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ABSTRACT  
   

In this dissertation I studied the anomalous Hall effect in 

MgO/Permalloy/Nonmagnetic Metal(NM) based structure, spin polarized 

current in YIG/Pt based thin films and the origin of the perpendicular 

magnetic anisotropy(PMA) in the Ru/Co/Ru based structures.  

The anomalous Hall effect is the observation of a nonzero voltage 

difference across a magnetic material transverse to the current that flows 

through the material and the external magnetic field. Unlike the ordinary 

Hall effect which is observed in nonmagnetic metals, the anomalous Hall 

effect is only observed in magnetic materials and is orders of magnitude 

larger than the ordinary Hall effect. Unlike quantum anomalous Hall effect 

which only works in low temperature and extremely large magnetic field, 

anomalous Hall effect can be measured at room temperature under a 

relatively small magnetic field. This allows the anomalous Hall effect to have 

great potential applications in spintronics and be a good characterization tool 

for ferromagnetic materials especially materials that have perpendicular 

magnetic anisotropy(PMA). 

In my research, it is observed that a polarity change of the Hall 

resistance in the MgO/Permalloy/NM structure can be obtained when certain 

nonmagnetic metal is used as the capping layer while no polarity change is 

observed when some other metal is used as the capping layer. This allows us 

to tune the polarity of the anomalous Hall effect by changing the thickness of 
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a component of the structure. My conclusion is that an intrinsic mechanism 

from Berry curvature plays an important role in the sign of anomalous Hall 

resistivity in the MgO/Py/HM structures. Surface and interfacial scattering 

also make substantial contribution to the measured Hall resistivity.  

Spin polarization(P) is one of the key concepts in spintronics and is 

defined as the difference in the spin up and spin down electron population 

near the Fermi level of a conductor. It has great applications in the 

spintronics field such as the creation of spin transfer torques, magnetic 

tunnel junction(MTJ), spintronic logic devices.  

In my research, spin polarization is measured on platinum layers 

grown on a YIG layer. Platinum is a nonmagnetic metal with strong spin 

orbit coupling which intrinsically has zero spin polarization. Nontrivial spin 

polarization measured by ARS is observed in the Pt layer when it is grown on 

YIG ferromagnetic insulator. This result is contrary to the zero spin 

polarization in the Pt layer when it is grown directly on SiO2 substrate. 

Magnetic proximity effect and spin current pumping from YIG into Pt is 

proposed as the reason of the nontrivial spin polarization induced in Pt. An 

even higher spin polarization in the Pt layer is observed when an ultrathin 

NiO layer or Cu layer is inserted between Pt and YIG which blocks the 

proximity effect. The spin polarization in the NiO inserted sample shows 

temperature dependence. This demonstrates that the spin current 
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transmission is further enhanced in ultrathin NiO layers through magnon 

and spin fluctuations. 

Perpendicular Magnetic Anisotropy(PMA) has important applications 

in spintronics and magnetic storage. In the last chapter, I study the origin of 

PMA in one of the structures that shows PMA: Ru/Co/Ru. By measuring the 

ARS curve while changing the magnetic field orientation, the origin of the 

PMA in this structure is determined to be the strain induced by lattice 

mismatch.  
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Chapter 1 

Introduction 

In this chapter, I will make an introduction to the theoretical background 

in my thesis. Magnetism is one of the most important properties of materials. 

It is a study of interaction between materials and magnetic field. The 

phenomena of magnetism had been observed by people in ancient times and a 

typical example of early applications of magnetism is compass which leads to 

the discovery of new continents.  Even nowadays, magnetism plays an 

important role in hard drive and magnetic memory devices.  

1.1 Magnetic materials 

When a material is placed in a magnetic field, the material will be affected 

by the magnetic field called magnetized. The degree that the material is 

magnetized is described by a vector M, the dipole moment per unit volume. If 

we assume that the magnetization is proportional to the external applied 

magnetic field H, which can be written as: 

                                                    𝑴 = 𝜒𝑯                                                     (1.1) 

The proportionality constant 𝜒 is known as the magnetic susceptibility of the 

given material[1].  
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 Materials may be grouped into different types depending on the sign and 

magnitude of 𝜒.  When 𝜒 is negative, that is when the induced magnetization 

is opposite to 𝑯, then the material is called diamagnetic. When 𝜒 is positive 

and small, the materials are known as paramagnetic materials. When 𝜒 is a 

very large positive number, the materials can be ferromagnetic or 

ferrimagnetic materials. 

 Diamagnetism is caused by the response of the orbital electrons to the 

external magnetic field. Classically, if we consider an electron circulating 

around the nucleus, the orbiting angular frequency can be calculated according 

to Newton’s second law: 

                                                F = m𝜔0
2𝑟                                                      (1.2)   

The F is the attractive Coulomb force between the electron and the nucleus. 

The magnetic moment of the electron can be written as: 

                                           𝜇0 = 𝐼𝐴 =
𝑒

2
𝜔0𝑟

2                                                (1.3)    

If we assume a magnetic field is applied perpendicular to the plane of the 

electron orbit, then in addition to the Coulomb attraction of the nucleus, the 

electron experiences a Lorentz force of the external magnetic field which 

points radially outward: 

                                            F − eBrω = m𝜔2𝑟                                              (1.4) 
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Due to the additional Lorentz force, the angular frequency 𝜔 is now 

different from 𝜔0. In the limit of the small field, the new frequency can be 

calculated as: 

                                                𝜔 = 𝜔0 −
𝑒𝐵

2𝑚
                                                  (1.5) 

We can see that frequency becomes smaller because of the applied field and 

the corresponding magnetic moment also becomes smaller, from (2.3) we can 

calculate that the change in magnetic moment[1]: 

                                            Δ𝜇 = −(
𝑒2𝑟2

4𝑚
)𝐵                                                 (1.6) 

We can see that the induced moment is opposite the magnetic field, hence 

called diamagnetic material. 

Apart from orbital electrons, conduction electrons in conductors also 

contribute to diamagnetism. In the presence of external magnetic field, the 

conduction electrons do cyclotron motion, quantum mechanical treatment 

needs to be employed to calculate the conduction electron’s contribution to 

diamagnetism[1].  

The diamagnetic susceptibility can be observed in solids with full atomic 

shells such as rear gas crystals and ionic crystals. In such solids, the orbital 

and spin moment all cancel out so there is no paramagnetic contribution. In 

solids with incompletely filled shells, paramagnetic effect is dominant and 

much stronger than diamagnetism, so diamagnetic contribution is smeared 

out[1]. 
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Paramagnetism exists in atoms with incompletely filled atomic shells. Such 

atoms usually exhibit nonzero angular and spin moment and they combine 

together to form the total magnetic moment of the atom. If the external 

magnetic field is present, the total moment will precession along the axis of the 

external field, showing a positive magnetization along the external field. The 

total magnetic moment can be written as[2]: 

                                           𝛍 = g (−
𝑒

2𝑚
) 𝑱                                                     (1.7) 

𝑱 is total angular momentum of the orbital electrons which includes the 

contributions of all the orbital and spin angular momentums and g is called 

Lande factor which depends on the relative orientations of the orbital and spin 

angular momentum. When an external magnetic field is applied, Zeeman 

splitting results. The Zeeman energy can be calculated as: 

                                       E = −𝛍 ∙ 𝐁 = g𝜇𝐵𝐵𝑚𝑗                                             (1.8) 

The energy depends on the magnetic quantum number 𝑚𝑗 . Without 

magnetic field, Atoms with different 𝑚𝑗 have same energy called degeneracy, 

after the application of external field, the degeneracy is lifted. We only consider 

the simple case where 𝑱 =
1

2
 so 𝑚𝑗 can take the value of +

1

2
 or -

1

2
, resulting in 

double Zeeman splitting. If we consider that N1 and N2 are numbers of atoms 

with magnetic quantum number -
1

2
 and +

1

2
 respectively and N1+ N2=N where 

N is the total number of atoms. According to Boltzmann statistics, the 
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distribution of atoms in each state obeys Boltzmann distribution and the two 

populations are related by[2]: 

                                             
𝑁2

𝑁1
= 𝑒−Δ𝐸/𝑘𝑇                                                     (1.9) 

The magnetization M is given by: 

                          𝑀 = 𝑔𝜇𝐵(𝑁1 −𝑁2) = 𝑁𝑔𝜇𝐵tanh(
𝑔𝜇𝐵𝐵

𝑘𝑇
)                             (1.10) 

For a weak field, under approximation tanh(x)≈x, we can calculate the 

susceptibility of paramagnetic materials as[2]: 

                                         𝜒 =
𝜇0𝑁(𝑔𝜇𝐵)

2

𝑘𝑇
                                                      (1.11) 

From equation (2.10) we can see that at weak external field, M is linearly 

proportional to B, but as field becomes stronger, M saturate at the value of 

𝑁𝑔𝜇𝐵, this is the case when all the dipoles of the site atoms align with the field, 

it can also happen when temperature T approaches to zero.  

The above paragraph shows site atoms contribution to paramagnetism. This 

paragraph we will show that conduction electron also make contribution to 

paramagnetism. A lot of metals show paramagnetism and this comes from the 

contribution of conduction electrons. The paramagnetic contribution of 

conduction electrons arises from the spin while the diamagnetic contribution 

of conduction electrons come from their orbital motion as has discussed above. 

Conduction electron paramagnetism arises from the fact that the spin 

magnetic moment of conduction electrons tends to align with the external 
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magnetic field. Deeper understanding can be realized by taking into account 

the Fermi-Dirac distribution[2][3]. 

As can be found in Figure 1, if no external magnetic field is applied, there 

are equal numbers of spin-up and spin-down electrons, resulting a zero net 

magnetization. When the external field is applied along z-axis, the energy of 

the electrons parallel to the field will be lowered by 𝜇𝐵𝐵  while those 

antiparallel to the field will be raised by 𝜇𝐵𝐵. To ensure thermal equilibrium, 

some of the electrons at the Fermi level will change from antiparallel to 

parallel configuration, leading to a net magnetization of the conduction 

electrons. Please note that electrons far away from the Fermi level is frozen by 

the Pauli-exclusion principle and thus cannot make the flip. Therefore, 

paramagnetism originated from conduction electrons can only be explained by 

quantum mechanical considerations. 

 

                     Figure 1.1 Illustration of spin paramagnetism[10] 

    To estimate the magnetic susceptibility, assume that only electrons 

within the energy interval of 𝜇𝐵𝐵  around the Fermi level participate the 



  7 

flipping, their concentration is given by 𝑁𝑒𝑓𝑓 =
1

2
𝑔(𝐸𝐹)𝜇𝐵𝐵, where 𝑔(𝐸𝐹) is the 

density of state at the Fermi level. Because each flip increases the 

magnetization by 2𝜇𝐵, the net magnetization can be given by[1]: 

                                      𝑴 ≈ 𝑁𝑒𝑓𝑓2𝜇𝐵 = 𝜇𝐵
2𝑔(𝐸𝐹)𝐵                                     (1.12) 

  So the paramagnetic susceptibility is[1]: 

                                            𝜒𝑝 ≈ 𝜇0𝜇𝐵
2𝑔(𝐸𝐹)                                               (1.13) 

  From equation (2.13) we can see that the paramagnetic susceptibility is 

essentially independent of temperature, this arises from the fact that in Fermi-

Dirac distribution, only electrons near the Fermi level can be thermally excited 

and flipped by the magnetic field, electrons far away from Fermi level are 

essentially frozen by quantum effect. 

   Ferromagnetism arises from the phenomenon of spontaneous 

magnetization. Ferromagnetic materials can be found in both metals and 

insulators. For ferromagnetism in insulators, the molecular magnetic moment 

is aligned in some favorable directions in the crystal and the molecular field 

model is employed to describe the phenomena. The model implies the presence 

of an internal field to produce the spontaneous magnetization. The field is 

assumed to arise from the interaction between molecules and is proportional 

to the magnetization. Ferromagnetism in metals are usually found in 

transition metals and rear-earth metals. These elements have partially filled 

3d or 4f shells and the conduction electrons in these shells contribute to the 

ferromagnetic property. Itinerant-electron model is used to describe the 
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ferromagnetism in metals. If we assume that the element has partially filled 

3d band and we can divide it into two subbands, each representing the two spin 

orientations. If we assume the exchange interaction exists and this tend to 

align the spin in the up direction and this will help the electrons to transfer 

from down to up direction to lower the energy. This will results in unbalanced 

subbands and a net magnetization and the result is the saturation 

magnetization observed in ferromagnetism[2].  

Ferromagnetism only appear below a certain temperature and this 

temperature is denoted as Curie temperature 𝑇𝐶, the magnitude of 𝑇𝐶 is about 

1000 K but each material has its own 𝑇𝐶 . Above 𝑇𝐶 , the thermal excitation 

breaks the long range order and no ferromagnetism is observed, in fact the 

material under this temperature region exhibits paramagnetic property. If the 

temperature falls below 𝑇𝐶 , spontaneous magnetization is observed and the 

lower the temperature, the stronger the spontaneous magnetization[2]. 

 Apart from ferromagnetism, there are other two types of magnetic order 

which we call antiferromagnetism and ferrimagnetism respectively. In 

ferromagnetism if the temperature is below Curie temperature, all spins are 

assumed to be aligned in the same direction. In antiferromagnetism, all spin 

dipoles are assumed to have same moment but adjacent spins point to opposite 

direction resulting in a zero net magnetization. Antiferromagnetism can be 

found in many compounds involving transition metals but cannot be found in 

pure elements. In these compounds, ions at different lattice positions have 
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opposite easy magnetization axis, resulting in zero net magnetization. In 

ferrimagnetism neighboring dipoles point to the opposite direction but the 

moments are not equal. In this case the moments cannot cancel each other 

completely and resulting in a nonzero net magnetization. Figure 2 is a brief 

illustration of the three types of magnetic order discussed above[3].  

 

Figure 1.2 (a) Ferromagnetism  (b) Antiferromagnetism (c) Ferrimagnetism 

 

   Many applications in our daily lives can be found using magnetic materials. 

For example, soft magnetic materials can be found in the transformers, motors 

and generators. Besides, hard magnetic materials play an important role in 

applications that require large coercivity [1].  Magnetic materials also have 

important applications in data storage devices. With the development in 

nanoscience technology, the advantage of magnetic technology over the 

conventional charge storage technology has become more and more manifest 

because of the low energy consumption and non-volatile property found in 

these devices[2]. 
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1.2 Hall Effect 

1.2.1 Ordinary Hall Effect 

The Hall effect is discovered by Edwin Hall in John Hopkins University. 

Later, people discovered many more different kinds of Hall effects such as 

Anomalous Hall Effect, Quantum Hall Effect, Spin Hall Effect etc. In normal 

Hall effect, charge current passing through a conductor under a magnetic field 

will experience a Lorentz force by the magnetic field. This force is 

perpendicular to the magnetic field and the current flow direction. The charge 

carriers care deflected to the side of the sample, a measurable electric voltage 

will be observed across the sample. In the steady state, the electric force due 

to the charge accumulation will cancel out the Lorentz force. We can deduce 

the Hall voltage as[1][2][3]:  

                                            𝑉𝐻 =
𝐼𝑥𝐵𝑧

𝑛𝑡𝑒
                                               (1.14) 

The Hall voltage in ordinary Hall effect is linearly proportional to the 

external magnetic field and inversely proportional to the thickness of the 

sample. The Hall resistance is defined as the Hall voltage divided by the 

current. We can also deduce the Hall coefficient as[3]: 

                                               𝑟𝐻 =
1

𝑛𝑒
                                               (1.15) 

The Hall coefficient in the ordinary Hall effect is inversely proportional to 

the density of the charge carrier. Also, the Hall coefficient can be positive or 

negative, depending on the type of the charge carrier in the conductor.  
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Figure 1.3: Schematic diagram about Ordinary Hall Effect 

 

1.2.2 Anomalous Hall Effect 

 

The anomalous Hall effect can be discovered in magnetic metals and is much 

stronger than the ordinary Hall effect[5]. The underlying mechanism of AHE 

is different from that in OHE. In the AHE, the charge carriers in the material 

is deflected due to the magnetization of the material, not the external magnetic 

field although the magnetization can be induced by the external field. In AHE, 

electrons of opposite spins are deflected to the two side of the sample due to 

the spin-orbit coupling. The Hall resistivity in AHE can be written as[4][5][6]: 

                                          𝜌𝐻 = 𝑅0𝐻 + 4𝜋𝑅𝑠𝑀                                           (1.16) 
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 The second term is the AHE contribution to the Hall resistivity. It depends 

on the magnetization of the sample and Rs is the intrinsic property of the 

sample. In magnetic materials, the dependence of M on external magnetic field 

is hysteresis loop, therefore the dependence of Hall resistivity in AHE on 

external field is no longer linear but shows hysteresis loop.  

 

Figure 1.4: Schematic diagram about Anomalous Hall Effect 

 

1.2.3 Spin Hall Effect 

The Spin Hall Effect is different from OHE and AHE because it happens 

without external magnetic field purely due to spin-orbit coupling. It happens 

in nonmagnetic metal with no external field required. When a charged current 
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pass through this material, equal numbers of electrons with opposite spins are 

deflected to two opposite edges of the sample through spin orbit coupling. 

Because the same numbers of electrons accumulate on two edges of the sample 

due to spin Hall Effect, the spin Hall effect cannot be measured by electrical 

equipment such as voltmeter[7][8].  

 

Figure 1.5: Schematic diagram about Spin Hall Effect. 

 

1.2.4 Spin-Orbit Coupling 

The spin-orbit coupling is the main mechanism in AHE and SHE. The 

spin-orbit coupling can happen in single atoms and in crystal solids. For the 

spin-orbit coupling in single atoms, considering an electron orbiting a 

nucleus. If we go to the rest frame of the electron, this is equivalent to the 

nucleus orbiting the electron. The motion of the nucleus charge creates a 
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circulating current and there is a corresponding magnetic field. The spin of 

the electron couples with this magnetic field creating an additional energy 

term. This is the big picture of spin-orbit coupling in single atoms. For the 

spin-orbit coupling in solids, the electrons move in crystal solids will feel the 

electric fields of the lattice potential, in the rest frame of the electron, this is 

transformed into magnetic field. The spin of the electron couples with the 

magnetic field giving an additional energy term. The electrons will be 

deflected to different directions with different spin orientation[6][9].  

1.2.5 Mechanisms of Anomalous Hall Effect 

The detailed theoretical mechanism of Anomalous Hall effect has been 

conducted by many condensed matter theorists. The current theories propose 

that there are three mechanisms that causes the Anomalous Hall Effect: 

Intrinsic Mechanism, Skew Scattering and Side Jump[6].  
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Figure 1.6: Illustration of three mechanisms of Anomalous Hall effect[6] 

The intrinsic mechanism is the first theoretical explanation of the 

Anomalous Hall effect introduced by Karplus and Luttinger[6]. It is considered 

as the most important contribution to anomalous Hall effect. It claims that the 

AHE originates from the spin-orbit interaction in Bloch bands in crystals. It is 

due to crystalline structure not to impurities thus called intrinsic mechanism. 

Later it was found that the intrinsic mechanism is actually caused by the Berry 

curvatures in momentum space and can be expressed as the sum of the berry 

curvatures in the momentum space[11-14].   

Now it is agreed that the intrinsic contribution to the anomalous Hall effect 

is pure quantum mechanical in nature due to the Berry curvature in 

momentum space and can be quantitatively analyzed if the exact band 

structure of the magnetic material can be calculated[36].  Considering a system 
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described by the Hamiltonian H which also depends on a set of external 

parameters R(t). The Hamiltonian can thus be written as H(R(t)). At each time 

t, the instantaneous eigenstate and the corresponding energy levels of this 

Hamiltonian is written as |𝑛(𝑹) >  and 𝜀𝑛(𝑹)  respectively. In the adiabatic 

approximation in which the external parameter is assumed change very slowly 

with time, if the system starts from one of the eigenstates, it will remain in 

this time dependent eigenstate during the time evolution plus a phase factor. 

It can be written as: 

               |𝜓𝑛(𝑡) > = 𝑒𝑖𝛾𝑛(𝑡)exp[−
𝑖

ℏ
∫ 𝜀𝑛(𝑹(𝑡

′))𝑑𝑡′]
𝑡

0
× |𝑛(𝑹(𝑡)) >                     (1.17) 

The first phase factor is called berry phase and is generally nonzero in 

quantum mechanics. The second phase factor is called dynamic phase factor 

which depends on time. If we insert this equation back to the time dependent 

Schrodinger equation that governs the system: 

                                      𝐻(𝑹(𝑡))|𝜓𝑛(𝑡) > = 𝑖ℏ
𝜕

𝜕𝑡
|𝜓𝑛(𝑡) >                                  (1.18) 

The exponential in the Berry phase factor can be solved for: 

                                     𝛾𝑛(𝑡) = ∫ 𝑑𝑹 ⋅ 𝓐𝑛(𝑹)𝐶
                                           (1.19) 

The term 𝓐𝑛(𝑹) is a vector valued function in parameter space and is called 

Berry connection. It can be calculated by the following equation: 

                                   𝓐𝑛(𝑹) = 𝑖 < 𝑛(𝑹)|
𝜕

𝜕𝑹
|𝑛(𝑹) >                                  (1.20) 

We can see that the Berry connection is purely an intrinsic property that is 

governed by the adiabatic time dependent Hamiltonian of the system. During 
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the time evolution if the system goes through a closed path in the parameter 

space and returns to the original Hamiltonian at time t, the Berry phase factor 

can be written as: 

                                            𝛾𝑛(𝑡) = ∮𝑑𝑹 ⋅ 𝓐𝑛(𝑹)                                      (1.21) 

We can see that even though the Hamiltonian goes back to its original state, 

the Berry phase is generally given by a closed line integral and is generally not 

zero. This means that the quantum state of the system generally doesn’t go 

back to the original state in adiabatic evolution due to the Berry phase factor.  

We have seen that the Berry connection is a vector valued function in 

parameter space. One can define another vector valued function which is called 

Berry curvature and can be written as: 

                 Ω𝜇𝜈
𝑛 =

𝜕

𝜕𝑅𝜇
𝒜𝜈

𝑛(𝑹) −
𝜕

𝜕𝑅𝜈
𝒜𝜇

𝑛(𝑹) = 𝑖[⟨
𝜕𝑛(𝑹)

𝜕𝑅𝜇
|
𝜕𝑛(𝑹)

𝜕𝑅𝜈
⟩ − (𝜈 ↔ 𝜇)]         (1.22) 

From the above equation and the fact that <
𝜕𝑛

𝜕𝑹
|𝑛′ > (𝜀𝑛 − 𝜀𝑛′) =< 𝑛|

𝜕𝐻

𝜕𝑹
|𝑛′ >, 

one can derive another equation to calculate the Berry curvature: 

                   Ω𝜇𝜈
𝑛 (𝑹) = 𝑖 ∑

⟨𝑛|𝜕𝐻 𝜕𝑅𝜇|𝑛′⁄ ⟩⟨𝑛′|𝜕𝐻 𝜕𝑅𝜈|𝑛⁄ ⟩−(𝜈↔𝜇)

(𝜀𝑛−𝜀𝑛′)
2𝑛′≠𝑛                       (1.23) 

The Berry phase factor can be written in terms of Berry curvature instead 

of the Berry connection by using the Stokes’ theorem: 

                                       𝛾𝑛(𝑡) = 0.5 ∫ 𝑑𝑅𝜇 ∧ 𝑑𝑅𝜈
𝑆

Ω𝜇𝜈
𝑛 (𝑹)                           (1.24) 

The S is the surface enclosed by the closed loop C. If the parameter space is 

three dimensional as is the case of the momentum space in lattice, the 



  18 

definition of Berry curvature can be simplified as the curl of the Berry 

connection: 

                                               𝛀𝑛(𝑹) = ∇𝑹 ×𝓐𝑛(𝑹)                                    (1.25) 

The expression of the Berry phase in terms of the Berry curvature can also 

be simplified to a vector valued surface integral: 

                                            𝛾𝑛(𝑡) = 0.5 ∫ 𝑑𝑺 ∙
𝑆

𝛀𝑛(𝑹)                                 (1.26) 

Now the Berry curvature is a vector valued function and can be related to 

the Berry curvature tensor via the Levi-Civita symbol Ω𝜇𝜈
𝑛 = 𝜖𝜇𝜈𝜉(Ω𝑛)𝜉. 

Now we can discuss the Berry curvature in lattice crystals and we can see 

that Berry curvature can give rise to an anomalous current transverse to the 

electric field that contribute to the anomalous Hall effect. In anomalous Hall 

effect measurement, electrical current passes through the material due to the 

external applied constant electric field E. In order to incorporate the electric 

field into the Hamiltonian without breaking the translational symmetry of the 

lattice, we can use the gauge transformation to express the electric field in 

terms a time dependent vector potential A(t): 

                 𝐻(𝑡) =
[�̂�+𝑒𝑨(𝑡)]2

2𝑚
+ 𝑉(𝒓) = 𝐻 (𝒒 +

𝑒

ℏ
𝑨(𝑡)) = 𝐻(𝒒, 𝑡)                    (1.27) 

Now the parameter momentum q and time t can be viewed as the 

independent parameters and we can denote its instantaneous eigenstates as 

|𝑢𝑛(𝒒, 𝑡) >. If we assume that initially the system starts at |𝑢𝑛 > and the entire 

process is adiabatic, the time dependent wave function can be given by: 
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                             |𝑢𝑛⟩ − 𝑖ℏ∑
|𝑢𝑛′⟩⟨𝑢𝑛′|𝜕𝑢𝑛 𝜕𝑡⁄ ⟩

𝜀𝑛−𝜀𝑛′
𝑛′≠𝑛                                         (1.28) 

Using Hamilton mechanics the velocity can be given by: 

            𝑣𝑛(𝒒) =
𝜕𝜀𝑛(𝒒)

ℏ𝜕𝒒
− 𝑖 [⟨

𝜕𝑢𝑛

𝜕𝒒
|
𝜕𝑢𝑛

𝜕𝒕
⟩ − ⟨

𝜕𝑢𝑛

𝜕𝑡
|
𝜕𝑢𝑛

𝜕𝒒
⟩] =

𝜕𝜀𝑛(𝒒)

ℏ𝜕𝒒
− Ω𝑞𝑙

𝑛                          (1.29) 

The second term is the Berry curvature term which is incorporated into the 

velocity of the charge carrier. If we introduce another momentum vector k=𝒒 +

𝑒

ℏ
𝑨(𝑡), the system can be written in terms of k instead of q, the velocity can be 

written as: 

                                      𝑣𝑛(𝒌) =
𝜕𝜀𝑛(𝒌)

ℏ𝜕𝒌
−

𝑒

ℏ
𝑬 × 𝛀𝑛(𝒌)                                   (1.30) 

The second term is the Berry curvature contribution to the current, we can 

see that it is always perpendicular to the electric field which is exactly the 

behavior of the Hall current. Thus we can see that the anomalous Hall current 

may come directly from the intrinsic quantum property of the lattice structure 

without depending on any extrinsic interference.  

It is known that only ferromagnetic materials exhibit anomalous Hall effect 

while nonmagnetic metals only have ordinary Hall effect, therefore not all 

materials have that extra Berry curvature term that contribute to the Hall 

conductivity. The Berry curvature term in a crystal can be analyzed on the 

symmetrical bases. Ideal crystal band under single electron approximation 

possesses both time reversal symmetry and spatial inversion symmetry. Under 
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time reversal symmetry, both v and k changes sign while E is fixed, the Berry 

curvature term is required to obey: 

                                           𝛀𝑛(−𝒌) = −𝛀𝑛(𝒌)                                            (1.31) 

Under spatial inversion symmetry v, k and E all change signs and the Berry 

curvature term is required to obey: 

                                            𝛀𝑛(−𝒌) = 𝛀𝑛(𝒌)                                               (1.32) 

Combine the above two equations we can find that if the system has both 

time reversal symmetry and spatial inversion symmetry, the Berry curvature 

is zero 𝛀𝑛(𝒌) = 0 . As a result, the anomalous Hall effect only arises in 

materials in which the time reversal symmetry and spatial inversion 

symmetry are not both conserved. In ferromagnetic material, the 

ferromagnetic ordering due to the spin orbit coupling breaks the time reversal 

symmetry, this can give rise to a nonzero Berry curvature term and anomalous 

Hall effect[36].  

The Hall conductivity can be expressed in terms of Berry curvature by 

integrating in the Brillouin zone and summing over all occupied bands. If we 

only consider the Hall conductivity in the x-y plane, we can only use the z 

component of the Berry curvature and the conductance can be given by[37]: 

                                      𝜎𝑥𝑦 =
𝑒2

ℏ
∫

𝑑3𝑘

(2𝜋)3
∑ 𝑓𝑛𝑘Ω𝑛

𝑧(𝒌)𝑛                                    (1.33) 
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From above we can see that the intrinsic contribution to anomalous Hall 

effect can be calculated by integrating and summing over all occupied bands 

below the Fermi energy. By employing the Stokes’ theorem, the volume 

integral can be converted into a surface integral of the Berry vector potential 

on the Fermi surface[36][38].  

 Detailed band structure and Berry curvature calculation of fcc Fe has been 

calculated by Yao et al. using the full potential linearized augmented plane 

wave method with the generalized gradient approximation(GGA) method.  

 

Figure 1.7: Band structure and Berry curvature along symmetric line in 

momentum space[39]. 

 

The above is the result of the band structure and Berry curvature 

calculation by Yao et al. They showed that the Berry curvature shows highly 
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irregular behavior that both sharp peaks and dips can appear. The sharp 

irregularities of the Berry curvature originate from pairs of the spin-orbit 

coupled band in a small k interval[39].  

 

Figure 1.8: The integrated Berry curvature seen from the Fermi surface in (010) 

plane[36][39]. 

 

The above graph is the integrated Berry curvature on the (010) Fermi 

surface of fcc Fe. As can be seen from the graph, the Berry curvature is very 

small in general k values but shows sharp peak values in areas where the 

avoided crossing of Fermi lines occur due to spin orbit coupling[39]. It is those 

small regions that make major contributions to the anomalous Hall effect in 
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ferromagnetic materials. This result further demonstrates that the spin orbit 

coupling is crucial behind anomalous Hall effect.  

Skew scattering is another important effect that contributes to anomalous 

Hall effect. The mechanism of skew scattering is spin-orbit interaction of 

electrons with the impurities. The moving electrons will experience the 

electric field of the impurities and in the rest frame of the electrons, this is 

equivalent to a moving magnetic field. The electrons with different spin 

orientation is deflected to different directions. In skew scattering, the 

scattering amplitude of the electrons with opposite spins to two sides of the 

material is not equal, thus comes the net electron accumulation across the 

material and the Hall voltage. The skew scattering theory proposes that 

there is a linear relationship between the AHE resistivity and the 

longitudinal resistivity of the material[6][15], 

                                               𝜌𝐴𝐻𝐸 ∝ 𝜌𝑥𝑥                                                   (1.34) 

The last contribution to anomalous Hall effect is side jump. Like the skew 

scattering mechanism, side jump is also caused by the unequal scattering of 

spin up and spin down electrons by impurities or disorders in the crystal. The 

electron can be viewed as Gaussian wave packet in quantum mechanics. 

When a Gaussian wave packet incident on a spherical impurity potential and 

scattered, if spin orbit coupling term is considered, there will be a 

displacement of the wave packet transverse to the incident direction. The 



  24 

AHE resistivity cause by the side jump mechanism is proportional to the 

square of the longitudinal resistivity[6][16][17], 

                                               𝜌𝐴𝐻𝐸 ∝ 𝜌𝑥𝑥
2                                                    (1.35) 

 

1.2.6 Recent works in Anomalous Hall effect 

A lot of works has been done about the anomalous Hall effect in bulk 

magnetic materials and pure magnetic thin films. In particular, a sign 

change in anomalous Hall conductivity has been observed in various 

structures such as CuCrSe1-xBrx(the doping of Br in CuCrSe spinel)[36][37] 

and Co/Pd multilayer structures. Also, using the general gradient  

approximation plus on-site Coulomb interaction(GGA+U) and (GGA) 

methods, Fuh et al. have calculated the band structure and anomalous Hall 

conductance of the fcc Ni. They changed the Fermi level while fix the band 

structure and showed that the Hall conductivity can be positive and negative 

while varying the Fermi level. This result further corroborates the theory by 

Haldane that the anomalous Hall conductivity is a Fermi surface effect and 

depends sensitively on the Fermi surface[40].  

In recent years, people also studied the AHE in 

ferromagnetic/nonmagnetic(FM/NM) multilayer structures. It was found that 

besides bulk contribution from ferromagnetic metals, FM/NM interface 

scattering and surface scattering also play a substantial role in the AHE 

resistivity[20-33]. The magnetic multilayers studied includes: Co/Au[20], 
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Co/Cu[21], Co/Pt[22], Fe/Gd[23], Fe/Cr[24], MgO/(Co/Pt)n/MgO[25], 

Pt/Co/Ru[26][27] and Co/Pd[28-33] etc. 

    In Fe/Cr multilayer structures, the Hall resistivity vs longitudinal 

resistivity was found to follow 𝜌𝐴𝐻𝐸 ∝ 𝜌𝑥𝑥
1.8~2.2 which deviates from the 

intrinsic mechanism which states that 𝜌𝐴𝐻𝐸 ∝ 𝜌𝑥𝑥
2 . The Hall coefficient in 

Fe/Cr multilayers differs considerably from that in bulk materials as a 

consequence of the interface scattering and antimagnetic coupling[24]. In 

Co/Au superlattices, with tuning the Co and Au layer thickness, 

perpendicular magnetic anisotropy(PMA) can be obtained. The 

magnetoresistance and Hall voltage in the structure that exhibits PMA is 

orders of magnitude larger than in the structure that shows in plane    

magnetic anisotropy[20]. In Co/Pt and [Pt/Co]/Ru/[Co/Pt] superlattices, strong 

PMA can all be obtained by tuning the layer thickness. The PMA is 

attributed to the hybridization between the 3d Co orbitals and the 5d Pt 

orbitals at the interface.  The relationship between the Hall resistivity and 

the longitudinal resistivity all deviates from the square law which indicates 

that the AHE is dominated by the interface scattering[22][26][27]. 

Ultrasensitive anomalous Hall effect has been identified in SiO2/Fe-Pt/SiO2 

sandwich structure which is attributed to interfacial electron scattering[34]. 

The Co/Pd multilayer structure has been most extensively studied. Not only 

can the PMA obtained by manipulating the Co thickness, the polarity of the 

AHE signal can also be achieved by thickness manipulation[28-33].  In Co/Pd 
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bilayers, the anomalous Hall conductivity increases roughly linearly with Co 

thickness suggesting the interfacial scattering contribution to the AHE 

signal. The AHE signal due to the interface scattering has opposite sign to 

that due to the bulk contribution[28]. In Co/Pd multilayer systems, study has 

found that bulk, interface scattering and surface scattering all contribute to 

the overall anomalous Hall resistivity. The AHE due to surface scattering has 

opposite sign to that from interface scattering. This results in the polarity 

change in the AHE signal in the temperature dependent AHE measurement 

and the multilayer with different repetition. The change in polarity was also 

claimed to originate from the change in the position of the Fermi level of the 

3d bands in the Co/Pd multilayer structure[32][33].  

 

1.3 Spin Polarization 

Due to the Pauli exclusion principle for Fermions, the electrons in deep 

energy bands are frozen and only electrons near the Fermi level can be 

excited and contribute to the conductivity. The Spin polarization is defined as 

the difference in the density of states of spin up and spin down electrons near 

the Fermi Level. The formula is given by: 

                                          P =
𝑁↑(𝐸𝑓)−𝑁↓(𝐸𝑓)

𝑁↑(𝐸𝑓)+𝑁↓(𝐸𝑓)
                              (1.36) 

For nonmagnetic metals, there are equal number of spin up and spin down 

electrons near the Fermi level, so that the spin polarization P=0. For another 
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extreme case half metal, all electrons near the Fermi level has only one spin 

orientation therefore the spin polarization P=1.  For general ferromagnetic 

metals, the spin polarization is in the range 0<P<1.  

 

Figure 1.9: (a)Nonmagnetic metals have spin polarization P=0. (b) Ferromagnetic 

metals have spin polarization 0<P<1. (c)Half metals have spin polarization P=1. 

 

The above equation only applies for the ideal case namely the material to 

be measured is perfect bulk crystals. In our lab, we use point contact to 

measure the spin polarization of the material, the equation has to be 

modified for specific measuring technique. For very small contact size area, 

the contact area can smaller than the mean free path of the electrons, this is 

in the ballistic region. One has the spin polarization equation[18]: 

                               P =
𝑁↑(𝐸𝑓)𝑣↑𝑓−𝑁↓(𝐸𝑓)𝑣↓𝑓

𝑁↑(𝐸𝑓)𝑣↑𝑓+𝑁↓(𝐸𝑓)𝑣↓𝑓
                              (1.37) 

The 𝑣↑𝑓 and 𝑣↓𝑓 are Fermi velocities at the Fermi level. In large contact 

area which is in diffusive region, the equation is modified as[18]: 
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                               P =
𝑁↑(𝐸𝑓)𝑣↑𝑓

2 −𝑁↓(𝐸𝑓)𝑣↓𝑓
2

𝑁↑(𝐸𝑓)𝑣↑𝑓
2 +𝑁↓(𝐸𝑓)𝑣↓𝑓

2                               (1.38) 

 

1.4 Andreev Reflection Spectroscopy 

Andreev reflection occurs at the interface of a normal metal and 

superconductor when they are in contact with one another. When an 

electrical current is sent in to travel from the normal metal to the 

superconductor through the interface, a certain is converted into a 

supercurrent while the other left considered nonequilibrium charge Q*. The 

nonequilibrium charge can relax into supercurrent over the charge relaxation 

distance.  

There are several cases in the current tunneling at the normal metal and 

superconductor interface. Classically, there is always a high barrier at the 

normal metal-superconductor interface so some of the electrons transform 

into nonequilibrium charge Q*. By considering the quasiparticles injected 

into the superconductor and the corresponding injection rate, we can 

calculate the fraction of the charge current transformed into Q*. At very low 

temperature near absolute zero and the bias voltage across the interface 

roughly equal the superconducting gap eV=Δ, the entire current converts into 

the supercurrent and not to the nonequilibrium charge because there are an 

equal number of electron and hole mixture. If the bias voltage is much higher 
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than the superconducting gap eV> Δ, there are some percent of the current 

transform into nonequilibrium charge Q*. If eV>> Δ, almost all current is in 

the form of nonequilibrium charge Q*. The fraction of current in the 

nonequilibrium charge state varies from zero to unity as the bias voltage 

increases from the value of superconducting gap to infinity[18][19].  

For another case where the ideal interface is assumed. In this scenario, 

there is no potential barrier, the tunneling process is dominated by a 

mechanism called Andreev reflection named after Andreev. For very low 

temperature and bias voltage across the interface much lower than the 

superconducting gap eV<< Δ, the electrons passing through the interface of 

the normal metal and superconductor cannot enter as quasiparticle but 

reflected back as hole. In the meantime, two electrons two electrons with 

opposite orientation of spins transmit into the superconductor as cooper 

pairs. This process is called Andreev reflection and each electron transfers 

two charges, as a result the differential conductance is doubled than that in 

the normal state. In the case eV>> Δ or higher temperature where T ~ Tc, 

nearly all the charges pass through as nonequilibrium charges Q* thus the 

differential conductance is the same as that in the normal state. As 

temperature decreases from above Tc to 0, the fraction of electrons transform 

to nonequilibrium charges drop from 1 to 0 and the differential conductance 

double[18][19].  
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Figure 1.10: The Andreev reflection process. The circles and dots are holes and 

electrons respectively[19].  

     

No potential barrier is only the ideal case, generally there are always some 

sort of potential barrier at the superconductor/normal metal interface. This 

barrier will cause Andreev reflection to be replaced by normal reflection. The 

potential barrier can be caused by surface oxidation or different fermi velocities 

between the two materials. To address this issue, Blonder et al. introduced the 

BTK model which simulate the potential barrier at the interface as a delta 

function. The strength of the delta function is denoted as Z. The equation 

associated with this model is called Bogoliubov equation. An electron incident 

on the interface with energy E can transmit through the interface or Andreev 

reflected or normally reflected. The possibilities for various outcome can be 

written as a function of the tunnel barrier Z. This model can simulate the 

theoretical differential conductance curves for a superconductor/normal metal 
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junction for different values of Z, ranging from low Z values for pure Andreev 

reflection to high Z values for normal reflection case. For all of the cases with 

different Z, when the voltage across the tunnel junction is high, the differential 

conductance will reduce to that of the normal case[19]. 

 

Figure 1.11: Probability for different mechanisms as a function of different values 

of Z. A denotes Andreev reflection. B denotes normal reflection. C denotes 

transmission without branch crossing. D denotes transmission with branch 

crossing[19].  
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Figure 1.12: Differential conductance curves for various Z factors at T=0. As can 

be seen, for large bias voltage, all differential conductance saturates to that of the 

normal case[19].  

 

 

    The Point Contact Andreev Reflection(PCAR) has been a great tool to 

measure the spin polarization of a given material. The differential conductance 

vs biased voltage curve which is closely related to the PCAR process can be 

generated and compared to the result of the BTK model. In real experiments, 
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the point contact methods create additional resistance that is not related to the 

ARS process. Especially in my research where the samples are mostly thin 

films, the additional resistance is quite large compared to the resistance that 

is related to the ARS. Therefore, the additional resistance has to be taken into 

account when extracting the ARS information. The additional resistance has 

the effect of broadening the ARS curves[35]. The effect of the additional 

resistance on the Pt/YIG structure for different Pt thickness can be seen in 

Figure 1.11. 

 

Figure 1.13: The additional resistance of the thin film has the effect of broadening 

the ARS curve. 
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Chapter 2 

Experiment 

2.1 Abstract 

    In this chapter, experimental apparatus used in this research will be 

introduced. In my study, the magnetic thin films are deposited by a home-

made magnetron sputtering system which can hold 10 sputtering targets 

inside the chamber. The thickness of the thin film is calibrated by the 

Rutherford backscattering(RBS) technique. The magnetic property including 

the hysteresis curve is measured by the vibrating sample 

magnetometer(VSM). The spin polarization is measured in liquid helium 

temperature by a home-made point contact Andreev reflection 

spectroscopy(ARS) system. A home-made magnetic transport system with a 

rotating magnet and a probe station is used to measure the 

magnetoresistance, Hall resistance and other transport measurements.  

2.2 Magnetron sputtering 

In our lab we use magnetron sputtering to grow thin films. The sputtering 

process takes place in discharged(plasma) gas environment. Usually the 

ultrapure Ar gas is used to produce the plasma state. Before the Ar gas is let 

into the chamber, the chamber must be pumped to reach a base pressure of 

less than 1 × 10−7 torr. This is because poor vacuum would harm the purity of 
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the Ar gas so that the Ar is mixed with the O2 and other compositions in air 

and sputtered onto the sample. The sample fabricated would be contaminated 

by the air in the chamber which would degrade the purity and composition of 

the sample. In our lab, the vacuum can go to 1 × 10−8 torr with the cryopump 

in action.  

 

Figure 2.1: The sputtering system in our lab. 
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To achieve high vacuum in our chamber, we use two types of vacuum 

pumps: turbo pump and cryopump.  

The turbo pump is used to achieve rough vacuum before the high vacuum 

cryopump takes into action or when loadlock is used to send samples into the 

chamber. This is because the high vacuum cryopump is a very delicate 

machine which cannot expose to atmospheric pressure. Typically, the turbo 

pump first pump the chamber from atmosphere pressure to about 10-5 torr 

before the cryopump runs[3].  

The cryopump is used to pump the chamber into high vacuum of about 

2*10-8 torr. The mechanism of cryopump is that gas molecules of different 

kinds can condense on cold surface[3].  

During the sputtering process, a high voltage between the sputtering 

target and the ground is created so the target has a high negative voltage of 

around 300V. The sample substrate to be sputtered is place just above the 

sputtering target. Because the high negative voltage around the sputtering 

target, the pure Ar gas around the target is ionized to form plasma. The 

process can be given by the following equation[1]:  

                                              𝐴𝑟 + 𝑒− = 𝐴𝑟+ + 2𝑒−                                      (2.1) 

In the plasma state the Ar is ionized to create a mixer of Ar atoms and 

positively charged Ar+ ions and electrons. This state is in dynamic 

equilibrium which means that the above reaction takes place in both 

direction at the same time. Some energy is released as UV and visible light 
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radiation so that one can see purple colour glowing gas when the plasma is 

formed. Because the target is negatively charged, the positive Ar+ ions will be 

accelerated by the electric field created by the target and will bombard onto 

the atoms of the target surface. When the energy of the Ar+ ions knocking on 

the target is within appropriate range, the sputtering process will take place 

in which the atoms on the target are knocked off and evaporated on the the 

substrate.  

 

 

Figure 2.2: Schematic diagram for sputtering process. 

    During the sputtering process, the pressure to the Ar air plays a crucial 

role in the final sputtering yield. In the magnetron sputtering, the preferred 

Ar pressure is a few mtorr. In our lab, the Ar pressure is fixed at 6 mtorr 

during sputtering. Too high and too low pressure will both result in lower 

sputtering yield. If the pressure is too low, less Ar+ will be ionized resulting in 
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a low deposition rate. In reality, at very low Ar pressure, the plasma state 

will not even be able to be created at all. If the Ar pressure is too high, the 

deposition rate will also suffer due to the shorter mean free path and too 

many scattering in the plasma[1][2].  

    The sputtering deposition described above has a very low deposition rate. 

To improve sputtering yield, magnetron sputtering is developed. In 

magnetron sputtering, strong magnets are placed under the sputtering 

targets. Ring shaped magnetic fields are created above the targets. Due to the 

magnetic fields, the electrons in the plasma are confined just above the 

targets, moving in helical paths along the magnetic field line. The density of 

electrons above the target is greatly enhanced in this way, resulting in 

increased chance of ionizing the Ar atoms. The deposition yield is greatly 

increased in this way[1]. 

 

Figure 2.3: Schematic diagram of magnetron sputtering. 
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Sometimes the sputtering targets are insulators such as MgO and YIG. In 

these cases, if the target is provided a negative electric potential as described 

earlier, the positive charge will accumulate onto the target, preventing the 

Ar+ from further bombarding on to the target. A solution to this problem is to 

provide the target with radio frequency(RF) alternating voltage. In the radio 

frequency sputtering process, during the short time when the target is 

provided positive voltage, electrons are attracted onto the target, neutralizing 

the positive charge accumulating on the target, thus preventing the positive 

charge being accumulated on the surface[1][2].  

 

Figure 2.4: Schematic diagram of RF sputtering. 
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2.3 Rutherford Backscattering 

    We grow different kinds of thin films on the substrate and we need to 

know the thickness of the thin films accurately in order to do good research. 

Rutherford Back Scattering (RBS) is employed in our lab to perform the 

thickness calibration of our samples. 

    RBS is an analytical method used in material science to determine the 

structure and composition of materials by measuring the backscattering of a 

beam of alpha particles impinging on the sample.  Figure 2.5 is an 

illustration of the RBS process. 

 

Figure 2.5: Rutherford Backscattering Mechanism[7]. 

When the alpha particles impinge on a piece of sample, a small portion of 

the particles will be elastically scattered backward due to the collision with 

the ion cores of the sample. In RBS, the detector is positioned on the same 
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side of the incoming particle beam to receive the backscattered alpha 

particles. The energy of the backscattered alpha particle is: 

                                                 𝐸1 = 𝑘𝐸0                                                       (2.2) 

 where k is known as the kinematic factor, it can be written as[4][5][6]: 

                                  𝑘 = [
𝑚1𝑐𝑜𝑠𝜃1±√𝑚2

2−𝑚1
2(𝑠𝑖𝑛𝜃2)2

𝑚1+𝑚2
]

2

                                      (2.3) 

where the subscript 1 and 2 refer to the alpha particle and the particle on 

the sample respectively. The probability of observing the backscattered alpha 

particle is given by the differential cross section of the scattering [4][5][6]: 

                                         
𝑑𝜔

𝑑Ω
= [

𝑍1𝑍2𝑒
2

4𝐸0
]
2

16

(𝑠𝑖𝑛𝜃)4
                                              (2.4) 

 The detector can count the number of alpha particles backscattered with 

different energy. The thickness of the sample can be interpreted by analyzing 

the particle yield vs energy spectrum. 

RBS spectra of Cu and Pt sputtered in our chamber is shown in figure 2.6 

and figure 2.7. The peak in the spectra is the characteristic of the material in 

the sample. The thickness of the thin film can be calculated by fitting the 

spectra with the RBS analysis software XRUMP, as can be seen in figure 10 

and figure 11, the black solid lines represent the number of detected particles 

vs energy spectra, the red solid line represents the XRUMP fitting. For figure 

5, the narrow peak at 275 meV is Cu thin film, the long tailing off represents 
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the thick SiO2 substrate, the deposition time for this sample is 240 s and the 

thickness of the Cu film is fitted as 194.3 Å[4][5][6].  

 

 

Figure 2.6: RBS curve fitting for Cu thin film in our lab. 
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Figure 2.7: RBS curve fitting for the Pt thin film in our lab. 

     

 

    The thickness of the film can be calculated by the following equation: 

  (2.5) 

 

2.4 Vibrating Sample Magnetometer 

The Vibrating Sample Magnetometer(VSM) was invented in MIT Lincoln 

Lab by Simon Foner in the mid of 20th century[8]. VSM can accurately 

measure the magnetization of a sample under external magnetic fields. It 

functions in room temperature and is easy to setup. The mechanism of VSM 

is Faraday’s law of magnetic induction.  
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Figure 2.8: Schematic diagram of VSM. 

    As can be seen from the diagram, the uniform external magnetic field is 

provided by an electromagnet. The field can sweep slowly so that a field 

dependent magnetization curve can be obtained. This curve shows hysteresis 

loop property for ferromagnetic materials. A Hall probe is mounted near the 

uniform field region to measure the external magnetic field. The external 

magnetic field should not be confused with the small vibrating magnetic field 

generated by the magnetization of the sample. In the measuring process, the 

sample vibrates vertically perpendicular to the external magnetic field with a 

small amplitude in high frequency. Four pickup coils are mounted around the 
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sample the receive the signal. The sample is magnetized by the external field 

and is vibrating at frequency f, the magnetic field due to the sample can be 

written as: 

                                                𝐵 = 𝐶𝑒𝑖
𝑓𝑡

2𝜋𝑀                                                   (2.6) 

C is constant and we can see that the magnetic field caused by the 

magnetization of the sample also vibrates sinusoidally. According to 

Faraday’s law, this changing magnetic field will induce a voltage in the 

pickup coil which is given by[8]: 

                                             𝑉 ∝
𝑑𝐵

𝑑𝑡
=

𝐶𝑓

2𝜋
𝑒𝑖

𝑓𝑡

2𝜋𝑀                                             (2.7) 

We can see that this voltage signal vibrates in the same frequency as the 

vibrating rod and is sent to a lock-in amplifier for signal processing. The lock-

in amplifier can measure small signal with certain frequency accurately, in 

this case, the lock-in is tuned to measure all signals in the vibrating 

frequency of the sample so that the magnetic field produced by the sample 

magnetization can be accurately measured. This signal is compared by a 

signal generated by a reference sample so that the accurate magnetization of 

the sample can be retrieved. In our lab, a Ni sphere is used as the reference 

sample. We can see that the pickup coil is not sensitive to the external 

magnetic field but only can measure the vibrating magnetic field generated 

by the sample. Also, radio frequency electromagnetic field exists in our daily 

lives such as the 50Hz frequency of the AC electricity. To avoid the 
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contamination from these signals, the frequency of the vibrating rod is tuned 

such that to avoid these common values[8].  

The VSM instrument in our lab is bought from Lakeshore company, the 

model is Lakeshore 7304. The measurement moment from the sample can be 

as small as 5 × 10−6emu under external magnetic field as high as 14.5kG. 

The adjustment air gap between the magnet meets the sample and magnetic 

field strength requirements. The Noise level is 5 × 10−6emu at 0.9’’ gap and 

50 × 10−6emu at 1.6’’ gap[9].  
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Figure 2.9: Photo of the Lakeshore 7304 VSM in our lab. 
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2.5 Magnetic Transport system 

In our lab, we use the home built magnetic transport system as one way to 

measure the magnetoresistance and the Hall signal of the thin film samples.  

 

Figure 2.10: Picture for the magnetic transport system in our lab. 

The magnetic transport system in our lab is essentially the four point 

contact measuring technique combined with a electromagnet. During the 

measurement, the sample is placed between the air gap of the magnet to 

ensure uniform magnetic field applied to the sample. The gap of the 

electromagnet is adjustable to meet different magnetic field strength 

requirements. The magnet can also be rotated so that the magnetic field 

angular dependence of the physical property can be measured.  

The four point contact method is used in the magnetic transport system to 

measure the magnetoresistance and Hall effect because the two point contact 
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measurement is not as accurate as the four point contact measurement. Also, 

the two point contact method can only measure resistance while the four 

point contact measurement can measure Hall signal[10][11].  

In the two point contact measurement, the resistance of the sample is 

obtained by measuring the voltage across the sample and the current that 

flows through the sample and taking division R=V/I. However the resistance 

of the wire is not negligible in experiments that require high accuracy and 

this will result in error of the ammeter reading and thus the resistance 

calculation.  

 

Figure 2.11: Illustration of the two-point contact method for resistance 

measurement. 

 

To address the problem of the wire resistance, four-point contact method 

was introduced by Kelvin[11]. In this regime, one uses two different circuit 

for current sending and voltage measurement and they are independent with 
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one another. The current is sent in through two electrodes by a current 

source, thus ensuring that the current passing through the sample is exactly 

the same as the reading shows on the current source.  The voltage is 

measured by voltmeter through another two electrodes. Because the inner 

resistance of the voltmeter is generally much larger than the resistance of the 

sample to be measured. The current passing through the voltmeter is 

negligible compared with the current passing through the sample. The 

reading on the voltmeter is almost the real voltage drop on the sample. Both 

the current and voltage reading are true value in the four-point contact 

method so that the resistance of the sample can be calculated by R=V/I. Also, 

the addition of another two electrodes enables the Hall signal measurement 

to be conducted.[10][11]. 

 

Figure 2.12: Illustration of the four-point contact method. 
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2.6 Probe Station 

    Another equipment in our lab which we use to do electrical transport 

measurement is the probe station. The probe station uses manipulators 

instead of wires to make physical contact with the sample. The manipulators 

are thin needle tips thus can make precise contact on the sample. It is 

convenient to use and can make fast contact with the sample. In the probe 

station, the magnetoresistance, I-V curve and Hall signal can be measured. 

The measurement is controlled by the Labview software. 

 

Figure 2.13: Photo of the probe station in our lab. 
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2.7 Andreev Reflection Spectroscopy Measurement 

In this lab, we use the point contact method to measure the Andreev 

Reflection Spectroscopy(ARS). Because the ARS involves in the interaction 

between a superconductor and normal metal, low temperature must be 

achieved in order for the material to reach superconducting state. In my 

experiments, the superconductors are made into sharp tips to be contact with 

the materials to be measured so that the spin polarization of that material 

can be analyzed. The super conducting tips in my measurement are Pb and 

Fe-superconductor. They typically work well in Liquid He temperature of 

about 4.2K. During the measurement, liquid He is used to achieve the 

superconducting state. The entire experiment takes place inside a big tank 

which contains a 50 Liter liquid He reservoir. The liquid He has extreme low 

temperature of 4.2K and evaporates instantaneously when exposed to room 

temperature. In fact, Liquid He can explode when it is enclosed in a 

compartment and exposed to room temperature, this is very dangerous and 

several accidents have happened related to this. To prevent situation from 

happening and also save the liquid Helium, the liquid He reservoir is 

surrounded by three other layers of jacket structures. Immediate outside the 

Liquid He tank is a vacuum jacket, this jacket is pumped to high vacuum by 

a turbo pump. This vacuum layer will provide the first level of protection to 

the Liquid He from outside environment. Another layer next to the vacuum 

layer is a liquid N2 tank. Liquid N2 is pumped into this tank to further 
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insulate the inner core liquid He from contacting the room temperature. The 

most outside layer is another vacuum chamber. This chamber is also pumped 

to high vacuum by a turbo pump before the experiment to offer the last layer 

of protection to the liquid helium at the center. Because the liquid N2 is only 

protected by the outmost vacuum chamber from the room temperature 

environment, it evaporates slowly during the experiment. The liquid N2 

chamber has to be refilled every 8 hours during the experiment.  

    The sample tube is immersed in the liquid He chamber. The vacuum 

jacket that contains the sample is inserted into the sample tube. The sample 

tube and the liquid He chamber is connected by an ultrafine needle valve. 

During the experiment, the needle valve is opened and the liquid He is let 

into the sample tube so that the sample can be cooled down. The sample tube 

is also connected to an oil pump through a pumping port so that sub liquid 

He temperature can be obtained by pumping the liquid He. The best low 

temperature obtained in this system is below 1.5K. The sample to be 

measured and the superconducting tip is mounted on the sample holder and 

the tip is made into contact with the sample through a differential screw. The 

screw can control the tip move into or away from the sample surface, multiple 

contacts can be made during the experiment. The tip only moves in a few µm 

with one turn in the differential screw so that the point contact between tip 

and the sample can be made. The contact size, Z tunneling factor and the 

contact resistance are all different with different contact. The contact must be 
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in the ballistic region for the ARS to take into action. The electrical setup of 

the measurement is also the four-point contact configuration. The current is 

sent in by a Keithley current source and the voltage is measured by a highly 

sensitive voltmeter. The differential conductance dI/dV is measured during 

the experiment. A lock-in amplifier is used to send in a high frequency weak 

signal to the connection to tell if the point contact is made and the contact 

resistance.  

The sample holder is inserted into a small diameter vacuum tube which is 

further inserted into the sample tube during the experiment. The small 

diameter vacuum tube is pumped into high vacuum of 10-6 torr and then 

filled with high purity He gas before inserted into the sample tube. The 

vacuum tube must be filled with high purity He gas because generally sub 

liquid He temperature is maintained during the experiment and other gas 

component inside the tube will freeze which will damage the sample and the 

equipment.  
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Figure 2.14: Photo of the point contact ARS equipment. 
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Figure 2.15: Schematic of the point contact measurement[12]. 
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Figure 2.16: Four-point measurement in ARS point contact configuration. 
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Chapter 3 

Tuning Anomalous Hall Effect in MgO/Permalloy/Heavy 

Metal Based Trilayer Structures 

3.1 Abstract 

Anomalous Hall effect(AHE) is a good characterizing technique to 

illustrate magnetic property in spintronics research. In this chapter, the 

anomalous Hall resistivity is conducted on the MgO/Py/Heavy metal(HM) 

based trilayer structures using the magnetic transport system. Sign change 

(negative to positive) in Hall resistivity is observed when Ta, Hf, Ru, Pt, Cu is 

used as the HM capping layer while increasing capping layer thickness. AHE 

signal attenuation with no sign change is observed in W capped trilayer 

structures. No sign change is observed when light metal Al is used as the 

capping layer. The MgO base layer is crucial for the sign change in AHE in 

Ta capped trilayer structure. The thickness of the Py interlayer does not 

affect the sign of the Hall resistivity. No sign change is observed when Py 

interlayer is replaced by CoFeB. The spin orbit coupling induced Berry 

curvature plays a crucial role in the sign of the anomalous Hall effect in 

magnetic structures. The surface and interface scattering might also be 

important in the sign of the AHE in magnetic thin film structures. 
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3.2 Introduction  

 

The Anomalous Hall Effect was discovered by Edwin Hall in 1881, not long 

after he discovered the Ordinary Hall Effect. He observed that The Hall 

signal in ferromagnetic materials were 10 times larger than that in 

nonmagnetic metals. In Hall effect, if there is a charged current passing 

through the sample and a magnetic field applied perpendicular to the sample 

surface, there would be measurable voltage across the sample, perpendicular 

to the current direction. This transverse voltage is called Hall voltage and is 

found to be related to the external applied magnetic field and the 

magnetization of the sample (if the sample is a magnetic material). The 

equation of the Hall resistivity can be written as[1]: 

                                          𝜌𝐻 = 𝑅0𝐻 + 4𝜋𝑅𝑠𝑀                                           (3.1) 

Where the first term to the right of equal sigh is the Ordinal Hall effect 

contribution and the second term is due to the Anomalous Hall Effect which 

is proportional to the magnetization of the sample. In Ferromagnetic 

materials, the second term is much larger than the first term and the 

response of the magnetization to the external magnetic field shows hysteresis 

curve. Therefore, the response of the anomalous resistivity to the external 

magnetic field shows hysteresis loop. Unlike the Ordinary Hall effect which is 

due to the Lorentz fore deflection of the charge carriers, the mechanism of the 

Anomalous Hall effect is much more complicated and is still controversial in 
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some aspect up to now. The anomalous Hall effect is closely related to the 

quantum physics and cannot be explained by classical physics. There are 

mainly three mechanisms that cause the Anomalous Hall effect: The intrinsic 

mechanism which now is commonly believed to originate from Berry 

curvature in momentum space, skew scattering and side jumps. The other 

two is the extrinsic mechanism due to the spin dependent impurity and 

disorder scattering of charge carriers in the materials[1].  

The intrinsic mechanism of anomalous Hall conductivity comes from the 

Berry curvature in momentum space of the crystal which is nonzero due to 

the broken time reversal symmetry by spin orbit coupling. As is already 

derived in chapter 1, the Berry curvature of a given crystal can be written 

as[25]: 

                                         𝜎𝑥𝑦 =
𝑒2

ℏ
∫

𝑑3𝑘

(2𝜋)3
∑ 𝑓𝑛𝑘Ω𝑛

𝑧(𝒌)𝑛                                 (3.2) 

Where H is the Hamiltonian of the perfect periodic lattice. The intrinsic 

contribution is proportional to the integration over all Fermi sea of occupied 

band Berry curvature[1]. The intrinsic mechanism can be theoretically 

studied by doing band structure calculations and prominent in materials with 

strong spin orbit coupled band[1]. 

 Besides the intrinsic mechanism which is the Berry curvature in 

momentum space, extrinsic mechanisms such as skew scattering and side 

jumps also contribute to the anomalous Hall effect in magnetic materials. 

These effects are due to the asymmetric scattering of electrons by ions or 
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impurities in the crystal and also contribute to anomalous Hall effect. In 

magnetic thin film structures, the surface and interfacial scattering is 

particularly important in the anomalous Hall effect.  

The correlation between the Anomalous resistivity and the longitudinal 

resistivity is call the scaling law. By analyzing the scaling law, the 

contribution due to different mechanisms can be separated. The scaling law 

is described by: 

                                                     𝜌𝑠 ∝ 𝜌𝑥𝑥
𝛾

                                                (3.3) 

Where the 𝛾 reveals the dominating mechanisms that contributes to AHE. 

The intrinsic contribution gives a scaling factor 𝛾 ≈ 2. Skew scattering 

contribution to anomalous Hall resistivity gives a scaling factor 𝛾 ≈ 1. Side 

jump contribution to anomalous Hall resistivity gives a scaling factor of  𝛾 ≈

2. For many materials, the scaling factor 𝛾 deviates far from the value of 2 

indicating that scattering or other unexplained mechanism makes 

pronounced contribution to the measured anomalous Hall resistivity[1][2][3]. 

In recent years a sign change in anomalous Hall effect have been observed 

in some magnetic systems. A temperature dependence sign change in 

anomalous Hall effect was observed in Fe/Gd bilayers by Xu et al. Sign 

change is due to the different spin polarization and Curie temperatures of the 

Fe and Gd layers[26]. It was also found that by doping the CuCrSe spinel by 

diamagnetic Br element, a sign change was also observed and corroborated 

by Berry curvature calculation[25].  
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In the studies of Co/Pd bilayer or multilayers which exhibit a 

perpendicular magnetic anisotropy. In Co/Pd multilayers, scaling factor of 

𝛾 ≈ 5.7 has been observed which deviates from a value of 2. Surface and 

interface scattering between the Co layer and the Pd layer is proposed to play 

an important role in the measured AHE. There is also a change of polarity of 

polarity of the AHE signal when the number of repetition of the multilayer 

increased from 6 to 80. For multilayers with very few repetitions, the surface 

scattering makes important contribution to the AHE while for multilayers 

with high number of repetitions, the contribution from surface scattering is 

negligible. The sign of surface scattering AHE is opposite to the interface 

scattering AHE and bulk contribution. Also, in Co/Pd and Co/Pt multilayers 

the sign of the skew scattering related AHE is opposite to the AHE from side 

jump[2][11][12].  Another possible theoretical explanation for the polarity 

change in the AHE in Co/Pd multilayers is that the change in the position of 

3d band in Co/Pd from lower half of the band to upper half of the band 

depending on the Pd thickness[5]. A polarity change in AHE is also observed 

in Co/Pt multilayers with an insertion of a thin FeMn antiferromagnetic 

layer[8]. The change of polarity in the structure has nothing to do with the 

exchange bias effect induced by the FeMn. It is argued that the FeMn layer 

exhibits a very short spin diffusion length of ~1.5nm, this changed the 

relaxation times of the majority and minority electrons in the Co/Pt layers 

and thus change the relative contributions of the spin carriers to the AHE. 
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This is the reason of the polarity change in Co/Pt systems with FeMn 

insertion[8]. It is also studied that the AHE in Co/Pt multilayers can be 

greatly enhanced by MgO or Ru sandwich layers. This is proposed to due to 

scattering effect at the MgO/Pt or Ru/MgO interface[9][10]. AHE is also 

studied in single layer graphene/YIG thin film structure. It was argued that 

the proximity induced ferromagnetic order in the graphene by the YIG film is 

responsible for the AHE signal and the contribution is mostly from extrinsic 

mechanism[14]. MgO/CoFeB/HM structure has been extensively studied 

based on its strong perpendicular magnetic anisotropy and applications to 

manufacture magnetic tunnel junction with high tunneling 

magnetoresistance ratio(TMR). According to studies, there are several 

contributions to this. Due to the spin orbit coupling, the 3d orbitals of the Fe 

and Co lift out of plane and also there is a hybridization of the dxz, dyz and 

dz2 of the 3d orbitals. Also, there is a hybridization of the O 2p orbitals and 

Fe 3d orbitals due to formed Fe-O bonds[17-24]. These hybridizations modify 

the band structure and creates a strong out of plane crystal field.  

In this chapter, MgO/Permalloy/HM structure is studied. The 

Permalloy(Py) is mostly a Ni/Fe alloy which consists of Ni/Fe/Mo/Mn. The 

ratio is 79%/16.7%/4%/0.3%. In this study, I will use AHE as a tool to study 

the magnetic property of the structure and we can see that the polarity of the 

AHE signal in this structure can be tuned by the HM capping layers. 
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3.3 Sign Switching of Anomalous Hall Effect in MgO/Py/Ta structures 

 

3.3.1 Tuning the sign of Anomalous Hall Effect 

In this section, I will show the AHE measurement in MgO/Py/Ta 

structures. The structure is deposited by magnetron sputtering on thermally 

oxidized Si substrate. The entire structure is thus: Si/SiO2/MgO/Py/Ta, Ta is 

used as the capping layer for the entire structure also can induce the AHE 

polarity change.  

The first data is MgO(2nm)/Py(1.6nm)/Ta(0-4nm), the MgO and Py 

thickness is fixed and the Ta layer thickness increased from 0-4nm. AHE is 

measured for each sample.  

 

Figure 3.1: AHE for MgO(2nm)/Py(1.6nm)/Ta(0-4nm) 



  71 

 

From the above figure, we can see that the polarity of the Hall signal 

gradually changed from negative to positive when the Ta thickness increases. 

The saturated Hall resistance gradually increased, changes sigh when Ta is 

about 2nm saturated when Ta thickness is beyond 4nm. The AHE curve 

beyond 2000 Oersted is saturated and the relationship between Hall 

resistance and magnetic field is linear in this region. In this region the 

magnetization is saturated so only ordinary Hall effect plays a role therefore 

it is not horizontal but also shows some slope. We can see that the slope in 

the saturated region also changes from negative to positive as Ta thickness 

increases.  

The next structure is the Si/SiO2/Ta(3nm)/MgO(2nm)/Py(1.6nm)/Ta(0-

4nm). I added another 4nm of Ta beneath the MgO layer. The data is as 

follows. 

 

Figure 3.2: AHE for Ta(3nm)/MgO(2nm)/Py(1.6nm)/Ta(0-4nm) 
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As can be seen from the graph, putting another 3nm of Ta beneath the 

MgO 2nm layer does not change the property of the samples. There is also a 

polarity change as Ta thickness increases. One can see that when the Ta 

thickness is about 2nm, the Hall curve is almost parallel to the x axis, 

demonstrating the transition occurs at this point. One can also see that the 

linear part which corresponds to the Ordinary Hall effect also changes sign 

which might indicates the charge carrier type change in the structure.  

I also measured the angular dependence of the AHE for the structure 

Si/SiO2/Ta(3nm)/MgO(2nm)/Py(1.6nm)/Ta(4nm). 

 

Figure 3.3: Angular dependence of AHE when current is applied horizontally. The 

sample face front, 90° means field is out of sample plane. 
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Figure 3.4: Angular dependence of AHE when current is applied vertically. The 

sample face front, 0° means field is out of sample plane. 

 

    The above is the angular dependence of the AHE curve for current applied 

horizontally and vertically respectively. Please note that the external 

magnetic field is applied horizontally and the surface of the sample faces 

front which means that when the angle is 90°, the magnetic field is applied 

out of the plane and the signal measured is the AHE. When angle is 0° the 

magnetic field is applied in plane.  

From the above angular dependent measurements, we can see that the 

when angle is 90°, the AHE signal is maximum and the shape follows good 

hysteresis shape which corresponds the magnetic property of the material. 
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When the angle is 0°, the signal is minimized and is almost zero parallel to 

the x axis.  

3.3.2 Effect of Py/Ta bilayer, not due to oxidation 

To find out about the reason of the polarity change in the structures, I 

removed the MgO layer so the structure now is Si/SiO2/Py(1.6nm)/Ta(0-8nm). 

 

Figure 3.5: AHE for Py(1.6nm)/Ta(0-8nm) structures. 

From the data, we can see that without MgO layer beneath the Py layer, 

the polarity change in the AHE is not observed even if the Ta thickness is 

increased to 8nm. The magnitude of the AHE simple decreases with 

increasing Ta thickness which is as expected because magnetic property of Py 

is diluted by the Ta layer. From this result, we can see that the sign change 

in AHE cannot simply be explained by the carrier charge type difference in 
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Py/Ta and the Py surface oxidation. There must be deeper reasons behind the 

sign change.  

3.3.3 MgO base layer dependence 

We have seen that the MgO plays a crucial role in the polarity change in 

the structure studied, in the following data, I changed the MgO thickness 

from 0-4nm while keep the Py and Ta thickness fixed at 1.6nm and 4nm 

respectively. 

 

Figure 3.6: AHE for MgO(0-4nm)/Py(1.6nm)/Ta(4nm). 

From the data, we can see that the MgO layer under the Py layer does play 

an important part in the polarity change of the AHE signal. The polarity is 

negative without MgO layer and changed to positive with even very thin 

layer of MgO. The magnitude of the positive AHE increases with increasing 

thickness of the MgO and saturated when the MgO thickness is beyond 2nm. 
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We can also see that the absolute magnitude of the AHE signal is even 

stronger with MgO underlayer than without. 

3.3.4 Permalloy thickness dependence 

In the next step, I changed the Py thickness and we can see that the 

samples with different Py thickness show different strength in the magnetic 

anisotropy. When the thickness of Py is about 1.6nm, the inplane anisotropy 

is weakest and the sample almost shows an out of plane anisotropy.  

 

Figure 3.7: AHE data for Ta(3nm)/MgO(2nm)/Py(1.4, 1.6, 2.4nm)/Ta(4nm) 

 

From the data above, we can see that the magnetic anisotropy of the 

samples almost points out of plane when Py is about 1.6nm. With Py 

thickness increases, the AHE signal shows sharp peaks in the middle and the 

curve is not totally antisymmetric about the y axis anymore as the AHE 



  77 

signal should be. This is because when doing the measurement, the external 

magnetic field cannot be perfectly perpendicular to the plane of the sample 

and there is always a small in plane component of the magnetic field. Also, 

indium leads are placed across the sample to measure the Hall voltage and 

we didn’t have the lithography equipment to make Hall bars. There is always 

a small misalignment of the leads that causes the longitudinal resistance of 

the sample to be included in the Hall signal measurement. The longitudinal 

resistance can be positive and negative depending on direction of the 

misalignment of the leads across the sample as can be seen from the data 

above. The dependence of the longitudinal resistance of the sample versus the 

magnetic field is the Anisotropic Magnetoresistance(AMR) and is symmetric 

about the y axis. Because of the small in plane component of the field, there 

is a sharp peak at the center of the sample. This means that the sample 

shows strong in plane magnetic anisotropy when the Py thickness is 

increased. To get the True AHE signal, we have to get rid of the symmetric 

part of the signal while the antisymmetric part is the true AHE signal. The 

following is the analyzed AHE signal for Si/SiO2/Ta(3nm)/MgO(2nm)/Py(vary 

thickness)/Ta(1 or 4nm) samples.  
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Figure 3.8: AHE signals for the Ta(3nm)/MgO(2nm)/Py(vary thickness)/Ta(4nm) 

 

 
Figure 3.9: AHE signals for the Ta(3nm)/MgO(2nm)/Py(vary thickness)/Ta(1nm) 
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We can see from the above data that the in plane anisotropy of the sample 

is stronger for both very thin and thickner Py. When Py is close to 1.6nm, the 

in plane anisotropy is weakest and it tends to show out of plane anisotropy. 

Also, regardless of the Py thickness, the samples always show a negative 

AHE polarity when the Ta thickness is 1nm and positive polarity when the 

Ta thickness is 4nm. This indicates that the Py thickness does not affect the 

polarity of the AHE of the structure. 

3.3.5 Effect of Ta base layer 

Lastly, I studied the structure of Ta(3nm)/Py(1.6nm)/Ta(0-5nm). We have 

already seen that without MgO and Ta base layer, there is no polarity 

change. Now, I remove the MgO layer only and keep the 3nm Ta base layer, 

we can see that the polarity changes in these set of samples but it needs a 

much thicker Ta capping layer to fully switch the polarity. When Ta 

thickness is 4nm, although the ordinary Hall effect signal is already positive, 

the inner signal which is due to the AHE is still negative.  
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Figure 3.10: AHE signal for Si/SiO2/Ta(3nm)/MgO/Py(1.6nm)/Ta(0-5nm) sample. 

 

I also annealed the sample Si/SiO2/MgO(2nm)/Py(1.6nm)/Ta(4nm) in 200 C 

for 40 min. For the Si/SiO2/Ta(3nm)MgO(2nm)/Py(1.6nm)/Ta(4nm) sample, I 

measured the Hall resistance again 5 months after the sample is fabricated.  

 

Figure 3.11: Annealed Si/SiO2/ MgO(2nm)/Py(1.6nm)/Ta(4nm) vs as deposited. 



  81 

 
Figure 3.12: AHE for as deposited Si/SiO2/Ta(3nm)/ 

MgO(2nm)/Py(1.6nm)/Ta(4nm) and 5 months later after deposition 

 

From the above graph, we can see that the both annealing and prolonged 

ambient environment exposure will increase the magnitude of the Hall 

resistivity. The polarity of both are not changed by the treatment. We can 

also see that the sample tends to point more to out of plane after long time 

ambient environment exposure. I assume that the annealing and the 

prolonged exposure will change the interfacial morphology of the samples. 

Therefore, the interface effect makes great contribution to the measured sign 

change in AHE. 
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3.3.6 Spin Polarization of MgO/Py/Ta measured by ARS 

Using the low temperature transport system, I also measured the ARS 

spectra of the Si/SiO2/Ta(3nm)/MgO(2nm)/Py(1.6nm)/Ta(4nm) sample and 

compared it to that of the Si/SiO2/Py(4.2nm) sample. 

 

Figure 3.13: ARS curve for Si/SiO2/Ta(3nm)/MgO(2nm)/Py(1.6nm)/Ta(4nm) 

sample. 

 

Figure 3.14: ARS curve for Si/SiO2/Py(4.1nm) sample. 
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From the above curve, we can see that the spin polarization of the 

Si/SiO2/Ta(3nm)/MgO(2nm)/Py(1.6nm)/Ta(4nm) P=0.9 is much higher than 

that in the pure Py sample which has a spin polarization of about 0.3. In our 

measurement, the spin polarization of 4.1nm Py on SiO2 is about 0.195. The 

P=0.9 is even higher than that in the half metal LSMO which has an intrinsic 

spin polarization of about 0.812. As has been discussed, the spin polarization 

is the difference of the spin up electrons and spin down electrons near the 

Fermi level in a material. This indicates that there is a substantial band 

structure difference between the MgO/Py/Ta trilayer and the Py layer. In the 

trilayer structure, there are hybridizations of the Fe, Ni 3d orbitals and the 

Ta 5d orbitals. There are also hybridization of the 3d orbitals of the Fe and 

the 2p orbitals of the O due to Fe-O bond formation.  These are strong spin 

orbital interactions which lift the degeneracy in the bands and there can be 

large difference in the electronic configurations near the Fermi level. In the 

intrinsic contribution to the anomalous Hall effect scenario, the change in 

band structure due to spin orbit coupled band hybridization will change the 

Berry curvature in momentum space. By integrating the Berry curvature in 

the occupied bands up to the Fermi level, the total Berry curvature might 

change substantially or even change sign.  
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3.4 The Effect of Other Heavy Metals as Capping Layers 

 

In this section, I study the AHE of the structure Si/SiO2/MgO/Py/Hf. This 

is essentially replaced the Ta capping layer by the Hf capping layer.  

 

3.15: AHE signal for Si/SiO2/MgO(2nm)/Py(1.6nm)/Hf(0-5nm) structure. 

From the above data, we can see that there is also a polarity change in the 

AHE signal with increasing Hf thickness while keeping the thickness of the 

other layer fixed. For this time, the positive AHE signal is highest when Hf is 

about 3nm and decreases a little bit when Hf thickness is further increased. 

This is contrary to the saturation behavior when Ta is used as capping layer. 

Also, when Hf is about 4nm, the sample almost shows higher perpendicular 

magnetic anisotropy than Ta capped samples.  
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3.16: AHE signal for Si/SiO2/MgO(2nm)/Py(1.6nm)/Hf(4nm) structure. 

I also measured the magnetoresistance of the sample for 1.6nm Py, the magnetic 

field is applied in plane parallel to current, in plane perpendicular to current and 

out of plane respectively.  
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Figure 3.17: Magnetoresistance for the structure 

Si/SiO2/MgO(2nm)/Py(1.6nm)/Hf(0-5nm), the first column(black) is in plane field 

parallel to current, the second column(red) is in plane field perpendicular to current, 

the third column(green) is out of plane field.  
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From the magnetoresistance curves, we can see that the structure doesn’t 

show strong in plane anisotropy or out of plane anisotropy. There is no 

profound difference in the in plane and out of plane magnetoresistance.  

The angular dependence of the structure is also measured, I measured the 

sample with Hf thickness of 1nm, 2nm, 4nm which corresponds to the 

negative polarity, transition region and positive polarity respectively. 
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Figure 3.18: Angular dependence of the AHE for 

Si/SiO2/MgO(2nm)/Py(1.6nm)/Hf(1nm), left is the case when the current is applied 

horizontally and right figure is when current is applied vertically. 
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Figure 3.19: Angular dependence of the AHE for 

Si/SiO2/MgO(2nm)/Py(1.6nm)/Hf(2nm), left is the case when the current is applied 

horizontally and right figure is when current is applied vertically. 
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Figure 3.20: Angular dependence of the AHE for 

Si/SiO2/MgO(2nm)/Py(1.6nm)/Hf(4nm), left is the case when the current is applied 

horizontally and right figure is when current is applied vertically. 
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    I also increased the thickness of the Py layer in this structure, so the Py 

thickness is now 2.3nm. The dependence of the AHE signal on Hf capping 

layer thickness is as follows:  

 

Figure 3.21: AHE signal for structure Si/SiO2/MgO(2nm)/Py(2.3nm)/Hf(0-5nm). 

 

We can see that the polarity of the AHE also change sign from negative to 

positive as Hf thickness increases and the structure with 2.3nm Py has more 

tendency to point in plane than out of plane as compared with 1.6nm Py 

samples. This means that the thickness of the Py plays a critical role in the 

magnetic anisotropy of the structure.  

The magnetoresistance of the of the Si/SiO2/MgO(2nm)/Py(2.3nm)/Hf(0-5nm) 

sample is also measured. 
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Figure 3.22: Magnetoresistance for the structure 

Si/SiO2/MgO(2nm)/Py(2.3nm)/Hf(0-5nm), the first column(black) is in plane field 

parallel to current, the second column(red) is in plane field perpendicular to current, 

the third column(green) is out of plane field.  
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In this section, I replaced the capping layer by Pt. The structure now is 

Si/SiO2/MgO(2nm)/Py(1.6nm)/Pt(0-4nm). We can see that the Pt layer will 

also induce the polarity change in the AHE signal of the structure.  

 

Figure 3.23: AHE signal for the structure Si/SiO2/MgO(2nm)/Py(1.6nm)/Pt(0-

4nm). 

 

The transition in the polarity change happens when the Pt thickness is 

about 0.5nm. As the Pt thickness is higher than 1.5nm, the positive strength 

of the AHE signal stopped increasing and decreases as Pt thickness 

increases. The magnetoresistance of the same structure is also measured. 

This time, the magnetic field is only applied out of plane.  

The atomic force microscopy(AFM) image is also measured for 

MgO(2nm)/Py(1.6nm)/Pt(0.1nm, 0.5nm, 3nm) samples. 
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Figure 3.24: AFM images for MgO(2nm)/Py(1.6nm)/Pt(0.1nm). RMS roughness 

Rq=0.234nm; Average Roughness Ra=0.186nm; Maximum roughness Rmax=2.41nm. 
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Figure 3.25: AFM images for MgO(2nm)/Py(1.6nm)/Pt(0.5nm). RMS roughness 

Rq=0.251nm; Average Roughness Ra=0.199nm; Maximum roughness Rmax=2.76nm. 
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Figure 3.26: AFM images for MgO(2nm)/Py(1.6nm)/Pt(1nm). RMS roughness 

Rq=0.271nm; Average Roughness Ra=0.224nm; Maximum roughness Rmax=1.65nm. 
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Figure 3.27: AFM images for MgO(2nm)/Py(1.6nm)/Pt(3nm). RMS roughness 

Rq=0.274nm; Average Roughness Ra=0.183nm; Maximum roughness Rmax=4.52nm. 
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    The above figures show the AFM images for the Pt capped trilayer 

samples for different Pt thickness. We can see that the RMS roughness is 

around 0.2nm for all the samples showing that the surface of the sample is 

quite smooth. The small dots on the surface of the sample might indicate the 

islands formation during the Pt deposition.  
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Figure 3.28: Magnetoresistance for out of plane field for the structure 

Si/SiO2/MgO(2nm)/Py(1.6nm)/Pt(0-4nm). 

 

We can see that there are some systematic changes in the 

magnetoresistance curve as Py thickness increases. The huge step on two 

sides of the curve is due to the switching of the magnetic field and is not the 

intrinsic property of the material. Because the magnetic field points out of 

plane and the sample should have in plane magnetic anisotropy, the sharp 

peak at the center might not be due to magnetoresistance. We suspect that 

the center sharp peak is due to the small in plane component of the magnetic 

field which induces a planar Hall signal in the sample.  

We have seen previously that the Py thickness has a great impact on the 

magnetic anisotropy of the samples so I increased the thickness of the Py 

layer. The AHE signal for Si/SiO2/MgO(2nm)/Py(2.3nm)/Pt(0-4nm) structure 

is measured. The Py thickness is 2.3nm instead of 1.6nm.  
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Figure 3.29: AHE curve for the structure Si/SiO2/MgO(2nm)/Py(2.3nm)/Pt(0-

4nm). 

 

We can see that there is also a polarity change in the samples and the 

magnetic anisotropy tends to point in plane in the 2.3nm Py sample more 

than the 1.6nm sample.  

I also measured the AHE signal for the Py/Pt based structure without the 

MgO underlayer. We have seen that in the MgO/Py/Ta based system, the 

MgO underlayer is very important for the polarity change. There is no 

polarity change in the Py/Ta structure without MgO underlayer. The data is 

as follows. 
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Figure 3.30: AHE curve for the structure Si/SiO2/MgO(2nm)/Py(2.3nm)/Pt(0.3 and 

2nm). 

 

I also reversed the sequence of the thin film layers, namely the structure 

now is Si/SiO2/Pt(0-4nm)/Py(1.6nm)/MgO(2nm). As can be sen from the 

graph, there is also a polarity change in the AHE signal of the structure.  
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Figure 3.31: AHE curve for the structure Si/SiO2/Pt(0-4nm)/Py(1.6nm)/MgO(2nm) 

 

We can see that the positive polarity of the structure stopped increase but 

start to decrease when the Pt thickness is beyond 1nm and when the Pt layer 

is thicker than 1nm the scuve is quite linear and does not show the hysteresis 

shaped curve.  

In conclusion, in the MgO/Py/Pt based structure, there is also a polarity 

change in the structure with increasing Pt thickness. Unlike in the 

MgO/Py/Ta based structure, Py/Pt structure also shows a polarity change 

without the MgO underlayer. When the sequence of the layer is reversed, the 

polarity change can also be observed with different Pt thickness. This 
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indicates that the polarity change in MgO/Py/Pt structure is different from 

that in the MgO/Py/Ta structure. The type of charge carrier in Pt might be 

different from that in the Py layer, this will induce the charge carrier to 

deflect to opposite direction in respect of the presence of the MgO underlayer.  

    In this section, the capping layer is replaced by Ru, the result is as follows. 

 

Figure 3.32: AHE curve for the structure Si/SiO2/MgO(2nm)/Py(1.6nm)/Ru(0-

4nm). 

 

We can see that the polarity also changed from negative to positive in this kind of 

structure. However, the magnitude of the AHE value is much smaller than that in 

the MgO/Py/Ta and MgO/Py/Hf structures. Also, the magnetic anisotropy tends to 

point in plane as compared with the previous samples.  
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    The structure Si/SiO2/MgO(2nm)/Py(1.6nm)/Cu(0-5nm) is studied in this section, 

we can see that the Cu capping layer induces some peculiar property to the AHE 

signal of the structure.  

 

Figure 3.33: AHE curve for the structure Si/SiO2/MgO(2nm)/Py(1.6nm)/Cu(0-

6nm). 

 

Instead of polarity change as is observed in Ta, Hf and Ta based structure, 

there is no polarity change in Cu based structures. The AHE signal rapidly 

vanishes to zero from negative polarity as the thickness of the Cu increases 

and does not switch to positive. However, if we enlarge the picture and look 

carefully enough, the center part which corresponds to the AHE actually 

switched to positive polarity although the magnitude of the signal is very 

small.  
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Figure 3.34: AHE curve for the structure Si/SiO2/MgO(2nm)/Py(1.6nm)/Cu(3 and 

6nm). 

 

We can see that there is actually a polarity change in the signal as Cu 

thickness increases but the total magnitude of the signal vanishes rapidly as 

Cu thickness increases and the curve looks like a perfect line if it is plotted 

together with thin Cu samples. We can also see that the linear part which 

corresponds to the ordinary Hall effect does not switch to positive as 

compared with the Ta, Hf, and Pt based samples. This indicates that the type 

of charge carrier does not change in the Cu based structure and the polarity 

change in the AHE signal in this structure has nothing to do with the carrier 

type change.  

In this section, I study the last Py based structure which is capped by W 

layers.  
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Figure 3.35: AHE curve for the structure Si/SiO2/MgO(2nm)/Py(1.6nm)/W(0-

20nm). 

 

From the data, we can see that the W capping layer thickness is increased 

up to 20nm and the magnitude of the AHE curve dropped rapidly as W 

thickness increases. To find out the detailed structure of the AHE curves for 

thick W capped samples, I enlarged the data of some sample with thick W 

capping layer.  
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Figure 3.36: AHE curve for the structure Si/SiO2/MgO(2nm)/Py(1.6nm)/W(4, 6 

and 12nm). 

 

As can be seen from the data, there is no switching in the center part of the 

data which corresponds to the AHE. The linear part which is due to the 

ordinary Hall effect changed from negative to positive as W thickness 

increases. This is totally in contrary to the Cu capped samples and also 

different from the Ta, Hf, Pt and Ru capped samples.  

 



  108 

 

Figure 3.37: AHE curve for the structure Si/SiO2/MgO(2nm)/Py(1.6nm)/Al(0.5-

4nm) 

 

In the last part, the MgO(2nm)/Py(1.6nm)/Al(0.5-4nm) sample is fabricated 

and measured for Hall resistivity. From the above figure, we can see that 

there is also no sign change in the Al capped trilayer structures like in the 

case of W capped structures. The Al is special as is compared with the 

previous HM capping materials because it is a light metal which does not 

possess strong spin orbit coupling. No sign change in this structure indicates 

that the strong spin orbit couplings in the HM might be a strong contributor 

to the sign change in the MgO/Py/HM trilayer structures.  
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3.5 The Effect of CoFeB as the Magnetic Interlayer 

In the last experiment of this chapter, I studied the MgO/CoFeB/Ta based 

structure using AHE measurement. As is well known, this structure is 

extensively studied due to strong perpendicular magnetic anisotropy(PMA) 

and good tunneling magnetoresistance. This has great applications in the 

spintronic devices. The structure I studied is 

Si/SiO2/MgO(2nm)/CoFeB(1nm)/Ta(0-4nm) and the reversed structure 

Si/SiO2/Ta(0-6nm)/CoFeB(1nm)/MgO(2nm). 

 

Figure 3.38: AHE curve for the structure Si/SiO2/MgO(2nm)/CoFeB(1nm)/Ta(0-

4nm). 

 

From the above data, we can see that the perpendicular anisotropy(PMA) 

is not obtained in the structure Si/SiO2/MgO(2nm)/CoFeB(1nm)/Ta(0-4nm) 

by varying the Ta capping layer thickness. The AHE signal always shows a 

positive polarity in contrary to the negative polarity in the Py based structure 

when Ta capping layer is thin. We ca also see that the magnitude of the AHE 
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signal first increases with increasing Ta thickness but decreases after the Ta 

thickness goes beyond 2nm. The magnitude of the AHE signal in CoFeB 

based structure is also much stronger than in the Py based structure with 

anomalous Hall resistance of more than 10 Ohm compared to the less than 1 

Ohm anomalous Hall resistance in the Py based samples.  

 

Figure 3.39: AHE curve for the structure Si/SiO2/Ta(0-

6nm)/CoFeB(1nm)/MgO(2nm). 

 

The above data is the reversed structure Si/SiO2/Ta(0-

6nm)/CoFeB(1nm)/MgO(2nm). This structure has been extensively studied. 

We can see that perfect perpendicular magnetic anisotropy can be obtained in 

this structure when the thickness of the tantalum base layer is in the 2-3nm 

range. The perpendicular anisotropy of the structure does depend on the 

thickness of the Ta layer so the it plays a crucial role in the magnetic 

property of the structure in addition to the MgO layer. The magnitude of the 

AHE signal is also in the 10 Ohm range which is much larger than the Py 

based structure. The polarity of the AHE signal is always positive in respect 
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of the Ta layer thickness so the change of polarity is not observed in this 

structure.  

 

3.6 Conclusion and Discussion 

In this chapter, I studied the MgO/Py/HM based structure where the heavy 

metal can be Ta, Hf, Ru, Pt, W, Cu. I also studied the MgO/CoFeB/Ta based 

structure. In the MgO/Py/HM based structure, a change in polarity of the 

AHE is observed when the HM is Ta, Hf, Ru, Cu and Pt and the HM capping 

layer is increased. When the W is used as the capping layer, no change in 

polarity is observed. There is also no sign change when Al is used as the 

capping layer. In the MgO/CoFeB/Ta structure when the permalloy layer is 

replaced by the CoFeB layer, no change in polarity is observed in the AHE 

signal. The AHE is said to originate from the intrinsic mechanism which is 

Berry curvature in the Bloch wave functions of the charge carrier in perfect 

lattice and the extrinsic mechanism which is skew scattering and side jumps. 

In thin film samples, interface scattering in multilayers and surface 

scattering makes contribution to the measured AHE resistance.  

Different heavy metals also have different spin-Hall angle. Fer 5-d electron 

metals such as Pt, Au, Ta, W, the spin-Hall angle can be positive or negative 

depending on the filling of the 5d electron band. If the 5d band is less than 

half filled as is the case for Ta and W, the spin Hall angle is negative while if 
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5d band is more than half filled, the spin Hall angle is positive as is the case 

for Au and Pt. This is because the sign of the spin orbit coupling term 

depends on the filling of the 5d bands[28]. The spin Hall angle of the Ta and 

W have the same sign while is opposite Pt. However, the polarity of the AHE 

changes in the Ta and Pt capped structures and does not change in W capped 

structure. Therefore, the spin Hall angle cannot explain the polarity change 

of the AHE in the structures studied. We have also seen both AHE and 

ordinary Hall signal change sign in Ta, Hf, Pt and Ru capped structures but  

in Cu capped structure, only AHE changes sign. The sign of ordinary Hall 

effect does not change in Cu capped structure. This suggests that there is 

charge carrier type change in the Ta, Hf, Ru and Pt capped structures and 

the band structure at the Fermi level changed.  

Intrinsic mechanism which is Berry curvature is one way to explain the 

phenomena. Based on the band structure and integrated Berry curvature 

calculation, the Berry curvature can change sign abruptly with small 

perturbation in Fermi level or band structure shift and contributes to the 

sign change in AHE. The spin polarization of the MgO/Py/Ta(4nm)(P~0.9) is 

much higher than the spin polarization of a single Py layer, suggesting a 

profound difference of energy band structure at the interface. This further 

demonstrates the intrinsic contribution to sign change in anomalous Hall 

resistivity.  
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Chapter 4 

Spin Polarized Current in Pt/YIG bilayers 

4.1 Abstract 

    In this chapter, spin polarization is measured in Pt/Yttrium iron 

garnet(YIG) structures. The spin polarization is measured by the point 

contact Andreev reflection technique. Pt is nonmagnetic heavy metal which 

intrinsically has no spin polarization as is confirmed in my measurement in 

the SiO2/Pt structure. Nonzero spin polarization is observed in YIG/Pt. Spin 

polarization can still be observed in Pt when a 1.2nm Cu is inserted between 

Pt and YIG. The induced spin polarization in Pt comes from the proximity 

effect at the interface and spin current pumping from YIG. Inserting 1.2nm 

NiO layer between Pt and YIG effectively blocks the spin polarization in Pt 

while 0.6 NiO insertion layer enhanced the spin polarization in Pt. The 

experiments demonstrated that the spin pumping plays a crucial role in the 

induced spin polarization in Pt. This spin pumping is further enhanced in the 

NiO layer through the magnons and spin fluctuations. This is further 

demonstrated by temperature dependent spin polarization measurements. 

4.2 Introduction 

    Yttrium iron garnet(YIG) is a ferrimagnetic insulator which has magnetic 

type respond to external magnetic field but is not conducting. Study has 
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shown that by depositing a Pt layer next YIG, anomalous Hall effect kind 

signal can be detected in the Pt layer[1]. This signal is sensitive to the 

temperature and Pt thickness but cannot come directly from the YIG layer 

because of the insulating property of YIG. Th AHE even changes sign as 

temperature changes and this effect is suggested to be due to the spin mixing 

conductance at the interface between the two layers[1]. Another study has 

suggested that the magnetic property obtained by the Pt layer when made 

contact with the YIG layer is due to proximity effect[2]. There is a 

measurable magnetic moment induced in the Pt layer when grown on YIG 

and the proximity effect caused the modification of the electronic structure in 

the Pt layer[2]. There is no ferromagnetic character measurable in the Pt 

layer when it is grown on GGG substrate[2]. Study also argues that Pt being 

a nonmagnetic metal with very strong spin orbit coupling shows even greater 

magnetic proximity effect than Py when grown on YIG layer. The strength of 

the magnetic property induced on Pt decreases as increasing Pt thickness 

because of the spin diffusion in the Pt layer[3]. Study also suggests that the 

magnetic property of Pt on YIG comes not only from magnetic proximity 

effect but also from the spin current across the Pt/YIG interfaces. By 

inserting a thin Au layer between Pt and YIG, the contribution from the 

above two factors can be distinguished[4]. Study also found that single layer 

graphene grown on YIG has measurable anomalous Hall effect signal up to 

room temperature and the proximity effect between the YIG and graphene 
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layer enhanced the otherwise weak spin-orbit coupling of the graphene 

layer[7]. 

The above researches all show that the Pt being is a nonmagnetic metal, 

shows magnetic property when it is grown on YIG. In generally this acquired 

magnetic property comes from the ferrimagnetic YIG and is due to the 

magnetic proximity effect and the spin current injection. Intrinsically, Pt 

should have zero spin polarization, this raises the question: is the current in 

the Pt spin polarized when it is grown on YIG because of the proximity effect? 

Using our Andreev Reflection Spectroscopy equipment, we can measure the 

spin polarization of a nonsuperconductor effectively. In this chapter, I will 

study the spin polarization of the Pt/YIG related structure using ARS.  

 

4.3 Experiment 

 

The experiment is done in low temperature 4.2K when the superconducting 

Pb tip and Fe superconductor tip is in contact with the Pt thin film. The 

entire experiment process is the Andreev reflection spectroscopy as is 

described earlier.  
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Figure 4.1: Schematic for the experiment. 

 

 

 

4.3.1 Spin Polarization of Pt grown on YIG  

The first structure measured is the 3nm of Pt layer directly grown on SiO2 

substrate. In this structure, we should expect a zero spin polarization because 

this is the intrinsic property of the Pt material.  
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Figure 4.2: ARS curve for Si/SiO2/Pt(3nm). 

There are several figures in the above graph, each corresponds to a 

different contact which has different Z factor. The Z factor is the proposed 

potential barrier at the interface between Pt and YIG and is simulated as a 

delta function. From the experimental result, we can see that the spin 

polarization of the of the 3nm Pt on SiO2 is always zero with multiple point 

contact. This demonstrates the assumption that the intrinsic spin 

polarization of a pure Pt layer is zero and also shows that our Pt sputtering 

target is clean and good. The later nonzero spin polarization measurement on 

the Pt surface is not the intrinsic property of the Pt layer. 

The second experiment is about 3nm Pt grown on 50nm YIG film. The 50 

nm YIG film is grown epitaxially on GGG substrate using Pulsed Laser 
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Deposition by Dr. Mingzhong Wu in Colorado State University. 3nm Pt is 

sputtered on YIG film in our lab using the magnetron sputtering method.  

 

Figure 4.3: ARS curve for GGG/YIG(50nm)/Pt(3nm). 

From the above data, we can see that the spin polarization P of the Pt film 

on YIG substrate is no longer zero. Different contact shows different spin 

polarization which corresponds to different Z factor, these are not the 

intrinsic spin polarization of the Pt on YIG. The different Z factor comes from 

the different tunneling barrier of different point contact. The spin 

polarization is plotted as a function of Z factor and by extrapolating the Z 

factor to zero, the intrinsic spin polarization is determined to be P=0.3. This 

nontrivial spin polarization is in contrast with the zero spin polarization of 

the Pt layer sputtered on SiO2 alone. Studies have shown that the Pt layer 

shows magnetic property when it is grown on YIG due to the magnetic 
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proximity effect at the interface and the spin current pumping from YIG into 

Pt layer. Our result of the nonzero spin polarization P further demonstrates 

the assumptions from these studies.  

Next, we studied the spin polarization of the Pt/YIG structure with 

different Pt thickness. We changed the Pt thickness from 3nm to 10nm. 

 

Figure 4.4: ARS curve for GGG/YIG(50nm)/Pt(5, 7, 10nm). 

We can see from the above data that the spin polarization decreases with 

increasing Pt thickness. The spin polarization in the Pt layer is not uniform 

but is different depending on how far apart from the YIG/Pt interface. This 

result is the same as the other studies which show that the spin diffusion in 

the Pt layer will decrease the spin polarization as measured on the top 

surface of the Pt layer.  
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Figure 4.5: Spin polarization P vs Pt thickness curve.  

The spin polarization P can be plotted as a function of the Pt thickness t. 

As can be seen from the graph, P decreases exponentially as Pt thickness 

increases which is as expected in the spin diffusion theory. By fitting the 

curve with exponential function, the spin diffusion length in the Pt layer can 

be determined as 4.236nm. All the measurements take place at 4.2K.  

 

Figure 4.6: The effect of the large extra resistance in the Pt film on ARS curve. 
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In the ARS measurements, we made point contact on the Pt thin film. Thin 

film samples have large extra resistance as compared with bulk samples, this 

extra resistance is in series with the point contact ARS resistance and has 

the effect of broadening the ARS curve. During the curve fitting, this extra 

resistance must be taken into consider of. From the above data, we can see 

that with decreasing Pt thickness, the ARS curve becomes wider and the 

extra resistance is larger as can be extracted from the curve fitting.  

4.3.2 Effect of Cu or NiO insertion layer between YIG and Pt 

In the next series of experiments, I study the spin polarization of the Pt 

sample by inserting a thin Cu or NiO layer between the Pt and YIG layer.  

 

Figure 4.7: ARS curve for GGG/YIG(50nm)/Cu(1.2nm)/Pt(3nm). 
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The above graph is the spin polarization of the Pt layer when a 1.2nm Cu 

insertion layer is deposited between Pt layer and YIG layer. Cu is a 

diamagnetic metal with weak spin orbit coupling. From the data we can see 

that the intrinsic spin polarization of the Pt in this structure is 0.35 which is 

even higher than that in Pt directly grown on YIG. When there is a Cu layer 

between Pt and YIG, the Pt layer is not in direct contact with the YIG thus 

the proximity effect between YIG and Pt is effectively blocked. The even 

higher spin polarization in the Pt layer must originates from some other 

effect other than proximity effect. This acquired spin polarization must come 

from the spin current pumping. We can see that the spin current from YIG 

layer can transmit through the 1.2nm Cu insertion layer into the Pt layer. 

Spin current pumping from YIG into Pt layer can thus be studied by 

inserting different layers with various thickness between YIG and Pt.  

    In the next step, thin NiO layer is inserted between 3nm Pt layer and 

the YIG layer. NiO is a antiferromagnetic insulator with a Neel temperature 

above room temperature[8]. This NiO is antiferromagnetic during the 

experiment which is conducted in liquid helium temperature. 
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Figure 4.8: ARS curve for GGG/YIG(50nm)/NiO(1.2nm)/Pt(3nm). 

The above data is the 3nm Pt and YIG inserted by 1.2nm of NiO layer. We 

can see that from inserting 1.2nm of NiO between the Pt and YIG, spin 

polarization measurement is zero with multiple contacts of different Z factor. 

This means that the Pt layer is well insulated from the YIG layer by the NiO 

inserting layer. The Pt layer returns its intrinsic nonmagnetic character and 

does not show magnetic property any longer. From our assumption, the 

proximity effect as well as the spin current are effectively blocked by the 

1.2nm NiO layer.  



  129 

 

Figure 4.9: ARS curve for GGG/YIG(50nm)/NiO(0.6nm)/Pt(3nm). 

The above data is the spin polarization of the 3nm Pt and YIG layer 

separated by a 0.6nm NiO layer. The reducing of the NiO layer thickness 

from 1.2nm to 0.6nm greatly impacts the spin polarization of the Pt layer. As 

can be seen from the graph, not only this structure shows spin polarization, 

the spin polarization is even higher than the 3nm Pt grown directly on YIG. 

The dependence of the spin polarization on Z factor shows a linear 

relationship which is different from the nonlinear relationship in the 3nm Pt 

grown directly on YIG structure. Because there is an ultrathin 0.6nm NiO 

layer between Pt and YIG, the spin polarization induced in the Pt layer 

should not be explained by the proximity effect.  There are researches done 

on NiO insertion layer between Pt and YIG which claim that the spin current 
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is injected from YIG to Pt layer and the spin current injection can be greatly 

enhanced by the thin NiO inserted layer[10][11]. Although the 

antiferromagnetic NiO is insulating and does not show magnetic character 

macroscopically, the antiparallel spins in NiO is still ordered microscopically 

and can be excited as magnons and transmit spin wave. This spin current 

enhancement is due to the magnons and spin fluctuations in the ultrathin 

NiO antiferromagnetic layer[10]. Because the enhancement is magnon and 

spin fluctuation based, the strength of the enhancement depends on 

temperature and is maximized near the Neel temperature of the NiO layer 

when the most magnons are excited in the layer[10]. This effect is 

corroborated by theoretical calculations[12]. This magnon excitation and 

fluctuation in antiferromagnetic insulators is not only observed in NiO but 

also in Ni2NbBO6 which shows pronounced spin-phonon interactions and 

phonon excitations below and slightly above the Neel temperature and is 

strongly temperature dependent[13].  

We have seen from the previous study that the ultrathin NiO layer might 

enhance the spin current from the YIG layer and induce strong magnetic 

property in the Pt layer. This might explain the larger spin polarization in 

the Pt layer of the YIG/NiO(0.6nm)/Pt structure. We have also seen there is 

strong temperature dependence in this effect[10]. In the last experiment, I 

replaced the Pb superconducting tip by the Fe superconducting tip which 
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remains in the superconducting state up to 50K. In this way, we can measure 

the temperature dependence of the spin polarization of the sample.  

 

Figure 4.10: Temperature dependence of the spin polarization in 

YIG/NiO(0.6nm)/Pt(3nm) and YIG/Pt(3nm). 

 

As can be seen from the data, the spin polarization of the 

YIG/NiO(0.6nm)/Pt(3nm) sample increases with increasing temperature 

while the spin polarization of the YIG/Pt(3nm) sample remains the same. 

Previous studies have claimed that the strong temperature dependence of the 

magnon and spin excitation in the antiferromagnetic layer and claim that it 

is strongest near the Neel temperature[10]. The higher the magnon 

excitation in the NiO insertion layer, the higher the spin current 

transmission. The increased spin polarization indicates increased spin 

current transmission into the Pt layer. Our measurement temperature is well 

below the Neel temperature of the NiO so the increase of the spin 
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polarization with increasing temperature is as expected which is in 

agreement with the previous study. 

 

4.4 Conclusion 

 

In conclusion, we have observed induced nontrivial spin polarization in the 

Pt layer when it is grown next a ferrimagnetic insulator YIG film. The 

induced spin polarization comes from the magnetic proximity effect at the 

interface between the Pt layer and the YIG layer and can also due to the spin 

current flow from the YIG layer into the Pt layer. By inserting a Cu or NiO 

layer between the Pt and YIG, we effectively prevented the proximity effect 

from contributing to the spin polarization in the Pt sample. For sample with 

Cu insertion and ultrathin NiO(0.6nm) insertion, the spin polarization in the 

Pt layer is even stronger than the sample directly grown on YIG, this result 

might indicate that the spin current injection plays a crucial role in the 

magnetic property induced in the Pt layer. The spin current injection is even 

enhanced by the ultrathin NiO layer due to magnon and spin fluctuation in 

the NiO layer and this enhancement is highly temperature dependent which 

is maximized near the Neel temperature of the antiferromagnet. 
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Chapter 5 

Perpendicular Anisotropy in Ru/Co/Ru Trilayer 

5.1 Abstract 

In this chapter, the perpendicular magnetic anisotropy(PMA) in Ru/Co/Ru 

based trilayer structure is studied by anomalous Hall effect. The PMA 

depends sensitively on the thickness of the Co layer as well as the Ru base 

and capping layers. The PMA is retained in the Ru/[Co/Ru]×n multilayers 

with n up to 6. The Andreev reflection spectroscopy(ARS) can sensitively 

measure the spin orbit field in the ferromagnetic-superconductor junction. In 

this research, the ARS is used as a means to study the origin of the PMA in 

the Ru/Co/Ru structures. PMA in magnetic multilayers can originate from 

the spin orbit coupling at the interface as well as the strain due to lattice 

mismatch. If the PMA is due to spin orbit coupling, a giant 

magnetoanisotropy in ARS conductance should be observed when changing 

the magnetic field orientation from in plane to out of plane. In my 

measurement, no pronounced change in ARS is observed suggesting that the 

PMA in the Ru/Co/Ru structure originates from the lattice strain. 
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5.2 Introduction 

5.2.1 Magnetic Domains 

Ferromagnetism originates from the exchange energy between the 

magnetic moments inside the material. The exchange energy favors parallel 

orientation of the magnetic moments and becomes minimum when the 

moments are aligned parallel with one another. However, if all the magnetic 

moments align parallel inside the magnetic material, there will be a large 

amount of north and south poles accumulate on the opposite sides of the 

material a large amount of magnetic stray field will come out of one side of 

the material and go back to the other side. This will create a huge amount of 

magnetic static energy. In fact, the magnetic moment inside a material 

always align such that the total magnetic static energy is minimized, 

therefore magnetic domains form inside the material.  

The magnetic moments inside a material typically break down into 

domains. Each domain typically is of micron size and the magnetic moments 

align perfectly parallel inside each domain. The magnetization between 

different domains are not parallel with each other therefore domain walls 

will form between the border of neighboring domains. The domain wall 

formation will increase the domain energy because there is magnetization 

switching in the domain wall region and the domain wall energy comes from 

the exchange energy of antiparallel magnetic moments. Because the increase 
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in the energy due to domain wall formation is less than the decrease in 

magnetic stray field energy therefore the domains will generally form inside 

the magnetic materials.  

Because of the domain wall formation and motion, the magnetization of 

magnetic materials responses to external field is hysteresis curve. When the 

external magnetic field is strong enough, all magnetic moments in the 

materials is pulled toward the external field direction and no domain forms 

inside the material in this situation. This is called saturation magnetization. 

The saturation magnetization is the intrinsic property of a particular 

material because theoretically it can be calculated based on how much 

magnetism is in one atom and how many atoms are in a unit cell and the 

lattice structure. When there is no external magnetic field, domains form 

inside the material to lower the overall magnetic energy of the system. 

Because not all domains magnetize in the same direction, the overall 

magnetization is smaller than the saturation magnetization and is called 

remnant magnetization. The magnetic field required to achieve the zero 

magnetization of the material is call the coercivity. The remnant 

magnetization and the coercivity depends critically on the size and shape of 

the material and is closely related to the anisotropy of the particular sample. 

They are not intrinsic property of the material.  
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5.2.2 Magnetic Anisotropy 

The magnetic Anisotropy is the tendency of a magnetic material to 

magnetize in a particular orientation. There are certain mechanisms that 

contributes to magnetic anisotropy namely magnetocrystalline anisotropy, 

shape anisotropy and magnetoelastic anisotropy. One can define the the 

magnetic anisotropy constant K which is the energy required to pull the 

magnetic moment away from the preferred orientation[1-3].  

The magnetocrystalline anisotropy is due to the crystal structure of the 

material. Different materials can have different crystalline structure which 

lead to different magnetic anisotropy. Let’s take for example Fe, Ni and Co. 

The Iron single crystal has bcc cubic structure and Ni has fcc cubic structure. 

The easy magnetization axis of the Fe is in the [100] directions which means 

that the magnetic moments of Fe tend to align along the edges of the cubic. 

The easy axis in the Ni is along the [100] direction which means that the easy 

axis prefers the diagonal direction of the cubic structure. The Co single 

crystal has hexagonal structure and the magnetic easy axis is along the c-axis 

of the hexagonal structure. According to crystal symmetry, the [100] has 6 

equivalent directions and [111] has 8 equivalent directions which the c-axis 

in the hexagonal structure has only 2 equivalent directions. Therefore the 

domains in the Fe single crystal can point to 6 directions and that in Ni can 

point to 8 directions while the domains in single crystal Co can only point to 2 

directions[1-3].  
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The anisotropy energy can be written as a function of magnetization 

directions. For cubic structure such as Fe and Ni, the anisotropy energy can 

be written as: 

                 𝑢𝑎 = 𝐾0 + 𝐾1(𝛼1
2𝛼2

2 + 𝛼2
2𝛼3

2 + 𝛼3
2𝛼1

2) + 𝐾2(𝛼1
2𝛼2

2𝛼3
2) + ⋯              [4.1] 

The term 𝛼𝑖 is the cosine of the angle between the particular axis and the 

direction of the magnetization where i can be x, y or z. The term 𝐾1 can 

actually determine the magnetic anisotropy direction in cubic lattice 

structure. For Fe, the term 𝐾1>0, 𝑢𝑎 is minimized when magnetization is in 

the [100] direction which means that the Fe crystal has [100] anisotropy. For 

Ni, the term 𝐾1<0, 𝑢𝑎 is minimized when magnetization is in [111] direction 

thus comes the [111] anisotropy for the Ni crystal.  

For hexagonal structure, the anisotropy energy as a function of the 

magnetization direction can be written as: 

                             𝑢𝑎(𝜃) = 𝐾𝑢0 + 𝐾𝑢1𝑠𝑖𝑛
2(𝜃) + 𝐾𝑢2𝑠𝑖𝑛

4(𝜃)                          [4.2] 

The term 𝐾𝑢1 actually determines the magnetic anisotropy in hexagonal 

structure. If 𝐾𝑢1>0 as is the case for Co, c-axis is the easy axis and it is called 

uniaxial anisotropy. If 𝐾𝑢1<0, c-axis is the hard axis.  

The physical mechanisms behind crystalline anisotropy is the spin orbit 

coupling between the magnetic moments and the crystal bonding of the 

lattices. As a result, the magnetization of the material shows the same 

symmetry as the crystal lattice of the material[1-3]. 
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Figure 5.1: The crystalline anisotropy of (a)Fe, (b)Ni and (c)Co[1]. 

 

Figure 5.2: First order magnetic anisotropy energy surface for (a)Fe, (b)Ni and 

(c)Co[1]. 
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The shape anisotropy is the preferred magnetization direction based on the 

shape of the material, this is also because of the minimization of the overall 

magnetic static energy the material produces. The basic rule is that 

elongated material tends to magnetize along the long axis to minimize the 

energy of the stray field produced by the material. For the thin film sample, 

the out of plane dimension is so much smaller than the in plane dimension so 

that in plane anisotropy is always observed. Perpendicular magnetic 

anisotropy(PMA) of thin film samples are always caused by special 

mechanism[1].  

 

5.3 Experiment and Conclusion 

 

In this chapter, I show the result of experiments about the Perpendicular 

anisotropy in the Ru/Co/Ru trilayer structures. Co based perpendicular 

anisotropy has been extensively studied in Co/Ni, Co/Pd and Co/Pt 

multilayers etc. [5-15].   

The PMA in Co/Pt and Co/Pd multilayers is said to originate from the 

hybridation of the 3d Co orbitals and 5d Pt and 4d Pd orbitals and together 

with the strong spin orbit coupling in the Pt layer[5]. This creates a spitting 

in the in plane and out of plane orbitals in the Co layer and the out of plane 

orbital is favored because of the lower energy[6][20].  
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For the PMA in Co/Ru layers, there are researches conducted suggest that 

the PMA originates from the lattice strain due to the lattice mismatch 

between the Co and Ru layer[7].  

5.2.1 PMA in Ru/Co/Ru Structure 

In this section, we will study the Ru/Co/Ru structure which has the PMA. 

 

Figure 5.3: AHE signal of Si/SiO2/Ru(15nm)/Co(0.5-1.7nm)/Ru(3nm) trilayer 

structure as measured by probe station. 

 

 

The above graph is the AHE signal of the Si/SiO2/Ru(15nm)/Co(0.5-

1.7nm)/Ru(3nm) trilayer structure as measured by probe station. As can be 

seen from the graph, the PMA of the structure gradually appear and 

disappear as Co thickness increases. The PMA only appear in sample with a 
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Co thickness of 1.25nm and is very sensitive on the thickness of the Co layer. 

We can also see that the magnitude of the AHE signal in this structure is in 

the milliohm level which is much smaller than in the MgO/Py/HM based 

structures. The magnitude of the AHE signal first increases and decreases as 

Co thickness increases and is maximized at around 1.2nm, this is also when 

PMA is observed in the sample.  

 

Figure 5.4: AHE signal of Si/SiO2/Ru(10-15nm)/Co(1.25nm)/Ru(3nm) trilayer 

structure as measured by probe station. 

 

The above graph is the Ru base layer thickness dependence of the PMA 

property of the sample as measured by probe station. As can be seen from the 

graph, base layer plays a crucial role in the magnetic anisotropy of the 
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sample. The PMA is only observed in 15nm based Ru samples and PMA 

disappears when the Ru base layer is reduced.  

 

Figure 5.5: Angular dependence of the AHE signal of 

Si/SiO2/Ru(15nm)/Co(1.25nm)/Ru(3nm) structure. 

 

The angular dependence of the AHE signal is also measured in the sample 

which shows the best PMA. In the measurement, the current is applied 

horizontally in the sample and the magnetic field is rotated horizontally to 

get the angular dependence. We can see that when the field is applied 

perpendicular to the sample the AHE shows sharp transition which 

corresponds to the sharp magnetic switching. When the field is applied in 

plane, the curve is more rounded broadened which shows that the anisotropy 

is indeed out of the plane of the sample.  
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Figure 5.6: AHE signal of the multilayer 

Si/SiO2/Ru(15nm)/[Co(1.25nm)/Ru(3nm)]n n=2-10. 

 

The above graph is the AHE signal for the 

Si/SiO2/Ru(15nm)/[Co(1.25nm)/Ru(3nm)]n n=2-10 structure. We can see that 

with increasing number of repetition layers, the PMA gradually disappears. 

The maximum number of repetition in which we can still have PMA is n=6. 

Also, the structure shows of oscillating behavior in the PMA. The PMA in the 

n=6 sample seems to be higher than that in n=2, 3 sample.  

5.2.2 Magnetic Field Angular dependence of Spin Polarization 



  146 

We also measured the ARS curve for the 

Si/SiO2/Ru(15nm)/Co(1.25nm)/Ru(3nm) structure. We can see that the spin 

polarization is about 0.491 so the sample is spin polarized. The spin 

polarization in the sample should originate from the Co magnetic layer. 

 

Figure 5.7: ARS curve for the Si/SiO2/Ru(15nm)/Co(1.25nm)/Ru(3nm) structure. 

 

Because the Andreev reflection spectroscopy can be used to sensitively 

determine the spin-orbit field in a ferromagnetic-superconductor junction[18] 

which exhibits giant magnetoanisotropic change in conductance curve with 

different magnetic field orientation. I also measured the angular dependence 

of the external magnetic field on the Andreev Reflection Spectroscopy curve. 

There are two superconducting magnets in the Andreev Reflection 

Spectroscopy chamber, one can produce magnetic field in the horizontal 

direction and another in the vertical direction. During the measurement, the 
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magnetic field produced by the horizontal magnet and vertical magnet are 

controlled such that the total magnetic field equals 2000Oe and sweeps a 

circle in a vertical plane. The sample is mounted such that the surface of the 

sample is perpendicular to the field of the horizontal magnet. From Figure 

5.8 we can see that the differential conductance curve does not change with 

different magnetic field direction which means that the perpendicular 

magnetic anisotropy in the Ru/Co/Ru trilayer structure originates from the 

strain due to lattice mismatch and not from the spin orbit coupling. 

 

Figure 5.8: Angular magnetic field dependence of the ARS measurement. 

5.4 Conclusion 

In this chapter, the perpendicular magnetic anisotropy(PMA) of the 

Ru/Co/Ru trilayer structure is studied. I found that PMA can be obtained in 

the Ru/Co/Ru structure and the PMA property depends sensitively on the 
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thickness of the Co layer as well as the Ru base and capping layer. The PMA 

is observed in only a small range of the Co thickness of about 1.25nm, thinner 

or thicker Co layer will both make the PMA property disappear. The Ru base 

layer thickness of 15nm and a Ru capping layer is also required for the 

structure to possess PMA. I also found that the PMA in the Ru/Co/Ru 

structure is not as strong as that in the Co/Pt multilayers and 

MgO/CoFeB/Ta structure because the PMA gradually disappears after the 

sample is left in the lab months after deposition.  

There are several mechanisms for a thin film structure to possess PMA 

such as the interfacial spin orbit coupling and the strain induced by lattice 

mismatch. In order to find out the possible reason for the PMA observed, I 

measured the sample using Andreev Reflection Spectroscopy(ARS). The ARS 

can be utilized to sensitively probe the spin orbit field in a superconductor 

ferromagnetic metal junction by changing the magnetization direction of the 

ferromagnetic and measuring ARS[18]. The ARS curve and spin polarization 

would change by varying magnetization direction of the sample. In my 

measurement, no change of ARS curve and spin polarization is observed in 

the magnetic field dependent measurement thus indicating that the PMA in 

the Ru/Co/Ru structure is due to the strain from lattice mismatch not from 

interfacial spin orbit coupling.  
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Chapter 6 

Summary and Future Work 

 

6.1 Summary of Previous Works 

In this thesis, I have worked on three major parts. The first part is the sign 

change of anomalous Hall effect in MgO/Py/HM based magnetic trilayer thin 

films. The second part is the nonzero spin polarization induced in Pt in 

YIG/Pt based thin film structures.  The last part is perpendicular magnetic 

anisotropy induced in Ru/Co/Ru trilayer systems and its origin as studied by 

Andreev reflection spectroscopy.  

In the first part, anomalous Hall effect is studied in MgO/Py/HM 

structures as is measured by 4 point contact magnetic transport 

measurement. It was found that the sign of the anomalous Hall effect 

changes when a certain HM is used as the top capping layer. In 

MgO(2nm)/Py(1.6nm)/Ta(0-4nm) structures the sign of the AHE changes 

from negative to positive as Ta capping layer thickness increases. The 

transition from negative to positive occurs at when Ta is about 2nm, at this 

Ta thickness, the AHE curve is almost a flat line on the x axis. The 

magnitude of the AHE stopped increasing as the Ta thickness is beyond 
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3~4nm. The MgO underlayer is crucial for the sign change in the MgO/Py/Ta 

structure as the sign of the AHE does not change without MgO under layer 

even if the thickness of the tantalum increases up to 8nm.  Merely adding 

1nm of MgO under the Py layer will change the sign of the AHE in the 

MgO/Py(1.6nm)/Ta(4nm) structure and the magnitude of the AHE does not 

increase after the MgO under layer is above 2nm suggesting that the role of 

MgO in the AHE sign change is interface effect. Varying the thickness of the 

Py will not change the sign of the AHE in this structure but the magnetic 

anisotropy of the structure does change as the Py thickness changes. Thin 

film samples naturally possess in plane magnetic anisotropy. Perpendicular 

magnetic anisotropy is not obtained in this structure but the in plane 

magnetic anisotropy is weakest when the thickness of the Py layer is about 

1.6nm, the sample at this stage almost shows the out of plane magnetic 

anisotropy. After replacing the Ta capping layer by other materials, some 

materials also show the sign change effect in AHE and some not. The Hf, Ru, 

Pt, Cu capping layer will change the sign of the AHE while W and Al will not 

change the sign of the AHE. The Py surface oxidation and the carrier charge 

type in the HM capping layer is not the reason for the sign change in AHE 

because no sign change is observed without the presence of the MgO 

underlayer. The sign of spin Hall angle of the various HM capping layers also 

cannot explain the sign change in Hall resistivity in the trilayer structures. I 

propose several possible reasons for the sign change in AHE observed in the 
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trilayer structures. One is intrinsic contribution to the AHE due to Berry 

curvature contribution. Another is the surface scattering and interface 

scattering effects which can be significant in the thin film samples. The Berry 

curvature can change sign when the thickness of certain HM capping layer 

changes due to strong spin orbit couplings and orbital hybridization. This is 

demonstrated by the ARS measurement and the fact that no sign change is 

observed in Al capped samples which have small spin orbit coupling. The 

relative contribution from the above mechanisms can also change which 

might have different sign intrinsically. These can all make the sign of the 

AHE change in the structure I made.  

The second part is about induced nonzero spin polarization in the Pt layer 

when grown on YIG substrate. The YIG is a ferrimagnetic insulator. The Pt 

which intrinsically has zero spin polarization due to nonmagnetic property, 

shows nonzero spin polarization when grown on YIG. This nonzero spin 

polarization disappears when a 1.2nm NiO layer is inserted between the Pt 

layer and YIG. The spin polarization of the Pt layers is even higher when a 

1.2nm Cu layer or 0.6nm ultrathin NiO layer is inserted between Pt and YIG. 

The spin polarization of the 0.6nm ultrathin NiO inserted sample increases 

with increasing temperature while the one with Pt grown directly on YIG 

shows no temperature dependence. There are two reasons for the induced 

spin polarization in the Pt layer. One is the magnetic proximity effect at the 

interface while another is the spin pumping from the YIG layer into the Pt 
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layer. The NiO and Cu insertion can effectively block the magnetic proximity 

effect while nonzero spin polarization can still be observed in the Pt layer 

when the NiO layer is thin enough. This demonstrates that at least the spin 

pumping makes significant contribution to the induced spin polarization in 

the Pt layer. The magnons in the NiO layer might even enhance the spin 

current transport between the YIG and Pt which is demonstrated by the even 

larger spin polarization in the Pt layer and the temperature dependence.  

The last part I completed is the perpendicular magnetic anisotropy(PMA) 

in the Ru/Co/Ru trilayer structures. The PMA can be obtained in the 

Ru/Co/Ru trilayer with proper thickness engineering of the magnetic Co layer 

as well as the base layer and the capping layers. PMA is preserved in 

multilayer structures with repetitions up to 6. There are two possible reasons 

for the PMA observed in thin film structures, one is the spin orbit coupling 

which is the orbital hybridization between different atoms at the interface, 

the other is the lattice strain induced by the lattice mismatch. I studied the 

origin of the PMA by Andreev reflection spectroscopy method. I did the 

magnetic field orientation dependence of the ARS differential conductivity for 

the sample. If the PMA originates from the spin orbit coupling, differential 

conductance will change with different magnetic field orientation while if the 

PMA originates from lattice strain, it will not change. In my measurement, 
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no profound change is observed which implied that the PMA is due to lattice 

strain.  

6.2 Future Works 

    In the first part, clear mechanisms for the sign change in the trilayer 

structure is still not found yet. Berry curvature calculations can be done to 

find out exactly the value of the Berry curvature with different HM capping 

layer thickness to find out the contribution from it. Also, how to 

quantitatively measure and separate the contribution from surface 

scattering, interfacial scattering and the side jump effect is still a challenge. 

One possible method is to do the scaling analysis of the samples[5]. The 

scaling analysis is a good way to separate the contribution from intrinsic and 

extrinsic mechanisms. The Py layer is NiFe alloy which is composed mostly of 

Ni and Fe. We can replace Py layer by pure Ni and Fe layer respectively to 

find out which element contribute to the sign change in AHE or the alloy is 

crucial for sign change in AHE. We have shown that the magnetic anisotropy 

of the structure tends to point more to out of plane after annealing or left in 

ambient environment for 5 months. This can be attributed to interface 

change. Detailed interface quality is still not known in the trilayer structure. 

We can do transmission electron microscope measurement to find out the 

quality of the interface in the trilayers. In the second part, we can do more 

detailed thickness dependence of the NiO insertion layer to find out the cut of 
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thickness of the spin current pumping and temperature dependence analysis. 

In the last part, we can use the magnetic force microscope to find out the 

domain patterns in the PMA trilayer samples and its evolution with external 

magnetic field.  
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