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ABSTRACT 

 

This study examined whether early adversity at 30-months moderated the 

heritability of common and individual components of EF at 8 years. It was hypothesized 

that early adversity would not moderate the common EF factor, but instead moderate 

individual EF components. The sample included 208 twin pairs from the Arizona Twin 

Project. Early Adversity, assessed at 30 months of age, included Parenting Daily Hassles, 

low perceived MOS social support, punitive punishment (Parental Responses to Child 

Misbehavior), home chaos (Confusion, Hubbub, and Order Scale), CES-D maternal 

depression, and low maternal emotional availability. EF at 8 years included the Eriksen 

Flanker Task, Continuous Performance Task, Digit Span Forward and Backward, and 

parent-reported Attentional Focusing and Inhibitory Control (Temperament in Middle 

Childhood Questionnaire). For both early adversity and EF, the first principal 

components were extracted as composites. A confirmatory factor analysis was also 

conducted to index common EF. Genetic analyses were tested on the common EF 

composites as well as each individual task using umx. Univariate models revealed genetic 

influences on all individual measures and common EF, with broad sense heritability from 

.22 (Digit Span Backwards) to .61 (parent-reported inhibitory control). Shared 

environmental influences were found for the Flanker Task (.13) and parent-reported 

inhibitory control (.24), and E was moderate to high (.40-.73) for all measures except 

parent-report inhibitory control (.15) and attentional focusing (.31). Moderation of 

heritability was not observed in for Digit Span Forward, Digit Span Backward, and 

Attentional Focusing. However, the nonshared environment was moderated for Common 
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EF, and the Flanker Task, and additive genes and the nonshared environment were 

moderated for the Continuous Performance Task and Inhibitory Control. Generally, total 

variance decreased as early adversity increased, suggesting that homes with low levels of 

adversity may allow children to interact with more proximal processes that can promote 

EF development.  
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Early environmental experiences are important for children’s development. When 

children are exposed to stressful early family experiences (e.g. physically punitive 

parental discipline, high levels of interparental conflict and violence, and cold, 

unsupportive parenting), they are at an elevated risk for the development of later 

cognitive and behavioral adjustment issues, including a wide range of mental and 

physical health problems (Cummings, Davies, & Campbell, 2002; Repetti, Taylor, & 

Seeman, 2002). Seeman, Singer, Horwitz, and McEwen (1997) found that stressful and 

threatening family environments increased the likelihood of biological dysregulations 

that lead to a buildup of allostatic load, which refers to premature physiological aging of 

the organism. Over time, physiological systems may lose their ability to function 

efficiently as the body adapts to the demands of the environment (Taylor, Way, & 

Seeman, 2011). One system that is implicated in the stress response is the hypothalamic-

pituitary-adrenal (HPA) axis, which involves the release of corticosteroids, like cortisol. 

In the short term, this system is thought to have evolved to handle acute, life-threatening 

stressors by shifting energy for immediate use while suppressing nonessential systems 

(Sapolsky, 2002). Importantly, chronic activation of the HPA axis can lead to adverse 

long-term effects on health, like compromised immune function, increases in blood 

pressure, and neurochemical imbalances (McEwen & Seeman, 2003). Elevated levels of 

stress hormones can disrupt the brain’s developing architecture (Shonkoff, Duncan, 

Fisher, Magnuson, & Raver, 2011). More specifically, it has been shown that stressful 

experiences alter the size and structure of the amygdala, hippocampus, and prefrontal 
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cortex, which can lead to functional differences in learning, memory, and executive 

functioning (Garner, Shonkoff, Siegel, Dobbins, Earls, et al., 2012).  

The current study adds to this literature by using a genetically informed twin 

design to examine whether early adversity moderates the genetic and environmental 

influences on executive functioning in middle childhood. The Bioecological Theory of 

Nature-Nurture Effects (Bronfenbrenner & Ceci, 1994) posits that the heritability of a 

trait is dependent on an individual’s interaction with the environment, therefore it is 

possible that exposure to early adversity could impact the genetic influence on later 

executive functioning.  

Past research has established the effect of early home stress on adverse outcomes 

in middle childhood. For example, children who were unable to regulate physical 

aggression during early childhood had mothers that previously exhibited antisocial 

behaviors, parents with low income, and parents that experienced high levels of conflict 

with one another (Tremblay, Nagin, Seguin, Zoccolillo, Zelazo, et al., 2004). Along with 

externalizing behaviors, children were found to exhibit dysregulated affect, over-

reactivity, and impulsivity if their parents used corporal punishment and had high 

aggression (Schwartz, Dodge, Pettit, & Bates, 1997; Shields & Cicchetti, 2001). Early 

adversity has also been correlated with poor academic performance. Home environments 

characterized by strict parenting, corporal punishment, and exposure to violence were 

linked with declines in grade point averages longitudinally (Dubow, Boxer & Huesman, 

2009). However, these studies are correlational, therefore the direction of effect is 

unknown. These studies also do not elucidate whether these associations are genetic or 

environmental in nature.  
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However, many animal studies have shown the causal links between early life 

stress and altered hippocampal and HPA axis functioning. In one example, male rats that 

experienced daily separations from the dam showed increased HPA axis responsiveness 

to stressors (Aisa, Tordera, Lasheras, Del Rio, & Ramirez, 2007). Similarly, early social 

deprivation was causally linked with cognitive deficits in rhesus monkeys (Sanchez, 

Hearn, Do, Rilling, & Herndon, 1998), which has strong implications, as impairments of 

memory could potentially affect how an individual handles new stressors. Taken 

together, human and animal studies support the important role of exposure to early life 

stress and altered brain functioning and dysregulated emotional and behavioral outcomes.  

One aspect of cognitive development of particular importance likely influenced 

by early adversity is executive functioning (EF). EF refers to higher order cognitive 

processes that underlie adaptive responses to novel, complex, or ambiguous situations 

(Hughes, Graham, & Grayson, 2005) and goal-directed behaviors, like inhibitory control, 

working memory, planning, and set shifting (Garon, Bryson, & Smith, 2008; Miyake, 

Friedman, Emerson, Witzki, & Howerter, 2000). Research has shown that EF is related to 

a multitude of outcomes: children’s math and arithmetic proficiency (Blair & Razza, 

2007), reading ability (Clark, Prior, & Kinsella, 2002), academic achievement 

(Biederman, Monuteaux, Doyle, Seidman, Wilens, Ferrero, et al., 2004), and emotion 

regulation (Carlson & Wang, 2007).  

From the temperament literature, there is a related construct referred to as 

effortful control, which is formally defined as the ability to willfully or voluntarily 

inhibit, activate, or modulate attention and behavior, as well as EF constructs of planning, 

detecting errors, and integrating information relevant to selecting behavior (Eisenberg et 
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al., 2004). Effortful control involves a focus on automatic or nonconscious aspects of 

emotional reactivity and regulation, and is commonly assessed using parent report of 

Inhibitory Control and Attentional Focusing (Blair & Razza, 2007; Eisenberg et al., 

2004). We include parent report assessments of Effortful Control in our study in an 

attempt to integrate these two related literatures, with a focus on working memory, 

inhibitory control, and attentional focusing. Overall, although phenotypic studies have 

established the relationship between early adversity and later negative outcomes, it is 

unclear how adverse environments affect the genetic and environmental etiology of EF. 

The Development of Executive Functioning  

EF, which is tied to the prefrontal cortex, can be identified as early as infancy 

(Carpenter, Nagell, & Tomasello, 1998), with accelerated periods of development 

between 2 and 5 years of age, and again at puberty (Anderson, Anderson, Northam, 

Jacobs, & Catroppa, 2001; Zelazo & Müller, 2002). Rutter and Rutter (1993) suggest that 

the transition from childhood to adulthood is characterized by dramatic shifts in cognitive 

flexibility. Similarly, Magnetic Resonance Imaging studies have consistently shown that 

compared to children, adolescents showed a higher volume of white matter (compared to 

gray matter) in the frontal cortex and parietal cortex, which reflects increased axonal 

myelination in these areas (e.g. Barnea-Goraly, Menon, Eckert, Tamm, Bammer, et al., 

2005; Sowell, Peterson, Thompson, Welcome, Henkenius et al., 2003; Sowell, 

Thompson, Tessner, & Toga, 2001). Research on environmental influences on EF has 

primarily focused on preschool-aged children and adolescents. However, middle 

childhood is one developmental period that is understudied, therefore little is known 

about whether environments influence EF during this stage.  
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In the following section, we define the specific EF components: working memory, 

inhibitory control, and attentional focusing, as well as review research that examines 

these components in relation to various aspects of early home stress. 

Working Memory 

Working memory is comprised of many systems that actively maintain 

information amidst distractions and/or ongoing processing (Conway, Kane, Bunting, 

Hambrick, Wilhelm, & Engle, 2005; Miyake et al., 2000). Working memory is correlated 

with the superior frontal and intraparietal cortex, with the magnitude of the association 

increasing from childhood into early adulthood (Gathercole, Pickering, Ambridge, & 

Wearing, 2004; Klingberg, Forssberg, & Westerberg, 2002). Working memory has been 

associated with many facets of cognition, including comprehension, reasoning, problem 

solving, and language comprehension (e.g. Daneman & Carpenter, 1996; Engle, 2002). 

Similarly, Fitzpatrick, Archambault, Janosz, and Pagani (2015) found that a one-point 

increase in working memory skills assessed at preschool predicted a 26% reduction in the 

odds of being at risk for dropping out of high school (measured when the participants 

were in 7th grade). Studies have shown that working memory is moderately correlated 

with general cognitive ability (r = .26-.44) (Ando, Ono, & Wright, 2001), and similarly, 

Engle, Tuholski, Laughlin, and Conway (1999) found that measures of working memory 

capacity strongly predicted IQ, particularly fluid ability.  

Researchers found that children who were observed to be more securely attached 

with their mothers between 15 months and 2 years showed higher performance on the 

backward digit span task, a common assessment of working memory (Matte-Gagné, 

Bernier, Sirois, Lalonde, & Hertz, 2017). In another study, children that experienced 
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childhood abuse or neglect had lower scores on working memory tasks compared to 

children that had no history of abuse or neglect (Perna & Kiefner, 2013). 

Inhibitory Control 

 Inhibitory control refers to the ability to deliberately inhibit dominant, automatic, 

or prepotent responses when necessary (Miyake et al., 2000). These processes can be 

identified in late toddlerhood and continue to improve through childhood into adulthood 

(Bell & Livesey, 1985; Williams, Ponesse, Schachar, Logan, & Tannock, 1999). Studies 

utilizing functional magnetic resonance imaging have found that the anterior cingulate 

cortex (ACC), inferior frontal gyrus (IFG), the dorsal lateral prefrontal cortex, the frontal 

eye field (FEF), the posterior parietal cortex, the striatum, and the cerebellum are brain 

regions involved in inhibitory control (Curtis, Cole, Rao, D’Esposito, 2005; Rubia, 

Smith, Brammer, & Taylor, 2003). Lower inhibitory control has been associated with 

ADHD (Wilcutt, Doyle, Nigg, Faraone, & Pennington, 2005), poorer academic 

achievement (McClelland, Cameron, Duncan, Bowles, Acock, et al., 2014), and impaired 

theory of mind performance (Carlson & Moses, 2001). 

Overall, studies have shown that parenting is related to performance on tasks that 

tap into inhibitory control abilities. One task that is commonly used to measure inhibitory 

control and attentional focusing is the Eriksen Flanker Task (Eriksen & Eriksen, 1974), 

which investigates the limits of visual selective attention as well as the efficiency of the 

frontal network (Eriksen & Eriksen, 1974; Stins et al., 2004). In one example, Matte-

Gagné et al. (2018) found that children who were observed to be more securely attached 

to their mothers between 15 months and 2 years showed higher performance on the 

Flanker Task in kindergarten. Similarly, older children and early adolescents that had 
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high error rates on the Flanker Task also had parents that reported more inconsistent 

discipline, whereas participants with fewer errors on the EF task had parents with high 

parental involvement or parental responsibility (Sosic-Vasic, Kroner, Schneider, Vasic, 

Spitzer, et al., 2017).  

Attentional Focusing 

 Attentional focusing refers to the ability to voluntarily focus or shift attention as 

needed (Eisenberg et al., 2004). Eisenberg, Zhou, Spinrad, Valiente, Fabes, et al. (2005) 

have found that attentional focusing can be identified in infancy and toddlerhood, and has 

been shown to be stable by early to middle childhood. The anterior cingulate gyrus is 

involved in appropriate attention allocation (Eisenberg, Guthrie, Fabes, Shepard, Losoya, 

et al., 2000; Posner & Rothbart, 1998). Difficulties with attention regulation have been 

linked with poorer academic performance (Raver, Smith-Donald, Hayes, & Jones, 2005), 

more problem behaviors (Rothbart & Bates, 2006), and emotional dysregulation 

(McClelland, Acock, & Morrison, 2006). 

Young children that are exposed to chronic early life stress are more likely to 

have activation in the amygdala that promotes the influence of anxiety and fear on 

attentional and executive processes (Davis, Walker, & Lee, 1997). Other studies that 

examine the association between environmental stressors and attentional focusing yield 

similar results. In Kindergarten-aged children, chaos in the home was associated with 

limited attentional focusing abilities (Dumas, Nissley, Nordstrom, Smith, Prinz, et al., 

2005). Similarly, maternal stress was shown to impact children’s attentional focusing 

longitudinally from infancy to middle childhood (Pesonen, Räikkönen, Heinonen, Komsi, 
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Järvenpää, et al., 2008). Overall, these studies suggest that early adversity can have a 

lasting impact on the development of children’s executive functioning.  

Changing Executive Functioning 

Although it has not yet been shown that early home stress has a lasting impact on 

children’s EF, there are studies that suggest the effectiveness of interventions on EF. For 

example, using a computerized training program, working memory abilities improved in 

7-9-year-old children with ADHD (Klingberg, Fernell, Olesen, Johnson, Gustaffson, et 

al., 2005). In another study, Chang, Shaw, Dishion, Gardner, and Wilson (2014) 

examined the effects of a parenting intervention on the development of children’s 

inhibitory control from toddlerhood to middle childhood. The intervention condition 

underwent the Family Check-Up program, which focuses on improving parenting 

practices. Overall, based on parent report of their children’s inhibitory control, children in 

the intervention condition showed higher levels of growth compared to the control 

condition. Lastly, in another study, researchers administered a computerized progressive 

attentional training program to 6- to 13-year-old children with ADHD (Shalev, Tsal, & 

Mevorach, 2007). Compared to the control group, the training group showed significant 

improvements in reading comprehension and parent-reported attentiveness.  

Although these intervention studies demonstrate that EF skills may be improved 

by intervention throughout childhood and early adolescence, reviews of these studies 

suggest some caveats. In a systematic review, Diamond and Ling (2016) found that EF 

can be improved, however, wide transfer does not seem to occur. For example, working 

memory training programs improves working memory only, but not other skills like 

flexibility or self-control (e.g., Bergman Nutley et al., 2011; Harrison et al., 2013). 
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Therefore, in creating new EF interventions, it is necessary to develop trainings that tap 

into broader EF skills, as opposed to solely improving on a particular EF task (e.g., 

Stroop). 

The Twin Design 

The twin design allows us to address the extent to which EF is influenced by 

genetics or if it can be influenced by the developmental context, including early 

adversity. More specifically, when utilizing a genetically informed design, additive 

genetic (A), shared environmental (C), and nonshared environmental (E) influences on a 

particular trait are estimated. Additive genetic influences refer to the effects of multiple 

genes on a trait. The shared environment contributes to twin similarities, which may 

include the family environment, sharing the same classroom, etc. However, experiences 

that would cause the twins to become dissimilar are considered nonshared environmental 

influences. Examples may include the twins playing different sports, attending different 

schools, or one twin suffering an injury. Note that the estimate of the nonshared 

environment also includes measurement error. 

Monozygotic (MZ; identical) twins share 100% of their segregating genes, 

whereas dizygotic (DZ; fraternal) twins share 50% of their segregating genes, on average. 

If within pair correlations are higher for MZs than DZ twins, then that suggests that there 

is a genetic influence on the phenotype. However, a DZ correlation that is more than half 

the MZ correlation shows that the shared environment is playing a role. The nonshared 

environment can be seen when MZ correlations are less than 1.0. The twin design also 

allows researchers to distinguish between common and unique genetic and environmental 

covariance across multiple phenotypes.  
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Genetic and Environmental Influences on Executive Functioning 

Cognitive ability can be studied in terms of general cognitive ability (G) or 

specific cognitive abilities. More specifically, G can be the composite score of many 

tasks or the assessment of IQ, whereas specific cognitive abilities consist of verbal and 

spatial abilities, memory, and speed (Friedman, Miyake, Young, DeFries, Corley, & 

Hewitt, 2008). Twin studies have found that g is moderately heritable in children 

(between 41-50%), with the remaining variance being evenly split between the shared 

and nonshared environment (e.g. Chipuer, Rovine, & Plomin, 1990; Haworth, Wright, 

Luciano, Martin, De Geus, et al., 2010). However, the shared environment has been 

shown to play a larger role in early childhood, with heritability increasing over time 

(Knopik, Neiderhiser, DeFries, & Plomin, 2016). In late adolescence, studies have shown 

that genes account for roughly 70% of the variance in IQ (Haworth, Wright, Luciano, 

Martin, De Geus, et al., 2010; McGue, Bouchard, Iacono, & Lykken, 1993). 

In contrast, studies have consistently found high heritability for a common EF 

factor. In third- through eighth-grade twins and triplets, Engelhardt, Briley, Mann, 

Harden, and Tucker-Drob (2015) found that the common EF factor was 100% heritable. 

Similarly, Friedman, Miyake, Young, DeFries, Corley, and Hewitt (2008) found that 

executive functions are influenced by a highly heritable (99%) common factor in young 

adults. It is surprising that this phenotype has been shown to be consistently highly 

heritable, considering the fact that other phenotypes (like intelligence) are modestly 

heritable in childhood and increase with age (Haworth et al., 2010). 

There are a few genetically informed studies on working memory in early 

childhood and adolescence, but studies focusing on working memory in middle childhood 
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could not be identified. The studies that do exist suggest that working memory is 

moderately heritable, even at different age ranges. For example, Stins, de Sonneville, 

Groot, Polderman, van Baal, and Boomsma (2004) studied the heritability of working 

memory tasks in preschoolers (age = 5.8 years) and found that working memory reaction 

time could be explained by an additive genetic (A) and nonshared environmental (E) 

model (A = .54, E = .46). In another study, 12-year-old twins completed the digit span 

task and an AE model fit best (A = .56, E = .44; Polderman, Stins, Posthuma, Gosso, 

Verhulst, & Boomsma, 2006). Similarly, Ando, Ono, and Wright (2001) found that 

spatial and verbal working memory tasks were moderately heritable in Japanese twins 

ranging from 16 to 29 years of age (.46). Overall, studies show modest heritability and no 

influence of the shared environment for individual EF tasks, and high heritability for a 

common factor across tasks.     

Twin studies on inhibitory control consistently show moderate heritability. A 

study using infant twins revealed that parent-report inhibitory control was primarily 

influenced by genes (.58) and the shared environment (.26), and observer report revealed 

no influence of the shared environment (A = .38, E = .62; Gagne & Saudino, 2010). 

Similar results were found in older children. Using the Stroop (1935) task, Polderman, de 

Geus, Hoekstra, Bartels, van Leeuwen, et al., (2009) found that inhibitory control was 

heritable for 9-, 12-, and 18-year cohorts (heritability was .36, .51, .51, respectively).  

The Eriksen Flanker Task (Eriksen & Eriksen, 1974) is frequently used to 

measure inhibitory control and attentional focusing, however, this research has been 

conducted primarily in adolescents and adults. Using a sample of 12-year-old twins, 

Stins, van Baal, Polderman, Verhulst, and Boomsma (2004) found little evidence of 
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heritability on flanker performance. Interestingly, they reported higher twin intraclass 

correlations for opposite sex pairs (.55) than identical pairs (.38 MZ males; .35 MZ 

females) for the overall flanker interference effect, which refers to the reaction time (RT) 

of incongruent conditions minus the RT for congruent conditions. This pattern of twin 

correlations suggested no genetic influence on flanker performance. In another study 

using both adolescent and adult twins, the overall flanker interference effect was found to 

be highly heritable (.89; Fan, Wu, Fossella, & Posner, 2001). However, the sample size 

was very small (26 MZ and 26 same sex DZ pairs), therefore these results should be 

taken with caution. Also, the participants in this study ranged from 14 and 42 years of 

age, therefore it is difficult to draw conclusions from this study.  

Parent-report of attentional focusing reveals moderate to high genetic influence. 

In one study, Lemery-Chalfant, Doelger, and Goldsmith (2008) found that observer 

report of attentional control was highly heritable (83%), with no influence of the shared 

environment. Other twin studies utilizing parent-report examine attentional focusing 

within effortful control. In one example, parent-reported effortful control for 3 to 7-year 

old children was moderately influenced by genetics (.43), the shared environment (.12), 

and the nonshared environment (.45; Goldsmith, Buss, & Lemery, 1997). Another study 

examining twins during middle childhood found significant genetic and modest shared 

and non-shared environmental effects on both mother-reported (A = .69, C = .10, E = .21) 

and father-reported (A = .50, C = .34, E = .17) effortful control (Mullineaux, Deater-

Deckard, Petrill, Thompson, & DeThorne, 2009). Together, these studies consistently 

demonstrate that genes have a moderate to high impact on attentional focusing.  
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Moderation of Genetic and Environmental Influences on Child Development 

Overall, research on general and specific EF shows at least modest genetic 

influence. However, it is possible that in addition to direct main effects, the magnitude of 

genetic influence on EF could differ as a function of environmental context, which is 

referred to as moderated heritability. Similarly, Jensen (1981) and Scarr (1981) suggest 

that there could be a nonlinear effect of the family environment on cognitive ability. The 

concept of gene-environment interaction is also in line with the Bioecological Theory of 

Nature-Nurture Effects (Bronfenbrenner & Ceci, 1994). More specifically, this theory 

argues against the concept of a “single” heritability. Instead, the expression of any 

genetic trait is dependent on proximal processes, which are interactions between children 

and their environments. Understanding the moderation of genetic and environmental 

influences on a trait can help provide a more fine-grained approach to understanding how 

a measured environmental factor can impact individual differences across a particular 

phenotype. In one study, researchers observed the moderating role of parental education 

level on the genetic and environmental contributions to variation in verbal IQ in a diverse 

adolescent twin sample (Rowe et al., 1999). As parental education level increased, the 

heritability of verbal IQ increased and the influence of the shared environment decreased. 

In a similar study, Turkheimer, Haley, Waldron, D’Onofrio, and Gottesman (2003) found 

that the heritability of IQ was moderated by socioeconomic status in a highly 

impoverished sample of 7-year-old twins. Similar to Rowe et al., (1999), as 

socioeconomic status increased, the heritability of IQ increased (as the influence of the 

shared environment decreased). Results from these studies are in-line with one prediction 

from the bioecological theory (Bronfenbrenner & Ceci, 1994) that enhanced 



 14 

environments will increase heritability because they allow genetic potentials to be more 

fully realized. If this is the case, then it is imperative to develop policies and interventions 

that focus on providing supportive environments for children, which could then promote 

their cognitive development. 

The Current Study 

 The first goal of this study is to disentangle the genetic and environmental 

contributions to multiple components of EF in middle childhood. Based on previous 

literature (Polderman et al., 2006; Stins et al., 2004), we hypothesize that working 

memory will be influenced by genes and the non-shared environment. We hypothesize 

that both genes and the shared environment will have an influence on parent-report 

inhibitory control (Gagne & Saudino, 2010). We anticipate that parent-reported 

attentional focusing will be influenced by genes and the non-shared environment 

(Goldsmith et al., 1997; Lemery-Chalfant et al., 2008). Lastly, we predict that tasks that 

tap into both inhibitory control and attentional focusing will be influenced by genes and 

the shared environment (Fan et al., 2001; Stins et al., 2004).  

Fitting a multivariate common pathway model, we will examine whether a 

common factor of EF includes effortful control, or whether they are two separate factors. 

This goal also includes testing the extent to which the same or different genetic and 

environmental influences impact various components of EF. Effortful control is referred 

to as the efficiency of executive attention (Rothbart & Bates, 2006), therefore we 

hypothesize that it will be included in the common factor. Further, we predict that the 

common factor will be highly heritable (Engelhardt et al., 2015; Friedman et al., 2008), 

whereas the residual individual components will be more influenced by the environment.  
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The final goal of the study involves examining whether the heritability of EF 

abilities is moderated by early adversity. This involves testing each component of EF 

separately, then utilizing the common factor. Based on previous research, we hypothesize 

that at lower levels of early adversity, heritability estimates will be higher for the 

individual tasks and scales (e.g. Rowe et al, 1999; Turkheimer et al., 2003). However, 

since we anticipate the heritability of the common factor to be high, we do not expect the 

genetic influence of the common factor to be moderated by early adversity.  

Method 

Participants 

 The study consisted of 416 twins (208 pairs) from the ongoing longitudinal 

Arizona Twin Project (Lemery-Chalfant, Clifford, McDonald, O’Brien, & Valiente, 

2013). The Office of Vital Records, within the Division of Public Health Services, mailed 

letters (in English and Spanish) to a random sample of mothers over the age of 18 who 

had given birth to live twins in an Arizona hospital between July 2007 and July 2008. 

The twins and their mothers first participated when the twins were 12 months of age. The 

current sample consisted of 26.5% monozygotic (MZ), 37.1% same-sex dizygotic (DZ), 

and 36.5% opposite-sex DZ twins. The participants were 22.3% Hispanic, 58.7% 

Caucasian, 5.0% Asian, 2.8% African American, and 11.2% mixed race or other. Total 

household income ranged from less than $20,000 to over $150,000, with a median of 

$95,000. Parental education ranged from less than a high school diploma to a 

professional degree (median educational level was a college degree).  

 

 



 16 

Procedure 

When the twins were 30 months of age, primary caregivers completed telephone 

interviews about early adversity, parenting and their twins’ health and development. 

Home visits were conducted when the twins were about 8 years of age (M = 8.41, SD = 

.40), which involved research assistants going into the home to collect data about the 

home environment and the twins’ health, sleep behaviors, and temperament. During the 

home visit, each twin independently completed EF tasks on a laptop computer. 

Measures 

Zygosity Questionnaire for Young Twins  

The Zygosity Questionnaire for Young Twins (Goldsmith, 1991) was 

administered to mothers when the twins were 12 months of age. This 32-item measure 

assesses zygosity by asking mothers about their pregnancies (e.g. the use of In Vitro 

Fertilization) and physical characteristics of their twins (e.g. hair and eye color). 

Compared to genotyping, studies have shown that parent-reported zygosity is over 95% 

accurate in assessing twin zygosity (e.g. Forget-Dubois, Perusse, Turecki, Girard, 

Billette, et al., 2003; Price, Freeman, Craig, Petrill, Ebersole, & Plomin, 2000). Zygosity 

information was also gathered from birth medical records, and after the 8-year home 

visit. 

Measures of Early Adversity  

Parenting Daily Hassles 

 The Parenting Daily Hassles (PDH; Crnic & Greenberg, 1990) questionnaire is a 

20-item scale that measures everyday life events in parenting and parent-child 

interactions. Primary caregivers rate the frequency of the given occurrence on a 4-point 
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scale (1 = rarely, 2 = sometimes, 3 = a lot, 4 = constantly) and how hassled they felt by 

the event on a 5-point scale (1 = no hassle to 5 = big hassle). The PDH contains two 

subscales: Parenting Tasks Factor and Challenging Behavior Factor which are correlated 

r = .78. Reliability for both the frequency of each occurrence and the intensity of each 

occurrence was high (alpha = .81 and alpha = .90). Examples of items include “The twins 

are constantly under foot or in the way” and “The twins are difficult to manage in public 

places.” Note that each question was changed to indicate “twins” instead of a singleton 

child. Also, for this study, we will only be using the Parenting Tasks Factor subscale in 

order to isolate the frequency of hassles that the parent experiences on a daily basis. 

MOS Social Support Survey 

 The 6-item MOS Social Support Survey (Sherbourne & Stewart, 1991) assessed 

parental satisfaction with the availability of emotional and tangible support. Primary 

caregivers rate the frequency of support that was available on a 5-point Likert scale (1 = 

none of the time to 5 = all of the time). Items include “Someone to help you with daily 

chores if you need it” and “Someone who shows you love and affection.” The items are 

totaled to create a sum score. Reliability for this measure is high (alpha = .81).  

Parental Responses to Child Misbehavior 

The Parental Responses to Child Misbehavior (PCRM; Holden & Zambarano, 

1992) questionnaire was designed to determine techniques and frequency used by parents 

in response to their children’s misbehaviors in an average week over the past month. The 

measure includes 12 discipline strategies, including reasoning, ignoring, and spanking 

with hand. The harsh discipline scale was used, and each item is scored on a 5-point 

Likert scale ranging from 0 (never) to 6 (nine or more times), and the items are totaled to 
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create a sum score. The PCRM has well-established criterion validity. More specifically, 

high parental discipline was associated with low positive maternal involvement and high 

levels of negativity (Holden & Zambarano, 1992). 

Confusion, Hubbub, and Order Scale 

 The short version of the Confusion, Hubbub, and Order Scale (CHAOS; Matheny 

et al., 1995) assesses parents’ perceptions of disorganization in the home. Parents indicate 

either ‘true’ or ‘false’ to items such as “Our home is a good place to relax” and “First 

thing in the day, we have a regular routine at home.” One total score was derived per 

family. Reliability for this scale was acceptable (alpha = .79), and the CHAOS was 

correlated with parent-child interactions in the predicted direction, which demonstrates 

that it is a valid measure (Matheny et al., 1995). 

Center for Epidemiological Studies Depression Scale 

 The Center for Epidemiological Studies Depression Scale (CES-D; Radloff, 1977) 

is a 20-item self-report measure of adult depressive symptoms in non-clinical 

populations. Respondents are asked to rate the frequency of each occurrence of each 

symptom in the past week on a 4-point scale, which ranges from rarely or none of the 

time (less than 1 day) to most or all of the time (5-7 days). Responses are totaled, and a 

score of 16 or higher is considered to have clinical significance. Reliability for this 

measure was high (alpha = .88; Orme, Reis, & Herz, 1986). 

Emotional Availability Scale 

 The Emotional Availability Scale (EAS; Biringen, Robinson, & Emde, 2000) is a 

28-item parent report questionnaire that assesses six dimensions of the emotional 

availability of the parent towards the young child and vice versa. The parental dimensions 
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are Sensitivity, Structuring, Nonintrusiveness, and Nonhostility, and the child dimensions 

include Child Responsiveness to the Parent and Child’s Involvement of the Parent. 

Responses are totaled, and higher scores show more emotional availability. For our study, 

Cronbach’s alpha was acceptable (alpha = .74). In this study, the questions ask about 

each twin separately.  

Principal Component Representing Early Adversity 

 For the 30-month assessment, we included six standardized variables for a 

principal components analysis (PCA) without rotation (Table 1). The 30-month 

assessment produced two components. The first component, which accounted for 37.96% 

of the variance (eigenvalue = 2.28, loadings from .46 - .71), was retained. Standardized 

component scores were saved as a composite measure of Early Adversity, with higher 

scores representing more adversity. 

Temperament in Middle Childhood Questionnaire 

 The Temperament in Middle Childhood Questionnaire (TMCQ; Simonds & 

Rothbart, 2006) is a parent-report measure used to assess temperament in young children. 

The TMCQ has 15 scales that tap various dimensions of temperament. For our study, the 

Attentional Focusing (alpha = .75) and Inhibitory Control (alpha = .72) scales were used. 

Primary caregivers rated their children on a 7-point scale ranging from 1 = extremely 

untrue of your child to 7 = extremely true of your child. An example of an item from the 

Attentional Focusing scale is, “When building or putting something together, becomes 

very involved in what s/he is doing, and works for long periods,” and “Is good at 

following instructions” is an example item from the Inhibitory Control scale.  

Digit Span 
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 The Wechsler Intelligence Scale for Children (WISC-IV; Wechsler, 2003) digit 

span task is a test of working memory. We administered both the Digit Span Forward and 

Digit Span Backwards components of the task. Digit Span Forward requires that children 

repeat series of numbers read aloud by the experimenter exactly as they hear them. In 

contrast, in the Digit Span Backwards portion, the experimenter reads series of numbers 

aloud, and then children must repeat them to the experimenter backwards. The first set of 

digits in the forward task consists of three digits (and two for the backwards task), and 

the series increases by one digit every two trials. The task is stopped once the child 

misses both trials within a series. One point is given for each correct trial, and the raw 

scores on Digit Span Forward and Digit Span Backward were used for analysis. The 

Digit Span Forward component taps into short-term auditory memory, sequencing, and 

simple verbal expression (Hale, Hoeppner, & Fiorello, 2002), whereas the Digit Span 

Backward component is a sensitive measure of deficits in working memory (Rosenthal, 

Riccio, Gsanger, & Jarratt, 2006). 

Psychology Experiment Building Language (PEBL) 

 The Psychology Experiment Building Language (PEBL; Mueller, 2013) is an 

open-source software system of behavioral test paradigms that researchers can use in 

their own studies (Mueller & Piper, 2014). For our study, we administered the 

Continuous Performance Task and the Eriksen Flanker Task using the PEBL system. 

Continuous Performance Task   

 The Continuous Performance Task (CPT; Conners, 2000) is administered on a 

laptop computer in which a continuous series of stimuli (letters of the alphabet) are 

presented on a screen, and participants must either respond to target stimuli by pressing a 
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key or inhibit a response to non-target stimuli. There are multiple variations of the CPT, 

and we used the CPT-Not X (also known as Connor’s CPT), where the participant must 

press a key in response to all letters of the alphabet except X. The 14-minute long task 

consisted of 360 letters (in 18 consecutive blocks of 20 trials) that appeared one at a time 

on the screen for approximately 250 milliseconds. Various measures can be generated 

from this task: RT to correct responses, standard error of hit RT, errors of omission, and 

errors of commission. Errors of omission refer to instances where the child presses the 

spacebar when the letter X is presented, whereas errors of commission refer to instances 

where the child fails to press the spacebar when the target (not X) is presented. In our 

study, these two variables were highly correlated (r = .87), therefore they were reversed 

and combined to represent errors on the task, where higher scores represent fewer errors. 

This version of the CPT has been shown to result in a high number of responses, 

more errors of commission, more accurate and reliable measures of reaction time, and 

greater demand on the participants’ ability to inhibit a response (Conners, Epstein, 

Angold, & Klaric, 2003). Split half reliability for all of the CPT performance measures 

range between .73 and .95, and test-retest reliabilities range from .55 and .84 after a 3-

month interval (Conners, 2000).  

Flanker Task 

 The flanker task (Eriksen & Eriksen, 1974) is a computer-administered paradigm 

where participants respond with a left or right key press to a central target arrow while 

ignoring congruent (e.g. >>>) or incongruent (e.g. <><) flanker arrows (Mayr, Awh, & 

Lawrey, 2003). It has been suggested that previous experience with the paradigm has 

little impact on performance, although researchers have seen reduced reaction time with 
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repeated exposure (Fan et al., 2001). The stimuli were presented on a laptop computer 

and participants responded using either the left or right shift key. To ensure the child 

understood the task, there were 12 practice trials before the actual task began, and the 

actual task lasted about 10 minutes. For each trial, RT and whether the response was 

correct was recorded. Flanking arrows pointing in the same direction were coded as 

congruent trials, whereas arrows pointing in the opposite direction were coded as 

incongruent trials. The overall flanker interference effect is the most commonly used 

measure of the Flanker task, which is the RT of incongruent trials minus the RT for 

congruent trials. However, it is less likely than the Linear Integration Speed Accuracy 

Score (LISAS; Vandierendonck, 2017) score to capture a greater proportion of variance 

than RT and proportion of error. The LISAS measure, which is used in this study, takes 

RT and proportion of error into account, along with the standard deviations of both 

measures which gives RT and proportion of error an equal weight. Scores were reversed, 

where higher scores indicate higher efficiency. 

Principal Component Representing Common Executive Functioning 

For the 8-year assessment, we included six standardized variables for a principal 

components analysis (PCA) without rotation (Table 2). The PCA was done without 

rotation to maximize the amount of variance accounted for in the first component. The 8-

year assessment produced two components, with the first component explaining 33.69% 

of the variance (eigenvalue = 2.70, loadings from -.57 to .76). Standardized component 

scores from the first component were saved as a composite measure of EF, with higher 

scores representing better EF performance. 

Common Pathway Models 
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 Along with forming a PCA composite indexing common EF, a common pathway 

model was conducted to extract common EF from the variables as well as to examine 

ACE influences on the common factor and residual variables using OpenMx (Table 8), 

and fit statistics are described in Table 9. The first model, with all EF variables included, 

produced a common factor that was moderately heritable (.66). However, the paths from 

the common factor to the individual tasks were extremely small, with the exception of 

Attentional Focusing (.90). Given that Attentional Focusing was the only variable that 

was phenotypically related to Inhibitory Control, it is possible that the inclusion of 

Inhibitory Control was inflating the influence of Attentional Focusing in the common 

pathway model. Therefore, another model was conducted without Inhibitory Control. 

With this model, all of the paths contributed more equally, and the common factor 

revealed higher heritability estimates (.79).  

 A confirmatory factor analysis (CFA) was conducted in MPlus 7.11 without 

Inhibitory Control to extract a common factor score in order to conduct twin analyses. 

Loadings and fit statistics can be found in Table 10. Twin ICCs for the CFA common 

factor were similar to the PCA common factor (MZ = .56, DZ = .30). Univariate ACE 

estimates were also similar to the PCA common factor, with an AE model fitting the data 

best (A = .64, E = .36). There was significant moderation (Δχ2(2) = 4.02, p = .13), such 

that E was lowest at high levels of early adversity. At the mean level of adversity, E was 

.04 (.07 at -1 SD, .01 at +1 SD). 
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 Ultimately, given that both a PCA and CFA produced similar heritability 

estimates, we opted to use the PCA because each task contributed more equally to the 

score compared to the CFA. 

Covariates 

 Covariates included child sex and child age. The effects of child sex and child age 

were regressed out of each variable and the residual scores were utilized for twin 

biometric analysis, as the models become too complex with multiple covariates (McGue 

& Bouchard, 1984). 

Statistical Approach 

Table 1 will include the mean, SD, minimum, maximum, skewness, and kurtosis 

for each variable. Variables with skewness above 2 or kurtosis above 7 will be 

transformed to approximate normality (West, Finch, & Curran, 1995). Univariate and 

multivariate outliers will be identified using Mahalanobis D2 (Cohen, Cohen, West & 

Aiken, 2003), and zero order correlations will be conducted using MPlus 7.0 while 

controlling for twin interdependence. If zero order correlations show that certain tasks are 

highly related, then we will combine them to form a composite which will be used in our 

genetic analyses. 

Estimating the roles of genes and the environment on a given factor is possible 

through the twin design (Neale & Maes, 2004). Within-pair (i.e. intraclass) correlations 

for MZ and DZ twins are used in order to estimate sources of variability (Falconer, 

1989). Genes are said to play a role if MZ intraclass correlations are greater than DZ 

correlations. However, if the MZ correlation is less than twice the DZ correlation, then 

that suggests the shared environment is also significant.  
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 Structural equation model fitting was conducted using OpenMX (Neale, et al., 

2016) to obtain full univariate twin models which decompose the variance in a variable 

into latent additive genetic (A, linear effect of multiple genes), shared environmental (C, 

environmental experiences that increase cotwin similarity), and non-shared 

environmental (E, environmental experiences that cause twins to become dissimilar as 

well as measurement error) factors. MZ twins share 100% of their segregating DNA, 

therefore the latent A (also known as heritability) influence is correlated 1.00 between 

cotwins, and .50 for DZ twins, because DZ cotwins share 50% of their segregating genes. 

‘A’ can be estimated by doubling the difference between MZ and DZ twin intraclass 

correlations. The shared environmental influence is calculated by subtracting the MZ 

correlation from double the DZ correlation. Lastly, because the total variance explained 

cannot exceed 1.00 (100%), the influence of the nonshared environment is calculated by 

subtracting the MZ intraclass correlation from 1.00. Note that this method can be used to 

assess quick estimates of genetic and environmental influence on a phenotype; however, 

we will be using Structural Equation Modeling to calculate these values, which also takes 

sample size and standard errors into account. Figure 1 depicts the univariate ACE model, 

which is used to ascertain the genetic and environmental influences on general EF as well 

as the specific EF tasks. After full models are fit, parameters are systematically dropped, 

and the fit of the reduced models are compared to the full model using the -2 log 

likelihood chi-square test of fit. A significant loss of fit indicates that the dropped path is 

required to represent the data, whereas a nonsignificant loss of fit implies that the reduced 

model represents the observed data as well as the full model. 
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 A common pathway model (Figure 2; Neale & Maes, 2004) is used to test 

whether there is a common EF factor among the variables, or if EF and effortful control 

are distinct constructs. The covariance among each variable is represented as a latent 

factor (e.g. Common EF). This common factor has single estimates of A, C, and E, with 

each variable loading on this factor. There are direct phenotypic paths from the common 

factor to each variable, where genetic, shared environmental, and nonshared 

environmental variance that is independent of the common factor is also estimated. 

 Figure 3 depicts a moderated model such that the variance components 

attributable to latent genetic, shared, and nonshared environmental effects are a function 

of an environmental moderator (Purcell, 2002). More specifically, the first phenotype (the 

moderator, M) moderates the ACE components of the second phenotype (the trait, T). 

This model is used to test whether early adversity (the moderator) moderates the ACE 

estimates for general EF and specific EF tasks. Path coefficients represent the magnitude 

of the effect; therefore, they are expressed as linear functions of the moderator. If βx is 

significantly non-zero, this represents an interaction between the path coefficient and the 

moderator (Purcell, 2002). 

 It is possible that the early adversity variables could be correlated with the genetic 

influences on executive functioning (gene-environment correlation; rGE) rather than 

moderating the genetic influences. The moderated heritability model controls for gene-

environment correlation by allowing for a main effect, which removes genetic effects 

shared between the trait and the moderator from the covariance model. In other words, 

rGE will appear as a main effect, and any detected interactions will reflect interactions 

between the moderator and variance components specific to the trait (Purcell, 2002).  
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Results 

Preliminary Analyses 

 Descriptive statistics and correlations for the early adversity variables are 

presented in Table 1. All of the early adversity measures were positively correlated with 

one another, and all variables were within acceptable ranges for skewness (+-2.00) and 

kurtosis (+-7.00; Muthen & Kaplan, 1985). Descriptive statistics and correlations for the 

executive functioning variables are presented in Table 2. For the CPT and Flanker 

variables, if a participant’s value was greater than 3 SD from the mean, it was brought 

down to 3 SD from the sample mean for that condition (Pe, Vandekerckhove & Kuppens, 

2013). For the CPT variables, 22 cases were adjusted, and 21 cases were adjusted for the 

Flanker variables. All EF variables were at least modestly positively correlated with one 

another, with the exception of Inhibitory Control, which was only significantly correlated 

with Flanker Congruent, Flanker Incongruent, and parent-reported Attentional Focusing. 

Results showed that CPT errors of omission and errors of commission, as well as Flanker 

Congruent and Flanker Incongruent, were highly correlated (.87 and .79, respectively). 

Therefore, two composites were created: the first was a CPT mean composite of CPT 

errors of omission and CPT errors of commission, and the second was a Flanker mean 

composite consisting of Flanker Congruent trials and Flanker Incongruent trials.   

Quantitative Genetic Analyses 

Twin Intraclass Correlations  

Twin intraclass correlations (ICCs) are provided in Table 5. MZ twins were more 

similar than DZ twins for all variables, suggesting the role of additive genetic influences. 
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The ICCs also revealed the influence of the non-shared environment (and measurement 

error) on the task-based EF variables, as the MZ correlations were less than 1.00. Also, 

the DZ ICC for Attentional Focusing was less than half the MZ ICC, demonstrating that 

dominant genetic influences (D) may also contribute to trait variation.  

Saturated Models 

 Saturated models were conducted for the common EF and individual EF variables 

to test for sex differences as well as rater contrast and assimilation effects. For common 

EF and the task-based variables, fully saturated models that freely estimate means, 

variances, and covariances for MZ and DZ twins were compared to models that 

constrained means and variances to be equal across twin pairs and zygosity groups and 

means, variances, and covariances to be equal across sex. Assimilation effects can be 

observed when DZ phenotypic variance is higher relative to the MZ group, whereas 

lower DZ variance suggests imitation effects (Neale & Maes, 2004). Means, variances, 

and covariances could be equated across sex, and means and variances across zygosity, 

with the exception of the Flanker Task. More specifically, means and variances could not 

be equated across twin order and zygosity, with MZ twins having more variance than DZ 

twins in this case. 

Univariate ACE and ADE Models 

 Standardized estimates of A, C (or D), and E factors for common EF and for each 

individual EF measure, as well as fit statistics of the full and best fitting reduced model, 

are presented in Table 6. Univariate models revealed genetic influences on all individual 

measures and common EF, with broad sense heritability ranging from .22 (Digit Span 
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Backwards) to .61 (parent-reported inhibitory control). Shared environmental influences 

were found for the Flanker Task (.13) and parent-reported inhibitory control (.24), and E 

was moderate to high (.40-.73) for all measures except parent-report inhibitory control 

(.15) and attentional focusing (.31). For Digit Span Backward, we did not have the power 

to differentiate between AE and CE models, therefore the full model was retained as the 

best model.  

Moderated Heritability Models 

Model fit statistics for the moderation models are provided in Table 7. First, direct 

prediction of the mean was tested for each full model, which would be indicative of gene-

environment correlation. If prediction of the mean is non-significant, then that indicates 

that there is no significant relationship between the moderator and the variable. However, 

if dropping the path results in a significant loss of fit for the model, then there is a 

relationship between the moderator and the variable due to gene-environment correlation 

and the means model is retained in the final model to control for gene-environment 

correlation (Price & Jaffee, 2008).  

Moderation of the means for CPT, Flanker, Digit Span Forward, and Digit Span 

Backward were dropped, since these paths could be dropped without a significant loss of 

fit for these variables. Once moderation of the mean was dropped for these variables, the 

reduced model was used as the comparison model to examine moderation on the other 

paths. For CPT, there was significant moderation of A and E (Δχ2(1) = .03, p = .87) such 

that A was highest at higher levels of adversity. Similarly, there was significant 
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moderation of E (Δχ2(2) = .51, p = .78), such that E was lowest at higher levels of early 

adversity. 

In Table 7, the results are based on using the full model as the comparison (with 

or without including the means model based on its significance). After moderation of the 

mean was tested, full moderation was tested for each variable (i.e., moderation of A, C 

and E estimates), and then various moderation paths were dropped. If dropping a 

particular path results in a non-significant p-value (>.05), then it can be dropped because 

it does not result in a significant loss of fit. Significant moderation of heritability was 

observed for common EF, CPT, Flanker, and Inhibitory Control (Figure 4). More 

specifically, for common EF, E was moderated (Δχ2(2) = 5.17, p = .08) such that E was 

lowest at higher levels of early adversity. At the mean of early adversity, E was .41 (.84 

at -1 SD, .13 at +1 SD). There was full moderation of all paths for CPT (χ2(264) = 

1681.62), such that A was highest and E was lowest at higher levels of early adversity, 

however estimating moderation on C produced a very large negative change in -2LL, 

therefore these results should be taken with caution. At the mean of early adversity, A 

was 7.02 (1.56 at -1 SD, 42.90 at +1 SD) and E was 18.66 (44.09 at -1 SD, 4.00 at +1 

SD). For Flanker, there was moderation on E (Δχ2(2) = .85, p = .65), such that E was 

lowest at higher levels of early adversity. At the mean level of early adversity, E was 

5163.76 (8497.15 at -1 SD, 2656.37 at +1 SD). Lastly, for Inhibitory Control, there was 

moderation on A and E (Δχ2(1) = .53, p = .47), such that A was highest and E was lowest 

at higher levels of early adversity. At the mean of early adversity, A was .20 (.11 at -1 

SD, .32 at +1 SD) and E was .06 (.11 at -1 SD, .03 at +1 SD). 
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Influence of ADHD Symptomology 

Executive Functioning may be highly related to symptoms of ADHD. A boxplot 

was used to assess the distribution of the ADHD composite of the Health and Behavior 

Questionnaire (HBQ; Armstrong & Goldstein, 2003). Children in the upper quartile were 

removed (n=6) and analyses were conducted to examine whether these extreme cases 

were driving any of the effects. Excluding these individuals did not impact results, with 

phenotypic and intraclass correlations remaining the same magnitude and level of 

significance. Therefore, these individuals were retained in the study. 
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Discussion 

 There were three main goals of this study. The first was to examine the genetic 

and environmental influences on executive functioning (Continuous Performance Task, 

Eriksen Flanker Task, Digit Span Forward, and Digit Span Backward), and effortful 

control (parent-reported Attentional Focusing and Inhibitory Control) in middle 

childhood. The second goal of the study was to extract and assess the etiology of a 

common factor of EF, and the main goal of the study was to examine whether the 

heritability of EF abilities in middle childhood was moderated by early adversity 

measured approximately six years earlier in toddlerhood. The study also aimed to 

examine the overlap between objective EF and parent-reported effortful control 

measures. Generally, individual differences in EF in middle childhood could be explained 

by additive genetics and the nonshared environment. Similarly, a common factor of EF, 

extracted using both principal components analysis and confirmatory factor analysis, was 

influenced by genes and the nonshared environment. Finally, early adversity moderated 

the etiology of the common EF factor, the Continuous Performance Task, the Eriksen 

Flanker Task, and parent-reported inhibitory control. Together, the common factor 

indicated that the EF tasks were indicators of the same latent construct. Similarly, 

although these variables were influenced by genetics, our study demonstrates the role of 

the nonshared environment in explaining differences in EF, as well as the ability of early 

adversity to moderate the etiology of this heritable trait.  

Heritability of EF in Middle Childhood 
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 Generally, we found that genes and the nonshared environment explained 

individual differences for all EF tasks, with the exception of Digit Span Backward and 

parent-reported Attentional Focusing and Inhibitory Control. Digit Span Backward and 

parent-reported Inhibitory Control were influenced by additive genetics and the shared 

environment, whereas dominant genetic effects influenced variation in parent-reported 

Attentional Focusing. Both common factors of EF were influenced by genes and the 

nonshared environment to the same degree of magnitude, demonstrating that the two 

methods are tapping into aspects of EF that are shared across the tasks and parent-

reported measures.  

 The majority of our findings were in-line with previous EF research. More 

specifically, the Continuous Performance Task and the Eriksen Flanker Task, tasks that 

assess attentional focusing and inhibitory control, were influenced by genes and the 

nonshared environment, fitting previous literature (Fan et al., 2001; Gagne & Saudino, 

2010; Stins et al., 2004). Also concordant with previous research (Gagne & Saudino, 

2010), parent-reported inhibitory control was influenced by additive genes and the shared 

environment. The shared environmental influence on parent-reported inhibitory control 

could be a result of the measure tapping into inhibitory control behaviors that are 

emphasized in the home, like waiting for one’s turn or being able to keep secrets, given 

that primary caregivers are the ones teaching and communicating these types of 

behaviors. Conversely, it is possible that task-based inhibitory control centers on child-

specific inhibitory abilities that twins might differ on. For example, twins could receive 

differential inhibitory control training through being in different classrooms or interacting 
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with various games and activities on a tablet, contributing to reduced shared 

environmental influences.  

We found that Digit Span Forward and Backward were modestly correlated (r = 

.26), suggesting that they measure different aspects of working memory. Other studies 

support this assertion, finding that these tasks indicate two distinct types of memory 

processes and should be studied separately (e.g., Reynolds, 1997). In our study, 

genetically-informed analyses indicated that individual differences on Digit Span 

Forward were explained by additive genes and the nonshared environment, fitting the 

extant literature (Polderman et al., 2006; Stins et al., 2004). We did not have enough 

power to differentiate between an AE and CE model for Digit Span Backward, therefore 

the full ACE model was retained, however, the twin intraclass correlation for DZ twins 

was more than half the correlation for MZ twins, indicating the role of the shared 

environment. Other research also found that working memory tasks are more difficult 

than inhibitory control tasks for children in middle childhood (Davidson, Amso, 

Anderson, & Diamond, 2006), therefore it is possible that heritability will increase with 

age and mastery.  

Next, for parent-reported Attentional Focusing, about 69% of the variance was 

due to broad sense heritability, which is very consistent with previous literature 

examining the heritability of effortful control in middle childhood (Lemery-Chalfant et 

al., 2008). Therefore, our study adds to the literature demonstrating the moderate to high 

heritability of Attentional Focusing in middle childhood.   
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 Our results indicated that the common factor of EF was moderately heritable 

(67%). Similar studies of older children resulted in much higher estimates: Friedman et 

al. (2008) and Engelhardt et al. (2015) found that a genetic factor accounted for 99% and 

100% of the variance in a common EF factor, respectively. There are several potential 

explanations for these differences. First, our sample was younger than the two published 

studies, therefore the challenging nature of these tasks for this age group could have 

restrained the heritability of the common factor. With mastery, we expect that our sample 

will perform better on these tasks, thereby exercising their genetic potential as they enter 

adolescence. Regardless, our findings, along with the two previously mentioned studies, 

suggest that there is a core genetic factor that widely impacts higher order executive 

processes. Similarly, researchers have posited that childhood EF acts as a developmental 

endophenotype that influences psychological, social, and health outcomes (Engelhardt et 

al., 2015). 

 We hypothesized that measures of effortful control would be included in the 

common factor of EF. In the original CFA with all variables included, the path from the 

common factor to parent-reported attentional focusing was the strongest, and the 

remaining paths were extremely small. However, the path coefficients became more 

comparable once parent-reported inhibitory control was removed. Parent-reported 

inhibitory control was only strongly correlated with parent-reported attentional focusing, 

perhaps inflating the role of attentional focusing in the common factor model. This 

suggests that the effortful control measure of inhibitory control could be tapping into a 

different type of inhibition that is separate from inhibitory behavior that is required with 

EF tasks. These differences could be indicative of hot and cool systems of self-regulation, 
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with the hot system consisting of emotional processing (parent-reported inhibitory 

control) and the cool system specializing in complex cognitive processing in response to 

neutral stimuli (EF tasks tapping into inhibitory control; Zhou, Chen, & Main, 2012). 

Although it appears that there are differences in EF tasks and parent-reported inhibitory 

control, it has been argued that hot and cool systems are not separate, but instead ends of 

a continuum (Zelazo & Cunningham, 2007). This provided rationale for utilizing the 

common EF factor created using PCA, as this method appears to be identifying core EF 

evenly across task-based and parent-reported EF that could be involved with both hot and 

cool systems of self-regulation.  

We consistently found that the nonshared environment played a large role in 

explaining differences across all EF variables, including the common factor. Given that 

we collected EF data in the home, variability in testing environments could have 

contributed to the reduced genetic influence and the increased role of the nonshared 

environment. Other studies examining the heritability of EF found that the common 

factor was almost 100% heritable (e.g., Engelhardt et al., 2015; Friedman et al., 2008), 

however, these studies used older samples of twins, so it is possible that measuring EF 

after an accelerated period of development in adolescence could have contributed to 

lower estimates of the nonshared environment where EF abilities are more stable. 

Moderation of Heritability of EF by Early Adversity 

In our study, the etiology of the common factor, Flanker, CPT, and parent-

reported inhibitory control was moderated by early adversity measured at 30 months of 

age. Importantly, as early adversity increased, the amount of total variance decreased. 
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Our phenotypic analyses also demonstrated that higher experiences of stress in the home 

during toddlerhood were related to lower scores on EF tasks in middle childhood. 

Children in homes with high levels of stress are likely to experience more instability and 

live in disadvantaged neighborhoods with poorer quality schools and fewer resources, 

potentially leading to decreased trait-relevant variance in these environments (Evans, 

2004). This could then limit the ability for children to interact with proximal processes 

and maximize their genetic potential that can then bolster EF abilities (Bronfenbrenner & 

Ceci, 1994; Evans, 2004).  

More specifically, the non-shared environment was moderated by early adversity 

for these variables, such that E decreased as early adversity increased. The heritability of 

CPT and parent-reported inhibitory control was moderated as well, with the role of 

additive genes increasing with early adversity. These findings demonstrate that the 

etiology of EF can differ as a function of early home stress, as well as highlight that a 

heritable trait is not immutable by the environment. Instead, our results suggest that a 

child’s early home environment can have lasting effects on the degree to which genes and 

the nonshared environment play a role in explaining individual differences in EF in 

middle childhood. The environment contributed to individual differences more so under 

contexts with low adversity. More specifically, in homes with low stress, parents might 

have more opportunities to be increasingly emotionally available to teach and 

demonstrate effective self-regulatory abilities. For example, research has found that 

parental responsiveness and warmth was positively associated with children’s effortful 

control abilities (von Suchodoletz, Trommsdorff, & Heikamp, 2011). In examining 

homes with high stress, another study found an indirect association between chaos in the 
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home in toddlerhood and EF two years later, mediated by parent responsivity and 

acceptance (Vernon-Feagans, Willoughby, & Garrett-Peters, 2016). This research, along 

with our study, highlight the long-term importance of the rearing environment on the 

development of EF throughout childhood. 

There is great interest in using research to better inform interventions that bolster 

EF abilities in children. Previous research has consistently demonstrated that individuals 

with the poorest EF display the greatest improvement from programs that improve EF, 

showing that EF training might give previously disadvantaged children the opportunity to 

catch up (Diamond & Ling, 2016). Our results are consistent with this assertion, 

suggesting that improving and maximizing the trait relevant environment could give 

children that have experienced high stress in the home greater opportunities to interact 

with proximal processes, thereby fostering their EF skills. Diamond and Ling (2016) 

suggested that along with including training components to improve EF abilities, 

interventions should also address emotional, social, and physical needs in an attempt to 

provide long-lasting improvements, which could contribute to the broader transfer of EF 

skills. As our study demonstrated, EF does not develop in isolation, but instead is 

influenced by other external factors that could be modified through intervention. 

 This is the first genetically informed study to longitudinally examine moderation 

of genetic and environmental influences on EF by early adversity. Strengths included the 

use of a multimethod approach and the ability to observe the long-lasting role of early 

adversity on the later etiology of EF. This study also had several limitations. First, 

administering EF tasks in the home could have introduced error into our results, inflating 
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the effect of the environment on performance on our EF tasks. Although the home 

environments varied widely, the magnitude of environmental influences from the 

univariate models was comparable to other studies that administered EF tasks in a 

laboratory setting (e.g., Fan et al., 2001; Friedman et al., 2008).  

Another concern is that it could be difficult to generalize results to singleton 

children, given that our sample consists of twins. Shared environmental influences could 

be inflated due to the fact that twins share a prenatal environment and are the same age 

(Friedman et al., 2008). However, we only found shared environmental influences for 

Digit Span Backward and parent-reported Inhibitory Control in our study, therefore it is 

unlikely that this bias was consistently occurring. Also, perhaps families with twins 

experience more stress. Contrary to that prediction, families in our study reported similar 

levels of chaos in the home as other phenotypic studies with singleton children (e.g., 

Bridgett, Burt, Laake, & Oddi, 2013), demonstrating that families with twins are not 

experiencing drastically more stress in the home than families with singleton children. 

 Future directions include examining this association at other ages. One study 

found that prenatal maternal stress was significantly associated with lower inhibitory 

control abilities in girls and lower working memory abilities in boys and girls in middle 

childhood (Buss, Davis, Hobel, & Sandman, 2011), therefore it is possible that prenatal 

stress could also influence the later etiology of EF. Similarly, another future goal is to 

examine if early adversity in toddlerhood moderates the heritability of EF when our 

sample enters into adolescence. In a sample of low-income adolescents, researchers 

found that household chaos was related to behavioral regulation, both measured 
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concurrently (Evans, Gonnella, Marcynyszyn, Gentile, & Salpekar, 2005), however, it is 

unknown whether early life stress influences the heritability of EF during an accelerated 

period of EF development. 

Overall, our study, along with other behavior genetic research, supports the 

hypothesis by Bronfenbrenner and Ceci (1994) that heritability is not static, but instead 

can fluctuate as a function of interactions with the environment. More importantly, our 

study contributes to the literature by demonstrating that even moderate levels of stress in 

the home can have a long-term impact on the development of EF in middle childhood.   
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Figure 1. Example univariate biometric model that decomposes the variance into latent 
additive genetic (A), shared environmental (C), and non-shared environmental (E) 
factors. The correlations between the latent A factors are set to 1.0 for MZ twins and 0.5 
for DZ twins.  
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Figure 2. Common pathway model (showing only one twin for simplicity) that tests the 
assumption that covariance between a set of phenotypes (in this case, Continuous 
Performance Task, Flanker Task, Digit Span Forward, Digit Span Backward, and parent-
reported Inhibitory Control and Attentional Focusing) can be fully accounted for by a 
single common phenotypic factor (e.g. common Executive Functioning, or EF). It 
decomposes the variance in the common factor into additive genetic (Ac), shared 
environmental (Cc), and nonshared environmental (Ec) factors. Also, additive genetic, 
shared environmental, and nonshared environmental factors that are unique to each 
phenotype are also estimated. 
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Figure 3. Moderated heritability model (showing only one twin for simplicity) that 
allows for the moderation of one family-level phenotype (i.e., early adversity) on an 
individual-level phenotype (i.e., executive functioning). A = additive genetic variance, C 
= shared environmental variance, E = nonshared environmental variance, M = moderator. 
Equations next to each path represent the linear relationship between the path coefficient 
and the moderator. If βx is significantly non-zero, this represents an interaction between 
the path coefficient and the moderator (Purcell, 2002). 
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Table 1. Principal Component Analysis Results for Early Adversity Composite 

Component Matrix 
 Component 

1 2 
Parenting Daily 

Hassles .71 -.36 

Social Support 
(reversed) .56 .54 

Parent Responses to 
Child Misbehavior .46 -.43 

Chaos in the Home .71 -.40 

Maternal Depression .64 .35 

Emotional Availability 
(reversed) .58 .37 

Total Variance Explained 

Component Total Cumulative % 

1 2.28 37.96 

2 1.02 55.02 

Note. First principal component was used to represent early adversity. 
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Table 2. Principal Components Analysis Results for Executive Functioning Composite 

Component Matrix 

 Component 
1 2 3 4 

CPT Errors of omission .75 -.48 -.38 .00 
CPT Errors of 
commission .70 -.55 -.38 -.03 

Flanker Congruent .72 .51 -.02 -.34 

Flanker Incongruent .68 .54 -.03 -.37 

Digit Span Forward .32 .36 -.06 .62 

Digit Span Backward .37 .27 -.16 .62 

TMCQ Attentional 
Focusing .59 -.22 .60 .12 

TMCQ Inhibitory 
Control .39 -.22 .79 .04 

Total Variance Explained 

 Extraction Sums of Squared Loadings 

Component Total Cumulative % 

1 2.78 34.68 

2 1.39 52.02 

3 1.29 68.19 

4 1.04 81.21 

Note. First principal component was used to represent common executive functioning, 
with higher scores representing higher EF abilities. 
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Table 5. Twin Intraclass Correlations for Executive Functioning Variables 

 MZ DZ 

Common EF PCA .546** .289** 

Common EF CFA .562** .302** 

CPT Errors  .366** .014 

Flanker Task .414** .257** 

Digit Span Forward .641** .342** 

Digit Span 
Backward 

.313* .216** 

Attentional 
Focusing 

.638** .185* 

Inhibitory Control .831** .551** 

Note: ** Correlation is significant at the 0.01 level (2-tailed) *  Correlation is significant 
at the 0.05 level (2-tailed). 
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Table 7. Model fit statistics for moderation models 

Model -2LL df AIC ∆-2LL ∆df p 
Common EF PCA 688.05 249 190.05    
No means moderation 693.91 251 191.91 5.86 2 0.05 
No moderation on A 691.93 250 191.93 3.88 1 0.04 
No moderation on C 691.29 250 191.29 3.24 1 0.07 
No moderation on E 695.63 250 195.62 7.58 1 0.01 
No C or E moderation 694.70 251 192.70 6.65 2 0.04 
No A or C moderation 693.22 251 191.22 5.17 2 0.08 
No A or E moderation 696.14 251 194.14 8.09 2 0.02 
No moderation 699.82 252 199.79 11.78 3 0.001 
Common EF CFA 132.46 321 -509.54    
No means moderation 136.21 323 -507.79 3.75 2 0.15 
No moderation on A 135.05 322 -508.95 2.59 1 0.11 
No moderation on C 135.56 322 -508.44 3.10 1 0.08 
No moderation on E 140.13 322 -504.17 7.67 1 0.007 
No C or E moderation 139.50 323 -506.50 7.04 2 0.03 
No A or C moderation 136.48 323 -509.52 4.02 2 0.13 
No A or E moderation 141.46 323 -504.53 9.00 2 0.01 
No moderation 144.11 324 -503.89 11.65 3 0.009 
CPT 1681.62 264 1153.62    
No means moderation 1682.54 266 1151.14 0.92 2 0.47 
No moderation on A 1687.30 265 1157.30 5.68 1 0.02 
No moderation on C 1650.14 265 1120.14 -31.48 1 1.00 
No moderation on E 1686.31 265 1156.31 4.69 1 0.03 
No C or E moderation 1687.81 266 1155.81 6.19 2 0.05 
No A or C moderation 1691.68 266 1159.68 10.06 2 0.01 
No A or E moderation 1687.50 266 1155.50 5.88 2 0.05 
No moderation 1692.03 267 1158.03 10.41 3 0.02 
Flanker 3245.46 264 2717.46    
No means moderation 3246.46 266 2714.46 1.00 2 0.61 
No moderation on A 3245.76 265 2715.75 0.30 1 0.64 
No moderation on C 3246.30 265 2716.30 0.84 1 0.36 
No moderation on E 3249.47 265 2719.47 4.01 1 0.05 
No C or E moderation 3250.23 266 2718.23 4.77 2 0.09 
No A or C moderation 3246.31 266 2714.31 0.85 2 0.65 
No A or E moderation 3250.08 266 2718.08 4.62 2 0.10 
No moderation 3252.61 267 2718.61 7.15 3 0.07 
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Model -2LL df AIC ∆-2LL ∆df p 
Digit Span Forward 1056.88 267 522.88    
No means moderation 1060.65 269 522.65 3.77 2 0.15 
No moderation on A 1057.45 268 521.45 0.57 1 0.45 
No moderation on C 1058.06 268 522.06 1.18 1 0.28 
No moderation on E 1056.90 268 520.90 0.02 1 0.88 
No C or E moderation 1060.94 269 522.94 4.06 2 0.13 
No A or C moderation 1060.55 269 522.55 3.67 2 0.16 
No A or E moderation 1058.01 269 520.01 1.13 2 0.57 
No moderation 1060.94 270 520.94 4.06 3 0.26 
Digit Span Backward 974.76 267 440.76    
No means moderation 976.06 269 438.06 1.30 2 0.52 
No moderation on A 974.79 268 438.79 0.03 1 0.87 
No moderation on C 974.76 268 438.76 0.001 1 0.97 
No moderation on E 974.81 268 438.81 0.05 1 0.82 
No C or E moderation 974.81 269 436.81 0.05 2 0.98 
No A or C moderation 974.84 269 436.84 0.08 2 0.96 
No A or E moderation 974.96 269 436.96 0.20 2 0.91 
No moderation 975.27 270 435.27 0.51 3 0.92 
Attentional Focusing 819.64 315 189.64    
No means moderation 825.52 317 191.53 5.88 2 0.05 
No moderation on A 819.64 316 187.65 0.004 1 0.95 
No moderation on C 819.92 316 187.92 0.28 1 0.60 
No moderation on E 820.21 316 188.21 0.57 1 0.45 
No C or E moderation 820.62 317 186.62 0.98 2 0.61 
No A or C moderation 820.02 317 186.02 0.38 2 0.83 
No A or E moderation 820.61 317 186.61 0.97 2 0.62 
No moderation 820.70 318 184.70 1.06 3 0.79 
Inhibitory Control 457.77 315 -172.23    
No means moderation 474.67 317 -159.33 16.90 2 <0.001 
No moderation on A 460.17 316 -171.82 2.40 1 0.12 
No moderation on C 458.30 316 -173.70 0.53 1 0.47 
No moderation on E 462.80 316 -169.20 5.03 1 0.03 
No C or E moderation 463.10 317 -170.89 5.33 2 0.07 
No A or C moderation 461.14 317 -172.86 3.37 2 0.19 
No A or E moderation 463.91 317 -170.09 6.13 2 0.05 
No moderation 464.41 318 -171.58 6.64 3 0.08 

Note. -2LL = -2 log likelihood; df = degrees of freedom; AIC = Akaike’s Information 
Criterion; ∆ = change;  p = probability. The most parsimonious final model for each 
variable is indicated in bold. 
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Figure 4. Moderation of unstandardized (left) and standardized (right) variance 
components 
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Note: Moderation of unstandardized (left) and standardized (right) variance components. 
In the unstandardized (left) graph, genetic, shared, unique, and total represent 
unstandardized additive genetic, shared environmental, nonshared environmental, and 
total variance, respectively, and in the standardized (right) graph, genetic, shared, and 
unique represent standardized additive genetic, shared environmental, and nonshared 
environmental variance, respectively. Paths that are significant are indicated with an 
asterisk.   

* 

* 

* * 
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Table 8. Standardized factor loadings from ACE common pathway models 

 Specific ACE Loadings Loading on 
Common 
Factor  

One Factor A C E  
Common Factor  .67 -- .33 -- 
CPT .23 -- .69 .09 
Flanker .42 -- .42 .09 
Digit Span Forward .45 .12 .40 .03 

Digit Span Backward .18 .11 .69 .02 

Attentional Focusing -- -- .11 .90 

Inhibitory Control .44 .18 .06 .32 

One Factor without 
Inhibitory Control 

A C E  

Common Factor  .79 -- .21 -- 

CPT .10 -- .68 .22 

Flanker .16 -- .41 .43 

Digit Span Forward .49 -- .36 .15 

Digit Span Backward .24 -- .62 .14 

Attentional Focusing .48 -- .33 .19 

 

Table 9. Fit indices for common pathway models of EF 

Model -2LL df AIC ∆-2LL ∆df p vs. 
Model 1 

1. One common 
factor 

11707.43 2468 6771.43    

2. One common 
factor without 
Inhibitory Control 

11162.33 2022 7118.33 545.10 446 8.98e-4 

Note. -2LL = -2 log likelihood; df = degrees of freedom; AIC = Akaike’s Information 
Criterion; ∆ = change;  p = probability. 
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Table 10. Standardized factor loadings and fit statistics from phenotypic confirmatory 
factor analysis (CFA) without Inhibitory Control 

 Loading 
Attentional Focusing .45 
CPT .45 
Flanker .56 
Digit Span Forward .39 
Digit Span 
Backwards 

.38 

 

 

 

 

Note. -2LL = -2 log likelihood; df = degrees of freedom; RMSEA = Root Mean Square 
Error of Approximation; CFI = Confirmatory Fit Index; AIC = Akaike’s Information 
Criterion 

 

-2LL df RMSEA CFI AIC 

136.11 15 0.04 .926 11649.43 


