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ABSTRACT 

 

     The students of Arizona State University, under the mentorship of Dr George 

Karady, have been collaborating with Salt River Project (SRP), a major power utility 

in the state of Arizona, trying to study and optimize a battery-supported grid-tied 

rooftop Photovoltaic (PV) system, sold by a commercial vendor.  SRP believes this 

system has the potential to satisfy the needs of its customers, who opt for utilizing 

solar power to partially satisfy their power needs. 

     An important part of this elaborate project is the development of a new load 

forecasting algorithm and a better control strategy for the optimized utilization of the 

storage system.  The built-in algorithm of this commercial unit uses simple forecasting 

and battery control strategies. With the recent improvement in Machine Learning 

(ML) techniques, development of a more sophisticated model of the problem in hand 

was possible. This research is aimed at achieving the goal by utilizing the appropriate 

ML techniques to better model the problem, which will essentially result in a better 

solution. In this research, a set of six unique features are used to model the load 

forecasting problem and different ML algorithms are simulated on the developed 

model. A similar approach is taken to solve the PV prediction problem. Finally, a very 

effective battery control strategy is built (utilizing the results of the load and PV 

forecasting), with the aim of ensuring a reduction in the amount of energy consumed 

from the grid during the “on-peak” hours. Apart from the reduction in the energy 

consumption, this battery control algorithm decelerates the “cycling aging” or the 

aging of the battery owing to the charge/dis-charges cycles endured by selectively 

charging/dis-charging the battery based on need. 
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     The results of this proposed strategy are verified using a hardware implementation 

(the PV system was coupled with a custom-built load bank and this setup was used to 

simulate a house). The results pertaining to the performances of the built-in algorithm 

and the ML algorithm are compared and the economic analysis is performed. The 

findings of this research are in the process of being published in a reputed journal. 
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Chapter 1 

 

INTRODUCTION 

 

 

1.1 Statement of Problem and Motivation 

     The state of Arizona has abundant solar potential. In terms of potential, it is next 

to Nevada and in terms of installed capacity, it is third in the list behind California 

and North Carolina [1]. The state also has a target of reaching 15% renewable 

integration by the year 2025 and 30% of this required renewable energy should come 

from non-utility distributed generation. 50% of this requirement must be from, 

residential sites [1]. The Arizona State University has a very elaborate solar program. 

The program has a 50 MW generating capacity from on-campus and off-campus sites 

[2]. To support this research, a residential PV roof-top system from a well-established 

vendor, was installed on the roof of the Engineering Research Center (ERC) at the 

Tempe campus.  

     The built-in algorithm of the residential rooftop PV system has a simple load 

forecasting technique, in which a specific daily load is predicted, based on the load 

pattern of the corresponding day of the previous month. Based on this prediction, the 

charging/discharging pattern of the battery is determined. Though this is a simple 

approach, the method has a lot of disadvantages, especially, when there are seasonal 

changes. In such a case, the prediction becomes inaccurate and as a result, the battery 

maybe charged/discharged unnecessarily, shortening its life (due to 'cycling aging’) [8] 

and reducing the ability of the storage system to reduce demand during on-peak hours. 

This in turn, will result in a higher Demand Charge and higher electricity bill for the 
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customer. The cascaded effect leads to a longer investment return period for the 

customer too.  

     As mentioned earlier, the state of Arizona has a target of achieving 15% renewable 

penetration by the year 2025. Hence, the utilities in the state are trying to embrace 

customer choice and are supporting residential solar production, by coming forward 

with net metering and residential demand charges for customers with on-site 

generation, who do not purchase all of their energy requirements from the utility. 

There is also, the Customer Generation Price Plan, i.e. the E-27 plan for such 

customers from one such utility (see appendix for the E-27 plan details). The rooftop 

PV system is one of their more elaborate ways, of ensuring that, the targeted 

renewable penetration is achieved by 2025. This PV system will yield better 

performance, when upgraded with a more robust and accurate load forecasting 

algorithm. With the advancement in Machine Learning (ML) over the past few years, 

we are now able to develop high performance algorithms, for various problems with 

ease. This is one such scenario, where the room for improvement is vast.  

     As mentioned earlier, the built-in algorithm controlling this residential PV system, 

which predicts a specific daily load based on the load pattern of the corresponding day 

in the previous month, has a serious flaw. Generally, load pattern of a particular house 

is closely related to the temperature. More elaborately, the temperature of a day 

determines the nature of devices used in a house. A hot day will result in the use of 

the air conditioner for prolonged periods. The compressor of the refrigerator will run 

for longer periods, compared to the winter months, before going into power saver mode 

as there is more strain on the device to maintain the inside temperature. Similarly, 

in the winter months, the room heater and the water heaters maybe used more. 

Another hidden pattern here is the time at which these “seasonal devices” will be used. 
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The air conditioners will be required mostly during the summer afternoons and the 

air heaters might most likely be switched on during the winter nights. All these factors 

influence the power requirement of the house during a day. On top of this, in a state 

like Arizona, for example, the temperature (i.e. the load pattern) of June is very 

different from May. Similarly, August and September are very different from each 

other.  

     A combination of these factors leads to huge deviation in the predicted and the 

actual values for predicted load. Since the battery charging and dispatch depends on 

this prediction, it results in the inefficient operation of the PV system, thus, defeating 

its purpose of reducing the overall electricity bill of the customer.  Therefore, there is 

sufficient evidence necessitating a more sophisticated way of predicting the load 

pattern — An approach that takes into account, the various temperature and seasonal 

fluctuations unique to the state and an algorithm that must be able to learn and adapt 

rather than a simple "one-size-fits-all" approach.  

1.2 Scope of this Research 

     Students at the Arizona State University have been collaborating with SRP and 

trying to solve this problem since 2016 [3]. The initial paper on this topic, tried to solve 

the problem with a better prediction algorithm compared to the built-in method. 

Weighted K-means clustering technique was utilized to predict the load, by essentially 

performing a weighted average of the load values, pertaining to the previous year of 

the same residence. Regarding the Demand Charge reduction, the battery power was 

dispatched equally between the 8 summer on-peak hours. The results were better 

than that of the built-in algorithm but, there was a huge scope for improvement. This 

research work thus, takes a more sophisticated approach to still better the results. 
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The load forecasting is performed using Supervised Machine Learning algorithms, 

which result in more accurate predictions over the weighted K-means clustering and 

a unique battery control algorithm involving the availability of solar power has been 

developed, with the sole aim of reducing the number of charging cycles the battery 

undergoes.  

     The ML load forecasting algorithm utilizes six features to model the problem 

appropriately. The features are — 

• Temperature  

• Month of the year  

• Day of the year  

• Time of the day  

• Day of the week 

• Holidays/Working days.  

     The load values have been rounded to the nearest 200 W values. This process 

effectively converts the forecasting problem into a Supervised Learning — 

Classification problem. Seven different algorithms have been tried and the results 

from the Random Forest algorithm have been chosen, since it gives the best prediction. 

Similar approach has been adapted to predict the available solar (PV) energy, on the 

day of interest.  

     The forecast load is subtracted from the available PV power, to determine the 

power needed from the battery at that specific point in time. The procedure is repeated 

for all the on-peak hours and the maximum Site Demand (SD) for every half an hour 

interval during the on-peak hours is calculated, to be used in the Economic 

Analysis(EA). The Economic Analysis is based on the assumption that the simulated 
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day reflects the load pattern of the house, for a specific billing period. The Demand 

Charge that would be paid by the customer at the end of the billing period in such a 

case, is calculated along with similar calculations based on the results of the built-in 

algorithm. A comparison of both is presented. The result — The ML based algorithm 

outperforms the built-in algorithm (see the Results section of each chapter) 

Summary of Contributions  

• The algorithm developed earlier [3] has been improved further by re-

classifying the load forecasting problem, as a Supervised Learning — 

Classification problem and applying the appropriate Machine Learning 

algorithms. 

• A more realistic model of the data set, by including features like Temperature, 

Month of the year, Day of the year, Time of the day, Day of the week and 

Holidays/Working days, has been constructed.  

• An algorithm to predict the PV power generation of the system in use on a 

specific day in Arizona, has been developed. 

• An algorithm to decide the specific power contribution of the battery, towards 

the load at any point of time on a given day, has been developed. 

• A significant reduction in the Demand Charge and optimization of battery 

usage, thus resulting in a reduced investment return period for the customer 

was proven through Economic Analysis. 
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1.3 Description of Procedure 

     The main components of the system in discussion are the solar panels, a battery to 

store power, a power inverter and two custom built load banks. The system is 

described in detail in Chapter 2 of this thesis.  

     The power stored in the battery is solely reserved to supply the load during the on- 

peak hours, so that the Demand Charge and the net energy used from the grid during 

the on-peak hours are minimum resulting in the reduction in the cost customer must 

pay the utility at the end of the billing cycle. Thus, the development of an algorithm, 

to appropriately distribute the stored battery energy during the on-peak hours is the 

agenda. The algorithm developed supplies the load initially from the solar power, with 

the battery making up any deficit supply and the grid taking up any further deficit. 

In case of excess PV availability, the excess power must be exported to the grid. This 

would enable the customer to earn money (from the utility) in the form of credits on 

their electricity bill. For such an algorithm to work efficiently, the prediction of the 

amount of PV power available and the load forecast are prerequisites. Additionally, 

the prolongation of the battery life, by charging and dispatching the battery only when 

necessary, is also ensured by the implementation of such an algorithm. 

     A day is chosen from the one year load data set, given by a large electric utility 

company, based on the temperature on the day of simulation. The chosen load is 

simulated on two similar days — on the first day, the data pertaining to the built-in 

algorithm is extracted while the second day is for the new Machine Learning (ML) 

algorithm implementation. The 11 kW load bank simulates the chosen load while the 

developed ML algorithm will be used to predict this exact load by providing the rest 

of the load data as training data. The predicted values are fed into the battery control 
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algorithm and the battery power required for every half-hour during the on-peak 

hours is determined. This is fed into the Sunverge system (through the online portal) 

in the form of pre-defined rules governing the battery charge/discharge. The results 

from both the algorithms are compared and an Economic Analysis is performed. The 

end results are tabulated. 

1.4 Assumptions 

The following assumptions have been made for this research. Specific explanations or 

justifications for the assumptions are provided at the respective chapters. 

• For the test purpose, four load sets were chosen from the yearlong load data 

set provided by the sponsoring utility, to be simulated over 8 days. The ML and 

the built-in algorithms were tested on all the load sets separately (2 

days/simulations for each load set).  

• Since the utility considers load averages over half-hour period during the on-

peak hours for its Demand Charge calculation, we cluster the given loads, 

predictions and results into half-hour clusters.  

• Both the algorithms are tested on each load data set according to the procedure 

described in detail earlier.  

• The average site demand (power drawn from the grid) of the on-peak half-hour 

intervals are compared and the interval with the maximum positive site 

demand value becomes the standard for the house. Assuming, the same load 

pattern continues for the entire billing period, the specific maximum value of 

site demand will be the value for which the Demand Charge will be calculated 

at the end of the billing period. The economic analysis is performed based on 

this assumption.  
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1.5 Thesis Outline 

     Chapter 1 gives an introduction about the problem and answers questions on why 

the specific problem is important, an update regarding the previous works done to 

solve this problem, a brief description of the procedure and the assumptions made. 

     Chapter 2 provides a complete/detailed description of the hardware components of 

the commercial system installed on the roof of ERC along with important information 

about the auxiliary equipment used. 

     Chapter 3 focuses on the literature surveyed and provides detailed pros and cons 

of every method considered before and a justification for why the currently adopted 

method is the best for this research.  

     Chapter 4 is on the first objective – load forecasting. The entire process is described 

in detail along with the background on the algorithm adopted and the comprehensive 

explanation on the feature extraction process. The chapter also provides the test 

results of two data sets in forms of figures and tabulations pertaining to this research.  

     Chapter 5 is on the secondary objective – The PV prediction and battery control 

algorithm development. The chapter explains in detail the procedure adopted and the 

specific reasons for each decision made is provided. The chapter also has the in-depth 

analysis of the results (of two data sets) obtained from the experiments. There are 

numerous figures and tabulations to present the data in easy to understand format. 

      Chapter 6 explains the economic analysis and the results reaffirms the fact that 

the method adopted is indeed an improvement over the built-in algorithm of the 

system. 
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      Chapter 7 is the final chapter that provides the conclusion and the scope for future 

work on this topic. 

     Finally, all the python programs used for the extraction of data, the control logic 

for the Raspberry Pi circuit along with the implementation of the algorithms described 

in Chapters 5 and 6 in Python are attached in the appendix for further reference. 
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Chapter 2 

 

SYSTEM DESCRIPTION 

 

 

2.1 The Battery-Supported Grid-Tied PV System 

     The Engineering Research Center (ERC) at the Arizona State University (ASU) 

has a 6.36 kW PV system installed on the roof. The hardware was funded by SRP for 

research purposes. The installed system is battery-supported and also grid-tied which 

enables the power transfer with the grid (export and import). The Figure 2.1 is a 

schematic of a similar system. 

Figure 2.1 Schematic of a Battery-supported Grid-tied PV System. [4] 
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The main components of this system are: 

• The solar panels 

• The Sunverge system 

o The charge controllers 

o The storage system, i.e. the battery 

o The inverter 

• The custom-built 11 kW load banks 

• The Raspberry Pi microcontroller and Relay circuits 

The components of the Sunverge system are commercially available together. Each of 

these components is described in detail in separate sections of this chapter. 

                                  Figure 2.2 The Sunverge system. 
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2.2 The Solar Panels 

     The PV system is made up of 24 polycrystalline panels, each rated at 265 W. The 

panels are divided into two sub-arrays with 12 panels in each sub-array. In each sub-

array, three panels are connected in series to form a sub-module. Four such sub-

modules are connected in parallel to make up the sub-array.  

      Table 2. 1 Specifications of a solar panel. 

Parameter Value 

Voltage 30.96 V 

Current 8.56 A 

Power 265 W 

Efficiency 19% 

 

 

Figure 2.3 Solar panels at the roof of ERC. 
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2.3 Sunverge system 

2.3.1 The Charge Controllers 

     The first component of the Sunverge system is the Maximum Power Point Tracking 

(MPPT) charge controllers. There are two such devices (One for each subarray of solar 

panels) in the commercially available Sunverge system. The main function of these 

devices is to use an inbuilt algorithm to extract maximum available power from PV 

module under certain conditions. The voltage at which PV module can produce 

maximum power is called ‘maximum power point’ (or peak power voltage). Maximum 

power varies with solar radiation, ambient temperature and solar cell temperature. 

[9] The specifications of these devices are given in the Table 2.2. 

      Table 2. 2 Specifications of a MPPT charge controller. 

Parameter Value 

Maximum output power 3500 W 

PV array operating voltage 140 V 

PV array open-circuit voltage 150 V 

PV array short circuit current 60 A 

 

                               Figure 2.4 The Sunverge MPPT charge controllers. 
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2.3.2 The Battery 

     The PV system comes with a power storage device in the form of a Lithium-ion 

battery (LiFePO4). Owing to better performance and compactness, the Lithium-ion 

battery is preferred over the lead-acid battery.  

      Table 2. 3 Specification of the battery. 

Parameter Value 

Maximum storage capacity 19.4 kWh 

Output DC voltage 48 V  

 

 

 
Figure 2.5 The Sunverge battery. 

 

 

2.3.3 The Inverter 

     The inverter is used in between the circuit breaker box and the DC sources. Since 

there is power flow in both the directions, a bi-directional inverter is used. It is an 

adaptable single-phase and three-phase hybrid inverter with grid-tie functionality. 

The rating of the inverter determines the maximum output possible from the solar 
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panels and the battery at any point in time. The inverter specifications are tabulated 

in Table 2.4. 

      Table 2. 4 Specifications of the inverter. 

Parameter Value 

AC nominal power 6000 W 

Battery charging voltage 48 V 

Battery charging current 100 A 

Peak efficiency 95.6% 

Operating voltages 120/240 V 

 

                                           Figure 2.6 The Sunverge inverter 
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2.4 Load Banks 

     There are two custom built load banks with a total capacity of 11 kW. The load 

banks are used to simulate a house and could be connected to the PV system to 

perform tests. There are two load banks, each used to vary the load in different steps. 

The smaller load bank is used to vary loads in steps of 72 W while the bigger load 

bank is used to vary the loads in steps of 880 W. Both the load banks are completely 

resistive in nature. The smaller load bank is built using commercially available 

resistors, while the bigger bank is composed of electric burner coils. The materials 

were chosen primarily based on the cost factor. 

                     Figure 2.7 The burner coil used as an 880 W step. 

 

                               Figure 2.8 A set of resistors used as a 72 W step. 
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2.4.1 Load Bank 1 

    This is the smaller load bank and it is made up of 100 ohm resistors. Two 100 ohm 

resistors are connected in series to form a set (of 200 Ω) and 29 such sets comprise 

this bank. Each set can dissipate a maximum of 72 W when 120 V is applied across 

them.  

      Table 2. 5 Specifications of the smaller load bank. 
Parameter Value 

Maximum capacity 2088 W 

Minimum step size 72 W 

Maximum voltage applied across the set 120 V 

Resistance value of each set 200 Ω 

Maximum current in each set 0.6 A 

Total number of sets 29 

   

Figure 2.9 The smaller load bank with 29 sets of 72 W steps. 
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2.4.2 Load Bank 2 

     This is the bigger load bank and it is made up of electric heater coils. Each device 

can dissipate around 880 W when a voltage of 120 V is applied. The Table 2.6 tabulates 

the specification of this load bank. 

      Table 2. 6 Specifications of the bigger load bank. 

Parameter Value 

Maximum capacity 8800 W 

Minimum step size 880 W 

Maximum voltage applied across a coil 120 V 

Resistance value of each coil 16.3 Ω 

Maximum current in each coil 7.33 A 

Total number of coils 10 

                            Figure 2.10 The bigger load bank with 10 steps of 880 W each. 
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2.5 Microcontroller and Relay Circuit 

     The load banks are switched on and off in different combinations based on the load 

profile being simulated. The load profile varies every 15 minutes and thus, there is a 

necessity to vary the loads simulated every 15 minutes. This switching on/off the 

appropriate coils/resistors is handled by the microcontrollers and the relays. A Python 

program with specific instruction on the load pattern to follow is used to govern the 

microcontrollers. The program energizes specific pins of the microcontrollers at 

specific times. These pins are connected to appropriate relay control switches. By 

energizing/de-energizing these pins, the relays can be switched on/off. The 880 W coils 

and the resistor sets are connected to the source through these relays. Thus, the 

switching on/off the relays connects/dis-connects the loads from the source effectively 

varying the load profile. Figure 2.11 through Figure 2.15 show the connection diagram 

and the pictures of the load banks, relays and the microcontrollers. 

Figure 2.11 880 W step load bank connection diagram. [4] 
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Figure 2.12 72 W step load bank connection diagram. [4] 

Figure 2.13 A Raspberry Pi 3 microcontroller. [10]  
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Figure 2.14 8-module digital relay – smaller load bank. 

 

 

 

Figure 2.15 8-module relay controlled by the Raspberry Pi – bigger load bank. 
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Chapter 3 

 

LITERATURE SURVEY 

 

 

3.1 Introduction 

          The fossil fuel reserves of the world are being exploited at a rate never seen 

before, owing to the increased global demand for energy. Apart from the 

environmental issues like pollution and global warming [11], these fuels are bound to 

get exhausted in the near future and there is a chance for a global energy crisis, if 

alternate sources of energy cannot supply the global demand. The main problem that 

limits the extent of reach of the renewable sources is the reliability issue.  

     Directly or indirectly, most of the renewable energies are derived from the sun. The 

hydro power generation depends on monsoons largely, which are a part of the water 

cycle involving the sun. Similarly, winds are caused due to the uneven heating of the 

earth’s surface by the sun. One thing in common with these indirect sources of solar 

energy is the huge uncertainty accompanying them. In a state like Arizona, the solar 

energy is directly available in abundance through most parts of the year. The 

uncertainty factor is greatly reduced if not eliminated here. With the renewable 

penetration target, mentioned earlier, in mind, the utilities have started offering 

customers a chance to tap into this seemingly infinite potential source.  

     The major factors that hinders the maximum utilization of this energy source are 

the cost of the equipment and the efficiency. The utilities are providing its customers 

with incentives to make the solar program more attractive. These incentives, in the 

form of credits, enable customers to earn money by operating the system and at some 
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point, in time, returns their initial investment in procuring the system. The time 

taken for a customer to earn back the investment is called the investment return 

period. According to [4], the investment return period for the Sunverge system 

installed at the ASU campus is 25 years including the cost of the battery. This is one 

of the major challenges this research work is trying to conquer. 25 years to earn back 

the investment made seems a long time. Customers may thus, hesitate to make the 

switch owing to this factor.    

     One way to approach this problem is to find the major influencing factor in 

determining the return period. Given the fact that the research is being performed on 

a commercial system, the changing of the hardware is beyond the scope of this 

collaborated research. Therefore, the students at the Arizona State University 

developed a technique to better monitor the system [3]. This resulted in a better 

investment return period of 17 years for the customer. The ASU algorithm still had 

scope for improvement. The thesis presented here is a compilation of results of such 

work performed in the spring of 2018. 

3.2 Related Work 

          Short term load forecasting has been tried before by various authors for 

different purposes. Based on the papers reviewed and conversations with experts 

through forums and articles, it is evident that Recurrent Neural Networks (RNN) 

seem to be the best technique to adopt when dealing with timeseries data. The author 

of [13] provides ample evidence for the same. The deep learning techniques provide 

reliable forecast of the data. But owing to the complexity involved in this process and 

also the fact that, this system in study does not have a working ML algorithm in place, 

a more simpler approach was taken for the purpose of this study. The study by the 
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authors of [14] in the Indian city of Bangalore was more closely related to the approach 

taken in this thesis. The authors had tried to predict the load pattern of a specific 

university building by utilizing past two years data as the test data. They had 

published [14] by comparing the performance of various ML techniques in this 

scenario. The important inference related to this thesis from [14] was that the Random 

Forest technique adopted in this thesis was a relatively simple and reliable technique. 

When pitched against the Deep Neural Network (DNN) techniques, the Random 

Forest algorithm performed fairly. Another interesting study in [15] probed the 

various factors that might influence the load pattern. The author provides the 

temperature and humidity pattern of the area as a feature in the effort to develop a 

better load forecasting model. The [15] along with other articles and educated guesses 

lead to the extraction of the features utilized in this thesis.  

     All the articles mentioned here were forecasting load, but, none of them had the 

same application as this project. The uniqueness of this requirement of trying to 

control a commercial hardware system without making any external changes to the 

hardware was a big challenge faced. Also, the conditions unique to Arizona made 

factors like humidity less significant to be passed as a unique feature. A better 

understanding of the climate and behavior of the people of the state of Arizona was 

required to analyze and extract the features for this problem.   

     The author in [16] has pitched the logical solution to beating the on-peak hour 

charges. A similar approach has been adopted in this thesis as well. The conditions 

again differed from [16]. The idea for the battery control algorithm was primarily from 

interactions with the author of [3]. The work done in [3] and [4] were attempts at 

identifying the actual cause of prolonged return period. Since the equipment is a 
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commercially available system, the built-in control algorithm is not revealed to the 

public. The author had thoroughly studied the system to be reasonably able to predict 

its behavior under various circumstances. This along with the conversations with the 

system provider helped decide a possible solution to this situation. 

     The primary agenda of this thesis is to establish a working control model that 

outperforms both the built-in algorithm and the algorithm developed in [4]. With the 

initial idea in place, further developments of this model would be easier. The Chapters 

4 and 5 would cover this developed model in great detail.  
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Chapter 4 

 

LOAD FORECASTING 

 

 

4.1 Introduction 

     The power requirement from the battery at any given point during the on-peak 

hours is based on the predictions of the load at that point in time. Thus, the efficiency 

of the battery control algorithm will largely depend on the load forecasting results. As 

explained earlier, another objective of this research work is to decelerate the cycling 

aging of the battery by controlling the charging/discharging cycles the battery 

undergoes. This algorithm is based on the load prediction results as well. The main 

factor inhibiting the performance of the built-in algorithm and the ASU algorithm 

developed previously was the accuracy of the load prediction methodology adopted. 

This chapter explains the feature extraction process, the algorithm selection process 

and the assumptions made for the research involving the Machine Learning 

algorithm.  

4.2 Dataset Description 

     The dataset describing the one-year load pattern of a “Stratum Three” 

customer/house in the state of Arizona was provided by the sponsoring utility 

specifically for this research. It was cleaned of any personal information of the 

customer. The dataset contains sets of 15-minute load profile (average kW value) of 

the house along with the temperature data and the timestamp providing the 

necessary information about any specific 15-minute interval. Thus, there are 4 

datapoints pertaining to every hour, 96 data points per day and 35,040 points for the 

entire year. This specific dataset is chosen for simulation because, it has already been 



27 
 

used by the students of ASU in 2016-2017 to simulate the load pattern of the house 

on Sunverge’s system thus, the built-in algorithm is familiar with the entire dataset. 

Since the built-in algorithm predicts loads based on its past experiences, the 

prediction it comes up for the day of simulation will be based on its deduction of this 

specific dataset. Such a prediction by the built-in algorithm would be the best it can 

make for the given day. This pitches the built-in algorithm and the newly developed 

Machine Learning algorithm, which will be fed the entire one year load data as 

training data, on equal grounds for a direct comparison of the performances. 

4.3 Algorithm Description 

     The load forecast has been obtained from the Random Forest Classification 

algorithm. The “scikit-learn” implementation of the algorithm is used for this study. 

The following section briefs the general working of the algorithm.  

     The Random Forest algorithm is an extension of the Decision Tree algorithm. 

Decision Tree is a Supervised Machine Learning algorithm, which solves the problem 

by adopting the representation of a tree to model the problem. Each internal node of 

the tree is an attribute and the leaves of the tree are the classification labels. The best 

attribute of the data set is placed at the roots of the tree. This is where, the prediction 

of the label for a record starts. The root attribute and the record's attribute values are 

compared. Based on the true or false result obtained, the appropriate branch is 

followed. This leads to the next node. The record's attribute values are compared with 

the next internal node. This again results in a true/false answer and we follow the 

appropriate branch to the next internal node. This process is continued till we reach 

a leaf (label). Once we reach the leaf, the classification of the record is complete.  
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     The disadvantage of the method is, each tree is constructed based on a data source 

and since no model is perfect, the constructed tree model has an error. Since we base 

our classification of the record, on the output of a single tree, the classification is prone 

to errors as well. The error can be significantly reduced, by considering the decisions 

from not one but multiple trees and taking an average. This solution is nothing but 

the Random Forest algorithm.  

               Figure 4.1 The structure of a Random Forest tree. [12] 

     A Random Forest algorithm is a collection of such Decision Trees. When a new 

object from the input vector needs to be classified, the object is fed into each tree of 

the forest and the classification decision of each tree is considered. The classification 

with the majority of the 'votes' from the trees is chosen as the most appropriate one 

[5]. This reduces the possibility of an erroneous classification by a huge margin. The 

decision of the number of trees in the forest depends on the memory constraints. From 

the analysis, it is clear that more the number of trees, the better the algorithm works 

(again, this is true until an optimal point, beyond which, the accuracy decreases). But, 
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the number of trees in the forest is limited by the amount of memory required, to 

process the output from so many trees. We therefore, choose the number of trees in 

the forest based on obtaining a reasonable accuracy with reasonable memory 

requirement. Ultimately, it is a trade-off which depends on the problem/data set on 

hand. 

4.4 Feature Extraction 

     The accuracy with which the algorithm predicts the load for a specific day, actually 

decides the extent of the economic benefit. The previously employed weighted K-

means clustering [3] had an issue — The load forecasting was treated as an 

Unsupervised Machine Learning problem whereas a better classification would be 

under the Supervised Machine Learning category. The reasons being:  

• Availability of labeled data.  

• Possibility of a feedback.  

• Objective is to predict the outcome/future.  

     More specifically, the load forecasting problem is a Supervised Learning — 

"Regression" problem. But, for the sake of simplicity, the problem has been treated as 

Supervised Learning — "Classification" problem in our case. This is achieved by 

rounding-off the output power to the nearest 200 W value, which results in the 

creation of "labels" or groups into which each prediction could be classified. The 

grouping though, may introduce a maximum deviation of +/- 100 W from the actual 

value of the load. For example, a load of 299 W will be classified as 200 W and a load 

of 301 W will be classified as 400 W. This is acceptable as the system we are simulating 

has a maximum capacity of 11 kW and 100 W is thus, a mere ~1% error.  
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     To better model the data set, six features have been extracted and utilized. The 

timestamp data has been stripped and five specific features have been extracted. The 

year value is not utilized as a feature since, same days of a month that are years apart 

have very similar load pattern. The six features utilized are:  

• Temperature — The feature is part of the data set. The temperature pertaining 

to every 15-minute interval is recorded and provided.  

• Month of the year — The months in a year have been clustered together 

appropriately, based on the average temperature observed from weather data, 

pertaining to the past 100 years in the state. (See appendix for the clustering 

details).  

• Day of the year — The days of the year are numbered from 1 through 365. Day 

number 1 and 365 (January 1st and December 31st — Peak winter in Arizona) 

have more similarity to each other than to day number 180 (end of June — 

Peak summer in Arizona). To convey this, instead of passing the number of the 

day in the year, the absolute value of the standard deviation of the number of 

the day in the year from the mean of 1 through 365 is passed. This ensured the 

similarity of day 1 and day 365 (both are 180).  

• Day of the week — The load pattern from weekday to weekend varies greatly. 

Therefore, the information pertaining to whether the given day was a weekday 

or a weekend, is passed as a feature.  

• Holidays — The load pattern varies, if a given day was part of a long-weekend 

or the holiday season. This information too is passed as a feature.  
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• Time of the day — The load pattern of a house normally varies every hour. The 

time of the day plays a huge part in determining the load pattern of that 

particular house. This is extracted and passed as a feature. 

       Figure 4.2 Flowchart of the load forecasting procedure. 
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4.5 Results 

4.5.1 Machine Learning Algorithm 

     Seven different Supervised Learning Classification algorithms are simulated after 

passing the said features. The K-nearest neighbors, Support Vector Machines (“rbf” 

kernel) and Random Forest are the algorithms that gave the most promising results. 

The “scikit-learn” implementation of these algorithms has been utilized, owing to 

performance and reliability. Results from the Random Forest are used as a base for 

further analysis, owing to its higher accuracy in predicting the grouped samples. 

 

      Table 4. 1 Accuracy of the three Supervised Learning algorithms for the 1st set of  

      simulations.                                                                                                                                                                              

Algorithm Accuracy (200 W grouping) 

SVM – ‘rbf’ kernel 78% 

K-Nearest neighbor 73% 

Random Forest 82% 

 

 

      Table 4. 2 Accuracy of the three Supervised Learning algorithms for the 2nd  

      set of simulations. 

Algorithm Accuracy (200 W grouping) 

SVM – “rbf” kernel 79% 

K-Nearest neighbor 79% 

Random Forest 80% 
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4.5.2 The Load 

     The Tables 4.3 – 4.8 compare the actual load value existing on the days of 

simulation during the on-peak hours with the predicted values of the ML algorithm 

and the built-in algorithm. 

Note: All the time intervals dealt with here are half-hour clusters and the parameter 

values are half-hour averages. 

Table 4. 3 Tabulation comparing the actual load with the predicted values pertaining to the 

1st set of simulations. 

Interval Actual load (kW) 
ML algorithm 

prediction (kW) 

Built-in algorithm 

prediction (kW) 

13:00 1.621 1.6 1.79 

13:30 1.73 1.8 1.886 

14:00 1.844 1.8 1.974 

14:30 1.963 2 2.037 

15:00 2.107 2.3 2.158 

15:30 2.251 2.6 2.257 

16:00 2.374 2.6 2.339 

16:30 2.48 2.6 2.384 

17:00 2.553 2.6 2.427 

17:30 2.571 2.6 2.416 

18:00 2.539 2.6 2.37 

18:30 2.451 2.4 2.299 

19:00 2.373 2.6 2.282 

19:30 2.35 2.4 2.254 
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Table 4. 4 Tabulation comparing the actual load with the predicted values pertaining to the 

2nd set of simulations. 

Interval Actual load (kW) 
ML algorithm 

prediction (kW) 

Built-in algorithm 

prediction (kW) 

13:00 1.643 1.6 1.053 

13:30 1.721 1.8 1.071 

14:00 1.782 1.8 1.108 

14:30 1.857 1.9 1.164 

15:00 1.955 1.9 1.243 

15:30 2.064 2.2 1.340 

16:00 2.160 2.2 1.439 

16:30 2.25 2.2 1.532 

17:00 2.335 2.2 1.61 

17:30 2.341 2.2 1.651 

18:00 2.3 2.2 1.667 

18:30 2.206 2.2 1.661 

19:00 2.119 2.2 1.691 

19:30 2.083 2.1 1.736 

 

     The data presented in the Tables 4.3 and 4.4 are plotted and presented as Figure 

4.3 and Figure 4.4. It is evident from the tables and the graphs that the prediction 

obtained using the ML algorithm is more loser to the actual value of the load than the 

built-in algorithm’s predictions. 
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Figure 4.3 Plot of the actual load and the predictions made by the ML and the built-

in algorithms for the load profile simulated on test day 1. 

 

Figure 4.4 Plot of the actual load and the predictions made by the ML and the built-

in algorithms for the load profile simulated on test day 2. 
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The Tables 4.5 and 4.6 show the magnitude of the deviation between the actual load 

values and the predicted load values using the ML algorithm. Since it is the 

magnitude if the deviation, the sign of the value is omitted. The 1st test day was based 

on the load data pertaining to the 1st of May and the 2nd test day was based on the 

data pertaining to 9th of May.  

 

Table 4. 5 Tabulation of the deviation of ML algorithm predictions from the actual load values 

for test day 1. 

Interval Actual load (kW) 
ML algorithm 

prediction (kW) 
Deviation (kW) 

13:00 1.621 1.6 0.021 

13:30 1.73 1.8 0.07 

14:00 1.844 1.8 0.044 

14:30 1.963 2 0.037 

15:00 2.107 2.3 0.193 

15:30 2.251 2.6 0.349 

16:00 2.374 2.6 0.226 

16:30 2.48 2.6 0.12 

17:00 2.553 2.6 0.047 

17:30 2.571 2.6 0.029 

18:00 2.539 2.6 0.061 

18:30 2.451 2.4 0.051 

19:00 2.373 2.6 0.227 

19:30 2.35 2.4 0.05 
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Table 4. 6 Tabulation of the deviation of ML algorithm predictions from the actual load values 

for test day 2. 

Interval Actual load (kW) 
ML algorithm 

prediction (kW) 
Deviation (kW) 

13:00 1.643 1.6 0.043 

13:30 1.721 1.8 0.079 

14:00 1.782 1.8 0.018 

14:30 1.857 1.9 0.043 

15:00 1.955 1.9 0.055 

15:30 2.064 2.2 0.136 

16:00 2.160 2.2 0.04 

16:30 2.25 2.2 0.05 

17:00 2.335 2.2 0.135 

17:30 2.341 2.2 0.141 

18:00 2.3 2.2 0.1 

18:30 2.206 2.2 0.006 

19:00 2.119 2.2 0.081 

19:30 2.083 2.1 0.017 

 

     From the Tables 4.5 and 4.6, it can be observed that, the maximum deviation 

generally occurs during the mid-afternoon period. This can be attributed to the fact 

that the load pattern seems to be on a continuous increase and the prediction has been 

rounded to the nearest 200 W value. This error could be further reduced if the 200 W 

margin is reduced. But, in this scenario, one can observe that this deviation is very 

small and does not contribute to large error in the results. 
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     The Tables 4.7 and 4.8 provide the comparison between the actual value of load 

and the value of the load simulated by hardware. Again, as before, all the load values 

are average values over half-hour intervals. The two tables provide the simulated load 

values for each test day. Finally, Figure 4.5 and 4.6 are plotted based on the data from 

the tables and they pictorially describe the load tracing capabilities of the hardware 

system.  

Table 4. 7 Tabulation comparing the intended load value and the simulated load value for test 

day 1. 

Interval Actual load (kW) 
Output from the 

hardware (kW) 
Deviation (kW) 

13:00 1.621 1.553 0.068 

13:30 1.73 1.637 0.093 

14:00 1.844 1.726 0.118 

14:30 1.963 1.912 0.051 

15:00 2.107 2.002 0.105 

15:30 2.251 2.159 0.092 

16:00 2.374 2.259 0.115 

16:30 2.48 2.367 0.113 

17:00 2.553 2.416 0.137 

17:30 2.571 2.475 0.096 

18:00 2.539 2.422 0.117 

18:30 2.451 2.346 0.105 

19:00 2.373 2.294 0.079 

19:30 2.35 2.144 0.206 
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Table 4. 8 Tabulation comparing the intended load value and the simulated load value for test 

day 2. 

Interval Actual load (kW) 
Output from the 

hardware (kW) 
Deviation (kW) 

13:00 1.643 1.583 0.06 

13:30 1.721 1.635 0.086 

14:00 1.782 1.7 0.082 

14:30 1.857 1.757 0.1 

15:00 1.955 1.853 0.102 

15:30 2.064 1.838 0.226 

16:00 2.160 1.909 0.251 

16:30 2.25 2.009 0.241 

17:00 2.335 2.207 0.128 

17:30 2.341 2.179 0.162 

18:00 2.3 2.182 0.118 

18:30 2.206 2.067 0.139 

19:00 2.119 2.065 0.054 

19:30 2.083 2.071 0.012 

 

     From the Tables 4.7 and 4.8, we can observe the actual hardware output value to 

have deviated from the actual value. There can be a few reasons why this happened. 

All the calculations for the number of units to switch on/off were based on the rated 

output values of the resistors/coils. Thus, practically, there could be deviations in 

those values. The system tries to optimize between three energy sources. Based on the 

availability, there is switching happening between these three sources every four 

seconds. This contributes to transients that distorts the output power momentarily.   
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Figure 4.5 Plot of the actual load and load simulated on the hardware on test day 1. 

 

 

Figure 4.6 Plot of the actual load and load simulated on the hardware on test day 2. 
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4.6 Inference 

     The load forecasting is of prime importance and this chapter leaves us with a lot of 

clues on what to expect when the economic analysis is performed on the results of the 

battery control algorithm. It is evident that the load forecasting is the basic structure 

that influences the efficiency of the other algorithms working on top of it. Any error 

here simply propagates through the entire process and ultimately magnifies the error 

component in the result thus, resulting in a higher electricity bill for the customer. 

The features extracted from the timestamp data are the building blocks of this 

algorithm. The chapter presents compelling evidence in support of these arguments.  
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Chapter 5 

 

BATTERY CONTROL ALGORITHM 

 

5.1 Introduction 

     The battery control algorithm that has been developed, is used to decide the 

amount of power, the battery needs to provide the load, at every point in time during 

the on-peak hours while also deciding on whether or not to charge the battery for the 

next day. This decision requires a prediction of the PV availability along with the load 

forecast, during the specified on-peak hours. The following sections are explanations 

of the procedures adopted and decisions made. 

5.2 PV Prediction 

     The PV availability during the on-peak hours of the specific day, is a required 

parameter. This data is obtained from NREL “PVWATTS Calculator”. It is a web-

application that predicts the PV output of a system based on the parameters listed in 

Table 5.1 [6]. The parameters are passed as input and the hourly prediction is 

obtained.  

     Another method employed for the prediction of PV is, using the Direct Normal 

Irradiance (DNI) values obtained from the NREL website for Arizona [7]. The 

obtained values are processed using the “PVLib'' library in Python. The DNI values 

from NREL are based on research data collected over a 25-year period from 1977 

through 2002. It has 8762 data points with each data point pertaining to a specific 

hour of a specific year in the period mentioned above. The DNI values are multiplied 

by the size of the system to obtain the solar generation of the system in watts. Further, 

factors like the ones listed in Table 5.1 including the DC to AC conversion ratio, the 
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angle of the solar panel inclination etc. have been utilized for obtaining the output 

value of the solar power produced by the system installed at the ERC.   

      Table 5. 1 List of parameters passed to the NREL ‘‘PVWATTS Calculator’’ 

Parameter Value 

Latitude (deg N) 33.45 

Longitude (deg W) 111.98 

Elevation (m) 337 

DC System Size (kW) 6.36 

Module Type Standard 

Array Type Fixed (roof mount) 

Array Tilt (deg) 20 

Array Azimuth (deg) 180 

Invert Efficiency (%) 96 

DC to AC Size Ratio 1.2 

Latitude (deg N) 33.45 

 

     The results of these two methods are very similar to each other and therefore, the 

results of the “PVWATTS”, is taken as the predicted PV value of a specific hour. A 

similar year-long study comparing the predictions of “PVWATTS” and the actual 

output generated by the commercial system installed at the Arizona State University 

was performed at the beginning of 2018 (for 2016-17). The results proved that the 
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PVWATTS” predictions are very close to the actual values obtained. The result of this 

study is presented in the Figure 5.1. 

Figure 5.1 Comparison of PVWATTS predicted value and the observed value at the 

site for 2017. 

 

5.3 Battery Control Algorithm 

     Previously, the battery was completely charged every night and the power was 

equally divided between the on-peak hours of the following day [3]. This method poses 

a problem. The utility's on-peak hours during the summer are from 1 pm through 8 

pm. But, the solar energy is unevenly distributed during these hours. Thus, the power 

from the battery might be needed more during the latter part of the day i.e. the 

evenings. Therefore, the ideal algorithm would try to supply the load through the PV 

first, then, a part of the deficit must be made up by the battery and any further deficit 

should be made up with power from the grid.  

     The capacity of the battery is split, based on the ratio of effective load (load in watts 

— available solar power in watts) at each half-hour interval compared to the load of 

the entire on-peak hours of the day. The reason such a method has been chosen is, to 

ensure that the Peak Demand of any particular half-hour does not stand out from the 

rest and is as uniform as possible. This is the working logic behind this algorithm. The 
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load in watts is predicted by the load forecasting algorithm and similarly, the 

availability of PV is predicted using the PV prediction. 

                             Figure 5.2 Flowchart of the battery control procedure. 
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     The charging of the battery every night is also controlled by this algorithm. For 

example, if the entire next day battery power requirement could be satisfied with 40% 

state of charge (SoC) of the battery, and the amount of charge left in the battery at 

the end of the current day is 60%, the battery will not be charged at the end of the 

day. Alternatively, if the amount of charge left is 60% and the following daily 

requirement is 50% (battery at 20% SoC is considered fully dis-charged), the battery 

is then charged to its full capacity (or 90% SoC).  

     This is especially useful when the occupants go on a vacation and during weekday 

afternoons of a peak summer month. The house in such cases, will most likely require 

minimal power which could be supplied by the PV, the remaining charge on the 

battery and grid (without inducing a huge Demand Charge) respectively. The built-in 

algorithm on the other hand, charges the battery using the excess PV during the day 

time as well. The charging of the battery does not happen unless necessary and as a 

result, prolonging the battery life, by avoiding the unnecessary charging/discharging 

cycles. 

     The following section of this chapter presents the experimental results obtained. 

5.4 Results 

     This section is further divided into two halves. The first half is the set of graphs, 

namely Figure 5.3 through Figure 5.23, pertaining to the actual parameters 

experienced by the hardware on the test days. The second half of this section presents 

the results/deviations of the theoretical calculations from the actual observed values 

at the test site. Finally, a tabulation of all the important numbers that the economic 

analysis would be based. 
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5.4.1 PV Data Extraction 

Figure 5.3 Plot of the PV power variation over time on the built-in algorithm 

simulation day – Test set 1. 

Figure 5.4 Plot of the PV power variation over time on the ML algorithm simulation 

day – Test set 1. 
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Figure 5.5 Plot of the PV power variation over time on the built-in algorithm 

simulation day – Test set 2. 

Figure 5.6 Plot of the PV power variation over time on the ML algorithm simulation 

day – Test set 2. 
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5.4.2 Site Demand Extraction 

Figure 5.7 Plot of the site demand variation over time for the built-in algorithm – Test 

set 1. 

Figure 5.8 Plot of the site demand variation over time for the ML algorithm – Test set 

1. 
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Figure 5.9 Plot of the site demand variation over time for the built-in algorithm – Test 

set 2. 

 

 

Figure 5.10 Plot of the site demand variation over time for the ML algorithm – Test 

set 2. 
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5.4.3 Load Power Extraction 

Figure 5.11 Plot of the load power variation over time for the built-in algorithm – Test 

set 1. 

 

Figure 5.12 Plot of the load power variation over time for the ML algorithm – Test set 

1. 
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Figure 5.13 Plot of the load power variation over time for the built-in algorithm – Test 

set 2. 

 

 

Figure 5.14 Plot of the load power variation over time for the ML algorithm – Test set 

2. 
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5.4.4 Battery State of Charge Extraction 

Figure 5.15 Plot of the battery SoC variation over time for the built-in algorithm – 

Test set 1. 

 

Figure 5.16 Plot of the battery SoC variation over time for the ML algorithm – Test 

set 1. 
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Figure 5.17 Plot of the battery SoC variation over time for the built-in algorithm – 

Test set 2. 

 

Figure 5.18 Plot of the battery SoC variation over time for the ML algorithm – Test 

set 2. 
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5.4.5 Battery Power Extraction 

Figure 5.19 Plot of the battery power variation over time for the built-in algorithm – 

Test set 1. 

 

 

Figure 5.20 Plot of the battery power variation over time for the ML algorithm – Test 

set 1. 
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Figure 5.21 Plot of the battery power variation over time for the built-in algorithm – 

Test set 2. 

 

Figure 5.22 Plot of the battery power variation over time for the ML algorithm – Test 

set 2. 
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     Since the built-in algorithm is an algorithm built by Sunverge for commercial 

purpose, the exact working logic governing this algorithm is not very well known. Most 

of the inferences gathered are based on experimentation results and conversations 

with the Sunverge representatives in form of online meetings through the electric 

utility. The settings used to extract the above results pertaining to the built-in 

algorithm are shown in Figure 5.23. The reason for adopting this setting is, the works 

of the ASU students prior to this research on the Sunverge system considered this 

setting to be the default setting, i.e. Sunverge’s setting. All the results extracted were 

based on this setting. Thus, the same has been followed for this research as well. 

                                Figure 5.23 The Sunverge’s default setting. 
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5.4.6 PV Prediction Results 

     For convenience, the hourly average of the PV power has been used in Table 5.2 

through Table 5.5. This is so as to remain fair to the PVWATTS Calculator which 

provides the predictions as hourly averages. 

 

Table 5. 2 Tabulation comparing the actual PV values with the predicted values pertaining to 

the day 1 of simulations (Built-in algorithm). 

Interval Actual PV (kW) NREL prediction (kW) Deviation (kW) 

13:00 4.84 4.74 0.1 

14:00 4.47 4.18 0.29 

15:00 3.7 3.43 0.27 

16:00 2.5 2.31 0.19 

17:00 1.14 1.05 0.09 

18:00 0.35 0.15 0.2 

19:00 0.01 0 0.01 

 

Table 5. 3 Tabulation comparing the actual PV values with the predicted values pertaining to 

the day 2 of simulations (ML algorithm). 

Interval Actual PV (kW) NREL prediction (kW) Deviation (kW) 

13:00 4.84 4.74 0.1 

14:00 4.48 4.18 0.3 

15:00 3.68 3.43 0.25 

16:00 2.58 2.31 0.27 

17:00 1.27 1.05 0.22 

18:00 0.26 0.15 0.11 

19:00 0.01 0 0.01 
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Table 5. 4 Tabulation comparing the actual PV values with the predicted values pertaining to 

the day 3 of simulations (Built-in algorithm). 

Interval Actual PV (kW) NREL prediction (kW) Deviation (kW) 

13:00 4.92 4.49 0.43 

14:00 4.44 4.23 0.21 

15:00 3.63 3.25 0.38 

16:00 2.55 2.32 0.23 

17:00 1.26 1.03 0.23 

18:00 0.26 0.16 0.1 

19:00 0.01 0 0.01 

 

Table 5. 5 Tabulation comparing the actual PV values with the predicted values pertaining to 

the day 4 of simulations (ML algorithm). 

Interval Actual PV (kW) NREL prediction (kW) Deviation (kW) 

13:00 4.93 4.49 0.44 

14:00 4.48 4.23 0.25 

15:00 3.72 3.25 0.47 

16:00 2.62 2.32 0.3 

17:00 1.28 1.03 0.25 

18:00 0.26 0.16 0.1 

19:00 0.01 0 0.01 

 

     From Tables 5.2-5.5, it is evident that the PVWATTS Calculator is efficient in 

predicting the PV power availability with minimal error. It must also be noted that 

certain parameters provided as an input to this web application were a bit on the 

conservative side. The deviations observed were positive deviations, i.e. the available 
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PV was always greater than the predicted value. This is acceptable because, if excess 

PV is available, the excess energy is merely exported into the grid and the customer 

ends up earning money for this. A problem would arise if the prediction ends up being 

greater than the actual available PV power. In such a case, the system would draw 

power from the grid possible inducing a higher Demand Charge and energy bill. This 

prediction (being conservative) suits the requirement, of not drawing power from the 

grid, perfectly. Figures 5.24 – 5.27 shows the actual and predicted PV power values. 

 

       Figure 5.24 Plot comparing the actual and predicted PV power values for day 1. 
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Figure 5.25 Plot comparing the actual and predicted PV power values for day 2. 

 

 

  Figure 5.26 Plot comparing the actual and predicted PV power values for day 3. 
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Figure 5.27 Plot comparing the actual and predicted PV power values for day 4. 

 

 

     The Tables 5.6 and 5.7 contain data pertaining to the prediction of the battery 

power required at every point in time during the on-peak hours of the days of 

simulation. Since the utility calculates the Demand Charge based on average load 

values over half-hour intervals, the tables contain the prediction for every half-hour 

interval of the on-peak hours. The solar prediction and the load prediction are the 

input to this algorithm. The difference between these two powers is the deficit that 

needs to be made up by the power supplied by the battery. In case these predictions 

are 100% accurate, then the power drawn from the grid would be zero. But, as seen 

earlier, both the predictions do have some error and thus, the power drawn from the 

grid at the end of this scenario would be a few watts. 
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Note: A negative sign in the deficit value indicates power of the indicated magnitude 

being exported into the grid.  

 

 

Table 5. 6 Tabulation of the battery power requirement over every half-hour interval during 

the on peak hours pertaining to the 1st set of simulations. 

Interval 
Predicted load – 

Predicted PV (kW) 

Battery power 

requirement (kW) 
Notes 

13:00 -3.14 0 

Excess PV exported to 

grid. Battery on 

standby. 

13:30 -2.94 0 

Excess PV exported to 

grid. Battery on 

standby. 

14:00 -2.38 0 

Excess PV exported to 

grid. Battery on 

standby. 

14:30 -2.18 0 

Excess PV exported to 

grid. Battery on 

standby. 

15:00 -1.13 0 

Excess PV exported to 

grid. Battery on 

standby. 

15:30 -0.84 0 

Excess PV exported to 

grid. Battery on 

standby. 

16:00 0.289 0.289 
Battery discharges at a 

constant rate. 

16:30 0.289 0.289 
Battery discharges at a 

constant rate. 

17:00 1.55 1.55 
Battery discharges at a 

constant rate. 

17:30 1.55 1.55 
Battery discharges at a 

constant rate. 

18:00 2.45 2.45 
Battery discharges at a 

constant rate. 

18:30 2.25 2.25 
Battery discharges at a 

constant rate. 

19:00 2.6 2.6 
Battery discharges at a 

constant rate. 

19:30 2.4 2.4 
Battery discharges at a 

constant rate. 
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Table 5. 7 Tabulation of the battery power requirement over every half-hour interval during 

the on peak hours pertaining to the 2nd set of simulations. 

Interval 
Predicted load – 

Predicted PV (kW) 

Battery power 

requirement (kW) 
Notes 

13:00 -2.89 0 

Excess PV exported to 

grid. Battery on 

standby. 

13:30 -2.69 0 

Excess PV exported to 

grid. Battery on 

standby. 

14:00 -2.43 0 

Excess PV exported to 

grid. Battery on 

standby. 

14:30 -2.33 0 

Excess PV exported to 

grid. Battery on 

standby. 

15:00 -1.35 0 

Excess PV exported to 

grid. Battery on 

standby. 

15:30 -1.05 0 

Excess PV exported to 

grid. Battery on 

standby. 

16:00 -0.125 0 

Excess PV exported to 

grid. Battery on 

standby. 

16:30 -0.125 0 

Excess PV exported to 

grid. Battery on 

standby. 

17:00 1.17 1.17 
Battery discharges at a 

constant rate. 

17:30 1.17 1.17 
Battery discharges at a 

constant rate. 

18:00 2.04 2.04 
Battery discharges at a 

constant rate. 

18:30 2.04 2.04 
Battery discharges at a 

constant rate. 

19:00 2.2 2.2 
Battery discharges at a 

constant rate. 

19:30 2.1 2.1 
Battery discharges at a 

constant rate. 

 

     The Figures 5.28 and 5.29 compare the predicted and the actual difference between 

the load and the PV powers at any interval.  
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Figure 5.28 Plot comparing the actual and predicted (Load power- PV power) values 

for simulation 1. 

 

Figure 5.29 Plot comparing the actual and predicted (Load power- PV power) values 

for simulation 2. 
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     It can be observed from the graphs that the predicted values are always a bit 

conservative compared to the actual values.  

     During the afternoon when there is excess solar power, the prediction is 

conservative and thus predicts the value of the available power to export to the grid 

to be lesser than the actual available value. This is beneficial because, if the algorithm 

had predicted more availability than available, then that difference between the 

actual and predicted values would be drawn from the battery to be supplied to the 

grid. This happens since the Sunverge system’s internal control manages everything 

in terms of specific numbers, meaning, for every interval, the power that must be 

drawn/supplied from/to the grid needs to be specified. The system tries to stick to this 

number and thus in case of over optimism, ends up drawing the deficit power from the 

battery and exporting it to the grid.   

     Similarly, the ML algorithm is conservative in the evenings by predicting the 

battery demand to be slightly more than the actual demand. In this case, similar to 

earlier, the system tries to discharge the specified amount of power from the battery. 

In case the demand is lesser than the predicted value, the excess battery discharge is 

exported into the grid thus earning the customer credits. On the other hand, if the 

prediction had been lesser than the actual value, the battery is discharged at the 

predicted value and the deficit is made up by power drawn from the grid. This costs 

the customer money and there is a chance of a higher Demand Charge. This is what 

happens in the case of the built-in algorithm leading to its poor performance. But 

again, since there is also a constraint to not discharge the battery unless necessary to 

decelerate cycling aging, the predicted value cannot be too conservative i.e. way higher 

than the actual requirement. It must be as close to the actual value as possible.  
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     Another thing to note is the smoothness of both the curves. The curve representing 

the actual value is smooth while the curve representing the predicted value rises and 

falls in steps. This is because of the initial treatment of this problem as a 

“Classification” problem and the grouping of the values into 200 W clusters. A 

grouping of smaller magnitude or treating the problem as a “Regression” problem 

would increase the smoothness. 

     The Tables 5.8 and 5.9 compile the important and conclusive results of this chapter 

that are a measure of working efficiency of both the algorithms. Since these 

parameters will be used in the Economic Analysis, they directly affect the investment 

return period of the customer. 

 

Table 5. 8 Tabulation of the maximum site demand of the on-peak hours on the test days. 

Test Built-in Algorithm (kW) ML Algorithm (kW) Difference (kW) 

1 2.125  0.283  1.842 

2 1.991 0.197 1.793 

 

Table 5. 9 Tabulation of the battery SoC at the end of on-peak hours for the days of ML 

algorithm simulations. 

Test 

Day 

Battery 

SoC at 

day end 

Battery power 

requirement of the 

following day in 

terms of SoC 

Charging 

required 

tonight? 

1 60.8% 39.07% NO 

2 71.8% 38.91% NO 
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5.5 Inference 

     This chapter shows with evidence the higher efficiency and accuracy of the ML 

algorithm when compared to the built-in algorithm and the algorithm developed 

earlier by the students of ASU presented in [4]. Also, the assumptions made at the 

beginning of this research have proven to be valid. Especially the conversion of the 

problem into a “Classification” problem rather than the more natural “Regression” 

problem has been justified here. 

     The Tables 5.8 and 5.9 show the ML algorithm to be 10 times better than the built-

in algorithm while achieving the deceleration in the cycling aging process which, is 

evident from Table 5.8. The battery is just charged once to last through the simulation 

day as well as the day following the simulation. By this pattern, for the entire month 

of May, the battery will only be charged 15 times compared to the 30 times it is being 

charged as per [4]. 

     The next chapter will utilize these results to perform the economic analysis which 

will further prove the ML algorithm to be much effective than the built-in algorithm 

in reducing the investment return period. 
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Chapter 6 

 

ECONOMIC ANALYSIS 

 

 

6.1 Introduction 

     An economic analysis (EA) is performed to showcase the capability of the ML 

algorithm to reduce the Demand Charge and the overall electricity bill by reducing 

the energy consumption during the on-peak hours from the grid. In this chapter, the 

economic analysis focuses on determining and comparing the savings for the customer 

in the case of ML algorithm and built-in algorithm. Four load profiles were simulated 

using these algorithms and thus economic analysis is performed on these four cases 

and appropriate comparisons/conclusions are drawn. Since this is a basic analysis to 

just show the impact of the ML algorithm, the benefits of decelerating cycling aging 

are not taken into account. Also, these calculations try to showcase the savings made 

in a single billing period and long-term savings due to the conservation of battery life, 

earnings from the off-peak hour energy export, off-peak hours energy charges are not 

considered. The calculations/tabulations are shown for two sets of data. 

6.2 Assumptions 

The EA performed is based upon the following assumptions: 

• The simulations are run only during the summer on-peak hours and thus, 

the EA is based on the results obtained only during this 7-hour period. 

• The off-peak hour happenings are not taken into account and are ignored 

completely. 
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• The EA shows only the on-peak hour savings and on-peak hour charges 

induced by the customer on to their electricity bill for this specific billing 

period. 

• All the rates/charges are based on the E-27 plan of the utility.  

• The entire EA is based on the assumption that for the entirety of the billing 

period of concern, the load profile of the house is identical to the simulated 

day load profile. 

• Throughout this chapter, a negative sign in front of a cost indicates credits 

provided by the utility to the customer. 

• A “charge” is paid by the customer to the utility and a “credit” is granted 

by the utility to the customer. 

• The summer on-peak hours are from 13:00 through 20:00. 

• All the load data, results are clustered into half-hour averages for 

simplicity as the utility handles Demand Charge calculation in half-hour 

intervals only. 

6.3 Procedure 

• The site demand pertaining to both the algorithms for the simulation sets are 

tabulated.  

• The E-27 plan is used as a reference for the costs. 

• Based on the half-hour interval with the maximum positive power value, the 

Demand Charge calculation I performed. 

• The net energy exported to the grid during the on-peak hours is calculated. 

• The net energy imported from the grid during the on-peak hours is calculated. 
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• The appropriate costs from E-27 plan are multiplied to the numerical values 

obtained in the steps 3 through 5.  

• The cost of energy exported is provided as a credit while the Demand Charge 

and energy imported are charged for. (Total = Demand Charge + Energy 

imported - Energy exported) 

• The net electricity bill, assuming this specific pattern exists throughout the 

billing period, for this specific billing period is calculated. 

• Steps 3 through 8 are repeated for both algorithms for both the load sets. 

• The results are tabulated. 

6.4 The Prerequisites 

     The Figures 6.1 and 6.2 provide the utility company E-27 charges. 

Figure 6.1 Demand Charge for the summer months according to the E-27 plan.  

Figure 6.2 Energy charges for the summer months according to the E-27 plan. 
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Tables 6.1 and 6.2 are the tabulation of the site demand for  two sets of simulation. 

                     Table 6. 1 Tabulation of the SD pertaining to the 1st set of simulations. 

Interval ML algorithm (kW) Built-in algorithm (kW) 

13:00 -2.67 -2.9 

13:30 -2.53 -2.7 

14:00 -2.28 -2.46 

14:30 -1.92 -2.16 

15:00 -1.46 -1.67 

15:30 -0.82 -1.07 

16:00 -0.56 -0.335 

16:30 0.07 0.32 

17:00 -0.29 1.04 

17:30 0.28 1.74 

18:00 -0.07 1.84 

18:30 0.2 1.84 

19:00 -0.05 1.63 

19:30 0.09 2.12 

 

• The maximum SD from the Table 6.1 for the ML algorithm is 0.283 kW.  

• The maximum SD from the Table 6.1 for the built-in algorithm is 2.125 kW. 

• The maximum SD has been reduced by 1.842 kW when the ML algorithm was 

used.  
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                   Table 6. 2 Tabulation of the SD pertaining to the 2nd set of simulations. 

Interval ML algorithm (kW) Built-in algorithm (kW) 

13:00 -2.8 -2.73 

13:30 -2.47 -2.92 

14:00 -2.29 -2.613 

14:30 -2.02 -2.212 

15:00 -1.65 -1.79 

15:30 -1.26 -1.23 

16:00 -0.63 0.122 

16:30 -0.034 0.162 

17:00 -0.298 0.642 

17:30 0.197 1.24 

18:00 -0.034 1.73 

18:30 0.063 1.92 

19:00 0.056 1.96 

19:30 0.186 1.99 

 

• The maximum SD from the Table 6.2 for the ML algorithm is 0.197 kW.  

• The maximum SD from the Table 6.2 for the built-in algorithm is 1.991 kW. 

• The maximum SD has been reduced by 1.793 kW when the ML algorithm was 

used.  

     The investment return period for a customer is mainly dependent on two factors — 

The reduction in Demand Charge paid and the income from the export of excess PV 

energy to the grid. The customer is charged for the energy consumed from the grid. 
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The economic analysis will hence be based on these parameters. There are two sets of 

data and the economic analysis is performed on both the sets separately, assuming 

each set to be representing the on-peak hours pattern of a summer billing period. All 

the rates chosen are according to the E-27 plan for the "Summer" billing cycles. 

According to the plan, 1 kWh of energy in the summer on-peak hour costs $0.0475 

(both export and import). Similarly, a Demand Charge of $8.03 per kW is charged 

when the maximum demand is less than 3 kW. 

6.5 The Calculation 

     The calculation procedure has been explained in detail in the section 6.3. The 

Tables 6.3 and 6.4 contain the calculations for the data tabulated in Tables 6.1 and 

6.2 respectively. 

          Table 6. 3 Calculations pertaining to the 1st set of simulations. 

Parameters ML algorithm Built-in algorithm 

Maximum SD 0.283 kW 2.125 kW 

Demand Charge 0.283 * 8.03 = $ 2.27  2.125 * 8.03 = $17.06 

Total energy 

imported 
0.32 kWh 5.267 kWh 

Energy import 

charge (entire 

billing period) 

0.32 * 0.0475 * 31 

= $0.47  

5.267 * 0.0475 * 31 

= $7.755 

Total energy 

exported 
            6.348 kWh            6.639 kWh 

Energy export 

credit (entire 

billing period) 

      6.348 * 0.0475 * 31            

               = $9.347 

    6.639 * 0.0475 * 31  

            = $9.776 

Bill 
$2.27 + $0.47 - $9.347  

               = - $6.61 

$17.06 + $7.755 - $9.776  

            = $15.04  

Total amount - $6.61 $15.04 

Nature Credit Charge 
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          Table 6. 4 Calculations pertaining to the 2nd set of simulations. 

Parameters ML algorithm Built-in algorithm 

Maximum SD            0.197 kW             1.991 kW 

Demand Charge    0. 197 * 8.03 = $ 1.58    1.991 * 8.03 = $15.99 

Total energy 

imported 
           0.251 kWh            4.906 kWh 

Energy import 

charge (entire 

billing period) 

    0.251 * 0.0475 * 31 

              = $0.37  

      4.906 * 0.0475 * 31 

            = $7.224 

Total energy 

exported 
           6.731 kWh             6.753 kWh 

Energy export 

credit (entire 

billing period) 

     6.731 * 0.0475 * 31  

            = $9.911 

     6.753 * 0.0475 * 31  

            = $9.944 

Bill 
$1.58 + $0.37 - $9.911  

            = -$7.961 

$15.99 + $7.224 - $9.944                            

            = $13.27 

Total amount               - $7.96 $13.27 

Nature Credit Charge 

 

Table 6.5 contains the consolidation of the results of EA based on the acquired data. 

  Table 6. 5 Consolidation of the results. 

Day - 

Algorithm 
Energy Cost Demand Charge Total Cost Type 

  1 – Built-in       - $2.02          $17.06    $15.04    Charge 

     1 – ML       - $8.88          $2.27    - $6.60    Credit 

  2 – Built-in       - $2.72          $15.99    $13.27    Charge 

     2 – ML       - $9.54          $1.58    - $7.96    Credit 

  3 – Built-in $15.53 $15.45 $30.98 Charge 

     3 – ML -$1.63          $3.19 $1.56 Charge 

  4 – Built-in $21.10          $15.44 $36.55 Charge 

     4 – ML $0.12          $4.18 $4.3 Charge 
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6.6 Inference 

     This chapter reaffirms the initial speculation of the ML algorithm being far more 

efficient than the built-in algorithm. The results show the vast difference between the 

performance of the two algorithms. The ML algorithm on both the simulation sets 

earning the customer a net credit at the end of the billing period while the built-in 

algorithm results in a charge payable by the customer. This was expected, as 

mentioned, as the ML algorithm simply better prepared the system to face the 

challenges. With the ML algorithm in place, this test if repeated during the peak-

summer will result in a higher saving for the customer as during the peak-summer, 

the solar availability for export is more and with the system better prepared, the 

amount of export could be maximized while minimizing the energy requirement and 

Demand Charge. 
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Chapter 7 

 

CONCLUSION AND FUTURE WORK 

 

 

7.1 Conclusion 

     In this research collaboration between the electric utility and ASU for the roof-top 

PV system research, a lot of studies has been carried out by three different 

researchers. But, this is just the second time the improvement of the built-in control 

algorithm has been the topic of research. Even previously, a complete revamp of the 

control strategy was not attempted owing to the difficulty in predicting the load and 

the PV with great accuracy. This research was specifically to answer the question of 

“How much improvement could we achieve over the performance of the built-in control 

algorithm?”. The results show that a lot more could be extracted from the same 

hardware by just improving the control mechanism. 

     While Chapter 1 through 3 concentrate upon the explaining about the problem on 

hand and describing the system, the Chapter 4 on the implementation of the ML 

techniques to forecast load has clearly explained the methods adopted for forecasting 

the load. The chapter primarily focuses on the arguments supporting the specific 

features being extracted from the timestamp of the data to be passed into the ML 

algorithms. These features improved the accuracy of the ML algorithm tremendously 

while providing consistent results over different scenarios. The results presented at 

the end of the chapter supports the arguments presented in the chapter.  

     Chapter 5 of this thesis deals with the prediction of the PV and development of the 

battery control algorithm. Justification of each and every decision made has been 
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provided while a comparison of the performances of the ML and the built-in 

algorithms in the results section through tables and plots effectively shows the ML 

algorithm to be a clear winner. A simple logical modification to the built-in control 

strategy by effectively utilizing the battery only when necessary not only suits the 

requirement but also ends up saving money and preventing hardware wear and tear.  

The Chapter 6 on the economic analysis is a sanity check on the results obtained in 

Chapter 5. The results are presented in terms of dollars saved instead of the kW units 

adopted earlier.  

     The results show the Machine Learning algorithm to reduce the Demand Charge 

by a factor 10, while generating income by exporting the excess PV into the grid. The 

investment return period is thus, significantly reduced, with the added benefit of 

decelerating the 'cycling aging' of the battery by planned charge/discharge cycles. This 

will encourage people to embrace the new technology and along with efforts from the 

utilities, this could help the state achieve the renewable penetration target of 2025. 

7.2 Future Work 

     As explained earlier the agenda of this research was to develop a complete control 

strategy from scratch using ML techniques. Since this is just a first step in such a 

direction for the problems faced in this specific case, there is scope for improvement. 

Some of the possibilities are, 

• More features like specifying the busy hours of the day could be passed to the 

ML algorithm. 

• Owing to the feedback mechanism, the ML algorithm keeps improving over 

time. This could be utilized by passing the last 3 years data as training data 

instead of just 1. This would improve the accuracy significantly. 
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• The problem could be treated as a Supervised learning Regression problem to 

better follow the load without the error induced due to the creation of the 

classification labels. 

• Based on research it was observed that Neural Networks algorithms tend to 

work better in case of time series problems. Thus, this could be a improvement. 

• The PV prediction could be improved further by varying the parameters passed 

to the PVWATTS Calculator by better studying the hardware installed. 

The author is currently working on the improvements suggested above. Also, the 

findings from this thesis presented here will be published in a reputed journal in the 

near future.  
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APPENDIX A 

MONTH CLUSTERING DETAILS 
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A. Month Clustering details 

     The months of the year are clustered based on the temperature average of the 

month for the past 100 years in the state of Arizona. The Table A1 shows the clusters. 

                                       Table A 1 Month clusters. 

Cluster Months included 

1 
January, February and 

December 

2 March and November 

3 April, May and October 

4 June and September 

5 July and August 
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APPENDIX B 

THE E-27 PLAN 
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B. The E-27 Plan 

     The E-27 plan of summer 2018 is included here. The Figures B1 through B6 clearly 

shows in detail the various charges associated with this plan and the conditions 

specific to the users of the E-27 plan. The images were provided by SRP. 

              Figure B1 Page 1 of the E-27 plan. 
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            Figure B2 Page 2 of the E-27 plan. 
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                Figure B3 Page 3 of the E-27 plan. 
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           Figure B4 Page 4 of the E-27 plan. 
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          Figure B5 Page 5 of the E-27 plan. 
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           Figure B6 Page 6 of the E-27 plan. 
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APPENDIX C 

PYTHON CODES 
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C. Python Codes 

Code to decide the load bank units to switch on. 

# Importing packages. 

import pandas as pd 

import numpy as np 

 

# Date ranges for which the data is processed. 

# year-month-day hour:minute:second format. The time is the same always. Just 

change the date and use. 

date_from = '2014-05-1 00:00:00'  

# year-month-day hour:minute:second format. The time is the same always. Just 

change the date and use. 

date_to = '2014-05-1 23:30:00' 

 

data = pd.read_csv('halfHourLoad.csv', encoding='latin-1') # ,  

 

# Change to 24 hours format 

data['Time'] = pd.to_datetime(data['Time']).dt.strftime('%H:%M') 

 

# Changing the date and time columns into one and converting them into pandas 

recogonized date and time format column. 

data['Date'] = data['Date'] + ' ' + data['Time'] 

data['Date'] = pd.to_datetime(data['Date'], format='%d/%m/%Y %H:%M') 

 

# Dropping the time column now, since it has been combined to the date column. 

data = data.drop(['Time'], axis=1) 

# Converting the from and to dates interms of row indices of the dataframe.  

date_from = (data.loc[data['Date'] == date_from]).index.values 

date_to = (data.loc[data['Date'] == date_to]).index.values 

 

# List to hold the number of burners and resistors to be switched on every 15 

minutes. 

length = int(date_to)+1-int(date_from) 

burners = list(np.empty(length)) 

resistors = list(np.empty(length)) 

# Act as index for the lists storing the burner and resistor numbers. i is to iterate 

between the from and  

# to dates and thus may not be from 0 always. 

count = 0 

 

# Iterating through the from and to dates.  

for i in range (int(date_from), int(date_to)+1): 

# Checking the number of burners needed for this load.     

    noOfBurners = data['kW (avg)'][i]/0.870 

#If the number of burners required is greater than 10, i.e. load is larger than 8800w, 

we will need the resistors as well as turning ON all the burners.     

    if(noOfBurners>10): 
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        burners[count]= 10 

# This difference is the watts that needs to be supplied by the resistors. 

        difference = data['kW (avg)'][i] - (burners[count]*0.870) 

# Number of resistor pairs that need to be switched ON.         

        resistors[count]= round(difference/0.072) 

        count = count + 1 

# Continue with the next iteration. 

        continue     

# If the burners required is less than 10, then switch ON the appropriate number of 

burners and  

# for the deficit, turn ON the smaller resistors. 

    burners[count]= int(noOfBurners) 

    difference = data['kW (avg)'][i] - (burners[count]*0.870) 

    resistors[count]= round(difference/0.072) 

    count = count + 1 

 

# Converting the 2 lists into a dataframe so that it can be written into a csv file. 

# We also mention the appropriate headers for the columns. This .csv file serves as 

the input to the  

# programn that decides the Raspberry Pi commands. 

df = pd.DataFrame(data={'880wStep': burners, '72wStep': resistors}) 

df.to_csv('load.csv') 
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Code to generate the governing code of the Raspberry Pi for larger load bank. 

# Importing packages 

import random 

import pandas as pd 

 

# Reading the data that contains the number of loads from each bank to be turned 

on. 

data = pd.read_csv('load.csv', encoding='latin-1') 

 

# Opening a .py file. 

file = open("bigBank.py","w+") 

 

# Writing into the file. Import statements here 

file.write("import RPi.GPIO as GPIO\n")  

file.write("import time\n") 

# This cleanup clears all the set configs. Everything from pin numbering type 

(board/BCM), pin settings (high/low) etc. Everything goest otheir default state of 

High.         

file.write("GPIO.cleanup()\n") 

 

# The reason we want to set the mode here is because there are actually two labels 

for all of the pins, Broadcom (BCM) and board (BOARD). The board option will let 

you refer to the pin's actual number on the board,  

# and the Broadcom number is the actual pin number that the Broadcom chip 

considers it to be.  

# It seems to be that BCM specification is the *actual* pin number. We'll use 

"BOARD". 

file.write("GPIO.setmode(GPIO.BOARD)\n") 

file.write("\n\n") 

 

# The pins of Raspberry pi we want to trigger. These are the Board numbers and not 

the BCM numbers! REMEMBER!! 

pinsUsed = (5,33,23,15,3,40,38,18,16,12) 

# Initially setting up these pins on the Raspberry Pi. 

for pin in pinsUsed: 

    string = "GPIO.setup(" + str(pin) + ", GPIO.OUT)\n" 

    file.write(string) 

 

file.write("\n\n") 

# Initially setting everything low. 

for i in pinsUsed: 

        string = "GPIO.output(" + str(i) + ", GPIO.LOW)\n" 

        file.write(string) 

         

# Sleep command. Change this depending on the hours left untill the midnight. 

file.write("time.sleep(600)\n")    

file.write("\n\n") 
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#################### ACTUAL TURN ON-OFF STARTS HERE############### 

for index, row in data.iterrows():     

# Making a duplicate of the list of pins so as to alter it without data loss.     

    tempo = list(pinsUsed) 

    x = data['880wStep'][index] 

# Turn on the appropriate pins. Choose a random pin from the temporary list to turn 

on.  

# Remove that pin from the temporary list of available pins and repeat the process 

till the number of units to be switched ON is achieved. 

    for i in range(1, x+1):     

        pinChosen = random.choice(tempo) 

        string = "GPIO.output(" + str(pinChosen) + ", GPIO.HIGH)\n" 

        file.write(string) 

        tempo.remove(pinChosen) 

# Switching off the ones that have not been turned on in that particular cycle.     

    for i in tempo: 

        string = "GPIO.output(" + str(i) + ", GPIO.LOW)\n" 

        file.write(string) 

# Maintain the set pin config for the next 15 mins.     

    file.write("time.sleep(900)\n")    

    file.write("\n\n") 

 

# Set all pins to 'Low' as the final config so that till the next load profile comes in, all 

the resistors will be in off state 

# saving power and wear and tear. 

for i in pinsUsed: 

        string = "GPIO.output(" + str(i) + ", GPIO.LOW)\n" 

        file.write(string) 

   

# Close the file stream. 

file.close() 
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Code governing the larger load bank for a specific case. 

import RPi.GPIO as GPIO 

import time 

GPIO.cleanup() 

GPIO.setmode(GPIO.BOARD) 

 

 

GPIO.setup(5, GPIO.OUT) 

GPIO.setup(33, GPIO.OUT) 

GPIO.setup(23, GPIO.OUT) 

GPIO.setup(15, GPIO.OUT) 

GPIO.setup(3, GPIO.OUT) 

GPIO.setup(40, GPIO.OUT) 

GPIO.setup(38, GPIO.OUT) 

GPIO.setup(18, GPIO.OUT) 

GPIO.setup(16, GPIO.OUT) 

GPIO.setup(12, GPIO.OUT) 

 

 

GPIO.output(5, GPIO.LOW) 

GPIO.output(33, GPIO.LOW) 

GPIO.output(23, GPIO.LOW) 

GPIO.output(15, GPIO.LOW) 

GPIO.output(3, GPIO.LOW) 

GPIO.output(40, GPIO.LOW) 

GPIO.output(38, GPIO.LOW) 

GPIO.output(18, GPIO.LOW) 

GPIO.output(16, GPIO.LOW) 

GPIO.output(12, GPIO.LOW) 

time.sleep(600) 

 

 

GPIO.output(38, GPIO.HIGH) 

GPIO.output(5, GPIO.LOW) 

GPIO.output(33, GPIO.LOW) 

GPIO.output(23, GPIO.HIGH) 

GPIO.output(15, GPIO.LOW) 

GPIO.output(3, GPIO.HIGH) 

GPIO.output(40, GPIO.HIGH) 

GPIO.output(18, GPIO.HIGH) 

GPIO.output(16, GPIO.LOW) 

GPIO.output(12, GPIO.LOW) 

time.sleep(900) 
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Code to generate the governing code of the Raspberry Pi for smaller load bank. 

# Importing packages 

import random 

import pandas as pd 

 

# Reading the data that contains the number of loads from each bank to be turned 

on. 

data = pd.read_csv('load.csv', encoding='latin-1') 

 

# Opening a .py file. 

file = open("smallBank.py","w+") 

 

# Writing into the file. Import statements here 

file.write("import RPi.GPIO as GPIO\n")  

file.write("import time\n") 

# This cleanup clears all the set configs. Everything from pin numbering type 

(board/BCM), pin settings (high/low) etc. Everything goest otheir default state of 

High.         

file.write("GPIO.cleanup()\n")  

  

# The reason we want to set the mode here is because there are actually two labels 

for all of the pins, Broadcom (BCM) and board (BOARD). The board option will let 

you refer to the pin's actual number on the board,  

# and the Broadcom number is the actual pin number that the Broadcom chip 

considers it to be.  

# It seems to be that BCM specification is the *actual* pin number. We'll use 

"BOARD". 

file.write("GPIO.setmode(GPIO.BOARD)\n") 

file.write("\n\n") 

 

# The pins of Raspberry pi we want to trigger. These are the Board numbers and not 

the BCM numbers! REMEMBER!! 

# all the pins of Pi that are connected to the load. Even the 144w ones. 

pinsUsed = [3,5,7,11,13,15,19,21,23,29,31,33,35,37,12,16,18,22,24,26,32,36,38,40] 

# List of pins connected to 2 resistor clusters i.e. 72w only. 

pinsUsed72w = [5,7,11,13,15,19,21,29,31,33,35,37,16,18,22,24,26,32,36,38,40] 

# List of pins connected to 2 resistor clusters i.e. 200w only. 

pinsUsed200w = [3,12,23] 

# Initially setting up these pins on the Raspberry Pi. 

for pin in pinsUsed: 

    string = "GPIO.setup(" + str(pin) + ", GPIO.OUT)\n" 

    file.write(string) 

 

file.write("\n\n") 

# Initially setting everything low. 

for i in pinsUsed: 

        string = "GPIO.output(" + str(i) + ", GPIO.LOW)\n" 

        file.write(string) 
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# Sleep command. Change this depending on the hours left untill the midnight. 

file.write("time.sleep(600)\n")    

file.write("\n\n") 

 

#################### ACTUAL TURN ON-OFF STARTS 

HERE###################################### 

for index, row in data.iterrows():     

# Making a duplicate of the list of pins so as to alter it without data loss.     

    tempo = list(pinsUsed72w) 

    tempo2 = list(pinsUsed200w) 

    x = int(data['72wStep'][index]) 

# To deal with cases where the load is greater than the load bank capacity.     

    if x>29: 

        x = 29 

# First, when x is greater than 3, then we switch on the 200w cluster first. When 

there is no more 200w left or 

# when the requirement is below 200w step, then we go to the 72 w.     

    while (x>=3 and tempo2): 

        pinChosen = random.choice(tempo2) 

        string = "GPIO.output(" + str(pinChosen) + ", GPIO.HIGH)\n" 

        file.write(string) 

        tempo2.remove(pinChosen) 

        x = x-3 

# This is to make all the unused 144w as 'Low'. 

    for i in tempo2: 

        string = "GPIO.output(" + str(i) + ", GPIO.LOW)\n" 

        file.write(string) 

 

# Turn on the appropriate pins. Choose a random pin from the temporary list to turn 

on.  

# Remove that pin from the temporary list of available pins and repeat the process 

till the number of units to be switched ON is achieved. 

    for i in range(1, x+1):     

        pinChosen = random.choice(tempo) 

        string = "GPIO.output(" + str(pinChosen) + ", GPIO.HIGH)\n" 

        file.write(string) 

        tempo.remove(pinChosen) 

# Switching off the ones that have not been turned on in that particular cycle.     

    for i in tempo: 

        string = "GPIO.output(" + str(i) + ", GPIO.LOW)\n" 

        file.write(string) 

# Maintain the set pin config for the next 15 mins.     

    file.write("time.sleep(900)\n")    

    file.write("\n\n") 

 

# Set all pins to 'Low' as the final config so that till the next load profile comes in, all 

the resistors will be in off state 

# saving power and wear and tear. 

for i in pinsUsed: 
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        string = "GPIO.output(" + str(i) + ", GPIO.LOW)\n" 

        file.write(string) 

   

# Close the file stream. 

file.close() 
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Code governing the smaller load bank for a specific case. 

import RPi.GPIO as GPIO 

import time 

GPIO.cleanup() 

GPIO.setmode(GPIO.BOARD) 

 

 

GPIO.setup(3, GPIO.OUT) 

GPIO.setup(5, GPIO.OUT) 

GPIO.setup(7, GPIO.OUT) 

GPIO.setup(11, GPIO.OUT) 

GPIO.setup(13, GPIO.OUT) 

GPIO.setup(15, GPIO.OUT) 

GPIO.setup(19, GPIO.OUT) 

GPIO.setup(21, GPIO.OUT) 

GPIO.setup(23, GPIO.OUT) 

GPIO.setup(29, GPIO.OUT) 

GPIO.setup(31, GPIO.OUT) 

GPIO.setup(33, GPIO.OUT) 

GPIO.setup(35, GPIO.OUT) 

GPIO.setup(37, GPIO.OUT) 

GPIO.setup(12, GPIO.OUT) 

GPIO.setup(16, GPIO.OUT) 

GPIO.setup(18, GPIO.OUT) 

GPIO.setup(22, GPIO.OUT) 

GPIO.setup(24, GPIO.OUT) 

GPIO.setup(26, GPIO.OUT) 

GPIO.setup(32, GPIO.OUT) 

GPIO.setup(36, GPIO.OUT) 

GPIO.setup(38, GPIO.OUT) 

GPIO.setup(40, GPIO.OUT) 

 

 

GPIO.output(3, GPIO.LOW) 

GPIO.output(5, GPIO.LOW) 

GPIO.output(7, GPIO.LOW) 

GPIO.output(11, GPIO.LOW) 

GPIO.output(13, GPIO.LOW) 

GPIO.output(15, GPIO.LOW) 

GPIO.output(19, GPIO.LOW) 

GPIO.output(21, GPIO.LOW) 

GPIO.output(23, GPIO.LOW) 

GPIO.output(29, GPIO.LOW) 

GPIO.output(31, GPIO.LOW) 

GPIO.output(33, GPIO.LOW) 

GPIO.output(35, GPIO.LOW) 

GPIO.output(37, GPIO.LOW) 

GPIO.output(12, GPIO.LOW) 
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GPIO.output(16, GPIO.LOW) 

GPIO.output(18, GPIO.LOW) 

GPIO.output(22, GPIO.LOW) 

GPIO.output(24, GPIO.LOW) 

GPIO.output(26, GPIO.LOW) 

GPIO.output(32, GPIO.LOW) 

GPIO.output(36, GPIO.LOW) 

GPIO.output(38, GPIO.LOW) 

GPIO.output(40, GPIO.LOW) 

time.sleep(600) 

 

GPIO.output(12, GPIO.HIGH) 

GPIO.output(3, GPIO.HIGH) 

GPIO.output(23, GPIO.HIGH) 

GPIO.output(29, GPIO.HIGH) 

GPIO.output(24, GPIO.HIGH) 

GPIO.output(31, GPIO.HIGH) 

GPIO.output(16, GPIO.HIGH) 

GPIO.output(26, GPIO.HIGH) 

GPIO.output(22, GPIO.HIGH) 

GPIO.output(38, GPIO.HIGH) 

GPIO.output(36, GPIO.HIGH) 

GPIO.output(19, GPIO.HIGH) 

GPIO.output(37, GPIO.HIGH) 

GPIO.output(18, GPIO.HIGH) 

GPIO.output(5, GPIO.LOW) 

GPIO.output(7, GPIO.LOW) 

GPIO.output(11, GPIO.LOW) 

GPIO.output(13, GPIO.LOW) 

GPIO.output(15, GPIO.LOW) 

GPIO.output(21, GPIO.LOW) 

GPIO.output(33, GPIO.LOW) 

GPIO.output(35, GPIO.LOW) 

GPIO.output(32, GPIO.LOW) 

GPIO.output(40, GPIO.LOW) 

time.sleep(1800) 
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Code to predict the power requirement from the battery at any point in time. 

# The import statments for the library used. 

import pandas as pd 

import numpy as np 

 

# Reading in the load prediction data. 

data = pd.read_csv('prediction.csv', encoding='latin-1') 

# Dropping the date and other unnecessary columns now, to reduce the size of the 

data frame and increase the processing speed. 

data = data.drop(['Actual'], axis=1) 

data = data.drop(['Deviation'], axis=1) 

data = data.drop(['Max Deviation'], axis=1) 

data = data.drop(['Unnamed: 0'], axis=1) 

 

# Reading in the PV prediction data. 

df = pd.read_csv('PV predict.csv', encoding='latin-1') 

# Dropping the date and other unnecessary columns now, to reduce the size of the 

data frame and increase the processing speed. 

df = df.drop(['Beam Irradiance (W/m^2)'], axis=1) 

df = df.drop(['Diffuse Irradiance (W/m^2)'], axis=1) 

df = df.drop(['Ambient Temperature (C)'], axis=1) 

df = df.drop(['Wind Speed (m/s)'], axis=1) 

df = df.drop(['Plane of Array Irradiance (W/m^2)'], axis=1) 

df = df.drop(['Cell Temperature (C)'], axis=1) 

df = df.drop(['DC Array Output (W)'], axis=1) 

 

# Clustering into Half an hour data. 

count = 0 

length = int(len(data['Prediction'])/2) 

# The list to store the hourly average load value.  

halfHourlyLoad = list(np.empty(length)) 

halfHourPV = list(np.empty(length)) 

# The following loop converts the 15 minute data into hourly data by calculating the 

average of every hour.  

for i in range(0,len(data['Prediction']),2): 

    halfHourlyLoad[count] = (data['Prediction'][i]+data['Prediction'][i+1])/2 

    count = count + 1 

 

count = 0 

for i in range(0,24): 

    halfHourPV[count] = df['AC System Output (W)'][i] 

    halfHourPV[count+1] = df['AC System Output (W)'][i] 

    count = count + 2 

# Power required by the load after Solar. 

deficitPower = np.array(np.zeros(24)) 

deficitPower = (np.array(halfHourlyLoad) * 200) - np.array(halfHourPV) 
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# The peak hours of the day are from 1 pm to 8pm. Thus the intervals pertaining to 

this are from interval 25 through 38. 

batRequirement =  deficitPower[26:40] 

# Stores the watts the battery needs to supply in the half an hour interval. 

batSize = np.zeros(14)  

for i in range(0,14): 

    if(batRequirement[i]>0): 

        batSize[i] = batRequirement[i] 

 


