in a hot environment (25°C) and only differed in the number of 

female flies (4 or 15). I found significant differences from my hot selected, low-density 

treatment in relation to temperature but did not find any significant differences due to 

competition.                      

 Estimate SE P 

Intercept                  

High-Density                   

25°C                  

High-Density:25°C    

 -0.2268 

-0.00854 

1.43508 

0.13353 

 

0.43700 

0.59319 

0.35187 

0.49461 

0.60 

0.99 

P < 0.001 

0.79 
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CHAPTER 4 

SPACE, FOOD, OR TEMPERATURE? EVALUATING IMPORTANCE OF ABIOTIC 

FACTORS WHEN FLIES CHOOSE OVIPOSITION SITES FOR THEIR YOUNG 
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Chapter 4: Space, Food, or Temperature? Evaluating importance of abiotic factors 

when flies choose oviposition sites for their young  

Summary 

How an organism thermoregulates depends on its own thermal physiology as well as 

the biotic and abiotic factors within its community. Therefore, we need models that 

integrate factors such as competition, food quality, and habitat size when predicting 

the body temperatures of animals. Such a model should consider how microhabitats 

limit rates of development, survivorship, and fecundity. I developed and tested a 

thermal game model of how flies should choose to oviposit their eggs. In this model, 

flies compete to lay their eggs in patches that vary in temperature, food quality, and 

space. I predicted that flies should initially lay their eggs in thermally optimal 

patches but switch to using both patches as competition increases. Additionally, flies 

in patches that are smaller or of lower food quality, should more readily switch to 

using patches that are thermally, suboptimal for development under competition. 

For a given density of competitors, flies laid more eggs in cooler patches when food 

quality was better. This behavior conflicted with a game theoretical model that 

predicted flies should continue to lay in warmer patches even at high densities of 

competitors. Competition did not alter how flies chose to lay their eggs in patches 

that varied in size. Further, flies preferred to lay their eggs in thermally poor 

patches when a large amount of space was available and preferred to lay their eggs 

in thermally optimal patches when the patches were smaller. Consequently, flies did 

not behave in accordance with my apriori predictions.  
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Introduction 

Organisms, particularly ectotherms, engage in behavioral thermoregulation to maintain 

their preferred body temperature. The current theory of thermoregulation predicts how an 

organism should thermoregulate within its environment by calculating the costs and 

benefits an organism occurs due to the availability and time spent in patches that differ in 

temperature from the organisms optimal temperature (Huey and Slatkin 1976).  However, 

organisms often thermoregulate much more accurately than predicted when preferred 

microclimates are rare (Blouin-Demers and Nadeau 2005).  This mismatch might stem 

from competition for non-thermal resources that interact with body temperature to 

determine an animal’s performance (Beitinger et al. 1975, Magnuson et al. 1979, 

Medvick et al. 1981, Seebacher and Grigg 2000, Stapley 2006, Rusch and Angilletta 

2017). In addition to competition, one’s ability to thermoregulate depends on 

environmental conditions, such as food availability (Riechert and Tracy 1975, Wildhaber 

2001, Kessler and Lampert 2004, Sims et al. 2006), food quality (Underwood 1991, 

Pulgar et al. 2003) and  size and frequency of different microclimates (Huey 1974, 

Withers and Campbell 1985, Tracy and Christian 1986, Huey 1991, Sears 2006, Sears 

and Angilletta 2015). 

The size of a food patch can alter the amount of competition between organisms 

within the patch. With greater levels of density comes a greater level of competition for 

resources. As a population grows, resources such as food and space become limiting. 

Consequently, as density increases, individuals should shift their use of resources in ways 

that maximize their share of limiting resources (Maynard Smith 1976, Brown 1988, 

Brown et al. 1997, Brown 1998, Sih 1998). Consider an environment where food and 
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heat are disbursed across patches. If food becomes limited, the preferred temperature of 

the organism may change as organisms will begin to prefer cooler temperatures to reduce 

energetic costs (Magnuson et al. 1979, Crowder and Magnuson 1983). Given that 

organisms need to compete for both food and temperature resources, how they engage in 

balancing these needs will impact how they choose to spend time in patches that vary in 

temperature and food (Hughes and Grand 2000). 

The idea that as competition increases, organisms should change how they exploit 

resources from their environment, offers some unique game theoretical predictions about 

how organisms should orient themselves within their environment. Fretwell and Lucas 

(1969b) developed a formula to determine the suitability of a patch by finding the ideal 

free distribution of a group of organisms in a patch as a product of the quality of the patch 

and competition for resources in the patch resulting from density of competitors. 

Additionally, Lancaster and Downes (2004) developed a model that analyzes how 

organisms exploit resources in spatially diverse patches. These models can further be 

modified to account for how organisms should utilize patches that have both finite and 

non-finite resources such as temperature. For example, Hughes and Grand’s model 

(2000) considers how organisms should exploit patches given the resources in each patch 

and the competition for these resources.  

A model by Hughes’ and Grand (2000) predicts that organisms with access to 

more food should prefer warmer patches. This novel prediction comes from the 

interactive effect of food and temperature on growth rate. As organisms begin to compete 

more strongly for food, they should prefer cooler temperatures in order to decrease their 

metabolism and growth rate as they now have fewer resources to fuel their development 
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and maintenance that occurs at high temperatures (Hughes and Grand 2000). Although 

the model has rarely been tested directly, we know that temperature and food influence 

patch use. For example, zooplankton distribute themselves, in accordance with the ideal 

free distribution, within water columns to optimize their ability to utilize patches that 

differ in food and thermal quality (Lampert et al. 2003, Lampert 2005). Similar decision 

making trade-offs between patches that vary temperature and food availability have been 

found in beetles (Halliday and Blouin-Demers 2014) as well as predicted in bluegills 

(Wildhaber 2001), spiders (Riechert and Tracy 1975), and sharks (Sims 2003, Sims et al. 

2006). Additionally, organisms are known to see various fitness benefits and costs 

associated with the type and timing of their diet (Raubenheimer and Simpson 1999, 

David et al. 2009, Raubenheimer et al. 2009, Meunier et al. 2017). Further, these 

different diets can affect their thermoregulation strategies (Underwood 1991, Pulgar et al. 

2003). Consequently, without knowing accurate trends of how these abiotic and biotic 

factors influence each other we are unable to adequately model how organisms 

thermoregulate across habitat types.  

In this chapter, I aim to determine how the size of food patches interacts with 

temperature and density to affect the oviposition preference of flies, Drosophila 

melanogaster. When developing evolutionary game models, or predicting how organisms 

will orient themselves within their environment, we need to be able to use 

thermoregulation models in conjunction with niche dynamics to model habitat benefits. 

By bringing in space use and food quality to my earlier work (Chapters 2 and 3), we will 

have a much better conceptual understanding of how organisms thermoregulate in nature. 

Fruit flies are a model system to test how thermoregulation differs across habitat types. 
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since in nature, larval fly communities can consist of a single piece of rotting fruit filled 

with various densities of fruit fly larvae. Consequently, at least relative to other species, 

we can recreate a close approximation of a community that a fruit fly offspring might 

experience in nature inside of a petri dish in the lab.  

I created a game theoretical model of oviposition behavior (Chapter 2) that can be 

used to predict how organisms should lay their eggs in habitats that vary in food quality 

and size. I then empirically tested this model by allowing flies to lay eggs in patches that 

varied in either food quality or size. I predict that habitats that are of lower thermal 

quality for development, but higher nutritional quality will be more appealing to flies as 

competition increases than patches with high thermal quality and lower nutritional 

quality. Additionally, I predict that flies experiencing high levels of competition will 

more readily switch to less thermally beneficial patches when the patch is smaller in size. 

 

Methods 

Maintenance of Drosophila melanogaster 

I used flies descended from females collected in Beasley Orchid, Indiana, during the fall 

of 2011. Twelve isofemale lines were created by mating a single adult virgin female fly 

with a male sibling for two generations (Cooper et al. 2014). By using isofemale lines, I 

controlled for genetic effects on behavior. I maintained the isofemale lines on a standard 

diet (recipe of the Bloomington Stock Center, Bloomington, IN) in 25 x 90 mm vials 

(Genesee Scientific, San Diego, CA) inside of an incubator (Percival Scientific, Perry, 

IA) at a temperature of 21°C and a light cycle of 12:12 L:D. Flies were transferred to new 

vials with fresh food approximately every three weeks.  
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Females in our experiments were raised at controlled density for three 

generations. Two males and two females from the same isofemale line were added to a 

vial for 48 hours. When the next generation of flies emerged in these vials, I transferred 

two males and two females to a new vial for 48 hours. I repeated this protocol for three 

generations. Adult females from the third generation were used in the experiments 

described below.  

 

 

Parameterize the model 

I used data collected from flies in the lab to parameterize of my model. To estimate the 

fitness of flies at each combination of density and temperature, I measured the 

survivorship, fecundity, and developmental time. To obtain flies for my experiment, I 

allowed females from 12 isofemale lines to lay eggs in petri dishes with a grape agar and 

yeast solution for eight hours at 23°C. I then transferred either 1, 5, 15, or 50 eggs to new 

petri dishes containing the grape agar and yeast. In the food quality experiment, the grape 

agar in each petri dish was mixed with either 0.033g of yeast (low-food quality 

environment) or 0.33g of yeast (high-food quality environment) while holding the 

circumference of the petri dish constant at 35mm. For the space availability experiment, I 

used either a 35mm (low-space) or 50mm (high-space) circumference petri dish while 

holding the amount of yeast present in each dish constant at 0.033g. These petri dish were 

kept an incubator at either 16°, 20°, 25°, or 30°C with a 12:12 light cycle. I measured 

survivorship by counting the number of adults that survived to adulthood.  
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To measure fecundity, I outbred adult female flies from my treatments with male 

flies from a control line (Cantonese, Bloomington Stock Center, Bloomington, IN) to 

capture only variation in fecundity because egg production, not sperm production, is 

typically the limiting factor for population growth. Additionally, since I was concerned 

about the effect of larval developmental temperature and adult flies would be able to 

freely move to new patches that varied in temperature, I moved all vials to a common 

temperature of 20°C for my fecundity experiments. I placed each pair of flies into a vial 

(25 x 95 cm) containing a standard cornmeal-yeast medium for 4 days in an incubator at 

20°C with a 12:12 light cycle. I then removed the adult breeding pair and allowed any 

eggs laid by these fly pairs to develop to adulthood. From the adult flies that emerged 

within each of these vials, I again recorded developmental time (egg to adult) to the 

nearest day and counted the total number of flies emerged (fecundity). 

I estimated how density and temperature related to fecundity using a generalized 

linear model while I estimated survivorship using a logistic regression curve. I then used  

Akaike information criterion (AIC) to pick the best polynomial fit for each curve in R 

(Version 3.3.1 R-Core-Team 2016) (Zuur 2009). I then developed additional models 

based on predictions of how one might expect the fitness of flies to vary under different 

circumstances. I used the best fit curve developed from the raw parameters to find an 

initial curve which could explain how survivorship and fecundity change with increasing 

density. Furthermore, I hypothesized additional parameter data that was in line with 

findings on fitness data to create additional models regarding how you would expect flies 

to behave if their survival parameters were slightly altered. To create this additional 

parameter data, I also increased or decreased how quickly survivorship changed under 
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increased competition since in nature you might have conditions changing within these 

patches causing survivorship to differ from what we measured. For example, resources 

might be replenished within these patches, which would cause survivorship to decline 

more slowly. Alternatively, predators might be attracted to higher densities of prey, 

which would cause survivorship to decline more quickly and possibly at an exponential 

rate. 

 

Experimental tests of the model 

I used the same Plexiglas thermal arena for the experimental tests of the model as 

in Chapter 2 (Figure 2.3). I used the thermal arenas to test where flies chose to lay their 

eggs under different intensities of competition. In each arena, a fly could choose between 

a petri dish at a preferred temperature of 25°C and a petri dish at 20°C. For each 

isofemale line, I ran trials in which either 4 or 15 adult females were in an arena at a time. 

Additionally, I simultaneously ran the same isofemale line for both cross-comparison 

treatment groups when testing the flies in the arenas. For the food quality experiments, I 

used petri dishes with a 35mm circumference, but varied the amount of yeast in the agar 

so that the low-food quality experiment used 0.033g of yeast and the high-food quality 

experiment used 0.33g of yeast (Figure 4.1). For the experiments looking at space 

availability, I used 0.033g of yeast in each petri dish, but varied the size of the petri dish 

so that the low-space experiments used a petri dish with a circumference of 35mm and 

the high-space used a petri dish with a circumference of 50mm (Figure 4.2).  After four 

hours, I removed the flies and froze the petri dishes from each side of the arena. Later, 
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these dishes were thawed, and the number of eggs was counted under a dissecting scope 

(Zeiss Stemi 2000-C) at each temperature.  

I performed a linear mixed-effects model adjusted for zero-inflated data (Zuur 

2009) using the glmmADMB package (Fournier et al. 2012) in R (Version 3.2.3, R-Core-

Team 2016) to determine whether the number of eggs laid in each patch in each treatment 

type differed. The fixed factors in my model were temperature and density/treatment. I 

used trial as a random factor to compare eggs laid in the two sides of the arena while 

accounting for variation in the number of eggs among trials. The experimental date and 

isofemale line was dropped from my model due to poor fit using AIC values.  

 

Results 

I modeled the fitness of flies in different environments using data on survivorship and 

fecundity. Survival of flies at different densities and temperatures depended on food 

quality and space availability (see Figures 4.3-4.5). Survivorship at different temperatures 

was similar for flies in low-food and low-space environments. In high-food quality 

environments, survivorship was lower in 25°C patches than 20°C patches. In large 

patches, survivorship was highest at low densities in 20°C patches. Fecundity of flies also 

changed with both density and developmental temperature depending on food quality and 

space availability (see Figures 4.6-4.8). In low-space and low-food environments, 

fecundity was highest in 25°C patches at low-density. While in high-food environments, 

flies had a fairly constant fecundity across densities in patches at 20°C, while the highest 

fecundity in 25°C patches was at the lowest and highest densities. In large patches, flies 
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had higher overall fecundity in 25°C patches and saw a decrease in fecundity with an 

increase in density.  

My game theoretical models illustrate how competition affects the fitness of fruit 

flies. The model predicts that under scenarios where survivorship in hot patches falls 

quickly, fruit flies should lay eggs in the colder patch at lower density levels. In scenarios 

where survivorship in cold patches falls quickly, fruit flies should lay fewer total eggs in 

the cold patch. Flies in a low-food quality environment are also expected to initially lay 

their eggs in the warm patch and then spread their effort to the cold patch as the density 

of eggs in the hot patch continues to increase (Figure 4.9). However, flies in the high-

food quality environment are expected to only lay their eggs in the hot patch under most 

survivorship scenarios (Figure 4.10). The only time that flies in the high-food 

environment are expected to use the cold patch at all is when there is an exponential 

decline of survivorship in the hot patch. The models for the flies in both high (Figure 

4.11) and low-space (Figure 4.9) environments, predicts that flies should initially lay 

eggs in the hot patch than shift to the cold patch as the density of eggs increases. 

Additionally, the model predicts that flies in the high-space environment should shift 

their effort to the cold patch when there are fewer total eggs than the flies in the low-

space environment. 

I found that temperature and competition both affected patch choice in high-food 

environments, but only temperature affected patch choice in low-food quality 

environments. Low densities of flies laid eggs in high-food quality patches almost 

exclusively at 25°C (P = 0.02) while high densities of flies laid more eggs at 20°C than 

flies at low-density (P =0.03). I did not find any significant differences in the amount of 
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eggs laid by low-density flies between low and high-food quality patches (Table 4.1). 

Flies at low-density laid eggs in low-food quality patches almost exclusively at 25°C (P = 

0.005) and did not differ in the amount of eggs laid at high densities (P = 0.49) (Figure 

4.12, Table 4.2). Flies in low-food quality environments did not behave differently when 

laying eggs at low vs high densities. At low-density, flies in low-food quality 

environments laid a median of 1.5 eggs at 25°C and 0 eggs at 20°C. At high-density, low-

food quality flies laid a median of 2.6 eggs at 25°C and still 0 eggs at 20°C. Flies in high-

food quality environments behaved differently when laying eggs at low vs high densities. 

At low-density, high-food quality flies laid a median of 0.5 eggs at 25°C but 0 eggs at 

20°C. At high-density, high-food quality flies laid a median of 0.5 eggs at 20°C and 3 

eggs at 25°C.   

In patches that vary in size, I found that competition did not alter flies’ preference 

for where they chose to lay their eggs, however, flies in small patches preferred to lay 

their eggs in warm environments while flies in large patches preferred to lay their eggs in 

cold environments. Low densities of flies in 35mm patches laid eggs almost exclusively 

at 25°C (P < 0.001) and did not significantly change their egg laying behavior under 

increased competition (P =0.34). I found that flies in 50mm patches laid significantly 

more eggs in the 20°C patches than flies in 35mm patches at both low-density (P=0.006) 

and high-density (P=0.004) (Table 4.3). Low densities of flies in 50mm patches laid eggs 

almost exclusively at 20°C (P = 0.003), but did not change their behavior at high-density 

(P =0.94) (Figure 4.13, Table 4.4). Flies in low-space environments did not behave 

differently when laying eggs at low vs high densities. At low-density, flies in low-space 

environments laid a median of 2 eggs at 25°C and 0 eggs at 20°C. At high-density, low-
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space flies laid a median of 1 egg at 25°C and still 1 egg at 20°C. Flies in high-space 

availability environments did not behave differently when laying eggs at low vs high 

densities. At low-density, flies in high-space environments laid a median of 1 egg at 25°C 

and 2 eggs at 20°C. At high-density, high-space flies laid a median of 1 egg at 25°C and 

still 3 eggs at 20°C. 

Neither the flies in the food quality or space availability treatments followed my 

models’ predictions. Flies in high-food quality environments had a density effect while 

the flies in the low-food quality environment did not. These findings are completely 

opposite from the models’ predictions that flies in low-food quality environments should 

see a density effect, but not those flies in high-food quality environments. While my 

findings for space use were also not in line with my predictions. Neither the flies in the 

low-space nor high-space availability environments saw a density effect. In fact, flies in 

the high-space environment showed a preference for the patch that was the sub-optimal 

temperature for their young.  

 

Discussion 

I found the opposite of what I expected in patches that varied in food quality. I found that 

organisms were likely to disperse their effort between both patches in the high-food 

environment as opposed to the low-food quality environment. However, the density of 

the eggs in my low-food quality patches also never got high enough to warrant a change 

in behavior according to my model. Consequently, flies laying their eggs predominantly 

in the cold patch was the optimal behavior in the low-food quality patches. While in the 

high-food quality patches, the flies behaved sub-optimally by spreading their effort out to 
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both the warm and cold patch as opposed to laying only in the warm patch as predicted 

by the model. In nature, food resources typically vary throughout the environment. This 

variation in food resources affects how organisms should utilize their environment. In 

Hughes’ and Grand’s model (2000), which makes predictions based on which patch 

offers the highest potential growth rate, they found that in high-food quality patches 

organisms should prefer warmer temperatures as opposed to organisms in low-food 

quality patches where organisms should show a preference for colder temperatures. This 

prediction contrasts with my findings, where flies switched to colder patches faster in 

high-food quality environments than in low-food quality environments.  

These results might be due to flies viewing a high-food environment as very 

rewarding and consequently immediately lay their eggs despite potential other negatives 

such as temperature. If food is the primary driver of choice within a habitat, a habitat that 

is of very high-food quality may be too rewarding for the flies to bypass and flies may 

choose to lay their eggs in the high-food quality patch regardless of temperature or any 

other factor. Previous work has shown that flies do actively probe and strongly choose 

sites that are bitter smelling or plain over sites that are high in sucrose (Yang et al. 

2008b). Additionally, flies have been shown to have a strong preference for ovipositing 

on acetic acid rich media despite a strong behavioral avoidance of the same media when 

not engaging in oviposition behavior (Joseph et al. 2009). This strong preference for 

certain odors could explain why flies in the high yeast treatment did not change their 

strategy as competition increased.  

Flies develop much slower at cold temperatures (Bennett 1987, Frazier et al. 

2006). Consequently, flies may need a larger food resource available to them for them to 
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choose colder patches for their young. Since in cold patches, that food supply is going to 

have to last for a longer period of time than a food patch in a hot environment. In a patch 

with a small quantity of food available, flies need a hotter patch so that they develop 

faster so they can reach a stage where they can more readily move before food runs out in 

their patch. This conclusion is in line with the temperature size rule that states organisms 

grow at a much quicker, albeit less efficient rate, in hotter environments (Atkinson 1994, 

1995, Noach et al. 1996, Bochdanovits et al. 2003). Because faster growth requires more 

food, flies may be more sensitive to increasing density at high temperature. Although 

organisms need more food per day to grow fast at higher temperatures, they do not need 

the food to last as long since they will also develop quicker and be able to move to a new 

patch. Consequently, in patches of low-food quality, flies might have maintained a strong 

preference for the warm patch so that offspring could develop quickly and move to a 

patch of higher quality. While in a patch of high-food quality, flies might not have been 

as concerned with temperature as in a low-food quality patch, despite developmental 

effects of temperature, since flies will have a food supply that should last much longer.  

Flies may have switched to cooler patches in high-food environments more 

readily than low-food environments due to the way different foods and food qualities 

covary with temperature in their natural habitat. If certain temperatures are more likely to 

contain food with high nutritional content in their habitat, flies may assume that the food 

quality of a patch may vary in the future. At warmer temperatures, other organisms, such 

as yeast, also have a faster growth and reproduction rate (White and Munns 1951, Merritt 

1966). Therefore, a warm environment that contains some yeast, may actually have more 

yeast available later, than a colder patch that initially starts with more yeast. Further my 
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findings that flies are more willing to use a cold patch when it is also a of high-food 

quality is consistent with results found in red flour beetles that showed they had a higher 

preference for food than temperature (Halliday and Blouin-Demers 2014). My flies’ 

willingness to switch to cold patches in high-food quality treatments may have simply 

been the result of flies simply basing their choice on seeing a patch that had high-food 

quality. This finding is also consistent with a previous finding where ants only switched 

to cold temperature patches if the patches were high enough in food quality (Lachlan and 

Latty 2016).  

Adult flies may also be attracted to the high-food quality patch purely for their 

own selfish reasons. The additional food quality is not only beneficial to the fly larvae, 

but also to the adult flies as the additional yeast has a strong odor and can be consumed 

by the adult flies (Becher et al. 2012, Marshall 2015) (Figure 4.1). Consequently, fruit 

flies are very attracted to yeast and so the fruit flies might just be spending 

disproportionate amounts of time in the high-food quality patch for themselves and not 

for their young. Consequently, fruit flies may lay lots of eggs in the thermally poor, but 

high-food quality patch simply because they are spending time in the patch to consume 

food for themselves. 

Larger areas likely contain more heterogeneous microclimates. Consequently, fly 

larvae might have greater motility and access to more temperatures in a large patch than 

in a small patch. Organisms that live in patchier, more thermally heterogenetic patches 

are more capable of thermoregulating than organisms in more uniform environments as 

organisms are able to utilize different microclimates (Tracy and Christian 1986, Huey 

1991, Sears and Angilletta 2015). If flies assume that there more microhabitats and 
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greater mobility of their young, fruit flies may assume that once their larvae will be able 

to move to a more thermally beneficial portion of the habitat regardless of where they are 

initially laid. In fact, fly larvae have shown a strong ability to thermoregulate within a 

small habitat (Wang et al. 2008). Therefore, flies may be expecting their larvae to better 

utilize the habitats within the larger patches. Further since these patches are cooler, the 

flies may be more confident that temperatures will not become lethal for their larvae 

(Feder et al. 2000). Further, it has been found that interference competitive for food 

between larvae has a large influence on population size (Gilpin 1974). If selection is 

primarily taking place in the larvae, then it would make sense that the adult flies are 

simply choosing sites that enable their larvae to have the most options available to them. 

Consequently, my fruit flies may have seen the larger patches of food as potentially 

having more microhabitats and thus being a better habitat for their young regardless of 

temperature. 

While my results for the low-food quality and low-space availability, line up with 

each other and one of my previous studies (Chapter 3) using that flies from that same 

population, the results do not match up with the results from my first study (Chapter 2). 

In the first experiment, the flies changed their behavior as competition increased while 

the flies in the second and third experiment did not change their behavior under increased 

competition the second time. These differences in results could be due to a couple of 

reasons. The timing of the experiments and isofemale lines from both the Chapter 3 and 4 

experiments were the same. However, the experiments from Chapter 2 were carried out 

almost two years prior and with different isofemale lines. Consequently, there are 

different fly lines used in the two experiments. These isofemale lines may have differed 
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from the earlier isofemale lines that I previously used in how they respond to temperature 

or competition differences. Further, these isofemale lines may have just differed in their 

food or humidity preferences which may have caused a conflating factor that was 

unaccounted for. As a result, I might not have been able to pick up some of the same 

differences that I could with the earlier experiment.  

A potential logistical issue is also that there may just not have been adequate 

space between patches in high-space treatment. I used the same size arena for both the 

large and small patches. Consequently, there was less distance between the optimal and 

suboptimal thermal patches in the arena with large patch size (Figure 4.2). Therefore, it is 

possible that our patches within our thermal arena were too close together for the adults 

to recognize them as distinct patches that maggots could not move between. 

Temperatures vary on a very fine scale in nature (Sears et al. 2011, Potter et al. 2013, 

Ficetola et al. 2018), however, these small patches may not remain at a stable temperature 

for an extended period of time especially if they are that close to a patch of another 

temperature. If the temperature of these patches varies too much, flies should just lay 

randomly since the current temperature of the patch may not be a good predictor of future 

temperatures (Huey 1991, Feder et al. 1997b, Kingsolver and Huey 1998). Further, 

maggots may also be able to move between the patches themselves when they are close 

enough together. If the patches were close enough together, it is possible that they were 

simply thought of as patches that larvae could alternate between to obtain benefits from 

both patches similar to how zooplankton will shuffle between patches that vary in 

resources (Lampert et al. 2003, Lampert 2005). While there is no food or beneficial 

substrate between the two patches, the high-space patches are closer together than the 
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low-space patches which may allow for the maggots to move between the patches. 

Therefore, it could be beneficial for flies to lay their eggs in cold patches, since that patch 

may be less likely to get as lethally hot temperatures in the next 24 hours - despite the 

developmental cost of being at a lower temperature as an egg. Then once the fly enters 

the larval stage, it can move between the patches to maximize its thermal benefits. 

Consequently, this brings us back to the idea that selection maybe taking place entirely in 

the larvae.  

 There is still much we do not understand about how factors such as temperature, 

competition, space, and food influences one and another. However, it is clear that we 

need to be more capable of predicting how organisms respond to competition for 

resources in patchy environments. Empirically examining how biotic and abiotic factors 

influence niche dynamics can offer surprising results that incorporate numerous different 

factors that may not even be initially considered when developing complex game 

theoretical models. However, it is important that we continue to make quantitative 

predictions and empirically check these same predictions so that we can better understand 

how these animals behave and produce better evolutionary game models for them in the 

future.  
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Figure 4.1. My thermal arena consisted of a Plexiglas container that consisted of 6 

independent lanes by running copper tubing below small aluminum plates. Each lane 

within the arena had two aluminum plates on opposite ends of the lane where I could 

place an agar-filled petri dish with a drop of yeast. Flies could fly and lay their eggs in 

either the 16°C petri dish or the 25°C petri dish.  Food quality differed between 

treatments as a function of the quantity of yeast available in each patch between the low-

food quality treatment (top) and high-food quality treatment (bottom).  
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Figure 4.2. My thermal arena consisted of a Plexiglas container that consisted of 6 

independent lanes by running copper tubing below small aluminum plates. Each lane 

within the arena had two aluminum plates on opposite ends of the lane where I could 

place an agar-filled petri dish with a drop of yeast. Flies could fly and lay their eggs in 

either the 16°C petri dish or the 25°C petri dish. Flies in the low-space treatment chose 

between 35mm diameter patches (top) while flies in the large space treatment chose 

between 50mm diameter patches (bottom). The total amount of yeast present in patches 

was constant between treatments.  
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Figure 4.3. To parameterize my game theoretical model, I used survivorship data from 

12 isofemale lines created from wild caught flies collected in Indiana. I transferred either 

1, 5, 15, or 50 eggs to a 35mm petri dish (low-space) with a low yeast to grape agar ratio 

and maintained the flies in an incubator kept at either 20°C (black) or 25°C (red) with a 

12:12 light cycle. I measured survivorship by counting the proportion of adults that 

survived to adulthood. Each dot represents data from one isofemale line. For densities 

kept at either one or five individuals, the number of overlaid dots at each proportion is 

denoted with a number above the dot. Each bar represents the predicted model fit from 

the logistic regression curve. While survivorship was similar for both temperatures at 

low-density, survivorship dropped off much quicker as density increased for flies that 

were kept at 25°C. 
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Figure 4.4. To parameterize my game theoretical model, I used survivorship data from 

12 isofemale lines created from wild caught flies collected in Indiana. I transferred either 

1, 5, 15, or 50 eggs to a 35 mm petri dish with a high yeast to grape agar ratio and 

maintained the flies in an incubator kept at either 20°C (black) or 25°C (red) with a 12:12 

light cycle. I then measured survivorship by counting the proportion of adults that 

survived to adulthood. Each dot represents data from one isofemale line. For densities 

kept at either one or five individuals, the number of overlaid dots at each proportion is 

denoted with a number above the dot. Each bar represents the predicted model fit from 

the logistic regression curve. Flies kept at 20°C had higher survivorship than flies kept at 

25°C at all densities. Flies kept at 20°C also had a slight increase in their survivorship as 

density increased while flies kept at 25°C saw a decline in their survivorship as density 

increased. 
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Figure 4.5. To parameterize my game theoretical model, I used survivorship data from 

12 isofemale lines created from wild caught flies collected in Indiana. I transferred either 

1, 5, 15, or 50 eggs to a 50mm petri dish with 0.033g of yeast and maintained the flies in 

an incubator kept at either 20°C (black) or 25°C (red) with a 12:12 light cycle. I 

measured survivorship by counting the proportion of adults that survived to adulthood. 

Each dot represents data from one isofemale line. For densities kept at either one or five 

individuals, the number of overlaid dots at each proportion is denoted with a number 

above the dot. Each bar represents the predicted model fit from the logistic regression 

curve.  Flies kept at 20°C had higher survivorship than flies kept at 25°C at all densities. 

Flies at both temperatures saw a decline in their survivorship as density increased. 
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Figure 4.6. parameterize my game theoretical model, I used fecundity data from 12 

isofemale lines created from wild caught flies collected in Indiana. I transferred either 1, 

5, 15, or 50 eggs to a 35mm petri dish (low-space) with a low yeast to grape agar ratio 

and maintained the flies in an incubator kept at either 20°C (black) or 25°C (red) with a 

12:12 light cycle. I measured fecundity, by outbreeding adult female flies from my 

treatment trays with a male fly from a control line (Cantonese) for four days at a common 

temperature of 20°C and counting the total number of emerged flies from the vial. Each 

dot represents data from one female fly. Each bar represents the predicted model fit from 

the generalized linear model. The fecundity of flies at 25°C was higher at low densities, 

but decreased faster than the fecundity of flies at 20°C as densities increased, causing 

flies at 20°C to have a higher fecundity at high densities. 
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Figure 4.7. To parameterize my game theoretical model, I used fecundity data from 12 

isofemale lines created from wild caught flies collected in Indiana. I transferred either 1, 

5, 15, or 50 eggs to a 35 mm petri dish with a high yeast to grape agar ratio and 

maintained the flies in an incubator kept at either 20°C (black) or 25°C (red) with a 12:12 

light cycle. I measured fecundity, by outbreeding adult female flies from my treatment 

trays with a male fly from a control line (Cantonese) for four days at a common 

temperature of 20°C and counting the total number of emerged flies from the vial. Each 

dot represents data from one female fly. Each bar represents the predicted model fit from 

the generalized linear model. While fecundity was similar for both temperatures at high 

densities, fecundity of flies at 20°C was higher at lower densities. 



101 

 
Figure 4.8. To parameterize my game theoretical model, I used fecundity data from 12 

isofemale lines created from wild caught flies collected in Indiana. I transferred either 1, 

5, 15, or 50 eggs to a 50mm petri dish with 0.033g of yeast and maintained the flies in an 

incubator kept at either 20°C (black) or 25°C (red) with a 12:12 light cycle. I measured 

fecundity, by outbreeding adult female flies from my treatment trays with a male fly from 

a control line (Cantonese) for four days at a common temperature of 20°C and counting 

the total number of emerged flies from the vial.  Each dot represents data from one 

female fly. Each bar represents the predicted model fit from the generalized linear model. 

While fecundity was similar for both temperatures at high densities, fecundity of flies at 

25°C was higher at lower densities. 
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Figure 4.9.  My models predict that flies in a low-space and/or low-food quality 

environment should predominately lay their eggs in the warm patch as long as 

competition is low. As competition increases, flies should begin to lay more eggs in the 

cold patch especially if the rates or survival in the warm patch decline rapidly or if the 

flies in the cold patch experience only a slow decline in its survival rate under increased 

densities. The straight black line represents a trend line where the portion of eggs in each 

patch should be equal. The red line shows where I predict the flies to lay their eggs based 

on varying levels of survivorship if future fecundity and developmental time remain 

constant. The predicted model fit that most closely resembles the empirical data collected 

on fly fitness is denoted with a green apostrophe.   The average egg density laid in the 

empirical, low-density fly treatment is represented with a burgundy circle and the average 

egg density laid in the empirical, high-density fly treatment is represented with an olive 

circle.  
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Figure 4.10. My models predict that flies in high-food quality patches should 

predominately lay their eggs in the warm patch as long as competition is low or the rate 

of decline of survivorship in the warm patch is linear. However, if there is an exponential 

rate of decline of survivorship in the warm patch, flies should begin to lay more eggs in 

the cold patch or if the flies in the cold patch experience only a linear decline in its 

survival rate under increased densities. The straight black line represents a trend line 

where the portion of eggs in each patch should be equal. The red line shows where we 

predict the flies to lay their eggs based on varying levels of survivorship if future 

fecundity and developmental time remain constant. The predicted model fit that most 

closely resembles the empirical data collected on fly fitness is denoted with a green 

apostrophe.   The average egg density laid in the empirical, low-density fly treatment is 

represented with a burgundy circle and the average egg density laid in the empirical, 

high-density fly treatment is represented with an olive circle.  
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Figure 4.11. My models predict that flies in high-space environments should 

predominately lay their eggs in the warm patch as long as competition is low. As 

competition increases, flies should begin to lay more eggs in the cold patch especially if 

the rates or survival in the warm patch decline rapidly or if the flies in the cold patch 

experience only a slow decline in its survival rate under increased densities. The straight 

black line represents a trend line where the portion of eggs in each patch should be equal. 

The red line shows where we predict the flies to lay their eggs based on varying levels of 

survivorship if future fecundity and developmental time remain constant. The predicted 

model fit that most closely resembles the empirical data collected on fly fitness is denoted 

with a green apostrophe. The average egg density laid in the empirical, low-density fly 

treatment is represented with a burgundy circle and the average egg density laid in the 

empirical, high-density fly treatment is represented with an olive circle.  
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Figure 4.12. I added either 4 flies (low-density) or 15 flies (high-density) to each lane 

within a thermal arena. Flies then chose to oviposit their eggs in a 20°C patch (black) or a 

25°C patch (red) within the thermal arena. Each dot in the graph represents the raw data 

for where flies chose to lay their eggs, while the triangles represents the median of where 

each fly laid their eggs, and each bar represents the predicted model fit for a linear 

mixed-effects model adjusted for zero-inflated data (Zuur 2009). I found significant 

differences from our high-food quality, low-density treatment in relation to temperature 

(P = 0.018) and due to increased competition from adult flies in the high-food patch (P = 

0.029). I found significant differences from my low-food quality, low-density treatment 

in relation to temperature (P = 0.005), but did not find a significant difference due to 

competition (P = 0.49). 
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Figure 4.13. I added either 4 flies (low-density) or 15 flies (high-density) to each lane 

within a thermal arena. Flies then chose to oviposit their eggs in a 20°C patch (black) or a 

25°C patch (red) within the thermal arena. Each dot in the graph represents the raw data 

for where flies chose to lay their eggs, while the triangles represents the median of where 

each fly laid their eggs, and each bar represents the predicted model fit for a linear 

mixed-effects model adjusted for zero-inflated data (Zuur 2009). I found significant 

differences from our 35mm, low-density treatment in relation to temperature (P <0.0001) 

and plate size at low densities (P = 0.006) and high densities (P = 0.004). I found 

significant differences from my 50mm, low-density treatment in relation to temperature 

(P = 0.003), but did not find a significant difference due to competition (P = 0.942) in the 

50mm patches. 
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Table 4.1. Results from a linear mixed-effects model adjusted for zero-inflated data for 

number of eggs laid by an isofemale fly line in patches that differed in temperature. 

Treatment groups differed in the number of female flies (4 or 15) and whether the patch 

was rich in food quality (high yeast) or poor in food quality (low yeast). I found 

significant differences from our high-food quality, low-density treatment in relation to 

temperature and amount of competition from adult flies in the high-food patch, but did 

not find a significant difference due to lowering the food quality of the patch. 

 

 Estimate SE P 

Intercept                     

High-Density            

Low-Food Quality  

Low-Food Quality High-Density              

25°C                      

High-Density:25°C           

Low-Food Quality:25°C             

Low-Food Quality High-Density:25°C          

-2.335     

2.076    

-0.212       

0.659      

1.844     

-0.640       

1.046      

0.523       

0.845    

0.952     

1.364    

1.075     

0.777     

0.844    

1.288     

0.984     

0.0058  

0.0292 

0.8763    

0.5399    

0.0177 

0.4483    

0.4166    

0.5950   
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Table 4.2. Results from a linear mixed-effects model adjusted for zero-inflated data for 

number of eggs laid by an isofemale fly line in patches that differed in temperature. All 

patch sizes were poor in food quality (low yeast) and only differed in the number of 

female flies (4 or 15). I found significant differences from my low-food quality, low-

density treatment in relation to temperature, but did not find a significant difference due 

to competition. 

 Estimate SE P 

Intercept                  

High-Density                   

25°C                  

High-Density:25°C    

 -2.487 

0,867 

2.890 

-0.523 

1.081 

1.259 

1.027 

1.192 

0.0215 

0.4914 

0.0049 

0.6606 
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Table 4.3. Results from a linear mixed-effects model adjusted for zero-inflated data for 

number of eggs laid by an isofemale fly line in patches that differed in temperature. 

Treatment groups differed in the number of female flies (4 or 15) and whether the size of 

the patch was either 50mm or 35mm in diameter. I found significant differences from our 

35mm, low-density treatment in relation to temperature and plate size, but did not find a 

significant difference due to increased competition in the 35mm patches. 

 

 Estimate SE P 

Intercept                        

High-Density                

50mm  

50mm High-Density            

25°C                             

High-Density:25°C       

50mm:25°C        

50mm High-Density:25°C       

-0.599        

0.565    

1.500       

1.550       

1.653       

-1.073      

-2.822       

-2.242       

0.442    

0.589    

0.541     

0.540     

0.364     

0.494    

0.514    

0.462    

0.1750 

0.3376 

0.0056 

0.0041 

P < 0.001 

0.0298 

P < 0.001 

P < 0.001 
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Table 4.4. Results from a linear mixed-effects model adjusted for zero-inflated data for 

number of eggs laid by an isofemale fly line in patches that differed in temperature. All 

patch sizes were 50mm in diameter and treatment groups only differed in the number of 

female flies (4 or 15). I found significant differences from my 50mm, low-density 

treatment in relation to temperature, but did not find a significant difference due to 

competition in the 50mm patches. 

 Estimate SE P 

Intercept                  

High-Density                   

25°C                  

High-Density:25°C    

 0.974 

0.028 

-1.156 

0.573 

0.287 

0.388 

0.392 

0.485 

0.0007 

0.9424 

0.0032 

0.2369 

 

 



111 

CHAPTER 5 

DIMINISHING RETURNS LIMIT ENERGETIC COSTS OF CLIMATE CHANGE  
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ABSTRACT 

Changes in the time available for organisms to maintain physiologically preferred 

temperatures (thermal opportunity) is a primary mechanism by which climate change 

impacts the fitness and population dynamics of organisms. Yet, it is unclear whether 

losses or gains in thermal opportunity result in proportional changes in rates of energy 

procurement and use. We experimentally quantified lizard food consumption and energy 

assimilation at different durations of thermal opportunity. We incorporated these data in 

an individual-based model of foraging and digestion in lizards to explore the implications 

of nonlinear responses to shifts in thermal opportunity across a wide geographic range.  

Our model predicts that shifts in thermal opportunities resulting from climate change alter 

energy intake primarily through digestion rather than feeding, because simulated lizards 

were able to fill their gut faster than they can digest their food. Moreover, since rates of 

energy assimilation decelerate with increasing thermal opportunity, shifts in daily 

energetic assimilation would depend on the previous opportunity for thermoregulation. In 

particular, the same changes in thermal opportunity will have little impact on lizards from 

warm locations, while having a large impact on lizards from cold locations where 

thermoregulation is possible for only a few hours each day. Energy expenditure followed 

spatial patterns in thermal opportunity, with greater annual energy expenditure occurring 

at warmer locations. Our model predicts that lizards will spend more energy under 

climate change by maintaining higher body temperatures and remaining active longer. 

However, the predicted changes in energy assimilation following climate change greatly 

exceeded the predicted increases in energy expenditure. Simple models, which assume 
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constant rates of energy gain during activity, will potentially mislead efforts to 

understand and predict the biological impacts of climate change.  
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INTRODUCTION 

Because climate change has shifted the distributions (Parmesan 2007) and phenologies 

(Root et al. 2003) of species, biologists have become increasingly concerned with 

predicting future responses (Kearney and Porter 2009, Buckley et al. 2010). By 

quantifying the times when animals can thermoregulate accurately, one can predict the 

potential to forage, digest, grow, and reproduce (Buckley et al. 2010, Kearney 2011, 

Gunderson and Leal 2016). Under climate change, a warmer environment may limit the 

amount of time at optimal temperatures (thermal opportunity) for growth and 

reproduction (Sinervo et al. 2010, Kearney 2013). Sinervo et al. (2010), for example, 

suggested that global warming decreases thermal opportunities for lizards around the 

globe, leading to reduced food intake, reproduction, and eventually to local extinctions. 

On the other hand, warming may offer more opportunities for thermoregulation in colder 

environments, increasing the fitness of species at high latitudes (Buckley 2008, Kearney 

2013, Gunderson and Leal 2016, Levy et al. 2016b) or altitudes (Huang et al. 2013, 

Huang et al. 2014).  

To understand and predict shifts in energetics and phenology, we must consider 

how climate constrains the time and energy available for reproduction (Levy et al. 

2016b). This task is easier said than done, because many physiological and ecological 

processes scale nonlinearly with the time or energy available to organisms. Consequently, 

the benefits or costs of shifts in thermal opportunity differ among populations that 

currently experience different climates. Energy intake, through foraging and digestion, is 

an excellent example of a process that depends nonlinearly on temperature and time 

(Angilletta 2001a). At low body temperatures, a small degree of warming would confer a 
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substantially greater rate of energy gain. By contrast, at high body temperature, the same 

degree of warming would confer little increase or even decrease the rate of energy gain. 

Even if an animal were to remain at its optimal temperature indefinitely, the rate of 

energy gain would decrease over time. For example, an animal that forages for twice as 

long, does not necessarily gain twice the energy, since the animal might spend more time 

searching for food as its density decreases (Stephens and Krebs 1986). In such cases, a 

decrease in the time available for foraging might impose only a marginal cost. Similarly, 

the rate of energy assimilation also decreases with the time. Most of the ingested food is 

assimilated in the first few hours of digestion because the sequential processes of 

digestion, absorption, and excretion create a physiological bottleneck (Grant and Porter 

1992). This phenomenon causes diminishing energetic returns on the time invested in 

thermoregulation and activity. For example, lizards grew faster when allowed to 

thermoregulate for 10 h d-1 instead of 6 h d-1, but no faster when allowed to 

thermoregulate for 14 h d-1 (Adolph and Porter 1993, Sinervo and Adolph 1994). Hence, 

an animal with a moderate period of thermoregulation will do nearly as well as one with a 

longer period.  

Because foraging and digestion occur only at certain body temperatures, energy 

balance requires opportunities to thermoregulate, without paying costs that exceed the 

benefit (e.g., energy loss or predation risk). As climates warm, thermal opportunity for 

temperate species should expand (Deutsch et al. 2008, Levy et al. 2016b), enabling 

ectotherms to spend more time at preferred body temperatures. Whether extended thermal 

opportunity will enhance the energy budget of an organism depends on its current 

thermal opportunities. If an animal currently spends only a few hours per day at its 
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preferred temperature, a little warming would confer a large energetic benefit. However, 

if a species currently spends many hours at its preferred temperature each day, a little 

warming would either confer a small energetic benefit or impose a small energetic loss 

(Dillon et al. 2010). For widespread species, these impacts should vary systematically 

along a latitudinal or altitudinal cline; animals at higher latitudes or altitudes should be 

more likely to benefit energetically from extended hours at preferred temperatures in a 

warming climate. Impacts of climate change will depend on other factors that vary 

regionallu, such as densities of vegetation and prey. 

Using an individual-based model, we explore the impacts of projected changes in 

climate on the energy budgets of lizards throughout a wide geographic range. First, we 

experimentally quantified food consumption and energy assimilation at different 

durations at preferred body temperatures. Then, we used the data to parameterize our 

model and simulate foraging and assimilation in past and future climates. We show that 

shifts in thermal opportunities may alter their energy intake primarily through energy 

assimilation, and less by shifts in food consumption, since lizards need only a few hours 

of foraging to fill their gut, but may benefit from long periods of energy assimilation. 

Climate change will limit opportunities for foraging in warm places while expanding 

opportunities in cold places, but diminishing energetic returns from digestion will weaken 

effects on energy assimilation.  

METHODS 

Modeling energy gain  
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We modeled the relationships between time budgets and energetics, and how shifts in 

time budgets due to climate change may affect feeding and assimilation rates in North 

American lizards. We developed an individual-based model of an adult lizard (snout-vent 

length = 63 mm, mass = 8.9 g) based on a Sceloporus model, developed by Buckley 

(2008) and expanded by Levy and colleagues (2015, 2016b). We used a published set of 

hourly microclimates (Levy et al. 2016a) to calculate the operative temperatures of 

lizards (i.e., the steady state temperature in a particular microclimate, Bakken 1992) on 

surfaces ranging from 0 to 100% shade. The microclimates represent 11,407 locations 

across the United States and Mexico with a spatial resolution of 36 x 36 km for the past 

(1980-2000) and the future (2080-2100, assuming a radiative forcing of +8.5 W m-2 at 

year 2100, RCP 8.5 scenario). At each location, the dataset includes thermal conditions at 

various heights above and below the ground, and under different levels of shade. In 

natural habitats, distances between these microhabitats are often a few meters, enabling 

animals to shuttle between sun and shade. Every hour in the dataset, we tracked the 

feeding and digestion of the lizard based on potential body temperatures (Tb). Hourly air 

temperatures, radiative loads, and wind speeds were used to calculate the lizard’s 

operative temperature in each microhabitat and whether this temperature enabled 

foraging and digestion. We calculated these body temperatures as 

Tb,t = Tb,t-1 + ΔTb,   [1] 

by solving heat-exchange equations in Fei et al. (2012). The parameters and equations 

used are described in Table S1. We selected a small value for Δt (120 s) to yield small 

values of ΔTb, which enhanced the stability of the model. In the model, the lizard is able 

to forage and assimilate energy whenever it can attain a body temperature between 29.4° 
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and 36.3°C (central 80% of field body temperature; Angilletta 2001a). For simplicity, we 

use the term thermal opportunity to refer to the number of hours that a lizard could attain 

a body temperature in this range. During the period of thermal opportunity, we assumed 

that a lizard maintains its preferred temperature (33.1°C; Angilletta 2001a) by shuttling 

between exposed and shaded microclimates. Outside of the period of thermal 

opportunity, we assigned the lizard the closest available temperature to its preferred 

temperature. During the night, we assumed that lizards rest on the ground surface, under 

full cover, which has been observed during field studies (M. J. Angilletta, unpublished). 

During winter, if activity was not possible for more than two weeks, we assumed that 

lizards retreated to a 12-cm burrow.  

For each location in our domain, we calculated (1) time budgets as the number of 

foraging and assimilation hours, and (2) the amount of energy a lizard could ingest and 

assimilate (kJ h-1). In each location, we also compared between current and future 

climates, by calculating the difference in the mean near-surface (3-cm above ground, 

50% shade cover) temperature during 1980-2000 and 2080-2100.  

Lizards were assumed to forage when their body temperature allowed activity. To 

determine the feeding rates for each hour of foraging, we first calculated the maximal 

velocity (v, m s-1) of the lizard as 

log10(v) = 0.044 + 0.2·log10(Mb),   [2] 

based on published observations where Mb equaled the mass of a lizard (Van Damme and 

Vanhooydonck 2001). Then, assuming lizards forage at 70% of their maximal velocity 

(Irschick and Losos 1998), we calculated the distance traveled (d, m) in one second as 

0.7×v×1 sec. As in Buckley’s analysis (2008), we assumed that the energy content of an 
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insect equals 30.12 J, the rate of insect encounter assuming foraging along a line equals 

0.005 insects m−1 s−1 (Jones et al. 1987b, Niewiarowski and Roosenburg 1993), 50% of 

insects encountered are captured by a foraging lizard, and lizards assimilate 76% of 

ingested energy (Angilletta 2001a). Hence, at each hour, the energy intake (ei,h) was 

ei,h (J h-1) =30.12 (J insect-1) ∙ 0.005 (insect m−1 s−1) ∙ 0.5 ∙ 0.76 ∙ d (m) ∙ 3600 (s h-

1).  [3] 

As the lizards feed, we modeled how feeding filled the gut, reducing the available 

space (Javailable, kJ): 

Javailable = Cmax – Jdaily max,   [4] 

where Cmax (kJ) is the maximal gut space (2.55 kJ/d, based on our laboratory 

measurements) and Jdaily max (kJ) is the amount of energy consumed that day.  

Lizards assimilated energy whenever they had food in their gut and body 

temperature was between 29.4° and 36.3°C. This range corresponds to the central 80% of 

field body temperatures, because digestion proceeds slowly at higher or lower 

temperatures (Angilletta 2001a). Each day in the simulation, the rate of energy 

assimilation was derived from our statistical analysis (see results for more details), 

suggesting that the rate of energy assimilation (E) depended on the interaction of 

maximal consumption and time budget:  

E (kJ) = a∙ Cmax ∙ log(td + 1),   [5]  

where a is a constant fitted to our empirical data, td is the duration of assimilation since 

the first feeding event of that day. Assimilation rates did not exceed the energetic content 

of the gut: 
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where Jgut is the amount of energy (kJ) in the gut. 

We estimated energy expenditure from experimental studies of metabolic rate. 

Resting metabolic rate (RMR, J s-1) was modeled according to Angilletta (2001b):  

ln(RMR) = -10.0 + 0.51∙log(Mb) + 0.12∙Tb,  [7] 

We multiplied RMR by 1.5 to yield the resting metabolic rate of a digesting lizard (Roe 

et al. 2005) and then multiplied this rate by 2 to yield the metabolic rate of a foraging 

lizard (Bennett 1982). To calculate the energy balance of lizards, we subtracted the 

estimates of energy expenditure from the energy assimilated.  

 

Parameterizing the assimilation model 

To parameterize the function relating thermal opportunity to energy assimilation, we 

conducted experiments with lizards from three population of the Sceloporus undulatus 

complex (Leache 2009): Sceloporus tristichus from Pinal County, Arizona (33.308117, -

111.049417) and Grand County, Utah (38.26044, 109.6962); and Sceloporus consobrinus 

from Ogallala and Keith Counties, Nebraska (41.336767, -102.008993). Lizards were 

collected in the spring of 2011 and transferred to an animal care facility at Arizona State 

University. Each lizard was housed in a plastic terrarium partially heated by FlexwattTM 

heat tape (Calorique, West Wareham, MA, USA), allowing lizards to freely 

thermoregulate. Prior to our experiment, lizards had unlimited access to water and were 

fed crickets (Acheta domestica) three times per week. 
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Our experiment controlled the duration at which lizards experienced their 

preferred body temperature. We placed lizards in incubators with diel cycles of 

temperature and light that simulated three levels of thermal opportunity (6L:18D [n = 25], 

10L:14D [n = 21], and 14L:10D [n = 19] light cycles). The temperature during the light 

phase (33.1°C) was chosen to match the body temperature of lizards during 

thermoregulation in natural environments and thermal gradients (Buckley et al. 2015). 

This temperature also maximized the rate of energy assimilation by S. undulatus when 

food is plentiful (Angilletta 2001a). The temperature during dark phase (20°C) was 

chosen to severely limit the rate of energy assimilation. In a fourth treatment, lizards (n = 

17) were exposed to the preferred temperature for 24 h d-1 and a 14L:10D light cycle. We 

used a stratified design to randomly assign each lizard to a thermal treatment. In all 

treatments, lizards were kept in plastic terraria (32 cm x 38 cm x 63 cm) at 70% 

humidity. Feeding occurred about 2 hours after the start of each light phase.  

We measured rates of feeding and assimilation during the experiment. First, 

lizards were fasted for 48 h. Then, each lizard was offered a cricket that was injected with 

a non-digestible, fluorescent dye (Scientific Marking Materials, Seattle, WA). We used 

this dye to mark the initial passing of fecal matter from the cricket consumed at the 

beginning of the trial. We inspected feces daily until this dye was observed. At that point, 

we began collecting all feces and urates. The trial lasted for 7 days, during which we fed 

lizards as many crickets as they would consume within 2 hours of each morning. More 

frequent feeding would likely have resulted in a similar energy intake, because these 

lizards required about 48 hours to digest a single cricket and consume multiple crickets 

when feeding (Angilletta 2001a). In fact, a previous experiment reported a similar rate  of 
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consumption by the same species in less than an hour per day for feeding (Angilletta 

2001a). Water was provided daily by misting the sides of the terraria.  

After 7 days, lizards were fed a second cricket marked with fluorescent dye (a 

different color than the first dye). Because all crickets were weighed to the nearest 0.1 

mg, we could calculate the total mass of food consumed between the two marked 

crickets. Feces were checked daily until the second marker appeared. Feces and urates 

collected between the two markers resulted from the known mass of food ingested during 

the trial. Lizards that refused to eat for several days or failed to eat one of the marked 

crickets were removed from the study.  

We used bomb calorimetry to estimate the energy consumed and excreted by each 

lizard during the trial. A sample of 29 crickets was dried and combusted in a Parr 1425 

semimicro bomb calorimeter to determine their caloric density. We then used the mean 

water content (25%) and the mean energetic density (22.187 kJ g-1) to convert the wet 

mass consumed to the equivalent number of Joules. We also determined energetic content 

of the feces and urates produced by each lizard. For each lizard, we calculated feeding 

rates (kJ/d) as the energy consumed as crickets, and assimilation rates (kJ/d) as the 

difference between the feeding rates and the energy excreted as feces and urates.  

 

Analysis of assimilation data  

We used our experimental data to estimate two functions in the individual-based model. 

The first function related the body length (snout-vent length) of a lizard to its maximal 

daily consumption of food. Food consumption was the dependent variable and body 

length was a continuous independent variable. This model was fitted to estimates of food 
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consumption by lizards exposed to their preferred temperature for 24 h d-1, because this 

treatment enabled the fastest digestion and hence the most consumption (but see Whelan 

and Brown 2005 for a discussion of factors that affect gut constraints). We used a log link 

function and a gamma distribution of residual variation.  

The second function related the hours of thermal opportunity to the rate of energy 

assimilation. Energy assimilation was the dependent variable, population of lizards was a 

categorical predictor, and the log[(h d-1) + 1] was a continuous predictor (see Eqn. 5). We 

forced the intercept of the model to equal zero, because lizards should assimilate little or 

no energy without access to preferred temperatures. We used an identity link function and 

a gamma distribution of residual variation. Based on Akaike Information Criterion 

(Burnham and Anderson 2002), we removed the population factor since it didn’t 

contribute to the fit of the model (ΔAIC = 3.74). All data analysis was done in R version 

3.2.3 (R Development Core Team 2011) using the glm function of the nlme library 

(Pinheiro et al. 2011). Descriptive statistics are means and standard deviation estimated 

from the final model.  

 

Sensitivity analysis 

To explore how predictions of our model depend on our assumptions, we altered the 

values of three parameters and quantified the effect on dependent variables. Specifically, 

we quantified how time budgets and rates of energy intake may differ when (1) 

decreasing the density of food by 50%, and when (2) assimilation rates (E in eq. 5) are 

assumed to either be constant over time (estimated as E(td = 24)/24 ∙ td) or decelerating 

faster than in our observations (estimated as E(td = 24)∙(1 – e-0.3∙ td)). Moreover, we 
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quantified how energy expenditure and energy balance may differ when increasing the 

costs of activity by 50% to account for possible costs of foraging and thermoregulation 

(three times the RMR). Although all of these assumptions potentially vary among 

locations, such sensitivity analyses can help understand the effects of such assumptions at 

different conditions. Moreover, although Bennett and Dawson (1976) reported a maximal 

five-fold increase between standard metabolic rates and active metabolic rates, these rates 

were measured during induced activity in the laboratory and spontaneous activity in the 

field should be significantly lower. Unless otherwise noted, we report each prediction of 

the model as the mean of values among locations, plus or minus the standard deviation.  

 

RESULTS 

Our experiment confirmed the expected diminishing relationship between thermal 

opportunity and energy assimilation. Lizards that spent more hours per day at their 

preferred temperature assimilated more energy, but this effect diminished as access to the 

preferred temperature approached 24 hours per day (Fig. 1). The most likely statistical 

model resulted in the following relationship among thermal opportunity (td), maximal gut 

size (Cmax, kJ/d), and energy assimilation (E, kJ/d): E = 0.115∙ Cmax ∙ log(td + 1). 

Variation in body size within and among populations contributed indirectly to energy 

assimilation, because maximal gut size increased exponentially with body length (snout-

vent length, SVL, mm): ln(Cmax) = -2.23 + 0.05*SVL (Fig. 1). These functions were used 

to model the impacts of climate on energy gain in past and future climates.  

 Our simulations characterized a latitudinal gradient in thermal opportunity, where 

lizards from lower latitudes could spend more time at their preferred temperature and 
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assimilate more energy each year (Fig. S1). However, simulated lizards spent much less 

time foraging than digesting (Fig. S2). Hence, time spent at the preferred temperature did 

not directly translate to animals eating more each day. In particular, a lizard needed only 

2.3 hours each day (± 0.1 h d-1) to fill its gut, regardless of the climate at its location (Fig. 

2). When we halved the density of food, a lizard in any location needed to forage only 

one more hour per day (0.93 ± 0.05 h) to fill its gut (Figs. S3, S4). Thus, foraging time 

was nearly independent of climate, at least in the range of conditions that we explored 

with our model.  

In contrast to foraging, energy assimilation through digestion and absorption 

proceeded slowly, such that every additional hour of thermal opportunity contributed to 

energy assimilation when animals had ingested food. In the past climate (1980-2000), 

lizards from warm locations could attain preferred temperatures up to 348 days per year 

for as many as 6.2 hours per day (Figs. S2, 3). When switching to the climate projected 

for 2080-2100 (RCP 8.5), a lizard either gained or lost thermal opportunity (Fig. 3a,b), 

depending on its current climate. The number of days with at least one hour of thermal 

opportunity increased by 21.1 days per year (± 9.0 d y-1) at 99% of locations. At the 

remaining locations, the number of days decreased by 0.7 days per year (± 1.1 d y-1). The 

daily duration of thermal opportunity increased in 86% of the locations, by 0.8 hours per 

day (± 0.4 h d-1); these locations were relatively cool in the past climate, having a mean 

annual temperature of 10.0°C (± 9.0°C). At the remaining locations, with a mean annual 

temperature of 14.6°C (± 4.5°C), thermal opportunity decreased by 0.3 hours per day (± 

0.2 h d-1). Thus, simulated climate change enabled phenological shifts in activity, with 
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lizards gaining energy on more days during the summer at cold locations or more days 

during the winter at warm locations (Fig. 3a, b).  

Given the decelerating relationship between thermal opportunity and energy 

assimilation, additional time at the preferred temperature would benefit lizards in cold 

locations more than lizards in warm locations, which had more time for digestion each 

day in the past climate (Fig. 4). Although lizards in the hottest locations spent less time at 

their preferred temperatures throughout the year, they still had time to digest most of the 

food in their gut each day. For example, in warm locations (mean temperature above 

20°C), a decrease in thermal opportunity of 5 hours per day reduces energy assimilation 

by 0.23 kJ per day (± 0.01 kJ y-1). By contrast, 5 additional hours of thermal opportunity 

for digestion increased energy assimilation in cold locations (mean temperature below 

15°C) by 0.39 kJ per day (± 0.03 kJ y-1) (Figs. 3c, 4). This asymmetry between the 

impacts of warming depended on the rate at which energy assimilation decelerated with 

thermal opportunity (Figs. S6, S7) and disappeared when energy assimilation increased 

linearly with thermal opportunity (Figs. S8, S9). 

Energy expenditure followed spatial patterns in thermal opportunity, with greater 

annual energy expenditure occurring at warmer locations. Annual energy expenditure 

increased under the scenarios of climate change, because lizards maintained higher body 

temperatures and engaged in more activity (Fig. S10); overall, energy expenditure 

increased by 3.56 kJ per year (± 0.74 kJ y-1) when switching from the past climate to the 

future climate (Fig. S10). Greater energetic demands occurred mostly as a response to the 

phenological changes in thermoregulatory behavior based on shifts in thermal 
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opportunity (Fig. 3d). Energy expenditure increased mostly in colder regions during 

summer and in warmer regions during winter.  

The predicted increase in energy assimilation following climate change greatly 

exceeded the predicted increase in energy expenditure (Figs. 3, S10). With our initial 

parametrization, annual energy expenditure was only 21% of annual energy assimilation 

(± 5 %) (Fig. S11a,b). When we imposed a greater cost of activity (+50%), energy 

expenditure was still only 23% of energy assimilation (± 5 %) (Fig. S11c,d). Thus, 

energy balance in past or future climates was dominated by thermal effects on energy 

assimilation (Fig. 3e, S10). Consequently, daily shifts in energy balance of lizards 

reflected the decelerating relationship between thermal opportunity and energy 

assimilation (Fig. 4). The high correlation between energy balance and energy 

assimilation persisted when we simulated lizards with a greater cost of activity (Figs. S6, 

S7). 

 

DISCUSSION 

Time is an ecological resource that enables animals to feed, grow, and reproduce. Based 

on our model, climate change will limit opportunities for such activities in warm places 

while expanding opportunities in cold places. The model sheds light on the mechanisms 

by which phenological shifts might affect energy gain by animals, and hence influence 

the dynamics of populations and communities. In particular, diminishing returns during 

digestion affect changes in energy assimilation as the climate warms. Animals require 

more time at preferred temperatures to digest and absorb food than to consume it, 

regardless of body temperature (Angilletta 2001a). Thus, energy assimilation strongly 
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depends on the opportunity to thermoregulate after feeding (reviewed by Huey 1982, 

Waldschmidt et al. 1987).  

Our model considers a scenario in which foraging depends only on body 

temperature and food density. However, foraging costs and benefits depend on other 

factors (e.g, water balance, interspecific competition, and predation risk) that reduce 

feeding (Dunham 1980, Lima and Dill 1990, Brown et al. 1999, Levy et al. 2016c), as 

well as prey density that may differ across locations and seasons with natural variations 

in temperature, rainfall, and vegetation. Incorporating such factors in future models 

should enhance our ability to predict impacts of climate change. For example, the 

marginal value of water may increase during a drought, causing lizards to forage during 

cooler hours of the day. Such responses were modeled in lizards (Kearney et al. 2013) 

and observed in other animals (Levy et al. 2016c), (ibex, Hochman and Kotler 2006), 

Corvus coronoides (Australian raven, Kotler et al. 1998), and Capra hircus (goat, 

Shrader et al. 2008). Moreover, although Sceloporus lizards are sit-and-wait predators, 

different modes of foraging (e.g., active-searching) may incur different exposures to 

competition and predation as well as different energetic and hydric costs. Thus, factors 

that affect foraging may vary across ecological communities and may shift under global 

change (Mack et al. 2000, Tylianakis et al. 2008, Hobbs et al. 2009), bringing further 

complexity to an energy balance model. Alternatively, the low energy demands of 

ectotherms may enable them to survive with only short bursts of foraging (e.g., Lagarde 

et al. 2003). Therefore, the time required for reptiles to digest food far exceeds the time 

required to forage, such that a digestive bottleneck limits feeding more than opportunities 

to forage (Congdon 1989). In our simulations, lizards needed only a few hours of 
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foraging to fill their gut, and could do so even when warming restricted foraging time or 

halved prey density. For these reasons, we think the major patterns described by our 

model would hold up under a wider range of conditions that we have considered.  

Significant ecological patterns could emerge when the rate of energy assimilation 

decelerates with increasing thermal opportunity. Although lizards assimilated substantial 

energy when warmed for just a few hours per day, the rate of energy assimilation 

decelerated when lizards warmed for longer periods. Previous experiments have shown 

that lizards require more than 20 hours of continuous exposure to their preferred 

temperature to pass a single item of food (Beaupre et al. 1993, Angilletta 2001a). The 

longest period of exposure would be 10 and 14 h per day in past and future climates, 

respectively. Therefore, feeding could occur multiple times per day but food remains in 

the gut for multiple days. Consequently, the annual energy budget in our simulations 

depended more on the number of days that lizards could feed and digest than on the 

number of hours per day. Thermoregulation depends on access to preferred microclimates 

(Porter et al. 1973, Grant and Dunham 1988, Bashey and Dunham 1997), and just a few 

hours of effective thermoregulation during the day enables an individual to acquire 

enough energy to meet its energetic demands for maintenance. After a few hours, when 

the marginal value of thermoregulating decreases, lizards can either choose to abandon 

thermoregulation and seek shelter, perhaps to save energy or avoid predators, or continue 

to thermoregulate and gain more energy. Although we assumed that lizards only 

thermoregulate on the ground, lizards can climb or burrow to access microclimates above 

or below the ground (Norris and Kavanau 1966, Jacob and Painter 1980). The tradeoffs 

among energy gain, predation risk, and metabolic costs have been captured by foraging 
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models, in which rates of energy gain decelerate as foraging depletes patches. Foraging 

theory also predicts that animals will quit foraging earlier when the cost of foraging or 

the risk of predation increases (Brown 1988, Mitchell et al. 1990).  

The diminishing return on thermal opportunity also determines how populations 

respond to a changing climate. As an environment warms, the energetic benefit of 

additional time to thermoregulate depends on the previous opportunity for 

thermoregulation. In particular, the marginal benefit of thermal opportunity was great for 

lizards that currently have only a few hours of thermal opportunity each day and 

miniscule for lizards that currently have many hours of thermal opportunity throughout 

the day. Previous models, in which the rate of energy assimilation was assumed to 

increase linearly with increasing thermal opportunity (Buckley 2008, Sinervo et al. 2010, 

Kearney 2013), either under- or over-estimated the energetic consequences of climate 

change by failing to consider diminishing energetic returns on activity. In particular, a 

linear function would underestimate the energetic benefit of climate change at cold 

locations (by 7.1 ± 4.6 kJ at 26% of locations; Fig. S9) and overestimate the energetic 

loss due to climate change at warm locations (by 17 ± 9 kJ y-1 at 74% of locations; Fig. 

S9). Global warming has already caused species of lizards to go extinct in tropical and 

subtropical regions (Sinervo et al. 2010), and tropical ectotherms in general seem 

especially vulnerable to further warming (Huey et al. 2012). Importantly, our model 

suggests that losing opportunities to forage on warm days might not drive such 

extinctions if lizards can feed during cooler times of the day and assimilate most of their 

food in 6 to 10 hours of digestion. On the other hand, warmer summers may decrease 

feeding and digestion while increasing energetic demands (Fig. 3), reducing the 
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probability of survival (Bestion et al. 2015, Levy et al. 2016b). Researchers should 

account for diminishing returns on thermoregulation when predicting energetics, growth, 

and reproduction of animals in future climates.  

A disadvantage of mechanistic models, relative to climate-envelope models, is 

that one must define relationships between environmental variables and organismal 

performance, such as the function relating body temperature to energy assimilation. Any 

mathematical model is just a series of such functions, and many functions are linearized 

to make a model easier to analyze and interpret. For example, linear approximations were 

chosen to relate the duration of thermoregulation to the energetics (e.g., Porter et al. 

1973, Kearney et al. 2009a, Kearney et al. 2009b), survival (Adolph and Porter 1993), 

phenology (Kearney et al. 2010), or life history (Adolph and Porter 1993, 1996). More 

complex models explicitly calculate an energy balance to predict food and water 

requirements (Kearney and Porter 2004), optimal behavior (Grant and Porter 1992), life 

history (Kearney 2011), reproduction (Grant and Porter 1992, Adolph and Porter 1993, 

Kearney 2011), or population growth (Buckley et al. 2010, Kearney 2011). Even in these 

models, thermoregulatory activity is translated to energy gain by assuming that 

assimilation rates are linear (but see Adolph and Porter 1993). In contrast to this 

simplifying assumption, we have shown that rates of energy assimilation diminish with 

increasing thermal opportunity in two species of Sceloporus lizards. Our observations 

agree with hypothetical arguments (Adolph and Porter 1993), as well as empirical rates of 

somatic growth in other Sceloporus lizards, which also decelerate with increasing thermal 

opportunity (Sinervo and Adolph 1989, Sinervo 1990, Avery 1994). Thus, our study 

provides a potential mechanism for the deceleration of somatic growth during previous 
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experiments. But more importantly, we show that accounting for such nonlinear 

relationships in mechanistic models can be crucial for understanding potential impacts of 

climate change on energy and water budgets, life histories, and population dynamics. 

The ecological significance of future shifts in assimilation rates may differ 

between currently cold and warm locations. In previous studies, we found that climate 

change will enable lizards to remain active for wider spans of days (Levy et al. 2015, 

Levy et al. 2016b). At cold locations, where daily rates of assimilation increase 

substantially (as in Fig. 3c), females could reproduce more or store fat for use in winter. 

At warm locations, however, high mortality of offspring produced during the summer 

would favor females that avoid reproducing at this time, leading to a bimodal distribution 

of reproduction throughout the year (Levy et al. 2016b). The decrease in energy gain 

during summer would reinforce bimodal reproduction, since females that lay eggs during 

summer would not only put embryos at risk of overheating but also have less energy for 

reproduction later in the year. By contrast, lizards in colder locations might reproduce 

continuously throughout the year, because climate change would enhance energy 

assimilation (Fig. 3c) and offspring survival (Levy et al. 2016b). 

Shifts in the availability of time for activity may also incur ecological 

consequences on populations and communities. With fewer hours of activity, for 

example, the trade-offs among feeding, mating, and defending a territory may become 

severe (Dunbar et al. 2009). For territorial animals, more or less time available for 

defending a territory may in turn increase or decrease territory sizes, respectively (Stiles 

1971, Pyke 1979, Davies 1980). During days with little thermal opportunity, organisms 

would have more difficulty partitioning their activities throughout the day, intensifying 
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competition for space and potentially raising predation risk (Kronfeld-Schor and Dayan 

2003). If temporal shifts in activity increase competition or predation, climate change can 

indirectly reduce survival rates as well as energy gains. At colder locations, on the other 

hand, an increase in thermal opportunities will not only enable more time for foraging 

and digestion, but could also promote temporal partitioning to avoid competition and 

predation (Kronfeld-Schor and Dayan 2003).  

The relationship between thermal opportunity and energy gain will vary among 

species because of body mass, diet quality, handling time, and gut bacteria (Munn and 

Dawson 2006, Rall et al. 2012). For example, herbivorous species may be more sensitive 

to decreased foraging and digestion times than carnivorous species are. Herbivores 

consume food with high concentrations of indigestible fiber and secondary metabolites 

and low concentrations of protein (Clauss et al. 2013). To increase assimilation rate, 

herbivores consume large volumes and carry a microbiome that digests cellulose, 

hemicellulose, and pectin (Clauss et al. 2013). Rates of assimilation for herbivores might 

be constant or even accelerate with time, because they can absorb glucose faster after 

breaking down cellulose. Hence, herbivory may impose selection for longer periods of 

thermoregulation to speed energy assimilation. If climate change reduces opportunities 

for thermoregulation in herbivorous species, a shift in physiology, microbiome, or diet 

might be necessary to offset the loss of thermal opportunity (Hirakawa 1997). By 

contrast, herbivores at cold locations may experience a significant increase in energy 

assimilation if thermal opportunity will enable a substantial increase in cellulose 

breakdown. The diversity of physiological responses among species requires careful 

analysis of each species to determine the relationship between thermal opportunity and 
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energy gain. Simple models, which assume constant rates of energy gain during activity, 

will potentially mislead efforts to understand and predict the biological impacts of 

climate change. 
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Figure 5.1. Our empirical observations (black points) support the hypothesis of 

diminishing assimilation rates as the daily duration of time suitable for assimilation 

increases (panel a, n=82). Bigger lizards assimilated more energy per day. We show the 

relationship between Snout-Vent length and daily assimilation rates for lizards exposed to 

24-h of their preferred temperature (panel b, n=65). In panel a, grey circles represent the 

median of the observations for each assimilation time. In both panels, the line is the fitted 

curve used in the bio-energetic model. 
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Figure 5.2. Thermal opportunity is strongly affected by climate, especially across days. 

Within each day, thermal opportunity for foraging is not affected by climate since lizards 

can fill their gut within 2-2.5 hours of feeding. Climate significantly affects the daily 

thermal opportunities for digestion, however, since digestion is a relatively long process. 

The color of the each point indicates the mean air temperature at one or more locations. 

See Fig. S4 for predictions when the abundance of insects is smaller than in our initial 

parameterization. 

  

Digestion 

Foraging 
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Figure 5.3. Phenological impacts of climate change on opportunities for energy intake. 

The effect of warming on energy intake depends on the current temperature and the time 
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of year. At cool locations, lizards will have more time for foraging (a) and digestion (b) 

during summer in future climate than in the past climate. At warm locations, however, 

lizards will have more opportunities for foraging (a) and digestion (b) in winter, but less 

in the spring and summer and fall. Climate change may offer more opportunity for 

digestion in the fall at few warm locations, where night temperatures may enable 

digestion. The effect of warming on energy assimilation matches the effect on the thermal 

opportunities for digestion (c). Given the deceleration of assimilation rates with thermal 

opportunity, the daily decreases in assimilation rates at warm locations are relatively 

small compared to the daily increases in assimilation rates that result from the 

phenological shifts. Daily energy expenditure of lizards will increase throughout the year, 

acccording to phenological increases in activity. Although metabolism proceeds more 

rapidly in a warmer climate (d), phenological shifts in energy balance will mostly 

resemble shifts in energy assimilation (e). The color of the each point indicates the mean 

air temperature at one or more locations. See Fig. S5 for changes in foraging time 

budgets when the abundance of insects is smaller than in our initial parameterization. See 

Figs. S7 and S9 for shifts in daily assimilation rates when lizards have faster rates of 

decelerating returns than in our initial parameterization, or have constant rate of 

assimilation, respectively. 
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 Figure 5.4. Impacts of climate change on daily assimilation rates (a) and energy 

balances (b) will depend on the current temperature. Given the deceleration of 
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assimilation rates with thermal opportunity, the impact of shifts in thermal opportunity 

for digestion will pose a lesser effect on daily assimilation rates at warm locations 

compared to cold locations. The color of the each point indicates the mean air 

temperature at one or more locations. See Figs. S6 and S8 for shifts in daily assimilation 

rates when lizards have faster rates of decelerating returns than in our initial 

parameterization, or have constant rate of assimilation, respectively. 
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CHAPTER 6 

REFLECTIONS ON THE ATTACHED CHAPTER 

Engaging in this project (Chapter 5), taught me many things and helped shape my view of 

research. This project examined the assumptions that mechanistic models make regarding 

energetics and assimilation rate. If organisms spend a large amount of time at their 

optimal temperatures, they see reduced energetic benefits from continuing to spend time 

at this temperature. Most mechanistic models though assume that this relationship 

between energetics and temperature is linear. Therefore, we parameterized our 

mechanistic model using both a linear function and our asymptotic function for 

assimilation rate to see how this changes the predictions of the model. By incorporating 

functions with diminishing returns, we can significantly alter predictions being made by 

mechanistic models.  

This manuscript originally started as a project to collect data for a mechanistic 

model. As we started analyzing the data I collected, we began having discussions about 

what the data meant within the context of a mechanistic model. As a result of these 

discussions, the scope of the project changed. As the data began to show that it violated 

some of the basic assumptions of mechanistic models, we decided to change the type of 

question we were examining. Rather than just using the data to parameterize a 

mechanistic model, we decided to see how predictions being made by the model were 

altered by calculating the energetics of these lizards in a more realistic manner. 

From working on this project, I learned a lot about collecting data. This project 

was my first large scale project. Additionally, this project was the first time that I had to 

collaborate with more than just one or two other people. As a result, I became better at 
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organizing large groups of people – where each member of the group was working on 

different components of the project and had different goals. I learned how to meticulously 

collect numerous types of physiological data. In addition, I had to make sure that I 

devised very clear and detailed methodologies for collecting data so that everyone 

followed the same protocol. Further, I learned how to keep trying new methods even 

when the first attempts do not work. I also mentored my first undergraduates during the 

course of this project. I also learned about lizard husbandry and working with animal 

care. Lastly, by collecting all of this data, I greatly improved my understandings of 

metabolism and energetics.  

From doing statistical analyses and writing on this project, I learned that science 

is a long and hard process filled with many bumps. I learned that you have to make 

numerous drafts and edits. Additionally, I learned that each of these drafts and analyses 

always take 2 or 3 times longer than you expect. I also learned to be open to changes that 

may occur throughout the course of the project. After presenting and discussing my talk 

at SICB, we decided to alter the scope of the project. Rather than just collect data to 

parameterize a mechanistic model, we decided to look at the fundamentals of the model 

itself. We then brought Dr. Ofir Levy on board and decided to test how using more 

realistic physiological data affects the predictions that mechanistic models make.  

From the findings on this project, I concluded that it is always important to verify 

one’s assumptions. This verification is especially true if you are trying to make 

predictions based on these assumptions. I now look at and probe the assumptions being 

made in a model rather than take them at face value. I also now have a much better 

realization about how much work is involved in creating a mechanistic model.  
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This project also helped shape my view towards the other chapters within my 

dissertation. Since all of the chapters in my dissertation, were focused on making 

quantitative predictions about how organisms thermoregulate and respond to temperature 

variation, this project helped forge my view that would be present in my work with flies 

as well. By helping to collect data to parameterize and develop a quantitative model for 

how organisms respond to changes in temperature, I developed skills that I continued to 

use during the other chapters of my dissertation as I created quantitative models 

predicting how flies should thermoregulate at different temperatures and densities. 

Consequently, this chapter not only taught me a lot about how science is completed, it 

helped set me up for the future by giving me insight into designing and implementing 

projects that I would continue to use in my future work. 

This manuscript was my first large scale project. Consequently, it has changed my 

thought process by teaching me about the basics of running a large research project. After 

working on this project, I changed how I thought about interacting and organizing people 

within a large collaborative group. Afterwards, I realized just how much energy and 

effort goes into performing an experiment and seeing it through all the way to 

publication.  As a result, in future research, I already have and will continue to build upon 

these lessons and skills that I learned during this project.  
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Table S1: Lizard parameters used to calculate changes in body temperature (ΔTb ) of a S. 

undulatus lizard. 

Description Value (units) Source 

Size of adults (Snout vent length) 0.063 (m) our measurements  

Body mass SVL3*3.55*10-8 (kg) 
(Tinkle and Ballinger 

1972) 

Surface area 0.0314πMb
2/3 (m2) (Fei et al. 2012) 

Projected area for direct and 

scattered solar radiation 
0.4 AL (m

2) (Porter et al. 1973) 

Projected area facing toward the 

ground 

0 (m2) – laying, 

0.4 AL (m
2) – standing 

(Porter et al. 1973) 

Projected area that touched the 

ground 

0.35 AL (m
2) – laying, 

0.05 AL (m
2) – standing 

(Bartlett and Gates 1967) 

Area facing toward the sky 0.6 AL (m
2) (Bartlett and Gates 1967) 

Area that is exposed to air 0.9AL (m
2) (Fei et al. 2012) 

Thermal absorptivity 0.965  (dec. %) (Bartlett and Gates 1967) 

Convective heat transfer 

coefficient 
10.45 (W m-2 K-1) † (Porter et al. 1973) 

Emissivity of skin 0.965 (Bartlett and Gates 1967) 

Thermal conductivity 0.5 (W K-1 m-1) (Porter et al. 1973) 

Body thickness (diameter) 0.02 (m) our approximation 

Heat capacity 3762 (J kg-1) (Porter et al. 1973) 

†assuming that the wind speed at the height of a lizard is minimal (less than 0.5 m/s) 
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Figure S1 

Latitudinal gradient in energy assimilation estimated by our model, in which lizards from 

lower latitudes could spend more time at their preferred temperature and assimilate more 

energy each year. Climate warming between 1980-2010 (left column) and 2080-2100 

(right column) will increase the annual duration available for foraging and digestion (h/y) 

in most locations (a, b), which will increase annual energy intake (kJ/y; c, d). On each 

map, the black line represents current distribution of S. undulatus. 

 

 

  



176 

Figure S2 

Impacts of climate on opportunities for foraging and digestion. Warmer locations enable 

lizards to forage and digest for more hours. The effect of climate on opportunities for 

foraging is less pronounced than on opportunities for digestion, since lizards are able to 

fill their gut faster than to digest the consumed food. The color of the each point indicates 

the number of locations. See Fig. S3 for predictions when the abundance of insects is 

smaller than in our initial parameterization. 
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Figure S3 

Impacts of climate on opportunities for foraging and digestion when the abundance of 

insects is smaller than in our initial parameterization (insect abundance = 0.0025 insect 

m−1 s−1). Warmer locations enable lizards to forage and digest for more hours. The effect 

of climate on opportunities for foraging is less pronounced than on opportunities for 

digestion, since lizards are able to fill their gut faster than to digest the consumed food. 

The color of the each point indicates the number of locations. 
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Figure S4 

Impacts of climate on opportunities for foraging and digestion when the abundance of 

insects is smaller than in our initial parameterization (insect abundance = 0.0025 insect 

m−1 s−1).  Thermal opportunity is strongly affected by climate, especially across days. 

Here, even though the abundance of prey items is lower, thermal opportunity for foraging 

is not affected by climate since lizards can fill their gut within 2.5-3.5 hours of feeding. 

Climate significantly affects the daily thermal opportunities for digestion, however, since 

digestion is a relatively long process. The color of the each point indicates the mean air 

temperature at one or more locations. 
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Figure S5 

Phenological impacts of climate change on foraging time when the abundance of insects 

is smaller than in our initial parameterization (insect abundance = 0.0025 insect m−1 s−1). 

The effect of warming on foraging time budgets depends on the current temperature and 

the time of year. At cool locations, lizards will have more time for foraging during 

summer in future climate than in the past climate. At warm locations, however, lizards 

will have more opportunities for foraging in winter, but less in the spring, summer and 

fall. The color of the each point indicates the mean air temperature at one or more 

locations. 
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Figure S6 

Impacts of climate change on daily assimilation rates (a) and daily energy balances (b) 

when energy assimilation decelerates with increasing thermal opportunity faster than in 

our initial parameterization (assimilated energy = 0.98∙(1 – e-0.3∙ td), td - thermal 

opportunity). Here, given the faster deceleration of assimilation rates with thermal 

opportunity, the impact of shifts in thermal opportunity for digestion will pose even a 

lesser effect on daily assimilation rates at warm locations compared to cold locations. The 

color of the each point indicates the mean air temperature at one or more locations. 

 

Figure S7 
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Phenological impacts of climate change on daily rates of energy assimilation when 

energy assimilation decelerates with increasing thermal opportunity faster than in our 

initial parameterization (assimilated energy = 0.98∙(1 – e-0.3∙ td), td - thermal opportunity). 

The effect of warming on energy assimilation matches the effect on the thermal 

opportunities for digestion. At cool locations, lizards will assimilate more energy during 

summer in future climate than in the past climate. At warm locations, however, lizards 

will assimilate more energy in winter, but less in the spring, summer and fall. Here, given 

the faster deceleration of assimilation rates with thermal opportunity, the daily decreases 

in assimilation rates at warm locations are even smaller compared to the daily increases 

in assimilation rates that result from the phenological shifts. The color of the each point 

indicates the mean air temperature at one or more locations. 
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Figure S8 

Impacts of climate change on daily assimilation rates (a) and daily energy balances (b) 

when lizards have constant rates of energy assimilation (assimilated energy = 0.98/24∙ td, 

td - thermal opportunity). Given the constant rates of assimilation with thermal 

opportunity, the impact of shifts in thermal opportunity for digestion will pose an equal 

effect on daily assimilation rates among warm and cold locations. The color of each point 

indicates the mean air temperature at one or more locations. 
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Figure S9 

Phenological impacts of climate change on daily rates of energy assimilation when 

lizards have constant rates of energetic assimilation (assimilated energy = 0.98/24∙ td, td - 

thermal opportunity). The effect of warming on energy assimilation matches the effect on 

the thermal opportunities for digestion. At cool locations, lizards will assimilate more 

energy during summer in future climate than in the past climate. At warm locations, 

however, lizards will assimilate more energy in winter, but less in the spring, summer and 

fall. Given the constant rates of energy assimilation with thermal opportunity, the daily 

shifts in assimilation rates will be independent of the current climatic conditions. The 

color of each point indicates the mean air temperature at one or more locations. 
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Figure S10 

Latitudinal gradients in energy expenditure and energy balance estimated by our model. 

Lizards from lower latitudes could spend more time foraging and thermoregulating and 

spend more energy each year. Climate warming between 1980-2010 (left column) and 

2080-2100 (right column) will increase the annual energy expenditure (kJ/y) in all 

locations (a, b). However, energy balance will increase at most locations because of 

greater energy assimilation (kJ/y; c, d). On each map, the black line represents current 

distribution of S. undulatus. 
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Figure S11 

The ratio between annual energy expenditures and energy assimilation across North 

America, as estimated by our model. The ratios could be much lower in lizards from 

lower latitudes. Climate warming between 1980-2010 (left column) and 2080-2100 (right 

column) will increase the ratios at lower and middle latitudes, where current times for 

energy intake are high (See Fig. S1). For these calculations, energy expenditure during 

activity was either 300% (a, b) or 450% (c, d) more than the resting metabolic rate. On 

each map, the black line represents current distribution of S. undulatus. 
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