
Security and Privacy in Mobile Devices: Novel Attacks and Countermeasures

by

Yimin Chen

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved October 2018 by the
Graduate Supervisory Committee:

Yanchao Zhang, Chair
Martin Reisslein

Lei Ying
Junshan Zhang

ARIZONA STATE UNIVERSITY

December 2018

ABSTRACT

Mobile devices have penetrated into every aspect of modern world. For one thing,

they are becoming ubiquitous in daily life. For the other thing, they are storing more

and more data, including sensitive data. Therefore, security and privacy of mobile

devices are indispensable. This dissertation consists of five parts: two authentication

schemes, two attacks, and one countermeasure related to security and privacy of

mobile devices.

Specifically, in Chapter 1, I give an overview the challenges and existing solutions

in these areas. In Chapter 2, a novel authentication scheme is presented, which is

based on a user’s tapping or sliding on the touchscreen of a mobile device. In Chapter

3, I focus on mobile app fingerprinting and propose a method based on analyzing the

power profiles of targeted mobile devices. In Chapter 4, I mainly explore a novel

liveness detection method for face authentication on mobile devices. In Chapter

5, I investigate a novel keystroke inference attack on mobile devices based on user

eye movements. In Chapter 6, a novel authentication scheme is proposed, based on

detecting a user’s finger gesture through acoustic sensing. In Chapter 7, I discuss the

future work.

i

To my parents, my sister, and my brother.

ii

ACKNOWLEDGMENTS

I owe my gratitude to several people who have advised, supported, or inspired me

during the course of the work.

First, I want to truly thank my advisor Dr. Yanchao Zhang, who through his

immense patience and forbearance has shown me an exciting world of research. You

have been a constant source and guide of knowledge for the past five years. Without

your encouragement and help, I would not have completed this work. Thank you.

I would also like to acknowledge Dr. Junshan Zhang, Dr. Lei Ying, and Dr.

Martin Reisslein, who have supported me in many different ways over these years. I

greatly appreciate Dr. Junshan Zhang, Dr. Lei Ying, and Dr. Martin Reisslein for

serving on my dissertation committee and providing me with guidance from time to

time about my dissertation.

I have received the help and support from a great number of people, including,

but not limited to, my colleagues Dr. Rui Zhang, Dr. Jingchao Sun, Dr. Jinxue

Zhang, Dr. Xiaocong Jin, Tao Li, Dianqi Han, Dr. Junwei Zhang, Dr. Xin Yao, Ang

Li, Yan Zhang, and Lili Zhang, who I have closely worked with over the years.

My research work and the writing of this dissertation could not have been com-

pleted without the enormous support of my family and friends. I thank my family

members for being a constant source of support and encouragement. My deepest

gratitude also goes to my friends who encourage and believe in me over the time,

including, but not limited to, Dr. Siyuan Wei, Dr. Yanmin Zhang, and Dr. Yinnan

Chen.

I also gratefully acknowledge the financial support I received from the National Sci-

ence Foundation through grant CNS-1117462, CNS-1320906, CNS-1421999, and CNS-

1422301, CNS-1514381, CNS-1619251, CNS-1651954 (CAREER), CNS-1700032, and

iii

CNS-1700039 and from the US Army Research Office through grant W911NF-15-1-

0328.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . x

LIST OF FIGURES . xi

CHAPTER

1 INTRODUCTION . 1

1.1 Mobile Authentication . 1

1.2 Mobile App Fingerprinting . 3

1.3 Liveness Detection for Mobile Face Authentication 4

1.4 Keystroke Inference Attacks on Mobile Devices 7

1.5 Acoustic Sensing for Mobile Authentication . 8

2 RHYTHM-BASED TWO-FACTORAUTHENTICATION FORMULTI-

TOUCH MOBILE DEVICES. 10

2.1 Overview. 10

2.2 Related Work . 11

2.3 Basics of Multi-Touch Screens . 12

2.4 System Overview of RhyAuth . 13

2.4.1 Enrollment Phase . 13

2.4.2 Verification Phase . 16

2.5 Illustration of RhyAuth Modules . 16

2.5.1 Data Processing . 16

2.5.2 Feature Extraction . 20

2.5.3 Metric Calculation . 22

2.5.4 Classifier Training . 24

2.5.5 Verification . 25

2.6 Security Analysis . 26

v

CHAPTER Page

2.7 Performance Evaluation . 28

2.7.1 Attacker Models . 28

2.7.2 Experimental Setup . 28

2.7.3 Performance Metrics . 30

2.7.4 Experimental Results . 31

2.8 Conclusion . 36

3 MOBILE APP FINGERPRINTING VIA POWER ANALYSIS 37

3.1 Overview. 37

3.2 Related Work . 39

3.2.1 Sensitive Information Inference in Android 39

3.2.2 App Fingerprinting . 40

3.2.3 Power Analysis . 40

3.3 Preliminaries . 41

3.3.1 Background . 41

3.3.2 Feasibility Study . 42

3.3.3 Adversary Model . 42

3.3.4 Targeted Sensitive Apps . 43

3.4 Design of POWERFUL . 45

3.4.1 Overview . 45

3.4.2 Power Profile Collection . 46

3.4.3 Data Processing . 47

3.4.4 Feature Extraction . 52

3.4.5 Classifier Training . 55

3.4.6 App Inference . 55

vi

CHAPTER Page

3.5 Performance Evaluation . 55

3.5.1 Experiment Setup . 56

3.5.2 Performance Metric . 58

3.5.3 Experimental Results . 58

3.6 Conclusion . 63

4 SECURE MOBILE FACE AUTHENTICATION WITH RHYAUTH IS

HIGHLY SECURE AGAINST VARIOUS ATTACKS 65

4.1 Overview. 65

4.2 Background of Camera-Based PPG . 66

4.3 FaceHeart . 68

4.3.1 Overview . 68

4.3.2 Signal Processing . 69

4.3.3 Feature Extraction . 74

4.3.4 Classifier Training . 75

4.3.5 Liveness Detection . 76

4.4 Performance Evaluation . 76

4.4.1 Adversary Model . 76

4.4.2 Experiment Setup . 77

4.4.3 Performance Metrics . 79

4.4.4 Experimental results . 80

4.5 Discussion . 90

4.5.1 Camera-based PPG . 91

4.5.2 Authentication time . 91

4.6 Conclusion . 92

vii

CHAPTER Page

5 EYETELL: VIDEO-ASSISTED TOUCHSCREEN KEYSTROKE IN-

FERENCE FROM EYE MOVEMENTS . 93

5.1 Overview. 93

5.2 Background on Video-Based Gaze Tracking . 94

5.3 Related Work . 96

5.3.1 Keystroke Inference Attacks . 96

5.3.2 Eye-Tracking-Related Security Implications 99

5.4 Adversary Model . 101

5.5 EyeTell Design . 101

5.5.1 Overview . 102

5.5.2 Video Recording . 104

5.5.3 Gaze Trace Extraction . 105

5.5.4 Trace Decoding . 111

5.6 Performance Evaluation . 124

5.6.1 Experiment Setup . 124

5.6.2 Performance Metrics . 128

5.6.3 Experiments on Pattern-Lock Keyboard 128

5.6.4 Experiment on PIN Keyboard . 133

5.6.5 Experiment on Word Inference . 135

5.6.6 Experiment on Sentence Inference . 136

5.6.7 Influence Factors . 137

5.6.8 Computational Time . 144

5.7 Discussion . 144

5.7.1 Limitations . 144

viii

CHAPTER Page

5.7.2 Countermeasures . 145

5.8 Conclusion and Future Work . 146

6 WEARAUTH: SECURE AND USABLE WEARABLE AUTHENTICA-

TION VIA ACOUSTIC SENSING . 147

6.1 Overview. 147

6.2 Related Work . 148

6.2.1 Wearable Device Authentication . 148

6.2.2 Acoustic Sensing on Mobile Device . 150

6.3 Acoustic Sensing for Motion Sensing . 152

6.4 WearAuth Design . 157

6.4.1 Overview . 158

6.4.2 Data Processing . 159

6.4.3 Feature Extraction . 161

6.4.4 Machine Learning . 166

6.5 Performance Evaluation . 166

6.5.1 Adversary Model . 166

6.5.2 Performance Metrics . 167

6.5.3 Experiment Setup . 168

6.5.4 Experimental results . 170

6.6 Conclusion . 171

7 CONCLUSION AND FUTURE WORK . 175

REFERENCES . 178

ix

LIST OF TABLES

Table Page

3.1 Apps and their abbreviations. 44

3.2 Fitted parameters of our linear power model. 49

5.1 Mapping between alphabetical and quasi-PIN keyboards depicted in

Fig. 5.8a. 115

5.2 All possible segments of pattern-lock keyboard. 115

5.3 Soft keyboard dimensions in pixel illustrated in Fig. 5.7 and Fig. 5.8a. . 115

5.4 Coordinates of pattern-lock keyboard depicited in Fig. 5.8b. 118

5.5 Hidden keys on PIN keyboard. 120

5.6 Number of participants in related system evaluations. 125

5.7 Angles of a single segment on the pattern-lock keyboard. Derived from

Table 5.2. 129

5.8 Inference accuracy on a single segment of pattern-lock keyboard. 130

5.9 Inference accuracy on a single segment of pattern-lock keyboard. 131

5.10 Inference accuracy on pattern-lock keyboard. 133

5.11 Inference accuracy on pattern-lock keyboard. 133

5.12 Inference accuracy on PIN keyboard. 134

5.13 Inference accuracy on PIN keyboard. 134

5.14 Words for inference. 135

5.15 Word-inference accuracy. 136

5.16 Sentence-inference result for the first participant. 137

5.17 Sentence-inference result for the second participant. 138

5.18 Sentence-inference result for the third participant. 139

5.19 Sentence-inference result for the fourth participant. 140

x

LIST OF FIGURES

Figure Page

2.1 A system overview of RhyAuth, in which the dash and solid arrows

represent the data flows in enrollment and verification phases, respec-

tively. 14

2.2 An excerpt of “Amazing Grace” [1]. 15

2.3 An example on dividing a slide into two sub-slides. 19

2.4 Impact of the size of the training set. 32

2.5 Authentication results with finger tapping. 33

2.6 Authentication results with finger sliding. 33

2.7 Attack resilience with one-finger tapping. 34

2.8 Attack resilience with multi-finger tapping. 34

2.9 Attack resilience with one-finger sliding. 35

2.10 Attack resilience with multi-finger sliding. 35

3.1 Power profiles of several exemplary apps. 38

3.2 Flow chart of POWERFUL. 46

3.3 Power adjustment for different touchscreen brightness levels. 48

3.4 Illustration of min-max search. 50

3.5 Impact of different factors on POWERFUL. 56

3.6 Importance of features. 59

3.7 Identification accuracy of POWERFUL on Nexus 7. 60

3.8 Identification accuracy of POWERFUL on Nexus 6. 60

3.9 Performance of POWERFUL under different scenarios. 62

4.1 A system overview of FaceHeart. 68

4.2 Camera-based PPG. 69

4.3 Illustration of extracted photoplethysmograms. 73

xi

Figure Page

4.4 Impact of video length on ∆h and EER. 80

4.5 Impact of ROI on ∆h and EER. 82

4.6 ROC and EER performance of FaceHeart under Type-I attacks. 83

4.7 EER performance of FaceHeart under Type-I attacks in different user

conditions. 84

4.8 EER performance of FaceHeart under Type-II attacks. 85

4.9 Illustration of head pose in yaw, pitch, and roll axes. 86

4.10 Impact of head pose on acceptance rate. 87

4.11 Captured images under different illuminations. 88

4.12 Impact of illumination on ∆h and acceptance rate. 88

4.13 Impact of location on acceptance rate. 89

4.14 Impact of ROI on computation time. 90

5.1 Anterior segment of a human eye [2]. 95

5.2 Three representative soft keyboards. 96

5.3 Workflow of EyeTell. 102

5.4 Typical setup for video recording. 103

5.5 Examples of our detected eye center and limbus. 107

5.6 An illustration for trace dividing. 114

5.7 Measurement of the three keyboards. The unit is pixel. 116

5.8 Quasi-PIN keyboard. 116

5.9 Segments on pattern-lock keyboard. 117

5.10 Ambuguities due to normalization. 119

5.11 All possible segments of a PIN keyboard. 121

5.12 Examples of simple, medium, and complex lock patterns. 129

xii

Figure Page

5.13 Impact of η (left) and eye configuration (right). 141

5.14 Impact of frame rate (left) and lighting condition (right). 142

5.15 Impact of recording distance (left) and angle (right). 143

6.1 Flow chart of acoustic sensing in [3]. 151

6.2 Speaker and microphones on Galaxy S5. 151

6.3 Transmitted and received signals. 152

6.4 Performance of acoustic tracking system. 157

6.5 Examples of tracked shapes. 157

6.6 The flow chart of WearAuth. 158

6.7 Find “feature points” from a trace. 160

6.8 Gesture shapes in our library. 162

6.9 Find “feature points” from a trace. 163

6.10 Shapes in Figure. 6.8. 173

6.11 Impact of positive sample size on EER. 174

6.12 ROC without attacks. 174

6.13 ROC under shoulder-surfing attack. 174

xiii

Chapter 1

INTRODUCTION

1.1 Mobile Authentication

Mobile devices such as smartphones, tablets, and eReaders have penetrated into

everyday life. According to a recent Cisco report [4], the number of mobile-connected

devices would exceed the world population in 2014 and hit 10 billion in 2018. More

and more mobile devices have a multi-touch screen that can simultaneously detect

more than one point of contact. People are using mobile devices in every aspect

of life, including voice/video communications, Internet browsing, web transactions,

online banking, business operations, route planning and navigation, personal health

and wellbeing, etc.

There is urgent need for mobile authentication techniques to prevent illegitimate

access to mobile devices. On the one hand, people are storing increasingly more

private information on multi-touch mobile devices. On the other hand, many users

do not or often forget to log out of personal accounts such as web accounts, email

accounts, and various on-device application accounts. Therefore, illegitimate access

to a mobile device may seriously jeopardize the legitimate user’s information and

communication security. Mobile authentication techniques allow the legitimate user

to unlock a mobile device and also deny illegitimate access. This is commonly ac-

complished by letting a user input a password only the legitimate user knows.

Sound mobile authentication techniques for multi-touch mobile devices should

be both secure and usable. The security requirement demands strong resilience to

notably three attacks. The first is the random-guessing attack in which an attacker

1

tries to guess or emulate the password the legitimate user uses to unlock a mobile

device; the second is the shoulder-surfing attack in which malicious bystanders try

to observe the password of the legitimate user [5]; and the last is the smudge attack

in which an attacker tries to infer the password based on the finger smudges the

legitimate user left on the screen [6]. In contrast, the usability requirement has two

implications. First, the authentication technique should be very easy to use by the

legitimate user. Second, it should be highly accessible to visually impaired people with

visual impairment. The second aspect is often neglected in the literature, despite that

there are 285 million people worldwhile [7] and 21.5 million US adults aged 18 and

older with visual impairment [8].

Existing authentication techniques for multi-touch mobile devices can be broadly

classified into three categories.

Something-You-Know. This category of techniques require a user to input the

correct password on the device screen to be admitted. The legitimate user presets

the correct password, which can be an alphanumeric password or a gesture/picture

password used in Android, iOS, and Windows 8. This category of techniques have

some well-known drawbacks. Firstly, such techniques are quite vulnerable to shoulder-

surfing attacks in public places. Secondly, these techniques require users to input at

specific positions on a touch screen. This requirement may be a great frustration for

people with fat fingers, and it may also open the door to smudge attacks. Finally,

these techniques are not accessible to people with visual impairment.

Something-You-Have. This category of techniques require auxiliary hardware

device only the legitimate user should possess. Examples include tMagkey/Mickey [9]

and signet rings [10]. Although resilient to shoulder-surfing attacks, these techniques

require additional hardware components to be specifically built. Also, such techniques

authenticate a hardware component rather than a user to a mobile device.

2

Someone-You-Are. This category of techniques require physiological or behavioral

biometrics of mobile users. Physiological biometrics relates to a person’s physical fea-

tures such as fingerprints, which are susceptible to well-known spoofing mechanisms.

For example, the fingerprint-based Touch ID security system has been broken shortly

after iPhone 5S was launched [11]. In contrast, behavioral biometrics relates to a

user’s behavioral patterns such as location traces [12, 13], gaits [14, 15], and touch

dynamics [16, 17, 18]. These techniques are best suitable as secondary authentication

mechanisms supplementing the primary password-based authentication mechanism,

as they may be vulnerable to the adversary (e.g., a close friend) familiar with the

target’s behavioral patterns.

1.2 Mobile App Fingerprinting

The popularity of mobile devices has driven the fast development of attractive

mobile apps, which in turn further accelerates the ubiquity of mobile devices. For

example, a recent Nielsen analysis [19] found that U.S. smartphone users accessed 26.7

apps on average and spent 37 hours and 28 minutes per month in Q4 2014. Mobile

app fingerprinting, by which one can know the apps a user has installed and how s/he

uses these apps, can be used for user profiling and inferring sensitive information

about the user such as hobbies, health conditions, locations, habits, and life styles.

The disclosure of such sensitive information endangers user privacy.

How could the app usage information be collected? Mobile app stores such as

Google Play Store and Apple App Store are obviously in the best position to collect

such sensitive information. Such app stores are fortunately operated by trustworthy

business giants and not a major threat against user privacy. Mobile malware can play

the main role in collecting sensitive app usage information. According to Alcatel-

Lucent’s Motive Security Labs [20], the malware infection rate on mobile devices

3

rose to 0.75% in Q2 2015 from 0.68% in December 2014, and there were as many

Android devices infected with malware as Windows laptops in the second half of

2014 alone. Mobile malware can be embedded into apps purposefully by malicious

app developers or through hacked app development tools. An instance for the later

case is the XcodeGhost malware found in September 2015 and from a malicious

version of Xcode, Apple’s official tool for developing iOS and OS X apps. Another

instance is the backdoor in Baidu Android SDK which was found in November 2015

and may have put 100 million Android devices at risk. Besides of malware-infected

apps, an enterprise app may collect its employees’ app usage information without

prior consent.

Significant effort has been made to infer sensitive user information on mobile

devices. For example, internal sensors on a mobile device have been exploited to infer

user inputs on the touchscreen [21, 22, 23, 24, 25] and user locations [26, 27]. Android

public resources that can be accessed without requiring user permission have also been

used to infer sensitive user information in [28, 29, 30, 31]. None of these schemes aims

at app usage information. Existing work on mobile app fingerprinting mostly relies

on traffic analysis [32, 33, 34, 35, 36, 37], all of which require the attacker to obtain

the entire web traffic from the victim’s device. As a result, the attacker needs to

either be in the vicinity of the victim or even compromise network service providers

to obtain the traffic data, which limits their applicability. In addition, these traffic-

based methods do not work well with apps which generate only a limited amount of

traffic or stay offline for most of the time.

1.3 Liveness Detection for Mobile Face Authentication

Protecting mobile devices from unauthorized access is becoming more than indis-

pensable in these days. In particular, mobile devices such as smartphones and tablets

4

are pervasive in personal life and business world. They are storing increasingly more

highly sensitive information such as personal contacts and multimedia information,

usernames and passwords, emails, browsing histories, business secrets, and health

conditions. At the same time, mobile devices may be lost, stolen, or hacked. For

example, 70 million smartphones are lost every year, with only 7% recovered, and

4.3% of company-issued smartphones are lost/stolen every year [38]. In addition, the

malware infection rate on mobile devices rose to 0.75% in Q2 2015 from 0.68% in

December 2014, and there were as many Android devices infected with malware as

Windows laptops in the second half of 2014 alone [20].

Mobile authentication is widely adopted to protect mobile devices from unautho-

rized access and has two forms. First, a user is authenticated to unlock a device.

Second, many mobile apps such as bank apps and password managers authenticate

the user before s/he can use these apps. Mobile authentication traditionally follow

a password approach based on PINs, alphanumeric passwords, or pattern locks. As

functionalities of mobile devices keep improving, people have recently developed more

secure and/or usable mobile authentication techniques based on behavioral biomet-

rics such as inputting habits [18, 39, 40, 41] and physiological biometrics such as

fingerprints and deauthentication techniques based on proximity [42].

Working on this line, we focus on improving the security of face authentication

on mobile devices. As the name suggests, face authentication verifies or identifies a

person by validating selected facial features from a digital image or a video frame.

The facial features of a person are quite unique and difficult to forge. So face authen-

tication has been very popular in various traditional application scenarios, e.g., gate

and automated border control systems. It has also been introduced into mobile de-

vices as a strong authentication method since Android 4.0, as well as many apps such

as BioID and MobileID. Although we aim at face authentication on mobile devices,

5

our work can be generalized to other scenarios involving face authentication without

much modification.

Face authentication is vulnerable to both photo-based forgery attacks (PFA) and

video-based forgery attacks (VFA). In PFA (or VFA), the adversary uses a photo (or

video) containing the user’s frontal face to bypass the otherwise highly-secure face

authentication system. Both PFA and VFA are fairly easy to conduct, as the victim’s

photo or video usually can be easily found online, e.g., on popular social network

sites. The adversary may also capture the victim’s photo or video without being

noticed, e.g., in crowded public places or through a high-definition camcorder from a

long distance.

The prior defenses against PFA and/or VFA aim at liveness detection, which

seeks to find a live indicator that the submitted face photo or video of the legitimate

user is indeed captured in real time. The user’s eye blink, lip movement, or head

rotation in a video have been proposed as live indicators [43, 44]. These schemes

are effective against PFA but invalid for VFA. The countermeasures against both

PFA and VFA either use an infrared camera to obtain the thermogram of the user’s

face [45], or utilize texture analysis to detect the existence of a printed photo [46],

or explore motion analysis to detect the existence of 2D images [47]. Besides very

high computation complexity, these methods [45, 46, 47] require additional sensors or

advanced cameras unavailable in COTS mobile devices.

The accelerometer in almost all COTS devices has recently been explored for

liveness detection against PFA and VFA. In [48], Chen et al. proposed to compare

the small motions extracted from the recorded video of the user’s frontal face and

those from the accelerometer to see if the motions are consistent. Similarly, Li et

al. compared two motion vectors independently extracted from the video and the

accelerometer of the mobile device for liveness detection [49]. Although these schemes

6

[48, 49] are very effective against PFA and VFA, they require the legitimate user to

move the mobile device in front of him/herself in some predefined manner, which

can be inconvenient or even socially awkward. In addition, the randomness of the

user-generated device movement may be too limited so that the adversary may have

a good chance to successfully imitate the user after careful observations.

1.4 Keystroke Inference Attacks on Mobile Devices

Keystroke inference attacks pose an increasing threat to mobile devices which

have penetrated into everyday life. In a typical attack scenario, a victim types on

the soft keyboard of his 1 smartphone or tablet in an insecure public environment

such as a public library, a coffee shop, or a train. The attacker tries to infer the

victim’s keystrokes in order to obtain sensitive information such as the victim’s device

passwords, web account passwords, or even emails. Based on the inferred keystrokes,

the attacker can proceed to launch further attacks. One example is that the attacker

can use the inferred password to pass the authentication system of the victim’s device.

The severe security and privacy implications make keystroke inference a very active

research topic in mobile device security.

Many keystroke inference attacks rely on analyzing a video recording the victim’s

typing process. They require that either the recorded video capture the victim’s

typing process with little or no visual obstruction [50, 51, 52, 53, 54, 55, 56, 57, 58] or

the device be placed on a static holder [58]. Given the video recording, the attacker

infers keystrokes by analyzing touchscreen reflection [55], spatial hand dynamics [56],

relative finger movements on the touchscreen [57], or the backside motion of the

device [58]. While these attacks have been demonstrated quite effective, their strong

assumptions may not always hold in practice.
1No gender implication.

7

1.5 Acoustic Sensing for Mobile Authentication

Wearable devices are increasingly pervasive in our day-to-day lives. According

to the 2017–2021 Cisco Visual Networking Index, the number of wearable devices

globally is expected to grow threefold from 325 million in 2016 to 929 million by

2021. There are many reasons driving the ever-increasing popularity of wearable

devices. For example, most wearable devices are of small form factor and specifically

designed for fitness/health-related applications. In addition, latest wearable devices

start to have many basic yet commonly used functionalities of smartphones, such

as phone calls, text messages, emails, music streaming, mobile payment, navigation,

and even an personal AI assistant, but they are much more preferred in contexts like

exercising or sporting events.

Secure and usable user authentication for wearable devices is necessitated by grow-

ing concerns about data privacy. In particular, many wearable devices are designed

to capture and temporarily store various physiological data such as ECG over long

periods of time for health monitoring and fitness tracking. Moreover, wearable devices

may contain contacts, texts, emails, location history, and other personal information.

So we must design secure authentication techniques to prevent illegitimate access to

such sensitive data. The authentication techniques also need to be very convenient

for legitimate users to use, corresponding to the usability requirement.

Current authentication techniques for wearable devices do not satisfy the secu-

rity or usability requirements. There are mainly two authentication techniques for

wearable devices. The first involves the user inputting an unlock PIN, pattern lock,

or password in the same way as unlocking a smartphone or tablet. Normal wearable

devices have a much smaller screen than those on smartphones or tablets. For ex-

ample, the display areas of the latest Apple Watch 4 (44 mm version) and Samsung

8

Galaxy Watch (46 mm version) are 9.77 and 10.8 cm2, respectively. Inputting on

such small screens is often challenging and frustrating for mobile users, especially

for those with fat fingers, visually impaired users, senior citizens, and children. In

addition, many wearable devices may not even have a screen. The second requires

the user to pair his wearable device with his smartphone or tablet beforehand. Each

subsequent unlocking of his wearable device is achieved by him unlocking the paired

smartphone or tablet. For this technique to work, the user has to always carry the

paired smartphone or tablet along with his wearable device, which somehow dimin-

ished the convenience of wearable devices. Furthermore, many users such as children

may not even have a smartphone or tablet for pairing with their wearable devices.

The lack of secure and usable authentication techniques makes many users leave their

wearables unprotected, which may pose greater security threats beyond data privacy

and are expected to be the top source of security breaches among IoT devices. 2

2https://www.spiceworks.com/marketing/reports/iot-trends/

9

Chapter 2

RHYTHM-BASED TWO-FACTOR AUTHENTICATION FOR MULTI-TOUCH

MOBILE DEVICES

2.1 Overview

This chapter explores a new direction to authenticate a mobile user based on her

rhythmic taps/slides on the device screen. The strong promise of this direction is

firmly rooted in some observations in daily life. First, many people tend to tap/slide

on something nearby with a rhythm while singing a melody loudly or silently. Second,

a user can easily repeat her rhythmic taps/slides over time for a familiar melody.

Finally, different people are very likely to have different personal interpretations about

the same melody and thus tap/slide in different ways; a user can even compose her

own melody in mind instead of picking up a known melody. Therefore, rhythmic

taps/slides are very difficult to emulate by an attacker with or without knowledge of

the legitimate user’s melody.

Our contributions are threefold.

• We propose RhyAuth [41], a novel two-factor rhythm-based authentication

scheme for multi-touch mobile devices. RhyAuth requires a user to perform a

sequence of rhythmic taps/slides on the device screen. The user is authenticated

and admitted only when the features extracted from her rhythmic taps/slides

match those stored on the device. RhyAuth is a two-factor authentication

scheme because it requires both the correct rhythm (something-you-know) and

the right way of performing the rhythm (someone-you-are).

10

• We theoretically analyze the security of RhyAuth. We show that RhyAuth

is much more secure than the commonly used 4-digit PIN method, complex

alphanumeric passwords, and Android Pattern Lock.

• We report comprehensive experimental evaluations of RhyAuth on Google Nexus

7 tablets, involving 22 legitimate users and 10 attackers. Our results show that

RhyAuth is highly secure with false-positive and false-negative rates up to 0.7%

and 4.2%, respectively. RhyAuth is also very efficient and can authenticate a

user in less than 500 ms.

RhyAuth has many desirable features over existing techniques. Firstly, RhyAuth is

highly resilient to brute-forth guessing attacks due to its two-factor nature. Secondly,

RhyAuth is robust to shoulder-surfing attacks because it is very difficult for the

attacker to figure out the exact rhythm by pure observations. Thirdly, RhyAuth is

immune to smudge attacks, as the user can tap/slide on anywhere on the touch screen

such that finger smudges can be more randomly distributed. Lastly, RhyAuth does

not require the user to look at the screen while performing rhythmic taps/slides. The

last feature indicates the high usability of RhyAuth to visually impaired people. It

also means that a discrete user can conduct authentication with her device put under

some cover (e.g., a jacket or table) to eliminate shoulder-surfing attacks.

2.2 Related Work

There are some rhythm-based authentication schemes. In [59], Wobbrock et al.

used the tapping on a button as the input of a rhythm for user authentication. Their

experimental results showed a relatively low successful acceptance rate of 83.2%. In

addition, their scheme does not target multi-touch mobile devices. In [60], Marques

et al. transformed the timing information of taps on a touch screen into a sequence

11

and proposed a Hamming-distance-based matching approach for user authentication.

However, the acceptance and rejection rates of their scheme are not reported. In [61],

Lin et al. presented RhythmLink, a protocol to securely pair I/O-constrained devices

by tapping.

Our work differs from the above schemes in many aspects. First, RhyAuth allows

a user to input a rhythm by either tapping or sliding, while the above schemes only

allow tapping. Second, RhyAuth additionally incorporates the behavioral biometrics

of a user inputting the rhythm and thus can achieve much higher true acceptance and

rejection rates. Finally, we conduct theoretical analysis of rhythm-based authentica-

tion for the first time in literature.

Recent years have also seen many mobile authentication techniques based on be-

havioral biometrics [16, 62, 39, 18]. In [63], however, Abdul et al. suggested that a

programmable Lego robot could emulate users’ behavioral biometrics to some extent,

which poses potential threats on such techniques. In contrast, RhyAuth combines an

additional user-chosen secret rhythm with her behavioral biometrics, thus achieving

stronger attack resilience.

Finally, TouchIn [40] is a two-factor mobile authentication scheme that works

by letting a user draw secret geometric curves on the device screen with one or

multiple fingers. RhyAuth and TouchIn have similar authentication performance.

But RhyAuth is more usable for people who have better memory for rhythms than

for geometric curves.

2.3 Basics of Multi-Touch Screens

We introduce some background on multi-touch screens to help illustrate the RhyAuth

design. Since we implement RhyAuth as an application on Google Nexus 7 tablets

powered by Android 4.2, our illustrations here focus on Android and are applicable

12

to iOS with small modifications. A multi-touch screen can recognize two or more

simultaneous contacts with the screen. When the screen is touched, a touch event

is generated. The individual fingers or other objects, e.g., a pen, that generate such

events are referred to as pointers. Hereafter we assume that touch events are gener-

ated by fingers for simplicity.

RhyAuth collects the information about a touch event as a vector info = [t, fID, x, y,

P, S], where t is the time of the event, fID is the ID of the finger, x and y are the

x and y coordinates of the touch point on the screen, respectively, P is the pressure

generated by the finger, and S is the size of the touch point on the screen. We refer

to (x, y) as a sampled point, or more simply, a point. Both P and S are normalized

values in the range of [0, 1]. One thing worth mentioning is that a finger may generate

a series of touch events even though a user believes that she does not move her finger.

The reason is that a touch event will be generated whenever there is a slight change

in any of x, y, P , and S, which may be imperceptible.

2.4 System Overview of RhyAuth

In this section, we give an overview of the RhyAuth design. RhyAuth consists

of two subsystems, TapAuth and SlideAuth, in which a rhythm is input via finger

taps and slides on the screen, respectively. A user needs to choose one to proceed

when RhyAuth is invoked. Whichever subsystem is chosen, the whole authentication

process comprises two phases: an enrollment phase and a verification phase.

2.4.1 Enrollment Phase

During this phase, a user first needs to choose a melody, of which the rhythm

becomes her password. A good melody should be sufficiently familiar to the user so

that she has little difficulty in repeating her password. It should also be sufficiently

13

Data
Processing

Feature
Extraction

Metric
Calculation

Classifier
Training

Verification
Accept
/Deny

Touch
Event

Features Metrics

Model

Enrollment Phase
Verification Phase

Figure 2.1: A system overview of RhyAuth, in which the dash and solid arrows

represent the data flows in enrollment and verification phases, respectively.

random and thus cannot be easily figured out by an attacker. We will come back to

this issue when analyzing the security of RhyAuth in Section 2.6.

Fig. 2.2 shows an excerpt of “Amazing Grace,” which we use to introduce some

relevant musical terms. A note is a sign used in musical notation to represent the

relative duration and pitch of a sound. A pitch is an auditory sensation in which a

listener assigns musical tones to relative positions on a musical scale. Usually, we

denote a pitch by one of the seven letters of the Latin alphabet, i.e., A, B, C, D, E,

F, and G. So a note is a pitch with a defined duration. For example, in Fig. 2.2, the

first note in the first measure is a quarter note with a duration of 1
4
and a pitch of

C4, while the first note in the second measure is a half note with a duration of 1
2
and

a pitch of F4. In our system, we are interested in the number of “extended notes” of a

melody. An extended note refers to one note or multiple continuous notes of the same

pitch connected by ties. A tie is a curved line connecting the heads of two notes of

the same pitch and name, indicating that they are to be played as a single note with a

duration equal to the sum of the individual durations. In practice, an extended note

probably corresponds to one tap or sub-slide of RhyAuth, which will be explained

shortly. For simplicity, we abbreviate “extened note” to “ ex-note.” Obviously, the

14

early American melody (1835)

arr. Gwyn Arch

Words by John Newton (1790)

q = c.84)

Amazing Grace - brought to you by www.malechoirmusic.co.uk

Tenor 1

Tenor 2

Baritone

Bass

Piano

 Gospel style

2. 'Twas
1. A

mf

maz
grace

- ing

that
-

 3

2. 'Twas

1. A

mf

maz

grace

- ing

that

-

 3

2. 'Twas

1. A

mf

maz

grace

- ing

that

-

2. 'Twas

1. A

mf

maz

grace

- ing

that

-

mf

3 3 3 3

6

grace,

taught

how

my

sweet

heart

the

to

sound,

fear,

that

and

saved

grace

a

my fears

wretch

like

re

 3

-

grace,

taught

how

my

sweet

heart

the

to

sound,

fear,

that

and

saved

grace

a

my fears

wretch

like

re

3

-

grace,

taught

how

my

sweet

heart

the

to

sound,

fear,

that

and

saved

grace

a

my fears

wretch

like

re

3

-

grace,

taught

how

my

sweet

heart

the

to

sound,

fear,

that

and

saved

grace

a

my fears

wretch

like

re

3

-

3 3 3

 1551 Gwyn Arch GROVE MUSIC

3

3 3

Figure 2.2: An excerpt of “Amazing Grace” [1].

number of ex-notes cannot be too small; otherwise, an attacker may figure out the

rhythm easily. We assume that the melody has at least six ex-notes, and the user is

asked about the number of ex-notes at the beginning of the enrollment phase.

Assume that the user chooses TapAuth. She continues to decide which finger(s)

to tap on the screen. TapAuth gives the user full freedom to decide how she taps.

A green user can choose and stick to one finger, while an advanced user may use

multiple fingers and also switch fingers during her input. The user has to remember

how many fingers she uses for each tap and inform RhyAuth about it. For example, if

a melody has eight ex-notes, an advanced user may input the first four ex-notes with

her middle finger, and the other ex-notes with her index and ring fingers together.

Afterwards, the user needs to input the rhythm in the exact way. To avoid confusion,

we refer to the tapping of one finger as a touch. A user may input an ex-note with

multiple fingers, in which we refer to all the touches of an ex-note as a tap. Therefore,

a tap can have one touch or multiple touches, and the number of taps is the same as

the number of ex-notes.

Then a user inputs the rhythm by tapping on the screen according to her inter-

pretation of her chosen melody. She needs to input the rhythm multiple times until

a sufficiently good classifier can be obtained. As illustrated in Fig. 2.1, the touch-

event data are first sent into a Data Processing module, which prepares the data for

a Feature Extraction module. Then multiple distinguishable features are extracted

and fed into a Metric Calculation module. Subsequently, a metric vector is generated

15

and sent to a Classifier Training module. Finally, a binary classifier is generated for

the verification phase to determine whether a new input is legitimate or not.

SlideAuth follows the same system architecture and only differs in some imple-

mentation details. Firstly, the rhythm in SlideAuth is input via continuous finger

sliding on the screen. Therefore, the user does not switch the finger(s) while she is

inputting the rhythm. Secondly, we need to divide a continuous slide into multiple

sub-slides, each corresponding to an ex-note. The end of each ex-note is marked by

an abrupt change of the sliding direction. Finally, some features of SlideAuth are

different from those of TapAuth.

2.4.2 Verification Phase

In this phase, the user first chooses between TapAuth and SlideAuth, and then

the user inputs her rhythm by tapping or sliding. The input goes through the same

Data Processing, Feature Extraction, and Metric Calculation modules in sequence.

The resulting metric vector is finally fed into the Verification module, where the

established classifier is applied to determine whether the user is legitimate or not.

2.5 Illustration of RhyAuth Modules

In this section, we detail each module of RhyAuth.

2.5.1 Data Processing

This module checks the consistency of the user input and prepares data for feature

extraction. The steps below apply to each finger involved in either TapAuth or

SlideAuth.

16

Data Processing for TapAuth

Firstly, as mentioned in Section 2.3, a touch of a finger on the screen generates multiple

info vectors of format [t, fID, x, y, P, S]. These info vectors have the same fID and are

slightly different in other fields. Let x̄, ȳ, P̄ , and S̄ denote the average x, y, P , and S

values, respectively. To reduce the data redundancy, we merge these info vectors into

a single one with the same fID, x̄, ȳ, P̄ , S̄, and all the t values remain intact.

Secondly, the number of taps and the number of fingers in each tap are extracted.

If these numbers are not consistent with the user’s setting in the enrollment phase,

the user input is immediately considered invalid and not further processed.

Data Processing for SlideAuth

Firstly, we need to adjust the orientation of the slide to ensure that the device orien-

tation and the starting direction of the slide have little effect on the authentication

result. The orientation adjustment allows the user to input the rhythm more freely.

We denote the coordinates of the slide as {(xi, yi)}li=1, where l denotes the num-

ber of points of the slide. The slide orientation is adjusted such that the starting

direction is aligned with the x axis, which is defined with the screen in the por-

trait mode. This is achieved in three steps. We first move the whole slide to make

the coordinate of the first point (0, 0) and change the coordinates to be {x′i, y′i}
l
i=1,

where x′i = xi − x1, y
′
i = yi − y1. Then we calculate the angles of (η1 − 1) vec-

tors which start from (0, 0) and end at {(x′i, y′i)}
η1
i=2, respectively, denoted by {θi}η1i=2.

The starting direction of the slide is denoted by θs and defined as the average of

{θi}η1i=2. Finally, the coordinates of a slide are transformed to {x′′i , y′′i }
l
i=1, where

x′′i = x′i cos θs + y′i sin θs, y
′′
i = −x′i sin θs + y′i cos θs. Here η1 is an empirical parameter,

and it should be chosen such that the resulting θs is a good estimation of the direction

17

of the first sub-slide. Note that η1 cannot be too small, e.g., two or three, to avoid

instability. We use η1 = 5 in our implementation.

Secondly, we smooth the trajectory of the slide because the collected data usually

exhibit a jagged trajectory. We use a 10-point simple moving average (SMA) [64]

filter for this purpose. After filtering, the coordinates become {xi, yi}
l
i=1.

Thirdly, we divide the whole smoothed slide into multiple sub-slides, each corre-

sponding to an ex-note. This is equivalent to locating the last point of each sub-slide.

Consider Fig. 2.3a as an example, where the slide consists of two sub-slides. A sharp

change in the sliding direction indicates the end of the current ex-note or the beginning

of the next ex-note. Given {xi, yi}
l
i=1, we first calculate the angles of the vectors con-

necting two consecutive points, i.e., ψi = arccos(xi+1−xi√
(xi+1−xi)2+(yi+1−yi)2

), i = 1, . . . , l−1.

If a sequence of vectors are associated with the same sub-slide, the corresponding ψs

should be similar. Fig. 2.3b is the corresponding plot of ψ. We can see that ψ

switches from one stable value to another through a sharp transition phase, indicat-

ing a noticeable change of the sliding direction. To locate the last point of the first

sub-slide, we further calculate ∆ψi = ψi+1 − ψi, i = 1, . . . , l − 2. Fig. 2.3c is the plot

of ∆ψ in our example. Denote the index of the point with the largest ∆ψ by i1.

Then {i1 − η2, . . . , i1, . . . , i1 + η2} are indices of the points and include the last point

of the first sub-slide. Here η2 is an empirical parameter, and η2 = 10 is adopted in

our implementation. We proceed to calculate the time difference ∆t of two consecu-

tive points as ∆ti = ti+1 − ti as shown in Fig. 2.3d. The largest ∆t corresponds to

the last point. The above process can be easily extended to a slide with two or more

sub-slides, in which case we just need to look for the last points of multiple sub-slides.

Finally, the number of fingers and the number of sub-slides are compared with

the user’s setting in the enrollment phase. If these numbers are not consistent, the

sliding input is deemed invalid and not further processed.

18

3 0 0 4 0 0 5 0 0 6 0 07 2 0
6 8 0
6 4 0
6 0 0
5 6 0

y

x

(a) Trajectory of a slide.

0 2 0 4 0 6 0 8 0
0

1

2

3

ψ
 (ra

d)

i

(b) ψ

0 2 0 4 0 6 0 8 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

∆ψ
 (ra

d)

i

(i 1 , ∆ψm a x)

(c) ∆ψ

0 2 0 4 0 6 0 8 0
0 . 0 0
0 . 0 4
0 . 0 8
0 . 1 2
0 . 1 6

∆t
(s)

i

(d) ∆t

Figure 2.3: An example on dividing a slide into two sub-slides.

Some parameters need to be adjusted to properly divide a slide in practice. First,

we need to decide when a change of ψ (or sliding direction) occurs. A straightforward

solution is that when ∆ψ is larger than some threshold ϕ, a change of ψ occurs. In

general, the suitable ϕ for different users is different, and we can train it during the

enrollment phase. More specifically, we let ϕ = π
2
at the beginning of the enrollment

phase, and the number of sub-slides set by the user is n. After slide division as

described above, the number of sub-slides, denoted by n′, is the number of changes

of ψ plus one. If n = n′, the training of ϕ ends, and the current ϕ is used during the

verification phase. If n > n′, ϕ is decreased by π
32

and increased by π
32

otherwise until

n = n′.

19

2.5.2 Feature Extraction

This module takes the processed data from the Data Processing module as input

and extracts the features used in RhyAuth. Depending on which of TapAuth and

SlideAuth is chosen, the corresponding features are different. Most features are ex-

tracted from the data of each individual fID, while others are extracted by combining

the data of multiple fIDs. The following descriptions apply to each fID involved in

either TapAuth or SlideAuth.

Features of TapAuth

Below, n denotes the number of ex-notes (or equivalently taps), each corresponding

to an integrated info vector formed in Data Processing.

• Intra-tap and inter-tap intervals: We denote the intra-tap interval by {∆t1,i}ni=1

and the inter-tap interval by {∆t2,i}n−1
i=1 . Let tf,i and tl,i denote the time of the

first and last touch events associated with the ith tap, respectively. Then we

have ∆t1,i = tl,i − tf,i and ∆t2,i = tf,i+1 − tl,i.

• Maximum and minimum pressure: These two features are denoted by Pmax and

Pmin, respectively. Then Pmax = max{P i}ni=1 and Pmin = min{P i}ni=1.

• Maximum and minimum size: We denote maximum and minimum size by Smax

and Smin, respectively. We have Smax = max{Si}ni=1 and Smin = min{Si}ni=1.

• Maximum and minimum distance: We denote them by Dmax and Dmin, re-

spectively. Suppose that the ith tap is associated with m fIDs and thus m

coordinates. The distance of the ith tap is defined as the average Euclidean

distance of each pair of coordinates, and it equals zero if m = 1. Then Dmax

and Dmin are the maximum and minimum of the n tap-distance values.

20

• Maximum and minimum areas: We denote them by Amax and Amin, respectively.

Suppose that the ith tap is associated with m fIDs and thus m coordinates. If

m ≥ 3, the area of the ith tap is defined as the area of the convex hull determined

by the m coordinates; otherwise, it is defined as zero. Amax and Amin are the

maximum and minimum of the n tap-area values.

Features of SlideAuth

Below, n denotes the number of ex-notes (or equivalently the number of sub-slides)

and N denotes the number of touch events.

• Intra-slide and inter-slide intervals: We denote them by {∆t3,i}ni=1 and {∆t4,i}n−1
i=1 ,

which are defined similarly to those of TapAuth.

• Maximum and minimum pressure: They are defined as Pmax = max{Pi}Ni=1 and

Pmin = min{Pi}Ni=1.

• Maximum and minimum sizes: They are define as Smax = max{Si}Ni=1 and

Smin = min{Si}Ni=1.

• Maximum and minimum slide length: We denote them by Lmax and Lmin, re-

spectively. For each sub-slide, we define its slide length as the distance between

the coordinates of the first and last associated touch events. Then Lmax and

Lmin are the maximum and minimum of the n slide lengths, respectively.

• Slide direction: For the ith (i ∈ [1, N −1]) point of the slide, we denote its slide

direction by the angle, θi, of the vector from the ith point to the (i+1)th point.

Therefore, {θi}N−1
i=1 can be calculated as

θi = arccos(
xi+1 − xi√

(xi+1 − xi)2 + (yi+1 − yi)2
).

21

• Curvature: It is denoted by {κi}N−1
i=2 and computed as

κi =
4Ψy

i∆
x
i − 4Ψx

i ∆
y
i

((∆x
i)

2 + (∆y
i)

2)3/2
,

where ∆x
i = (xi−1 +xi+1)/2,∆y

i = (yi−1 + yi+1)/2,Ψx
i = (xi+1− 2xi +xi−1), and

Ψy
i = (yi+1 − 2yi + yi−1).

• Velocities along the x axis and y axis: We denote them by {υx}N−1
i=1 and {υy}N−1

i=1 ,

respectively and compute them as

υx,i =
xi+1 − xi
ti+1 − ti

and υy,i =
yi+1 − yi
ti+1 − ti

.

• Accelerations along the x axis and y axis: We denote them by {ax,i}N−2
i=1 and

{ay,i}N−2
i=1 , respectively, which are computed as

ax,i =
υx,i+1 − υx,i
ti+1 − ti

and ay,i =
υy,i+1 − υy,i
ti+1 − ti

.

• Distance: We denote it by D. Suppose that the slide is associated with m fIDs.

If m ≥ 2, D is defined as the average pairwise Euclidean distance among the

first points of all the trajectories. If m = 1, we let D = 0.

• Area: We denote it by A. Suppose that the slide is associated with m fIDs. If

m ≥ 3, A is defined as the area of the convex hull determined by the first points

of their trajectories; otherwise, we let A = 0.

2.5.3 Metric Calculation

This module is to consolidate the output from the Feature Extraction module into

a metric vector. For TapAuth, the extracted features include {∆t1,i}ni=1, {∆t2,i}n−1
i=1 ,

Pmax, Pmin, Smax, Smin, Dmax, Dmin, Amax, and Amin; for SlideAuth, the extracted fea-

tures include {∆t3,i}ni=1, {∆t4,i}n−1
i=1 , Pmax, Pmin, Smax, Smin, Lmax, Lmin, {θi}N−1

i=1 , {κi}N−1
i=2 ,

22

{υx,i}N−1
i=1 , {υy,i}N−1

i=1 , {ax,i}N−2
i=1 , {ay,i}N−2

i=1 , D, and A. Features like {∆t1,i}ni=1 are in

the vector form, and we would like to use a real number to denote each such feature

for integration with non-vector features. This can be done by computing the distance

between any vector feature and a reference vector. The comparison result (or the

vector distance) is the real number we seek.

The vector features can also be divided into two categories, which require different

comparison methods. Specifically, each feature vector of TapAuth is of length n, while

that of SlideAuth is of length n or N . Both TapAuth and SlideAuth require two

matching inputs to have the same number of ex-notes. This consistency check is done

in the Data Processing module. Therefore, we can use statistical models to compare

such feature vectors of the same length. In contrast, different inputs in SlideAuth

most likely generate different numbers of touch events, leading to feature vectors of

different lengths. We adopt Dynamic Time Warping (DTW) [65] to compare such

feature vectors of variable lengths.

Comparison Based on Statistical Model

We take {∆t1,i}ni=1 as an example to explain how to calculate the distance based on

the statistical model. Suppose that there are Q samples from one user with the same

n. We treat each element of {∆t1,i}ni=1 as a Gaussian random variable. Given Q

samples of {∆t1,i}ni=1, we can calculate the mean and variance of each element. That

is, we will have {(µ1, σ
2
1), . . . , (µn, σ

2
n)} as the statistical model for {∆t1,i}ni=1. Given

a new sample of {∆t1,i}ni=1, it is converted into d∆t1 as

d∆t1 =

(
n∑
i=1

(∆t1,i − µi)2

σ2
i

) 1
2

. (2.1)

The intuition here is that a new sample of the same user most probably well follows

the statistical model built from her historical data well, leading to a small d∆t1 .

23

However, a sample from a different user is very likely to deviate much from this

statistical model, resulting in a large d∆t1 . In the same way, {∆t2,i}n−1
i=1 , {∆t3,i}ni=1,

and {∆t4,i}n−1
i=1 are converted as d∆t2 , d∆t3 , and d∆t4 , respectively.

Comparison Based on DTW

We use {θi}N−1
i=1 to explain how to calculate the distance based on DTW. Suppose

that there are Q samples from one user. Assuming that the Q samples are quite

similar, we randomly choose one as a reference and denote it by Θ∗ = {θ∗i }N
∗

i=1. DTW

constructs a (N − 1) × N∗ matrix M with its (i, j) element M(i, j) = |θi − θ∗j |, i =

1, . . . , N−1, j = 1, . . . , N∗. Then DTW looks for a non-decreasing path starting from

M(1, 1) to M(N −1, N∗) along which the sum of all elements would be the minimum

of all possible paths. This minimum sum is used as the transformed value of {θi}N−1
i=1

and denoted by dθ. Similarly, {κi}N−1
i=2 , {υx,i}N−1

i=1 , {υy,i}N−1
i=1 , {ax,i}N−2

i=1 , and {ay,i}N−2
i=1

are transformed into dκ, dυx , dυy , dax , and day , respectively.

2.5.4 Classifier Training

This module is to train a binary classifier from the metric vectors of the legitimate

user and other users.

We use SVM as the classification algorithm and LibSVM [66] in our implemen-

tation, which has been widely used and proved to achieve satisfactory performance

under various circumstances. The classifier we need is a binary classifier, which clas-

sifies a sample (or metric vector) into the positive class or negative class. We use fi

to denote the class label of the ith sample. If fi = 1, the sample is classified into

the positive class, meaning that the sample is legitimate. If fi = −1, the sample is

classified into the negative class, indicating that the sample is illegitimate. In order

to train the classifier, we need a training dataset consisting of metric vectors of both

24

the legitimate user and other users. For this purpose, a library of metric vectors of

other users can be preloaded with each RhyAuth; it can also be downloaded in real

time from a trusted server. Now suppose that we have ns metric vectors or samples

in total. Each of them is expanded into a sample-label pair (ui, fi), where ui denotes

the ith sample. fi = 1 if ui is a metric vector of the legitimate user and fi = −1

otherwise. Given {(ui, fi)}ns
i=1, SVM solves the following optimization problem:

min
w,b,ξ

1

2
wTw + C

ns∑
i=1

ξi

subject to fi ·
(
wTφ(ui) + b

)
≥ 1− ξi,

ξi ≥ 0.

(2.2)

Here uis are mapped into a higher dimensional space by the function φ , andK(ui, uj) ≡

φ(ui)
Tφ(uj) is called the kernel function. SVM finds a linear separating hyperplane

wTv + b = 0 with the maximal margin in this higher dimensional space. Here v is

a vector in the higher dimensional space, and C > 0 is the penalty parameter of

the error term ξi. In our implementation, we choose the radial basis function (RBF)

as the kernel function which has been proved to be a reasonable first choice. More

specifically, the kernel function we choose is K(ui, uj) = exp(−γ‖ui − uj‖2), where

γ > 0 is the kernel parameter. The result of classifier training is a SVM model for

the legitimate user, which predicts the class label of a new metric vector or sample.

2.5.5 Verification

A candidate user input goes through the same Data Processing, Feature Extrac-

tion, and Metric Calculation modules until a metric vector u is generated in either

TapAuth or SlideAuth. The Verification module first verifies whether the user input

has the same numbers of ex-notes and fingers as those of the legitimate user. If not,

the user fails the authentication, and the verification stops. Otherwise, the Verifica-

25

tion module tests the candidate metric vector using the SVM model of the legitimate

user. The SVM model consists of the optimal w and b, which are obtained by solv-

ing the optimization problem in Eq. 2.2. Given a candidate vector u, the decision

function is sgn(wφ(u) + b). If the result is 1, the user is considered legitimate and

illegitimate otherwise.

2.6 Security Analysis

In this section, we analyze the security of RhyAuth. Unlike conventional authen-

tication schemes involving alphanumerical or patter passwords, we cannot answer the

question: “What is the size of the password space?” The reason is that RhyAuth com-

bines a user-chosen rhythm and the user’s behavioral biometrics together. In [67],

Sherman et al. studied the security and memorability of user-generated free-form

gestures for authentication. The metric they used is to quantify the “surprisingness”

of a given gesture, rather than the security of their authentication scheme. Similarly,

we focus on the security of a rhythm, which can be regarded as a lower bound of the

overall security assessment of RhyAuth.

First, we want to answer the question: “Given a melody of n ex-notes, how many

rhythms can there be?” Here we assume that a melody chosen by a user follows the

music convention. Specifically, each ex-note consists of multiple notes; the duration

of a note is one of the 12 note values, from 8 (i.e., 23) corresponding to a maxima to

1
256

(i.e., 2−8) corresponding to a two-hundred-fifty-sixth note; and the duration of a

note with zero dot can be further augmented by adding one dot, two dots, and three

dots. Therefore, a note may have 12 × 4 = 48 possible duration values. Although

there is no limit on how many notes an ex-note can consist of, we assume that an

ex-note lasts no more than two measures, each comprising no more than 24 notes for

usability concerns. Therefore, an ex-note can consist of up to 48 notes. It is worth

26

noting that the number of possible duration values of an ex-note is not 48×48 = 2304,

as some of the 2304 values are the same. For example, the duration of two notes with

a note value of 1
2
is the same as that of a single note with a note value of 1. So we

further refine the 2304 values to eliminate redundant ones. Finally, we obtain 1002

unique possible duration values of an ex-note. Then for a melody of n ex-notes, the

number of possible rhythms is simply 1002n ≈ 210n. We should point out that this is

an underestimation due to the assumption on how many notes an ex-note consists of.

Here we give some numerical examples to briefly compare RhyAuth with the following

schemes: (1) 4-digit PIN simple password of iOS, 104 ≈ 213; (2) n-character complex

password of iOS, 77n ≈ 26.27n; (3) Android Pattern Lock, around 219 [68]. RhyAuth

is obviously much more secure than all of them.

Secondly, we would like to answer the question: “Given an input rhythm, can the

system suggest whether it is a good choice or not?” A firm answer to this question

can help a user to choose a rhythm of high security strength. Inspired by [67], we use

the surprisingness of a rhythm as a measure of its security strength. Specifically, we

denote a rhythm of n ex-notes by {Ti}ni=1, where Ti is the duration of the ith ex-note

and calculated as

Ti =

{
∆t1,i + ∆t2,i if i < n, (2.3a)

∆t1,i if i = n. (2.3b)

We assume {Ti}ni=1 follows a second-order autoregressive model as Ti = β0 +β1Ti−1 +

β2Ti−2 + εi, where β0, β1, and β2 are parameters to optimize by least squares fitting,

and εi is the error term of Ti. Suppose that the least squares estimates are β̂0, β̂1, and

β̂2 after parameter fitting. We then use h(T) to denote the surprisingness of {Ti}ni=1,

calculated as h(T) =
(∑n

i=1(Ti − T̂i)2
) 1

2 , where T̂i = β̂0 + β̂1T̂i−1 + β̂2T̂i−2.

27

2.7 Performance Evaluation

In this section, we report the performance evaluation of RhyAuth, which we im-

plemented as an application on Google Nexus 7 tablets running Android 4.2. In the

rest of this section, we describe the attacker models, experimental setup, performance

metrics, and experimental results in sequence.

2.7.1 Attacker Models

We consider the following models with increasingly capable attackers.

Type-I. The attacker knows neither the rhythm a user chooses nor how a user inputs

the rhythm on the screen. Then the attacker’s best effort is a brute-force attack.

Type-II. The attacker can observe how a user taps or slides on the screen multiple

times, but he cannot figure out the exact rhythm the user chooses. The attacker can

at best obtain a general idea of the rhythm through observations. For example, he

may notice that the user taps eight times on the screen.

Type-III. The attacker knows the exact rhythm a user chooses and can also observe

how the user taps or slides on the screen. Under this model, the attacker can input

on the screen according to his own interpretation of the rhythm and his observations

of the user.

Type-IV. An attacker knows exactly how a user taps or slides on the screen and

the rhythm the user chooses. He, however, still needs to input the rhythm according

to his own perception.

2.7.2 Experimental Setup

We recruited 32 volunteers for the experiments aged 18 to 35. Most of them

are/were BS/MS students in Computer Science, Electrical Engineering, and Com-

28

puter Engineering. These volunteers were divided into two groups. The first group

consisted of 22 volunteers to emulate legitimate users, and the second comprised 10

volunteers to emulate various attackers.

Every user was asked to come up with one melody with at least six ex-notes s/he

can easily memorize and repeat. Also, every user was asked to input her/his rhythm

with one-finger tapping, multi-finger tapping, one-finger sliding, and multi-finger slid-

ing. Then every user practiced less than five minutes until s/he was confident to input

them. Finally, every user input her/his rhythm using each method for 25 to 45 times,

and we obtained 888 one-finger tapping samples, 870 multi-finger tapping samples,

894 single-finger sliding samples, and 873 multi-finger sliding samples. In reality, a

RhyAuth user only needs to tap or slide a few times during the enrollment phase, as

shown later. In addition, all the users were asked not to look at the screen to emulate

people with visual impairment.

We also conducted experiments to evaluate the resilience of RhyAuth to various

attacks. First, we video-recorded the input process of 14 users, and we also made the

sound tracks of their chosen rhythms. We divided the 10 attackers into two groups of

equal size. Each attacker in the first group randomly chose three users, watched their

one-finger-tapping videos, and mimicked them. Then s/he randomly chose another

three users, watched their multi-finger-tapping videos, and mimicked them. In total,

there were six videos for each attacker in the first group. Each attacker in the second

group did the similar experiments after watching one-finger and multi-finger sliding

videos only. In accordance with our attacker models, we simulated the following five

attack scenarios and collected 5× 6× 5× 2 = 300 attacker samples for each attack.

1. One-time observation. The attacker was shown the video once. Then the

attacker decided how to mimic the user, practiced, and input the rhythm five times.

29

2. Four-time observations. For each video he watched in Scenario 1, the attacker

watched it for three more times and made five more attempts.

3. Four-time observations and one-time listening. After watching the video for

four times, the attacker was allowed to listen to the sound track of the corresponding

rhythm. Then the attacker combined his observations of the video and his perception

of the rhythm together to make five more attempts.

4. Arbitrary observations and listenings. The attacker was allowed to watch

each video and listen to the corresponding sound track for arbitrary times. Again, he

could control how to watch the video and listen to the sound track. Finally, he made

five more attempts when he was ready.

5. Arbitrary observations and listenings as well as how the user inputs

her/his rhythm. The attacker could watch each video and listen to the corre-

sponding sound track for arbitrary time in his own way. Furthermore, we asked

each user to write down how s/he input her/his rhythm, including how many taps in

her/his rhythm and whether the time between two consecutive taps was short or long

for one-finger tapping, which fingers s/he used for each tap for multi-finger tapping,

how many sub-slides s/he drew and whether the time s/he used to draw each sub-slide

was short or long for one-finger sliding, and which fingers s/he used to slide for multi-

finger sliding. Finally, the attacker combined all these information and mimicked the

user for five more times.

Attacks 1 and 2 correspond to Type-II attackers, Attacks 3 and 4 correspond to

Type-III attackers, and Attack 5 corresponds to Type-IV attackers.

2.7.3 Performance Metrics

We use receiver operating characteristic (ROC) and Precision-Recall curves to

evaluate RhyAuth.

30

ROC Curve. A ROC curve is used to illustrate the performance of a binary clas-

sifier as its discrimination threshold changes. We can plot a ROC curve by plotting

true positive rate (TPR) with respect to false positive rate (FPR) at various threshold

settings. Denote the number of true positives, false positives, true negatives, and

false negatives by #TP,#FP,#TN, and #FN. Then TPR and FPR can be calculated as

TPR =
#TP

#TP + #FN
and FPR =

#FP

#FP + #TN
. (2.4)

Precision-Recall Curve. Precision represents the percentage of legitimate users

out of all admitted users and can be calculated as

Precision =
#TP

#TP + #FP
. (2.5)

Recall in authentication systems is the same as TPR, which measures the proportion

of legitimate users who are correctly identified as such.

Authentication Time. We also measure the time RhyAuth takes to determine

whether a user is legitimate or not, which should be as short as possible.

2.7.4 Experimental Results

Performance Without Attackers

This section demonstrates the performance of RhyAuth without attackers. Recall that

each user was required to input her/his rhythm by four methods. The evaluation for

each method was done as follows. For each user, we randomly chose ω samples from

all the legitimate users to form a training set of 22ω samples for classifier training.

The remaining samples were treated as the testing set. We did this evaluation 30

times for each user, and the results are the average results over the 30 times.

We first report the impact of the size of the training set on classification accuracy

which can further be divided into training accuracy and testing accuracy. Here we

31

3 4 5 6 7 8 90 . 9 8 0
0 . 9 8 5
0 . 9 9 0
0 . 9 9 5
1 . 0 0 0

Ac
cu

rac
y

S i z e o f t h e T r a i n i n g S e t

 T r a i n g a c c u r a c y (o n e - f i n g e r)
 T e s t i n g a c c u r a c y (o n e - f i n g e r)
 T r a i n g a c c u r a c y (m u l t i - f i n g e r)
 T e s t a c c u r a c y (m u l t i - f i n g e r)

(a) Finger tapping.

3 4 5 6 7 8 90 . 8 0
0 . 8 5
0 . 9 0
0 . 9 5
1 . 0 0

Ac
cu

rac
y

S i z e o f t h e T r a i n i n g S e t

 T r a i n g a c c u r a c y (o n e - f i n g e r)
 T e s t i n g a c c u r a c y (o n e - f i n g e r)
 T r a i n g a c c u r a c y (m u l t i - f i n g e r)
 T e s t a c c u r a c y (m u l t i - f i n g e r)

(b) Finger sliding.

Figure 2.4: Impact of the size of the training set.

define accuracy as the ratio of correctly classified users among all users in a dataset.

We changed the size of the training set by varying ω and showed the results in Fig. 2.4.

We can see that when ω varies from 3 to 9, the training and testing accuracy of four

input methods only vary slightly. A smaller ω means a legitimate user can input

her/his rhythm fewer times in the enrollment phase. When ω is larger than 5, the

training and testing accuracy of four input methods stay stable. Therefore, we chose

ω = 5 for the later evaluations.

Fig. 2.5 shows the authentication performance of one-finger and multi-finger tap-

ping, including the average results and the upper and lower bounds in the Precision-

Recall and ROC curves. The ROC curves of the two methods are close to the top-

left corner, which indicates that RhyAuth can achieve high TPR with low FPR. The

Precision-Recall curves are close to the top-right corner, meaning that our system

can achieve high Precision and high Recall at the same time.

Similarly, Fig. 2.6 illustrates the authentication performance of one-finger and

multi-finger sliding. We can see that the ROC curves are close to the top-left corner

and the Precision-Recall curves are close to the top-right corner, indicating that

RhyAuth performs well in distinguishing a legitimate user from others. In contrast

32

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 8 0
0 . 8 5
0 . 9 0
0 . 9 5
1 . 0 0

TP
R

F P R

 O n e - f i n g e r t a p p i n g
 M u l t i - f i n g e r t a p p i n g

(a) ROC curves.

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

Pre
cis

ion

R e c a l l

 O n e - f i n g e r t a p p i n g
 M u l t i - f i n g e r t a p p i n g

(b) Precision-Recall curves.

Figure 2.5: Authentication results with finger tapping.

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 8 0
0 . 8 5
0 . 9 0
0 . 9 5
1 . 0 0

TP
R

F P R

 O n e - f i n g e r s l i d i n g
 M u l t i - f i n g e r s l i d i n g

(a) ROC curves.

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

Pre
cis

ion

R e c a l l

 O n e - f i n g e r s l i d i n g
 M u l t i - f i n g e r s l i d i n g

(b) Precision-Recall curves.

Figure 2.6: Authentication results with finger sliding.

to finger tapping, finger sliding has slightly worse performance. The reason is that

tapping with a rhythm is more natural than sliding with a rhythm for most people.

As a result, tapping inputs are more consistent than sliding inputs, leading to fewer

classification errors and thus fewer false negatives.

Performance With Attackers

This section reports the resilience of RhyAuth to attacks. For each victim under

attacks, we first trained the classifier and obtained the SVM model of the victim.

33

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

TP
R

F P R

 N o a t t a c k s
 S c e n a r i o 1
 S c e n a r i o 2
 S c e n a r i o 3
 S c e n a r i o 4
 S c e n a r i o 5

(a) ROC curves.

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

Pre
cis

ion

R e c a l l

 N o a t t a c k s
 S c e n a r i o 1
 S c e n a r i o 2
 S c e n a r i o 3
 S c e n a r i o 4
 S c e n a r i o 5

(b) Precision-Recall curves.

Figure 2.7: Attack resilience with one-finger tapping.

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

TP
R

F P R

 N o a t t a c k s
 S c e n a r i o 1
 S c e n a r i o 2
 S c e n a r i o 3
 S c e n a r i o 4
 S c e n a r i o 5

(a) ROC curves.

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

Pre
cis

ion

R e c a l l

 N o a t t a c k s
 S c e n a r i o 1
 S c e n a r i o 2
 S c e n a r i o 3
 S c e n a r i o 4
 S c e n a r i o 5

(b) Precision-Recall curves.

Figure 2.8: Attack resilience with multi-finger tapping.

Then we added the samples of the attackers into the testing set and evaluated the

performance of RhyAuth.

Fig. 2.7 and Fig. 2.8 show the results for one-finger and multi-finger tapping, re-

spectively. We can see that both are highly resilient to the attacks. In addition,

their attack resilience both slightly decreases as the capability of the attackers in-

creases. Compared with one-finger tapping, multi-finger tapping is more resilient to

the attacks. The reason is that more features are extracted from multi-finger tapping

inputs.

34

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

TP
R

F P R

 N o a t t a c k s
 S c e n a r i o 1
 S c e n a r i o 2
 S c e n a r i o 3
 S c e n a r i o 4
 S c e n a r i o 5

(a) ROC curves.

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

Pre
cis

ion

R e c a l l

 N o a t t a c k s
 S c e n a r i o 1
 S c e n a r i o 2
 S c e n a r i o 3
 S c e n a r i o 4
 S c e n a r i o 5

(b) Precision-Recall curves.

Figure 2.9: Attack resilience with one-finger sliding.

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

TP
R

F P R

 N o a t t a c k s
 S c e n a r i o 1
 S c e n a r i o 2
 S c e n a r i o 3
 S c e n a r i o 4
 S c e n a r i o 5

(a) ROC curves.

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

Pre
cis

ion

R e c a l l

 N o a t t a c k s
 S c e n a r i o 1
 S c e n a r i o 2
 S c e n a r i o 3
 S c e n a r i o 4
 S c e n a r i o 5

(b) Precision-Recall curves.

Figure 2.10: Attack resilience with multi-finger sliding.

Fig. 2.9 and Fig. 2.10 show the results for one-finger sliding and multi-finger

sliding, respectively. As we can see, both methods are also highly secure against

the attacks, and their attacker resilience slightly decreases as well as the attacker

becomes more capable. In addition, multi-finger sliding is more secure than one-

finger sliding because more features are available in the former. Finally, finger sliding

is more resilient to finger tapping, which is simply due to more features available in

finger-sliding inputs.

35

Computation Time

We have also measured the computation time of RhyAuth. In particular, our mea-

surements show that the one-time enrollment time of one-finger tapping and sliding

are 14s and 200s, respectively, measured on a Dell desktop with 2.67 GHz CPU, 9 GB

RAM, and Windows 7 64-bit Professional. Since the enrollment phase of RhyAuth

takes relatively long time, we suggest that the classifier can be trained on a pow-

erful desktop computer and then downloaded to the mobile device. This strategy

has been advocated by many classifier-based mobile authentication schemes such as

[18]. In addition, the verification time of one-finger tapping and sliding are 3.8ms

and 500ms, respectively, measured on Google Nexus 7 tablet, which make them very

practical. Finally, the computation time of multi-finger taping/sliding is simply that

of one-finger taping/sliding multiplied by the number of fingers involved.

2.8 Conclusion

In this chapter, we presented the design and evaluation of RhyAuth, a novel

rhythm-based two-factor authentication scheme for multi-touch mobile devices. De-

tailed security analysis and user experiments confirmed that RhyAuth is highly secure

and usable for sighted and visually impaired people, thus has the great potential for

wide adoption.

36

Chapter 3

MOBILE APP FINGERPRINTING VIA POWER ANALYSIS

3.1 Overview

In this chapter, we present the design and evaluation of POWERFUL [69], a

novel and practical attack framework for mobile app fingerprinting on Android de-

vices through power profile analysis. POWERFUL is built upon the observation that

different apps use different components of a device (e.g., touchscreen, CPU, Wi-Fi,

and Bluetooth) and have different usage patterns, which result in distinguishable

power consumption profiles. POWERFUL exploits the inherent heterogeneity of app

power profiles for app characterization and usage inference. Since the power pro-

files on Android devices can be directly accessed without requiring user permission,

POWERFUL is very difficult to detect and thus poses a serious and realistic threat

against user privacy. Compared with existing traffic-based app fingerprinting tech-

niques, POWERFUL does not require the adversary to be in the vicinity of the victim

or compromise network service providers. Instead, it exploits the zero-permission An-

droid public resources to obtain the power profiles of a device for app fingerprinting.

Meanwhile, POWERFUL works well with apps generating little traffic.

Our main contributions are as follows.

• We propose POWERFUL, the first mobile app fingerprinting framework for

Android devices based on power analysis. Combining signal processing and

machine learning techniques, POWERFUL is able to identify the app being used

from a set of candidate apps with a high accuracy based on the corresponding

power profile. Since Android requires no user permission to access and collect

37

0 2 0 0 4 0 0 6 0 00
1
2
3
4
5

Po
we

r (W
)

T i m e (s e c o n d)

 B a n k o f A m e r i c a
 Y o u T u b e

(a) Bank of America and YouTube.

0 2 0 0 4 0 0 6 0 00
1
2
3
4
5

Po
we

r (W
)

T i m e (s e c o n d)

 N e t f l i x
 S k y p e

(b) Netflix and Skype.

0 2 0 0 4 0 0 6 0 00
1
2
3
4
5

Po
we

r (W
)

T i m e (s e c o n d)

 F a c e b o o k
 M e d s c a p e

(c) Facebook and Medscape.

Figure 3.1: Power profiles of several exemplary apps.

power profiles, POWERFUL poses a serious and realistic threat against user

privacy.

• We evaluate the efficacy of POWERFUL via extensive experiments on a set of

22 most popular and privacy-related apps in Google Play Store. Experiment

results show that POWERFUL can identify the app being used at any particular

time from a set of candidate apps with accuracy up to 92.9% and is resilient to

the change in various factors, such as locations (office, apartments, etc.), user

activities (static or walking), and user variation.

38

3.2 Related Work

This section briefs some work closely related to POWERFUL.

3.2.1 Sensitive Information Inference in Android

Inferring sensitive information on Android mobile devices has received much atten-

tion in recent years. Previous work [21, 22, 23, 24, 25, 70] has shown that user input on

the touchscreen, such as PIN, pattern password, user name, or even sentences, can be

inferred from various onboard sensors such as accelerometer, gyroscope, microphone,

or camera. In [26, 27], researchers show that accelerometer, microphone, camera,

and light sensor can be used to infer target user’s driving routes or locations. Some

of these attacks [27] require user permissions such as android.permission.CAMERA,

while our attack does not. Although access to sensors such as accelerometer does

not require user permissions, accessing such information can be easily detected by

analyzing API calls (e.g., SensorManager.getDefaultSensor(int)) using existing

app analysis tools like [71].

Inferring sensitive information from Android’s public resources has also been stud-

ied. In [28], Jana et al. show that the websites the user has visited and other finer-

grained browsing behavior can be inferred from the memory footprint of the web

browser. Zhang et al. show that keystroke events can be identified from the ESP

data in a multi-core system [29].

In [30], Zhou et al. demonstrate that user’s location, real identity, health condi-

tions, and driving route can be inferred from the network usage statistics of an app

and the status of public Android APIs. In addition, Chen et al. find that the UI

state of Android device can be inferred from the memory usage of an app [31].

39

Compared with the above work, we work on a new attack on user privacy and

make use of the power profile of Android devices, which is considered to be harmless.

3.2.2 App Fingerprinting

Our work is also related to the line of research in app fingerprinting, which aims

at identifying apps through traffic analysis. In [32], Stöber et al. show that a group of

apps can be identified as a whole by analyzing 3G/UMTS data traffic. In [33], Xu et

al. design a learning system to automatically fingerprint an app using the key-value

pairs in HTTP headers, while in [34], Miskovic et al. tackle a similar problem by

exploring the scarcity of key app-identification sources. In [35], Dai et al. show that

an app can be identified by analyzing different HTTP requests. In [36], Verde et al.

propose a user-fingerprinting framework using NetFlow records only, rather than the

entire traffic. Recently, Wang et al. show that the app being used can be inferred

by analyzing the overheard encrypted data using machine learning techniques [37].

Compared with this line of work, our attacker does not need to in the vicinity of the

adversary or compromise large network service providers. Also, our attack is valid

for apps generated very limited traffic.

3.2.3 Power Analysis

There has also been some effort [72, 73, 74, 75, 76] in power analysis on mobile

devices, which mainly focuses on understanding how power is consumed. In [72],

Zhang et al. propose to first generate power models for device components such as

CPU, LCD, and Wi-Fi and then use a function of these models to determine system-

level power consumption. Similar approach is also adopted in [73], either to estimate

the power consumption of an individual app or to fully understand the impact of

different operating systems and hardware models. In [74, 75], Pathak et al. propose

40

to use system call tracing rather than the power states of hardware components to

model power usage, which improves both accuracy and granularity. In [76], Brouwers

et al. present NEAT, a novel energy analysis toolkit for smartphones, which combines

both the accuracy of a customized power measurement board and detailed system

traces of hardware and software together.

In [77], Michalevsky et al. introduce a novel attack that reveals user locations via

power analysis of the user’s smartphone. Assuming that the distance between the

smartphone and the base station greatly impacts the total power consumption, they

are able to infer the user’s driving routes by applying machine learning techniques.

In contrast to the above work, we study a new attack using power analysis, which

poses a serious and realistic threat on user privacy.

3.3 Preliminaries

3.3.1 Background

In this section, we briefly introduce the background of Andriod’s public resources.

Android makes a subset of resources publicly accessible to all apps without requir-

ing them to explicitly obtain permissions, as sharing these resources is generally con-

sidered harmless and makes them convenient to access by all apps whenever needed.

The public directories in the Linux layer are an important category of the publicly

accessible resources, most of which reside in two virtual filesystems: the proc filesys-

tem (/proc) and the sys filesystem (/sys). In /proc, an app can access the resource

usage of a process such as its usage of memory, CPU, and network, while in /sys,

an app can find information about various kernel subsystems, hardware devices, and

associated device drivers, etc. We obtain the device’s voltage and current measure-

41

ments from the voltage_now and current_now files, respectively, both of which are

public resources residing under the /sys/class/power_supply/battery folder.

3.3.2 Feasibility Study

In this section, we show the feasibility of inferring app usage by analyzing their

power profiles. As mentioned in Section 3.1, POWERFUL explores the distinct char-

acteristics in the power profiles of different apps caused by the heterogeneity of their

resource usage and usage patterns.

Fig. 3.1a shows the power profiles of Bank of America (BoA) and YouTube apps.

We can see from Fig. 3.1a that the two apps have similar power fluctuations, but

YouTube has larger minimum and maximum powers than BoA. Therefore, minimum

and maximum powers can be used to distinguish the two apps. Similarly, Fig. 3.1b

shows that Netflix and Skype apps exhibit distinct characteristics of power profiles

in terms of minimum power, maximum power, and power fluctuations, making them

distinguishable by examining these features. Moreover, Facebook and Medscape apps

have the similar minimum power as shown in Fig. 3.1c, but Facebook tends to have

larger power fluctuations.

3.3.3 Adversary Model

We assume that the attacker runs a malicious app on the victim’s device. As

a standard assumption in Android security literature, it is backed up by the recent

report that one out of ten Android apps are affected with malware and viruses [78].

The attacker also needs to know the device model and OS of the victim’s device

because these two factors directly affect the power consumption of the device. Such

42

information can be obtained from the System and Build class 1 without requesting

any user permission.

The malicious app tries to be as stealthy as possible by running in the background

to escape visual detection. According to our experiments, our “malicious” app for this

research has a relatively stable power consumption of less than 20 mW, which has

negligible influence on the collected power profiles. The app collects the power profile

of the mobile device either periodically or following a predefined schedule. The app

also needs to send the collected data to the attacker in a stealthy manner, which

can be easily accomplished based on existing methods. For example, the malicious

app may be inserted into or collude with another app which is legitimately given the

INTERNET permission, and this approach is adopted by most existing work such as

[23, 22, 21]. Alternatively, the malicious app can smuggle out the data across the

Internet without requiring the user permission by using intent URI ACTION_VIEW to

open a browser and sneaking the data to the parameters of an HTTP GET from the

receiver side [79].

3.3.4 Targeted Sensitive Apps

Similar to [32, 36, 37, 31], we assume that the attacker is interested in fingerprint-

ing a small set of selected apps that are popular, highly sensitive, or contain significant

private user information. This is a common assumption as it is impractical for the

attacker to build a classifier for all the existing mobile apps due to the large quantity.

In addition, mobile apps are constantly evolving from time to time, and the cost to

build and maintain a comprehensive database would be prohibitive. Moreover, many

apps contain little private information about the user, which the attacker may lack

incentives to fingerprint.
1For example, System.getProperty(“os.version”) returns the OS version of the device.

43

Categories Apps

Communication Gmail (GM), Messenger (MSG), Skype (SKY)

Education TED (TED)

Entertainment Netflix (NF), YouTube (YT)

Finance Bank of America (BoA), Chase (CHA)

Games Candy Crush (CCS), Pokémon Go (PM)

Health & Fitness iTriage (iT), MedScape (MED), mySugr Diabetes Logbook (SDL)

Music & Audio Spotify (SP)

News & Magazines CNN (CNN)

Shopping Amazon (AM), eBay (eBay), Groupon (GR)

Social Facebook (FB), Twitter (TW), Tinder (TD)

Travel & Local Priceline (PL)

Table 3.1: Apps and their abbreviations.

Table 3.1 lists the 22 apps which we study and are selected based on the following

criteria.

1. A selected app is popular and has been downloaded for more than 500,000 times

in Google Play Store.

2. A selected app is usually closely related to user privacy in some way, or its usage

can be exploited by the attacker for more advanced attacks [31]. For example,

communication, finance, health/fitness, shopping, and social apps can directly

reveal important private information about the user, such as her/his accounts,

health conditions, and online history, while location-based apps like Pokémon

Go and Priceline can disclose user location traces.

3. The selected apps cover as diverse categories as possible in Google Play Store.

44

3.4 Design of POWERFUL

In this section, we detail the design of POWERFUL.

3.4.1 Overview

As shown in Fig. 3.2, POWERFUL consists of the following five steps.

1. Power profile collection. In this step, we implement an Android app to collect

the instantaneous current and voltage measurements of a Google Nexus 7 tablet

when the user is using a target app. According to our experiments, our data

collection app has a relatively stable power consumption of less than 20 mW

and therefore has little influence on the collected power profiles.

2. Data processing. In this step, we process the collected power profiles by compen-

sating the difference of power consumption due to different brightness levels and

then extracting the minimums and maximums of the power profile to facilitate

subsequent feature extraction.

3. Feature extraction. In this step, we extract a feature vector comprising features

in both time and frequency domains.

4. Classifier training. In this step, we first obtain the power profiles of the targeted

sensitive apps in Table 3.1 and use lightweight machine learning algorithms to

train classifiers for subsequent testing.

5. App inference. In this step, given an instance of the power profile of the user’s

device, we use the trained classifiers to determine the app(s) being used.

45

D
ata P

ro
ce

ssin
g

Time domain
Average
Percentile
etc.

Freq. domain
RMS
Centroid
etc.

Classifier Training

App Inference

O
u

tp
u

t

Profile Collection Feature Selection

Figure 3.2: Flow chart of POWERFUL.

3.4.2 Power Profile Collection

On the victim side, the malicious app collects instantaneous current and voltage

measurements of the device by reading /sys/class/power_supply/battery/current_now

and /sys/class/power_supply/battery/voltage_now, respectively, either period-

ically or following a predefined schedule. In our experiments, we set the sampling

frequency to 2 Hz to strike a good balance between profile accuracy and the amount

of data that need be stealthily transmitted to the attacker through the Internet. After

collecting voltage and current measurements for a sufficiently long period, the app con-

structs the power profile that comprises a sequence of instantaneous power measure-

ments computed as the products of the corresponding current and voltage measure-

ments. The app also obtains the current brightness level of the device in the public sys-

tem setting android.provider.Settings.System.SCREEN_BRIGHTNESS, which re-

quires no user permission to access. The app finally sends the power profile and

the brightness level of the victim’s device to the attacker.

The attacker also builds a power profile for each target app. In particular, the

attacker employs multiple users to use every target app on a device with the same

46

model and OS and builds a power profile for each target app for subsequent classifier

training and app inference.

3.4.3 Data Processing

In this step, we process the raw power profiles to facilitate subsequent feature

extraction. Without loss of generality, we consider a power profile P = (p1, . . . , pn),

where pi is the ith power measurement for all i ∈ [1, n] and n is the total number of

power measurements.

We first apply a sliding window of length W and offset factor r on P to generate

a sequence of power profile samples S1, . . . , Sk of equal length, where

Si = (p(i−1)rW+1, . . . , p(i−1)rW+W),

for all i = 1, . . . , k, and k = bn−W
rW
c. In our system, we empirically set r to 0.1 and

choose W such that rW ∈ Z.

For each sample Si, we proceed with the following two steps: power adjustment

and min-max search.

Power adjustment

In this step, we compensate the difference in power consumption caused by different

brightness levels. Such adjustment is necessary because the touchscreen is a ma-

jor energy-consuming component in modern mobile devices, and different brightness

levels result in different power consumption rates of the touchscreen and therefore

different power profiles for the same device.

Power adjustment requires a power model to characterize the relationship between

touchscreen power consumption and brightness level. While several models have been

proposed in the literature [72, 74], they are either device-specific due to the technology

47

0 1 5 0 3 0 0 4 5 0 6 0 00
1
2
3
4
5

Po
we

r (W
)

T i m e (s e c o n d)

 L 0 L 1 L 2 L 3
 L 4 L 5 L 6 L 7
 L 8 L 9 L 1 0

(a) Original power profiles.

0 1 5 0 3 0 0 4 5 0 6 0 00
1
2
3
4
5

Po
we

r (W
)

T i m e (s e c o n d)

 L 0 L 1 L 2 L 3
 L 4 L 5 L 6 L 7
 L 8 L 9 L 1 0

(b) Our linear power model.

0 2 4 6 8 1 0
1 . 2

1 . 6

2 . 0

2 . 4

Po

we
r (W

)

B r i g h t n e s s L e v e l

 M e a s u r e m e n t s
 F i t t i n g

(c) Our linear power model

Figure 3.3: Power adjustment for different touchscreen brightness levels.

and hardware difference or require user permission to acquire the status of different

components. In our system, we adopt a simple linear relationship between the power

consumption and the brightness level built from fitting empirical data.

Specifically, we collect the power measurements at different brightness levels using

a modified version of our app. No third-party app is installed on the device to

minimize potential impact on accuracy. The app automatically sets the brightness

coefficient from 0 to 1 with an interval of 0.1 (corresponding to level 0 to level 10) and

records the voltage and current measurements at a frequency of 2 Hz for 10 minutes

before changing to the next brightness level. Fig. 3.3a shows the power measurements

at different brightness levels. We can see that the curves exhibit multiple peaks while

48

they are expected to be generally stable. We conjecture that the peaks are most

likely due to pre-installed system apps (e.g., Google Play services) running in the

background and thus should be excluded during parameter fitting. Our measurement

results are similar to those collected using the tools in [72].

We remove these peaks in two steps. First, we calculate the cumulative distribu-

tion function (CDF) of the power measurements. Second, we remove the measure-

ments above a certain percentile of the CDF, where we empirically choose 80% as the

threshold. We plot the power measurements after removing the peaks in Fig. 3.3b,

where we can see that the resulting power profiles are generally stable.

We then calculate the average of the (approximate) 10-minute measurements as

the device’s power consumption rate at the corresponding brightness level. Given a set

of brightness levels and corresponding power consumption rates, we further calculate

the slope s and intercept b of the linear model through least-squares fitting. We plot

the measurements and the fitted model in Fig. 3.3c and show the fitted parameters

in Table 3.2.

We finally adjust the power measurements using the power model obtained above.

Specifically, given the device’s current brightness level L, we calculate the power con-

sumption rate difference between level L and level 0 as sL, where s is the slope of the

linear power model. Then for every power profile sample Si = (p(i−1)rW+1, . . . , p((i−1)r+1)W),

we compute a new sample S ′i = (p′(i−1)rW+1, . . . , p
′
((i−1)r+1)W), where p′j = pj − sL for

all j = (i− 1)rW + 1, . . . , (i− 1)rW +W .

Parameter Value Standard Error

Intercept, b 1.10 0.057

Slope, s 0.132 9.65× 10−3

Table 3.2: Fitted parameters of our linear power model.

49

0 2 0 4 0 6 0 8 0 1 0 01

2

3

4

5

Po
we

r (W
)

T i m e (s e c o n d)

 O r i g i n a l
 F i l t e r e d

(a) Effect of SMA filtering.

0 2 0 4 0 6 0 8 0 1 0 01

2

3

4

5

Po
we

r (W
)

T i m e (s e c o n d)

 F i l t e r e d
 M a x i m u m s
 M i n i m u m s

(b) Local maximums and minimums

found by our approach.

0 2 0 4 0 6 0 8 0 1 0 01

2

3

4

5

Po

we
r (W

)

T i m e (s e c o n d)

 M a x i m u m s
 M i n i m u m s

(c) “Skeleton” composed of local

maximums and minimums.

Figure 3.4: Illustration of min-max search.

Power adjustment for different touchscreen brightness levels.

Min-max search

Next, we extract the “skeleton” of each power profile sample by finding the local

minimums and maximums of its power measurements.

Without loss of generality, we consider a power profile sample S ′ = (p′1, . . . , p
′
W)

and use the example in Fig. 3.4 to illustrate how local minimums and maximums

are determined. First, we apply a five-point simple moving average (SMA) filter to

50

smooth the power profile sample to reduce the impact of small fluctuations. Fig. 3.4a

shows the original and filtered power traces in our example. Denote the power trace

after filtering by p̃1, . . . , p̃W . Then for each p̃j, j = 1, . . . ,W , we select p̃j as a local

minimum (maximum) if the following two conditions are satisfied.

• Condition 1: Its value is no larger (smaller) its two neighboring values, i.e.,

p̃j ≤ p̃j−1 and p̃j ≤ p̃j+1 (p̃j ≥ p̃j−1 and p̃j ≥ p̃j+1).

• Condition 2: Its value is at least δt smaller (larger) than the previous closest

local maximum (minimum).

Here δt is an important parameter that need be chosen carefully. On the one hand,

if δt is too small, too many minimums or maximums will be selected due to small

fluctuations in the power profile caused by spontaneous noise, which do not contribute

to the characterization of the app. On the other hand, an overly large δt makes

the second condition difficult to satisfy, resulting in some meaningful minimums or

maximums being omitted and thus poor characterization of the app. Moreover, since

different apps exhibit distinct characteristics, the choice of δt should not be universal

but app-specific. We observe that a proper δt should be positively correlated with

the standard deviation σ of the power measurements for a given app. Therefore, we

choose δt = cσ and empirically set c = 1 in this work. Fig. 3.4b and 3.4c show the

labeled local minimums and maximums of the given power trace in Fig. 3.4a. The

figures shows that they capture the overall shape of the power trace, indicating the

capability of extracting the “skeleton”.

After finding all the local minimums and maximums from the power profile sample,

we generate a vector of pair V =
(
(m1, t1), . . . , (me, te)

)
, where mj and tj are the jth

local maximum or minimum and the corresponding time stamp, respectively, and e is

the total number of local maximums and minimums. Moreover, we generate a label

51

vector L = (l1, . . . , le), where lj = −1 if mj is a local minimum and 1 otherwise.

It follows that ljlj+1 = −1 if mj and mj+1 are a pair of adjacent minimum and

maximum.

We further compute a power difference vector ∆V , a time difference vector ∆T ,

and a slope vector R from V and L using Algorithm 1, which capture the power and

time differences of pairs of adjacent minimum and maximum and the sharpness of

the corresponding rising or falling slopes, respectively.

Algorithm 1 Computing ∆V,∆T , and R
Input: V, L, e

Output: ∆V,∆T,R

1: Initialization: ∆V ← ∅,∆T ← ∅, R← ∅, j ← 1

2: for i = 1, . . . , e− 1 do

3: if lili+1 = −1 then

4: ∆V [j]← |mi+1 −mi|;

5: ∆T [j]← ti+1 − ti;

6: R[j]← ∆V (i)
∆T (i)

;

7: j ← j + 1;

8: end if

9: end for

10: return ∆V,∆T,R

3.4.4 Feature Extraction

In this step, we extract features from both time and frequency domains to rep-

resent a given power profile sample. For each power profile sample, the extracted

features form a vector, which is referred to as an instance hereafter.

52

Features in time domain

For a given power profile sample S ′ = (p′1, . . . , p
′
W), we extract the following statistic

measures as the features in time domain.

• The average, the 20th, 50th, and 80th percentile, the standard deviation (SD),

the maximum, and the minimum of (p′1, . . . , p
′
W), denoted by pavg, p20pctl, p50pctl,

p80pctl, pSD, pmax, and pmin, respectively.

• The average, the 20th, 50th, and 80th percentile, SD of ∆V,∆T , and R, respec-

tively. We denote them as ∆Vavg,∆V20pctl,∆V50pctl,∆V80pctl,∆VSD,∆Tavg,∆T20pctl,

∆T50pctl,∆T80pctl,∆TSD, Ravg, R20pctl, R50pctl, R80pctl, and RSD, respectively.

Features in frequency domain

Given a power profile sample S ′ = (p′1, . . . , p
′
W), we first calculate its Fourier Trans-

form as Q = (q1, . . . , qW) using Fast Fourier Transform (FFT). We then extract the

following features from Q.

• Root-mean-square (RMS) energy. The RMS energy is an approximation of the

average signal strength and calculated as the square root of the arithmetic mean

of the squares of Q.

RMS =

√√√√ 1

W

W∑
k=1

q2
k.

• Spectral centroid. The spectral centroid represents the “center” of Q and is the

weighted mean of the frequencies of Q with qk as the weights.

µ =

∑W
k=1 qkfk∑W
k=1 qk

,

where fk = kfs
2
, and fs is the sampling frequency.

53

• Spectral entropy. The spectral entropy captures the locations of the peaks of Q

and is computed as

H =
W∑
k=1

ωk log2 ωk,

where ωk = qk∑W
k=1 qk

is the normalized frequency.

• Spectral irregularity. The spectral irregularity captures the jitter or noise in Q

and is given by

irregularity =

∑np

l=1(φ(x)− φ(x+ 1))2∑np

x=1 φ(x)2
,

where φ(x), x = 1, 2, . . . , np are the peaks in Q and φ(np + 1) = 0.

• Spectral spread. The spectral spread is to capture the dispersion of Q with

respect to its centroid and calculated as the standard deviation of the spectral

distribution.

ρ =

√√√√ W∑
k=1

[ωk(fk − µ)2].

• Spectral skewness. The spectral skewness captures the symmetry of Q and is

computed as

skewness =

∑W
k=1 ωk(fk − µ)3

ρ3
.

• Spectral kurtosis. The spectral kurtosis captures the flatness of Q compared

with Gaussian distribution and is given by

kurtosis =

∑W
k=1 ωk(fk − µ)4

ρ4
.

• Spectral flatness. The spectral flatness captures how energy is spread across Q

and is given by

flatness =
(
∏W

k=1 qk)
1
W

1
W

∑W
k=1 qk

.

54

3.4.5 Classifier Training

In this step, we train a classifier from a training set with known labels. POWER-

FUL can work with many existing machine learning techniques. In our system, we

consider three lightweight supervised machine learning techniques, i.e., C4.5, random

forest (RF), and support vector machine (SVM) for classifier training and testing.

In particular, C4.5 generates a decision tree according to C4.5 algorithm and uses

the decision tree to map an instance to a finite set of values, which are the class

labels [80]. RF builds a forest of uncorrelated decision tress for classification [81].

The unique feature of RF is that it keeps selecting a random subset of features to

control the variance of classification result during the process of generating the forest.

SVM maps the instances of different classes in space such that they are divided by

a clear gap which is as wide as possible [82, 66]. In Weka [83], the corresponding

implementations of the three techniques are J48 , RandomForest, and LibSVM class,

respectively.

3.4.6 App Inference

In this step, we infer the app being used from the given power profile. Specifically,

the power profile first goes through Data Processing and Feature Extraction steps

and becomes a series of instances. Then given a specific instance, we use the classifier

trained in Section 3.4.5 to calculate the class label. The app corresponding to the

output class label is considered as the app being used at the particular time.

3.5 Performance Evaluation

In this section, we first describe the experimental setup, then introduce the per-

formance metric adopted, and finally report the evaluation results in details.

55

3 0 6 0 9 0 1 2 0 1 5 0 1 8 00
2 0
4 0
6 0
8 0

1 0 0

Av
g.

Ide
nti

fica
tio

n A
ccu

rac
y

W

 C 4 . 5
 R F
 S V M

(a) Impact of W .

0 . 1 2 5 0 . 5 20
2 0
4 0
6 0
8 0

1 0 0

Av
g.

Ide
nti

fica
tio

n A
ccu

rac
y

f s (H z)

 C 4 . 5
 R F
 S V M

(b) Impact of fs.

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 00
2 0
4 0
6 0
8 0

1 0 0
Av

g.
Ide

nti
fica

tio
n A

ccu
rac

y

N 0

 C 4 . 5
 R F
 S V M

(c) Impact of N0.

Figure 3.5: Impact of different factors on POWERFUL.

3.5.1 Experiment Setup

Data collection

We used a Google Nexus 7 tablet with Android 4.4.4 and a Google Nexus 6 smart-

phone with Android 5.1.1 with our app installed to collect power profiles. We recruited

24 users to participant in the experiments, including two females and twenty-two

males. Each participant was assigned ten apps and then delivered the following in-

structions. First, each participant adjusted the screen brightness level according to

her/his need, connected the device to a reliable Wi-Fi AP, and turned off the Blue-

tooth connection. Then, s/he activated the data collection app and started to use one

56

of the assigned apps. Each participant was required to stay where s/he was, such as

in the office or at her/his apartment, when s/he was using an app. Each participant

was also asked to use only one assigned app at any given time. For each assigned

app, the participant was asked to use it for at least half an hour. To complete the

data collection of one assigned app, the participant was allowed to use it either con-

tinuously or from time to time, as long as the total usage time of each assigned app

exceeded half an hour. We also required the participant not to change the brightness

setting during the experiments.

Evaluation protocol

Our main dataset, denoted by S, consists of the instances of all 22 sensitive mobile

apps. In total, 24 participants are involved in the experiments, who are graduate

students in Arizona State University and age between 20 and 35. Each participant

was assigned ten apps to use. Considering the total number of participants in the

experiments, only two apps (BoA and CHA) are used by ten participants while all

the other apps are each used by eleven participants.

For each run of evaluation, we randomly divided S into one training set Strain and

one testing set Stest. Based on our adversary model, Strain is built by the attacker

while Stest is obtained from the malicious app on the victim’s device. For each app

we studied, we randomly selected one participant as the victim and allocated her/his

instances to Stest while allocating the remaining instances of the same app to Strain.

By doing so, we ensured that the instances of Strain were from the attacker and those

of Stest were from the victim. Finally, we ran the evaluation for 40 times and reported

the average results.

57

3.5.2 Performance Metric

We use identification rate as the performance metric to evaluate the attack capa-

bility of POWERFUL. In specific, for each app we study, we define the identification

rate as the ratio between the number of correctly-classified instances and that of all

instances of the app in a testing set. A higher identification rate means that given a

power profile, the attacker (POWERFUL) is able to identify the corresponding app

used by the victim more accurately, thus posing a more serious threat on user privacy.

3.5.3 Experimental Results

Impact of window length

Fig. 3.5a shows the average identification rate of all the apps when window length W

increases from 15 to 180. As we can see, the average identification rate increases asW

increases for all three machine learning techniques. This is expected because a larger

W means that the power profile with more measurements is used for identification,

and it is thus more likely to extract app-specific features to increase the identification

rate. On the other hand, a smaller W means that the attacker only needs to collect

a power profile for a shorter period, making the attack more practical. We set W to

120 for the rest of our experiments, corresponding to a duration of 60 seconds.

Impact of sampling frequency

Fig. 3.5b shows the average identification rate across all the 22 apps with sampling

frequency fs varying from 0.00625 Hz to 5 Hz. We can see that the average identi-

fication rate increases as fs increases for all three machine learning techniques. The

reason is that the higher fs, the finer-grained characteristics of the collected power

profiles. We can also observe that the identification rate tends to be stable when fs is

58

p m a x p m i n
p 2 0 p

c t l
p 5 0 p

c t l p a v g R M
S

p 8 0 p
c t l

∆V 8 0 p
c t l

R 2 0 p
c t l p s d

∆T 2 0 p
c t l

∆V a v g
∆V 2 0 p

c t l H R a v g
∆T 5 0 p

c t l
∆T 8 0 p

c t l
∆V s d
∆T s d µ

∆V 5 0 p
c t l

k u r
t o s

i s
∆T a v g

s k e
w n

e s s ρ
R 8 0 c

t l R s d
R 5 0 p

c t l
f l a t

n e s
s

i r r e
g u l

a r i t
y0

1
2
3
4

Inf
orm

ati
on

 G
ain

F e a t u r e

Figure 3.6: Importance of features.

higher than 2 Hz. This is mainly because that the extracted features do not change

much when further increasing fs. Since a higher fs leads to more power profiles that

need be stealthily transmitted over the Internet, making our attack easier to detect,

fs is set as 2 Hz in our experiments to strike a balance.

Impact of number of training instances

Fig. 3.5c shows the average identification rate across all the 22 apps with the number

of training instances N0 varying from 15 to 135. We can see that the average identi-

fication rate increases as N0 increases for all three machine learning techniques. This

is expected because the classifiers get better trained with more training instances and

consequently achieve higher identification rate. As a result, the attacker always uses

all the available training instances in practice.

Feature importance

We have also studied the importance of different features used in POWERFUL, char-

acterized by information gain [84, 85]. Specifically, information gain measures the

amount of information about class prediction, given that the only information avail-

able is the presence of a feature and the corresponding class distribution. The higher

59

A M B o
A

C C
S

C H
A

C N
N

e B
a y F B M S
G G M G R i T

M E
D

S D
L N F P M P L S P S K
Y

T E
D T D T W Y T A v g
.

0
2 0
4 0
6 0
8 0

1 0 0

Av
g.

Ide
nti

fica
tio

n A
ccu

rac
y

A p p

 C 4 . 5 R F S V M

Figure 3.7: Identification accuracy of POWERFUL on Nexus 7.

A M B o
A

C C
S

C H
A

C N
N

e B
a y F B M S
G G M G R i T

M E
D

S D
L N F P M P L S P S K
Y

T E
D T D T W Y T A v g
.

0
2 0
4 0
6 0
8 0

1 0 0

Av
g.

Ide
nti

fica
tio

n A
ccu

rac
y

A p p

 C 4 . 5 R F S V M

Figure 3.8: Identification accuracy of POWERFUL on Nexus 6.

information gain, the more important a feature is, and vice versa. In Weka, we ob-

tain the information gain of different features using its InfoGainAttributeEval class.

Fig. 3.6 shows the information gain of all the features of POWERFUL in descending

order. We can see that two most important features are pmax and pmin while the least

important is irregularity.

The less important features (i.e., with small information gain) still affect the

overall classification results. For example, if we remove the features with information

gain less than one, the average identification rate decreases from 92.9% to 86.1%. We

therefore use all the extracted features for classifier training and testing to achieve

higher identification rate.

60

Attack on Nexus 7

Fig. 3.7 shows the identification rate of POWERFUL on a Google Nexus 7 with

Android 4.4.4. As we can see, POWERFUL can correctly identify the 22 apps with

high probabilities, and the identification rates using RF and SVM are similar and

higher than that of using C4.5. In addition, the identification rates of most apps are

higher than 80% for RF and SVM. The average identification rates of all the apps

using C4.5, RF, and SVM are 83.7%, 92.9%, and 91.3%, respectively. In [37], the

authors reported an overall inference accuracy of 93.96% on a smaller set of 13 apps.

We believe that the performance of POWERFUL is similar to that of state-of-the-art

solution.

Attack on Nexus 6

Fig. 3.8 shows the identification rate of POWERFUL on a Google Nexus 6 with

Android 5.1.1. We can see that the results are similar to those on a Google Nexus 7

with Android 4.4.4. The average identification rates of all the apps using C4.5, RF,

and SVM are 84.45%, 91.3%, and 91.23%, respectively. These results confirm that

POWERFUL can work with devices of different models.

Robustness

We also conducted a separate set of experiments to evaluate the robustness of POW-

ERFUL to locations, user activities, and user variation.

Location. To evaluate the impact of locations, we let two participants to use the

apps in Table 3.1 in four different locations, including our office, their apartments

(APTs), the university library (LIB), and a Starbucks (SBUX) store, where Wi-Fi

access is available. Each participant used each targeted app for five minutes in the

same location with a Google Nexus 7. We then applied the trained classifiers to the

61

O f f i c e A P T L I B S B U X0
2 0
4 0
6 0
8 0

1 0 0

Av
g.

Ide
nti

fica
tio

n A
ccu

rac
y

L o c a t i o n

 C 4 . 5 R F S V M

(a) Impact of location.

S t a t i c W a l k i n g0
2 0
4 0
6 0
8 0

1 0 0

Av
g.

Ide
nti

fica
tio

n A
ccu

rac
y

U s e r A c t i v i t y

 C 4 . 5 R F S V M

(b) Impact of user activity.

U 1 U 2 U 3 U 4
0

2 0
4 0
6 0
8 0

1 0 0
Av

g.
Ide

nti
fica

tio
n A

ccu
rac

y

U s e r V a r i a t i o n

 C 4 . 5 R F S V M

(c) Impact of user variation.

Figure 3.9: Performance of POWERFUL under different scenarios.

collected power profiles and obtained the average identification rate. Fig. 4.13 shows

the average identification rate of POWERFUL with different locations. As we can

see, the average identification rate is relatively stable across different locations. These

results indicate that POWERFUL is robust to the change in location and thus can

effectively fingerprint sensitive mobile apps even if the victim is at different locations.

The main reason is that location has very limited impact on the power profiles and

thus little impact on the classification results.

User Activity. We tested the performance of POWERFUL when users are con-

ducting different activities. Specifically , we let two participants to use the apps in

Table 3.1 while they were sitting statically in our office and walking slowly along the

62

corridor in our office building. Under each scenario, a participant used each targeted

app for five minutes with a Google Nexus 7. We then applied the trained classifiers

to the collected power profiles and obtained the average identification rate. Fig. 3.9b

shows the average identification rate of POWERFUL under the two user activities.

As expected, we can see that the average identification rates in the two scenarios are

similar to each other. The reason is that slow user movement does not cause much

change in the power profiles and thus has little impact on the classification results.

Therefore, POWERFUL is robust to slow user movement.

User Variation. We let four participants each to use each app in Table 3.1 for five

minutes in our office with a Google Nexus 7 and applied the trained classifiers to the

collected dataset to obtain the average identification rate. Fig. 3.9c shows the average

identification rate of POWERFUL on four users. As shown in the figure, the average

identification rate of U2 is lower than those of the other three users regardless of

which machine learning algorithm is used. We conjecture that the variation is caused

by different users having different usage patterns for the same app. For example,

some users use Skype mostly for voice call and instant messaging while other users

use it mostly for video call. In practice, the attacker can alleviate the impact of

user variation by collecting more diverse dataset for classifier training. Nevertheless,

POWERFUL can still achieve an average identification rate of 85% on U2 using RF.

3.6 Conclusion

In this chapter, we presented the design and evaluation of POWERFUL, a novel

attack framework on Android mobile device which combines power analysis and ma-

chine learning for mobile app usage inference. POWERFUL exploits the app-specific

characteristics of the power profiles without requiring user permission. Our extensive

experiments demonstrated that POWERFUL is able to infer the app being used at

63

a specific time with high accuracy, thus posing a realistic and serious threat to user

privacy.

64

Chapter 4

SECURE MOBILE FACE AUTHENTICATION WITH RHYAUTH IS HIGHLY

SECURE AGAINST VARIOUS ATTACKS

4.1 Overview

In this chapter, we propose FaceHeart [86], a novel and practical liveness detec-

tion scheme for securing face authentication on mobile devices. FaceHeart targets

mobile devices with both front and rear cameras that are available on most recently

shipped mobile devices. The key idea of FaceHeart is to check the consistency of two

concurrent and independently extracted photoplethysmograms of the user as the live

indicator. For this purpose, FaceHeart records a video of the user’s face by the front

camera and a video of the user’s fingertip by the rear camera at the same time. Then

FaceHeart applies photoplethysmography (PPG) to extract two underlying photo-

plethysmograms from the face and fingertip videos. If the two photoplethysmograms

are from the same live person and measured at the same time, they must be highly

consistent and vice versa. As photoplethysmograms are closely tied to human cardiac

activity and almost impossible for the adversary to forge or control, the consistency

level of two extracted photoplethysmograms can well indicate the confidence level in

the liveness of a face authentication request.

We design a complete set of tools to check the consistency of two photoplethys-

mograms for liveness detection. Specifically, given the face or fingertip video, the

corresponding photoplethysmogram is extracted as a time series according to the

principle of PPG. As a result, two time series can be obtained by using similar com-

puter vision tools. After that, a set of features such as estimated heart rates and cross

65

correlation of the two photoplethysmograms can be calculated by combining the two

time series. Finally, lightweight machine learning algorithms are used for classifier

training and subsequent testing. In our system, we adopt and compare three ma-

chine learning algorithms, i.e., Bayesian network (BN), logistic regression (LR), and

multilayer perceptron (MLP), to demonstrate the feasibility of FaceHeart.

We also conduct extensive experiments to evaluate FaceHeart. 18 users from di-

verse background are involved in our experiments. In typical settings, FaceHeart

achieves a true positive rate (TPR) as high as 97.5%, a false negative rate (FNR)

as low as 5.2%, and an equal error rate (EER) as low as 5.98%. Furthermore, we

study the impact of various factors on FaceHeart, such as the head pose, background

illumination, and location. Overall, the experimental results confirm that FaceHeart

can effectively and reliably defend against PFA and VFA and thus secure face au-

thentication on mobile devices.

4.2 Background of Camera-Based PPG

In PPG, a photoplethysmogram is an optically obtained plethysmogram, which is a

volumetric measurement of cardiovascular shock and sedation [87]. With each cardiac

cycle, the heart pumps blood to the periphery, which generates pressure pulse that

distends arteries and arterioles in the subcutaneous tissue. The corresponding volume

change generated by the pressure pulse can be detected by measuring the amount of

light either transmitted through or reflected from the skin. The evolvement of such

volume changes across time carries exactly the user’s heart beat signal.

We adopt the model in [88] for camera-based PPG-based heart rate measurements.

When the incident light arrives at the user’s skin, a major part gets reflected back

by the skin surface and does not interact with the tissue underneath the skin. The

remaining (minor) part of the incident light first penetrates underneath the skin

66

surface, then is absorbed by the tissue and the chromophores in blood inside arteries

and capillaries, and finally gets reflected back to the camera. These two parts are

usually referred to as surface reflectance and subsurface reflectance, respectively. The

former dominates the overall light received by the camera but does not carry any

information of human cardiac activity, while the latter is much smaller but bears the

heart beat signal.

Given a skin region-of-interest (ROI) R in the video, the average pixel value at

time t can be modeled as

y(t) = I(αp(t) + b) + n(t), (4.1)

in which y(t) is the average pixel value, I is the incident light intensity in R, α is

the strength of blood perfusion, p(t) is the blood volume change pulse, b is surface

reflectance from the skin in R, and n(t) is the quantization noise of the camera.

αp(t) denotes subsurface reflectance and is much smaller compared to b (i.e., αp(t)�

b). Normally, I can vary across R and may change significantly across time if the

illumination source or the environment change across time. In our system, we assume

I to be constant as the duration of the entire authentication process is usually less

than five seconds and can be considered very short. Meanwhile, the user is asked to

keep as still as possible, and we try to keep the environment, such as the illumination,

as stable as possible. α and b are also assumed to be constants for the same ROI

and the same user. On the contrary, n(t) is a random variable, and a large variance

of n(t) may mask the small heart beat signal exhibited in p(t). Equivalently, if noise

is not considered, y(t) can be viewed as the combination of a large DC part and a

small AC part. The latter carries the information of human cardiac activity and can

be extracted through a set of signal processing tools.

67

ROI
Selection

PPG
Extraction

Filtering
Feature

Extraction
Classifier
Training

Pass/
Fail

Face

Fingertip

Face Detection
and Tracking

Liveness
Detection

Figure 4.1: A system overview of FaceHeart.

4.3 FaceHeart

FaceHeart can be used as a standalone mobile authentication module in the mobile

OS or integrated in any app desiring face authentication. In this section, we give an

overview of FaceHeart and then detail its design.

4.3.1 Overview

FaceHeart works as follows. First, the user uses his/her fingertip to cover the

rear camera and also flashlight without applying any pressure. Then FaceHeart uses

the front and rear cameras simultaneously to record the face and fingertip videos,

respectively. The user needs to stay as still as possible while the recording is ongoing.

Next, FaceHeart extracts two photoplethysmograms from the two videos and com-

pares them for liveness detection. In the meantime, one frame of the face video (for

instance, any frame after the first second of recording) is sent to the conventional face

authentication module to decide whether the person in the frame is the legitimate

68

(a) Detected face

and “good features”

(b)R1, forehead [89] (c) R2, lower face

[90]

(d) R3, central face

[91]

Figure 4.2: Camera-based PPG.

user. Only when liveness detection and conventional face authentication both succeed

is the user considered authentic.

Fig. 4.1 depicts the flow chart of FaceHeart. Given a pair of face and fingertip

videos, FaceHeart uses the following modules to accomplish liveness detection. The

Signal Processing module is first invoked to obtain two photoplethysmograms inde-

pendently from the two videos. Then the output is fed into the Feature Extraction

module to generate a feature vector which characterizes the consistency level of the

two photoplethysmograms. In the next Classifier Training module, machine learning

algorithms are used to train a classifier based on a library of feature vectors. Finally,

the classifier is used in the Liveness Detection module to determine whether a new

pair of face and fingertip videos can pass liveness detection.

4.3.2 Signal Processing

As shown in Fig. 4.1, the Signal Processing module comprises four submodules:

face detection and tracking, ROI (region-of-interest) selection, photoplethysmogram

extraction, and filtering. The face video requires all four submodules, while the

fingertip video just needs the last three.

69

Face detection and tracking

In this step, we first detect the user’s face in the first frame of the face video using

the classical Viola-Jones detection algorithm [92]. This algorithm can work in real

time and is highly accurate.

Next, instead of applying relatively costly face detection to every frame, we use

the Kanade-Lucas-Tomasi (KLT) feature tracker to track the identified features from

frame to frame [93, 94]. More specifically, the KLT feature tracker identifies multiple

local feature points, commonly known as “good features to track” [95]. Then it tries

to search as many as possible of the identified feature points in the previous frame.

Given two sets of features points in the current and previous frame, the KLT feature

tracker can estimate the translation, rotation, and scale between the two consecutive

frames and then compute an affine function for face tracking. Since the duration of

the face video is short, the established feature tracker is still valid for the last frame.

Finally, we can obtain the coordinates of the user’s face in each frame. As depicted

in Fig. 4.2a, we obtain four coordinates forming a rectangular box in each frame,

which approximates the whole face region. The green cross markers depict the “good

features to track” of the shown frame.

ROI selection

Different types of ROIs have been used in the literature. Fig. 4.2b, Fig. 4.2c, and

Fig. 4.2d illustrate three most frequently used ROIs, denoted by R1 [89], R2 [90], and

R3 [91], respectively. Some schemes use random selection while some others assign

weights to every segmented unit of the face. Intuitively, the amount of photoplethys-

mogram information extracted from a specific ROI is closely related to where the ROI

is. The reason is that the extracted photoplethysmogram is proportional to p(t) in

70

Eq. (4.1), i.e., the amount of blood volume change underneath the ROI. Meanwhile,

the distribution of blood carrying capillaries differs from region to region, further

resulting in different amount of extractable photoplethysmogram information. The

size of the selected ROI may also have influence on the extracted photoplethysmo-

gram. On the one hand, a smaller size requires a highly accurate face tracker to avoid

too much noise in the extracted photoplethysmogram. On the other hand, a larger

size averages the contribution across the entire region and therefore may shrink the

strength of the photoplethysmogram.

In our system, we choose R3 as the ROI for extracting photoplethysmogram, which

is the central part of the whole face and encompasses 60% of the width and the full

height of the detected face region. In contrast to R1 and R2 that require a resource-

demanding feature detector [96], R3 only requires the basic computationally efficient

Viola-Jones detector. In addition, our experimental evaluations in Section 4.4.4 show

that R1 and R2 do not show much performance improvement over R3 mainly because

the required face tracker has limited accuracy in constrained mobile environments.

It is possible to have a weighted combination of multiple ROIs as in [88], which

nevertheless requires multiple iterations and thus incurs larger computation overhead.

How to use multiple ROIs more efficiently in FaceHeart is part of our future work.

Photoplethysmogram extraction

We extract the photoplethysmogram from an ROI by averaging all pixel values

therein. A recorded video has three channels: red, green, and blue. In the litera-

ture [97, 91, 90, 98, 88], it is widely accepted that the three channels carry different

amount of photoplethysmogram information. The green channel carries the strongest

photoplethysmogram, as the green light is easier to absorb by hemoglobin in the blood

and thus penetrates deeper into the skin [88]. It is tempting to use all three channels

71

to enhance the SNR of the extracted photoplethysmogram, but the recent studies

[97, 90, 88] show that this approach is not necessarily beneficial because the three

channels do not yield statistically mutually independent information. So we follow

the suggestion in [97, 90, 88] to obtain the photoplethysmogram only from the green

channel.

Filtering

This step applies two filters to the extracted photoplethysmogram. First, we use a

Normalized Least Mean Square (NLMS) adaptive filter to alleviate the illumination

interference [99]. The motivation is that small environment changes—such as a person

passing by or small camera movements—may induce overall illumination shifting in

the video. This undesirable effect can be mitigated by estimating the amount of

interference and then subtracting it from the overall measurement. In Section 4.2,

we use y(t) to denote the photoplethysmogram of a selective ROI R. Given the

illumination interference, y(t) can be divided into two parts:

y(t) = yc(t) + ni(t), (4.2)

where yc(t) is due to human cardiac activity, and ni(t) is due to illumination inter-

ference. ni(t) can be assumed to be proportional to the average pixel value of the

background regions other than the face region. We thus have

ni(t) = hybg(t), (4.3)

where ybg(t) is the average pixel value of a selective background region, and h is a

linear coefficient. In our implementation, we simply select a pixel block of 20× 20 in

the top-right corner in each frame as the background region. h can be estimated by

the NLMS adaptive filter as

h(j + 1) = h(j) + µ
yc(j)

ybg(j)
, j = 0, 1, 2, . . . , N − 1. (4.4)

72

0 1 2 3 4 5 6 7- 4
- 2
0
2
4

Am
pti

tud
e

T i m e (s e c o n d)

(a) Time domain, face.

0 1 2 3 4 5
0 . 0

0 . 2

0 . 4

Am
plit

ud
e

F r e q u e n c y (H z)

1 . 0 7 4 H z

(b) Frequency domain, face.

0 1 2 3 4 5 6 7- 1 . 5
- 1 . 0
- 0 . 5
0 . 0
0 . 5
1 . 0

Am
pti

tud
e

T i m e (s e c o n d)

(c) Time domain, fingertip.

0 1 2 3 4 5
0 . 0 0

0 . 0 5

0 . 1 0

0 . 1 5

Am
plit

ud
e

F r e q u e n c y (H z)

1 . 0 7 4 H z

(d) Frequency domain, fingertip.

Figure 4.3: Illustration of extracted photoplethysmograms.

Here µ is the step size equal to 1, and N is the length of y(t) (or yc(t), equivalently).

We also set h(0) = 0 in the implementation. After the final h = h(N) is obtained,

ni(t) can be subtracted from y(t) according to Eq. (4.2) to finally reveal yc(t).

Next, we use a bandpass FIR filter (second-order Butterworth filter) with a pass-

band of [0.7, 4] Hz to reduce the interference of out-of-band noise. The signal after

filtering is the final photoplethysmogram for liveness detection.

Processing fingertip video

Extracting the photoplethysmogram from a fingertip video is much easier. Specifi-

cally, no face detection or tracking is needed, and the entire frame is used as the ROI.

73

Meanwhile, since the rear camera is fully covered by the user’s fingertip, there is no

illumination interference so that the NLMS adaptive filter is not needed.

4.3.3 Feature Extraction

In this module, we use the two extracted photoplethysmograms to calculate a

feature vector for classifier training and liveness detection. Denote the photoplethys-

mograms from the face and fingertip videos by Pface and Pftip, respectively. Pface and

Pftip are two time series of the same length N , from which the following features are

calculated.

• Heart rate difference. The heart rate difference is the absolute difference

between the heart rates from the face and the fingertip. We denote them by

hface and hftip, respectively. To obtain hface, we first multiply Pface with an N -

point Hanning window such that the two endpoints of Pface can meet rather than

having a sharp transition between them. Then we apply fast fourier transform

(FFT) on windowed Pface, select the highest peak within [0.7, 4] Hz, multiply it

by 60, and obtain hface. We can also obtain hftip in the same way. Then heart

rate difference is calculated as

∆h = |hface − hftip| (4.5)

• Maximum cross correlation. We obtain the maximum cross correlation be-

tween Pface and Pftip by searching the optimal alignment between them. Specif-

ically, we first obtain the optimal alignment k̂ by the following equation.

k̂ = arg min
N−k+1∑
i=1

Pface(i)Pftip

N − k
,

subject to 0 ≤ k < Nftip.

(4.6)

74

Here Nftip is the approximate length of a period of Pftip and equals d60Fs

hftip
e,

where Fs is the frame rate of the fingertip video (and equivalently that of the

face video). After k̂ is found, we truncate Pface and Pftip into two shorter vectors

of the same length as

P̃face = Pface(1 : N − k̂), P̃ftip = Pftip(k̂ + 1 : N). (4.7)

Then the maximum ratio is calculated as

ρmax =
Ñ∑
i=1

P̃face(i)P̃ftip(i)

Ñ
, (4.8)

where Ñ = N − k̂.

• Mean, min, max, and standard deviation of amplitude ratio. Given the

aligned P̃face and P̃ftip, we first calculate amplitude ratio as R(i) = P̃face(i)

P̃ftip(i)
, i =

1, 2, . . . , Ñ . Then we further calculate the mean, min, max, and standard devi-

ation of R as features, denoted by Rmean, Rmin, Rmax, and RSD, respectively.

4.3.4 Classifier Training

Our training set contains two classes of instances. Each instance consists of a fea-

ture vector in the form of v = [∆h, ρmax, Rmean, Rmin, Rmax, RSD]. The feature vectors

of the instances in Class I (labelled as l = 1) are computed from a pair of simulta-

neously recorded face and fingertip videos. On the contrary, those of the instances

in Class II (labelled as l = 0) are computed from a pair of face and fingertip videos

recorded separately. Ideally, the classifier should be able to label the instances in

both classes as accurately as possible. As in [49], we use and compare three super-

vised machine learning techniques in the Weka toolkit [83] for classifier training and

testing: Bayesian network (BN), logistic regression (LR), and multilayer perceptron

75

(MLP). In particular, BN is based on constructing a probabilistic graphic model rep-

resenting a set of random variables and their conditional dependencies via a directly

acyclic graph [100]. The constructed probabilistic model is used to infer the label of

unlabeled instances. LR uses the sigmoid function as the hypothesis to estimate the

relationship between the features and corresponding labels [101]. MLP is a feedfor-

ward artifical neural network model that maps the sets of input data onto a set of

appropriate output [102]. One important advantage of MLP is that it can be used to

distinguish data that are not linearly separable.

The classifier training is neither user-specific nor device-specific. It is exclusively

done by the FaceHeart developer who can easily maintain and update a large number

of instances for Classes I and II. The trained classifier is preloaded into the mobile

device when FaceHeart is installed.

4.3.5 Liveness Detection

Given a new pair of face and fingertip videos for authentication, FaceHeart com-

putes the corresponding feature vector and then inputs into the classifier. If the

output label is 1, the new pair passes liveness detection and fails otherwise. In the

former case, if the face image additionally passes conventional face authentication,

the user is deemed legitimate.

4.4 Performance Evaluation

This section evaluates the performance of FaceHeart.

4.4.1 Adversary Model

We consider a typical adversary model. The adversary possesses the victim’s

mobile device and seeks to pass the face authentication employed by the device it-

76

self or some sensitive apps. Since VFA can be considered an advanced version of

PFA, we focus on evaluating the resilience of FaceHeart to VFA. The adversary can

surreptitiously obtain the videos containing the legitimate user’s frontal face, e.g., by

online searches or realtime capturing through a high-definition camcorder from a long

distance. In contrast, fingertip videos are very rare online or almost impossible to

capture in real time, so the adversary can only use the fingertip video of himself or

a random user. In addition, the adversary is fully aware of FaceHeart. We consider

two types of VFA as follows.

Type-I VFA. This attack does not involve any realtime video recording and serves

as a “stress test” for FaceHeart. In particular the adversary directly feeds his fingertip

video and the victim’s face video into FaceHeart. Each participant in our experiments

is assumed as the adversary once, in which case the other participants are used as

the victims.

Type-II VFA. This attack resembles the practical attack scenario. The adversary

first replays the victim’s face video on the screen of his/her own device such as an iPad.

The distance between the victim device and the adversary’s device screen is properly

adjusted such that the victim device’s front camera can well capture the victim’s face

in the replayed video. While the face video is replayed and recorded, the adversary

let the victim device’s rear camera take his/her fingertip video simultaneously. Two

random participants are chosen as the adversary for the Type-II VFA. When either

is chosen, each other participant serves as a victim.

4.4.2 Experiment Setup

We used a Samsung Galaxy S5 in the experiments. In particular, we utilized

the dual-camera mode of the Camera app on Galaxy S5, which can record a video

with both the front and rear cameras simultaneously. The frame size of the recorded

77

video is 720 × 1280, which can be equally divided into the upper and lower parts,

corresponding to the face and fingertip videos, respectively. After the useless black

region on left and right sides is removed, the frame size of both face and fingertip

videos becomes 480×640. Since almost all recently shipped mobile devices have both

front and rear cameras, it is rather straightforward to obtain the simultaneously-

recorded face and fingertip videos on other device models.

We recruited 18 participants in the experiments, including two females and 16

males. The participants are graduate students in Arizona State University, whose ages

range between 20 and 35. All the participants were given the following instructions.

First, each participant tries to sit as still as possible. The distance between the user

and the front camera varies between 30 to 45 cm, which has been proved to be a

convenient distance for the users and that the captured user face is reliably detected.

Then s/he activates the dual-camera mode of the Camera app on Galaxy S5 and

ensures that the front camera properly captures her/his frontal face. Subsequently,

s/he rests any of her/his fingertip on the rear camera without applying any pressure.

Finally, s/he proceeds to record a video of approximately ten seconds by tapping the

video recorder icon.

As cardiac activity highly depends on current user conditions, the videos were

recorded when the participant was under different conditions to fully evaluate the

performance of FaceHeart. In particular, we investigated three user conditions. Under

the rest condition, each participant was asked to sit quietly without her/his legs

crossed for five minutes. After that, s/he recorded videos for 15 times. Under the

reading condition, each participant was asked to read recent news on a smartphone

for five minutes. After that, s/he recorded videos for 15 times. Under the gaming

condition, each participant was asked to play the video game “No Limits” or “Strikers

1945-3” on a smartphone for five minutes. After that, s/he recorded videos for 15

78

times. For the same participant, cardiac activities are expected to be different under

these three conditions [103]. Particularly, the heart rate of the same user in the

gaming condition is usually higher than those in the rest and reading conditions,

which was also confirmed in the experiments.

The following default settings were used unless stated otherwise. Participants

were asked to maintain the front head pose during video recording. Videos were

recorded under normal illumination in a typical research lab (e.g., 500 lux). During

the recording process, other persons may leave/enter the lab.

Our main dataset, denoted by S, consists of Sp for positive (Class I) instances

and Sn for negative (Class II) instances. The instances in Sp come from legitimate

users, while those in Sn are from Type-I adversary. Given 18 participants with each

recording 15 videos under each of the three user conditions, there are 18×3×15 = 810

instances in Sp. To generate Sn, we first randomly selected two pairs of face and

fingertip videos for each participant. Each participant acted as the adversary once, in

which case each other participant acted as the victim. So Sn contains 2×2×17 = 68

instances per participant and 68 × 18 = 1224 instances in total. For the following

evaluations, we repeated the generation process of Sn for 40 times and obtained the

average results.

4.4.3 Performance Metrics

We use the following performance metrics.

Receiver operating characteristic (ROC) curve. An ROC curve can be used to

illustrate the performance of a binary classifier as its discrimination threshold changes.

According to the definition in [104], we can obtain an ROC curve by plotting TPR

(true-positive rate) with respect to FPR (false-positive rate) in various threshold

settings.

79

2 3 4 5 6 70
5

1 0
1 5
2 0

∆h
 (b

pm
)

V i d e o L e n g t h (s e c o n d)

 M e a n S D

(a) On difference between hface and

hftip

2 3 4 5 6 70
1 0
2 0
3 0
4 0

EE
R (

%)

V i d e o L e n g t h (s e c o n d)

 B N
 L R
 M L P

(b) On EER

Figure 4.4: Impact of video length on ∆h and EER.

Acceptance rate. We define the acceptance rate as the ratio between the number

of correctly-classified positive (legitimate) instances and that of all positive instances

in a testing dataset. A higher acceptance rate means that the system is more likely

to admit legitimate users.

Detection rate. We define the detection rate as the ratio between the number of

correctly-classified negative (adversarial) instances and that of all negative instances

in a testing dataset. A higher detection rate means that the system can more effec-

tively detect VFA.

Computation time. We define the computation time as the time FaceHeart takes to

determine whether a given pair of face and fingertip videos can pass liveness detection.

Intuitively, the computation time should be as short as possible.

4.4.4 Experimental results

Video length

Here we show the impact of video length on FaceHeart.

80

Fig. 4.4a shows the mean and standard deviation (SD) of ∆h in Sp, which is the

absolute difference between hface and hftip in the same authentication session. Since

the SNR of the photoplethysmogram from the fingertip video is usually high, hftip

can be treated as the reference heart rate. As we can see, the mean and SD of ∆h

decrease from around 12 and 17 bpm to around 5 and 7 bpm when the video length

increases from two to four seconds. This means that the accuracy of hface increases

along with the video length. When the video length is larger than four seconds, the

mean and SD of ∆h do not change much.

Fig. 4.4b shows the EER (equal error rate) of FaceHeart under the Type-I attack

using S. We can see that FaceHeart exhibits similar EER performance with BN, LR,

and MLP. Therefore, we believe that FaceHeart works well along with mainstream

machine learning algorithms. Meanwhile, the EER decreases quickly when the video

length increases from two to four seconds and then stays relatively the same as the

video length further increases. Such results are consistent with those in Fig. 4.4a

because a smaller ∆h indicates that the two corresponding photoplethysmograms in

the same authentication session are more consistent. Consequently, this makes it

easier for the classifier to distinguish between positive and negative instances, leading

to a lower EER.

As a shorter video length means that the legitimate user can record a shorter video

for authentication, the required minimum video length of FaceHeart is preferably as

short as possible. Based on the above results, the default video length is set to four

seconds hereafter unless specified otherwise.

ROI

Now we demonstrate the impact of ROI on FaceHeart using S.

81

R 1 R 2 R 3
0

5

1 0

∆h
 (b

pm
)

R O I

 M e a n S D

(a) On difference between hface and

hftip

R 1 R 2 R 3
0
2
4
6
8

1 0

EE
R (

%)

R O I

 B N L R M L P

(b) On EER

Figure 4.5: Impact of ROI on ∆h and EER.

Fig. 4.2b, Fig. 4.2c, and Fig. 4.2d illustrate the three ROIs to study. Fig. 4.5a

shows the mean and SD of ∆h in Sp. As we can see, the means of ∆h using R1, R2,

and R3 are 4.84, 4.56, and 5.32 bpm, respectively, and the SDs are 10.55, 6.73, and

7.19 bpm, respectively. Fig. 4.5b shows the corresponding EERs when R1, R2, and

R3 are used as the selected ROI, respectively. The EERs with R1 using BN, LR,

and MLP are 8.2%, 5.9%, and 6.3%, respectively, those with R2 are 7.9%, 6.2%, and

6.1%, respectively, and those with R3 are 6.0%, 6.0%, and 6.2%, respectively.

The results above show that the three ROIs lead to similar EER performance while

the EERs with R3 are slightly better than those with R1 or R2. More importantly,

the computation time of FaceHeart using R3 as the selected ROI is much shorter than

that using R1 or R2, as shown soon in Section 4.4.4. Therefore, we select R3 as the

ROI for photoplethysmogram extraction by default.

Type-I attack

Here we show the resilience of FaceHeart to the Type-I attack.

82

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

TP
R

F P R

 B N
 L R
 M L P

(a) ROC curve

B N L R M L P0
2
4
6
8

 A l g o r i t h m

EE
R (

%)

(b) EER

Figure 4.6: ROC and EER performance of FaceHeart under Type-I attacks.

Fig. 4.6a and Fig. 4.6b show the ROC curve and EER of FaceHeart, respectively.

The TPRs using BN, LR, and MLP are 90.2%, 97.5%, and 94.6%, respectively, the

FPRs are 3.8%, 5.2%, and 4.6%, respectively, and the EERs are 6.03%, 5.98%, and

6.21%, respectively. The results show that the performance of FaceHeart is similar to

those of the state-of-the-art systems, such as FaceLive in [49]. To sum up, FaceHeart

can achieve very high TPR and very low FPR at the same time, meaning that it can

correctly distinguish between legitimate requests and VPAs with high probability.

Fig. 4.6b shows the EERs of FaceHeart in different user conditions. The EERs

using BN, LR, and MLP under the rest condition are 7.70%, 5.57%, and 5.40%, re-

spectively, those under the reading condition are 8.77%, 5.53%, 5.73%, respectively,

and those under the gaming condition are 8.27%, 8.54%, and 5.65%, respectively.

Overall, the EERs in the three user conditions are low, so FaceHeart can be used

even when the user’s cardiac activity changes. In addition, the EERs in the gaming

condition are slightly higher than those under the other conditions. This is antici-

pated because the heart rate in the gaming condition is usually higher than others

so that the SNR of the extracted photoplethysmogram usually decreases due to the

increased noise level in the higher frequency range. Therefore, the consistency be-

83

R e s t R e a d i n g G a m i n g0
2
4
6
8

1 0

U s e r C o n d i t i o n

EE
R (

%)

 B N L R M L P

Figure 4.7: EER performance of FaceHeart under Type-I attacks in different user

conditions.

tween the two photoplethysmograms from a pair of face and fingertip videos in the

same authentication session drops, leading to a higher EER. Based on S, we obtain

the corresponding classifiers with BN, LR, and MLP, respectively, by using 10-fold

cross validation for training. Then we use the trained classifier models for testing in

the following.

Type-II attack

Now we show the detection rate of FaceHeart under the Type-II attack. We first

obtained the negative (adversarial) instances for the Type-II attack as follows. Two

of the 18 participants acted as the adversaries. For each adversary, the other 17

participants were regarded as her/his victims. For each victim, we randomly selected

10 face videos from her/his recordings. Then the two adversaries launched the Type-

II attack, resulting in 2 × 10 × 17 = 340 negative instances. After that, we applied

the trained classifiers in Section 4.4.4 to the collected negative instances and obtained

the detection rate. As shown in Fig. 4.8, the detection rates using BN, LR, and MLP

are 94.71%, 97.94%, and 98.24%, respectively, indicating that FaceHeart can detect

VFA with overwhelming probability.

84

B N L R M L P0
2 0
4 0
6 0
8 0

1 0 0

 A l g o r i t h m

De
tec

tio
n R

ate
 (%

)
Figure 4.8: EER performance of FaceHeart under Type-II attacks.

Robustness of FaceHeart

In the following, we study the robustness of FaceHeart against different factors in-

cluding head pose, illumination, and location.

Head pose. We first study the impact of head pose on the acceptance rate of

FaceHeart. As illustrated in Fig. 4.9 [105], the relative rotation of a user’s head to

the front head pose can be described by rotation angles in three independent axes,

which are yaw, pitch, and roll, respectively. Hereafter we also refer to the rotation

angles in yaw, pitch, and roll axes as yaw, pitch, and roll, respectively. For the front

head pose, yaw, pitch, and roll are equal to zero. Roll is easier to adjust by the user,

and a zero roll also benefits face detection. So participants were asked to adjust their

head poses such that the rolls are as near to zero as possible. As a result, we only

focus on the other two types of head rotation angles, i.e., yaw and pitch.

Data collection worked as follows. First, we asked two participants to record videos

for authentication with different yaws or pitches. Specifically, they recorded videos

when the yaws changed and the pitches remained near to zero and continued when

the pitches changed and the yaws remained near to zero. After that, we applied the

trained classifiers in Section 4.4.4 to the collected dataset and obtained the acceptance

85

Figure 4.9: Illustration of head pose in yaw, pitch, and roll axes.

rate. Each participant recorded 50 videos for the same yaw or pitch, resulting in 1,000

videos in total.

Fig. 4.10a and Fig. 4.10b show the acceptance rates of FaceHeart with different

yaws and pitches, respectively. The acceptance rate is almost always higher than

90% and changes only slightly when the yaw of user head pose changes from zero to

20 degrees, or the pitch changes from -20 to 20 degrees. The results are as expected

because FaceHeart is based on comparing two photoplethysmograms extracted from a

pair of face and fingertip videos, and a small yaw or pitch (less than ±20 degrees) does

not affect photoplethysmogram extraction much. Assuming that users tend to record

videos with small yaws or pitches (less than ±10 degrees) in practice, we believe that

FaceHeart is robust to head pose changes.

Illumination. Here we study the impact of illumination on the acceptance rate

of FaceHeart. For this experiment, we asked two participants to record videos for

authentication under two different illuminations, i.e., normal (in the range of hundreds

lux) and low illuminations (less than 20 lux). Fig. 4.11 illustrates the clear influence

of normal and low illuminations on video recording. The illumination was adjusted

by turning off part of the lights in our office. After that, we applied the trained

86

0 5 1 0 1 5 2 00
2 0
4 0
6 0
8 0

1 0 0

Ac
ce

pta
nc

e R
ate

 (%
)

Y a w (d e g r e e)

 B N L R M L P

(a) Rotate in yaw axis

- 2 0 - 1 0 0 1 0 2 00
2 0
4 0
6 0
8 0

1 0 0

Ac
ce

pta
nc

e R
ate

 (%
)

P i t c h (d e g r e e)

 B N L R M L P

(b) Rotate in pitch axis

Figure 4.10: Impact of head pose on acceptance rate.

classifiers in Section 4.4.4 to the collected dataset and obtained the acceptance rate.

Each participant recorded 50 videos for the same illumination, resulting in 200 videos

in total for this experiment.

Fig. 4.12a and Fig. 4.12b show the mean and SD of ∆h and acceptance rate of

FaceHeart, respectively. The mean and SD of ∆h increase from 4.88 and 6.14 bpm to

9.07 and 14.34 bpm, respectively, when the illumination switches from normal to low.

Correspondingly, the acceptance rates using BN, LR, and MLP drop from 90%, 92%,

and 98% to 70%, 79%, and 85%, respectively. The results indicate that FaceHeart

is greatly affected by illumination in the environment, which can be explained as

follows. FaceHeart relies on comparing the photoplethysmograms extracted from

a pair of face and fingertip videos, and low illumination leads to a low SNR of the

extracted photoplethysmogram. Hence, the consistency between the face and fingertip

photoplethysmograms reduces (partially illustrated by the increased ∆h), leading to

the decreased acceptance rate.

Location. We also study the impact of locations on the acceptance rate of Face-

Heart. First, we asked two participants to record videos for authentication in four

different locations, i.e., our office, the apartments (APTs) of the participants, the

87

(a) Normal illumination (b) Low illumination

Figure 4.11: Captured images under different illuminations.

N o r m a l L o w0
4
8

1 2
1 6

∆h
 (b

pm
)

I l l u m i n a t i o n

 M e a n S D

(a) On difference between hface and

hftip

N o r m a l L o w0
2 0
4 0
6 0
8 0

1 0 0

I l l u m i n a t i o n

Ac
ce

pta
nc

e R
ate

 (%
) B N L R M L P

(b) On acceptance rate

Figure 4.12: Impact of illumination on ∆h and acceptance rate.

university library (LIB), and an outdoor bench on our campus. After that, we ap-

plied the trained classifiers in Section 4.4.4 to the collected dataset and obtained the

acceptance rate. Each participant recorded 50 videos for the same location, resulting

in a dataset of 400 videos in total.

Fig. 4.13 shows the acceptance rate of FaceHeart with different locations. The ac-

ceptance rates are always higher than 90% and do not change much when the location

changes. The results indicate that FaceHeart is robust to location changes and thus

88

O f f i c e A P T L I B S B U X0
2 0
4 0
6 0
8 0

1 0 0

Av
g.

Ide
nti

fica
tio

n A
ccu

rac
y

L o c a t i o n

 C 4 . 5 R F S V M

Figure 4.13: Impact of location on acceptance rate.

can be used in different locations. The reason is that locations have little impact on

photoplethysmogram extraction and consequently little impact on the classification

results.

Computation time

Here we study the computation time of FaceHeart for different ROIs. For this exper-

iment, we randomly select 100 pairs of face and fingertip videos from our collected

data. Each pair of videos were both chopped to a length of four seconds. Then we

run FaceHeart with the given video pairs and obtained the average computation time.

To use R1 or R2, we first used the face tracker in [96] to track the facial landmarks

in each frame and then calculated the coordinates of R1 or R2. Fig. 4.14a depicts the

tracked 49 landmarks on the user face which are used for the calculation of R1 and

R2.

Fig. 4.14b shows the computation time using R1 or R2 or R3 as the selected

ROI. The average computation time using R1, R2, and R3 are 18.05, 18.19, and 0.96

seconds, respectively. Therefore, selecting R3 as the ROI for photoplethysmogram

extraction is much faster than selecting R1 or R2. Such results are as expected

89

(a) Heart rate difference.

R 1 R 2 R 3
0
4
8

1 2
1 6

Co
mp

. T
im

e (
se

co
nd

)

R O I

(b) Acceptance rate.

Figure 4.14: Impact of ROI on computation time.

because R1 and R2 require much more computationally-expensive face trackers than

that used by R3.

The computation time of FaceHeart is comparable to the state of art. In particu-

lar, Li et al. reported an average time of 3.3 seconds for device movement (equivalent

to the video length in FaceHeart) in [49] and did not explicitly evaluate the compu-

tation time for liveness detection. In [48], the authors mentioned that the average

authentication time for video recording and also liveness detection is 2.8 seconds when

successful and failed authentications are combined and 4.9 seconds when only suc-

cessful authentications are considered. Given the video length of four seconds used

in our evaluations, we believe that the computation time of FaceHeart is similar to

the state-of-the-art, but FaceHeart is more secure and user-friendly.

4.5 Discussion

As the first system exploring photoplethysmogram for secure face authentication

on mobile devices, FaceHeart certainly has limitations. In this section, we outline the

possible ways to further improve FaceHeart.

90

4.5.1 Camera-based PPG

As the camera-based PPG method in [91] is adopted to extract photoplethysmo-

grams, FaceHeart naturally inherits its limitations related to user movement and the

environment illumination. More specifically, the user is required to keep her/his head

as still as possible in order to extract more accurate photoplethysmograms. Mean-

while, as shown in Section 4.4.4, the performance of FaceHeart depends greatly on

the illumination in the environment. Hence, there should be sufficient and stable

illumination in the environment to guarantee the high performance of FaceHeart.

Advanced schemes have been explored to alleviate the requirements on user move-

ment and the environment illumination. For example, researchers have proposed

schemes to improve the estimation accuracy of the heart rate under adverse situa-

tions, such as when the user spontaneously moves his head a little bit [88] or the

illumination in the environment is below normal [106]. Although such schemes are

not directly applicable to FaceHeart, they indicate a promising direction worth ex-

ploring. Other minor issues inherited from camera-based PPG methods include the

impact of facial occlusion, facial expression, and user skin tone, which we plan to fully

investigate in our future work.

4.5.2 Authentication time

In FaceHeart, the authentication time for liveness detection can be broken into

two parts, i.e., video length and computation time. Given the video length of four

seconds and the computation time of 0.96 seconds with R3 as the ROI, the total

authentication time of FaceHeart is around 4.96 seconds. In [48], the authors reported

that the authentication time of their liveness detection scheme is around 4.9 seconds,

which is comparable to 4.3 seconds of credential-based authentication schemes. In

91

this regard, the authentication time of FaceHeart is acceptable and also comparable

to the state-of-the-art.

Similar to [48, 49], the authentication time of FaceHeart is dominated by the re-

quired video length, which is four seconds in our system. A shorter video length may

be adopted, however, at the cost of higher EERs. One possible way to shorten the

required video length is to extract new features from extracted photoplethysmograms.

For example, heart rate variability and the absolute delay between the two photo-

plethysmograms from face and fingertip videos are very promising candidates. These

two features can be useful only when the SNRs of the two photoplethysmograms are

sufficiently high, which we plan to explore in the future.

4.6 Conclusion

In this chapter, we presented the design and evaluation of FaceHeart, a novel

and practical scheme for liveness detection to secure face authentication on COTS

mobile devices. FaceHeart relies on the non-forgeability of the photoplethysmograms

extracted from two videos simultaneously taken through the front and rear cameras on

a mobile device. Extensive user experiments confirmed that FaceHeart can effectively

thwart photo-based and video-based forgery attacks on mobile face authentication

systems.

92

Chapter 5

EYETELL: VIDEO-ASSISTED TOUCHSCREEN KEYSTROKE INFERENCE

FROM EYE MOVEMENTS

5.1 Overview

In this chapter, we report the design and evaluation of EyeTell [107], a novel

video-assisted keystroke inference attack that can infer a victim’s keystrokes on his

touchscreen device from a video capturing his eye movements. EyeTell is inspired

by the observation that human eyes naturally focus on and follow the keys they

type such that a typing sequence on a soft keyboard results in a unique gaze trace

of continuous eye movements. Under EyeTell, the attacker records a video of the

victim’s eye movements during his typing process and then extracts a gaze trace. By

analyzing the gaze trace, the attacker can infer the victim’s input with high accuracy.

Although conceptually intuitive, EyeTell faces three main design challenges. First,

it needs to extract a gaze trace from the recorded video without any prior information

about the victim (e.g., what his eyes look like). Second, the gaze trace is usually very

noisy, making it very difficult to recover the correct typing sequence. Third, the gaze

trace does not tell the exact number of keystrokes on the soft keyboard. To tackle

the first challenge, we explore a user-independent model-based gaze tracking method

[108]. To deal with noisy gaze traces and accommodate unknown keystroke counts, we

develop a novel decoding algorithm to rank all possible typing sequences and finally

output the ones with high rank.

Our contributions are summarized as follows.

93

• We propose EyeTell, a novel video-based attack that can infer a victim’s keystrokes

on a touchscreen device from a video capturing his eye movements. In compar-

ison with prior work [50, 51, 52, 53, 54, 55, 56, 57, 58], EyeTell requires neither

the attacker to visually observe the victim’s typing process nor the victim device

to be placed on a static holder. Therefore, EyeTell is more practical, sneaky,

and launchable from a large distance, thus posing a more serious threat to user

privacy.

• We prototype and evaluate EyeTell through experiments on both iOS and An-

droid devices, which involve the PIN, pattern-lock, and alphabetical soft key-

boards. We show that EyeTell can identify the top-5, top-10, and top-50 likely

PINs that must contain a target 4-digit PIN with probabilities up to 65%, 74%,

and 90%, respectively. Similarly, EyeTell can output the top-5, top-10, and

top-50 possible lock patterns that must include a target Android lock pattern

with probabilities up to 70.3%, 75.3%, and 85.1%, respectively. In addition,

EyeTell can identify the top-5, top-10, top-25, and top-50 likely words that

must include a target word with probabilities up to 38.43%, 63.19%, 71.3%,

and 72.45%, respectively.

• We point out future directions to improve EyeTell and also possible countermea-

sures. Although currently EyeTell works only under a short recording distance

and a small recording angle, we believe that the adoption of better optics and

eye tracking techniques can readily relieve such limitations.

5.2 Background on Video-Based Gaze Tracking

EyeTell is based on the intuition that a victim’s gaze trace can reveal his typing

sequence on a soft keyboard. Fig. 5.1 depicts the anterior segment of a human eye.

94

Figure 5.1: Anterior segment of a human eye [2].

According to the definition in [109], the gaze actually refers to the gaze direction. We

now briefly introduce the background of video-based gaze tracking, which is used in

EyeTell to extract gaze traces.

Gaze tracking refers to the techniques that determine the gaze direction of the

eyes. Gaze tracking has numerous applications such as human attention analysis

and gaze-based human-computer interfaces. So far video-based gaze tracking is most

popular because it achieves high accuracy without requiring the target to wear any

special device.

There are mainly two types of video-based gaze tracking methods: feature-based

and appearance-based [109, 110]. Feature-based methods use local features such as

contours, eye corners, and reflections from the eye image for gaze estimation. In

contrast, appearance-based methods directly use the content of the eye image as

input to estimate the gaze direction instead of extracting any local feature.

Feature-based methods can be further divided into interpolation-based and model-

based methods according to how the features are used. Interpolation-based methods

commonly assume that the mapping between the image features and gaze can be

modeled as a parametric form such as a polynomial or nonparametric one like a

neural network. In contrast, model-based methods directly calculate the gaze from

95

(a) PIN (b) Pattern lock (c) Alphabetical

Figure 5.2: Three representative soft keyboards.

the image features based on suitable geometric models of the human eye. Here, we

adopt the model-based gaze tracking method in [108] due to its advantage that the

attacker does not need to obtain any training data about the victim prior to the

attack. Other model-based methods can be used in EyeTell as well if they require no

training data.

5.3 Related Work

In this section, we discuss the prior work most related to EyeTell in two research

directions: keystroke inference attacks and eye-tracking-related security implications.

5.3.1 Keystroke Inference Attacks

Prior keystroke inference attacks can be broadly classified into video-based, sensor-

based, and WiFi-based attacks.

96

Video-based attacks

In this category, the attacker uses a recorded video to infer keystrokes. Early work

targets physical keyboards. For instance, Backes et al. [50, 51] recovered the content

on a computer screen from its reflections on nearby objects such as glasses and tea

pots. As another example, Balzarotti et al. [52] inferred the keystrokes by charac-

terizing the light diffusion around the keyboard in the video recording. This work

[52] requires the attacker to directly video-record the victim’s finger typings on the

physical keyboard.

More recent research along this line targets soft keyboards on ubiquitous touch-

screen mobile devices. In [53], Maggi et al. tried to recover keystrokes from key

magnifications on the touchscreen. In [54], Raguram et al. inferred keystrokes from

the touchscreen’s reflection on the victim’s sunglasses. In [55], Xu et al. extended

the attack in [54] to recover keystrokes from double reflections of the touchscreen.

In [56], Yue et al. inferred keystrokes by exploiting the homographic relationship

between captured images and a reference image of a soft keyboard. Similar homo-

graphic relationship was also used in [57] by matching finger movements. In [58],

Sun et al. showed that the keystrokes can be actually inferred from the motion of a

tablet’s backside. All these attacks require the attacker to record a video capturing at

least part of the victim’s typing process or device backside, so they do not work if no

such video is available. For example, the surrounding environment may prevent the

attacker from having an unobstructed, stealthy view of the victim’s typing process.

In contrast, EyeTell requires no unobstructed view of the victim’s device or typing

process and only needs the attacker to record the victim’s eye movements during the

typing process. When a user types, he usually holds his device in one hand or places it

on a table or his knee. This means that his eyes are normally at much higher positions

97

than his device during the typing process. So it is much easier and more sneaky to

video-record the user’s eye movements from a distance than ti video-record his device

motion or typing process. EyeTell is thus applicable to much wider contexts.

Sensor-based attacks

In this category, the attacker uses on-board sensor data to infer a victim’s keystrokes.

In [25, 21], it was shown that the accelerometer data of a mobile device can be used

to infer the victim’s password. Subsequently, keystrokes were inferred in [111, 24]

by combining both accelerometer and gyroscope data. In [112, 113], the authors

exploited microphones and front cameras for keystroke inference. In comparison with

video-based attacks (including EyeTell), these attacks require the attacker to acquire

sensor data from the victim device through either malware infection or unprotected

data transmissions. Such assumptions may not always hold in reality.

There is also work on using device sensors as the side channels to infer keystrokes of

nearby physical keyboards. In [114, 115, 116], keystrokes on a physical keyboard were

recovered through analyzing the acoustic emanations of the keyboard recorded by a

nearby malicious microphone. In [117, 118], keystrokes were inferred by analyzing the

time difference of arrival of acoustic signal recordings. In [119], Marquardt et al. used

the accelerometer on a smartphone to measure the vibration induced by a nearby

physical keyboard for keystroke inference. In [120], Liu et al. inferred keystrokes

by exploiting the accelerometer data of a smartwatch worn by the victim while he

typed. Similar to sensor-based attacks [25, 21, 111, 24, 112, 113], these schemes

[114, 115, 116, 117, 118, 119, 120] assume that the attacker can obtain sensor data

from the victim device or that sensor data can be collected by other devices close to

the physical keyboard. By comparison, EyeTell has no such restriction and can be

launched from a larger distance.

98

WiFi-based attacks

In this category, the attacker infers a victim’s keystrokes from recorded channel state

information (CSI). The idea is that different keystrokes lead to distinct changes in

wireless channels and the corresponding CSI. It has been shown that CSI information

can be exploited to infer a victim’s keystrokes on a physical keyboard [121], or a soft

keyboard [122], or a pattern lock keyboard [123]. All these attacks are user-dependent

and require the attacker to first obtain the victim’s data with known labels to train

a classifier. In addition, they cannot tolerate any change in the surrounding environ-

ment other than the victim’s hand or finger movement. Furthermore, the distance

between the WiFi transmitter and receiver, the orientation of the victim device, and

the victim’s typing gestures were all fixed in the experiments. These shortcomings

limit the applicability of WiFi-based keystroke inference attacks in practice.

5.3.2 Eye-Tracking-Related Security Implications

Considering eye tracking as an input method for user-device interaction, researchers

have proposed to use it for user authentication and inferring user input.

User authentication

In the early days, researchers tried to use eye movement as a biometric identifier

for user authentication. In [124], the authors put forward this idea and evaluated

the identification rate among users. In [125, 126], the authors proposed novel fea-

tures extracted from eye movements and designed specific stimulus to enhance the

performance.

More recent research in this line mainly focuses on designing novel challenge-and-

response schemes for user authentication in a contactless manner. The key motivation

is that eye tracking as an input method is more secure against shoulder-surfing attacks,

99

besides novel two-factor authentication [40] and anti device-theft [127] schemes. For

example, the authentication systems in [128, 129, 130, 131] ask a user to follow moving

objects on the screen, draw pre-selected shapes, perform eye gestures to input PIN

passwords, etc.

Inferring user input

There are few efforts to work on inferring user inputs on device touchscreen by exploit-

ing eye tracking as a side channel. In [132], the authors pointed out that the victim’s

eyes would follow his finger movements on the touchscreen of mobile device, which

may leak his inputs. To show such feasibility, they mannually analyzed the images

taken by the front camera of the victim’s device to infer his input digits. Through a

small scale of experiments (three participants and nine trials in total), they obtained

an accuracy result of around 67% on PIN keyboard.

Compared with the above work, EyeTell exhibits two main differences. First of all,

EyeTell works on a more challenging scenario of inferring user keystrokes on mobile

device touchscreen, while most user authentication schemes based on eye tracking aim

at much larger screens such as TV. Furthermore, these schemes were engineered in a

way that their eye tracking module can obtain a user’s eye trace easily and effectively.

On the contrary, EyeTell can only obtain a much noisier eye trace due to two reasons:

the attacker does the video recording from a distance, and the victim’s eye movements

on a mobile touchscreen is much more subtle. Secondly, EyeTell involves a set of

tools to infer user inputs and comprehensive investigations on different types of soft

keyboards to better evaluate its security and privacy impacts.

100

5.4 Adversary Model

We consider a victim using a mobile touchscreen device such as a smartphone or

tablet. Assume that the victim holds the device right in front of himself and types

on the touchscreen soft keyboard. Such scenarios are very common in practice. For

example, the victim may use his mobile device at his workplace or wait in line at

a coffee shop. We assume that the victim is alert to conventional shoulder-surfing

attacks in the sense that the attacker cannot get too close to the victim when he

types on the device.

We consider an attacker who aims to infer the typed sequence on the victim

device, which could be PINs, lock patterns, words, or sentences. We assume that

the attacker can use a COTS smartphone, digital camera, or camcorder to record the

victim’s eyes during his typing process, possibly from a long distance. However, the

attacker cannot obtain any IMU sensor (accelerometer, gyroscope, microphone, etc.)

data by installing malware such as Trojans or malicious web scripts on the victim

device. Different from prior work, we assume that the attacker can see neither the

touchscreen or backside of the victim device nor the victim’s hand movements during

his typing process. Under these assumptions, existing video-based [50, 51, 52, 53, 54,

55, 56, 57, 58, 133] and sensor-based [25, 21, 111, 24, 112, 113, 115, 116, 117, 119]

keystroke inference attacks no longer work.

5.5 EyeTell Design

In this section, we give an overview of EyeTell and then detail its design. For

convenience only, we assume the victim device to be a smartphone throughout the

illustration, though EyeTell can work with any mobile touchscreen device.

101

Video
Recording

Gaze	Trace
Extraction

Gaze	Trace
Decoding

Word/Sentence
Inference

Figure 5.3: Workflow of EyeTell.

5.5.1 Overview

EyeTell is designed to infer the sensitive inputs on the soft keyboard from the

video of the victim’s eye movements while he types. The high-level design of EyeTell

is shown in Fig. 5.3, which consists of the following four steps.

(1) Video Recording. We first record a video capturing the victim’s eyes during

his inputting process using a COTS camcorder. As mentioned in Section 5.4, we

assume that neither the touchscreen nor the victim’s hand movement can be directly

seen from the video. In addition, we do not assume that the smartphone is fixed on

a device holder or that the video can capture its backside.

(2) Gaze Trace Extraction. We adapt user-independent gaze tracking [108] to

extract the gaze direction from each frame of the recorded video and then combine

the directions to obtain a complete gaze trace. In particular, we detect the two eyes

in each video frame and then the limbus for each eye, from which we finally estimate

the corresponding gaze direction. Due to the noisy and unstable nature of the ex-

tracted gaze trace, we further apply outlier detection and low-pass filtering to obtain

a cleaner gaze trace.

(3) Trace Decoding. In this step, we design a novel decoding algorithm to match

the gaze trace extracted in Step 2 into a set of candidate typing sequences on the soft

102

(a) Side view (b) Attacker’s view

Figure 5.4: Typical setup for video recording.

keyboard. Fig. 5.2 shows the soft keyboards we investigate, including the pattern-lock

keyboard on Android and the PIN and alphabetical keyboards on iOS. For PIN or

pattern-lock inference, each candidate typing sequence corresponds to one or several

PINs or lock patterns. For word or sentence inference, an additional step is taken to

select meaningful results with the assistance of a dictionary. The decoding algorithm

must adapt to different inference scenarios where the attacker’s prior information may

vary a lot. For example, the attacker knows that a PIN must consist of four or six

digits, but he knows very little to none about which word the victim is likely to input

before doing word inference.

(4) Word/Sentence Inference. Finally, we select the possible words by consid-

ering meaningful alphabetical combinations using a dictionary. We also explore the

linguistic relationship between adjacent English words to further infer sentences.

We detail each step above in what follows.

103

5.5.2 Video Recording

In this step, we want to obtain a video of the victim’s eyes when he types on the soft

keyboard of the smartphone. Fig. 5.4 shows a typical setting of video recording in our

experiments. We ask the participants to sit on the chair and input on a smartphone.

A Panasonic HCV7000 camcorder is used to record videos. Using a COTS camcorder

can show that EyeTell is low-cost, convenient, and stealthy to launch. In our studies,

we find that the following factors affect the result of our gaze tracking algorithm.

Image resolution. The resolution of the recorded video affects eye and limbus detec-

tion and therefore the extracted gaze. In the experiments, we always stick to the

highest resolution of the camcorder, i.e., each video frame is of 1920× 1080 pixels.

Video frame rate. Due to the noisy and instable nature of the extracted gaze trace,

we need to collect more sudden changes of the user’s eye movement and thus desire

a higher video frame rate. In the experiments, we choose the frame rate as 60 fps,

which is the highest frame rate supported by our camcorder. Our attack can be more

effective if a camcorder supporting higher frame rates is available.

Light condition. The light condition in the environment may also affect the infer-

ence result, as the imaging sensor of the camcorder generates larger noise in low-

illumination environments and thus produces a polluted gaze trace.

Recording angle. We define the recording angle as the angle between the plane formed

by the victim and his smartphone and the plane formed by the victim and the at-

tacker’s camcorder. Our current EyeTell implementation requires that the camcorder

be placed in the same plane as the victim and his smartphone, typically as shown in

Fig. 5.4. Therefore, our default recording angle is zero degree. We believe that this

assumption is fairly easy to achieve in practice with advanced camcorders and can be

relieved if more sophisticated gaze tracking algorithms are available.

104

After video-recording the victim’s eye movement, we manually crop the beginning

and ending part of the video such that the remaining part contains only the typing

process. For example, the video only contains the process of the victim inputting four

digits or drawing a pattern on the smartphone.

5.5.3 Gaze Trace Extraction

There are three steps in gaze trace extraction: eye localization, limbus detection,

and gaze trace estimation.

Eye detection

EyeTell detects the victim’s eyes in each frame through a two-step approach. We first

search for a pair of eyes within the entire frame in a coarse-grained manner. Once a

rough region is obtained, we further refine the detected eye region and then calculate

the accurate eye positions.

In the first step, we use a Haar-like feature-based cascade classifier [92] to detect

possible eye regions and always select the first output as the candidate eye region.

We then segment the candidate eye region into two area-of-interests (AOIs), one for

each eye. The cascade classifier [92] is very efficient and also user-independent, but

it may still incur false positives that the candidate region is not the eye region. For

example, a rectangular area enclosing the user’s clothes may be misclassified as the

eye region.

We use two tricks to reduce such false positives. First, we require that the size of

the detected eye region be above a minimum threshold. In our implementation, we set

the threshold to be 80×40 pixels, which has been shown valid for our video recording

setting. Second, we calculate a similarity score between the detected eye region and

a reference region, which is the eye region successfully detected in a different frame

105

of the same video. In particular, we resize the candidate eye region to the same size

as the reference region and then normalize the pixel values of both regions. After

normalization, we calculate a pixel-level similarity score for the same pixel in the two

regions, which is the ratio between the absolute difference of the two pixel values

and their sum. After that, the similarity score of the two eye regions is calculated

as the average pixel-level similarity score across the entire eye region. The smaller

the similarity score, the more similar the two eye regions. In our implementation, we

use an empirical threshold of 0.8 to filter out possible false positives of eye regions

and manually check them. The threshold needs to be adjusted in practice: a small

threshold may result in many possible false positives and thus increase the demand

for manual checking, and vice versa. If a detected candidate eye region is indeed a

false positive, we manually assign a correct rectangular region enclosing both eyes as

the input to the cascade classifier, which leads to correct eye detection in practice.

In the second step, EyeTell uses a shape-based approach to refine the two AOIs by

exploring the predicted dark circular appearance of eye features [134]. Specifically, we

define the center of a circular pattern as the point where most image gradient vectors

intersect. Then we search for the optimal point by using an objective function that

measures how well the gradient vectors and the eye center displacement vectors are

aligned. Moreover, considering the fact that the eye center usually appears darker

than other areas in the eye, we attach each point with a weight of its inverse intensity

in the objective function. Once the optimal points of the two AOIs (i.e., the two eye

centers) are located, we refine the positions of two AOIs in the frame and then resize

them to a fixed ratio. The resizing operation can minimize the areas of the two AOIs

while maintaining important eye features within them. The red cross in Fig. 5.5a

denotes the detected eye center.

106

(a) Eye center (b) Fitted limbus

Figure 5.5: Examples of our detected eye center and limbus.

Limbus detection

In this step, EyeTell determines the elliptical outline of the limbus from each identified

AOI by first identifying a set of possible limbus edge points and then fitting an ellipse

model from those edge points [108]. In contrast to other popular limbus detection

methods [135, 136], this method does not rely on any pre-defined threshold, which

allows EyeTell to reliably detect the limbus regardless of eye appearance, users, and

lighting conditions. Moreover, it can detect the limbus from out-of-focus images

because it does not depend on the existence of very strong edge. We illustrate this

process in what follows.

Since limbus edge points are part of the edge, we search for them by analyzing

the radial derivatives within each AOI. Specifically, we transform a given AOI into

the polar form and then calculate the vertical derivative of each pixel. In our imple-

mentation, we select the pixel with the largest radial derivative in each column as the

limbus edge point.

Special attention is paid to non-edge points that are incorrectly detected as edge

points, which occurs if the radial derivatives of non-edge points are larger than those

of true limbus edge points. According to our experimental observations, we use the

following process to filter out as many such non-edge points as possible. First, we

notice that nearby light sources can leave specularities on the cornea. The pixels

107

within these specularities can have very large radial derivatives and thus be incor-

rectly identified as limbus edge points. To deal with this case, we compare each pixel

value with a threshold, e.g., 150 (the pixel value is between 0 and 255), to identify a

set of possible specularities and then inpaint these small connected regions. The ef-

fective threshold depends on the recording environment, which we choose empirically.

Second, we observe that the upper eyelid may cover part of the iris and therefore

lead to incorrect limbus edge points. To cope with this case, we use three points, two

eye corners and the iris-eyelid boundary point right above the given eye center, to

fit a parabola to approximate the upper eyelid and then discard the points that fall

outside the parabola.

Finally, we fit an ellipse model from the set of edge points using the iterative

method in [137]. In each iteration, a minimum number of edge points are randomly

selected from available ones to fit an ellipse model through a least-square approach.

Then a support function is calculated to evaluate how fit the model is to the entire set.

We use the support function in [137] that measures how well the geometric gradients

of the fitted ellipse model align with the image gradients. Fig. 5.5b denotes a detected

limbus in our experiment.

Gaze trace estimation

In this step, we estimate one gaze point from each frame to obtain a complete gaze

trace from the entire video. To do so, we use the detected eye centers and limbus

in the 2D domain to recover the corresponding 3D eye centers and optical axes. We

then estimate the gaze point as the intersection between the optical axes and the

virtual 3D screen. We further refer to the gaze point as point-of-gaze (PoG), which

can be simply denoted by a vector [x, y]T . Here x and y correspond to the coordinates

of the PoG along x and y axis on the screen, respectively. For the benefit of better

108

readability, here we omit the detailed mathematical deduction to calculate a PoG.

Below we detail this process.

First, we calculate the 3D center and optical axis of each eye from the eye center

and limbus obtained from limbus detection. Denote the coordinate of the eye center

on the 2D image plane by (ex, ey) and the fitted ellipse of limbus by E(x, y) = Ax2 +

Bxy+Cy2 +Dx+Ey+F . The 3D center of an eye, denoted by c = [cx, cy, cz]
T , can

be calculated as

cx = cz
(ex − µ0)

fx
, cy = cz

(ey − υ0)

fy
, cz =

fx + fy
2

· r0

rmax

, (5.1)

where fx and fy are the focal lengths in pixel along horizontal and vertical axis,

respectively, (µ0, υ0) is the coordinate of the principal point on the 2D image plane,

rmax is the semi-major axis of the fitted ellipse E(x, y) on the 2D image plane, and

r0 is the actual size of human limbus. By definition, the line determined by the focal

point and the principal point is perpendicular to the 2D image plane, which allows

us to calculate the principal point from the focal point. In practice, fx, fy, µ0, and υ0

can be obtained by one-time camera calibration. In addition, parameters ex, ey, and

rmax can be computed from E(x, y), and r0 is set to 6 mm in our implementation.

The optical axis of an eye, denoted by k, can be written as k = c + mn. Here

n is the unit normal vector of the supporting plane of the limbal circle, and m is a

constant. In the coordinate system of the eye, n is equal to [0, 0, 1]T . Next, we obtain

its corresponding form in the coordinate system of the camera by the rotation matrix

between the two coordinate systems through the following equation [138],

n =

[
v1 v2 v3

]
h

0

g

 , (5.2)

109

where v1, v2, and v3 are three eigenvectors of Qe defined as

Qe =

A B

2
− D
fx+fy

B
2

C − E
fx+fy

− D
fx+fy

− E
fx+fy

4F
(fx+fy)2

 , (5.3)

g =

√
λ2 − λ3

λ1 − λ3

, h =

√
λ1 − λ2

λ1 − λ3

, (5.4)

and λ1, λ2, and λ3 are the eigenvalues corresponding to v1, v2, and v3, respectively.

After obtaining the optical axis of each eye, we calculate the PoG as

PoG =

x

y

0

 =

cx

cy

cz

+m

nx

ny

nz

 . (5.5)

It follows that

m = − cz
nz

and

x
y

 =

cx +mnx

cy +mny

 , (5.6)

where [x, y]T is the estimated PoG of a video frame.

By calculating the PoG for each eye in each frame, we obtain two complete

gaze traces from the recorded video, denoted by Ψl = (PoGl
1, . . . ,PoG

l
nf

) and Ψr =

(PoGr
1, . . . ,PoG

r
nf

) for the left and right eyes, respectively, where nf is the number

of frames in the video.

Since the extracted gaze traces are usually noisy and unstable, we apply outlier

detection and filtering to enhance their quality. To detect possible outliers, we check

the distance between the two estimated eye centers in each frame. If the distance in

the ith frame is larger than an anatomical threshold, e.g., 80 mm, we consider that at

least one PoG between PoGl
i and PoGr

i is an outlier. In this case, we replace the PoG

that yields a larger PoG change between adjacent frames with the one that leads to

a smaller change.

110

In the subsequent filtering step, we first obtain a raw gaze trace Ψ = (PoG1, . . . ,PoGnf
)

by taking the average of the left and right gaze traces, where

PoGi =
PoGl

i + PoGr
i

2
, (5.7)

for all i ∈ [1, nf]. We then apply a triangular kernel [139] to Ψ, which assigns linear

weights to each PoG in the time order. Specifically, for each j ∈ [1, nf], we calculate

PoGj =

∑j
i=j−N1+1 i× PoGi∑j

i=1 i
, (5.8)

where N1 is empirically set to 5 in our implementation. The final gaze trace for

keystroke inference is Ψ = (PoG1, . . . ,PoGnf
). For convenience, we call each element

in Ψ a PoG as well.

5.5.4 Trace Decoding

In this step, EyeTell decodes the gaze trace Ψ to obtain some candidate input

sequences on the touchscreen. Depending on the soft keyboard the victim types on,

the candidate input sequence may correspond to a lock pattern, a PIN, a word, or a

sentence. Generally speaking, trace decoding is done in four steps. First, we identify

the turning points in a gaze trace and then divide the whole trace into a sequence of

segments, each corresponding to a sudden change in the PoG. Second, we convert each

segment into a small set of candidate vectors. Third, given the sequence of segments

and their corresponding candidate vector sets, we enumerate all possible combinations

of candidate vectors. For each possible combination of candidate vectors, we traverse

the soft keyboard to check whether or not the combination can be mapped into a valid

input sequence. Finally, we rank all the valid input sequences according to certain

heuristic rules and generate a final set of candidate input sequences for a given gaze

trace. In what follows, we use the pattern-lock keyboard as the example to illustrate

111

trace decoding and then point out the difference when applying EyeTell to PIN and

alphabetical keyboards.

Trace segmentation

We first apply a moving average filter to further smooth the gaze trace extracted in

the last step, as it does not exhibit any clear pattern for segmentation. The length

of the moving window has a direct impact on the segmentation performance. On the

one hand, if the window is too short, the filtered gaze trace is not sufficiently smooth.

On the other hand, if the window is too long, some sudden changes may be buried,

resulting in some undetectable turning points. We empirically set the moving-window

length to 10 based on analyzing our experiment data.

We then segment the smoothed trace by identifying the turning points that sep-

arate adjacent segments. For simplicity, we abuse the notation by letting Ψ =

(PoG1, . . . ,PoGnf
) denote the smoothed trace as well. Suppose that Ψ consists of two

segments as an example. In the ideal case, the points in each segment lie in a straight

line, and the intersection of the two lines is the turning point between two segments.

Based on this observation, we first estimate the moving direction of each PoG (or ele-

ment) in Ψ. Let
−−→
PoGi,j = PoGj−PoGi be the vector for ∀i, j ∈ [1, nf]. For each PoGi

and the next N2 PoGs (i.e., {PoGj}i+N2−1
j=i+1), we compute N2 vectors {

−−→
PoGj,i}i+N2−1

j=i+1 ,

where N2 is a system parameter empirically set to 5 in our experiment. We further

calculate
−−→
PoGi =

∑i+N2−1
j=i+1

−−→
PoGi+1,i

N2

(5.9)

as the moving direction of PoGi. Let θi ∈ [−π, π) denote the angle of
−−→
PoGi. We can

then obtain a sequence of angles θ1, . . . , θnf−N2+1) for the gaze trace Ψ. For every N3

adjacent PoGs such as {PoGj}i+N3−1
j=i , we consider them in the same segment if and

112

only if ∑i+N3−1
j=i |θj+1 − θj|

N3

≤ φ1 ,

where N3 and φ1 are both system parameters that are empirically set to 5 and π
4
in

our experiment, respectively.

We then search for turning points as follows. Starting from i = 1, we find the

smallest i′ such that
∑i′+N3−1

j=i′ |θj+1−θj |
N3

> φ1 and then regard PoGi′ as the ending point

of the first segment. Starting from i′, we proceed to find the smallest i′′ such that∑i′′+N3−1

j=i′′ |θj+1−θj |
N3

≤ φ1 and then consider PoGi′′ as the starting point of the second

segment. After determining i′ and i′′, we search between i′ and i′′ to find i1 with the

largest
∑i1+N3−1

j=i1
|θj+1−θj |

N3
and consider PoGi1 as the turning point between the first two

segments.

Repeating the above process, we can identify all the turning points in the gaze

trace. Suppose that nt turning points are found in total. Combined with the first

and last PoGs of the gaze trace, the total nt+2 points correspond to nt+1 segments.

Denote the nt + 2 points by {TPi}nt+2
i=1 , where TP1 and TPnt+2 correspond to the

first and last PoGs of the gaze trace, respectively, and TPi (∀i ∈ [2, nt + 1]) are the

turning points. In the remainder of the chapter, we denote the number of segments

by ns. Therefore, ns = nt + 1. The final output of trace segmentation comprises

ns segments, each of which can be represented by its length and angle. Specifically,

assuming TPi = [xi, yi]
T , the i-th segment can be characterized by [xi+1−xi, yi+1−yi]T

for all i ∈ [1, ns].

We use the example in Fig. 5.6 to shed more light on trace segmentation. Specif-

ically, Fig. 5.6a shows a two-segment gaze trace to decode; Fig. 5.6b shows the gaze

trace after applying the moving average filter; Fig. 5.6c shows the angles of the PoGs

on the trace; and Fig. 5.6d shows the ending point of the first segment and the starting

point of the second segment.

113

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0- 8 0 0

- 6 0 0

- 4 0 0

- 2 0 0

0

2 0 0

y

x
(a) Original gaze trace

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0- 8 0 0

- 6 0 0

- 4 0 0

- 2 0 0

0

2 0 0

y

x

T u r n i n g p o i n ti 1

i 2

(b) Filtered gaze trace

0 1 0 2 0 3 0 4 0
- 3

- 2

- 1

0

1

Dir
ec

tio
n (

rad
)

o f G a z e
(c) Direction

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
0

1

2
T u r n i n g p o i n t

i 1

i 2
Ch

an
ge

 of
 Di

rec
tio

n (
rad

)

o f G a z e

π/ 4

(d) Change of direction

Figure 5.6: An illustration for trace dividing.

N2, N3, and φ1 depend on the factors such as frame rate, signal-to-noise ratio

(SNR) of the video, etc. For example, N2 and N3 increase with the frame rate and

decrease with SNR generally. In our system, we choose these parameters empirically

by experimenting them with a small portion of data and observing the results of

segmentation. In practice, we believe that they need to be adjusted or trained in

different scenarios.

Decoding segment

We observe that only a limited number of gaze segments are permissible on any

typical soft keyboard (PIN, pattern lock, and alphabetic), which are referred to as

114

Table 5.1: Mapping between alphabetical and quasi-PIN keyboards depicted in

Fig. 5.8a.

1 q,w,e,r 2 t,y 3 u,i,o,p

4 a,s,d 5 f,g,h 6 j,k,l

7 z,x 8 c,v,b 9 n,m

Table 5.2: All possible segments of pattern-lock keyboard.

Index Length Angle Index Length Angle Index Length Angle Index Length Angle

1 1 0 7 1 π
2 13 1 π 19 1 −π

2

2 2 0 8 2 π
2 14 2 π 20 2 −π

2

3
√

5 0.464 9
√

5 2.03 15
√

5 -2.68 21
√

5 -1.11

4
√

2 π
4 10

√
2 3π

4 16
√

2 −3π
4 22

√
2 −π

4

5 2
√

2 π
4 11 2

√
2 3π

4 17 2
√

2 −3π
4 23 2

√
2 −π

4

6
√

5 1.11 12
√

5 2.68 18
√

5 -2.03 24
√

5 -0.464

Table 5.3: Soft keyboard dimensions in pixel illustrated in Fig. 5.7 and Fig. 5.8a.

Keyboard Radius Width Height Horizontal Gap Vertical Gap

PIN 65 N/A N/A 50 30

Pattern lock 20 N/A N/A 340 340

Alphabetical N/A 60 80 12 24

Quasi-PIN N/A 216 80 12 24

115

380

380

20

(a) Pattern-lock

180

160

65

(b) PIN

q w

a s

e

60

80

12

24

72

40

(c) Alphabetical

Figure 5.7: Measurement of the three keyboards. The unit is pixel.

q w

a s

e r t y u i o p

d f g h j k l

a s d f g h j k

1 2 3

4 5 6

7 8 9

80
24

12
216

(a) Transform alphabetical keyboard to quasi-PIN keyboard.

c1 c2 c3

c7 c8 c9

c4 c5 c6

(b) Denotions in

Table 5.4.

Figure 5.8: Quasi-PIN keyboard.

legitimate segments hereafter. In this step, we decode a given gaze segment into a

small set of candidate legitimate segments on the pattern-lock keyboard. This is done

by calculating the Euclidean distances between the given segment and all legitimate

ones and then selecting those with shorter distances as the candidates.

Let us first look into more details of the pattern-lock keyboard and its correspond-

ing legitimate segments. Fig. 5.7 depicts the dimensions of the pattern-lock keyboard

layout on a Google Nexus 6 smartphone with Android 5.1.1, including the radius

of nine white circles, the horizontal gap between two neighboring circles, and the

vertical gap between two neighboring circles. All these dimensions are also listed in

Table 5.3.. We further plot all the 24 possible segments on the pattern-lock keyboard

116

1

7 4 3

6

24

9

18

15

13

10

1916 22

21

12

2

5
811

14

17 20 23

(a) All possible segments.

1

10

(b) A pattern and its segments.

Figure 5.9: Segments on pattern-lock keyboard.

in Fig. 5.9 and then calculate their lengths and angles. The 24 segments lead to five

lengths and 16 angles in total.

We first normalize the segment length to facilitate segment decoding. As we can

see from Fig. 5.9, the minimum segment length is 1, so we try to make the minimum

normalized segment length be 1 as well via the following approach. First, we sort the

segments in the ascending order of their lengths. Let Lmax denote the longest segment

length. Then we select the shortest segment and calculate the ratio ρ between Lmax

and its length. According to Table 5.2, the length ratio between any two legitimate

segments is no larger than 2
√

2. Therefore, we compare ρ to a threshold ρmax. If

ρ ≤ ρmax, the currently selected segment is used for normalizing all the segments.

Otherwise, we select the next shortest segment, calculate a new ρ, and compare it to

ρmax. This process ends until ρ ≤ ρmax. The currently selected segment is the one

used for length normalization, and the normalized segment lengths smaller than 1 are

all set to 1. ρmax should be larger than 2
√

2 to accommodate the noisy and instable

nature of the gaze trace.

117

Next, we compute the Euclidean distance between each normalized segment and

each legitimate segment in Fig. 5.9. Suppose that we look for η candidate legitimate

segments for each normalized segment. Those leading to the top-η shortest Euclidean

distances are selected as the candidates. Intuitively speaking, the larger η, the more

likely that the correct legitimate segment is included in the candidate set, the less

pinpointing capability the attacker has, and vice versa.

The final output in this step corresponds to ns candidate sets, each corresponding

to a gaze trace segment. We denote the candidate set for the i-th trace segment by

Ni (∀i ∈ [1, ns]), which contains η legitimate segments in the ascending order of their

Euclidean distances with the i-th trace segment.

Candidate lock patterns

Now we generate the candidate lock patterns for a gaze trace. Let c1, . . . , c9 denote

the nine white circles of a pattern lock keyboard, as shown in Fig. 5.8b. By setting

the center coordinate of c1 to (0, 0), we derive the center coordinates of other circles

and list them in Table 5.4. Since the gaze trace comprises ns segments with each

having η candidate legitimate segments, a candidate lock pattern can be represented

by a row vector p = [p1, . . . , pns+1], where pi refers to the i-th point that corresponds

to one of c1, . . . , c9.

Table 5.4: Coordinates of pattern-lock keyboard depicited in Fig. 5.8b.

c1 (0,0) c2 (1,0) c3 (2,0)

c4 (1,0) c5 (1,1) c6 (2,1)

c7 (2,0) c8 (2,1) c9 (2,2)

We generate the candidate lock patterns by considering each possible combination

of ns legitimate segments and then checking its feasibility by traversing on the pattern-

118

lock keyboard. In each round, we select a random segment Si among the η segments

in Ni (∀i ∈ [1, nt]) to form a legitimate segment sequence {S1, . . . , Sns}. There are

totally ηns rounds, each with a unique legitimate segment sequence. Assuming that

the length and angle of Si are l and α, respectively, we rewrite Si = (l cos(α), l sin(α)).

Given {S1, . . . , Sns} and an arbitrary starting point ps ∈ {ci}9
i=1, we can obtain a

candidate lock pattern p, where p1 = ps and pi = pi−1 +Si−1 (∀i ∈ [2, ns+1]). We say

that p is feasible if pi ∈ {c1, . . . , c9}, ∀i ∈ [1, ns + 1]. There are nine possible choices

for ps, each corresponding to a candidate lock pattern. All the feasible lock patterns

are then recorded.

(a) c1, c3, c7, c9. (b) c1, c2, c4, c5. (c) c2, c3, c5, c6.

(d) c4, c5, c7, c8. (e) c5, c6, c8, c9.

Figure 5.10: Ambuguities due to normalization.

An undesirable consequence of length normalization is that larger lock pattens

may be mis-recognized as their shrunken versions. The example in Fig. 5.10 illus-

trates this aspect. The correct pattern in the example is [c1, c3, c7, c9], and the gaze

trace segments after length normalization are {(1, 0), (−1, 1), (1, 0)}. So the candi-

date lock patterns are [c1, c2, c4, c5], [c2, c3, c5, c6], [c4, c5, c7, c8], and [c5, c6, c8, c9], illus-

119

trated in Fig. 5.10. Our remedy for the issue is that if a legitimate segment sequence

{S1, . . . , Sns} can generate a feasible lock pattern, we double the length of each seg-

ment there and then check if the new sequence {S̃1, . . . , S̃ns} can generate a feasible

lock pattern or not, where S̃i = (2l cos(α), 2l sin(α)). All such feasible lock patterns

are recorded as well.

Ranking candidate lock patterns

The final step is to rank candidate lock patterns with three heuristics as follows.

First, we introduce a row vector r = (r1, . . . , rns), where ri ∈ [1, η] means that the

ri-th segment is chosen from Ni (∀i ∈ [1, ns]). Then we generate the ηns legitimate

segment sequences based on r in the following order: [1, 1, . . . , 1, 1], [1, 1, . . . , 1, 2], . . . ,

[1, 1, . . . , 1, η], [1, 1, . . . , 2, 1], [1, 1, . . . , 2, 2], . . . [1, 1, . . . , 2, η], [1, 1, . . . , 3, 1], . . . , [η, . . . , η].

Recall that the earlier segments in each Ni have smaller Euclidean distances to the

corresponding gaze trace segment than those of the later segments. Earlier legitimate

segment sequences can thus produce higher ranked candidate lock patterns than later

ones.

Second, the candidate lock patterns generated from the same legitimate segment

sequence are ranked according to their starting points in the order of c1 > c4 > c7 >

c2 > c5 > c8 > c3 > c6 > c9. Such a heuristics is also adopted in [133].

Finally, the candidate lock patterns generated from an enlarged legitimate segment

sequence have higher ranks than those from the original sequence. The intuition is

that normal users tend to draw larger patterns.

Table 5.5: Hidden keys on PIN keyboard.

(1,3) 2 (4,6) 5 (7,9) 8 (1,7) 4 (2,8) 5

(3,9) 6 (1,9) 5 (3,7) 5 (5,0) 8 (2,0) 5,8

120

1

8
4 3

6

7

30

12

22

21

18

16

13

11

2319 28

27

26

15

2

5
9

10

14

17

20
24

25

29

Figure 5.11: All possible segments of a PIN keyboard.

PIN keyboard

Now we discuss how EyeTell applies to the PIN soft keyboard. Fig. 5.7 and Table 5.3

show the dimensions of the PIN keyboard layout on a Google Nexus 6 with Android

5.1.1, including the radius of each key, the horizontal gap, and the vertical gap. We

plot the 30 legitimate segments in Fig. 5.11. Note that users slide on the pattern-lock

keyboard to draw a pattern but touch the keys on the PIN keyboard to input a PIN.

A user may input the same key multiple times on the PIN keyboard, in which case

there is little displacement in the corresponding gaze trace. Furthermore, a user may

input three keys along the same direction sequentially, in which case the attacker does

not know how many keys are touched. For example, the gaze traces for two different

PINs (e.g., [1, 4, 7, 9] and [1, 7, 8, 9]) can be very similar.

We then modify the process in Section 5.5.4 to generate candidate 4-digit PINs.

• If there are three trace segments, EyeTell directly generates candidate 4-digit

PINs as in Section 5.5.4.

121

• If there are two trace segments, EyeTell first follows the process in Section 5.5.4

to generate candidate 3-digit PINs. We abuse the notation by letting a candi-

date PIN be denoted by a row vector p, in which each element is a key on the

PIN keyboard. We have p = [p1, p2, p3] initially and then generate candidate 4-

digit PINs as follows. First, we generate and record [p1, p1, p2, p3], [p1, p2, p2, p3],

and [p1, p2, p3, p3], as the user may type any key twice. Second, we consider the

possible hidden keys between any two original keys. For example, if a possible

hidden key ph lies between p1 and p2, we consider and record [p1, ph, p2, p3] as

a candidate PIN as well. Table 5.5 shows the possible hidden keys on the PIN

keyboard corresponding to each pair of original keys.

• If there is only one trace segment, EyeTell first follows the process in Sec-

tion 5.5.4 to generate a 2-digit PIN denoted by p = [p1, p2]. Then we generate

and record the candidate PINs as [p1, p1, p1, p2], and [p1, p2, p2, p2].

The above process can be easily extended to 6-digit PINs and omitted here for lack

of space.

Alphabetical keyboard

Here we discuss how to adapt our algorithm to attack the alphabetical keyboard

whose layout dimensions are given in Fig. 5.7 and Table 5.3. In contrast to the PIN

keyboard, the alphabetical keyboard has more keys (26 instead of 10) and a smaller

area (about 48% smaller), which poses a great challenge to keystroke inference. We

tackle this challenge by first transforming the alphabetical keyboard into a quasi-

PIN keyboard, as shown in Table 5.1 and depicted in Fig. 5.8a. Then we generate

candidate PINs on the quasi-PIN keyboard as in Section 5.5.4. Next, we produce a

122

list of candidate words from candidate PINs and then use a dictionary to filter out

non-existing words.

Keystroke inference on the quasi-PIN keyboard is even harder than that on the

PIN keyboard. Specifically, the user may type the same key multiple times or hit

some hidden keys on a segment, which is difficult for the attacker to identify. In

addition, the attacker knows that the PIN to infer corresponds to 4 or 6 keys on

the PIN keyboard, while he has no idea how many keys are contained in a PIN

on the quasi-PIN keyboard because the corresponding word to infer may include an

arbitrary number of letters. The situation becomes even worse because the same key

or a hidden key may be typed multiple times. For example, the combinations of “ty”,

“er”, “gh”, and “ui” are quite common in English words.

We amend the process in Section 5.5.4 to increase the accuracy of inferring English

words on the quasi-PIN keyboard and thus the alphabetical keyboard.

• We add a (0, 0) segment into the set of legitimate segments. If a (0, 0) segment

is selected, the gaze trace stays on the same key, corresponding to the case that

the victim inputs the same key repeatedly.

• Since it is unrealistic to consider all the possible lengths of the typed word, we

only consider candidate words of ns + 1 or ns + 2 letters long for a given gaze

trace of ns segments.

As in [119, 120, 58], we refine the candidate words with the popular “corn-cob” dic-

tionary [140] which is an on-line word list of 58,110 common English words.

Given a candidate PIN on the quasi-PIN keyboard, we generate a list of candidate

words for the extracted gaze trace in the following two steps. First, we enumerate

all the possible combinations of letters of the given PIN. Second, we search in the

dictionary and add discoverable combinations into the list of candidate words. The

123

complexity of such a process can be very high. For example, in our experiments,

the number of possible PINs for a 13-letter word is in the order of 104, the number

of possible combinations is in the order of 106 (313 = 1594323), and the number of

strings in the dictionary is 58,110. All these add up to a complexity of 1015. To reduce

the search complexity, we build a prefix tree of the “corn-cob” dictionary using trie

structure [141] such that the search complexity within the dictionary is O(L), where

L is the length of the given string.

5.6 Performance Evaluation

5.6.1 Experiment Setup

User enrollment

We recruited 22 participants for the experiments, including 5 females and 17 males.

Our experiment protocol was approved by the Institutional Review Board (IRB) at

our institution and strictly followed in the experiments. Since the participants were

only asked to input on smartphones, the experiments did not affect either them or

people nearby at all. We only obtained the participants’ oral consent because the IRB

approved a waiver of the requirement to obtain written consent. All the participants

were either graduate students in our lab or others we know in the same university.

We did not reward them with any monetary compensation and only treated them

to free snacks. Finally, all the recorded videos are stored in password-protected lab

computers. As shown in Table 5.6, the number of participants in our evaluation is

larger than those in our closely related work.

124

Table 5.6: Number of participants in related system evaluations.

System [116] [119] [120] [58] [133] EyeTell

Number of participants N/A N/A 5 4 10 22

Data collection

We used a Panasonic HCV700 camcorder for video recording in our experiment. This

camcorder has a 21× zoom len and can record 1080p60 HD videos. Two smartphone

models were used in the experiments: Apple iPhone 6s with a 10.5cm× 5.8cm screen

size and Google Nexus 6 with a 12.3cm× 7.5cm screen size.

A typical data collection process is as follows. A participant was asked to sit on

a chair (illustrated in Fig. 5.4), hold a smartphone in front of herself/himself, and

input on the touchscrren. The input can be a PIN on the PIN keyboard, a pattern

on the pattern-lock keyboard, or an English word on the alphabetical keyboard. The

participant was asked to input in her/his normal typing/drawing speed. We observed

that the participant almost always kept her/his head relatively steady during each

inputting process which was very short and less than 5 s in our experiments. Such

relatively steady head positions are explored by almost all existing gaze tracking

methods, including the one used in EyeTell. The following default settings were used,

unless noted otherwise. The distance between the participant and camcorder was

around 2 m. The participant, smartphone, and camcorder lay in the same plane.

The resolution and frame rate of the camcorder were set as 1920× 1080 and 60 fps,

respectively. We also adjusted the zoom of the camcorder such that the captured face

of the participant was focused and larger than 500× 500 pixels.

In general, we conducted two sets of experiments: one without task randomization

and the other with task randomization. The former involved 12 participants, each of

125

whom performed experiments sequentially from one session to the next. For exam-

ple, a participant first performed all experiments on inferring a single lock-pattern

segment, then complete lock patterns, and so on. In contrast, the latter involved

10 participants, each of who was given randomly permuted tasks. As an example, a

participant performed one trial on inferring a single lock-pattern segment, then two

trials on complete lock pattens, then three trials on 4-digit PINs, and so on.

We use the experiment on inferring a single segment on the pattern-lock keyboard

to examplify how we reduced the impact of fatigue. For this experiment, a participant

was asked to draw each segment in Table 5.2 on the pattern-lock keyboard. For a

given segment, she/he was asked to draw it five times. To counteract the impact of

possible fatigue, the participant was asked to take pauses between two consecutive

inputs. Before the experiment, we informed all the participants that they could

stop the ongoing experiment freely whenever they felt a need to rest. Finally, we

purposely asked each participant to stop and rest for one or two minutes about every

ten minutes.

For the set of experiments without task randomization, we designed multiple ses-

sions to fully evaluate EyeTell. In the following sessions (from Section 5.6.3 to Sec-

tion 5.6.7), we will describe the details of these experiments (e.g., the number of

participants, the experiment requirements, etc.) and the corresponding results. The

same participant took part in multiple sessions, resulting in a total time between two

and three hours. To further reduce the impact of possible fatigue, we collected the

data of the same participant on different days. As a result, the total time of doing

experiments for each participant was less than one hour on the same day.

For the set of experiments with task randomization, we also designed different

experiments for the same participant. Particularly, task randomization was done in

two steps. First, we prepared all the experiments (tasks) for the same participant,

126

assembled them together, and assigned each of them an order number. In our eval-

uation, a participant was assigned 24 single segments, 10 lock patterns, 10 4-digit

PINs, and 10 6-digit PINs. Therefore, the order numbers are from 1 to 54 (i.e.,

24 + 10 + 10 + 10 = 54), which we use a vector [1, 2, . . . , 54] to denote. Second, we

permuted the order vector randomly and obtained a new randomized one for each

individual participant. Finally, each participant performed experiments according to

her/his given vector.

As can be imagined, our experiments required a participant to look at the touch-

screen of a mobile device and input on it repeatedly, which can result in fatigue. There

are mainly two factors leading to fatigue in our experiments: experimental time and

task similarity. Intuitively, if the experimental time is longer with very similar tasks,

participants may easily suffer from fatigue. As mentioned above, we adopted two

methods to reduce the impact of passible fatigue as much as possible. On the one

hand, we asked the participants to take sufficient pauses during the experiments and

stop the experiments freely, and controlled the duration of data collection on the same

day. On the other hand, we conducted two sets of experiments, with and without

task randomization.

For experiments with randomization, each participant was assigned 54 ordered

tasks, of which the order was indicated by her/his given vector. A task can be

inputting a single segment, a lock pattern, a 4-digit PIN, or a 6-digit PIN. Each

participant was asked to repeat the same task for five times. To reduce the impact of

fatigue as much as possible, besides following the above instruction, the participants

were told to stop their experiments at any time they wished. Also, we collected the

data of the same participant on different days. For each participant, the experimental

time on the same day was less than half an hour. The total experimental time for a

participant ranged from one and a half to three hours.

127

5.6.2 Performance Metrics

We use top-k inference accuracy as the main performance metric, as in [116, 119,

120, 58, 133]. Specifically, EyeTell generates a set of ranked candidate inputs (PINs,

lock patterns, or letters) for each trial. We claim that a trial succeeds if the true

input appears in the top-k candidate inputs. Top-k inference accuracy is defined as

the percentage of successful trials. We compare the inference accuracy of EyeTell

with that in [116, 119, 120, 58, 133]. Specifically, we compare EyeTell with [133] on

inferring lock patterns and with [116, 119, 120, 58] on inferring English words.

5.6.3 Experiments on Pattern-Lock Keyboard

We first evaluate how accurately EyeTell can infer a single segment on the pattern-

lock keyboard. Considering that inferring a single segment is the simplest task for

EyeTell and the basis for more complicated ones, we want to see how well it performs.

For this experiment, we asked each participant to draw each segment in Table 5.2 on a

Nexus 6 for five times. Recall that Table 5.2 consists of all the possible single segments

on a pattern-lock keyboard. For the segments with multiple possible starting points

(e.g., segment 1 can start from any point in {c1, c2, c4, c5, c7, c8}), the participants

had the freedom to pick any starting point. Since there is only one segment in the

resulting gaze trace, EyeTell can only calculate its angle but not its length. The

output length is always 1 due to normalization. Therefore, we group the segments

with the same angle together and obtain Table 5.7 from Table 5.2. Therefore, both

segment 1 and 2 in Table 5.2 correspond to segment 1 in Table 5.7. Here we ignore

the impact of the segment length, which is reported in later evaluations. As we can

see in Table 5.8, EyeTell can infer the angle of a single segment on the pattern-lock

128

keyboard with top-1, top-2, and top-3 inference accuracy up to 87.76%, 98.65%, and

99.74%, respectively.

Table 5.7: Angles of a single segment on the pattern-lock keyboard. Derived from

Table 5.2.

Index Angle Index Angle Index Angle Index Angle

1 0 5 π
2 9 π 13 −π

2

2 0.464 6 2.03 10 -2.68 14 -1.11

3 π
4 7 3π

4 11 −3π
4 15 −π

4

4 1.11 8 2.68 12 -2.03 16 -0.464

For these experiments with task randomization, each participant input each seg-

ment in Table 5.2 on a Nexus 6 for five times under task randomization. As we

can see in Table 5.9, EyeTell can infer the angle of a single finger movement on the

pattern-lock keyboard under task randomization with top-1, top-2, and top-3 infer-

ence accuracy up to 87.19%, 97.10%, and 99.62%, respectively.

(a) Simple (b) Medium (c) Complex

Figure 5.12: Examples of simple, medium, and complex lock patterns.

Then we evaluate the performance of EyeTell inferring lock patterns. We used

the same set of lock patterns as those in [133], which includes 120 lock patterns in

total [142]. In [133], the authors assigned a lock pattern to one of three categories,

129

Table 5.8: Inference accuracy on a single segment of pattern-lock keyboard.

Index of segment top-1 top-2 top-3 top-4 top-5

1 87.78% 100% 100% 100% 100%

2 82.5% 90.83% 100% 100% 100%

3 96.67% 100% 100% 100% 100%

4 95% 100% 100% 100% 100%

5 80% 100% 100% 100% 100%

6 92.22% 100% 100% 100% 100%

7 85% 96.67% 100% 100% 100%

8 93.33% 100% 100% 100% 100%

9 90% 100% 100% 100% 100%

10 93.33% 100% 100% 100% 100%

11 93.33% 100% 100% 100% 100%

12 60% 100% 100% 100% 100%

13 80% 92.5% 95.83% 100% 100%

14 88.33% 98.33% 100% 100% 100%

15 100% 100% 100% 100% 100%

16 87.67% 100% 100% 100% 100%

Average 87.76% 98.65% 99.74% 100% 100%

130

Table 5.9: Inference accuracy on a single segment of pattern-lock keyboard.

Index of segment top-1 top-2 top-3 top-4 top-5

1 82.5% 100% 100% 100% 100%

2 82.5% 92.5% 100% 100% 100%

3 92.5% 96.7% 100% 100% 100%

4 96.67% 100% 100% 100% 100%

5 75% 90.8% 100% 100% 100%

6 91.3% 100% 100% 100% 100%

7 83% 94.3% 100% 100% 100%

8 92.8% 98.2% 100% 100% 100%

9 90.3% 100% 100% 100% 100%

10 95.5% 100% 100% 100% 100%

11 93% 98% 100% 100% 100%

12 72% 100% 100% 100% 100%

13 84% 91% 94% 100% 100%

14 82% 100% 100% 100% 100%

15 97% 100% 100% 100% 100%

16 85% 92% 100% 100% 100%

Average 87.19% 97.10% 99.62% 100% 100%

131

i.e., simple, medium, and complex, according to its complexity score. Specifically, the

complexity score CSP of an arbitrary lock pattern P is estimated as

CSP = nP × log2(LP + IP +OP), (5.10)

where nP denotes the number of connecting dots, LP is the length of P , IP denotes

the number of intersections, and OP is the number of overlapping linear segments.

Based on the complexity score, P can then be categorized according to the following

rule. If CSP < 19, P is simple; if 19 ≤ CSP < 33, P is medium; and if CSP ≥ 33,

P is complex. Fig. 5.12 gives an example for each pattern category. We use the

simple pattern in Fig. 5.12(a) to explain the calculation of CSP , for which we have

nP = 5, LP = 4, IP = 0, OP = 0, and CSP = 10. Each participant was assigned

with four simple lock patterns, three medium ones, and three complex ones. The

assignment of lock patterns was generated randomly. Besides, each lock pattern was

drawn five times on a Nexus 6.

As shown in Table 5.10, the average top-1, top-5, top-10, and top-50 accuracy of

EyeTell inferring pattern locks are 57.5%, 70.3%, 75.3%, and 85.1%, respectively. In

[133], the authors reported average top-5 accuracy more than 95%, which is much

higher than what EyeTell can achieve. But such high accuracy in [133] was achieved

based on the strong assumption that the attacker can directly capture how the vic-

tim drew her/his lock pattern on the screen. In contrast, EyeTell assumes that the

attacker can only capture the victim’s eyes (possibly from a large distance), which

is much more realistic. We can also see that the inference accuracy increases with

the complexity score of a lock pattern, which is consistent with the observation in

[133].The reason is that higher pattern complexity helps reduce the number of can-

didate patterns.

132

Table 5.10: Inference accuracy on pattern-lock keyboard.

Pattern category top-1 top-5 top-10 top-20 top-50

Simple 47.75% 69.5% 74.5% 79.5% 88.75%

Medium 59.3% 70% 75% 77% 83%

Complex 65% 71% 76% 78% 83%

Average 57.5% 70.3% 75.3% 78.3% 85.1%

For these experiments with task randomization, each participant input four simple

patterns, three medium patterns, and three complex patterns from [142] on a Nexus

6 under task randomization. The patterns were randomly selected when preparing all

the tasks for each participant. As shown in Table 5.11, the average top-1, top-5, top-

10, and top-50 accuracy of EyeTell inferring pattern locks under task randomization

are 55.8%, 70.1%, 75.1%, and 84.1%, respectively.

Table 5.11: Inference accuracy on pattern-lock keyboard.

Pattern category top-1 top-5 top-10 top-20 top-50

Simple 45.4% 70.4% 75.4% 77.2% 85.6%

Medium 58.6% 69.6% 74.0% 78.0% 83.2%

Complex 63.4% 70.2% 75.8% 77.6% 83.4%

Average 55.8% 70.1% 75.1% 77.6% 84.1%

5.6.4 Experiment on PIN Keyboard

We asked each participant to input 10 4-digit PINs and 10 6-digit PINs on the

PIN keyboard on an iPhone 6s. Each PIN was input five times. All the PINs were

randomly generated and then assigned to the participants. We showed the results in

133

Table 5.12. As we can see, EyeTell can infer 4-digit PINs with average top-1, top-5,

top-10, and top-50 accuracy up to 39%, 65%, 74%, and 90%, respectively. In addition,

the average top-1, top-5, top-10, and top-50 accuracy on 6-digit PINs are 39%, 70%,

80%, and 90%, respectively. As for pattern locks, the inference accuracy for 6-digit

PINs is slighter higher than that for 4-digit PINs, as 6-digit PINs are longer, more

complex, and thus easier to infer.

Table 5.12: Inference accuracy on PIN keyboard.

of digits top-1 top-5 top-10 top-20 top-50

4-digit 39% 65% 74% 81% 90%

6-digit 39% 70% 80% 85% 90%

For these experiments with task randomization, a participant input 10 4-digit

PINs and 10 6-digit PINs on an iPhone 6s under task randomization. The PINs were

randomly generated when preparing all the tasks for each participant. As shown

in Table 5.13, EyeTell can infer 4-digit PINs with average top-1, top-5, top-10, and

top-50 accuracy up to 37.5%, 67.2%, 78.0%, and 92.0%, respectively. In addition, the

average top-1, top-5, top-10, and top-50 accuracy on 6-digit PINs are 38.8%, 68.9%,

81.3%, and 91.0%, respectively.

Table 5.13: Inference accuracy on PIN keyboard.

of digits top-1 top-5 top-10 top-20 top-50

4-digit 37.5% 67.2% 78.0% 81.2% 92.0%

6-digit 38.8% 68.9% 81.3% 84.6% 91.0%

134

Table 5.14: Words for inference.

Length Words

7 between, spanish, nuclear

8 identity, emirates, platinum, homeland, security

9 institute, extremely, sacrament, dangerous

10 difference, wristwatch, processing, unphysical

11 inquisition, pomegranate, feasibility, polytechnic, obfuscating

13 paediatrician, interceptions, abbreviations, impersonating, soulsearching, hydro-

magnetic

5.6.5 Experiment on Word Inference

We used the 27 English words in Table 5.14 from the corn-cob dictionary to

evaluate the performance of EyeTell for word inference. The same words were also

used in [116, 119, 120, 58]. The length of the 27 words ranges from 7 to 13 letters.

We asked each participant to input each word five times on the alphabetical keyboard

of an iPhone 6s.

Table 5.15 compares the word-inference performance of EyeTell with some existing

schemes. As we can see, the average top-5, top-10, and top-50 accuracy on inferring

English words are 38.43%, 63.19%, and 72.45%, respectively. EyeTell has comparable

performance to the attacks in [116, 119, 120, 58] but with weaker assumptions. For

example, they assume that the attacker can obtain the exact length of the typed

word, while EyeTell does not rely on this assumption. In addition, as detailed in

Section 5.3, they require that the attacker obtain on-board sensor data of the victim

device [116, 119, 120] or that the victim device be placed on a static holder.

135

Table 5.15: Word-inference accuracy.

System top-5 top-10 top-25 top-50 top-100

EyeTell 38.43% 63.19% 71.3% 72.45% 73.38%

[116] N/A 43% 61% 73% 87%

[119] N/A 43% 50% 57% 60%

[120] 54.80% 63% 75% 82.40% 86%

[58] 48% 63% 78% 93% N/A

5.6.6 Experiment on Sentence Inference

EyeTell infers a complete sentence in two steps. In the first step, we generate a

candidate set for each typed word. In the second step, we use the linguistic relation-

ships between English words to manually select the best candidate for each typed

word. Essentially, inferring a complete sentence is based on inferring each individual

word (in Section 5.6.5). Therefore, for this experiment, we only involved four partic-

ipants to demonstrate the feasibility of our approach. Each participant was asked to

input two sentences twice on the alphabetical keyboard of an iPhone 6s. The same

sentences were also used for evaluation in [58]. We can see that the results for different

participants are comparable.

Table 5.16, Table 5.17, Table 5.18, and Table 5.19 show the results. If a typed

word does not appear in the candidate set generated by EyeTell, we use a ∗ to denote

it. The words in italic form are those EyeTell infers successfully. We also show the

number of candidates for each word (including itself). We can see that EyeTell can

recover a large portion of the two sentences with the aid of post-inference human

interpretation. We believe that we can further improve the performance on sentence

136

inference by predicting unknown words using advanced linguistic models such as [143].

Table 5.16: Sentence-inference result for the first participant.

Input our friends at the university of texas are planning

Output our ∗ at the university of texas are planning

of

candi.

33 N/A 6 3 1 16 6 78 2

Input a conference on energy economics and finance in february

Output a ∗ on energy ∗ and finance in ∗

of

candi.

N/A N/A 5 3 N/A 54 N/A 8 N/A

Input of next year we discuss the major factors underlying

Output of next year we discuss the major ∗ underlying

of

candi.

16 30 15 7 8 5 44 N/A 1

Input the exceptionally high volatility of electricity prices

Output the ∗ high ∗ of electricity prices

of

candi.

5 N/A 85 N/A 16 2 26

5.6.7 Influence Factors

In this section, we evaluate the impact of multiple factors on EyeTell for inferring

4-digit PINs on the PIN keyboard of an iPhone 6s, including the number of candidates

(η) for segment decoding, the number of eyes used for extracting a gaze trace, the

frame rate of the camcorder, the lighting condition for video recording, the distance

137

Table 5.17: Sentence-inference result for the second participant.

Input our friends at the university of texas are planning

Output our ∗ at the university of texas are planning

of

candi.

27 N/A 8 3 1 14 6 90 2

Input a conference on energy economics and finance in february

Output a ∗ on energy ∗ and finance in february

of

candi.

N/A N/A 5 3 N/A 30 2 8 5

Input of next year we discuss the major factors underlying

Output of next year we discuss the major ∗ underlying

of

candi.

12 18 18 3 5 5 8 N/A 1

Input the exceptionally high volatility of electricity prices

Output the ∗ high ∗ of electricity prices

of

candi.

8 N/A 20 N/A 23 1 14

between the victim and camcorder, and the recording angle. The following default

setting was adopted, unless noted otherwise: η = 5, both eyes used for extracting a

gaze trace, a frame rate of 60 fps, indoor normal lighting, 2 m between the victim

and camcorder, and a zero-degree recording angle.

Among the 12 participants, only two of them do not wear glasses while the others

do. Wearing glasses has little effect on the performance of our system. The reason

is that we employ an image inpainting step to eliminate possible specularities within

138

Table 5.18: Sentence-inference result for the third participant.

Input our friends at the university of texas are planning

Output our ∗ at the university of texas are planning

of

candi.

20 N/A 16 3 1 6 6 53 2

Input a conference on energy economics and finance in february

Output a conference on energy ∗ and finance in february

of

candi.

N/A 1 15 6 N/A 54 N/A 8 10

Input of next year we discuss the major factors underlying

Output of next year we discuss the major ∗ underlying

of

candi.

7 25 21 3 5 3 60 N/A 1

Input the exceptionally high volatility of electricity prices

Output the ∗ high ∗ of electricity prices

of

candi.

5 N/A 100 N/A 18 1 10

the eye region for limbus detection, as mentioned in Section 5.5.3. As a result, we do

not distinguish participants with glasses from those without glasses.

Impact of η

Fig. 5.13a shows the top-5, top-20, and top-100 inference accuracy of EyeTell for

η = 3, 4, or 5. As we can see, the inference accuracy increases with η, and the top-100

accuracy exhibits the largest increase. Such results are as expected because larger

η leads to more enumerations in Section 5.5.4 so that the probability of the typed

139

Table 5.19: Sentence-inference result for the fourth participant.

Input our friends at the university of texas are planning

Output our ∗ at the university of texas are planning

of

candi.

40 N/A 8 2 2 11 6 63 2

Input a conference on energy economics and finance in february

Output a ∗ on energy ∗ and finance in february

of

candi.

N/A N/A 7 3 N/A 42 N/A 8 2

Input of next year we discuss the major factors underlying

Output of next year we discuss the major ∗ underlying

of

candi.

14 18 12 5 12 8 32 N/A 1

Input the exceptionally high volatility of electricity prices

Output the ∗ high ∗ of electricity prices

of

candi.

5 N/A 91 N/A 12 1 16

PIN falling into its candidate set increases. In our experiment, we found that when

η = 5, most PINs and lock patterns were included in their respective candidate sets.

Though a larger η always leads to higher accuracy, we set η = 5 by default to reduce

computation time.

Impact of eyes

Here we compare the inference accuracy when the gaze trace from only one eye (left or

right) or from both eyes are used for PIN inference. The result is shown in Fig. 5.13b.

140

3 4 50
2 0
4 0
6 0
8 0

1 0 0

To
p-k

 Ac
cu

rac
y (

%)

η

 t o p - 5 t o p - 2 0 t o p - 1 0 0

(a) η

L e f t e y e R i g h t e y e B o t h e y e s0
2 0
4 0
6 0
8 0

1 0 0

To
p-k

 Ac
cu

rac
y (

%)

E y e C o n f i g u r a t i o n

 t o p - 5 t o p - 2 0 t o p - 1 0 0

(b) Eye configuration

Figure 5.13: Impact of η (left) and eye configuration (right).

It is not surprising to see that EyeTell achieves much higher inference accuracy when

the gaze traces of both eyes are used. The reason is that the gaze trace from one eye

exhibits large noise due to the nature of human eyes while the gaze trace averaged

from both eyes is much less noisy.

Impact of frame rate

Now we compare the inference accuracy of EyeTell under two frame rates for video

recording, 30 fps and 60 fps. Since the default frame rate is 60 fps in our experiment,

we down-sampled Ψl and Ψr in Section 5.5.3 by half to simulate the gaze trace ob-

tained from 30-fps videos. As shown in Fig. 5.14a, EyeTell can yield better inference

results under a higher frame rate. The reason is that the gaze traces from videos of

higher frame rates are more accurate than those of lower frame rates, thus resulting

in higher accuracy.

Impact of lighting conditions

In this experiment, we evaluate the impact of environmental lighting conditions on

EyeTell. Three types of environments are investigated, including indoor normal light-

141

3 0 f p s 6 0 f p s0
2 0
4 0
6 0
8 0

1 0 0

To
p-k

 Ac
cu

rac
y (

%)

F r a m e R a t e (f p s)

 t o p - 5 t o p - 2 0 t o p - 1 0 0

(a) Frame rate

I n d o o r , l o w I n d o o r , n o r m a l O u t d o o r , s u n l i g h t0
2 0
4 0
6 0
8 0

1 0 0

To
p-k

 Ac
cu

rac
y (

%)

L i g h t i n g C o n d i t i o n

 t o p - 5 t o p - 2 0 t o p - 1 0 0

(b) Lighting condition

Figure 5.14: Impact of frame rate (left) and lighting condition (right).

ing with 300-360 lux illumination, indoor low lighting with 60-100 lux illumination,

and outdoor daytime sunlight with around 1200 lux illumination. In each environ-

ment, each participant was asked to input 10 4-digit PINs on an iPhone 6s, and each

PIN was input five times. As mentioned above, the PINs were generated randomly

and then assigned to the participants. Fig. 5.14b summarizes the result for this ex-

periment. EyeTell exhibits similar performance under indoor normal lighting and

outdoor daytime sunlight conditions. However, the performance becomes worse in

indoor low lighting environments. The reason is that low illumination in the shooting

environment causes more noise in detected eye regions, thus degrading the accuracy

of ellipse fitting for limbus and later gaze trace extraction.

Impact of recording distance

In this experiment, we evaluate EyeTell when the recording distance is 1m, 2m, and

3m, respectively. In each scenario, each participant was asked to input 10 4-digit

PINs on an iPhone 6s, and each PIN was input five times. The PINs were generated

randomly and then assigned to the participants. We show the result in Fig. 5.15a.

As we can see, EyeTell has similar performance when the distance is 1m or 2m. The

142

slight performance degradation when the distance is 3m can be attributed to the

larger zoom-in setting from a longer shooting distance. As a result, the captured

video may be more sensitive to small head movements of the victim. However, we

believe that the impact of the recording distance can be very limited if the attacker

has more advanced camcorders.

1 2 30
2 0
4 0
6 0
8 0

1 0 0

To
p-k

 Ac
cu

rac
y (

%)

D i s t a n c e (m)

 t o p - 5 t o p - 2 0 t o p - 1 0 0

(a) Recording distance

0 d e g r e e 5 d e g r e e 1 0 d e g r e e0
2 0
4 0
6 0
8 0

1 0 0

To
p-k

 Ac
cu

rac
y (

%)
R e c o r d i n g A n g l e

 t o p - 5 t o p - 2 0 t o p - 1 0 0

(b) Recording angle

Figure 5.15: Impact of recording distance (left) and angle (right).

Impact of recording angle

In this experiment, we study the performance of EyeTell when the recording angle is

0°(the default), 5°, or 10°, respectively. In each scenario, each participant was asked

to input 10 4-digit PINs on an iPhone 6s. Each PIN was input five times. The PINs

were generated randomly and then assigned to the participants. Fig. 5.15b shows

the results. As expected, the inference accuracy quickly decreases as the recording

angle increases. This is mainly due to two reasons. First, the gaze tracking method

[108] EyeTell adopts assumes that the recording angle is zero. Second, when the

recording angle increases, the recorded video may not be able to capture the limbus

of both eyes. Accurate gaze trace extraction under arbitrary recording angles (or

equivalently arbitrary head postures) is very challenging and requires more advanced

143

gaze tracking methods. We plan to look further into this issue in our future work.

Note that the attacker with an advanced camcorder may not have much difficulty

achieving a near-zero recording angle in practice from a long distance to the victim.

5.6.8 Computational Time

We implemented EyeTell in two components. The first one is for gaze trace extrac-

tion implemented in C++, and the second for trace decoding implemented in Matlab.

We run the experiments on a DELL desktop with 2.67 GHz CPU, 9 GB memory, and

Windows 10 64-bit Professional. In the experiments, it takes less than 40s to generate

a gaze trace from an input video. For trace decoding, the most time-consuming part

is to generate the candidate set in Section 5.5.4, which is jointly determined by the

number of segments and the number of candidates for each segment. Most PINs and

lock patterns are associated with a few segments. For example, it takes less than 1s

to generate the candidate set for a 4-digit PIN. In contrast, it takes about 40min for

an English word with 13 letters. Overall, the computational time incurred by EyeTell

is quite affordable for a determined adversary.

5.7 Discussion

In this section, we discuss the limitations of EyeTell and point out possible coun-

termeasures.

5.7.1 Limitations

First, the inference accuracy of EyeTell is slighter lower than that of other video-

based inference attacks [58, 133], especially for the alphabetical keyboard. There

are two main reasons. First, other attacks use more direct observations about the

keystrokes, such as the device’s backside motion [58] and the victim’s finger movement

144

[133]. In contrast, the gaze trace that EyeTell exploits only contains indirect keystroke

information which is much more noisy and instable. Second, the efficacy of EyeTell on

the alphabetical keyboard is largely limited by the uncertain number of keystrokes.

We plan to explore extra side information such as eye fixation time in our future work

to have more accurate estimation of the number of keystrokes and thus improve the

inference accuracy of Eyetell.

Second, EyeTell currently requires the video to be recorded within a small record-

ing angle, e.g., less than 5°based on our experiments. While such small recording

angles make EyeTell detectable by vigilant users in uncrowded space, EyeTell is likely

to succeed in crowded areas. This limitation can be alleviated by using more ad-

vanced camcorders or employing more advanced gaze tracking methods that are less

sensitive to the victim’s head posture. With better optics, the attacker can record the

video from a longer distance. In addition, Gaze tracking based on machine learning

[144] has shown to be effective even under different recording angles. We intend to

explore this direction in our future work.

Finally, our experiment scale is comparable to that in the most recent work [133]

but still limited. Though costly, larger-scale experiments may further evidence the

efficacy of EyeTell.

5.7.2 Countermeasures

Since the only information EyeTell uses for keystroke inference is a video of the

victim’s eyes, mobile users should be alert when they input important sensitive infor-

mation on their touchscreen devices. The following countermeasures can be adopted

to thwart EyeTell. The most effective way against EyeTell is to prevent the attacker

from video-recording the victim’s eyes. For example, the user can wear sunglasses

with dark colors to hide his gaze trace. In addition, users can input keystrokes with-

145

out looking at the keys so that the gaze trace extracted by EyeTell is irrelevant to

keystrokes. However, this method may be practical only when the user incurs a small

number of keystrokes, e.g., 4-digit PINs. Finally, sophisticated users can increase

their typing speed on the touchscreen. In case that the frame rate of the attacker’s

camcorder is not high enough, the extracted gaze trace should be much less accurate

and noisy, therefore degrading the inference result.

5.8 Conclusion and Future Work

In this chapter, we introduced EyeTell, a video-based keystroke inference attack

framework to infer the victim’s typed input from a video capturing his eyes. We

adopted a user-independent model-based gaze tracking method to obtain a gaze trace

of the victim’s eyes and designed novel decoding algorithms to infer the typed input.

We confirmed the high efficacy of EyeTell via extensive experiments on iOS and

Android devices under various circumstances.

We plan to improve EyeTell in three directions in the future. First, we intend

to develop novel gaze tracking methods that are less sensitive to the victim’s head

posture, which will greatly enhance EyeTell’s applicability. Second, we will investigate

novel methods to determine the number of keystrokes in order to improve the inference

accuracy of EyeTell on alphabetical keyboards. Finally, we plan to evaluate EyeTell

in a larger scale.

146

Chapter 6

WEARAUTH: SECURE AND USABLE WEARABLE AUTHENTICATION VIA

ACOUSTIC SENSING

6.1 Overview

In this chapter, we propose WearAuth, a secure and usable technique to authenti-

cate wearable devices via acoustic sensing. WearAuth targets wearable devices with

an embedded speaker and one or more microphones. To authenticate a user, Wear-

Auth invokes the speaker on the wearable to transmit inaudible acoustic signals. In

the meantime, the user moves his finger to draw a pre-defined password pattern near

the wearable device either in the air or on a solid surface. By analyzing the acoustic

signals received by the microphone(s) on the wearable device, WearAuth can extract

a 1D or 2D trace from the user’s finger movement. If the extracted trace is classified

legitimate by a pre-trained classifier, the user is considered authentic and otherwise

denied access to the wearable device.

WearAuth has significant advantages over current authentication techniques for

wearable devices. First, WearAuth explores tiny and cheap microphones and speakers

that have been widely available or can be easily embedded onto wearable devices of

different form factors, so it is widely applicable to a wide range of wearable devices

with or without a touchscreen. Second, WearAuth allows a user to draw a self-chosen

password pattern in a less-confined manner, e.g., in the air, on a desk, on the back

of his hand, or even from a distance (say, 0.5 meter), so it is highly usable to a large

range of users including senior citizens, children, visually impaired users, etc.

147

We conducted comprehensive experiments on a Samsung Galaxy S5 to demon-

strate the feasibilty of WearAuth, involving six participants acting as both users

and attackers. In Section 6.4, we name WearAuth as WearAuth-R when 1D traces

are extracted and as WearAuth-S when 2D ones are extracted. Our experimental

results show that WearAuth-R achieves 93% true-positive rate (TPR) and 97% true-

negative rate (TNR) at the same time while WearAuth-S 91% TPR and 97% TNR.

The equal-error rates (EER) for WearAuth-R drops from 7% to 9.4% under shoulder-

surfing attack while that for WearAuth-S from 9.5% to 12.2%. Therefore, we believe

that WearAuth achieves both high security and usability and shows strong robustness

under shoulder-surfing attacks.

The rest of the chapter is organized as follows. Section 6.3 introduces the acoustic

sensing technique behind our system. Section 6.4 details the WearAuth design. Sec-

tion 6.5 presents the experimental evaluation. Section 6.2 presents the related work.

Section 6.6 concludes this chapter.

6.2 Related Work

In this section, we discuss the prior work most related to our system in two

directions: wearable device authentication and acoustic sensing on mobile device.

6.2.1 Wearable Device Authentication

Essentially, wearable devices fall into the general scope of mobile devices. There

exist a large body of existing authentication methods developed for smartphones and

tablets. Among these methods, some use touchscreen as the input interface, such as

PIN and pattern lock. These touchscreen-based methods can be potentially applied

to wearable devices with touchscreens. More recent methods, e.g., Touch ID [145]

and Face ID [146] on iOS platform, use advanced sensors like fingerprint sensor and

148

camera for user input. Due to the high cost and large footprint of these sensors, these

biometrics-based authentication methods are not suitable for most COTS wearable

devices.

In the following, we focus on recent wearable device authentication methods which

require only low-cost and small-footprint sensors rather than expensive or large-

footprint ones. Examples of the former sensors are accelerometer, gyroscope, mi-

crophone, and small touchscreen while examples of the latter ones are fingerprint

sensor and camera.

Researchers proposed to use accelerometer and gyroscope to extract a user’s hand

movement (i.e., gesture) for authentication. In most cases, these systems are designed

for wearable devices on wrist or finger. In [147], Wang et al. proposed to extract

free-form hand movements as a user’s behavioral biometrics compared to extracting

template-based hand movement in most previous work. In [148, 149, 150, 151], the

authors confirmed the security and usability of hand-gesture-based authentication

methods by implementation and evaluation through extensive experiments. In [152],

Roshandel et al. presented a system that utilized their self-built finger ring to extract

a 3D handwriting trace for user authentication. In [151], Liu et al. investigated

the influence of 13 machine learning models on the overall performance of gesture-

based authentication systems on smartphones or tablets. To sum up, gesture-based

authentication schemes are applicable to wearable devices, taking both security and

usability into consideration. They are especially suitable for those worn on wrist or

finger. The advantages of these schemes are that they are convient to use for most

users and robust to popular attacks such as shoulder-surfing attack and imitation

attack. Meanwhile, one disadvantage is that it may be a little awkward for a user to

perform her/his gesture in public places.

149

Speaker and microphone have also been used for authentication of wearable de-

vices. In [153], Gong et al. presented a new protocol to authenticate an IoT device

by measuring its distance from a known trusted mobile device. In their protocol,

distance measurement was achieved by measuring the propogation time of acoustic

signals. In [154], Chauhan et al. found that BreathPrint, which they referred to as

the frequency spectrum of a user’s breath, could be used as a new behavioral biomet-

rics for authentication on mobile devices. In their following work [155], they adopted

Recurrent Neural Networks (RNN) for their system and tested the performance on

different devices including smartphone and smartwatch.

In [156], Hutchins et al. showed that a user’s rhythmic tapping on the touchscreen

of a smartwatch could be used to authenticate the user. Compared to conventional

touchscreen-based methods like PIN and pattern lock, their method is easier to use

(i.e., the true positive rate is high) and more secure under shoulder-surfing attack

and imitation attack.

6.2.2 Acoustic Sensing on Mobile Device

Acoustic sensing has been actively researched during the past five years. A strong

motivation behind this is that the speaker and microphone for acoustic sensing are

affordable for most mobile devices, even low-cost IoT devices while acoustic sensing

is very promising in many application scenarios such as device pairing, networking,

device-user interaction, gaming. In the following, we focus on the acoustic sensing

systems which track a user’s hand or finger movements in a device-free manner, i.e.,

the user does not need to hold or wear any device on/with her/his moving hand or

finger.

Hand or finger movement tracking are essentially measuring the distance between

a mobile device and a moving object. FingerIO in [157] aims to find the echo of

150

an OFDM symbol corresponding to the finger position. By doing this, FingerIO

can translate the echo into the distance of a user’s moving finger. LLAP in [158]

makes use of coherent detection to recover phase change of received acoustic signal.

Since phase change is directly caused by a targeted moving object (in their case, a

user’s finger), LLAP can calculate the corresponding distance from the phase change.

Finally, Strata in [3] applies a similar technique as LLAP, however, with an important

difference. LLAP assumes that there is no moving object except the user’s finger

in the environment while Strata does not. Strata tackles the challenge of unstatic

environment by estimating the channel impulse response (CIR) of the acoustic channel

and selecting the exact tap corresponding to the user’s moving finger.

Coherent	
Detection

CIR	
Estimation

Channel	 Tap	
Identification

Phase	Change	
Estimation

Distance	
Estimation

! ℎ# $ ∠ ℎ& $ '() -∠ ℎ& $ ' *&,'

Figure 6.1: Flow chart of acoustic sensing in [3].

Speaker
C

Microphone B

Microphone A

Figure 6.2: Speaker and microphones on Galaxy S5.

151

0 0.005 0.01

Time (second)

-0.6

-0.4

-0.2

0

0.2

0.4

A
m

p
lit

u
d
e

Baseband of Transmitted Signal

(a) Transmitted bassband signal.

0 20 40
Sample Index

0

0.05

0.1

0.15

A
m

p
lit

u
d
e

Signal after Channel Compensation

(b) Decoded baseband signal.

0 20 40 60 80 100

Sample Index

0

0.05

0.1

0.15

0.2

A
m

p
lit

u
d
e

Signal before Channel Compensation

(c) Received signal of bottom micro-

phone.

0 20 40 60 80 100

Sample Index

0

0.02

0.04

0.06

0.08

0.1

A
m

p
lit

u
d
e

Signal before Channel Compensation

(d) Received signal of top micro-

phone.

Figure 6.3: Transmitted and received signals.

6.3 Acoustic Sensing for Motion Sensing

WearAuth uses the speaker and microphone(s) on a wearable device to track a

user’s finger movement. In this section, we briefly introduce the underlying motion-

tracking technique (called Strata [3]) for self-containment and the minor changes we

made for our context.

Strata uses the speaker and microphone on the same mobile device for motion

tracking. Assume that the user’s finger is the nearest moving object to the mobile

device. The speaker repeatedly transmits a known acoustic sequence, and the micro-

phone collects acoustic signals. We can estimate the channel impulse response (CIR)

152

from the transmitted and received signals, which can characterize the multipath effect

in the environment [159]. Suppose that the acoustic channel between the speaker and

microphone has L paths. Let τi and ai denote the delay and attenuation coefficient

of the i-th path, respectively. CIR can be denoted in a discrete form as

h[j] =
L∑
i=1

aie
−j2πfcτi sinc(j − τiW), j ∈ [1, N], (6.1)

where fc is the center frequency, W is the bandwidth, sinc(t) = sin(πt)
πt

, and N is the

number of taps. In our implementation, fc = 20kHz,W = 4kHz, N = 10. Therefore,

the frequency range of the acoustic signal is between 18kHz and 22kHz. Each h[j]

(j = 1, 2, . . . , N) is referred to as a tap of CIR. Note that N has nothing to do with L.

From Equation (6.1) and the property of the sinc function, h[j] is determined by a few

(normally two or three) among the L paths, each of which makes the terms (j− τiW)

sufficiently small. We can image that the specific path of which the transmitted signal

is reflected by the user’s finger corresponds to a specific delay, which affects only one

CIR tap. Therefore, we can find the corresponding CIR tap and then try to infer the

finger movement from it.

Finger movement tracking is based on the intuition that the position change of the

user’s finger incurs a phase change in the corresponding CIR tap, which is assumed to

be h[k] and relate to the L-th path without loss of generality. Suppose we track the

user’s finger movement between (t − 1)-th and t-th frames. In our implementation,

the frame duration is 12.5ms. Considering that the typical finger movement speed

of a user is no more than 0.05 m s−1, the difference of τiW between two frames is

no more than 0.05×12.5
υ

W = 0.0092, where υ = 340 m s−1 is the propagation speed of

sound in the air. Therefore, it is safe to expect that the (j − τiW) term almost does

not change between two frames. For simplicity, we merge sinc(j − τiW) into ai in

Equation (6.1) and reuse ai to denote the new attenuation coefficient here after. As

153

a result, we have the following equation for CIR.

h[j] =
L∑
i=1

aie
−j2πfcτi , j ∈ [1, N], (6.2)

We further denote h[k] estimated from the (t − 1)-th and t-th frames by h[k]t−1

and h[k]t, respectively, which are defined based on Equation (6.2) as

h[k]t−1 =
L∑
i=1

aie
−j2πfcτi,t−1

=
L−1∑
i=1

aie
−j2πfcτi,t−1 + aLe

−j2πfcτL,t−1

(6.3)

and

h[k]t =
L∑
i=1

aie
−j2πfcτi,t

=
L−1∑
i=1

aie
−j2πfcτi,t + aLe

−j2πfc(τL,t−1+τd,t).

(6.4)

Here τd,t is the delay difference incurred by the user’s finger movement between frame

t − 1 and frame t, i.e., τd,t = τL,t − τL,t−1. If τd,t is known, the corresponding finger

movement can be easily calculated as dt = υτd,t.Let hd[k]t = h[k]t − h[k]t−1. The

phase of hd[k]t can be deduced from Equation (6.3) and Equation (6.4) as

∠(hd[k]t) = ∠(e−j2πfcτL,t−1) +
∠(e−j2πfcτd,t)

2
+
π

2
. (6.5)

Similarly, we have the following result for frames t and t+ 1,

∠(hd[k]t+1) = ∠(e−j2πfcτL,t) +
∠(e−j2πfcτd,t+1)

2
+
π

2
. (6.6)

From the above two equations, we observe that the subtraction between ∠(hd[k]t+1)

and ∠(hd[k]t) reveals τd,t, i.e.,

∠(hd[k]t+1)− ∠(hd[k]t) = ∠(e−j2πfcτL,t)− ∠(e−j2πfcτL,t−1)

+
(∠(e−j2πfcτd,t+1)− ∠(e−j2πfcτd,t))

2

≈ ∠(e−j2πfcτd,t).

(6.7)

154

The above approximation assumes that τd,t+1 = τd,t. Using the above equation, we

can obtain τd,t as

τd,t =
∠(e−j2πfcτd,t)

2πfc
≈ ∠(hd[k]t+1)− ∠(hd[k]t)

2πfc
. (6.8)

The whole process of finger movement tracking through acoustic sensing on mo-

bile devices includes the following three main steps. The flow chart is illustrated in

Figure 6.1, and more details can be found in [3].

Step One: Acoustic Signal Transmission. The speaker transmits a 26-bit

GSM training sequence repeatedly [160]. We achieve this by storing the sequence

as a Waveform Audio (WAV) file in the format of 16-bit Pulse Coded Modulation

(PCM) and playing it through the device’s speaker continuously. Figure 6.3a shows

the transmitted acoustic signal in the low-frequency baseband after pulse shaping and

filtering.

Step Two: Channel Estimation. Our system uses the microphone(s) to

collect the reflected multipath acoustic signals, converts them to baseband signals

through demodulation, and uses Least-Square (LS) [159] for channel estimation.

Specifically, given a converted baseband signal y = {y1, y2, . . . , yN+P} and the cir-

culant training matrix M ∈ RP×N , the estimated channel can be derived as ĥ =

(MHM)−1MHyN , where M =

mN mN−1 mN−2 · · · m1

mN+1 mK mN−1 · · · m2

...
...

...

mN+P mN+P−1 mN+P−2 · · · mP+1

, yN =

{yN+1, yN+2, . . . , yN+P}, N is the number of taps to estimate (or the memory length),

P is the reference length, and N + P is the length of training sequence. In practi-

cal, N determines the maximum tracking distance of our acoustic sensing system. A

larger N corresponds to a larger tracking distance, however, results in a less reliable

CIR estimation as well. In our implementation, we choose N = 10 to strike the

155

balance between tracking distance and estiamtion reliability. N = 10 corresponds

to a tracking distance up to 0.5 m, adequate in most day-to-day usage. Figure 6.3c

and Figure 6.3d are the same baseband frames received by microphone A and B of

Samsung Galaxy S5 illustrated in Figure 6.2, respectively. Obviously, the received

signal strengths at the two microphones are very different because they are designed

for different purposes. Figure 6.3b shows the same frames after channel compensation

which can be further used to decode transmitted bits.

Step Three: Finger Movement Tracking. Assume that the initial position is

the original point, i.e., (0, 0) on a 2D XY plane. Using Equation (6.7), our system is

able to calculate the distance change between two received frames, i.e., τd,t. Specif-

ically, in the case of one microphone used, say, microphone A, we have τAd,t across

different t while in the case of both microphone A and B, we have both τAd,t and τBd,t.

With the obtained τd,t, our system is able to calculate a 1D or 2D trace.

Benchmark. Here we use simple experiments on a Samsung Galaxy S5 to show-

case the performance of finger motion tracking in our system. In our experiments, we

put the smartphone on a table and asked a user to draw a 1D line along the x or y

axis, or a 2D shape on the table. For 1D lines, we collected 50 traces along the x axis

and 50 along the y axis. The examples of 1D tracked traces are shown in Figure 6.4b.

The traces with circle markers are the two with the minimum average tracking error

while those with square markers with the maximum average tracking error. We also

plot the cumulative distribution function (CDF) of the tracking errors for 1D lines in

6.4a. Our implementation achieves an average measurement error of around 0.4 cm

which is similar to 0.3 cm in [3] for 1D lines. In addition, we randomly select two

tracked 2D traces (circle and rectangular) and plot them in Figure 6.5. Their average

tracking errors are 0.52 cm and 0.41 cm, respectively.

156

0 1 2 3

Error (cm)

0

0.2

0.4

0.6

0.8

1

P
e
rc

e
n
ti
le

CDF of Tracking Error

x-axis

y-axis

(a) CDF of tracking error.

-0.18 -0.14 -0.1 -0.06
x (cm)

-0.16

-0.12

-0.08

-0.04

y
 (

c
m

)

Tracking Traces
Min avg. error, x-axis

Max avg. error, x-axis

Min avg. error, y-axis

Max avg. error, y-axis

(b) Examples of tracking traces.

Figure 6.4: Performance of acoustic tracking system.

-0.03 -0.01 0.01 0.03

x axis (m)

-0.05

-0.03

-0.01

0.01

y
 a

x
is

 (
m

)

Circle

(a) Circle.

-0.06 -0.04 -0.02 0 0.02

x axis (m)

-0.02

0

0.02

0.04
y
 a

x
is

 (
m

)

Rectangular

(b) Square.

Figure 6.5: Examples of tracked shapes.

6.4 WearAuth Design

In this section, we give an overview of WearAuth and then detail each of its

functional modules.

157

Data	
Preprocessing

Feature	
Extraction

Machine	 Learning

Acoustic	
Sensing

Classifier	
Training

Classifier	
Testing

Figure 6.6: The flow chart of WearAuth.

6.4.1 Overview

We use a smartwatch as an example to explain how WearAuth works. Assume

that a user wears his smartwatch on one wrist or puts it on a table. To unlock

the smartwatch, he uses a finger on the wrist without the smartwatch to draw a

password gesture near the smartwatch. WearAuth supports two types of gestures: a

Type-I gesture refers to a sequence of 1D back-and-forth lines, and a Type-II gesture

corresponds to a self-defined or fixed 2D shape. Which type of gestures to use depends

on how many microphones a wearable device has and also the user’s preference. In

particular, if there is only one microphone, only Type-I gestures can be tracked and

used; if there are two microphones, both Type-I and Type-II gestures can be tracked

and used. Our system has little restriction on where the user performs his password

gesture. For example, if he wears the smartwatch on his left wrist, he may do the

drawing on the back of his left hand or even in the air. If he puts the smartwatch on

a table instead, he may just draw his gesture right on the table.

As in most authentication systems, WearAuth involves two phases: an enrollment

phase and a verification phase. The purpose of the enrollment phase is for the system

to collect the legitimate user’s data to train a supervised classifier. In this phase, the

user decides his password gesture and then repeats it multiple times for the system

158

to collect sufficient data for classifier training. Specifically, when a Type-I gesture is

used, the user chooses a familiar rhythm and follows it to draw back-and-forth lines.

Such a rhythm can be from an existing song the user knows or even self-composed by

himself. Similarly, when a Type-II gesture is used, the user chooses a 2D password

shape either from a library of pre-selected patterns or self-defined by himself. During

the verification phase, the user draws his password gesture to unlock the smartwatch.

Figure 6.6 depicts the flow chart of WearAuth. We briefly explain each functional

module as follows. WearAuth collects acoustic signals reflected from a user’s finger

movement. The Acoustic Sensing (AS) module uses the motion tracking technique

introduced in Section 6.3 to infer the user’s finger movement trace. Then the Data

Processing (DP) module applies averaging and normalization to the recovered finger

trace. Next, the Feature Extraction (FE) module is invoked to extract a vector from

each finger trace. Finally, the Machine Learning (ML) module uses the extracted

feature vector(s) either to train a classifier in the enrollment phase or to determine

whether the user is legitimate during the verification phase. Since the FE and ML

modules for Type-I and Type-II gestures are significantly different, we name Wear-

Auth for Type-I and Type-II gestures as WearAuth-R and WearAuth-S, respectively,

where R and S are short for rhythm and shape, respectively.

6.4.2 Data Processing

The DP module is to reduce the impact of tracking errors in the AS module on

the overall system performance. We accomplish this goal with three steps in sequel:

trace smoothing, orientation adjustment, and normalization.

The first step is to smooth the finger trace produced by the AS module. The

raw trace inevitably exhibits irregular ups and downs due to various factors. For

example, the user’s finger movement naturally includes tiny variations such as tiny

159

-0.2 -0.1 0

x (m)

-0.2

-0.15

-0.1

-0.05

0

y
 (

m
)

Example Trace

Original
Back2Origin
Orientation

adjustment

(a) An example trace.

0 20 40 60 80

Trace Index

- /2

0

/2

A
n
g
le

Direction of Vector

Connection Point

Connection Point

Connection Point

Trace

Connection

(b) The trace after processing.

Figure 6.7: Find “feature points” from a trace.

backward and forward displacements, which would affect the phase change of received

signals; random environmental changes (such as nearby object movement) may affect

the phase change as well; and the LS channel estimation is always left with residue

errors [159]. For the other thing, we rely on the assumption that τd,t+1 = τd,t in

Equation (6.7) in order to obtain the approximation that ∠(hd[k]t+1) − ∠(hd[k]t) ≈

∠(e−j2πfcτd,t). Essentially, this assumes that the user maintains a similar finger moving

speed when he is drawing 1D lines or 2D shapes. Such a requirement is easy to meet

in typical finger tracking scenarios but more difficult for our user authentication. This

is because WearAuth users usually have their own ways to draw lines or shapes and

the finger movement speed usually changes across a trace. Another issue is that we

need to identify the correct CIR tap(s) corresponding to the physical location of the

user’s finger in every frame. In practice, the acoustic sensing system may pick up

a nearby tap by mistake, resulting in some abrupt points in the calculated trace.

We further use a five-point slow-moving-average (SMA) filter as the first remedy to

obtain a smoothed trace.

The second step is to adjust the orientation of the smoothed finger trace in order

to loose the constraint on how the user draws his gesture. In this way, the user can

160

perform his password gesture in an arbitrary orientation, leading to higher usability.

We achieve this goal as follows. First, we calculate the center point of a trace as the

average of all points and then move the trace such that the center point becomes

(0, 0) in the 2D plane. Next, we calculate the angle between the first and last points

and then rotate the trace around its center point, i.e., (0, 0), until the angle becomes

zero. Essentially, we apply a rotation matrix

 cosα sinα

− sinα cosα

, in which α is the

above mentioned angle.

The third step is to normalize the adjusted finger trace so as to reduce the impact

of varying gesture dimensions which may naturally occur for each different authen-

tication instance. Intuitively, the traces drawn by the same user tend to be similar

from one to another, but their sizes inevitably vary within a certain range. This issue

can be mitigated by applying normalization to each finger trace. Assume that the

minimum and maximum x-axis value of a trace is xmin and xmax. We apply a −xmin

displacement along the x-axis and then a 1
xmax−xmin

magnification factor to the trace.

As a result, the maximum difference along x-axis becomes 1.

WearAuth-S adopts all the three steps above, while WearAuth-R only uses the

first step. As an example, Figure 6.7a shows a trace and its corresponding transfor-

mations after orientation adjustment, and Figure 6.7b shows the processed trace after

normalization.

6.4.3 Feature Extraction

Case 1: WearAuth-R. Imagine that a user follows his chosen rhythm to draw 1D

back-and-forth lines. For security concerns, our system enforces a minimum number

of notes in a user’s rhythm, say 4, each of which is a pitch lasting a certain duration.

The number of notes and the duration of each note together determine the security

161

1 2 3 4 5

Figure 6.8: Gesture shapes in our library.

and usability of WearAuth-R. Intuitively, the more notes, the more difficult for an

attacker to emulate the legitimate user (higher security), the longer time needed to

finish the gesture (lower usability), and vice versa.

Now we describe how to infer the note durations from the finger trace. According

to our observation, some users start drawing a line and stop at its end for sufficient

time to finish the note, while others spend the whole duration drawing a line and have

very short pause at its end. In either way, we can expect some very close points, if

not completely overlapping, at the end of either a forward or backward line, which are

referred to as “lingering” points. Then we want to find three types of “feature” points

among these lingering points: start-to-linger, stop-to-linger, and connection points.

The start-to-linger and stop-to-linger points correspond to the first and last of all

lingering points, respectively, while the connection point is the one with the largest

direction change. We regard all the points between the start-to-linger and stop-to-

linger points in the same set of feature points as a “lingering segment”. Any direction

change in the finger trace—either from backward to forward or the reverse—leads to

a new set of three features points. In practice, we first look for a connection point

and later the corresponding start-to-linger and stop-to-linger point among the same

group of lingering points because the connection point is the easiest to spot. More

specifically, the connection point can be easily singled out by calculating the angle

162

-0.16 -0.14 -0.12 -0.1

x (m)

-0.18

-0.16

-0.14

-0.12

y
 (

m
)

Example Trace

Trace
Connection

(a) An example trace.

0 20 40 60 80

Trace Index

- /2

0

/2

A
n
g
le

Direction of Vector

Connection Point

Connection Point

Connection Point

Trace

Connection

(b) Direction between two adjacent

points.

-0.14 -0.12 -0.1

x (m)

-0.16

-0.15

-0.14

-0.13

-0.12

y
 (

m
)

Connection Point Example

Trace
Connection
Start2Stop
Stop2Stop

(c) A zoom-in segment.

Figure 6.9: Find “feature points” from a trace.

between any two adjacent points in a trace and selecting the one with the largest angle

change. After that, we start from the spotted connection point and search backward

along the trace to find the start-to-linger point and forward to locate the stop-to-

linger point. The last point in the backward search whose Cartesian distance from

the connection point falls below a system threshold δp is the start-to-linger point, and

the last point in the forward search satisfying the same Cartesian distance criterion

is the stop-to-linger point. In our implementation, we use a δp = 0.75 cm.

Figure 6.9 exemplifies how to find feature points. In particular, Figure 6.9a is the

example trace from which we need to identify three sets of feature points. Figure 6.9b

163

plots the angles between two adjacent points on the trace. We can easily identify three

connection points, represented by red diamonds. Figure 6.9c plots a short segment

obtained by zooming in the example trace. The points denoted by a red square and

a red star are the start-to-linger and stop-to-linger point, respectively.

Next, we extract a feature vector from each finger trace. Each forward or backward

line is called a “movement” which usually corresponds to a note in the chosen rhythm.

Assume that the user trace consists of n movements (or equivalently n notes in the

user’s chosen rhythm) and Np points. We denote the trace by {p, t}, where p = {pi =

(xi, yi)|1 ≤ i ≤ Np} is the set of point coordinates, and t = {ti|1 ≤ i ≤ Np} is the

set of timestamps corresponding to each point. Following the above procedure, we

can obtain a set of point indexes {(ηj,1, ηj,2, ηj,3)|1 ≤ j ≤ n + 1}, where ηj,1, ηj,2, and

ηj,3 are the indexes of the j-th start-to-linger, stop-to-linger, and connection points,

respectively. For convenience only, we define η1,1 = η1,2 = 1 and ηn+1,2 = ηn+1,3 = Np.

Then the following time-domain features are extracted for WearAuth-R:

• {βj = tηj,2 − tηj,1 |j ∈ [1, n+ 1]}: βj is the duration of j-th lingering segment.

• {αj = tηj+1,3
− tηj,3|j ∈ [1, n]}: αj is the duration of j-th movement.

• {γj =
αj

α1
|j ∈ [1, n]}: γj is the ratio between the duration of j-th movement and

that of the 1st one.

Case 2: WearAuth-S. In WearAuth-S, the user draws a 2D password shape to

unlock his wearable device. He can either choose a shape from the preloaded system

library or come up with his own one like some numeric digit, an English letter, or a

signature. Figure 6.8 lists five recommended shapes in [39]. These shapes were found

very easy to repeat by the same user. In addition, different users tend to draw the

164

same shape in diverse ways that can well distinguish different users. The following

metrics are calculated from the finger trace output by the DP module.

• Trace coordinates p = {(xi, yi)|i ∈ [1, Np]}.

• Curvature. It is computed at point (xi, yi) by

κi =
4Ψy

i∆
x
i − 4Ψx

i ∆
y
i

((∆x
i)

2 + (∆y
i)

2)3/2
, (6.9)

where ∆x
i = (xi−1 + xi+1)/2,∆y

i = (yi−1 + yi+1)/2,Ψx
i = xi+1 − 2xi + xi−1, and

Ψy
i = yi+1 − 2yi + yi−1.

• Velocity along the x-axis and y-axis. We denote them by υx and υy,

respectively, and compute them as

υx,i =
xi+1 − xi
ti+1 − ti

and υy,i =
yi+1 − yi
ti+1 − ti

. (6.10)

• Acceleration along the x-axis and y-axis. We denote them by ax and ay,

respectively, and compute as

ax,i =
υx,i+1 − υx,i
ti+1 − ti

and ay,i =
υy,i+1 − υy,i
ti+1 − ti

. (6.11)

• Direction. It is defined as the angle of the vector between two adjacent points

and calculated as

θi = arctan(
yi+1 − yi
xi+1 − xi

). (6.12)

One challenge for Feature Extraction (FE) is that the number Np of points varies

from one trace to another even for the same user drawing the same gesture. As a

result, the above metrics cannot be directly combined and fed into the ML module.

We use a commonly-used solution to transform each metric above into a distance

value in two steps. First, we want to select one trace from all training samples of the

165

same user as the template trace. For this purpose, we use the Dynamic Time Warping

(DTW) algorithm [161] to compute the distance between every two traces for each

of the eight metrics above. A smaller DTW distance suggests that the two training

traces are similar with regard to the corresponding metric. Then we compute the

average DTW distance for each training trace with all the other traces with regard

to every metric, leading to eight distance values for each training trace. We further

derive the average of its eight DTW distance values for each training trace, and the

one with the minimum average is selected as the template trace. In the second step,

we calculate eight DTW distance values between each non-template trace and the

template trace in the form of [dx, dy, dκ, dυx , dυy , dax , day , dθ].

6.4.4 Machine Learning

We adopt the popular support-vector machine (SVM) algorithm for classifier train-

ing and testing. In specific, there are two classes in our classifier: positive class and

negative class. The samples of positive class come from the device user while those

of negative class from other people, such as users of other devices or even attackers.

After a classifier is built, we can then apply it to a new unlabelled sample to deter-

mine its legitimacy. If it is legitimate, the user is then authenticated. Vice versa.

The details of our training and testing data set are in Section 6.5.3.

6.5 Performance Evaluation

This section evaluates the performance of WearAuth.

6.5.1 Adversary Model

We assume the following adversary model to evaluate the security and usability

of WearAuth. The attacker has physical access to the victim’s wearable device and

166

tries to unlock it with the full knowledge of how WearAuth works. We consider the

following two specific attacks.

• Random emulation: The attacker knows how many notes are in the victim’s

rhythm for the 1D case or his password shape for the 2D case. But the attacker

has no observation about how the victim actually performs the 1D or 2D gesture.

• Shoulder surfing: The attacker observes how the victim performs the 1D or

2D password gesture either in person or through a stealthy video recorder. He

needs to guess the number of notes in the victim’s rhythm for the 1D case or

the corresponding password shape for the 2D case.

6.5.2 Performance Metrics

We use the following performance metrics.

• Receiver Operating Characteristic (ROC) curve. An ROC curve can

be used to illustrate the performance of a binary classifier as its discrimination

threshold changes. According to the definition in [104], we can obtain an ROC

curve by plotting TPR (true-positive rate) with respect to FPR (false-positive

rate) in various threshold settings.

• Equal Error Rate. When FPR (false-positive rate) is equal to FNR (false-

negative rate), we call the corresponding error value as equal error rate (EER).

It describes the best performance a classifier can achieve considering both FPR

and FNR at the same time.

167

6.5.3 Experiment Setup

Implementation

We used a Samsung Galaxy S5 to demonstrate the feasibility of WearAuth. Although

many COTS smartwatch models, e.g., Apple Watch 2 [162], Samsung Galaxy Gear

[163], and Moto 360 [164], have two microphones, only one of them is programmable

in most cases. Due to such a practical limitation, previous work on acoustic sensing

either used a smartphone [158] or built a prototype [157] with the size similar to

that of a smartwatch for feasibility demonstration. The main difference between

smartwatches and smartphones when used for acoustic sensing is the device size,

which nevertheless has little impact on the tracking results.

The following implementation details were used for acoustic sensing in our exper-

iments. The passband for signal transmissions is 18 to 22 kHz, the center frequency

is fc = 20 kHz, and the total bandwidth is W = 4 kHz. We used BPSK modulation

for acoustic signals, and the length of each BPSK symbol (i.e., 1 or -1) is 0.25 ms.

The speaker repeatedly sends a known 26-bit GSM training sequence, which is also

referred to as a frame. To avoid inter-frame interference, a fixed gap needs to be

inserted. We achieved this by padding 24 zeros with the original sequence. There-

fore, the final frame has 50 symbols and a duration of 12.5 ms. We also set N = 10

and P = 16 for LS estimation. Please refer to Strata in [3] for more implementation

details.

Data collection

We recruited six participants in the experiments, including two females and four

males. Their ages range between 20 and 30. The typical setup of our experiments is

like this. We put the device on the table, with the screen facing upward. A participant

168

sat in front of the device and began to draw 1D lines or 2D shapes. She/he could do

the drawing either on the table or in the air. Besides, they could choose the starting

points of their drawing arbitrarily as long as the whole drawing was within 0.5m

range. The experiments involved two steps. In the first, we asked each participant

to draw lines in a forward and backward fashion following their own rhythms. Each

participant used two rhythms and performed 25 line drawings (i.e., 1D patterns) for

each rhythm. In the second step, we asked each participant to draw each shape in

Figure 6.10 25 times.

We also collected some data to emulate the shoulder-surfing attack. For this

purpose, we used a Google Nexus 6 to record a video capturing how each participant

performed line or shape drawing during the experiments. We had one participant act

as the attacker and the others as the victims. The attacker watched each victim’s

video for sufficiently long until confident of successful emulations. In addition, the

attacker attempted each line or shape drawing for 10 times.

We eventually collected four datasets: S1D, S2D, T1D, and T2D. In particular, S1D

comprises the instances of 300 legitimate 1D drawings; S2D consists of 750 instances of

legitimate 2D drawings; T1D and T2D are composed of 600 1D and 1,500 2D instances

of the shoulder-surfing attacks.

Training and testing procedure

The ratio between positive and negative samples in the training set is a critical factor

in building a classifier. In most of our experiments, a training set usually consists

of 15 positive samples and 35 negative ones, resulting in a 3 : 7 positive-negative

ratio. All the remaining samples are used for testing. Consequently, a testing set

usually consists of at least 10 positive samples and 90 negative ones. To obtain a

classifier model, we ran 10-fold cross validation over a training set. Then we applied

169

the optimal one among the 10 folds to the corresponding testing set to derive TPR

and FPR. For each selected rhythm (1D) or shape (2D) of a participant, we ran

the above training-testing process 20 times to alleviate the impact of randomness in

generating a training set. The ROC and EER results to report are the average over

all experiment runs and all participants.

6.5.4 Experimental results

Number of positive samples

First, we examine the impact of the number of positive samples in a training set on

EER. It is expected that EER drops with the increase of positive samples until it

saturates to a certain level. We changed the number of positive samples from five to

15 while fixing the number of negative ones to 35 in a training set. The fold number

for cross validation is five rather than 10. Figure 6.11 shows the relationship between

EER and the number of positive samples. As we can see, EER drops from 14% to

7.2% when the number of positive samples increases from five to 15 for WearAuth-R.

The result for WearAuth-S is similar where EER drops from 18% to 9.5%. We can

also see that EER for WearAuth-R becomes saturated when the number of positive-

samples is larger than 12. Similarly, the EER for WearAuth-S becomes saturated

when the number of positive samples is larger than 14.

ROC performance

Now we show the ROC curves for the experimental process described in Section 6.5.3.

Figure 6.12a shows the ROC curve of WearAuth-R. It is clear that WearAuth-R can

achieve 93% TPR and 97% TNR simultaneously, which confirms its feasibility as

a secure and usable authentication scheme. Figure 6.12b shows that WearAuth-S

can achieve 91% TPR and 97% TNR simultaneously, which is comparable to the

170

performance of WearAuth-R. So both WearAuth-R and WearAuth-S can serve as a

secure and convenient authentication method for wearable devices.

Performance under attacks

We first discuss the performance under random emulation attacks. According to the

process of generating a training set for for a selected rhythm or shape in Section 6.5.3,

each negative sample in both training and testing sets can also be regarded as a

random-emulation attack. So the promising results reported in Section 6.5.4 have

confirmed that WearAuth-R and WearAuth-S can both achieve high TPR and TNR

under the random-emulation attack.

To evaluate the resilience to shoulder-surfing attacks, we labeled the attack sam-

ples as negative and added them to the testing set. Figure 6.13a and Figure 6.13b

show the ROC curves of WearAuth-R and WearAuth-S under shoulder-surfing at-

tacks, respectively. In contrast to the results in Figure 6.12a and Figure 6.12b, the

performance of both WearAuth-R and WearAuth-S degrades a little, which is ex-

pected. More specifically, EER for WearAuth-R decreases from 7% to 9.4%,and EER

for WearAuth-S from 9.5% to 12.2%. Given that conventional wearable authentica-

tion methods like PIN or pattern lock have almost no resilience to shoulder-surfing

attacks, we believe that our highly usable system is sufficiently effective and raises

the bar for shoulder-surfing attacks.

6.6 Conclusion

In this chapter, we presented the design and evaluation of WearAuth, a novel

and practical system for user authentication on COTS wearable devices. WearAuth

utilizes acoustic sensing to track a user’s finger movement and explores user-specific

features like a user’s selective rhythm or drawing behavior for authentication. Exten-

171

sive user experiments confirmed that WearAuth is highly usable and resilient to both

random emulation and shoulder-surfing attacks.

172

-0.06 -0.04 -0.02 0 0.02

x axis (m)

-0.06

-0.04

-0.02

0

0.02

y
 a

x
is

 (
m

)

Shape 1

(a) Shape 1.

-0.06 -0.04 -0.02 0 0.02

x axis (m)

-0.06

-0.04

-0.02

0

0.02

y
 a

x
is

 (
m

)

Shape 2

(b) Shape 2.

-0.04-0.0200.02

x axis (m)

-0.05

-0.03

-0.01

0.01

y
 a

x
is

 (
m

)

Shape 3

(c) Shape 3.

-0.08 -0.06 -0.04 -0.02 0 0.02

x axis (m)

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

y
 a

x
is

 (
m

)

Shape 4

(d) Shape 4.

-0.08 -0.06 -0.04 -0.02 0 0.02

x axis (m)

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

y
 a

x
is

 (
m

)

Shape 5

(e) Shape 5.

Figure 6.10: Shapes in Figure. 6.8.

173

5 10 15
5

10

15

20

25

Number of Positive Samples

E
q
u
a
l
E

rr
o
r

R
a
te

 (
%

)

Impact of Positive Samples

WearAuth−R
WearAuth−S

Figure 6.11: Impact of positive sample size on EER.

0 20 40 60 80 100

False Positive Rate (%)

70

75

80

85

90

95

100

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 (
%

) Receiver Operating Curve

(a) ROC of WearAuth-R.

0 20 40 60 80 100

False Positive Rate (%)

70

75

80

85

90

95

100

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 (
%

) Receiver Operating Curve

(b) ROC of WearAuth-S.

Figure 6.12: ROC without attacks.

0 20 40 60 80 100

False Positive Rate (%)

70

75

80

85

90

95

100

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 (
%

) Receiver Operating Curve

(a) ROC of WearAuth-R.

0 20 40 60 80 100

False Positive Rate (%)

70

75

80

85

90

95

100

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 (
%

) Receiver Operating Curve

(b) ROC of WearAuth-S.

Figure 6.13: ROC under shoulder-surfing attack.

174

Chapter 7

CONCLUSION AND FUTURE WORK

In this dissertation, we work on two lines related to security and privacy of mobile

devices. Specifically, we focus on two novel attacks, i.e., mobile app fingerprinting

and keystroke inference attack, and three novel countermeasures, i.e., rhythm-based

authentication, liveness detection for mobile face authentication, and acoustic sens-

ing for authentication on wearable devices. To achieve mobile app fingerprinting, we

presented the design and evaluation of POWERFUL, a novel framework on Android

mobile device which combines power analysis and machine learning for mobile app

usage inference. POWERFUL exploits the app-specific characteristics of the power

profiles without requiring user permission. Our extensive experiments demonstrated

that POWERFUL is able to infer the app being used at a specific time with high ac-

curacy, thus posing a realistic and serious threat to user privacy. To achieve keystroke

inference on mobile devices, we presented the design and evaluation of EyeTell, a novel

video-assisted attack that can infer a victim’s keystrokes on his touchscreen device

from a video capturing his eye movements. EyeTell explores the observation that

human eyes naturally focus on and follow the keys they type, so a typing sequence on

a soft keyboard results in a unique gaze trace of continuous eye movements. Compre-

hensive experiments on iOS and Android devices confirm the high efficacy of EyeTell.

To achieve rhythm-based authentication, we presented the design and evaluation of

RhyAuth, a novel two-factor rhythm-based authentication scheme for multi-touch

mobile devices. RhyAuth is a two-factor authentication scheme that depends on a

user-chosen rhythm and also the behavioral metrics for inputting the rhythm. Our

experiments on Android devices confirm that RhyAuth is highly secure against vari-

175

ous attacks such as shoulder-surfing attack and emitation attack. To achieve liveness

detection for mobile face authentication, we presented the design and evaluation of

FaceHeart, a novel and practical scheme to secure face authentication on COTS mo-

bile devices. FaceHeart relies on the non-forgeability of the photoplethysmograms ex-

tracted from two videos simultaneously taken through the front and rear cameras on

a mobile device. Extensive user experiments confirm that FaceHeart can effectively

thwart photo-based and video-based forgery attacks on mobile face authentication

systems. To improve current authentication on wearable devices, we presented the

design and evaluation of WearAuth, a novel and practical framework more favorable

on wearables. WearAuth exploits acoustic sensing to track a user’s finger movement

and then extracts features from tracked finger trace for authentication. Our user

experiments confirmed that WearAuth was secure against random emulation attack

and shoulder-surfing attack, while preserving high usability.

Our current effort is still far from perfect. For rhythm-based mobile authen-

tication, there have been some research results showing that user behavior on the

touchscreen can be well-expected or easily-emitated with the help of robots. Such re-

search imediately casts great shadow to user-biometric based authentication schemes.

In order to defend against such heuristic attacks, we can explore the following two

directions. First, assuming it is challenging for normal human attackers to emitate

other user’s biometric behaviors, we focus on detecting robot emitation by liveness

detection of human fingers. Second, considering it is easier for either human attackers

or robots to emitate other user’s biometric behaviors with longer-duration data, we

want to explort features extracted from touch events of shorter durations. For mobile

app fingerprinting attack, there is much room for our system to improve. For exam-

ple, currently we only use power profiles to infer the specific application a targeted

victim was using. Due to the various factors affecting the power profiles, POWER-

176

FUL achieves acceptable inference accuracy only within a small set of apps. In fact,

there are other public-available data on Android devices which may be beneficial for

app fingerprinting. One example is CPU usage. CPU usage provides a new dimen-

sion to evaluate the app usage of the whole device. Therefore, we believe it may

be combined with power profiles to improve the capability of POWERFUL. Another

direction is to explore more advanced attacks based on our mobile app fingerprinting

attack. One promising attack is to analyze the app preferences of a targeted victim to

infer more private information, such as interests, living styles. For liveness detection

of mobile face authentication, the main limitation is that FaceHeart requires a pair

of face and fingertip video with at least four-second duration. Such a requirement

may be impractical for frequent authentication, such as face unlock. One direction

to relieve such requirement is to explore real-time matching of two PPGs. Therefore,

our system needs to improve the estimation accuracy of PPG by better face detec-

tion and tracking and PPG extraction algorithms. For keystroke inference attacks on

mobile devices, the main limitation is that the recording angle in the attack has to

be sufficiently small to ensure an acceptable inference accuracy. Obiviously, this is a

big constraint in real attack scenarios and also a big challenge to tackle. A possible

solution is to look for gaze tracking algorithms which are less sensitive to user head

postures. For authentication on wearable devices, one limitation is that most gesture-

based schemes including ours can be subject to well-designed imitation attack. To

counteract such potential attack, we forsee to use more advanced machine learning

techniques like RNN to improve robustness of a trained model. Or we can simulate

the imitation adversary using Generative Adversarial Network (GAN) to train with

more advanced attack samples.

177

REFERENCES

[1] http://cloud.freehandmusic.netdna-cdn.com/preview/530x4/warner/
amgrace.png.

[2] “Structure of human eye,” https://en.wikipedia.org/wiki/Human_eye.

[3] S. Yun, Y. Chen, H. Zheng, L. Qiu, and W. Mao, “Strata: Fine-grained acoustic-
based device-free tracking,” in ACM MobiCom, Niagara Falls, NY, Jun. 2017.

[4] “Cisco visual networking index global mobile data traffic forecast update 2012-
2017.” [Online]. Available: http://www.cisco.com/en/US/solutions/collateral/
ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.html

[5] N. Sae-Bae, K. Ahmed, K. Isbister, and N. Memon, “Biometric-rich gestures: a
novel approach to authentication on multi-touch devices,” in ACM CHI, Austin,
TX, May 2012.

[6] A. Aviv, K. Gibson, E. Mossop, M. Blaze, and J. Smith, “Smudge attacks on
smartphone touch screens,” in WOOT, Washington, DC, August 2010.

[7] http://www.who.int/blindness/en/.

[8] http://www.afb.org/section.aspx?SectionID=15.

[9] H. Bojinov and D. Boneh, “Mobile token-based authentication on a budget,” in
HotMobile, Phoenix, AZ, April 2011.

[10] T. Vu, A. Baid, S. Gao, M. Gruteser, R. Howard, J. Lindqvist, P. Spasojevic,
and J. Walling, “Distinguishing users with capacitive touch communication,” in
ACM MobiCom, Istanbul, Turkey, August 2012.

[11] http://gizmodo.com/hackers-iphone-5s-fingerprint-security-is-not-secure-
1367817697.

[12] M. Jakobsson, E. Shi, P. Golle, and R. Chow, “Implicit authentication for mobile
devices,” in HotSec, Montreal, Canada, August 2009.

[13] E. Shi, Y. Niu, M. Jakobsson, and R. Chow, “Implicit authentication through
learning user behavior,” in ISC, Boca Raton, FL, October 2010.

[14] J. Mantyjarvi, M. Lindholm, E. Vildjiounaite, S. Makela, and H. Ailisto, “Iden-
tifying users of portable devices from gait pattern with accelerometers,” in
ICASSP, Philadelphia, PA, March 2005.

[15] D. Gafurov, E. Snekkenes, and P. Bours, “Spoof attacks on gait authentication
system,” IEEE Transactions on Information Forensics and Security, vol. 2,
no. 3, pp. 491–502, September 2007.

178

http://cloud.freehandmusic.netdna-cdn.com/preview/530x4/warner/amgrace.png
http://cloud.freehandmusic.netdna-cdn.com/preview/530x4/warner/amgrace.png
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.html
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.html
http://www.who.int/blindness/en/
http://www.afb.org/section.aspx?SectionID=15
http://gizmodo.com/hackers-iphone-5s-fingerprint-security-is-not-secure-1367817697
http://gizmodo.com/hackers-iphone-5s-fingerprint-security-is-not-secure-1367817697

[16] A. Luca, A. Hang, F. Brudy, C. Lindner, and H. Hussman, “Touch me once
and i know it’s you! implicit authentication based on touch screen patterns,”
in CHI, Austin, TX, May 2012.

[17] F. Sandnes and X. Zhang, “User identification based on touch dynamics,” in
UIC/ATC, Fukuoka, Japan, September 2012.

[18] L. Li, X. Zhao, and G. Xue, “Unobservable re-authentication for smartphones,”
in NDSS, San Diego, USA, February 2013.

[19] “Nielsen mobile app analysis.” [Online]. Avail-
able: http://www.nielsen.com/us/en/insights/news/2015/so-many-apps-so-
much-more-time-for-entertainment.html

[20] “Alcatel-lucent motive security labs malware report - h1 2015.” [Online].
Available: http://resources.alcatel-lucent.com/asset/189669

[21] E. Owusu, J. Han, S. Das, A. Perrig, and J. Zhang, “Accessory: password
inference using accelerometers on smartphones,” in ACM HotMobile, San Diego,
CA, February 2012.

[22] L. Cai and H. Chen, “On the practicality of motion based keystroke inference
attack.” Springer Berlin Heidelberg, Jun. 2012.

[23] R. Schlegel, K. Zhang, X. Zhou, M. Intwala, A. Kapadia, and X. Wang, “Sound-
comber: A stealthy and context-aware sound trojan for smartphones.” in NDSS,
San Diego, CA, February 2011.

[24] Z. Xu, K. Bai, and S. Zhu, “Taplogger: Inferring user inputs on smartphone
touchscreens using on-board motion sensors,” in ACM WiSec, Tucson, AZ, April
2012.

[25] L. Cai and H. Chen, “Touchlogger: Inferring keystrokes on touch screen from
smartphone motion,” in USENIX HotSec, San Francisco, CA, August 2011.

[26] J. Han, E. Owusu, L. Nguyen, A. Perrig, and J. Zhang, “Accomplice: Loca-
tion inference using accelerometers on smartphones,” in IEEE COMSNETS,
Bangalore, India, January 2012.

[27] M. Azizyan, I. Constandache, and R. Choudhury, “Surroundsense: mobile phone
localization via ambience fingerprinting,” in ACM MobiCom, Beijing, China,
September 2009.

[28] S. Jana and V. Shmatikov, “Memento: Learning secrets from process foot-
prints,” in IEEE S&P, San Francisco, CA, May 2012.

[29] K. Zhang and X. Wang, “Peeping tom in the neighborhood: keystroke eaves-
dropping on multi-user systems,” in USENIX Security, Montreal, Canada, Au-
gust 2009.

179

http://www.nielsen.com/us/en/insights/news/2015/so-many-apps-so-much-more-time-for-entertainment.html
http://www.nielsen.com/us/en/insights/news/2015/so-many-apps-so-much-more-time-for-entertainment.html
http://resources.alcatel-lucent.com/asset/189669

[30] X. Zhou, S. Demetriou, D. He, M. Naveed, X. Pan, X. Wang, C. Gunter, and
K. Nahrstedt, “Identity, location, disease and more: Inferring your secrets from
android public resources,” in ACM CCS, berlin, Germany, November 2013.

[31] Q. Chen, Z. Qian, and Z. Mao, “Peeking into your app without actually seeing
it: Ui state inference and novel android attacks,” in USENIX Security, San
Diego, CA, August 2014.

[32] T. Stöber, M. Frank, J. Schmitt, and I. Martinovic, “Who do you sync you
are?: smartphone fingerprinting via application behaviour,” in ACM WiSec,
Budapest, Hungary, April 2013.

[33] Q. Xu, Y. Liao, S. Miskovic, Z. Mao, M. Baldi, A. Nucci, and T. Andrews,
“Automatic generation of mobile app signatures from traffic observations,” in
IEEE INFOCOM, Hong Kong, April 2015.

[34] S. Miskovic, G. Lee, Y. Liao, and M. Baldi, “Appprint: Automatic fingerprinting
of mobile applications in network traffic.”

[35] S. Dai, A. Tongaonkar, X. Wang, A. Nucci, and D. Song, “Networkprofiler:
Towards automatic fingerprinting of android apps,” in IEEE INFOCOM, Turin,
Italy, April 2013.

[36] N. Verde, G. Ateniese, E. Gabrielli, L. Mancini, and A. Spognardi, “No nat’d
user left behind: Fingerprinting users behind nat from netflow records alone,”
in IEEE ICDCS, Madrid, Spain, Jul. 2014.

[37] Q. Wang, A. Yahyavi, B. Kemme, and W. He, “I know what you did on your
smartphone: Inferring app usage over encrypted data traffic,” in IEEE CNS’15,
Florence, Italy, Sep. 2015.

[38] [Online]. Available: http://www.channelpronetwork.com/article/mobile-
device-security-startling-statistics-data-loss-and-data-breachesl

[39] M. Shahzad, A. Liu, and A. Samuel, “Secure unlocking of mobile touch screen
devices by simple gestures: You can see it but you can not do it,” in ACM
MobiCom, Miami, USA, Sep. 2013.

[40] J. Sun, X. Chen, J. Zhang, Y. Zhang, and J. Zhang, “TouchIn: Sightless two-
factor authentication on multi-touch mobile devices,” in IEEE CNS, San Fran-
cisco, CA, October 2014.

[41] Y. Chen, J. Sun, R. Zhang, and Y. Zhang, “Your song your way: Rhythm-based
two-factor authentication for multi-touch mobile devices,” in IEEE INFOCOM,
Hong Kong, China, April 2015.

[42] T. Li, Y. Chen, J. Sun, X. Jin, and Y. Zhang, “iLock: Immediate and automatic
locking of mobile devices against data theft,” in ACM CCS, Vienna, Austria,
October 2016.

180

http://www.channelpronetwork.com/article/mobile-device-security-startling-statistics-data-loss-and-data-breachesl
http://www.channelpronetwork.com/article/mobile-device-security-startling-statistics-data-loss-and-data-breachesl

[43] O. Kähm and N. Damer, “2d face liveness detection: An overview,” in IEEE
BIOSIG, Darmstadt, German, September 2012.

[44] K. Kollreider, H. Fronthaler, and J. Bigun, “Non-intrusive liveness detection
by face images,” Image and Vision Computing, vol. 27, no. 3, pp. 233–244,
February 2009.

[45] R. Ghiass, O. Arandjelovic, H. Bendada, and X. Maldague, “Infrared face recog-
nition: a literature review,” in IEEE IJCNN, Dallas, TX, August 2013.

[46] J. Määttä, A. Hadid, and M. Pietikainen, “Face spoofing detection from single
images using micro-texture analysis,” in IEEE IJCB, Washington, DC, October
2011.

[47] X. Tan, Y. Li, J. Liu, and L. Jiang, “Face liveness detection from a single image
with sparse low rank bilinear discriminative model,” in ECCV, Crete, Greece,
September 2010.

[48] S. Chen, A. Pande, and P. Mohapatra, “Sensor-assisted facial recognition: an
enhanced biometric authentication system for smartphones,” in ACM MobiSys,
Bretton Woods, NH, Jun. 2014.

[49] Y. Li, Y. Li, Q. Yan, H. Kong, and R. Deng, “Seeing your face is not enough: An
inertial sensor-based liveness detection for face authentication,” in ACM CCS,
Denver, CO, October 2015.

[50] M. Backes, M. Dürmuth, and D. Unruh, “Compromising reflections-or-how to
read lcd monitors around the corner,” in IEEE Symposium on Security and
Privacy, Oakland, CA, USA, May 2008.

[51] M. Backes, T. Chen, M. Duermuth, H. Lensch, and M. Welk, “Tempest in a
teapot: Compromising reflections revisited,” in IEEE Symposium on Security
and Privacy, Oakland, CA, USA, May 2009.

[52] D. Balzarotti, M. Cova, and G. Vigna, “ClearShot: Eavesdropping on keyboard
input from video,” in IEEE Symposium on Security and Privacy, Oakland, CA,
USA, May 2008.

[53] F. Maggi, A. Volpatto, S. Gasparini, G. Boracchi, and S. Zanero, “A fast eaves-
dropping attack against touchscreens,” in Information Assurance and Security,
Melaka, Malaysia, December 2011.

[54] R. Raguram, A. White, D. Goswami, F. Monrose, and J.-M. Frahm, “iSpy:
Automatic reconstruction of typed input from compromising reflections,” in
ACM CCS, Chicago, IL, USA, October 2011.

[55] Y. Xu, J. Heinly, A. White, F. Monrose, and J. Frahm, “Seeing double: Re-
constructing obscured typed input from repeated compromising reflections,” in
ACM CCS, Berlin, Germany, October 2013.

181

[56] Q. Yue, Z. Ling, X. Fu, B. Liu, K. Ren, and W. Zhao, “Blind recognition of
touched keys on mobile devices,” in ACM CCS, Scottsdale, Arizona, November
2014.

[57] D. Shukla, R. Kumar, A. Serwadda, and V. Phoha, “Beware, your hands reveal
your secrets!” in ACM CCS, Scottsdale, AZ, November 2014.

[58] J. Sun, X. Jin, Y. Chen, J. Zhang, R. Zhang, and Y. Zhang, “Visible: Video-
assisted keystroke inference from tablet backside motion,” in NDSS, San Diego,
CA, Feb. 2016.

[59] J. O. Wobbrock, “Tapsongs: tapping rhythm-based passwords on a single binary
sensor,” in ACM UIST, Victoria, Canada, Oct. 2009.

[60] D. Marques, T. Guerreiro, L. Duarte, and L. Carriço, “Under the table: Tap
authentication for smartphones,” ACM BCS-HCI, Sep. 2013.

[61] F. X. Lin, D. Ashbrook, and S. White, “Rhythmlink: securely pairing i/o-
constrained devices by tapping,” in ACM UIST, Santa Barbara, CA, Oct. 2011.

[62] N. Zheng, K. Bai, H. Huang, and H. Wang, “You are how you tap: A two-factor
authentication for smartphone users,” in IEEE ICNP, North Carolina, October
2014.

[63] A. Serwadda and V. V. Phoha, “When kids’ toys breach mobile phone security,”
in ACM CCS, Berlin, Germany, November 2013.

[64] http://en.wikipedia.org/wiki/Simple_moving_average.

[65] http://en.wikipedia.org/wiki/Dynamic_time_warping.

[66] C. Chang and C. Lin, “Libsvm: a library for support vector machines,” ACM
Transactions on Intelligent Systems and Technology (TIST), vol. 2, no. 3, p. 27,
April 2011.

[67] M. Sherman, G. Clark, Y. Yang, S. Sugrim, A. Modig, J. Lindqvist,
A. Oulasvirta, and T. Roos, “User-generated free-form gestures for authenti-
cation: security and memorability,” in ACM MobiSys, Bretton Woods, NH,
Jun. 2014.

[68] S. Uellenbeck, M. Durmuth, C. Wolf, and T. Holz, “Quantifying the security
of graphical passwords: The case of android unlock patterns,” in ACM CCS,
Berlin, Germany, November 2013.

[69] Y. Chen, X. Jin, J. Sun, R. Zhang, and Y. Zhang, “POWERFUL: Mobile app
fingerprinting via power analysis,” in IEEE INFOCOM, Atlanta, GA, April
2017.

[70] J. Sun, X. Jin, Y. Chen, J. Zhang, R. Zhang, and Y. Zhang, “Visible: Video-
assisted keystroke inference from tablet backside motion,” in NDSS, San Diego,
CA, Feb. 2016.

182

http://en.wikipedia.org/wiki/Simple_moving_average
http://en.wikipedia.org/wiki/Dynamic_time_warping

[71] https://github.com/sonyxperiadev/ApkAnalyser.

[72] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. Dick, Z. Mao, and L. Yang, “Ac-
curate online power estimation and automatic battery behavior based power
model generation for smartphones,” in CODES/ISSS, Scottsdale, AZ, 2010.

[73] L. Ardito, G. Procaccianti, M. Torchiano, and G. Migliore, “Profiling power
consumption on mobile devices,” 2013.

[74] A. Pathak, Y. Hu, M. Zhang, P. Bahl, and Y. Wang, “Fine-grained power mod-
eling for smartphones using system call tracing,” in ACM EuroSys, Salzburg,
Austria, April 2011.

[75] A. Pathak, Y. Hu, and M. Zhang, “Where is the energy spent inside my app?:
fine grained energy accounting on smartphones with eprof,” in ACM EuroSys,
Bern, Switzerland, April 2012.

[76] N. Brouwers, M. Zuniga, and K. Langendoen, “Neat: a novel energy analysis
toolkit for free-roaming smartphones,” in ACM SenSys, memphis, TN, Novem-
ber 2014.

[77] Y. Michalevsky, A. Schulman, G. Veerapandian, D. Boneh, and G. Nakibly,
“Powerspy: Location tracking using mobile device power analysis,” in USENIX
Security, Washington, D.C., August 2015.

[78] http://www.ibtimes.co.uk/android-apps-one-ten-affected-malware-viruses-
states-new-research-1459576.

[79] http://www.leviathansecurity.com/blog/zero-permission-android-applications.

[80] R. Quinlan, C4.5: Programs for Machine Learning. San Mateo, CA: Morgan
Kaufmann Publishers, 1993.

[81] T. Ho, “The random subspace method for constructing decision forests,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 8, pp.
832–844, 1998.

[82] J. Suykens and J. Vandewalle, “Least squares support vector machine classi-
fiers,” Neural processing letters, vol. 9, no. 3, pp. 293–300, 1999.

[83] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. Witten, “The
weka data mining software: an update,” ACM SIGKDD explorations newsletter,
Nov 2009.

[84] D. Roobaert, G. Karakoulas, and N. Chawla, “Information gain, correlation and
support vector machines,” in Feature Extraction. Springer, 2006, pp. 463–470.

[85] T. M. Mitchell, Machine Learning. New York, NY, USA: McGraw-Hill, Inc.,
1997.

183

https://github.com/sonyxperiadev/ApkAnalyser
http://www.ibtimes.co.uk/android-apps-one-ten-affected-malware-viruses-states-new-research-1459576
http://www.ibtimes.co.uk/android-apps-one-ten-affected-malware-viruses-states-new-research-1459576
http://www.leviathansecurity.com/blog/zero-permission-android-applications

[86] Y. Chen, J. Sun, X. Jin, T. Li, R. Zhang, and Y. Zhang, “Your face your
heart: Secure mobile face authentication with photoplethysmograms,” in IEEE
INFOCOM, Atlanta, GA, April 2017.

[87] K. Shelley and S. Shelley, “Pulse oximeter waveform: photoelectric plethysmog-
raphy,” Clinical Monitoring, Carol Lake, R. Hines, and C. Blitt, Eds.: WB
Saunders Company, pp. 420–428, 2001.

[88] M. Kumar, A. Veeraraghavan, and A. Sabharwal, “Distanceppg: Robust non-
contact vital signs monitoring using a camera,” Biomedical optics express, vol. 6,
no. 5, pp. 1565–1588, May 2015.

[89] M. Lewandowska, J. Rumiński, T. Kocejko, and J. Nowak, “Measuring pulse
rate with a webcamâĂŤa non-contact method for evaluating cardiac activity,”
in IEEE FedCSIS, Szczecin, Poland, September 2011.

[90] X. Li, J. Chen, G. Zhao, and M. Pietikainen, “Remote heart rate measurement
from face videos under realistic situations,” in IEEE CVPR, Columbus, OH,
Jun. 2014.

[91] M.-Z. Poh, D. J. McDuff, and R. W. Picard, “Non-contact, automated cardiac
pulse measurements using video imaging and blind source separation.” Optics
express, vol. 18, no. 10, pp. 10 762–10 774, May 2010.

[92] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of
simple features,” in IEEE CVPR, Kauai, HI, December 2001.

[93] B. D. Lucas, T. Kanade et al., “An iterative image registration technique with
an application to stereo vision.” in IJCAI, 1981.

[94] C. Tomasi and T. Kanade, Detection and tracking of point features. School of
Computer Science, Carnegie Mellon Univ. Pittsburgh, 1991.

[95] J. Shi and C. Tomasi, “Good features to track,” in IEEE CVPR, Seattle, WA,
Jun. 1994.

[96] A. Asthana, S. Zafeiriou, S. Cheng, and M. Pantic, “Incremental face alignment
in the wild,” in IEEE CVPR, Columbus, OH, Jun. 2014.

[97] W. Verkruysse, L. O. Svaasand, and J. S. Nelson, “Remote plethysmographic
imaging using ambient light.” Optics express, vol. 16, no. 26, pp. 21 434–21 445,
2008.

[98] A. Lam and Y. Kuno, “Robust heart rate measurement from video using select
random patches,” in IEEE CVPR, Santiago, Chile, December 2015.

[99] S. Haykin and B. Widrow, Least-mean-square adaptive filters. John Wiley &
Sons, 2003, vol. 31.

[100] N. Friedman, D. Geiger, and M. Goldszmidt, “Bayesian network classifiers,”
Machine learning, vol. 29, no. 2-3, pp. 131–163, 1997.

184

[101] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

[102] S. Haykin and N. Network, “A comprehensive foundation,” Neural Networks,
vol. 2, no. 2004, 2004.

[103] M. J. Gregoski, M. Mueller, A. Vertegel, A. Shaporev, B. B. Jackson, R. M.
Frenzel, S. M. Sprehn, and F. A. Treiber, “Development and validation of a
smartphone heart rate acquisition application for health promotion and wellness
telehealth applications,” International journal of telemedicine and applications,
vol. 2012, p. 1, 2012.

[104] J. A. Hanley and B. J. McNeil, “The meaning and use of the area under a
receiver operating characteristic (roc) curve.” Radiology, vol. 143, no. 1, pp.
29–36, 1982.

[105] https://i-msdn.sec.s-msft.com/dynimg/IC584331.png.

[106] S. Xu, L. Sun, and G. K. Rohde, “Robust efficient estimation of heart rate pulse
from video,” Biomedical optics express, vol. 5, no. 4, pp. 1124–1135, March 2014.

[107] Y. Chen, T. Li, R. Zhang, Y. Zhang, and T. Hedgpeth, “Eyetell: Video-assisted
touchscreen keystroke inference from eye movements,” in IEEE Symposium on
Security and Privacy, San Franscico, CA, May 2018, conditionally accepted.

[108] E. Wood and A. Bulling, “Eyetab: Model-based gaze estimation on unmodified
tablet computers,” in ACM ETRA, Safety Harbor, FL, March 2014.

[109] D. Hansen and Q. Ji, “In the eye of the beholder: A survey of models for eyes
and gaze,” IEEE Trans. PAMI, vol. 32, no. 3, pp. 478–500, March 2010.

[110] Z. Zhu and Q. Ji, “Novel eye gaze tracking techniques under natural head move-
ment,” IEEE Trans. BME, vol. 54, no. 12, pp. 2246–2260, December 2007.

[111] E. Miluzzo, A. Varshavsky, S. Balakrishnan, and R. Choudhury, “Tapprints:
your finger taps have fingerprints,” in ACM MobiSys, Low Wood Bay, Lake
District, UK, June 2012.

[112] L. Simon and R. Anderson, “PIN skimmer: Inferring pins through the camera
and microphone,” in ACM SPSM, Berlin, Germany, November 2013.

[113] S. Narain, A. Sanatinia, and G. Noubir, “Single-stroke language-agnostic keylog-
ging using stereo-microphones and domain specific machine learning,” in ACM
WiSec, Oxford, United Kingdom, July 2014.

[114] D. Asonov and R. Agrawal, “Keyboard acoustic emanations,” in IEEE S&P,
Oakland, CA, May 2004.

[115] L. Zhuang, F. Zhou, and J. Tygar, “Keyboard acoustic emanations revisited,”
in ACM CCS, Alexandria, VA, November 2005.

185

https://i-msdn.sec.s-msft.com/dynimg/IC584331.png

[116] Y. Berger, A. Wool, and A. Yeredor, “Dictionary attacks using keyboard acous-
tic emanations,” in ACM CCS, Alexandria, VA, November 2006.

[117] T. Zhu, Q. Ma, S. Zhang, and Y. Liu, “Context-free attacks using keyboard
acoustic emanations,” in Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communication Security, Scottsdale, Arizona, USA, November
2014.

[118] J. Liu, Y. Wang, G. Kar, Y. Chen, J. Yang, and M. Gruteser, “Snooping
keystrokes with mm-level audio ranging on a single phone,” in ACM MobiCom,
Paris, France, September 2015.

[119] P. Marquardt, A. Verma, H. Carter, and P. Traynor, “(sp)iphone: Decoding
vibrations from nearby keyboards using mobile phone accelerometers,” in ACM
CCS, Chicago, IL, November 2011.

[120] X. Liu, Z. Zhou, W. Diao, Z. Li, and K. Zhang, “When good becomes evil:
Keystroke inference with smartwatch,” in ACM CCS, Denver, CO, October
2015.

[121] K. Ali, A. Liu, W. Wang, and M. Shahzad, “Keystroke recognition using wifi
signals,” in ACM MobiCom, Paris, France, September 2015.

[122] M. Li, Y. Meng, J. Liu, H. Zhu, X. Liang, Y. Liu, and N. Ruan, “When CSI
meets public WiFi: Inferring your mobile phone password via WiFi signals,” in
ACM CCS, Vienna, Austria, October 2016.

[123] J. Zhang, X. Zheng, Z. Tang, T. Xing, X. Chen, D. Fang, R. Li, X. Gong,
and F. Chen, “Privacy leakage in mobile sensing: Your unlock passwords can
be leaked through wireless hotspot functionality,” Mobile Information Systems,
2016.

[124] R. Bednarik, T. Kinnunen, A. Mihaila, and P. Fränti, “Eye-movements as a
biometric,” in SCIA, Copenhagen, Denmark, June 2005.

[125] O. Komogortsev, A. Karpov, and C. Holland, “CUE: counterfeit-resistant us-
able eye movement-based authentication via oculomotor plant characteristics
and complex eye movement patterns,” in SPIE Defense, Security, and Sensing,
Baltimore, May 2012.

[126] C. Holland and O. Komogortsev, “Complex eye movement pattern biometrics:
Analyzing fixations and saccades,” in IAPR ICB, Madrid, Spain, June 2013.

[127] T. Li, Y. Chen, J. Sun, X. Jin, and Y. Zhang, “ilock: Immediate and automatic
locking of mobile devices against data theft,” in ACM CCS, Vienna, Austria,
October 2016.

[128] A. D. Luca, R. Weiss, and H. Drewes, “Evaluation of eye-gaze interaction meth-
ods for security enhanced pin-entry,” in ACM OZCHI, Adelaide, Australia,
November 2007.

186

[129] A. D. Luca, M. Denzel, and H. Hussmann, “Look into my eyes!: Can you guess
my password?” in ACM SOUPS, Mountain View, CA, July 2009.

[130] D. Liu, B. Dong, X. Gao, and H. Wang, “Exploiting eye tracking for smartphone
authentication,” in ACNS, New York, NY, June 2015.

[131] Z. Li, M. Li, P. Mohapatra, J. Han, and S. Chen, “iType: Using eye gaze to
enhance typing privacy,” in IEEE INFOCOM, Atlanta, GA, May 2017.

[132] A. Al-Haiqi, M. Ismail, and R. Nordin, “The eye as a new side channel threat
on smartphones,” in IEEE SCORed, Putrajaya, Malaysia, December 2013.

[133] G. Ye, Z. Tang, D. Fang, X. Chen, K. Kim, B. Taylor, and Z. Wang, “Crack-
ing Android pattern lock in five attempts,” in ISOC NDSS, San Diego, CA,
February 2017.

[134] F. Timm and E. Barth, “Accurate eye centre localisation by means of gradients.”
in VISAPP, Algarve, Portugal, March 2011.

[135] J. Daugman, “High confidence visual recognition of persons by a test of sta-
tistical independence,” IEEE Trans. PAMI, vol. 15, no. 11, pp. 1148–1161,
November 1993.

[136] J. Wang, E. Sung, and R. Venkateswarlu, “Eye gaze estimation from a single
image of one eye,” in IEEE ICCV, Nice, France, October 2003.

[137] L. Świrski, A. Bulling, and N. Dodgson, “Robust real-time pupil tracking in
highly off-axis images,” in ACM ETRA, Santa Barbara, CA, March 2012.

[138] E. Wood, “Gaze tracking for commodity portable devices,” Ph.D. dissertation,
University of Cambridge, 2013.

[139] M. Kumar, J. Klingner, R. Puranik, T. Winograd, and A. Paepcke, “Improving
the accuracy of gaze input for interaction,” in ACM ETRA, Savannah, GA,
March 2008.

[140] “corn-cob dictionary,” http://www.mieliestronk.com/wordlist.html.

[141] “Trie data structure,” https://en.wikipedia.org/wiki/Trie.

[142] “120 patterns for pattern lock keyboard,”
http://www.research.lancs.ac.uk/portal/files/138568011/Patterns.pdf.

[143] D. Ping, X. Sun, and B. Mao, “Textlogger: inferring longer inputs on touch
screen using motion sensors,” in ACM WiSec, New York, NY, June 2015.

[144] K. Krafka, A. Khosla, P. Kellnhofer, H. Kannan, S. Bhandarkar, W. Matusik,
and A. Torralba, “Eye tracking for everyone,” in IEEE CVPR, Las Vegas, NV,
June 2016.

[145] https://support.apple.com/en-us/ht201371.

187

https://support.apple.com/en-us/ht201371

[146] https://support.apple.com/en-us/ht208108.

[147] Z. Wang, C. Shen, and Y. Chen, “Handwaving authentication: Unlocking your
smartwatch through handwaving biometrics,” in Springer CCBR, Shenzhen,
China, Oct. 2017.

[148] J. Yang, Y. Li, and M. Xie, “Motionauth: Motion-based authentication for wrist
worn smart devices,” in IEEE PerCom Workshops, St. Louis, Missouri, Mar.
2015.

[149] Y. Li, M. Xie, and J. Bian, “Segauth: A segment-based approach to behavioral
biometric authentication,” in IEEE CNS, Philadelphia, PA, Oct. 2016.

[150] A. Lewis, Y. Li, and M. Xie, “Real time motion-based authentication for smart-
watch,” in IEEE CNS, Philadelphia, PA, Oct. 2016.

[151] Y. Li and M. Xie, “Understanding secure and usable gestures for realtime mo-
tion based authentication,” in IEEE INFOCOM Workshops, Honolulu, HI, Apr.
2018.

[152] M. Roshandel, A. Munjal, P. Moghadam, S. Tajik, and H. Ketabdar, “Multi-
sensor finger ring for authentication based on 3d signatures,” in Springer HCI,
Crete, Greece, Jun. 2014.

[153] N. Z. Gong, A. Ozen, Y. Wu, X. Cao, R. Shin, D. Song, H. Jin, and X. Bao, “Pi-
ano: Proximity-based user authentication on voice-powered internet-of-things
devices,” in IEEE ICDCS, Atlanta, GA, Jun. 2017.

[154] J. Chauhan, Y. Hu, S. Seneviratne, A. Misra, A. Seneviratne, and Y. Lee,
“Breathprint: Breathing acoustics-based user authentication,” in ACM Mo-
biSys, Niagara Falls, NY, Jun. 2017.

[155] J. Chauhan, S. Seneviratne, Y. Hu, A. Misra, A. Seneviratne, and Y. Lee,
“Breathing-based authentication on resource-constrained iot devices using re-
current neural networks,” IEEE Computer, vol. 51, no. 5, pp. 60–67, May 2018.

[156] B. Hutchins, A. Reddy, W. Jin, M. Zhou, M. Li, and L. Yang, “Beat-pin: A
user authentication mechanism for wearable devices through secret beats,” in
ACM ASIACCS, Incheon, Korea, Jun. 2018.

[157] R. Nandakumar, V. Iyer, D. Tan, and S. Gollakota, “Fingerio: Using active
sonar for fine-grained finger tracking,” in ACM CHI, San Jose, CA, May 2016.

[158] W. Wang, A. X. Liu, and K. Sun, “Device-free gesture tracking using acoustic
signals,” in ACM MobiCom, New York, NY, Oct. 2016.

[159] D. Tse and P. Viswanath, Fundamentals of wireless communications. Cam-
bridge University Press, 2005.

[160] M. Pukkila, “Channel estimation modeling,” Nokia Research Center, 2000.

188

https://support.apple.com/en-us/ht208108

[161] T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover, Q. Zhu,
J. Zakaria, and E. Keogh, “Searching and mining trillions of time series subse-
quences under dynamic time warping,” in ACM SIGKDD, Beijing, China, Aug.
2012.

[162] https://www.ifixit.com/Teardown/Apple+Watch+Series+2+Teardown/
67385.

[163] https://en.wikipedia.org/wiki/Samsung_Galaxy_Gear.

[164] https://www.motorola.com.au/products/moto-360.

189

https://www.ifixit.com/Teardown/Apple+Watch+Series+2+Teardown/67385
https://www.ifixit.com/Teardown/Apple+Watch+Series+2+Teardown/67385
https://en.wikipedia.org/wiki/Samsung_Galaxy_Gear
https://www.motorola.com.au/products/moto-360

	LIST OF TABLES
	LIST OF FIGURES
	1
	1.1 Mobile Authentication
	1.2 Mobile App Fingerprinting
	1.3 Liveness Detection for Mobile Face Authentication
	1.4 Keystroke Inference Attacks on Mobile Devices
	1.5 Acoustic Sensing for Mobile Authentication

	2
	2.1 Overview
	2.2 Related Work
	2.3 Basics of Multi-Touch Screens
	2.4 System Overview of RhyAuth
	2.4.1 Enrollment Phase
	2.4.2 Verification Phase

	2.5 Illustration of RhyAuth Modules
	2.5.1 Data Processing
	Data Processing for TapAuth
	Data Processing for SlideAuth

	2.5.2 Feature Extraction
	Features of TapAuth
	Features of SlideAuth

	2.5.3 Metric Calculation
	Comparison Based on Statistical Model
	Comparison Based on DTW

	2.5.4 Classifier Training
	2.5.5 Verification

	2.6 Security Analysis
	2.7 Performance Evaluation
	2.7.1 Attacker Models
	2.7.2 Experimental Setup
	2.7.3 Performance Metrics
	2.7.4 Experimental Results
	Performance Without Attackers
	Performance With Attackers
	Computation Time

	2.8 Conclusion

	3
	3.1 Overview
	3.2 Related Work
	3.2.1 Sensitive Information Inference in Android
	3.2.2 App Fingerprinting
	3.2.3 Power Analysis

	3.3 Preliminaries
	3.3.1 Background
	3.3.2 Feasibility Study
	3.3.3 Adversary Model
	3.3.4 Targeted Sensitive Apps

	3.4 Design of POWERFUL
	3.4.1 Overview
	3.4.2 Power Profile Collection
	3.4.3 Data Processing
	Power adjustment
	Min-max search

	3.4.4 Feature Extraction
	Features in time domain
	Features in frequency domain

	3.4.5 Classifier Training
	3.4.6 App Inference

	3.5 Performance Evaluation
	3.5.1 Experiment Setup
	Data collection
	Evaluation protocol

	3.5.2 Performance Metric
	3.5.3 Experimental Results
	Impact of window length
	Impact of sampling frequency
	Impact of number of training instances
	Feature importance
	Attack on Nexus 7
	Attack on Nexus 6
	Robustness

	3.6 Conclusion

	4
	4.1 Overview
	4.2 Background of Camera-Based PPG
	4.3 FaceHeart
	4.3.1 Overview
	4.3.2 Signal Processing
	Face detection and tracking
	ROI selection
	Photoplethysmogram extraction
	Filtering
	Processing fingertip video

	4.3.3 Feature Extraction
	4.3.4 Classifier Training
	4.3.5 Liveness Detection

	4.4 Performance Evaluation
	4.4.1 Adversary Model
	4.4.2 Experiment Setup
	4.4.3 Performance Metrics
	4.4.4 Experimental results
	Video length
	ROI
	Type-I attack
	Type-II attack
	Robustness of FaceHeart
	Computation time

	4.5 Discussion
	4.5.1 Camera-based PPG
	4.5.2 Authentication time

	4.6 Conclusion

	5
	5.1 Overview
	5.2 Background on Video-Based Gaze Tracking
	5.3 Related Work
	5.3.1 Keystroke Inference Attacks
	Video-based attacks
	Sensor-based attacks
	WiFi-based attacks

	5.3.2 Eye-Tracking-Related Security Implications
	User authentication
	Inferring user input

	5.4 Adversary Model
	5.5 EyeTell Design
	5.5.1 Overview
	5.5.2 Video Recording
	5.5.3 Gaze Trace Extraction
	Eye detection
	Limbus detection
	Gaze trace estimation

	5.5.4 Trace Decoding
	Trace segmentation
	Decoding segment
	Candidate lock patterns
	Ranking candidate lock patterns
	PIN keyboard
	Alphabetical keyboard

	5.6 Performance Evaluation
	5.6.1 Experiment Setup
	User enrollment
	Data collection

	5.6.2 Performance Metrics
	5.6.3 Experiments on Pattern-Lock Keyboard
	5.6.4 Experiment on PIN Keyboard
	5.6.5 Experiment on Word Inference
	5.6.6 Experiment on Sentence Inference
	5.6.7 Influence Factors
	Impact of
	Impact of eyes
	Impact of frame rate
	Impact of lighting conditions
	Impact of recording distance
	Impact of recording angle

	5.6.8 Computational Time

	5.7 Discussion
	5.7.1 Limitations
	5.7.2 Countermeasures

	5.8 Conclusion and Future Work

	6
	6.1 Overview
	6.2 Related Work
	6.2.1 Wearable Device Authentication
	6.2.2 Acoustic Sensing on Mobile Device

	6.3 Acoustic Sensing for Motion Sensing
	6.4 WearAuth Design
	6.4.1 Overview
	6.4.2 Data Processing
	6.4.3 Feature Extraction
	6.4.4 Machine Learning

	6.5 Performance Evaluation
	6.5.1 Adversary Model
	6.5.2 Performance Metrics
	6.5.3 Experiment Setup
	Implementation
	Data collection
	Training and testing procedure

	6.5.4 Experimental results
	Number of positive samples
	ROC performance
	Performance under attacks

	6.6 Conclusion

	7
	REFERENCES

