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ABSTRACT

The rigidity of a material is the property that enables it to preserve its structure

when deformed. In a rigid body, no internal motion is possible since the degrees of

freedom of the system are limited to translations and rotations only. In the macro-

scopic scale, the rigidity and response of a material to external load can be studied

using continuum elasticity theory. But when it comes to the microscopic scale, a sim-

ple yet powerful approach is to model the structure of the material and its interparticle

interactions as a ball−and−spring network. This model allows a full description of

rigidity in terms of the vibrational modes and the balance between degrees of freedom

and constraints in the system.

In the present work, we aim to establish a microscopic description of rigidity

in disordered networks. The studied networks can be designed to have a specific

number of degrees of freedom and/or elastic properties. We first look into the rigidity

transition in three types of networks including randomly diluted triangular networks,

stress diluted triangular networks and jammed networks. It appears that the rigidity

and linear response of these three types of systems are significantly different. In

particular, jammed networks display higher levels of self-organization and a non-zero

bulk modulus near the transition point. This is a unique set of properties that have

not been observed in any other types of disordered networks. We incorporate these

properties into a new definition of jamming that requires a network to hold one extra

constraint in excess of isostaticity and have a finite non-zero bulk modulus. We then

follow this definition by using a tuning by pruning algorithm to build spring networks

that have both these properties and show that they behave exactly like jammed

networks. We finally step into designing new disordered materials with desired elastic

properties and show how disordered auxetic materials with a fully convex geometry

can be produced.
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Chapter 1

INTRODUCTION

Rigidity of a structure is an important property that prevents it from failure and

controls its behavior under external load. To a large extent, the mechanical properties

and elastic response of materials can be understood by modeling their interconnected

structure as ball−and−spring networks. A ball−and−spring network is a graph-like

structure that consists of nodes connected to one another by simple harmonic springs

as edges 1 . These edges represent the interactions between the nodes. In principle,

each node interacts with its neighboring nodes through a Hookean potential. The

range of interactions is usually nearest neighbors, but further neighbors can be in-

cluded as well. Here, the focus is on the rigidity of disordered networks. Disordered

networks are the network representations of non-crystalline solids that do not possess

a long range positional order in their structure. Figure 1.1 displays an example of

such networks. These types of networks have helped us understand the physics of

many amorphous systems such as glasses [2], polymers [3], jamming [4], auxetics [5],

and designer materials [6].

This dissertation is organized such that the first chapter introduces the concept

of rigidity using two different approaches: dynamical approach and constraint count

approach. In dynamical approach, one studies the time evolution of a structure when it

undergoes an external load. In the constraint count approach, the rigidity of a system

is defined solely based on the number of degrees of freedom and constraints that
1In this Dissertation, we use “node”, “site”, and “vertex” interchangeably. This also holds for the

words “edge” and “bond”.
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Figure 1.1: A Finite Disordered Network With 20 Nodes and 44 Edges.

balance them. This chapter also reviews the linear response theory and provides the

relevant mathematical tools that will be extensively used throughout the dissertation.

The second chapter introduces ideas from percolation theory and studies the crit-

ical behavior of two distinct models in detail. This chapter does not address the

rigidity directly, but builds a connection between the concepts of loops in bond per-

colation and stress in rigidity percolation. Thus, it paves the way for understanding

the rigidity transition which is the main subject of the following chapter.

In chapter three, we study rigidity transition and linear response of three dif-

ferent types of networks: randomly diluted networks, stress diluted networks, and

jamming [7]. This study reveals some fundamental properties of jammed networks

in terms of their rigidity, self-organization, and linear response that distinguish them

from randomly generated rigid systems. This chapter has helped us understand the

structural and mechanical properties of jamming and has led to what comes in chapter

four which puts jamming in perspective.

In chapter four, we establish a new definition for jamming based on the rigidity
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and linear response of jammed networks. We also introduce a new method to build

a jammed packing without employing conventional methods of pushing particles to-

gether. The new method starts from a fully triangulated spring network and encodes

the jamming properties into the network by pruning its edges in a particular order.

The final pruned network can be mapped into a unique circle packing in 2D that has

the same bulk properties as a conventional disk packing [8].

The fifth chapter uses the ideas developed in chapter four to create materials with

customized mechanical response by removing edges from a triangulated disordered

network. In particular, it describes the design of a new type of auxetic structures.

These structures are rigid and respond to longitudinal compression in an unusual

way [9].

Finally, the conclusion chapter gives a summary of the ideas visited in this disser-

tation and points out the possible future directions.

1.1 What Is Rigidity?

Rigidity is the ability of a material to sustain its structure while undergoing de-

formations. With a ball−and−spring model, such deformations can be considered

topological, geometrical, or a combination of both. In topological deformations, the

connections between the particles are changed; either new bonds are formed between

previously non-bonded nodes or an existing bond is broken between two nodes. Geo-

metrical deformations are caused by changes in the positions of nodes through local

distortions and/or bulk deformations.

The mechanical response of a spring network to deformations and external load

depends on the global and local force balances on the nodes [10]. In general, the

mechanical stability of a network is governed by a few key factors, including the
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Figure 1.2: Two Nodes i and j are Shown with Massesmi andmj, Respectively. Dis-
placing the Particles Changes Their Distance, which for Small Displacements is Equal
to the Component of the Displacement which is Parallel to the Vector Connecting i
and j. The Point O is the Origin.

positions of its nodes, the number of its edges, and their distributions. Since the

edges are considered harmonic springs, a deformation in general leads to changes in

the rest lengths of the springs and therefore some energy is stored in the system.

Hence, the rigidity of a network can be studied by looking into the changes in the

edge lengths after applying a deformation. This is the dynamical approach to the

study of rigidity. Before getting into more details about this approach, we should

first develop the mathematical tools and definitions that will be needed along the

way.

For this purpose, consider N points (nodes) distributed over a d−dimensional

space, where ri denotes the position of point i. The network is formed by placing Ne

edges between these nodes. The length lij of the edge connecting nodes i and j is

their Euclidean distance:

lij = |ri − rj| (1.1)

where |•| represents the norm of a vector. If two nodes interact through central forces

only (which is the case for spring networks), the force between the nodes will be along

the edge that is connecting them or their contact vector. The contact vector nij is

4



the unit vector from j to i, defined as:

nij =
ri − rj
lij

=
rij
lij
. (1.2)

After applying a small deformation, point i is displaced by ui and its new position

r′i is given by (see Figure 1.2):

r′i = ri + ui (1.3)

Now, if the nodes at the two ends of an edge are both slightly displaced, the displace-

ment vector can be decomposed into two parts, one of which is parallel (‖) and the

other is perpendicular (⊥) to the edge:

uij = ui − uj = uij,‖ + uij,⊥ = (uij.nij)nij + uij,⊥ (1.4)

The vector connecting i and j after they are displaced can be written in terms of

these parallel and perpendicular components:

r′i − r′j = (ri − rj) + (ui − uj) (1.5)

= lijnij + uij (1.6)

= lijnij + (uij.nij)nij + uij,⊥ (1.7)

= (lij + uij,‖)nij + uij,⊥ (1.8)

And the change in the length of the edge between i and j now becomes:

∆ij = l′ij − lij = |r′i − r′j| − |ri − rj| (1.9)

=
√

(lij + uij,‖)2 + (uij,⊥)2 − lij (1.10)

which for small displacements (|u| � 1) can be written as:

∆ij ≈ lij + uij,‖ +
u2ij,⊥
2lij
− lij = uij,‖ +

(uij,⊥)2

2lij
+O(u3) (1.11)
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Meaning that the change in the edge length is equal to the the parallel component of

displacement to the first order. This allows us to write the change in the length of

an edge in terms of the motion of its two ends up to the first order as:

∆ij = uij,‖ = uij.nij = nij.ui + nji.uj (1.12)

Note that nij = −nji. A similar equation can be written for any edge in the network.

Therefore, this is a system of Ne equations for all the edge lengths. If we define the

transpose of the displacement matrix for all the nodes as uT = [u1,u2, . . . ,uN ], then

this set of equations can be written in a matrix form as:

∆ = Ru, (1.13)

where R is called the rigidity matrix and contains geometrical and topological infor-

mation about the network. The entries of R are the contact vectors nij:

R =



1 . . . i . . . j . . . N

...
... . . . ... . . .

... . . . ...

(i, j) 0 . . . nij . . . nji . . . 0

...
... . . . ... . . .

... . . . ...

 (1.14)

Each column corresponds to a node while each row represents an edge. Hence, R is

a Ne × dN matrix where each row has at most 2d non-zero entries. With a total of

at most 2dNe non-zero elements, it is a sparse matrix for large N .

Eq. (1.13) relates the changes in the edge lengths to displacements of the nodes

through rigidity matrix. In general, displacing the nodes of a network changes the

set of its edge lengths. However there might exist motions that leave the edge lengths

fixed. A deformation that does not change any edge length is a degree of freedom

or a floppy mode of the network. In other words, a floppy mode is a deformation

with no energy cost. For example, consider a finite ball−and−spring network with
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free boundary conditions and a prescribed set of edge lengths. If all the nodes are

displaced by the same vector, the entire system is translated without any changes

in the edge lengths. To see this more clearly, let us assume that all the nodes are

translated by vector u. From Eq. (1.13), the change in the edge length between i and

j is:

∆ij = nij.u + nji.u = (nij + nji).u = 0, (1.15)

which is correct for all the edges since nij = −nji. The net translation is a floppy

mode of the system, however a trivial one which is due to a rigid motion. Symmetries

and boundary conditions can greatly impact the rigidity of a structure and its number

of floppy modes. For example in the above example, if one node is fixed in place,

the translational symmetry is broken and there will be no translational degrees of

freedom. On the other hand, a system with periodic boundary conditions has no

rotational degrees of freedom. But if the volume of its unit cell is allowed to change,

new floppy modes will be introduced to the system and the rigidity matrix should be

modified accordingly.

To explore the effect of these additional floppy modes on the rigidity matrix,

consider a network under periodic boundary conditions which tiles the space with a

unit cell of N nodes and Ne edges. The edges far from the boundary have a length

that equals the Euclidean distance of their ends. But for the nodes that are close

to the boundary, the edges connecting them might cross the unit cell boundary and

therefore a minimum image convention should be used to ensure that bonding is

between the nearest neighbors. In this case the edge length norm is modified as:

lij = |ri − rj + Tij| (1.16)

where T is a translation vector to find the correct image of node j that gives the

proper length for the edge between i and j. Note that for nodes far from boundary
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Tij = 0.

There are two types of deformations that can change the edge lengths in a periodic

network: (1) changing the positions of the nodes, and (2) changing the shape of the

unit cell. If we let the nodes at the two ends of an edge move by ui and uj respectively,

and then let the volume of the unit cell change (which is equivalent to changing the

translation vectors) so that T′ij = Tij + vij, the new edge length will be:

l′ij = |ri − rj + T + ui − uj + vij| (1.17)

For small displacements, this l′ij can be expanded to find the change in the length of

the i-j edge up to the first order:

∆ij ≈ nij. (uij + vij) (1.18)

This equation can be written in a matrix form similar to Eq. (1.13) but with an “aug-

mented” rigidity matrix and a modified displacement matrix uT = [u1,u2, . . . ,uN ,v]:

∆ = Ru, (1.19)

where the new rigidity matrix has the following form:

R =



1 . . . i . . . j . . . N volume change
...

... . . . ... . . .
... . . . ...

...

(i, j) 0 . . . nij . . . nji . . . 0 nij
...

... . . . ... . . .
... . . . ...

...

 (1.20)

New degrees of freedom are added as columns but the exact number of columns

depend on the allowed variables. For example, in two dimensions there are two repeat

vectors and up to three new degrees of freedom are possible when the volume of the

unit cell is allowed to change. These include the lengths of two repeat vectors and the

angle between them. A more detailed account of the impact of boundary conditions

and symmetries on floppy modes is given in section 1.3.
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1.2 Dynamical Approach to Rigidity

The static picture developed in previous section is useful for studying the rigidity

of spring networks. This representation also allows us to explore the dynamics of these

networks. In particular, vibrations of a network and its interaction with elastic waves

are of great interest. To study the dynamics, we first write down the Hamiltonian of

the system as:

H =
1

2

N∑
i=1

miu̇
2
i + U({ui}). (1.21)

where the first term is the kinetic energy and the second term represents the potential

energy of the system. In the kinetic energy term, u̇i is the velocity vector of node

i and mi is its mass. This term can be fully written in a vector notation. Let

u̇T = [u̇1, u̇2, . . . , u̇N ] be the velocity vector of all the nodes in the system and M be

the diagonal matrix of masses. The Hamiltonian can now be rewritten as:

H =
1

2
u̇TMu̇ + U({ui}). (1.22)

In general, the potential energy U is a function of displacement vector u, but for

a central force network we have U({ui}) = U({ui}). The energy stored in a typical

edge due to a small change in its length can be expanded up to the second order of

displacements as:

U (l′ − l) = U (l) +
dU

dl′

∣∣∣
l
(l′ − l) +

1

2

d2U

dl′2

∣∣∣
l
(l′ − l)2 + . . . (1.23)

≈ U (l) + U ′(l)

(
u‖ +

u2⊥
2l

)
+

1

2
U ′′(l)u2‖ (1.24)

using Eq. (1.11). This can be generalized to every edge in the system. The total po-

tential energy is then the sum of stored energy in all the edges. The energy expression

in Eq. (1.24) has three main contributors: U(l) which is a constant value and can be

arbitrarily set to U(l) = 0 by assuming that the system is not initially stressed. U ′(l),
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which is the first derivative of energy with respect to changes in the edge length (due

to displacement of nodes) and represents the forces (e.g. friction or pre-stress) in the

network. If the system is assumed to be at mechanical equilibrium then U ′(l) = 0.

And finally the harmonic term U ′′(l) = k, where k is the stiffness or force constant

or spring constant of the stretched/compressed edge. So using Eq. (1.12) and setting

both U(l) and U ′(l) terms to zero, the energy stored in an edge up to the second

order in displacements is:

Uij =
1

2
U ′′(l)u2ij,‖ =

1

2
kij∆

2
ij (1.25)

It is sometimes more convenient to represent ij subscripts as a compact index such

as ij → α. In this notation, the nodes are labeled by Latin letters while the edges

are labeled using the Greek alphabet. Using this new notation, the total potential

energy can be written in a matrix form as:

U =
1

2

Ne∑
α=1

kα∆2
α

=
1

2

(
∆1 . . .∆Ne

)


k1 0 . . . 0

0 k2 . . . 0

...
... . . . ...

0 0 . . . kNe




∆1

...

∆Ne

 =
1

2
∆TK∆. (1.26)

where K is a Ne × Ne diagonal matrix with elements that are equal to the force

constants (stiffness of the springs). Replacing ∆ by Eq. (1.19) gives:

U =
1

2
∆TK∆ =

1

2
uTRTKRu =

1

2
uTHu (1.27)

where H = RTKR is the Hessian or stiffness matrix with elements being the second-

derivatives of the potential energy with respect to displacements.

Under a deformation, the elongation or compression of all the edges can be rep-
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resented as a matrix called the tension matrix which has the following form:

f = K∆ = KRu (1.28)

The potential energy can also be written in terms of this tension matrix:

U =
1

2
fTK−1f (1.29)

since KT = K. But we will use the form given in Eq. (1.27).

Now, the Hamiltonian in the absence of external forces can be written in a fully

vectorial (coordinate-free) form in harmonic approximation:

H =
1

2
u̇TMu̇ +

1

2
uTHu, (1.30)

from which the equations of motions for all the nodes can be derived. First, we find

the infinitesimal force on particle i:

Fi = − ∂U
∂ui

= −
N∑
j=1

∂2U

∂ui∂uj
uj = −

N∑
j=1

Hijuj. (1.31)

Then using Newton’s second law, we can write:

F = Mü = −Hu = −RTKRu = −RT f (1.32)

with ü being the acceleration vector of the system. This is a set of dN equations

with wave-like solutions which are equivalent to harmonic oscillations of a many-

body system. Assuming that all of the nodes are oscillating with the same angular

frequency ω, we propose a solution of the form:

uj = Aje
iωte−iq.rj (1.33)

where Aj is the amplitude of vibrations on node j, and q is the wave-vector which is

related to the wavelength λ by |q| = 2π/λ. To find the normal modes of vibrations,
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we insert the proposed wave-like solution into Eq. (1.32) and assume that λ� 1. In

this limit, the wavelengths are significantly longer than the spacing between nodes

(i.e. edge lengths) and the network is considered a continuum with q = 0. Now, we

can write:

ω2A =
(
M−1RTKR

)
A = DA (1.34)

where D is called the dynamical matrix of the system2. The problem is now reduced

to an eigenvalue problem where ω2 is the eigenvalue of D with eigenvector A which

contains the oscillation amplitudes of all the nodes in the system. Note that the net-

work is assumed to be mechanically stable, hence ω2 is strictly non-negative but can

be zero (D is positive semi-definite). The eigenvalues are the square of characteristic

angular frequency of phonons which is proportional to the energy (E = ~ω)[11]. A

zero eigenvalue corresponds to a normal mode that has zero energy cost and therefore

is a floppy mode of the system.

The eigenvalues can be calculated by diagonalizing the dynamical matrix which

is a dN × dN matrix. Hence for a network with N nodes, there are dN normal mode

frequencies. Numerical diagonalization of a large matrix can be difficult; but in the

case of spring networks we only consider the short-range harmonic interactions, so

the dynamical matrix is extremely sparse. The density of normal mode frequencies is

the density of states D(ω) which is of fundamental importance regarding marginality

of the system. This has been studied in more detail in chapter four.

Finally, note that if q 6= 0, then the eigenvalue problem should be modified to

include the phase factor in the entries of the rigidity matrix. Since each displacement

has a phase factor e−iq.rk , then the contact vectors are modified as nji → njie
−iq.rj . In

addition, all the transpose operations should be replaced by their conjugate transpose
2Note that for a system where the masses and spring constants are set to unity, as assumed in

this Dissertation, the dynamical matrix and Hessian matrix are equal.
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operations (i→ −i) since the phase factor is a complex number.

1.3 Constraint Count Approach to Rigidity

The stability/rigidity of a structure is determined by whether there are enough

constraints to balance out its degrees of freedom or floppy modes. Degrees of freedom

in a network are those deformations for which there is no change in the edge lengths

and therefore, the stored elastic energy in the system is zero. Using the static and

dynamic pictures of deformations developed in previous sections, we can easily find

the number of degrees of freedom which depend on symmetry, boundary conditions

and constraints present in the system.

Based on Eq. (1.19), we know that the null space of the rigidity matrix corre-

sponds to all motions that do not change any edge lengths or equivalently all the

displacements X for which:

∆ = RX = 0. (1.35)

where X is called the (right) null space of the rigidity matrix R. This is a set of Ne

linear equations for dN unknown displacements. The rigidity matrix is characterized

by its number of linearly independent rows/columns (i.e rank(R)), and the number

of solutions to Eq. (1.35) (i.e nullity(R)) which is equal to the number of degrees of

freedom (F ) in the network. Therefore, F = nullity(R) and X is a dN × 1 matrix.

The rank-nullity theorem [12] requires that3:

rank(R) + F = dN (1.36)

The above equation is the result of infinitesimal displacements with no subsequent

changes in the edge lengths. The rank of R or the number of independent rows/columns
3 Note that equation 1.35 shows that X is the null space of H as well, since HX = RTKRX = 0,

so nullity(R) = nullity(H). This means rank(R) = rank(RT ) = rank(H).
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greatly depends on the symmetries of the system. So it is generally assumed that the

network is generic, meaning that no special symmetry is present in the system except

the trivial rigid motions such as rotations or translations.

The force balance on the system can also provide additional information about

the number of degrees of freedom. If the network is under no external load, the net

force on each node should be zero. However, the tension in the edges can be non-zero

since:

F = −RT f = 0, (1.37)

does not require that f = 0. The solutions of Eq. (1.37) are called states of self

stress with f representing the set of non-zero tensions on the edges for which the

force balance holds. The rank of RT is the same as rank(R) and its nullity is equal to

the number of states of self stress Nr in the network. Now since RT has Ne columns,

the rank-nullity theorem reads:

rank(R) +Nr = Ne. (1.38)

Although rank(R) is not accessible unless explicitly computed, but by eliminating it

from both Eqs. (1.36) and (1.38), the following count is found:

F −Nr = dN −Ne. (1.39)

The right-hand side of above equation is equal to a naive count of degrees of freedom.

dN is the total number of translational degrees of freedom for the nodes in the network

whereas each edge constrains one degree of freedom. In two dimensions for example,

each node has two degrees of freedom corresponding to its two trivial rigid motions

and each edge brings one constraint by fixing the distance between these nodes. Any

finite 2D network has at least three floppy modes, corresponding to the two global
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translations and one global rotation on the plane. If the only remaining allowed

motions in a network and every sub-graph of the network are these three floppy modes,

and if the network does not have any states of self stress, it is said to be minimally rigid

or locally isostatic. Whereas if the number of degrees of freedom is large compared

to the number of constraints and there is not a macroscopic rigid structure, the

network is said to be underconstrained or floppy. On the other hand, when there

are more constraints than degrees of freedom, a fraction of these constraints will not

be necessary to maintain the rigidity of the network. Such constraints are called

“redundant” and the system is said to be overconstrained or stressed. Each redundant

edge creates one state of self stress in the system. Therefore the number of redundant

edges can be found by calculating the number of states of self stress which is equal to

the number of non-trivial solutions to Eq. (1.37). Since addition of a redundant edge

does not reduce the number of degrees of freedom, in counting the number of floppy

modes all the redundant edges should be excluded from the list of constraints [13].

This has been applied to the left-hand side of Eq. (1.39).

The count of floppy modes can be written in term of a useful quantity called the

mean coordination number. The coordination number is defined as the number of

incident edges on a node. When referring to a single node, we use the letter z to

denote its coordination number. But when we are talking about an entire network,

it is useful to look into its mean coordination 〈z〉 which is defined as:

〈z〉 =
2Ne

N
(1.40)

The factor 2 comes in because each edge is a shared constraint between two nodes.

Using Eq. (1.40), we can write Eq. (1.39) as:

F −Nr = dN −Ne = (d− 〈z〉
2

)N (1.41)
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(a) (b)
Figure 1.3: Two Graphs with 6 Nodes and 9 Edges which According to Maxwell
Count 2 × 6 − 9 = 3, Both Should Be Isostatic. While (a) is Isostatic, (B) is Not
Since the Square on the Right Can Be Sheared and Has An Internal Floppy Mode.
Therefore the Square on Left is Redundantly Rigid and the Right One is Floppy. This
Shows the Importance of Edge Distribution in Rigidity of a Structure and Subtleties
in Using Maxwell Count to Determine Whether a Structure is Rigid.

At the isostatic point, no redundant edges are present (Nr = 0) and the mean coor-

dination number is given by:

〈z〉iso = 2d− 2F

N
(1.42)

At this point, the number of floppy modes F is determined by the global symmetries

of the system. In d dimensions and with free boundary conditions for example, there

are d translations and 1
2
d(d−1) rotations, therefore F = d(d+1)/2. However, periodic

boundary conditions only admit d translations and therefore F = d under periodic

boundaries. In the limit of a large system, we have F � N and the second term in

Eq. (1.42) becomes negligible. So the critical coordination number zc becomes:

zc = 2d (1.43)

This critical point defines the point of mechanical stability for a large system.

However, a condition such as 〈z〉 ≥ 2d does not guarantee the rigidity of a network.

The distribution of edges is an important factor in determining the overall rigidity

since regions of a network can be over- or underconstrained even though the mean

coordination is greater than 2d.
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The count of floppy modes in Eq. (1.39) is referred to as Maxwell count. In 1864,

Maxwell developed this simple rule [14] to determine the rigidity of a framework based

on the constraints counting of force equilibrium equations developed by Lagrange [15].

However, as mentioned above, this count only provides a global criterion and it is

possible to create networks that are partially floppy and partially stressed while the

count is satisfied (see Figure 1.3 for an example). Therefore in addition to the global

properties of a network, the local arrangement of its nodes and edges should also be

investigated when we examine its rigidity.

In 1970, Laman proved that a generic planar graph with 2N−3 edges is minimally

rigid, if and only if, every subgraph with n nodes has at most 2n−3 edges (compatible

with Maxwell count for d = 2) [16]4. This ensures that no subgraph is redundantly

rigid while some other subgraph is floppy like the network of Figure 1.3-b. Based on

this theorem, a pebble game algorithm [17] can be used to efficiently check the rigidity

of subgraphs [18, 19]. This algorithm allows one to analyze the rigidity of graphs with

millions of nodes. In addition, since the pebble game is an integer algorithm it can

avoid the common issues with numerical precision.

1.4 Linear Response and Elastic Properties of Rigid Networks

The floppy modes of a system are deformations that do not cost energy. However,

a deformation generally has a finite energy cost. The linearized equations of motion

derived in the previous sections can be used to find the response of a system to an

external force. This mechanical response can be further used to control the material’s

properties. If an external force Fext is exerted on a ball−and−spring network, the
4The generic nature of the planar graph is important. The existence of additional symmetries

such as parallel lines can introduce additional degrees of freedom.
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resulting node displacements v would satisfy the following equation5:

Fext = Hv (1.44)

where H is the Hessian. Both Fext and v are column matrices with dN elements.

Since the Hessian matrix contains the floppy modes, it is not invertible. However,

for a given network and external force, the solution can be found numerically us-

ing least-squares method which finds a vector v that minimizes the Euclidean norm

|Fext−Hv|2. The least-squares method can be used for any network containing over-

constrained, isostatic, and underconstrained regions. The computational complexity

of this method is O(N3).

Assuming that all springs initially have their rest lengths, the initial elastic energy

is zero. But as a result of the external force and node displacements, an elastic energy

E is stored in the system which can be calculated from:

E =
1

2
vTHv (1.45)

in the harmonic approximation. For a given deformation or external force, the stored

energy is used to characterize the elastic properties of the network. The system’s

elastic response, however, depends on the properties of the external force. For exam-

ple, by applying a local force on two ends of an edge, the response of the system to

a dipole force can be studied [20]. In the following we study the elastic properties

of ball−and−spring networks due to bulk deformations, i.e. deformations that are

applied to the entire network and the external forces on individual nodes are a result

of such deformations.

For simplicity, here we only focus on 2D spring networks with periodic boundary

conditions (PBCs). But the results obtained in this section can be generalized to any
5Here, we use letter v to distinguish the set of displacements that are caused by an external force

from u which represented any generic displacement in previous sections.
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dimensions. A periodic network in 2D is specified with a supercell containing N nodes

and Ne edges and two repeat vectors6. The linear combination of the repeat vectors

with integer coefficients are translation vectors that tile the plane. From Eq. (1.39)

we know that the number of floppy modes for a two dimensional periodic network at

the isostatic points is:

2N −Ne = 2, (1.46)

since the network has 2 trivial translational degrees of freedom.

The bulk deformations of a network under PBCs are applied on a supercell, specif-

ically on the repeat vectors. Assume that the coordinates of nodes and the repeat

vectors of the network are expressed in a coordinate system spanned by two axes a

and b which are not necessarily unit vectors or orthogonal. After applying a small

deformation, the a and b axes transform into two new vectors a′ and b′ given by [21]:a′

b′

 = (I + ε)

a

b

 =

1 + εxx εxy

εyx 1 + εyy


a

b

 (1.47)

here ε is the matrix of relative fractional changes in the lengths of a and b. Due to

this transformation, the coordinates of nodes undergo a change which leads to strain

in the edges. The strain components can be written up to the first order as:

exx = a′ − a ≈ aεxx +
a.b

a
εxy (1.48)

eyy = b′ − b ≈ bεyy +
a.b

b
εyx (1.49)

exy = eyx = a′.b′ − a.b ≈ a2εyx + b2εxy + (εxx + εyy)a.b (1.50)

Although a and b are not necessarily orthogonal, they can always be expressed in an

orthonormal coordinates system. If a · b = 0 and |a| = |b| = 1, the strain tensor e
6In the literature, it is common to use orthogonal repeat vectors with the same magnitude (the

network is contained in a square box). However, it is sometimes unavoidable to use non-orthogonal

repeat vectors to represent a certain geometry at minimum energy.
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can be written as:

e =

exx exy

exy eyy

 =

 εxx εxy + εyx

εxy + εyx εyy

 (1.51)

The matrix e can be decomposed into symmetric and antisymmetric parts. However,

it only has three independent components since exy = eyx according to Eq. (1.50). If

εxy + εyx = 0, then a′ · b′ = 0 which corresponds to pure rotation of the coordinates

system. To exclude the rotations, we can then assume that εxy = εyx with no loss

of generality. As a result of this strain, the supercell volume changes such that the

fractional change in volume or the dilation is:

∆V

V
=

d∑
i=1

eii = Trace (e) (1.52)

where V is the volume e of the supercell after deformation. In addition to strain in

the axes, the edge lengths in the network will also change after this distortion which

creates stress (force per unit area) in the system. This stress is characterized by the

stress tensor which is defined as [22]:

σ =
1

V

∑
α

rα ⊗ Fα (1.53)

where the sum is over all the edges and ⊗ shows the outer (tensor) product. The stress

tensor is expressed as a d×d matrix whose elements represent the force direction and

the plane to which the force is applied. For example, σxy is the force applied in the

x−direction to the unit area of a plane whose normal lies in the y−direction. The

hydrostatic pressure P is the average of the normal stresses, or the average of main

diagonal elements:

P = −1

d
Trace (σ) (1.54)

The negative sign is included to emphasize that the forces are compressive. According

to Hooke’s law, the stress is proportional to strain for small deformations. Therefore
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the independent stress components can be written as a linear combination of the

strain components: 
σxx

σyy

σxy

 =


c11 c12 c13

c21 c22 c23

c31 c32 c33



exx

eyy

exy

⇒ σ = ce (1.55)

where cij elements are called the moduli of elasticity7. The stress in the network can

do work, resulting in a total energy density E/V given by:

E

V
=

1

2
σTe =

1

2

∑
ij

cijeiej (1.56)

The elastic moduli are the second derivative of this energy density and symmetric

under permutation of partial derivatives, i.e. cij = cji. Hence the energy density can

be explicitly written as:

E

V
=

1

2

(
c11e

2
xx + c22e

2
yy + c33e

2
xy

)
+ (c13exx + c23eyy) exy + c12exxeyy (1.57)

for small deformations in harmonic approximation. Computationally, the elastic mod-

uli are calculated by imposing a strain on the repeat vectors. As a result, the edges

that cross the boundary exert an external force on the system. The response of the

system is calculated using the linear response in Eq. (1.44) and the associated energy

stored in the network is equal to the above expression. The distortion applied on

a supercell can be quite general. However, three types of deformations are in par-

ticular important in the study of elasticity theory. These deformations are shown

in Figure 1.4 and correspond to the elastic response of the system to bulk or shear

deformations.
7It is conventional to write the stress and strain components in a more compact form (Voigt

notation):

xx→ 1, yy → 2, xy → 3

which is used here to write the elastic moduli matrix. For example, c13 ≡ cxxxy.
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(a) (b) (c)
Figure 1.4: Elastic Deformation of a Square Supercell Under Bulk and Shear Dis-
tortions. The Deformed Supercell is Shown by the Dashed Lines. (a) The Uniform
Bulk Compression of Supercell, (B) Shear−xxyy Where the Cell is Compressed in
the y−direction and Expanded in the x−direction, While the Area is Preserved, (C)
Shear−xy Where the Sides Facing Each Other are Sheared in the Opposite Directions
Such that the Area is Preserved.

The first elastic moduli is the bulk modulus which is the response of a system to an

infinitesimal hydrostatic pressure in which the supercell is compressed in both x and

y directions (left panel in Figure 1.4). As a result, volume of the system is changed

uniformly from V to V −∆V . The uniform compression corresponds to the following

strain tensor (δ � 1):

e =

−δ 0

0 −δ

 (1.58)

which corresponds to a dilation equal to −2δ. Hence, the stored energy after the bulk

deformation is8:

E

V
=

1

2
(c11 + c22 + 2c12) δ

2 =
1

2
K

(
∆V

V

)2

=
22

2
Kδ2. (1.59)

8Note that the elasticity definition of bulk modulus is compatible with the thermodynamic defi-

nition:

K = V

(
∂2E

∂V 2

)
V

,

since if the deformation is small, K can be assumed to be constant and:

E

V
=

1

2
K

(
∆V

V

)2

.
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where E is found using the linear response theory and K is the bulk modulus of the

network that can be calculated for a given δ.

The second elastic response corresponds to shearing the supercell such that in is

contracted in the y−direction and expanded in the x−direction or vice versa (middle

panel in Figure 1.4) and as a result, the volume of the supercell is unchanged. This

is called the xxyy−shearing shown by Gxxyy and its corresponding strain matrix is

expressed as:

e =

δ 0

0 −δ

 (1.60)

The change in the energy density for xxyy−shearing is:

E

V
=

1

2
(c11 + c22 − 2c12) δ

2 =
22

2
Gxxyyδ

2. (1.61)

In this Dissertation, Gxxyy is simply reported as the shear modulus G. The third

elastic moduli is another type of shear in which facing sides of the supercell are

sheared in the opposite directions (right panel in Figure 1.4) with no volume change.

This is called xy−shear, Gxy with the following strain matrix :

e =

0 δ

δ 0

 . (1.62)

The stored energy density due to the xy−shearing is:

E

V
=

1

2
(c33) δ

2 =
22

2
Gxyδ

2. (1.63)

which can be used to calculate this specific type of shear modulus. In chapters four

and five, we will frequently calculate the bulk and shear moduli of spring networks to

design rigid networks with specific elastic properties. The numerical method involves

multiplying the lattice vectors by the proper strain and measuring the energy density

stored in the system due to this deformation. The bulk and shear moduli are then

calculated using Eqs. (1.59) and (1.61)
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1.5 Discussion

In this Dissertation, we will use both dynamical and constraint count approaches

to study the rigidity of disordered networks. The rigidity of a structure is determined

unequivocally by forming the dynamical matrix D and finding its eigenvalue spectra.

Although, forming the dynamical matrix and diagonalizing it is computationally ex-

pensive for a large system. Using the language of degrees of freedom and constraints

on the other hand, provides a framework to study rigidity in a more rigorous way.

In general, when we are interested in properties such as the number of floppy

modes, stability, low frequency excitations, and force distributions in a rigid network,

we use the dynamical approach. The zero eigenvalues of the dynamical matrix show

the total number of floppy modes in the system. For example the dynamical matrix

of a 2D periodic network must have only two zero eigenvalues, and all of its remaining

eigenvalues must be positive for the network to be marginally stable. On the other

hand, when we are concerned about rigid region decomposition of a network (i.e.

knowing specifically which regions are stressed, isostatic, or floppy), or the marginality

of the system, we will use the Pebble Game. Chapters two and three benefit from

Pebble Game as their focus is mainly on the constraint count. Chapters four and

five specifically discuss the elastic response of disordered networks. Therefore, those

two chapters extensively use the ideas introduced here to design spring networks with

desired elastic properties.
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Chapter 2

REDUNDANCY IN PERCOLATING CLUSTERS

We introduce a novel method to study the effect of loops in connectivity perco-

lation, borrowing the concepts of redundancy and stress from rigidity theory. In the

context of rigidity theory, a redundant bond is a bond that is not necessary to main-

tain the network rigidity and leads to internal stress in the network. In the context

of connectivity, loops are redundant since they do not add to the connectedness of a

network. Therefore, any bond that closes a loop can be considered redundant while

the bonds forming a loop correspond to the stressed bonds in rigidity. To illustrate

the interplay between these two models, we study the effect and behavior of loops

and redundant bonds in two types of randomly diluted systems including hierarchical

and triangular networks. Finally, we show that the results obtained in this chapter

can be used to understand the role of stress in rigidity percolation.

2.1 Introduction

Percolation theory is one of the simplest models in statistical physics that exhibits

the characteristics of a geometrical phase transition and is widely used in the study of

critical phenomena [23, 24]. The simple and powerful ideas of percolation theory have

found their way into many fields including Physics, Geophysics, Material Sciences,

and Sociological studies. Some of the most important applications of the theory

include the study of fluid flow through porous media (for instance distribution of

oil or gas inside porous rocks or oil reservoirs) [25, 26], the study of polymerization

and gelation [27, 28], and electrical conductivity in a mixture of two or more media
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[29, 30].

In almost every percolation type problem, we look for a connected pathway that

spans the entire system at the transition point [19]. The formation of such macro-

scopic spanning cluster exhibits the characteristics of a sharp second order phase

transition in the limit of infinite size. This makes percolation theory an interesting

model for the study of phase transitions and critical phenomena. There are two main

models used in percolation theory. The first one is site percolation model, where we

start off with a set of N points distributed over the space. Each point (site) can be

occupied with probability p and unoccupied with probability q = 1 − p. A group of

occupied neighboring sites in space form a cluster. When p = 0, none of the sites

are occupied and therefore there are no clusters in the system. If the sites are oc-

cupied in a randomly fashion such that the occupation of a site is independent from

occupation of its neighbors, the value of p increases uniformly and small clusters of

occupied sites start to form in the system. If two neighboring sites i and j are both

occupied, we can connect them with a segment (bond) which creates a path from i

to the j and vice versa. By connecting any occupied site to its nearest neighbors in

a cluster, pathways are formed that can take us from one site in the cluster to any

other. When p is small, the clusters are sparsely distributed over the space and there

is not a connected pathway that spans the entire system. By increasing p, the size of

occupied clusters increase and at some critical density p = pc, a large enough cluster

forms that connects the sites on one side of the systems to sites on the other side. This

cluster is said to be percolating and the system represents a random site percolation

model. Site percolation models have been explored thoroughly [23, 31, 32] and are

useful in the study of forest fires, epidemics [33], and oil fields.

The second model used in the study of percolating systems is bond percolation.

This model is employed when we are simulating the behavior of physical systems
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such as molecular structures and polymers, and it will be extensively used in this

Dissertation.

In bond percolation models, there is an array of sites distributed over the space

in an ordered or disordered manner. All of the sites are assumed to be occupied, so

here the density p is defined as the fraction of present connections or bonds to all the

possible bonds in the system. This density also gives the probability of a bond being

present. In other words, each bond in the system is present with probability p and

missing with probability q = 1 − p. Adding a bond between two neighboring sites

creates a path between them and a group of connected sites form a cluster (similar to

the site percolation models). When there are no bonds present, the bond density p

is zero. When p is small (but greater than zero), we only expect a few small isolated

clusters to be present. But when p is near unity, we expect most of the nearest

neighbor sites to be connected so that a large spanning cluster extends from one side

of the system to the other. Because there is no spanning cluster for small p and there

is a large spanning cluster for p near unity, there must be an intermediate value pc at

which a spanning cluster first exists. At this intermediate density, a drastic change

in the correlation lengths of the system is observed. Note that in bond percolation

models, instead of starting at p = 0 and adding bonds randomly, one can start at

p = 1 and remove bonds randomly until the transition point p = pc is reached. In

this case, pc is the intermediate value of bond concentration where a spanning cluster

last exists. For p < pc, the clusters will shrink and break into pieces until there are

no bonds left at p = 0. This method which will be widely used in this Dissertation is

referred to as bond dilution. Bond dilution can be executed randomly or according

to a specific set of rules. The transition point can vary based on the rules imposed

on the dilution procedure.

The defining parameter of percolation is the connectedness, i.e., whether or not
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there is a connected path between two points [34]. Since the connectedness shows a

qualitative change at a well defined value of a continuous control parameter (p), we

can see that the transition from a state with no spanning cluster to a state with one

spanning cluster is a type of phase transition. The phase transition in percolation

problems is of order to disorder (or vice versa) type. One of the extensively studied

geometrical order parameters in bond percolation model is the number of bonds in

the spanning cluster that is zero in the range 0 ≤ p ≤ pc and a finite value for

pc < p ≤ 1. But in principle, any quantity that changes from zero to a non-zero

value at the transition point and remains finite for all values of the control parameter

above critical value, can be considered an order parameter. In this chapter we will

introduce a set of new order parameters which help us understand the effect and

nature of loops in percolation transition in 2D networks. The static features of bond

percolation transition in 2D networks have been extensively studied in the recent

decades. For example the critical density pc is known to be 1
2
for the square lattice,

2 sin( π
18

) for the triangular lattice, and 1− 2 sin( π
18

) for the hexagonal lattice [35, 36].

However all these features are only known for a specific order parameter that does not

include any information about loops in the spanning cluster. In the following sections,

we will look into the percolation transition of two types of networks. This includes

hierarchical networks for which an exact solution exists and triangular networks that

can only be studied numerically.

2.2 Bond Percolation in Hierarchical Networks

Hierarchical networks are one of the few models that have an exact solution in

percolation theory and therefore are considered as a benchmark for numerical and

computational studies [37, 38, 39, 40]. In order to construct a hierarchical network,

we start with two sites A and B where the probably of a bond connecting them is
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p: this simple mode with only two end points and one bond is considered generation

n = 0 from which higher generations will evolve. To build n = 1 generation we

simply replace the bond connecting two end points A and B with a rhombus shaped

cell. The process of building a hierarchical network consists of repeating this simple

step n times. At each step, a connected bond between two points is replaced with

a rhombus cell, changing the number of bonds by a factor of 4. This is shown in

Figure 2.1 for three generations. Repeating this n times results in a hierarchical

network of generation n where the number of sites and bonds are given by:


En = 4n

Vn = 1
3
(4 + 2× 4n)

(2.1)

The above equation gives the number of bonds only when p = 1 and all the bonds

are present. At this point, there is a percolating path connecting A to B. If we

start diluting bonds randomly from a network of generation n where n → ∞, at

some critical bond concentration p = pc, the percolation will stop and there will be a

phase transition. We can write an exact set of equations that relate the percolation

probability and order parameters associated with generations n and n − 1. These

equations can be solved for any bond concentration p by iteration.

To illustrate this, we calculate the probability pn of having a percolating path

from A to B in a network of generation n shown in the simple diagram of Figure 2.2.

In this figure, both solid lines (black and blue) represent a percolating hierarchical

network of generation n − 1 that is present with probability pn−1, and the dashed

lines show a disconnected path with probability 1− pn−1.

So the probability of the two solid dots being connected in Figure 2.2 is calculated

as:
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n = 0

n = 1

n = 2

A B

A B

BA

p

Figure 2.1: A Hierarchical Network Generated by Repeatedly Replacing Each Bond
with a Rhombus Shaped Cell. Three Generations are Shown Here.

pn(p) = p4n−1 + 4p3n−1(1− pn−1) + 2p2n−1(1− pn−1)2

= −p4n−1 + 2p2n−1 (2.2)

with p0 = p. Eq. (2.2) gives the probability of percolation in a hierarchical network

of generation n by adding the probabilities in all three possible forms of connectivity

in Figure 2.2. It is always useful to find the fixed points of a recursive relation such

as Eq. (2.2). For any function f(x), if there is a point x = c that maps the function

onto itself f(c) = c, it is said to be a fixed point. For a recursive function such as pn

defined above, a fixed point p∗ would be a point where pn = pn−1 = p∗. Solving this

equation for p∗ gives:
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(a)

(b)

(c)

Figure 2.2: A Hierarchical Network of Generation n where n is a Large Number.
The Blue Line in Each Panel Represents a Connected Network of Generation n− 1.
The Solid Black Line Shows a Percolating Cluster in Generation n−1 Connected with
Probability pn−1, and the Dashed Line is a Non-Percolating Cluster with Probability
1−Pn− 1. a) There is a Percolating Path on All Four Sides of the Network. B) One
of the Sides is Not Percolating. C) Two of the Sides are Not Percolating. Note that
We Cannot Have a Percolating Path From Left to Right if Three out of Four Sides
are Non-Percolating.

p∗ = 0

p∗ = 1

p∗ =

√
5− 1

2
= 0.618 (2.3)

The first two points in Eq. (2.3) are the trivial stable fixed points meaning that if
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we perturb Eq. (2.2) at points p = 0 and p = 1 and iterate it n times, the value of pn

will always go back to pn = 0 and pn = 1, respectively. The only unstable fixed point

is p∗ =
√
5−1
2

= 0.618 = pc which is the critical concentration where the transition

happens at large n.

To quantify the percolation transition at pc, we should define an order parameter

in the system. Since we are interested in the study of loops in bond percolation,

a proper set of order parameters includes the fraction of bonds in the percolating

cluster, the fraction of bonds in percolating cluster that are in a loop, and finally

the fraction of redundant bonds in the percolating cluster. These order parameters

are denoted by P ′(p), S ′(p), and R′(p) respectively. The prime here refers to any

quantity that belongs to the percolating cluster. Figure 2.3 demonstrates these order

parameters. In Figure 2.3-a, a hierarchical network at p = 1 and n = 3 is shown.

Figure 2.3-b, displays the same network at p = 0.625 after diluting about 1/3 of the

bonds. All the bonds that are part of a loop are colored in black, while those that

are not in any loops are shown in red. Part (c) of the figure shows the percolating

cluster in magenta which is located in the lower half of the network since there are no

paths connecting A to B in the upper half. As can be seen from part (c), there are 20

bonds in the percolating cluster, 8 of which belong to the two rhombus shaped loops

near A and B, and 2 that are redundant. The number of redundant bonds equals the

number of loops here. Dividing these counts by the total number of possible bonds

(N = 43 = 64 according to Eq. (2.1)), gives P ′(p), S ′(p), and R′(p).

Another interesting set of order parameters involves the quantities introduced

above but in the current carrying (conducting) cluster [41]. The current carrying

cluster is a sub-graph of the percolating cluster that will carry a non-zero current if

there is a voltage difference V applied between the two ends of the network. It is

obvious from Figure 2.3-c that many of the dangling ends in the percolating clus-
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(a) (b)

(c) (d)

Figure 2.3: A) A Hierarchical Network of Generation n = 3 at p = 1. B) The
Same Network at p = 0.625. Bonds that are Part of a Loop are Colored Black, While
the Bonds that do Not Belong to Any Loops are Shown in Red. C) The Percolating
Cluster is in Magenta and Includes Many Dangling Ends. D) The Conducting Part
of the Percolating Cluster is Shown in Blue. This Conducting Sub-Graph Consists
of Any Bonds that Will Carry the Current if There is a Voltage Difference Between
Points A and B.
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ter cannot carry any current. Therefore, the conducting cluster only consists of the

blue backbone shown in Figure 2.3-d. The current carrying cluster in connectivity

percolation is similar to the force carrying cluster in rigidity percolation where the

rigidity of the spanning cluster is also under consideration. In both cases, the relevant

order parameters describe the response of the network to an external load. In con-

nectivity, they describe the response to an external potential whereas in the case of

rigidity percolation, it is the response to an external force. So they both describe the

transport properties of the networks. The set of order parameters we are interested

in include the fraction of bonds in current carrying backbone, the fraction of bonds

in current carrying backbone that are also in a loop, and the fraction of redundant

bonds in current carrying backbone. These parameters are denoted by P ′′(p), S ′′(p),

and R′′(p) respectively. In Figure 2.3-d, there are 10 bonds in the conducting cluster,

4 of which belong to the loop attached to B, and since there is only one loop in

the backbone, there is also 1 redundant bond. Dividing these numbers by the total

number of possible bonds (N = 43) gives P ′′(p), S ′′(p), and R′′(p) for this network.

In the following, we use the diagrams of Figure 2.2 to obtain generalized relations

for all the order parameters introduced above. In each panel of this figure, the blue

line represents a connected network of generation n−1, where for example the fraction

of bonds in the percolating cluster is P ′n−1. The solid black line shows a percolating

cluster of generation n− 1 which is connected with probability pn−1, and the dashed

line is a non-percolating cluster with probability 1 − pn−1. Using these definitions

and the weights shown in Figure 2.2 for all the possible configurations, the fraction

of bonds in the percolating cluster of the network is found:
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P ′n(p) =
1

4

[
4P ′n−1(p)p

3
n−1 + 12P ′n−1(p)p

2
n−1(1− pn−1) + 4P ′n−1(p)pn−1(1− pn−1)2

]
= (pn−1 + p2n−1 − p3n−1)P ′n−1(p) (2.4)

where (P ′0(p) = p). To find the fraction of bonds in the current carrying backbone,

we note that in diagram 2.2-b, there is a dangling cluster in the lower half of the

network that will not conduct any current if a voltage difference is applied between

the two solid end points. Therefore in counting the possible current carrying scenarios,

we do not add that section to the number of conducting bonds:

P ′′n (p) =
1

4

[
4P ′′n−1(p)p

3
n−1 + 8P ′′n−1(p)p

2
n−1(1− pn−1) + 4P ′′n−1(p)pn−1(1− pn−1)2

]
= pn−1P

′′
n−1(p) (2.5)

with P ′′0 (p) = p. The procedure for calculating the fraction of bonds inside a loop,

both in percolating and current carrying clusters, is very similar to this. There is only

one subtlety regarding diagram 2.2-a which has an external loop since all four sides

of the network are percolating. In that case, all the bonds that are in the current

carrying backbone of the blue line but are not in any smaller loops will become part

of the large external loop. Therefore we need to add the second term given below to

the expressions of S ′(p) and S ′′(p):

S ′n(p) = (pn−1 + p2n−1 − p3n−1)S ′n−1(p) +
[
P ′′n−1(p)− S ′′n−1(p)

]
p3n−1 (2.6)

S ′′n(p) = pn−1S
′′
n−1(p) +

[
P ′′n−1(p)− S ′′n−1(p)

]
p3n−1 (2.7)

With initial values S ′0(p) = 0 and S ′′0 (p) = 0. To calculate the fraction of redundant

bonds in percolating and current carrying clusters, we note that again in diagram 2.2-
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a, the larger external loop adds one more redundant bond to the network, therefore

we have:

R′n(p) = (pn−1 + p2n−1 − p3n−1)R′n−1(p) +
1

4
(p4n−1) (2.8)

R′′n(p) = pn−1R
′′
n−1(p) +

1

4
(p4n−1) (2.9)

With initial values R′0(p) = 0 and R′′0(p) = 0. Table 2.1 shows a summary of all six

order parameters with their initial values. It also includes two equations for the total

fractions of looped and redundant bonds in the network (Sn(p) and Rn(p)) which can

be obtained by multiplying the numbers in generation n − 1 by 4 and adding the

appropriate terms for the external loop. These two quantities are not order parame-

ters of the system but could provide some insight about the total effect of loops and

redundancy in bond dilution models.

Quantities Initial Conditions

pn(p) = −p4n−1 + 2p2n−1 p0 = p

P ′n(p) = (pn−1 + p2n−1 − p3n−1)P ′n−1(p) P ′0 = p

P ′′n (p) = pn−1P
′′
n−1(p) P ′′0 = p

Sn(p) = Sn−1(p) +
[
P ′′n−1(p)− S ′′n−1(p)

]
p3n−1 S0 = 0, S ′′0 = 0

S ′n(p) = (pn−1 + p2n−1 − p3n−1)S ′n−1(p) +
[
P ′′n−1(p)− S ′′n−1(p)

]
p3n−1 S ′0 = 0, S ′′0 = 0

S ′′n(p) = pn−1S
′′
n−1(p) +

[
P ′′n−1(p)− S ′′n−1(p)

]
p3n−1 S ′′0 = 0

Rn(p) = Rn−1(p) + 1
4
(p4n−1) R0 = 0

R′n(p) = (pn−1 + p2n−1 − p3n−1)R′n−1(p) + 1
4
(p4n−1) R′0 = 0

R′′n(p) = pn−1R
′′
n−1(p) + 1

4
(p4n−1) R′′0 = 0

Table 2.1: Table of Calculated Order Parameters Plus Their Initial Values for Hier-
archical Networks.
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Since all the quantities given in Table 2.1 depend on the percolation probability

pn−1, we can expand them in terms of the bond density p. Although this would be a

mathematically cumbersome task for a general n, but the expansions are possible for

smaller values of n as is shown in Figure 2.4.
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Figure 2.4: Plots of the Order Parameters (and Two Quantities S(P ) and R(P ))
Versus Bond Concentration p in a Hierarchical Network of Generation n = 20.

In Figure 2.4, the two dotted curves in red and blue represent the total fractions of

bonds in the network that belong to a loop S(p) or are redundant R(p), respectively.

As can be seen from the figure, these two quantities are not order parameters as they

vanish only when p → 0 and there is not a significant change in their values at the

critical point p = pc which is marked with the green vertical line. All the solid curves

represent primed quantities which belong to the percolating cluster. All the dashed

curves represent quantities in the current carrying cluster. The curve representing
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P ′′(p) is hidden underneath S ′′(p). This means that for all values of p from p = 1 to

p = pc, every bond in the conducting cluster belongs to a loop that can be a small

local loop or the large external loop. This is because for large n, there is usually

more than one sequence of back to back bonds that go from point A to point B and

vice versa. In other words, it is statistically unlikely to have only one single path

connecting one side of the network to the other. Hence all the bonds that carry the

current are part of at least one large loop that goes from point A to point B and

back along different paths. At p = 1, all the bonds are present and the fractions of

bonds in the percolating cluster and conducting cluster are both equal to unity. Also

since there are no broken loops, all the bonds belong to at least one loop. So the

fraction of looped bonds is also equal to unity. At this point, only one fourth of the

bonds are redundant. Therefore, the fraction of redundant bonds in percolating and

conducting clusters (as well as the entire network) is 1
4
when p = 1. When bonds are

selected and removed randomly, all the order parameters decrease continuously until

at the critical point p = pc they all vanish and remain zero for p < pc. This is the

characteristic of a second order phase transition.

As can be seen from Figure 2.4, the critical transitions of order parameters exhibit

scaling properties, which means they all depend upon probability p in a power-law

fashion, with a critical exponent in the following form [23, 34]:

O(p) = A(p− pc)β (2.10)

where O(p) is a generic order parameter, A is the scaling factor, and β is the critical

exponent. A system approaching the critical point can be described using a variety of

quantities. However, it has been shown that most of the critical exponents describing

these measurables are related to one another through scaling relations. To describe
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the behavior of the system, we only need two independent critical exponents [42]. So

it is usually a matter of taste to choose the fundamental exponents for a system. Since

we are interested in exponents that define the order parameters seen in Eq. (2.10),

we will use the set {β, ν} where ν describes the divergence of the correlation length ξ

at the percolation transition, ξ ∼ |p− pc|−ν , and refers to the asymptotic expansion

of the the largest finite cluster near critical point. The correlation length is not really

a meaningful quantity to measure for hierarchical networks. However, we need to

calculate its critical exponent ν since we will need it later to calculate β.

If two order parameters describing widely different quantities in different systems

exhibit identical scaling behavior as they approach the critical point (i.e. if they

both share the same set of critical exponents), they are said to belong to the same

universality class and can be shown to have the same dynamical properties. In general,

the critical exponents of a system do not depend on details such as its geometrical

structure or the nature of interactions between the particles. Instead, they depend

on very general properties such as the spatial dimension d, the coupling range, and

the symmetries of the order parameters in the system.

To understand the behavior of hierarchical networks near criticality, we calculate

the critical exponents associated with each order parameter introduced above. For

any system that obeys Eq. (2.10) near pc, the critical exponent β can be calculated by

using the eigenvalues of linearized scaling relations for pn(p) and O(p). The following

steps should be repeated for for all the order parameters, but the details are shown

for one parameter only assuming that P ′(p) ∝ (p − pc)β
′ . First, Eq. (2.2) is Taylor

expanded near pc as pn − pc = λp(pn−1 − pc ) to find the eigenvalue of pn(p). This

gives:

λp =
dpn
dpn−1

|pc = 4pc − 4p3c = 1.527 (2.11)
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Next, we expand Eq. (2.4) as P ′n(p) = P ′n(pc) + dP ′n
dP ′n−1

|pc(P ′n−1(p) − P ′n−1(pc)) =

λP ′P
′
n−1(p) to obtain the eigenvalue of P ′(p) which yields:

λP ′ =
dP ′n
dP ′n−1

|pc = pc + p2c − p3c = 0.764 (2.12)

since P ′n(pc) = P ′n−1(pc) = 0 for large n. Both these eigenvalues are related to the

critical exponents β′ and ν in the following form:

λp = b
1
ν

λP ′ = b−
β′
ν (2.13)

where b is the dilation factor between successive generations of the network. Eq. (2.13)

is a result of the scaling of the system as it changes from generation n−1 to generation

n. According to the scaling theory [23], the effective percolation threshold scales with

the system size as p − pc ∝ L−
1
ν . For hierarchical networks, it is assumed that the

system size is generation n is related to the system size in generation n− 1 through

dilation factor Ln = b Ln−1. This means the scaling relations for pn and P ′n(p) are in

the form:

pn − pc ∝ (b Ln−1)
− 1
ν ∝ b−

1
ν (pn−1 − pc)

P ′n(p) ∝ (pn − pc)β
′ ∝ b−

β′
ν Pn−1(p) (2.14)

which leads to relations in Eq. (2.13). Since b is ambiguous for hierarchical networks,

we can eliminate it from the set of equations in (2.13) to obtain the following relation

for the critical exponent β′:

β′ = − log λP ′

log λp
= 0.635 (2.15)

40



Eq. (2.15) can be used to calculate the critical exponents for the set of all six order

parameters {P ′, S ′, R′, P ′′, S ′′, R′′}. The results are shown in Table 2.2.

Order Parameters Critical Exponents Critical Point

P ′, S ′, R′ β′ = log 2

2 log(
√
5−1) − 1 = 0.635.. pc =

√
5−1
2

= 0.618..

P ′′, S ′′, R′′ β′′ = log 2

2 log(
√
5−1) −

1
2

= 1.135.. pc =
√
5−1
2

= 0.618..

Table 2.2: Table of Critical Exponents and Fixed Points for the Order Parameters
in Hierarchical Networks. All the Calculated Values are Exact.

It is surprising that all the order parameters in the percolating cluster share the

same critical exponent and all those that are in the conducting cluster have the same

exponent. This means that in hierarchical networks, the loops and redundant bonds

in a cluster follow the behavior of bonds in that cluster near the transition point.

According to the results in Table 2.2, there is also a simple relation between the

critical exponents β′ and β′′, as β′′ − β′ = 1/2. This is quite unexpected since these

order parameters describe very different quantities. However, based on these results

it is obvious that in order to describe the percolating and conducting clusters in a

hierarchical network near criticality, one only needs the set of two critical exponents

{β′, ν}. The information provided by Table 2.2 also suggests that the ratios of all the

quantities belonging to the same cluster must be finite near pc. This ratio is basically

the ratio of scaling factors in Eq. (2.10) and it has been calculated for several values

of n as shown in Table 2.3.
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n S
′

P ′
R
′

P ′
S
′′

P ′′
R
′′

P ′′

8 0.61562 0.114819 0.978714 0.160243

9 0.616827 0.114829 0.986844 0.160311

10 0.61743 0.114833 0.991869 0.160339

Table 2.3: Amplitude Ratios of Different Quantities for Hierarchical Networks. The
Values of the Amplitudes are Consistent as n Becomes Larger. So the Numbers Given
in This Table Must Be a Proper Approximation for the Actual Values.

One might ask if the results obtained for hierarchical networks are universal and

work for any system. In the following section, we will study the same set of order

parameters and their critical exponents in triangular networks that are not exactly

soluble. The definitions remain the same, but there are many more subtleties involved

due to the computation nature of the problem.

2.3 Bond Percolation in Triangular Networks

The second model we study is the bond percolation in 2D triangular networks. The

networks studied here are regular lattices, but the methods are applicable to any types

of disordered networks as well. A triangular lattice is an arrangement of points where

the nearest neighbors form an equilateral triangle and every site has a coordination

number z = 6. When all the bonds are present 〈z〉 = 6 and the lattice is extremely

overconstrained and far from criticality. This provides the freedom to try a variety

of interesting dilution protocols that could lead to very different types of networks

with different physical and mechanical properties at the critical point. This is the

main advantage in using triangular lattices and disordered triangulations instead of

other types of lattices such as square lattice with z = 4 and hexagonal lattice with

z = 3, which are either close to the critical point or underconstrained. In addition, the

triangular lattice is very simple and its marginal bond density and critical exponents
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for the fraction of bonds in the percolating cluster are well known [43, 44]. This

provides a point of reference against which our results in the study of loops and

redundancy can be assessed.

As we saw in previous section, hierarchical networks possess special topological

advantages that allow the exact calculation of pc and critical exponents β and ν.

However, in most systems like 2D triangular lattices, even though the exact values

of pc can be calculated [35], the values of critical exponents can only be estimated

numerically.

The definitions of the percolating cluster and order parameters associated with it

are only meaningful in the thermodynamic limit N →∞. In addition, the larger the

system size, the more accurate the measurements of critical parameters. Therefore,

it is always desirable to push the size of the simulated systems to a larger limit.

However, there are computational difficulties in generating and studying very large

systems (e.g. with sizes in order of Avogadro’s number), and in practice we can only

generate systems with a finite size. One good way to overcome this limit is to use

the proper boundary conditions. For example, by using periodic boundary conditions

one might minimize the finite size effect and achieve a better approximation for large

scale systems. Another way to reduce the finite size effect and improve the accuracy

of the results is to ensemble average every measurement over many independently

prepared samples. We will use both these strategies in this chapter. Although the

boundary conditions employed in our simulations are cylindrical. This means the

2D networks are repeated infinitely in one direction while staying finite in the other

direction. This choice is made for the sake of studying the current carrying cluster so

that we can attach electrodes to the two finite sides. If the systems are periodic in

both directions, the study of input and output currents becomes meaningless.
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Figure 2.5: A Triangular Lattice with L = 64, N = 64 × 64 = 4096 Sites, and
Ne = 12160 Bonds at p = 1 where All the Bonds are Present and Belong to Internal
Loops. The Lattice is Finite in the Horizontal Direction and Infinitely Repeated in
the Vertical Direction. The Blue Lines Represent Two Electrodes at the Two Finite
Sides of the Lattice.

Figure 2.5 shows a full triangular lattice with L = 64 and cylindrical boundary

conditions. In this chapter, L will be used to denote the number of sites on each side

of a triangular network. L = 64 means there are N = 64 × 64 = 4096 sites in the

entire lattice. If the lattice was periodic (infinite in both directions) the number of

bonds would be 3 × N = 12288. But since it is finite in one direction, the actual

number of bonds is Ne = 12160 which is smaller than the total number of bonds in

a periodic lattice. The shown lattice is infinite in the vertical direction and finite in

the horizontal direction. To make the lattice infinite, we add copies of the central
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supercell at the top and bottom and connect the sites on the top edge to the sites on

the bottom edge such that the network repeats itself in that direction. This is why

the boundaries are named cylindrical. The blue lines on the left and right represent

two electrodes that are held at a potential difference V .

By removing bonds randomly from network of Figure 2.5, we can observe the

changes in values of the order parameters {P ′, S ′, R′, P ′′, S ′′, R′′} as p approaches pc.

The analytically known value of threshold probability for triangular lattices in 2D is

pc = 2 sin(π/18) ≈ 0.347. This means in order to reach the percolation transition, we

must remove almost two thirds of the bonds from the network.

Figure 2.6: The triangular lattice in Figure 2.5 randomly diluted up to p = 0.349.
The black bonds are the ones that belong to a loop (either internal or external) and
the red ones are those that are not part of any loops.

Figure 2.6 shows the L = 64 lattice at p = 0.349 which is slightly above the

transition point. The black color represents bonds that are part of a loop. The color

red is used to show bonds that do not belong to any loops in the network. At this

density, there is a percolating cluster that spans the network, but there are also many
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isolated smaller clusters. Figure 2.7 displays this percolating cluster after all the

smaller clusters are removed.

Figure 2.7: The Percolating Cluster in the Randomly Diluted Triangular Network
After Removing All the Isolated Clusters From the Network. As Can Be Seen, This
Cluster Spans the Network in Both Horizontal and Vertical Directions.

In the percolating cluster of Figure 2.7, there are many bonds that have branched

out of the backbone in the form of dangling ends. These bonds do not carry the current

when there is a potential difference between the two blue electrodes. Therefore the

conducting cluster is a sub-graph of the percolating cluster that connects the right

electrode to the left one as can be seen in Figure 2.8. The few red bonds in the

conducting cluster of Figure 2.8-b are those that will break the percolating cluster

into two smaller clusters if removed. However, the number of those red bonds is very

small compared to to size of the conducting cluster. When the system size increases,

the chances of having one single path from left to right or top to bottom decrease

significantly. Therefore most of the bonds in the conducting cluster are also part of

either a small loop or a larger loop that connects the two electrodes.
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(a)

(b)

Figure 2.8: A) An Overlay of the Percolating and Current Carrying Clusters in the
Network of Figure 2.6. The Conducting Part of the Percolating Cluster is Shown in
Blue. B) Only the Conducting Cluster in the Network of Figure 2.6 Is Shown. This is
the Cluster that Would Carry the Current if There is a Potential Difference Applied
Between the Two Blue Electrodes. 47



In the following section, we will review the computational tools and techniques

that have been used to measure the set of order parameters in triangular networks.

2.3.1 Computational Methods

In this section, we discuss the details of computational methods used to identify

the percolating and conducting clusters and measure the fractions of looped and

redundant bonds in them. Similar to the case of hierarchical networks, we will show

all the quantities that belong to the percolating cluster with a prime sign and all the

quantities that belong to the current carrying or conducting cluster with a double

prime sign. The percolating cluster is the largest cluster that spans the network

either from left to right or top to bottom or in both directions. If the largest cluster is

percolating from left to right and from top to bottom, we will weight all the measured

quantities P ′, S ′, and R′ with 1. However, if it is percolating from left to right only,

the quantities will be weighted by 1
2
. When the largest cluster does not percolate

in any directions or percolates only from top to bottom, the quantities will be all

weighted by 0.

The current carrying cluster is a cluster that spans from left electrode to the right

electrode in Figure 2.8. If is spans in both directions, we weight all the quantities P ′′,

S ′′, and R′′ by 1. If it only spans from left to right, the double primed quantities are

weighted by 1
2
. Finally, if there is not a connected cluster that percolates from left to

right, then the weight would be 0.

To spot the largest cluster in the network, we use pebble game [45, 46] which is an

integer algorithm to find the rigid region decomposition of networks. The pebble game

identifies the largest rigid cluster while we are only concerned with the connectivity

of bonds and not their rigidity. Therefore, we should find a mapping from the largest

rigid cluster into the largest percolating cluster. One useful way to create such a
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mapping is by adding an auxiliary ghost site and connecting it to all the sites in the

network. An illustration of this is shown in Figure 2.9. The network in Figure 2.9-a

is a simple loop that percolates from left to right and top to bottom. From a rigidity

point of view, the network is not rigid. Because according to Eq.(1.39):

F = 2N −Ne +Nr = 8− 4 + 0 = 4

There are 4 degrees of freedom one of which is an internal floppy mode. This mode

is extended over the entire network, making all the sites hinges. Here the largest rigid

cluster is each of the single bonds. This means if we run the network of Figure 2.9-a

through pebble game, no spanning rigid clusters will be found. However, if we add

a single auxiliary site as shown in blue in Figure 2.9-b, and connect it to all the

sites in the network, the new structure becomes overconstrained and rigid. In the

construction of 2.9-b there are:

F = 2N −Ne +Nr = 10− 8 + 1 = 3

floppy modes that correspond to the three trivial motions (two translations and one

rotation) for a 2D system. There is also one redundant bond that adds a state of self

stress to the system, causing all the bonds to be stressed. Therefore there is a rigid

(and overconstrained) cluster that percolates from left to right and top to bottom.
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After adding the ghost site

(a) (b) 
Figure 2.9: The Pebble Game Can Be Used to Identify the Percolating Cluster and
Bonds within a Loop Using a Ghost Site. In the Presence of the Ghost Site, All the
Bonds that are Part of a Loop Will Be Recognized as Stressed by the Pebble Game.

This illustrates the mapping between rigidity percolation and connectivity per-

colation that allows one to use the pebble game to study loops and redundancy in

random percolation. By adding a ghost site to any network, the percolating cluster

becomes a rigidly percolating cluster due to triangulations created by the ghost site.

If there is an isolated site, connecting it to the ghost site will create a dangling bond

that is not part of the largest rigid cluster. On the other hand, all those bonds that

belong to a loop, become stressed due to the redundancy caused by connections to the

ghost site. This means after adding the ghost site and running the network through

pebble game, the largest rigid cluster is equivalent to the largest connected cluster

in the original network. Also, all the stressed bonds identified by the pebble game

correspond to the looped bonds in the original cluster. Once the largest cluster is

found using this method, we can check if there are any sites on the left and right

edges that both belong to that cluster. If they do, it means there is a connected path

from left to right. Similarly, we can check the percolation from top to bottom and

determine the weights of the order parameters in the percolating cluster.

Te calculate the number of redundant bonds, we use the adapted version of
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Eq. (1.39) for connectivity percolation. In this case, a single floppy mode is as-

sociated with an isolated cluster and the left-hand side of Eq. (1.39) represents the

total number of isolated clusters. Each floppy mode or degree of freedom, corresponds

to a motion along the orthogonal line to the plane of the network. Therefore, each

site has 1 degree of freedom and each bond counts as 1 constraint. So the modified

version of Eq. (1.39) for connectivity percolation in 2D is:

F −Nr = N −Ne (2.16)

where N is the number of sites, Ne is the number of bonds (or edges), and Nr is the

number of redundant bonds. Since we are only interested in the number of redundant

bonds in the spanning cluster (and not the entire network), we can apply Eq. (2.16)

to the percolating cluster only and neglect all the other smaller isolated clusters in

the network. In this case, F = 1 and Nr can simply be calculated by counting the

number of sites and bonds in the percolating cluster:

Nr = Ne −N + 1 (2.17)

Note that all these counts are performed after removing the ghost site and the

bonds that are connected to it.

To identify the current carrying cluster, we simply apply a voltage difference V

between the two blue electrodes one the left and right edges of Figure 2.8-b and solve

the Kirchhoff’s current balance equations for each site [47]:

n∑
j=1

Iij =
n∑
j=1

Vi − Vj = 0 (2.18)
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By writing Eq. (2.18) for every site i in the network, we obtain a set of equations

that relate the known voltages to the unknown voltages. By moving all the known

voltages (voltages of those sites that are on the electrodes) to the right-hand side of

the equations, and doing a little bit of algebra, we reach to a simple set of linear

equations in the form:

LijXv = V (2.19)

where Lij is the Laplacian matrix, Xv is the set of unknown voltages, and V is the

set of known voltages. The Laplacian is a symmetric matrix that has the following

form:

Lij =


zi if i = j

−1 if i 6= j and i and j are in contact

0 otherwise

(2.20)

where zi is the coordination number (i.e. degree) of site i. By solving the LijXv = V

equations, we find the voltages on all of the sites. If the voltage difference between

two adjacent sites is greater than zero, it means there is a current flow in the bond

connecting them. This method is used to find all the current carrying bonds in

the network. Once the current carrying cluster P ′′ is identified, pebble game plus

the ghost site are used to measure the fraction of bonds that are inside a loop S ′′.

Finally, a similar argument to that of Eq. (2.17) can be used to obtain the faction of

redundant bonds in the conducting cluster R′′. Figure 2.10 displays the transition of

all these quantities as the bond concentration p approaches its critical value pc. All

the values have been normalized by the total number of bonds present.
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Figure 2.10: Plots of All the Order Parameters Versus Bond Concentration p for a
Randomly Diluted Triangular Network with L = 600 and N = 600× 600 Sites.

As can be seen from Figure 2.10, all the bonds in the current carrying cluster are

also looped, therefore the plot of P ′′ is overlaid by that of S ′′. As discussed in the case

of hierarchical networks, this is due to the fact that for large networks, it is highly

unlikely to have only one single current carrying path in the network. Multiplicity of

possible paths that carry the current from left electrode to the right one is the main

reason most bonds in the conducting cluster are inside a loop. This effect can easily

be seen from Figure 2.8-b: the fraction of non-looped bonds in the current carrying

cluster is negligible even for a small network of size L = 64. This fraction approaches

zero as the network size increases. In the following section, we will look into the

procedures that are used to extract pc and critical exponents β and ν from the plots

of order parameters.
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2.3.2 Results

Figure 2.10 shows that there is a second order phase transition near p = 0.34.

However the transition is not very sharp and the point at which the order parameters

become zero does not match the analytically known critical point which is at pc =

2 sin(π/18) (marked with the green dashed line). Instead, the order parameters have

a small tail that leads to zero slowly rather than going to zero at the expected pc.

Also, even though all the order parameters of one size become zero at the same time,

the critical point pc varies based on the system size. This is called the finite size effect

which appears in the form of a size dependent difference between the predicted value

and the measured value of a quantity. This difference decreases as the system size

grows larger. The main reason for this kind of difference is that the predicted value

is only valid for truly large systems in thermodynamic limit. But in practice, the

systems we study computationally are far from this limit. To see the finite size effect

more clearly, all the measurements have been executed over 6 different system sizes

L = 100, 200, 300, 400, 500, and 600, each ensemble averaged over 500 independent

realizations with the results shown in Figure 2.11. First, the networks are randomly

diluted up to the point p = 0.4 and then the measurements are done in the range

0.3 < p < 0.4. As can be seen from the figure, the tails shrink by increasing the

system size. This means in the limit L→∞, all these order parameters would obey

equation 2.10 and will go to zero exactly at the expected critical point. Since in reality

we cannot produce systems of infinite size, we will use finite size scaling techniques

to obtain an approximation for the critical quantities such as pc, β′, β′′, and ν. The

main idea of finite size scaling is to simulate the critical behavior of infinite systems

by scaling a set of finite systems [48]. For example, if P ′(p, L) is a quantity that

depends on two variables, p being an independent control parameter and L being the
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Figure 2.11: Plots of the Order Parameters in Randomly Diluted Triangular Net-
works. The Network Sizes Include L = 100, 200, 300, 400, 500, and 600. Each Size
is Ensemble Averaged Over 500 Independent Realizations and the Order Parameters
are Shown in the Region Close to the Critical Point Only. a) Fraction of Bonds
in the Percolating Cluster, P ′(P ). B) Fraction of Bonds in the Percolating Cluster
that Belong to a Loop, S ′(P ). C) Fraction of Redundant Bonds in the Percolating
Cluster, R′(P ). D) Fraction of Bonds in the Current Carrying Backbone, P ′′(P ). E)
Fraction of Bonds in the Current Carrying Backbone that Belong to a Loop, S ′′(P ).
F) Fraction of Redundant Bonds in the Current Carrying Backbone, R′′(P ).
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system size, it will scale according to the following relation:

P ′(p,∞) = L−
β′
ν Φ [(p− pc)L

1
ν ] (2.21)

where β′ is the order parameter exponent, ν describes the divergence of a typical

length scale as one approaches pc, and Φ is the scaling function. For Eq. (2.21) to

reduce to P ′(p,∞) ∝ (p− pc)β
′ , the scaling function must have the form Φ(x) ∼ xβ

′

for all x > 0. This means the plots of P ′(p, L) for different values of p and L

would collapse into one curve if P ′(p, L)Lβ
′/ν is plotted against the combined quan-

tity x = (p − pc)β
′
L1/ν , and β′ and ν are chosen properly. By applying the scaling

assumption introduced above, one can estimate the numerical values of the critical

exponents by plotting Eq. (2.21) while adjusting the values of these critical param-

eters until a satisfactory data collapse is achieved. There are ways to estimate the

critical point pc if its value is not known a priori [49, 50]. For the bond percola-

tion models, the exact value of pc is known for the percolation transition of largest

spanning cluster. Since all quantities in percolating and current carrying clusters are

weighted similarly, we know that the transition point for all of them must happen at

pc = 2 sin(π/18) for an infinitely large system. To be able to estimate the value of

β′ using Eq. (2.21), one also needs to determine ν properly. As mentioned before, ν

describes the scaling of the correlation length which is proportional to the system size

L and its value depends upon the spatial dimension of the system. The best known

value for 2D systems of infinite size is ν = 4/3 ' 1.33 [44] and this is the value we will

use to find β′ and β′′. However, to confirm that 4/3 is a good approximation for ν,

we are going to calculate its numerical value for the systems we have here. The best

method to find the estimated value of exponent ν is through the scaling of critical

points, as for finite size systems pc varies from one realization to another. As can be
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seen from Figure 2.11, the critical points for systems of different sizes, approach the

exact value of pc = 2 sin(π/18) (shown with the gray vertical line in each plot) as

the system size grows. The variance of pc is determined by σ2
L = 〈(pc − 〈pc〉)2〉 where

〈〉 denotes ensemble averaging over all realizations of size L. This variance decreases

proportional to L−
1
ν and goes to zero when L → ∞. Thus ν can be determined by

studying the plot of pc against L−
1
ν as shown in Figure 2.12.

0.00 0.01 0.02 0.03 0.04
L 1/ , = 1.333

0.335

0.340

0.345

0.350

0.355

0.360

P
A c
(N

)

-0.053 L 1/ + 0.3471

Figure 2.12: Plot of the Critical Points for Systems of Different Sizes Against L−
1
ν .

The Blue Points Show the pcs, the Red Lines are the Error Bars (One Standard
Deviation) for the Ensemble Averaged pcs, and the Black Line is a Weighted Linear
Regression Fit that Intercepts the Vertical Axis at pc = 0.3471±0.0001. The Intercept
Shows the Value of pc when L → ∞ which is Achieved when ν = 1.333. It is Very
Close to the Exact Value of the Critical Point which is pc = 0.3472. This Means
4/3 ' 1.333 is a Reasonable Approximation for the Value of Exponent ν.

The rightmost point in the plot of Figure 2.12 is the average pc for realizations

of size L = 100 and the leftmost point displays the average pc for realizations of size

L = 600. As the system size L grows, the points approach the vertical axis. By

applying a weighted linear regression, which is shown by the black line in the figure,

one can find the intercept that corresponds to the pc of an infinitely large system.
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When ν = 1.333 is used in the plot, the linear fit intercepts the vertical axis at

pc = 0.3471± 0.0001 which is close to the predicted value of pc = 0.3472. This means

ν = 4/3 is a good approximation for the value of this critical exponent and therefore

we will use it when estimating the values of β′ and β′′.

The next step is to plot P ′(p, L)Lβ
′/ν versus (p−pc)β

′
L1/ν where the known values

2 sin(π/18) and 4/3 will be used for pc and ν, respectively. If β′ is estimated properly,

all the curves in Figure 2.11-a will collapse into one curve. Slight changes in the value

of β′ will affect the collapsing of the data, but these variations are not necessarily

visible to the eye. So to find the best value of β′, we use the following algorithm:

I First, we make a rough guess for β′ and use that guess to collapse the data.

II Then we fit a polynomial of degree n (here n = 20) to each of the data curves

that somewhat lie on top of each other.

III Using theses fitted polynomials, we evaluate each curve in 100 distinct points in

the range [−0.5, 0.5] which is the most convenient range for x = (p− pc)β
′
L1/ν .

If all six curves in Figure 2.11-a are perfectly collapsed, they should be exactly

the same at each given x.

IV To quantify the collapse quality, we calculate the standard deviation of the eval-

uated fitted curves at each x and then find the average of all 100 standard

deviations for the chosen β′.

V By changing the β′ infinitesimally (step size of 10−4 here) and repeating steps

1-4, we collect an array of mean standard deviations versus β′.

VI The minimum of the mean standard deviation is found by scanning the range of

β′ values. This minimum is the point where the best collapse happens.
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Figure 2.13 shows an example of this process where β′ is found by collapsing the

P ′(p) curves. As can be seen from the figure, the minimum value of the mean standard

deviation occurs when β′ = 0.1385± 0.0001. This is very close to β = 5/36 = 0.1388

which is known as the critical exponent describing P ′(p) in bond percolation mod-

els [43].
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Figure 2.13: The Mean Standard Deviations for Various Values of β′, Calculated
by Collapsing P ′(P ) Curves for Sizes L = 100, 200, 300, 400, 500, and 600. The
Minimum Value of the Standard Deviation Occurs when β′ = 0.1385. The Gray
Dashed Line Marks the Minimum Point.

Critical Quantities Known Value Calculated Value

pc 2 sin(π/18) = 0.3472 0.3471± 0.0001

ν 4/3 = 1.333 1.333

β′ 5/36 = 0.1388 0.1385± 0.0001

Table 2.4: Table of Comparison Between the Known and Calculated Values of a
Few Critical Quantities Used in the Study of Connectivity Percolation on Randomly
Diluted Triangular Networks. The Found Values for pc (Exact) and ν are Very Close
to Their Expected Values. Using the Known Values of These Two Quantities, We Can
Calculate the Critical Exponent β′ which is Also Accurate and Close to Its Known
Value.

59



Comparing the calculated and known values of critical quantities pc, ν, and β′,

confirms that the procedure used for estimating β′ is accurate for this purpose. Ta-

ble 2.4 shows a summary of these values. This procedure can then be applied to

all the order parameters in Figure 2.11 separately. Table 2.5 displays the values of

the critical exponents for the set of order parameters studied here. All the shown

exponents are calculated using the algorithm introduced above.

Order Parameters Critical Exponents

P ′(p) β′ = 0.1385

S ′(p) β′ = 0.1638

R′(p) β′ = 0.1962

P ′′(p)′ β′′ = 0.5002

S ′′(p) β′′ = 0.4999

R′′(p) β′′ = 0.5368

Table 2.5: Table of Critical Exponents for Connectivity Percolation on the Ran-
domly Diluted Triangular Networks. All the Values are Calculated Numerically Using
the Method Shown in Figure 2.13.

Once the values of proper critical exponents are calculated, we can use them in

the scaling relation 2.21 to collapse all data into one curve. Figure 2.14 shows the

finite size scaling achieved by using the critical exponents of Table 2.5 for each order

parameter.

2.4 Discussion

Unlike the case of hierarchical networks (Table 2.2), where we only needed two

distinct exponents to describe the critical behavior of all primed and double primed

order parameters, the entries of Table 2.5 are all different except for the exponents
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Figure 2.14: The Plots of Scaled Order Parameters After Choosing the Critical
Exponent that Leads to the Smallest Errors in the Collapsed Curves. a) Scaled
P ′(P ), B) Scaled S ′(P ), C) Scaled R′(P ), D) Scaled P ′′(P ), E) Scaled S ′′(P ), F)
Scaled R′′(P ).

describing P ′′(p) and S ′′(p) which are numerically very close with a difference of

O(10−4). This makes sense as the two quantities were shown to follow the same curve

in plots of Figure 2.10. This means in the case of random bond dilution in triangular

networks, we need more than two exponents to study the behavior and impact of

loops in percolating and current carrying clusters near the transition point. Despite

the differences seen among the values of β′ and β′′ in Table 2.5, it is obvious that

there are two distinct ranges to which β′ and β′′ belong. For example, all the values

of β′ are in the range (0.1385 − 0.1962), while β′′s are closer to one half and are in
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the range (0.4999− 0.5368) with no intermediate values between the two ranges. So

the overall picture obtained from Table 2.5 is similar to what we observed for the

hierarchical networks. The differences between the values of β′ and β′′ could be due

to numerical errors or lack of good statistics. Or it could be that the hierarchical

networks are distinctive.

In this chapter we study the percolation transition of connecting and conducting

clusters in two different types of systems: hierarchical and triangular networks. In

particular, we are interested in the effect of loops in bond percolation. To this end, we

define a new set of order parameters that account for the total number of loops and

the fraction of bonds that are involved in loops in a cluster. In the case of hierarchical

networks, our calculation reveal that the critical behavior of loops in a cluster (which

are a sub-group of the entire cluster) matches the critical behavior of the cluster as

a whole. This shows that there is a high degree of fractal behavior associated with

these types of networks. In triangular networks on the other had, the behavior of

loops in a cluster is slightly different from the behavior of the cluster as a whole. In

these networks, the sub-groups go to zero slightly faster than the system itself at the

transition point. This is revealed by larger values of the critical exponents describing

the looped and redundant bonds as is shown in Table 2.5.

Loops in a connectivity percolation model are similar to stressed regions in a

rigidity percolation model. Rigidity percolation is a type of percolation model where

the rigidity of the spanning cluster is of interest. When we are concerned with the

mechanical rigidity of a spring network, some of the typical questions we ask are:

• How many degrees of freedom does the system have?

• Is there a single macroscopic cluster of sites in which they are rigidly connected?

And if we apply ideas from percolation theory, we can also ask:
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• Does this rigid cluster span the system?

A percolating rigid cluster can be made of stressed regions that contain redundant

bonds. According to the definition presented in the previous chapter, a redundant

bond in a rigid cluster is a bond that is not necessary to maintain the rigidity of

the cluster. In that sense, loops are unnecessary to maintain the connectedness of a

percolating cluster or conductivity of a current carrying cluster. Hence, those bonds

that close a loop in a percolating path can be considered redundant. The concept

of redundancy is the key component in understanding the interplay between connec-

tivity percolation and rigidity percolation. Thus the study of redundant bonds and

loops in a percolation model can shed light on the effect of stress in rigidity percola-

tion which is a problem with a higher degree of complexity [51]. Table 2.6 shows the

mapping between the quantities that were studied in this chapter for connectivity and

conductivity percolation and their corresponding quantities in rigidity percolation.

Bond Percolation Theory Rigidity Percolation Theory

Percolating cluster Rigidly percolating cluster

Current carrying cluster Force carrying cluster

Bonds in a loop Stressed bonds

Bonds that close a loop
Bonds that are redundant for the

rigidity

Table 2.6: The Mapping Between Quantities in Connectivity Percolation and Quan-
tities in Rigidity Percolation.

All the ideas introduced in this chapter, can be used to study the effect of redun-

dant bonds and stress in rigidity transition.
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Chapter 3

RIGIDITY LOSS IN DISORDERED SYSTEMS: THREE SCENARIOS

This chapter is a reprint of the following journal article:

Ellenbroek, Wouter G., Varda F. Hagh, Avishek Kumar, M. F. Thorpe,

and Martin Van Hecke. “Rigidity loss in disordered systems: Three sce-

narios." Physical review letters 114, no. 13 (2015): 135501.

My contribution to this work includes developing computer codes to generate all

the network samples studied here, performing the measurements in Figure 3.3 and

generating Figures 3.1-3.3.

We reveal significant qualitative differences in the rigidity transition of three types

of disordered network materials: randomly diluted spring networks, jammed sphere

packings, and stress-relieved networks that are diluted using a protocol that avoids

the appearance of floppy regions. The marginal state of jammed and stress-relieved

networks are globally isostatic, while marginal randomly diluted networks show both

overconstrained and underconstrained regions. When a single bond is added to or

removed from these isostatic systems, jammed networks become globally overcon-

strained or floppy, whereas the effect on stress-relieved networks is more local and

limited. These differences are also reflected in the linear elastic properties and point

to the highly effective and unusual role of global self-organization in jammed sphere

packings.
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3.1 Introduction

Disordered elastic networks and sphere packings represent a large class of amor-

phous athermal materials, ranging from (bio)polymer networks to granular media

and foams [52, 53, 54]. Random networks of springs lose their rigidity when enough

springs are cut; this random bond dilution process is known as rigidity percolation

(RP) [55, 56, 57, 18, 19]. Packings of soft spheres do the same when their confin-

ing pressure is lowered towards zero: this is called (un)jamming [4, 58, 59, 60, 61].

These rigidity loss scenarios have been studied extensively, in particular for the sim-

plest cases of networks of harmonic springs [18, 19] or soft frictionless harmonic

spheres [58, 59, 60, 61]. In that case, the linear elastic properties of packings can

be mapped to that of a spring network, where each contact is replaced by the appro-

priate spring [62, 63, 1]. Lowering the pressure, the number of bonds in the equivalent

network decreases.

Given this close correspondence, it is surprising that the nature of the RP and

unjamming transitions, and of their respective marginally rigid states, are significantly

different. For packings of a large number (N) of soft spheres, extensive studies have

shown that (i) the connectivity, i.e., the average number of contacts z per particle,

goes to zc = 2D+O(1/N) at the marginal point, where D is the space dimension [4,

58, 59, 60, 61, 54, 64, 65, 66, 67], (ii) the system remains homogeneously jammed

up to the point of unjamming (with the exception of individual loose particles called

rattlers or very rare small particle clusters) [58], and (iii) the shear modulus, G

vanishes as ∆z := z − zc whereas the bulk modulus K remains finite when ∆z →

0 [4, 58, 59, 60, 61, 62]. In contrast, in rigidity percolation of generic networks,

extensive studies have revealed that for large systems (i) the connectivity z, which

gives the average number of springs per node, approaches zc = 3.9612 · · · < 2D
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for the bond diluted triangular network [18, 19], (ii) the largest rigid cluster takes

on a heterogeneous, fractal shape, and (iii) both the shear modulus, G, and bulk

modulus, K smoothly vanish at the critical point in a way typical for a second order

phase transition [18, 19].

To understand these differences, we note that the small difference in zc points

to a huge, qualitative difference between jammed and random networks. Based on

extensions of the ideas of Maxwell [14]), a simple mean field argument locates the

marginal point where the number of degrees of freedom (DN coordinates) is balanced

by the number of constraints (zN/2 bonds) at z = 2D. This argument is exact

if all the constraints are independent and there is a single rigid cluster. If there

are redundant bonds, zc can deviate from 2D, although proper counting of actual

degrees of freedom and independent constraints would remove this apparent violation

of Maxwell’s criterion [68]. Indeed, the rigid network in RP contains both redundant

constraints (bonds) and flexible hinges (sites) at the marginal point so that zc 6= 2D.

In contrast, we will show that sphere packings at the jamming transition are isostatic

everywhere: nothing can move (except a few rattlers) and every bond is essential for

the rigidity of the network. Jammed systems show a high degree of organization,

leading to highly non-generic networks [1].

Figure 3.1: (Color Online) Rigid Region Decomposition, where There are Two Rigid
Regions, One (Black Bonds) Overconstrained and the Other Isostatic (Red Bonds),
Separated by a Hinge (Light Green Site). The Sites which are Not Hinges are Colored
Black.
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Several open questions thus arise: What is different in the topology and geom-

etry of the underlying networks of random springs and jammed packings? Can we

conceive other families of networks with different rigidity loss transitions? Here we

address these questions, by determining the overconstrained and underconstrained

regions using the pebble game [18, 19]. This is an integer algorithm that analyzes

the topology of generic spring networks, by a very effective decomposition of such

networks into rigid regions, with both unstressed (isostatic) and stressed (overcon-

strained or superfluous [69]) rigid regions, and the hinges that separate rigid regions.

Figure 3.1 illustrates such an analysis for a small network. The 12 black bonds

(Figure 3.1 left) might carry finite forces whilst maintaining force balance: such bonds

are redundant, as any one of these bonds could be removed and the remainder would

still be rigid, and are called stressed. We emphasize that a stressed bond typically,

but not necessarily, carries a finite force: the concept of stressed/redundant bonds

should not be confused with, e.g., the prestress [70, 1]. The 11 red bonds (Figure 3.1

right) show a rigid cluster that is exactly isostatic, and removal of any of these bonds

would break the cluster. Such bonds are called unstressed, and necessarily carry zero

force. Finally, the green node in the center of this network is a hinge (defined as a site

that belongs to at least two rigid clusters). For more complex networks, the pebble

game is an effective algorithm to unambiguously determine the rigid clusters [18, 19].

3.2 Pebble Game Analysis

We will now characterize three families of network topologies by the pebble game.

Unless otherwise stated RP will refer to the bond diluted triangular network in this

letter, which is the best studied system. For all networks, we use periodic (wrap-

around) boundary conditions.

Figure 3.2 shows dramatic differences in the nature of the marginal states depend-
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Figure 3.2: (Color Online) Pebble Game Results for a Jammed Packing (Top Row), a
Stress-Relieved Triangular Network (Middle Row) and Rigidity Percolation (Bottom
Row). The Center Panel is the Marginal Case in All Three Panels, with the Left
Panel Having a Single Bond Removed and the Right Panel a Single Bond Restored.
The Marginal States of Both Jammed Systems as Well as the SR Network is Fully
Isostatic (Red), Whereas the Marginal State for RP Features Floppy Modes (Involving
the Green Hinge Sites) and Has 34% of All Bonds Stressed (Black).

ing on the physical process that generates these networks. The top row shows the

jammed-packing-derived networks one contact above the marginal state (right) and

with one/two contacts randomly removed (center/left). Strikingly, in the marginal

state of the jammed network, all bonds are isostatic (red), just above it, the whole
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system is overconstrained (black), and when a single bond is removed, almost every

site becomes a hinge (green). In terms of the network topology, this is a massively

first order transition. In the bottom row of Figure 3.2, the gentle evolution through

the marginal state in RP is shown. The marginal state contains both isostatic and

redundant pieces in the percolating rigid backbone, as well as significant numbers of

green hinges — adding or removing a single bond hardly changes the configuration,

typical of a second order transition.

We now introduce a third family of networks that becomes isostatic everywhere

at their marginal point — as in jamming — by cutting bonds randomly, but only if

they are stressed. This stress-relieving (SR) cutting algorithm leads, by construction,

to the percolating marginally rigid cluster being precisely and exactly isostatic ev-

erywhere, without any overconstrained or underconstrained regions. This also means

that in both jamming and SR (but not RP) the transition happens at the mean field

Maxwell point, so that the mean coordination is 2D with zero redundant constraints

anywhere.

In the middle row of Figure 3.2 we show the pebble game analysis for SR cutting,

starting from a triangular network. An isostatic state with a single cluster is produced

at the marginal point, reminiscent of the jammed state. However, this marginal state

is very different in character: both adding or removing a bond has a less dramatic

effect than in jamming. Hence, isostaticity everywhere is not the only nontrivial

feature of the jammed state: its organization is such that its globally isostatic state

is changed everywhere by the addition or subtraction of a single constraint, in stark

contrast to SR networks.

Both stressed and random bond removal can be performed on any initial configu-

ration, including jamming-derived networks at given connectivity zj. Doing so yields

two two-parameter families of networks, each characterized by z and zj. Starting
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Figure 3.3: Fraction of Stressed (Left) and Isostatic (Right) Bonds in the Rigid
Backbone for Jamming (Top), Stressed Bond Dilution (Middle) and Random Bond
Dilution (Bottom). In C-F, Line Styles Indicate Starting Point for Bond Removal:
Jammed Networks at zj = 4.01 (Solid, Thin), zj = 4.3 (Dotted, Thin), zj = 4.7
(Solid, Thick), zj = 5.98 (Dotted, Thick) and Triangular (Dashed, Thick). Data is
Averaged Over 300 Triangular Nets Or 25-50 Jamming-Derived Networks.

with zj close to 2D, we can for example probe how, and how quickly, the network

topology crosses over from jammed to generic or SR-like.

In Figure 3.3 we compare the fractions of stressed and isostatic bonds for jamming

(top row), SR (middle row) and RP (bottom row), where the latter two have initial
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configurations corresponding to jammed networks at four different values of z or a

triangular net. For jamming, the fraction of stressed bonds, fs, discontinuously jumps

from one to zero, and the fraction of isostatic bonds, fi, jumps from zero to one when

z is lowered, consistent with the picture shown in Figure 3.2. This happens because

in jammed sphere packings only contacts that carry a positive force can be detected

and therefore all bonds in the network must be stressed. For random bond dilution,

fs(z) and fi(z) remain continuous irrespective of zj, and for large zj, these functions

smoothly approach those of the triangular net.

In the middle row of Figure 3.3 we show fs(z) and fi(z) for the same five families

of networks for stressed bond dilution. The data shown here appears to have a

discontinuity around z = 4; it is an open question whether this discontinuity persists

in the thermodynamic limit. For zj = 5.98, the apparent jump is small, and the

curves are closer to those of the triangular net. However, we still see deviations from

the triangular case which is surprising given that here we have to cut almost 1/3 of

the bonds to reach the critical point. For smaller zj, the apparent jumps in fs and fi

grow, approaching the step functions of jamming — this is easy to understand, as for

zj → 4 an increasingly small fraction of bonds gets removed before reaching z = 4.

3.3 Discontinuous Response to Bond Addition and Removal

The response to addition or removal of bonds is a measure for the degree of orga-

nization in the network, and to quantify the discontinuous response at the marginal

point more precisely, we introduce two new indices. The first is h, the ease-of-breakup

index which is defined by removing one bond randomly from the marginal state, count-

ing the number of new green hinges, averaging over every bond in the network, and

dividing by the number of sites so that 0 < h < 1. The second is s, the ease of

stressing index, defined by adding one bond randomly, counting the number of new
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stressed bonds, average over all bonds and divide by the number of bonds so that

0 < s < 1. High values of h and s imply strong self-organization of the network.

We find that in networks representing packings near unjamming the index h ≈ 0.97

and s ≈ 0.98 (cf. top row of Figure 3.2), while for RP networks, both indices are

very small (h ≈ 0.0003 and s ≈ 0.001) as expected for a second order transition (see

Figure 3.2). Intermediate values of h and s are found for SR (h ≈ 0.28 ± 0.04 and

s ≈ 0.47 ± 0.05) where the spread is specific to our system sizes and is expected to

go down for larger systems. We have made an additional isostatic marginal state by

adding bonds to an empty triangular net, avoiding adding stressed bonds, which also

produces a marginal isostatic state, but with even lower index values: h ≈ 0.21 and

s ≈ 0.40. The large values of both h and s for the jammed state show how remarkably

self-organized it is.

To understand the large h index for jamming, we start from the globally isostatic

jammed network at the critical point: according to Laman’s theorem [16], the number

of bonds equals 2N − 3 and the number of bonds b in subgraphs of n nodes satisfies

b ≤ 2n − 3. After we remove a bond, only subgraphs that have precisely 2n − 3

bonds are isostatic. Examples of these are n= 3 triangles or n= 4 double triangles

(Figure 3.2). Here all nodes are at the cluster’s edge and are hinges — “black dots”

can only arise in the interior of isostatic clusters. The large value of h thus implies

that n > 4 isostatic clusters are very unlikely to occur in jamming.

We now suggest that large n isostatic clusters are suppressed due to the homo-

geneity of jammed systems, using a variation on a well-known bond cutting argu-

ment [59, 60, 71, 72]. Consider a large (hypothetical) isostatic cluster C with n nodes

and 2n−3 internal connections, and ne nodes at the edge of C. All O(ne) connections

that cross the boundary of C (for SR and RP there may be fewer) do not contribute

to internal connections, so that the mean contact number of C is of order 2n+ ne —
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as ne ∼
√
n, this is significantly above the global mean contact number 2n, even for

relatively large clusters (for a n = 100 circular cluster we estimate z ≈ 4.3). Whereas

RP and SR systems below the marginal point clearly have such subgraphs, these be-

come extremely unlikely for jammed systems. Thus, the h-index in jamming is much

larger than in SR or RP because spatial fluctuations in local contact numbers are

smaller [73]. How precisely this homogeneity arises remains an open problem.

To understand the large s index for jamming, we note that for jammed networks

all bonds carry a positive force and are stressed, as jammed systems are at finite

pressure. For SR and RP networks there is no positivity condition on the contact

forces, and both isostatic zero force regions and stressed regions where positive and

negative forces precisely balance can occur. This difference is clearly illustrated in SR

and RP networks above the marginal point, where stressed regions can have convex

edges where forces of opposite sign balance — this is ruled out in jamming. We

believe that such differences also underlie the inequality of the s index for jamming

and SR.

3.4 Elastic Moduli

We calculate the elastic moduli of the networks in linear response from the dy-

namical matrix [74, 75, 76]. In Figure 3.4 we show shear (G) and bulk (K) moduli

as a function of z for the same four values of zj as in Figure 3.3 and for the generic

triangular net, both for random bond dilution and for stressed-bond-only dilution.

Clearly, a very simple scenario unfolds: (1) For zj ≈ 6, the functions G(z) and K(z)

are virtually identical to those for bond dilution of triangular nets. (2) G(z) is essen-

tially independent of zj, consistent with our earlier observations [1]. (3) The behavior

of K is richer. For jammed networks with z = zj, K weakly depends on z but remains

finite (Kj(z = 4) > 0). However, for all zj that we have investigated, we find that
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Figure 3.4: (Color Online) Shear Modulus G (Red) and Bulk ModulusK (Black) for
(a) Random Bond Dilution and (B) Stressed Bond Dilution. As in Figure 3.3, The
Initial Condition is the Network of a Jammed Packing at zj = 4.01 (Solid, Thin),
zj = 4.3 (Dotted, Thin), zj = 4.7 (Solid, Thick), zj = 5.98 (Dotted, Thick) and
Triangular Networks (Dashed, Thick). as the Initial Condition. Insets Show Zoom-
Ins Around the Transition. Solid Squares and Diamonds Denote the Moduli of the
Jammed Packings as Published Earlier in Ref. [1].

upon bond dilution K vanishes as

K(z, zj) = Kj(zj) [(zj − z)/(zj − zc)]α , (3.1)

where α is close to unity. Our systems are too small to precisely determine α, although

the smoothing near z = 4 is consistent with α ≈ 1.4 as found for 2D triangular nets.

Is this difference in moduli related to h and s? Strictly speaking, no: it is the

network’s geometry, not topology, which determines the elastic response (even small

geometric perturbations of networks, be they quasicrystals [77] or jammed [78], can

strongly perturb K). However, both the the large value of s and the finite value of K,

are intimately connected to the repulsive nature of contacts in jamming [62, 1, 77].

Clearly the network reorganizations of jammed systems when they are decompressed

(such geometric reorganizations are absent in SR and RP), leads to networks where

finite positive contact forces can balance, and h and s tend to one.
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3.5 Discussion

It was known that jammed networks had to satisfy the Maxwell condition glob-

ally and had to satisfy the Hilbert criterion locally [53], but neither of those imply

the self-organization in terms of rigid cluster analysis that we uncover. From a de-

sign perspective, our two-parameter families of networks are attractive because they

allow to independently set the ratio G/K of elastic moduli and the connectivity z

(Figure 3.4). Fully random networks are non-optimal in propagating rigidity, as un-

helpful stressed regions remain in the backbone. SR networks are better, but still

become soft against compression at their marginal point. Jamming can be seen as a

strategy to find special, perhaps optimal geometries of spring networks in terms of

propagating rigidity and resistance to compression, although jammed networks are

not the only ones that have finite K at the marginal point [77]. We have not been

able to come up with algorithms that generate networks with the same intricate net-

work topologies as jamming, and suggest that whether this is possible remains an

important open problem [79, 80].

Finally, many other marginal networks have been studied recently [81, 82, 83].

Square and kagome lattices with randomly added braces, which are even more ho-

mogeneous than jammed networks, were shown to also have a very sharp rigidity

transition [84] with (in our terminology) h and s close to one, consistent with our

findings. One alternative protocol to create networks that are isostatic everywhere

was introduced by Lopez et al. [80]. For small N , these networks become macroscop-

ically floppy upon removal of a single bond, but this effect disappears as N increases,

and we expect that their networks are similar to our SR networks, with K → 0.

Another recent conditional cutting protocol allows for the independent tuning of the

ratio of bulk and shear moduli [85]. We hope that our work will inspire work to an-
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alyze such network topologies, leading to better understanding which other families

of networks can be constructed, with distinct properties of the stressed and isostatic

bonds, hinges, h and s indices, and elastic moduli.
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Chapter 4

JAMMING IN PERSPECTIVE

This chapter is a reprint of the following submitted article:

Hagh, Varda F., Eric I. Corwin, Kenneth Stephenson, and M. F.

Thorpe; “Jamming in Perspective"; arXiv:1803.03869 (2018).

My contribution to this work includes developing computer codes to generate

the network samples, conducting all the measurements, writing the manuscript, and

generating all of the figures in this chapter.

Jamming occurs when objects like grains are packed tightly together (e.g. grain

silos). It is highly cooperative and can lead to phenomena like earthquakes, traffic

jams, etc. In this Letter we point out the paramount importance of the underlying

contact network for jammed systems; the network must have one contact in excess

of isostaticity and a finite bulk modulus. Isostatic means that the number of degrees

of freedom are exactly balanced by the number of constraints. This defines a large

class of networks that can be constructed without the necessity of packing particles

together compressively (either in the lab or computationally). One such construction,

which we explore here, involves setting up the Delaunay triangulation of a Poisson

disk sampling and then removing edges to maximize the bulk modulus, until the

isostatic plus one point is reached. This construction works in any dimensions and

here we give results in 2D where we also show how such networks can be transformed

into a disk pack.
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4.1 Introduction

Disordered packings of athermal frictionless particles are a standard model for

studying the jamming transition in amorphous materials such as granular media [86],

foams [87], colloidal suspensions [88], and glasses [89]. Every jammed system can be

represented by a disordered spring network. To create this network, the center of

mass of each particle is replaced with a vertex with an edge between two vertexes if

their equivalent particles are in contact. The network embedding of a jammed system

is isostatic plus one, meaning that the number of degrees of freedom (dN where d

is the dimension and N is the number of vertexes) and constraints (Ne that is the

number of edges) are balanced in a way that there is exactly one state of self stress

in the system. This extra plus one is necessary for mechanical stability and a finite

bulk modulus [13, 90]. This then becomes a combinatoric rather than a geometry

problem as only the network topology is involved; assuming the network is generic

(no symmetry) which is the case in disordered networks, glasses etc. The Maxwell

count for an isostatic system, which has a periodic super cell, is such that the number

of floppy modes, F , are exactly zero, so

F = dN −Ne − d = 0 (4.1)

with the dimension d = 2 in this Letter. The last term is to make sure that the d

macroscopic translations are properly accounted for.

We use the pebble game [45, 46] (a numerical algorithm based on Laman’s the-

orem [91]) in 2D to determine the rigid region decomposition of the network. For

jammed systems at the isostatic point, the system is isostatic everywhere, with no

stressed edges. We refer to this as locally isostatic [92]. This is a stricter requirement

than just applying Eq. (4.1) once globally, as it requires that all subgraphs are also
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isostatic. Clearly just applying (4.1) globally could give locally stressed regions bal-

anced by other regions containing floppy modes and hinges, as happens in rigidity

percolation [7].

4.2 A New Approach to Jamming

Traditional computational methods available to create jammed packings, usually

with disks or spheres, include some mixture of molecular dynamics, event driven

dynamics, and energy minimization schemes [93, 94, 95, 96, 97, 98]. The new method

introduced here, produces a jammed network with precisely one state of self stress

and expands the set of what was previously accepted as jammed. To be precise, we

define a jammed network as being isostatic plus one excess contact and having a finite

bulk modulus. By finite we mean O(1) and not O(1/N) which will go to zero as the

number of vertexes N tends to infinity. Such a network has the consequence that

when one edge is removed, the network is locally isostatic. With this definition, we

are now free to adopt any construction method that will achieve this. There is the

traditional method which packs particles together by compression and a new method

described here. Other definitions of jammed systems are available (see Theorem 1 in

[99]) but we have found the above to be the most useful in practice.
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(a) (b)

(c)

Figure 4.1: A) Delaunay Triangulation of a Poisson Disk Sampling with 512 Points.
B) The Same Network at the Isostatic Plus One, After Pruning Edges that Mini-
mally Reduce the Bulk Modulus and Removing the Rattlers. C) The Network Rep-
resentation of a Polydisperse Jammed Pack, Formed by Compressing Disks, with
Approximately Same Number of Vertexes as in Part (B).

The new approach uses an algorithm that allows for precise control over the num-

ber of contacts in excess of isostaticity [100, 101, 102]. We focus on the network as

being fundamental to the jammed state and show that in two dimensions, the network
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can always be replaced by a disk pack, as well as vice-versa. Often it is useful to add

a single additional edge (or contact) to create a single state of self stress and we will

refer to this as isostatic plus one. We note that this is often referred to confusingly as

isostatic in the literature and we strongly discourage this usage. These systems are

delicately balanced and a single edge present at isostaic plus one does make a global

difference at the isostatic point; no matter how large the system.

For a non-crystalline system to be jammed it is necessary but not sufficient for it to

be isostatic plus one. An additional degree of cooperativity needs to be introduced by

demanding that the bulk modulus drops from finite to zero as a single edge is removed

in going from isostatic plus one to the isostatic state. A locally isostatic network can

be easily achieved by randomly removing stressed edges from a highly overconstrained

network, but the resulting network will not necessarily have a finite bulk modulus at

isostatic plus one [7]. Therefore the finiteness of bulk modulus does not follow from

the system being locally isostatic when an edge is removed. A convenient way to

characterize the extreme cooperativity of jammed networks is through two indexes s

and h, where s measures the fraction of stressed edges, when any one additional edge

is added to an isostatic network, and h measures the fraction of hinged vertexes when

any one edge is removed. This comes entirely from the static properties, using the

pebble game, and is a very convenient way to establish the marginality of jammed

networks without getting into the details of low frequency dynamics [71, 103] which is

discussed in detail in the Supplemental Material. If rattlers are removed, both locally

isostatic and jammed networks can have s = 1 and h = 1 [7], so this cannot be used

to distinguish between them1. Hence we need to include in the definition of jammed

states that the bulk modulus is finite at isostatic plus one.
1When pruning a spring network, if we do not remove the rattlers that appear in the form of

vertexes with coordination number z = 2, the s and h indexes will be slightly smaller than 1.
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The new method to generate polydisperse jammed packs at zero temperature

does not require exploring the entire energy landscape to bring the system into zero

internal energy and isostaticity. Instead, it builds the system within a single local

energy minimum. We try to keep cavities to a minimum so all packing fractions are

within the range 0.77 < φ < 0.82 after removing the rattlers.

4.3 Computational Methods

This new method is based on a pruning algorithm that is used to manipulate

and control the elastic properties of disordered harmonic spring networks [85]. These

disordered networks are usually created by minimizing the energy of N repulsive

frictionless particles in a periodic box and stopping at a coordination that is slightly

above jamming transition point. Therefore they already have encoded in them the

properties of jamming and should not be thought of as generic networks. By contrast,

in this work we generate the initial networks de novo and far from jamming, using

computational geometry only. The disordered jamming-like networks are then created

by performing a simple set of steps. A summary of the procedure is presented below:

• We start by generating N points in a box with periodic boundary conditions

that are distributed by Poisson disk sampling [104, 105]. The Poisson sampling

is used for aesthetic purposes only and is not necessary for the process. We

have confirmed that the same results are obtained when a uniform distribution

of points is used.

• We then find the Delaunay triangulation of these points [106]. To make the

triangles look more regular, we move each vertex to the centroid of the polygon

formed by its nearest neighbors, iteratively, until every vertex is at the centroid

of its neighbors. An example of such generated samples is shown in Figure 4.1-a.
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This geometrically generated network is highly over-constrained and far from

isostatic (with a mean coordination of 〈z| =〉 2Ne/N = 6), therefore we need to

remove Nr redundant edges to push it down to the isostatic plus one point as

desired.

• There are
(
Ne
Nr

)
ways to prune these Nr redundant edges from the network.

It is well known [107, 108] that the contribution of a removed edge to the

bulk modulus is largely independent of its contribution to the shear modulus,

although these moduli cannot increase by removing an edge ( [109], pp. 110-

111). Since jammed packs maintain a finite bulk modulus while the ratio of

shear (G) and bulk (K) moduli vanishes at jamming point [110], at each step

we find and remove the edge that maximizes the bulk modulus of the remaining

network. Maximizing the bulk modulus is not strictly necessary as similar

results can be obtained if we remove an edge randomly from the top 20% of

edges that have minimal contribution to the changes in bulk modulus.

• We repeat the process, until we arrive at isostatic plus one where 〈z〉 ' 4.

The resulting network has a finite bulk modulus and is shown in Figure 4.1-b.

Figure 4.2 shows how the bulk and shear elastic moduli of the network change

as the edges are pruned. The behavior of the shear modulus is reminiscent of

random rigidity percolation models [7] as well as jamming.
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Figure 4.2: (Color Online). The Ensemble Averaged Bulk K (Red) and Shear G
(Black) Elastic Moduli of 100 Samples with 512 Vertexes as the Edges are Removed
From Mean Coordination〈z〉 = 6 Down to 〈z〉 ' 4. The Yellow Square, with a
Wide Spread, Shows the Average of Bulk Moduli for 100 Samples Generated by
CirclePack. The Blue Triangle, with a Tighter Spread, Shows the Average of Bulk
Moduli at Isostatic Plus One for 100 Samples Generated by Conventional Jamming
Algorithms. The Jammed Systems Have the Same Disk Size Distribution as Circle
Packs.

4.4 Results

At this point we have a spring network that is identical to the network represen-

tation of a jammed pack (an example is shown in Figure 4.1-c) in all the following

aspects (none of which holds for a percolating rigid network at the marginal point):

1. The network has one excess contact past mathematical isostaticity (isostatic

plus one),

2. The bulk modulus of the network is finite and O(1),

3. The ratio of shear and bulk elastic moduli (G/K) scales as ∆z = 〈z〉−zJ where

zJ is the mean coordination at the marginal point,
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4. It is marginal, as both its s and h indexes are equal to 1 and its density of states

for low excitation frequencies is akin to that of a jammed system as is shown in

the Supplemental Material,

5. It is stable as revealed by the study of its dynamical matrix. All of the eigen-

values are positive (except for the two trivial translational eigenvectors whose

eigenvalues are zero).

6. 100% of the forces along the edges in the network are positive definite and

their distribution exhibits a scaling behavior similar to jamming2. This is very

different from percolating networks at the critical point where the fraction of

compressive forces is about 50%.

This network can now be mapped into a disk packing [111]. We locate disks

for a given periodic network using methods of circle packing, a topic introduced

by William Thurston, [112, 113]; the standard reference is [114], see in particular

Chapter 9. A circle packing (or disk packing) is a configuration of circles satisfying

a prescribed pattern of tangencies. In our setting, prescribed tangencies are those of

the given network, which is treated as a graph on a topological torus. Computations

are carried out in the software CirclePack, [115]. They require a triangulation, so a

single auxiliary vertex is temporarily added to each complementary cell of the network.

For the resulting triangulation, circle packing theory (see [116] and [114][Prop 9.1])

guarantees the existence of a geometric torus and an associated circle packing on that

torus. CirclePack computes disk radii and lays the disks out as a periodic circle

packing in the plane. While the result of CirclePack is unique up to scaling and

rigid motions, there are many such packings that could satisfy the constraints of the
2See the Supplemental Material Section.
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original network. Discarding the disks for the auxiliary vertexes leaves a circle packing

with locations and radii for the vertexes of the original network, as in Figure 4.3-a.

CirclePack changes the geometrical configuration of vertexes. However, the con-

nectivity of the system does not change and the bulk modulus remains finite after

this transformation with a standard deviation of s = 0.09 for the samples studied

here, as can be seen in Figure 4.2.

The generated circle packing holds all but one of the properties of the pruned

networks discussed above. It is at isostatic plus one, has a finite bulk modulus of

O(1) and a vanishingly small shear modulus of O(1/N). It is also marginal with

s = h = 1, and stable which means it would not change for a small enough compress-

decompress protocol. The difference is that not all the forces in the system (although

a majority of 72% to 99% of them in the samples studied here) are necessarily positive

definite (item 6 above). This comes as a result of our non-unique mapping from the

network to the disk packing.

Every circle packing has a distribution of radii that can be assigned to particles in

a standard molecular dynamics simulation to generate a polydisperse 2D disk packing

that can be compared to the packing generated by the newly introduced algorithm.

In this approach, we first scale the radii of particles to achieve a starting packing

fraction well above the jamming transition; typically packing fraction φJ ' 0.85 for

disks. Particles interact through a standard contact harmonic potential. The system

is minimized to its inherent structure at this initial density using a quad-precision

GPU implementation of the FIRE algorithm [117, 102]. Configurations at a desired

excess number of contacts can be achieved by exploiting the scaling of total energy

U ∝ (φ− φJ)2, where φJ is the isostatic jamming density. The system is successively

brought to lower energies and thus lower numbers of excess contacts by rescaling the

radii and re-minimizing. The re-scalings are chosen to achieve approximately 10 steps
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per decade of φ − φJ . This process continues until the number of excess contacts

is reduced to the desired value. At each density the number of excess contacts is

calculated on the rigid core of the system by first removing rattler particles lacking

at least d + 1 non-cohemispheric contacts. The blue triangle in Figure 4.2 shows

the average bulk modulus of 100 samples generated by this method. The standard

deviation is in order of s = 0.01, which is smaller than the standard deviation obtained

from results of CirclePack.

There are measurables that are not universal - like the density, pair distribution

function, etc. These vary widely for conventional jammed packs as well as in the

jammed systems here, depending largely upon the number of rattlers, the size of

convex cavities that are present, and the protocol that is being used to generate

the jammed packs. For instance, the average packing fraction of 100 test samples

generated by CirclePack is φ ' 0.77 which is lower than that of samples generated

by our standard algorithm where φ ' 0.82 after removing the rattlers. We emphasize

again that the circle packing construction used here is not unique and does not create

packings with all positive definite forces. This then explains the lower density as it

is well known that attractive interactions (or indeed frictional interactions) allow one

to create critically jammed packings at significantly lower densities. The precise ways

the disks of various radii are located is also not a crucial issue and can vary from well

mixed to some clustering. Figure 4.3 shows the comparison of two samples with 512

particles.
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(a)

(b)

Figure 4.3: (Color Online) a) Packing Generated by Pruning Algorithm and
CirclePack B) Rattler Free Packing Generated by Standard Algorithms.
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4.5 Discussion

In this Letter, we have shown that the essence of the jamming transition is the

underlying network involved at the isostatic plus one point. But another ingredient

is required - that the bulk modulus goes from a finite value to zero as one constraint

is removed to take the network from isostatic plus one to isostatic. This not only

clarifies the nature of the jamming transition, but shows that conventionally jammed

networks (formed by compacting particles together) are part of a larger group of

networks controlled by topology with the added cooperative geometric ingredient

that the bulk modulus remains finite. Such cooperativity is essential to make the

network jammed, and much more restrictive than merely being isostatic. We have

also demonstrated that all of the interesting macroscopic properties of jammed matter

derive from the marginality of the system and its bulk mechanical properties. As such,

both our generated networks and their equivalent circle packings behave as properly

jammed systems for all bulk interrogations. However, the microscopic properties of

jamming are only satisfied by the pruned networks and not the circle packs. This is

because the force distributions in pruned networks and jamming follow similar scaling

laws, whereas the circle packings fail to do so since forces are not positive everywhere.

We note finally that in all the networks discussed in this Letter, the shear modulus

goes from O(1/N) at isostatic plus one, to zero at isostatic. The ideas in this Letter

generalize easily to any dimensions, but the final step of going from a network to a

hypersphere pack is only possible in 2D.
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4.6 Supplemental Material

4.6.1 Vibrational Modes

Here we look into the density of states (DOS) in the pruned network construc-

tions and their equivalent circle packs and compare the results to physically jammed

systems. First, we study the evolution of DOS in the disordered networks as they are

pruned from 〈z〉 = 6 to 〈z〉 ≈ 4. For a 2D spring network of area A, the number of

allowed wave modes between wave numbers 0 and q is [21]:

n(q) =
A

(2π)2
πq2 (4.2)

We assume the vibrational frequencies are low enough for the dispersion relation

to be almost linear for both longitudinal (L) and transverse (T ) acoustic modes:

q =
ω

vα
(4.3)

where α = T, L. This means the number of vibrational modes n(ω) is quadratic in

frequency which leads to the following form for density of states:

D(ω) =
dn(ω)

dω
=

A

2πv2α
ω (4.4)

On the other hand, the longitudinal and transverse sound velocities are related to

the bulk (K) and shear (G) moduli of a 2D spring network in the following form:

vL =

√
G+K

ρ

vT =

√
G

ρ
(4.5)

where ρ = N/A is the mass density. Here the mass density is equal to the number

density of the system since all vertexes have unit mass. By inserting Eq. (4.5) into

90



Eq. (4.4) and using the normalization gD(ω) = D(ω)/N so that
∫
gD(ω) dω = 1, we

can write the probability distribution function of the vibrational modes in terms of

the elastic moduli of the system [118]:

gD(ω) =
ω

2π
(

1

G
+

1

G+K
) (4.6)
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Figure 4.4: (Color Online) The Evolution of Probability Density Function for Acous-
tic Modes in Disordered Spring Networks as the Bonds are Pruned From 〈z〉 = 6 Down
to 〈z〉 ≈ 4 (Isostatic Plus One) While Keeping the Bulk Modulus Finite. The Dashed
Lines Display Eq. (4.6) For the Average Elastic Moduli Associated with Each Value
of 〈z〉 Shown on the Colored Curves. The Results are Ensemble Averaged Over 100
Samples, Each with 512 Vertexes.
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Figure 4.5: (Color Online) a) The Probability Density Function for Vibrational
Modes in 2D Pruned Networks (Blue), Their Equivalent Circle Packs (Red) and
Jammed Systems (Black) in Linear Scale. B) The Plot of Part (a) in Logarithmic
Scale.

The linearity of gD(ω) versus ω is the Debye-like low frequency behavior that is
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expected to be seen in any material with non-zero values of sound velocities. This

is observed for networks far from marginality in the lower left corner of Figure 4.4.

When the edges with smallest contribution to the bulk modulus are removed from

a fully triangulated disordered spring network, the shear modulus approaches zero

almost linearly, while the bulk modulus remains finite. Therefore the first term on

the RHS of Eq. (4.6) diverges and the density of states becomes flat near the transition

point which is a characteristic of the vibrational modes in disordered systems at their

marginal transition point [86, 119, 118].

Figure 4.5 shows the plots of gD(ω) for three types of systems studied in the Letter:

the pruned networks at isostatic plus one, their equivalent circle packings, and the

jammed systems generated by using the size distribution of circle packs both in linear

and logarithmic scale. The marginality of all these systems is evident by their flat

density of states at low frequencies.

4.6.2 Distribution of Forces

Figure 4.6 shows the probability distribution of forces at isostatic plus one for

the pruned networks and the jammed systems. While they look quite similar on this

scale, a plot of the cumulative distribution of forces (Figure 4.7) reveals an intriguing

distinction. The physically jammed packing has a low force scaling exponent for all

forces that is consistent with the mean field full-replica symmetry breaking results

[102], as is expected for a jamming transition that happens deep within the marginal

glass phase. However, the pruned network has an exponent in the CDF consistent

with 1, which matches well with the single-replica symmetry breaking result for stable

glasses[120].
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Figure 4.6: (Color Online) The Probability Distribution Function of Forces for
Pruned Networks (Gray Triangles) and Jammed Systems (Blue Circles) at Isostatic
Plus One. Both Exhibit a Nearly Constant Distribution of Forces for Small Forces.
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Figure 4.7: (Color Online) The Cumulative Distribution Function of Forces for
Pruned Networks (Gray Triangles) and Jammed Systems (Blue Circles) at Isostatic
Plus One. Best Fit Power Laws are Over Plotted in Red for the Pruned Networks
and Teal for the Jammed Systems.
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Chapter 5

DISORDERED AUXETIC NETWORKS WITH NO RE-ENTRANT POLYGONS

This chapter is a reprint of the following submitted article:

Hagh, Varda F., and M. F. Thorpe. "Disordered auxetic networks with

no reentrant polygons." Physical Review B 98, no. 10 (2018): 100101.

My contribution to this work includes developing computer codes to generate

the network samples, conducting the measurements, writing the manuscript, and

generating all of the figures in this chapter.

It is widely assumed that disordered auxetic structures (i.e. structures with a

negative Poisson’s ratio) must contain re-entrant polygons in 2D and re-entrant poly-

hedra in 3D. Here we show how to design disordered networks in 2D with only convex

polygons. The design principles used allow for any Poisson ratio −1 < ν < 1/3 to

be obtained with a prescriptive algorithm. By starting from a Delaunay triangula-

tion with a mean coordination 〈z〉 ' 6 and ν ' 0.33 and removing those edges that

decrease the shear modulus the least, without creating any re-entrant polygons, the

system evolves monotonically towards the isostatic point with 〈z〉 ' 4 and ν ' −1.

5.1 Introduction

Consider a homogeneous extension of a rod whose sides are free. If we apply a

uniform force at the two ends of the rod in opposite directions, it will undergo a

transverse expansion when compressed and a transverse compression when stretched

96



along the applied forces. This is the familiar behavior of most materials. This defor-

mation can be quantified by Poisson’s ratio, which is defined as the negative ratio of

transverse contraction strain to longitudinal expansion strain. In d dimensions, the

Poisson’s ratio of any bulk material is related to its bulk (K) and shear (G) elastic

moduli by [121]:

ν =
dK − 2G

d(d− 1)K + 2G
(5.1)

which reduces to ν = (K − G)/(K + G) in 2D. Since for any material K,G ≥ 0 for

stability, we must have:

(K = 0) − 1 ≤ ν ≤ 1

d− 1
(G = 0) (5.2)

where ν = (d− 1)−1 corresponds to an incompressible fluid or rubber with a vanish-

ingly small shear modulus compared to its bulk modulus. Note that ν = 0 corresponds

to K − 2G/d = λ = 0 where λ is the Lame’ constant [122], as occurs in cork for ex-

ample [123]. Thus a negative ν corresponds to negative Lame’ constant which is not

forbidden by thermodynamics but is unusual. Normal materials have a positive Pois-

son’s ratio. From a continuum elasticity point of view, this is because most materials

have a larger resistance to changes in their volume (described by the bulk modulus

K) compared to resistance to changes in their shape (defined by their shear modulus

G) [124].

Eq. (5.1) suggests that by designing a structure where K < 2G/d or simply

K < G in 2D, one can fabricate materials with a negative Poisson’s ratio. These

types of materials and structures are called auxetic. The concept of a negative Pois-

son’s ratio goes back to Saint-Venant in 1848 [125] for anisotropic materials. In the

modern era, this concept was extensively described by Love in 1944 [126], and later
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was investigated by Gibson in 1982 [127]. In 1987, Lakes re-fabricated conventional

polymer foams with a positive Poisson’s ratio by heating under pressure to create

re-entrant structures on the sub-millimeter scale which then led to foams with a neg-

ative Poisson’s ratio that were isotropic [128]. These investigations suggested that

auxetic behavior is the result of a mechanism that involves the geometrical struc-

ture of the material and its deformation under compressive load. A variety of of

these materials were designed and fabricated at the end of 80’s and the beginning of

90’s [129, 130, 131, 132, 133]. Since then, many similar efforts (theoretically, com-

putationally and experimentally) have led to auxetic materials [134]. These include

auxetic cellular foams [135, 136, 137, 138, 139, 140, 5, 141], auxetic regular and

disordered networks [142, 143, 144, 145, 146, 147, 148, 149, 150], microporous poly-

mers [130, 151, 152, 153], and laminated fiber composites [154, 155]. In this paper,

we will focus on disordered auxetic networks [150] with only convex and no re-entrant

polygons.

Figure 5.1: (Color Online) A Hexagonal Re-Entrant Honeycomb with Bow Tie
Shaped Polygons. This Type of Re-Entrance is Common in Engineered Materials
with Negative Poisson’s Ratio. The Horizontal Blue Arrows on the Sides Represent
the External Load that is Applied to the System. The Red Arrows, Attached to the
Nodes, Show the Movements of All the Nodes in Response to the External Load. The
Magnitudes of Arrows Have Been Multiplied by 103 to Make Them Visible to the
Eye.

It is important to note that theoretical studies of auxetic materials fall into two
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distinct classes. In the first category, of interest here, the material is over-constrained

with all the elastic moduli being non-zero and proportional to the spring constant(s)

in the system where for simplicity, we assume the same spring constant for all

edges present. In the second category of auxetic structures, the structure is under-

constrained and a single internal mechanism or floppy mode is involved in which the

associated eigenvector shows auxetic behavior but there is no restoring force and all

the elastic moduli are zero (for a recent treatment with references see [156, 157, 158]).

All the edges retain their original lengths when the system undergoes a deformation.

In this case, Eq. (5.1) cannot be used for the Poisson ratio as K = G = 0, and instead

the ratio of traverse to longitudinal strain is used. Note that for almost any material

with a few floppy modes (few meaning between say 2 and 5), a negative Poisson’s ra-

tio can usually be achieved by using a well-chosen linear combination of floppy mode

eigenstates. Thus we regard the first category as being more challenging and focus

on that here as it is of the most interest for experimental fabrication.

Most presently known auxetics with non-zero elastic constants and nearest neigh-

bor central forces are networks with a re-entrant node structure [159]. A re-entrant or

pointed node in a network is a node where two adjacent edges make an angle greater

than 180◦. A classic example of this can be seen in Figure 5.1. The mechanism

of deformation for these types of networks is very well understood and involves the

collapse of all the bow tie units as they are pushed from any direction.

In this paper, we demonstrate a computational method to build two dimensional

disordered networks with Poisson’s ratios in the range −1 < ν < 1/3 and convex

polygons only. We have been unable to find any examples of disordered networks in

the literature with controllable Poisson’s ratios and nearest neighbor central forces

that did not contain re-entrant polygons. The known auxetic structures such as

chiral honeycombs [142] that do not possess any re-entrance, have unit cells with a
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specific type of symmetry (e.g. rotational, chiral, mirror, etc.). When there is such

a symmetry in the system, a single mechanism like unrolling can drive the system

auxetic. Our interest on the other hand, is in linear elasticity where the edges of a

disordered network are springs and the network is over-constrained. Such a network

has no symmetry (other than the repetitive structure associated with the supercell)

and when all the polygons are convex, its structure resembles that of glassy and

jammed networks that are widely studied in rigidity theory [2, 7].

5.2 Computational Methods

In the recent years, topological optimization methods have been widely used to

design networks with specific elastic and mechanical properties [85, 150, 8]. In this

paper, we use tuning by pruning method to generate networks that have a finite

shear modulus of order 1 and an infinitesimal bulk modulus of order O(1/N), so that

K � G. Here, N denotes the number of nodes in the network. In the limit N →∞,

the bulk modulus of these systems becomes zero and therefore the Poisson’s ratio,

as defined by Eq. (5.1), becomes exactly ν = −1. The networks are generated by

starting from a fully triangulated spring network with mean coordination 〈z〉 = 6 and

periodic boundary conditions. The starting network is a Delaunay triangulation [106]

of a set of points generated by Poisson disk sampling in 2D [104, 105]. An example

can be seen in Figure 5.2-a.

The contribution of different edges to the elastic moduli of a harmonic spring

network can span over several orders of magnitude [108]; affecting the bulk and shear

moduli in very different ways in some cases [85, 107]. This means removing some of

the edges can cause a significant drop in either the value of bulk or shear modulus

(or both), while the removal of some other edges does not change the moduli by a

significant amount. The wide distribution of edge response in these networks allows us
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(a)

(b)

Figure 5.2: (Color Online) a) A Disordered Triangular Network with Mean Coordi-
nation 〈z〉 = 6 Before Removing Any Edges. B) The Same Network After Removing
One Third of the Edges While the Convexity of All the Polygons is Conserved. The
Mean Coordination Number is 〈z〉 ' 4 And the Network Has a Negative Poisson’s
Ratio of ν = −0.9998. The Horizontal Blue Arrows on the Sides Represent the Ex-
ternal Load that is Applied to the System. The Red Arrows, Attached to the Nodes,
Show the Movements of All the Nodes ui in Response to the External Load. The
Magnitudes of Arrows Have Been Multiplied by 103 to Make Them Visible to the
Eye.

101



to identify and remove those edges that have the minimum contribution to the changes

in bulk or shear modulus. For example, removing edges that have the minimum

contribution to the bulk modulus can be used to build networks with a finite bulk

modulus that resemble a jammed system [8].

Here, we remove those edges that have a smaller contribution to the shear modulus

of the system. The shear modulus is measured by compressing the network in the

horizontal direction, while stretching it in the vertical direction. This deformation

causes a change in the lengths of the springs which all are assumed to have a unit

spring constant, k = 1 (N/m). These springs have no physical width and there is no

energy associated with bending them. Therefore the effective spring constant is only

based on stretching or compressing the edges. The energy stored in the system (E) is

then measured and the shear modulus is calculated using the following equation [160]:

G =
1

2

E

Aδ2
(5.3)

where A denotes the total area of the network and δ is the strain applied to the sys-

tem. Note that the shear modulus G is independent of δ in the linear regime (δ � 1).

If we iteratively remove the edges with the smallest contribution to G from a mean

coordination 〈z〉 = 6 down to 〈z〉 ' 4, the Poisson’s ratio will monotonically go from

ν ' 1/3 to ν ' −1 and the resulting network will have a larger resistance to shear-

ing than to hydrostatic compression. This method of pruning naturally introduces

re-entrance into the system. To avoid the emergence of re-entrant nodes and hence

maintain the convexity of all the polygons in the network, one more crucial condition

is added to the pruning protocol. This extra condition is Hilbert’s mechanical sta-

bility [111], which is imposed on all nodes at each step of the pruning process. The

Hilbert’s condition guarantees that each node must have at least d+ 1 incident edges

and the geometrical arrangement of edges is such that applied forces can cancel each
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other out. This geometrical condition is useful for the global mechanical rigidity of

the network. In 2D this means no angles between adjacent edges can be greater than

180◦, and hence re-entrance is prevented.

As an aside, all the removed edges could be replaced with very weak springs (for

example a thousand times weaker) to get back to the original Delaunay triangulation

which would still be auxetic. The only polygons then are triangles which of course are

convex. However, this illustrates that to be meaningful, the notion of convexity has

to be tied in with springs of comparable magnitude. Any auxetic network with non-

convex polygons, can also be modified by adding a single auxiliary node inside each

re-entrant polygon and connecting that new node to the nodes of the polygon with

very weak springs. This will form a local triangulation and will make the network

entirely convex. But, again, it is not a meaningful way of circumventing the meaning

of convex.

To be precise, we first generate disordered triangular networks with mean coor-

dination 〈z〉 = 6 that are Delaunay triangulation of a Poisson disk sampling with

N = 500 points on a 2D plane. We then loop over all the edges and collect those

that will not violate the Hilbert’s stability condition if removed. This guarantees

that the removal of an edge will not create any non-convex polygons in the network.

The contribution of each removable edge to the shear modulus of the system is then

measured and the edge list is sorted in an ascending order based on the value of their

contribution. Finally, we select the first 10% of the edges with smallest contributions

to G and remove one of these randomly. More than one third of the edges need to be

removed to drive the original triangulated network to an auxetic network with ν ' −1

and the mentioned process is repeated at each step. We could have selected the edges

with smallest contribution, but chose one out of the smallest 10% to demonstrate

that the result is robust, and the results are virtually identical.
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Figure 5.2-b shows an auxetic network generated by this method. As can be seen

from the figure, there are no re-entrant nodes introduced to the system, and yet the

network has a negative Poisson’s ratio ν = −0.9998. The small deviation of the

Poisson’s ratio from −1 is a finite size effect and would vanish in the N → ∞ limit.

The red arrows show the displacements {ui} of all the nodes when we apply a small

strain of order δ = 10−4 in the horizontal direction (shown by the blue arrows) and let

the system relax. The center of mass has been fixed here which leads to
∑N

i=1 ui = 0

and therefore there is not much motion happening at the central parts of the network.

The scale of these motions are magnified 103 times to make them visible to the eye,

since we are in the linear regime and the motions are infinitesimal. However this

magnification is for visualization only as anharmonic effects are present at such large

displacements for non-collinear networks of harmonic springs.

The mechanism behind the auxetic behavior of the networks built here is not

trivial, and a simple explanation has eluded us, but lies within the method used to

build them. The generating process is very cooperative, as in each step an edge is

removed based on how its contribution to the shear modulus is compared to all the

other edges in the network. This cooperative process adds to the complexity of the

mechanism that involves the deformation of such systems, and is a particular example

of a larger phenomena that involves pruning spring networks in special ways to obtain

desired properties. Another example is to produce jammed networks [8], and yet

another to produce allosteric effects of a similar kind to those seen in proteins [161].

To date these are all empirical algorithms and the underlying mathematics remains

to be understood.
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Figure 5.3: (Color Online) The Plots of the Shear (G) and Bulk (K) Moduli as the
Edges that Minimally Affect G are Pruned From Mean Coordination 〈z〉 = 6 Down
to 〈z〉 ' 4. The Results are Ensemble Averaged Over 50 Samples, Each with N = 500
Nodes.

We monitor both the shear and bulk moduli of these networks as they are pruned.

The bulk modulus is measured in a similar way to the shear modulus by using

Eq. (5.3). Figure 5.3 shows the behavior of both bulk and shear moduli against

the mean coordination of the system. The mean coordination is defined as the av-

erage number of edges at each node. All data points are ensemble averaged over 50

samples with N = 500 nodes. Both these elastic moduli decrease monotonically as

the edges are removed [109], as required by general principles.

At the starting point, the bulk modulus of a triangular network is greater than

the value of its shear modulus; therefore the Poisson’s ratio is a positive number, as

can be seen from Eq. (5.1). It should be noted that if the nodes in a network are

connected by central forces and if every node is a center of symmetry, then because of

the Cauchy condition between elastic constants, c12 = c44, the Poisson’s ratio would

be ν = (d + 1)−1 which in 2D gives ν = 1/3. This is the case for a 2D regular
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triangular network [162] and is also closely true for a Delaunay triangulation of the

kind shown in Figure 5.2-a. The algorithm used here to select the removed edges

aims to keep the shear modulus of the system above zero. Since the changes in

bulk modulus are only loosely correlated with changes in the shear modulus, driving

the network to maximize the shear modulus does not force it to also maximize the

bulk modulus. The bulk modulus decreases linearly as it would do with random

dilution [7]. This makes the difference between bulk and shear become smaller and

smaller until at about 〈z〉 ' 4.92 they become equal. For any edges removed after

this, the shear modulus is larger than the bulk modulus and therefore the Poisson’s

ratio becomes negative. As 〈z〉 = 4 is approached, the bulk modulus goes to zero

while the shear modulus remains non-zero; therefore the Poisson’s ratio approaches

−1. Note that the last edge that is removed, takes the system to the isostatic point

plus one edge [8] where there is one state of self-stress in the system [158] and the

shear modulus is of order 1, while the bulk modulus is O(1/N). The removal of an

additional edge is meaningless as this would take the system to the isostatic point

where the total number of degrees of freedom and constraints are balanced such that

the only remaining floppy modes are the macroscopic rigid motions. At the isostatic

point, the network is still mechanically stable but both the bulk and shear moduli

are exactly zero and therefore Poisson’s ratio becomes undefined.

Figure 5.4 shows the behavior of the ensemble-averaged Poisson’s ratio as the

networks are pruned. The central line, shown as red, is the Poisson’s ratio, while

the blue vertical bars highlight the standard deviation of the measurements over 50

samples, each with N = 500 nodes. As can be seen from the plot, the Poisson’s ratio

of these systems spans over the range (−1, 1/3). The small standard deviations mean

that this method can be used to design and build any disordered convex structure

with a desired Poisson’s ratio by choosing the corresponding mean coordination that
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Figure 5.4: (Color Online) The Poisson’s Ratio Versus the Mean Coordination 〈z〉
For the 50 Samples Used in Figure 5.3. The Red Dots Along the Central Line Show the
Value of the Averaged Poisson’s Ratio and the Blue Vertical Bars Show the Standard
Deviation for Each Data Point.

can be read from Figure 5.4.

5.3 Discussion

In Summary, here we introduce a method to produce disordered auxetic networks

with near neighbor forces without re-entrant polygons in 2D. The algorithm that

we use produces networks with any desired value of the Poisson’s ratio in the range

−1 < ν < 1/3 by tuning the mean coordination 〈z〉 down from 6 to 4 using a

specific protocol. This protocol involves removing edges that minimally reduce the

shear modulus while maintaining Hilbert’s mechanical stability condition at each

node. Any desired value of the Poisson ratio can be achieved by this method, all the

way down to −1. Starting from a Delaunay triangulation, this leads to a disordered

network where all the polygons remain convex at every stage. We chose all the spring

constants to be the same, but they could differ by factors of 2 etc., and similar
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results would be obtained. This result remains quite perplexing and we have no easy

geometric explanation at this time Examination of Figure 5.2 shows that while many

of the polygons are far from their maximum area, none are pathologically compressed

- with width/length ratios for each polygon being typically in the range 1 to 2. We

anticipate that similar results can be obtained in 3D.
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Chapter 6

CONCLUSION

The rigidity of a material determines its mechanical properties and allows elabo-

rate control over the conformational response to the external load; whether a structure

should maintain its integrity or should move under load in a certain way depends on

its rigidity. In this dissertation, the goal is to study the rigidity of disordered materi-

als. Disordered or amorphous solids make up many of the materials we use on a daily

basis, including glasses and plastics. The systems studied here are all 2D, but for

most cases, the methods can be generalized to any spatial dimensions (except those

that require rigid region decomposition of the pebble game).

Many of the physical and mechanical properties of materials can be understood

by using ball−and−spring networks, where the nodes represent the building blocks

(atoms or molecules) of the matter and the edges resemble the interactions between

these building blocks. For the purpose of rigidity and linear response, it is useful to

consider the interactions as harmonic potentials. Therefore the edges in the networks

are modeled as harmonic springs.

In Chapter one, the concept of rigidity is explored from a mathematical point of

view, where all the required tools and definitions are introduced. In a spring network,

moving the nodes leads to changes in the lengths of the springs which subsequently

results in a non-zero energy in the system. The changes in the lengths, either in

the form of contraction or elongation, are described in terms of a rigidity matrix R

that consists of edge vectors between the interconnected nodes in the network. When

the system is allowed to relax, it tends to go back to its original structure where all

the springs had their rest lengths and the energy stored in the system was zero. As
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a result, the system starts to oscillate about the energy minimum with vibrational

modes that are specified by the eigenstates of its dynamical matrix, D = RTR. The

number of zero eigenvalues of the dynamical matrix indicates the number of floppy

modes or degrees of freedom in the system. The eigenvectors of these zero eigenvalues

determine the motions for which there is no energy cost. The number of floppy modes

in a spring network is a good indicator of its rigidity since it reveals how the degrees

of freedom and constraints are balanced out. When a spring network is fully rigid,

meaning that its floppy modes are only limited to the trivial rigid motions, it will also

have non-zero elastic moduli. These elastic moduli quantify the response of the entire

system to external load. Two of the widely studied elastic moduli are the bulk and

shear moduli that describe the response of the system to specific deformations. These

moduli are proportional to the energy that is stored in the system due to deformation.

Chapter one includes a section on the relation between the energy and elastic moduli

where the derived equations are extensively used throughout this dissertation.

Chapter two introduces ideas from percolation theory by studying the effect of

loops and redundancy in percolation transition of two distinct network models. The

percolating cluster in a network is the connected pathway that spans the system. The

fraction of edges that are in the percolating cluster is an appropriate order parameter

that quantifies the critical behavior of the network near transition point. Any loops

in the percolating path are redundant from a connectivity point of view since they do

not add to the connectedness of the path. Therefore, for each loop in the system there

is a corresponding edge that can be considered redundant. Using this definition for

redundancy, we defined new order parameters to describe the fraction of edges inside

the loops and the fraction of redundant edges. These two order parameters, along with

the fractions of edges in the percolating and current carrying clusters, were measured

in two types of system: hierarchical networks and triangular networks. Our studies
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on the behavior of loops and redundancy in hierarchical networks revealed that loops

and redundant edges in a cluster (either percolation or conducting) have a similar

critical behavior to that of the cluster as a whole. This is due to the hierarchical

nature of these networks where the sub-systems behave exactly like the system itself.

However, in the case of triangular networks, this is not necessarily true as the results

have shown that critical exponents describing the fractions of looped and redundant

edges in a cluster (which are subsets of that cluster) are larger than that of the fraction

of edges in that cluster. Hence in this case, there is a difference between the critical

behavior of the system and the critical behavior of its subsystems.

These results give an insight into the effect of redundancy in rigidity transition.

Redundancy is, in fact, the key concept that provides a direct mapping between

ideas of percolation theory and rigidity in networks. In rigidity percolation, one is

concerned not only with the connectedness of a spanning cluster, but also whether

if that cluster is rigid. Comparing the problem of connectivity percolation to that

of rigidity percolation has revealed that the looped edges in a percolating cluster are

equivalent to the stressed edges in a rigid cluster. Although the concepts of stress

and redundancy in rigidity theory have been known for a long time, their impact on

the rigidity transition has not been explored adequately due to the complexity of the

problem. In that regards, the methods introduced in Chapter two can be used to

study the behavior of redundant and stressed edges in percolating rigid clusters. It

is not trivial whether the results would be similar to the ones obtained here, but it is

a problem worth exploring in future.

In Chapter three, the rigidity transition in three types of networks is discussed.

These include randomly diluted networks, stress diluted networks, and jammed net-

works. Randomly diluted networks were obtained by starting from a 2D triangulation

and removing edges randomly while the rigidity of the largest percolating cluster was
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monitored. Measuring the fraction of edges in the largest rigid cluster and the frac-

tion of stressed edges in that cluster showed that these quantities both go to zero in a

fashion that is characteristic of a second order phase transition. The results achieved

for the fraction of stressed edges in the largest rigid cluster were similar to the fraction

of looped edges in the percolating cluster, studied in the previous chapter.

The second type of systems studied here are locally isostatic networks, which

are networks with no redundant edges and no internal degrees of freedom. These

networks were generated by starting from a fully triangulated spring network and

removing edges from the stressed regions only. This process forces the stressed regions

to shrink, until at the isostatic point, there is no stress left in the system. The isostatic

point is the marginal point where a rigid percolating cluster last exists. This type of

transition is identified as a second order phase transition as well. However, it is found

to be different from the random dilution as there is a sharp transition point that can

be calculated exactly using the constraint count method introduced in Chapter one.

The last group studied in this chapter includes jammed networks. A 2D jammed

network is a mapping of conventional disk packing into network representation. By

pushing a set of disks together, either in the lab or computationally, one can reach

the jamming point where the system is rigid without any disks overlapping. At that

point, replacing the center of each disk with a node and connecting two nodes if their

equivalent particles are in contact, generates a jammed network. The networks built

this way are locally isostatic and possess interesting self-organized bulk properties.

For example, removing an edge from a locally isostatic jammed network, leads to

collapse of the entire network. On the other hand, adding a single edge to a locally

isostatic jammed network, makes all the edges undergo stress. Therefore the network

is fully stressed up to isostatic plus one edge and removing edges when the network is

overconstrained does not break the largest rigid cluster into smaller clusters. This also
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means that the fraction of stressed edges in the largest percolating cluster remains 1

up to the isostatic plus one point and then suddenly drops to zero. This models the

rigidity transition in these types of networks as a first order phase transition.

Another interesting property of jammed networks that was not observed in ran-

domly diluted and stress diluted networks is the behavior of their bulk modulus.

The results have shown that the bulk modulus of a jammed system remains finite

(O(1)) until isostatic plus one and then drops to zero by removing an edge. In the

other two systems studied in Chapter three, the bulk modulus went to zero as the

edges were diluted in an almost linear fashion. These two unique properties invited

us to think about the relationship between the rigid properties of jammed networks

and their elastic response. This led to the key question “Is there a way to generate

rigid networks with the exact same elastic properties of jammed networks that are

indistinguishable from them?" Chapter four provides an answer to this question.

In Chapter four, a new definition for jamming is introduced based on the rigid

properties and linear response of jammed networks. In this new definition, a network

is considered to be jammed if it is at the isostatic plus one point, and has a non-

zero bulk modulus of O(1). We attempted a variety of computational methods to

create such networks. The only successful attempt, which is reported in Chapter

four, was based on a tuning by pruning algorithm that monitors the elastic moduli

of a network and removes the edges based on their contribution to changes in these

moduli. In a disordered triangular network, the contributions of different edges to

the elastic moduli are distributed over a range. There are edges, removal of which,

would decrease the values of bulk or shear modulus by a large amount. On the

other hand, there are edges that would not change one of the moduli significantly.

Identifying an edge with the smallest contribution to the bulk modulus and removing

it from the network leaves a diluted network whose bulk modulus has been lowered
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infinitesimally. This process can be repeated until the desired number of edges is

reached. Such a network has a finite bulk modulus which drops to zero after removing

the last redundant edge. These networks are similar to jammed networks in every

possible way and can be mapped into two dimensional circle packs using the Circle

Packing theorem. The resulting circle packs share all of the bulk properties of jammed

disk packs. For example, they have a finite bulk modulus and every contact holds

a finite stress. Therefore these systems can be considered jammed in terms of our

new definition. However, there is one microscopic property that is different about

these systems. When it comes to jammed networks, the study of forces along the

edges, which can be found by calculating the zero eigenstate of the force matrix RRT ,

indicates that all the forces in the network are positive or compressive. In the case of

circle packs, the zero eigenvector of the force matrix turns out to have a fraction of

tensile forces as well.

Previously, it was believed that the compressive forces in jammed systems are

a result of the system having a finite bulk modulus. The circle packs generated in

Chapter four however, have a finite bulk modulus without carrying %100 compressive

forces. Since not all the forces in these circle packs are positive definite, one could ar-

gue that they are applicable to the jamming of attractive or sticky particles. This has

relevance to many colloidal structures as well as potentially to some technologically

relevant materials, such as the structures of magneto- or electro-rheological materials.

With our expanded definition of jamming, completely new systems, like the recently

discovered bilayers of vitreous silica now belong in this class as they satisfy all the

criteria set here [163].

We expect more examples of jammed networks to be forthcoming in this less

restricted definition of jamming and hope that the use of results obtained in Chapter

four may allow us to explore a broader range of the glass and jamming phase diagrams
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than just physically jammed systems would allow. On the other hand, the relation

between compressive forces and the bulk properties of jammed networks, and the

study of distribution of these forces can also be the subject of future exploration.

The idea of controlling the mechanical response of a spring network by removing

those edges that have a minimal contribution to its bulk modulus, can be used to

design new mechanical metamaterials with any desired elastic properties. This idea

was extended to Chapter five, where we used the methods introduced in the previous

chapter to produce spring networks with negative Poisson’s ratios. These types of

structures are referred to as auxetic. There have been many attempts in design

and fabrication of auxetic structures since the 1940’s. However, none of them have

focused on disordered auxetic systems. In fact, there are very few known examples

of the disordered auxetic materials [150], all of which contain non-convex polygons.

In Chapter five, we have designed auxetic disordered networks that contain convex

polygons only. This is interesting in particular because the resulting networks resem-

ble a jammed network, but instead of having a finite bulk modulus and a positive

Poisson’s ratio, they have a finite shear modulus and a Poisson’s ratio of almost −1.

To ensure the convexity of all the polygons, we had to add one extra condition to the

pruning procedure. In this extra condition, Hilbert’s stability criteria was imposed

on all the nodes at each step. Hilbert’s condition means that each node in a 2D net-

work should have at least 3 incident edges and the angle between any two adjacent

edges should not be greater than or equal to 180◦. These types of disordered auxetics

with no re-entrant polygons have not been reported before and their counter intuitive

structure calls for further exploration. The deformation mechanism of these networks

is also very complex and we do not have a geometrical explanation for their auxetic

behavior. The experimental fabrication of the structures introduced in Chapter five

is something that we would like to pursue in future, since it would allow us to un-
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derstand their mechanism and would possibly open a new avenue for the fabrication

of industrial non-crystalline materials with controllable response to the mechanics of

the their environment.
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Chapter 7

COMPUTATIONAL TOOLS
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Numerical methods and techniques have been integrated into research in theoret-

ical physics over the past few decades. In the course of my doctoral work, I have

extensively used computational tools and have developed many softwares that can be

used to reproduce the results reported in this dissertation. Most of the programs used

in this dissertation are written in Python because of its flexibility and great collection

of open source packages such as Numpy and Scipy which are nowadays fundamental

for scientific computing with Python.

7.1 Rigidpy

Since this dissertation is written on the rigidity of disordered networks, many

of the used programs share the same structure where a framework is built using

the connectivity table and coordinates of the vertexes, and then the rigidity and

dynamical matrices are calculated. To integrate all the small scripts together, my

colleague Mahdi Sadjadi and I have developed a Python package named Rigidpy

that provides a convenient application program interface to study the rigidity and

linear response of networks with periodic boundary conditions. The program can be

modified to apply to any kind of desired boundary conditions. It is written a generic

spatial dimension d with d = 2 in the dissertation. The package uses many of the

built-in functions in Numpy, Scipy, and Networkx. It is open source and available

at https://github.com/vfaghirh/rigidpy. The main components of this package

include:

1. Framework rigidity: A framework is the set of coordinates and connectivity

table of a graph. A framework is created by Rigidpy using two input files that

include the coordinates of N points in pairs {x, y}:

0.67534 0.08986
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0.04657 0.00345

0.11090 0.86786

0.00398 0.03711

...

and list of contacts in pairs {p1, p2} representing points (labeled from 0 to N−1)

that are mutually in contact. The edge list has the form:

0 1

0 2

2 5

3 8

...

Once the framework is created, this submodule uses the two repeat vectors

{a1, a2} to calculate the rigidity matrix, the stress matrix, Hessian matrix, dy-

namical matrix, and the eigenvalues and eigenvectors of dynamical matrix.

2. Geometrical optimization: This submodule finds the closest local energy

minimum for a given set of edge lengths by optimizing the graph geometry

using a conjugate gradient algorithm.

3. Modulus: This submodule uses the built framework to calculate the bulk and

shear moduli of the network. The inputs include the coordinates of the graph

vertexes, the edge list, and the lattice repeat vectors. The lattice vectors are

multiplied by appropriate strains and the changes in the lengths of the edges

are calculated. Then the moduli are calculated using methods introduced in

Chapter one.
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APPENDIX A

COMPUTATIONAL TOOLS
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Numerical methods and techniques have been integrated into research in theoret-

ical physics over the past few decades. In the course of my doctoral work, I have

extensively used computational tools and have developed many softwares that can be

used to reproduce the results reported in this dissertation. Most of the programs used

in this dissertation are written in Python because of its flexibility and great collection

of open source packages such as Numpy and Scipy which are nowadays fundamental

for scientific computing with Python.

A.1 Rigidpy

Since this dissertation is written on the rigidity of disordered networks, many

of the used programs share the same structure where a framework is built using

the connectivity table and coordinates of the vertexes, and then the rigidity and

dynamical matrices are calculated. To integrate all the small scripts together, my

colleague Mahdi Sadjadi and I have developed a Python package named Rigidpy

that provides a convenient application program interface to study the rigidity and

linear response of networks with periodic boundary conditions. The program can be

modified to apply to any kind of desired boundary conditions. It is written a generic

spatial dimension d with d = 2 in the dissertation. The package uses many of the

built-in functions in Numpy, Scipy, and Networkx. It is open source and available

at https://github.com/vfaghirh/rigidpy. The main components of this package

include:

1. Framework rigidity: A framework is the set of coordinates and connectivity

table of a graph. A framework is created by Rigidpy using two input files that

include the coordinates of N points in pairs {x, y}:

0.67534 0.08986
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0.04657 0.00345

0.11090 0.86786

0.00398 0.03711

...

and list of contacts in pairs {p1, p2} representing points (labeled from 0 to N−1)

that are mutually in contact. The edge list has the form:

0 1

0 2

2 5

3 8

...

Once the framework is created, this submodule uses the two repeat vectors

{a1, a2} to calculate the rigidity matrix, the stress matrix, Hessian matrix, dy-

namical matrix, and the eigenvalues and eigenvectors of dynamical matrix.

2. Geometrical optimization: This submodule finds the closest local energy

minimum for a given set of edge lengths by optimizing the graph geometry

using a conjugate gradient algorithm.

3. Modulus: This submodule uses the built framework to calculate the bulk and

shear moduli of the network. The inputs include the coordinates of the graph

vertexes, the edge list, and the lattice repeat vectors. The lattice vectors are

multiplied by appropriate strains and the changes in the lengths of the edges

are calculated. Then the moduli are calculated using methods introduced in

Chapter one.
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