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ABSTRACT  
   

The study of fault zones is a critical component to understanding earthquake 

mechanics and seismic hazard evaluations. Models or simulations of potential 

earthquakes, based on fault zone properties, are a first step in mitigating the hazard. 

Theoretical models of earthquake ruptures along a bi-material interface result in 

asymmetrical damage and preferred rupture propagation direction. Results include greater 

damage intensity within stiffer material and preferred slip in the direction of the more 

compliant side of the fault. Data from a dense seismic array along the Clark strand of the 

SJFZ at Sage Brush Flat (SGB) near Anza, CA, allows for analysis and characterization 

of shallow (<1km depth) seismic structure and fault zone properties. Results indicate 

potential asymmetric rock damage at SGB, similar to findings elsewhere along the SJFZ 

suggesting a NW preferred rupture propagation.  

In this study, analysis of high resolution topography suggests asymmetric 

morphology of the SGB basin slopes are partially attributed to structural growth and fault 

zone damage. Spatial distributions of rock damage, from site mapping and fault 

perpendicular transects within SGB and Alkali Wash, are seemingly asymmetric with 

pulverization dominantly between fault strands or in the NE fault block. Remapping of 

the SJFZ through Alkali Wash indicates the fault is not isolated to a single strand along 

the main geologic boundary as previously mapped. Displacement measurements within 

SGB are analogous to those from the most recent large earthquake on the Clark fault. 

Geologic models from both a 3D shear wave velocity model (a product from the dense 

seismic array analysis) and lithologic and structural mapping from this study indicate 

surface observations and shallow seismic data compare well. A synthetic three-
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dimensional fault zone model illustrates the complexity of the structure at SGB for 

comparison with dense array seismic wave products. Results of this study generally agree 

with findings from seismic wave interpretations suggesting damage asymmetry is 

controlled by an NW preferred rupture propagation. 
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CHAPTER 1 

INTRODUCTION 

 1.0 Introduction 

The study of fault zones is an important field within geology, providing insights 

into the location and mechanics of earthquakes. The overarching goal of these studies is 

to improve the understanding of active fault behavior and to develop physical models that 

better predict earthquake recurrence, magnitude, and coseismic ground motions. Studies 

of fault zones and fault zone architecture reveal three principle phases; 1) fault core, 

where the majority of slip is accommodated, 2) damage zone, consisting of pulverized, 

brecciated and/or intensely fractured rock, and 3) protolith or undamaged rock (e.g. 

Chester et al., 1993; Cain et al., 1996; Mitchell and Faulkner, 2009) (Figure1-1). Fault 

zones may produce interfaces separating bodies of differing material properties: 

compliant vs. stiff (i.e., damaged material or different rock types) (Dor et al., 2006). 

Models of rupture along such a bi-material interface show a preference to rupture in the 

direction of slip of the compliant material and spontaneous generation of damage in the 

bulk on the stiffer side of the fault (Ben-Zion and Shi, 2005; Shi and Ben-Zion, 2005) 

(Figure 1-2). Field studies of fault zones have validated this model along the San 

Andreas, Punchbowl, North Anatolian faults, and the Arima-Takatsuki tectonic line (e.g., 

Dor et al., 2006; Dor et al., 2008; Mitchel et al., 2011).  

The San Jacinto Fault Zone (SJFZ), is considered the most active fault in southern 

California (Sanders and Kanamori, 1984), splaying from the southern segment of the San 

Andreas fault (SAF) south of the Transverse Ranges, trending through the Peninsular 
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Ranges, and terminating within the Imperial Valley of the Salton Trough (Sharp, 1967) 

(Figure 1-3). The SJFZ is not limited to a single strand, but rather is composed of a 

complex network of faults that distribute strain across both parallel and orthogonal 

structures--features observed in early stages of strike slip fault maturation in laboratory 

experiments (e.g. Wilcox et al., 1973; Reber et al., 2015; Hatem et al., 2017).  

Along the SJFZ, fault zone damage asymmetry has been observed as more 

damage on the NE side of the fault, via studies of fault zone trapped waves (Lewis et al., 

2005; Qiu et al., 2017; Share et al; 2017; Qin et al. 2018), fault outcrops (Dor et al., 

2006), and DEM analysis (Wechsler et al., 2009); possibly indicating a preferred NW 

rupture propagation direction for large earthquakes (Figure1-4). However, micro-

structural analyses of fault zone architecture along the SJFZ have found an opposite sense 

of asymmetry (greater in the SW) (Peppard et al., 2018) indicating the potential for 

different controls of damage zone extent.  

Deployment of a dense seismic array along the SJFZ, to characterize fault zone 

structure in the shallow (<1 km depth) crust, identified fault zone trapped waves 

exclusively on the NE side of the main seismogenic fault.  The purpose of the study 

described in this thesis is to discern the distribution of geology, structure, and rock 

damage within the vicinity of the dense seismic array.  Topics covered in this thesis 

include a review of previous studies of the SJFZ, structural and geologic research at the 

SGB study site, interpretation of geophysical data, and supplemental data products. 

Chapter 1 includes this introduction and a summary of the geology, timing, 

nomenclature, seismic structure, and surface fault zone structural studies along the SJFZ. 

Chapter 2 constitutes all the research elements including descriptions of previous and 
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ongoing geophysical research from the SGB dense array, methods, analyses, results, and 

interpretations from this study. Chapter 3 provides a discussion of the site mapping, 

interpretations, and comparison with data products from the dense array, along with 

conclusions and recommendations for further research. At the end of each chapter is a list 

of references cited, and the final section of the thesis lists references for the entire 

document. 

1.1 Fault Zone Damage and Earthquake Rupture Propagation  

A fault zone generally consists of the fault core, fractured rock from coseismic 

rock damage (damage zone), and the undamaged rock or protolith (e.g. Chester et al., 

1993; Caine et al., 1996, Mitchell and Faulkner, 2009) (Figure 1-1). Rupture propagation 

along a fault may be unilateral, bilateral or omnidirectional (Sibson, 2011). The effect of 

rock damage and fault behavior are interconnected, and both the processes and properties 

at work within fault zones during fault rupture are subject of ongoing research in the 

field, laboratory, and numerical modeling.  

Principal effects of earthquakes may include the nucleation and growth of rupture 

along a fault plane, strong ground motion, and stress and fluid pressure changes (Sibson, 

2011). Failure along a fault plane is indicated by shear stress (𝜏β), normal stress (𝜎β) and 

pore-fluid pressure (p) expressed as Coulomb failure:	𝜎f =𝜏β-𝜇(𝜎β-p) (King et al., 1994). 

Cotton and Coutant (1997) modeled both static and dynamic stress changes in a volume 

of plane-layered elastic medium. The rupture event was modeled as a northward 

unilateral rupture with similar seismic moment, length, and mechanism to the MW7.3 

1992 Landers, California, earthquake. Results of the static model show symmetrical 
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stress changes on either side of the fault, while the maxima of Coulomb stress changes 

are asymmetric with greater stress values on the eastern side of the fault (Figure 1-3c). 

Strike-slip faults form along vertical to sub-vertical planes and accommodate motion 

parallel to the earth’s surface. At the focus of an earthquake along a fault, the surrounding 

volume of rock is divided into compressional and dilatational quadrants based on the 

initial seismic wave properties experienced in the quadrants (e.g. Whitcomb et al., 1971). 

Numerical calculations of dynamic ruptures in a homogenous solid indicate damage is 

produced preferentially in the two tensional quadrants (Ben-Zion and Shi, 2005) (Figure 

1-2). Faults often juxtapose different earth material, creating an interface separating 

bodies of differing material classes and/or seismic wave velocities: compliant (lower 

velocity material) vs. stiff (higher velocity material). Numerical models of rupture in 

homogenous material versus along a bi-material interface produce symmetric bilateral 

cracks and uniform damage, contrasting with a unidirectional wrinkle-like pulse with 

asymmetrical damage (Ben-Zion and Shi, 2005; and Shi and Ben-Zion, 2005). Models of 

unidirectional wrinkle like ruptures produce dynamic dilation at the tip that propagates in 

the direction of slip on the more compliant side of the fault and dynamic compression at 

the tip propagating in the opposite direction (Ben-Zion and Shi, 2005). In the bi-material 

interface model, rupture propagates preferentially in the direction of slip of the compliant 

side, which persistently maintains the stiffer material in the tensile quadrant (Figure 1-

3b).  Because the tensile strength of rocks is significantly less than the compressive 

strength, the preferred rupture direction of large earthquakes can lead to an asymmetry of 

fault zone properties. Due to the confining pressures at greater depths, significant fault 
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normal damage extent is expected only in the top few kilometers of the earth’s crust 

(Ben-Zion and Shi, 2005).  

The above scenario describes a simulation of dynamic rupture on a material 

interface resulting in asymmetric damage across the fault. A special form of fault zone 

damage is rock pulverization; an intense fracturing of wall rock down to microscopic 

scales with little to no grain rotation (Dor et al., 2006). Laboratory experiments to create 

pulverized rock similar to that observed in the field require high strain rates, or 

supershear rupture, along a fault (Doan and Gary, 2009). Numerical simulations to create 

similar high strain rates capable of pulverizing rock mass far (~100 m) from the fault, 

only resulted from unrealistic rupture scenarios (Xu and Ben-Zion, 2017). To compensate 

for this discrepancy, Xu and Ben-Zion (2017) argue that pulverization occurs at lower 

strain rates on pre-damaged rocks. Two outcomes from the pulverization simulations 

include the following. 1) In homogenous material, tensile cracks form on both sides of 

the fault at high angles or orthogonal to the rupture plane. 2) Through repeated bi-

material ruptures, asymmetrical damage occurs with more damage on the stiffer side of 

the fault with random fracture orientations. An intriguing consequence or the later result 

is a widening of the pulverized rock mass along pre-existing flaws, which can develop 

their own branches at greater distances from the fault (Xu and Ben-Zion, 2017).  

If preferred rupture propagation is a valid natural phenomenon, it should be 

expressed/observed as asymmetric damage within fault zones. A number of studies have 

examined this topic on fault structures globally, including the SAF and the SJFZ. The 

following sections provide an introduction to the San Jacinto fault, its geologic setting 
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and segmentation, recent earthquake history, seismic structure, and geologic and 

geomorphic evaluations of fault zone damage.   

1.2 Geology of the San Jacinto Fault Zone 

The SJFZ is a major splay of the SAF in Southern California, and accommodates 

a similar amount of slip of the Pacific-North American plate boundary as the southern 

SAF (Bennet et al., 2004; Meade and Hager, 2005; Li and Liu, 2007; Lundgren et al., 

2009). Sharp (1967) estimated cumulative right-lateral offset of roughly 24 km along the 

SJFZ in the Peninsular Ranges. By comparing his total offset to that of the entire SAF, 

and by measuring displacements of Quaternary deposits, Sharp classified the SJFZ a 

young structure limiting the maximum age of the fault to the Pliocene. His estimate of 

relative age has been further examined and supported by multiple studies (e.g., Matti and 

Morton, 1993; Morton and Matti, 1993; Lutz et al., 2006) discussed further in Section 

1.2. 

The central SJFZ is divided into five major strands: 1) Hot Springs fault (HSF), 2) 

Buck Ridge fault (BRF), 3) Thomas Mountain fault (TMF), 4) Coyote Creek fault (CCF), 

and 5) San Jacinto fault (SJF) which was later termed the Clark Fault (CF) (Figures 1-3, 

1-4, 1-5, and 1-6). The bedrock geology is predominantly composed of Cretaceous 

plutonic and metamorphic rock (Figures 1-5 and 1-6) which are overlain by Quaternary 

deposits, including the Pleistocene Bautista sediments of Frick (1921). In the vicinity of 

Anza, the SJFZ structure is complex with multiple strands. At the northern and southern 

borders of Thomas Mountain are the N-S and NW-SE trending TMF and CF, respectively 

(Figure 1-6). At the eastern margin of Anza Valley, a splay branches from the CF and 

converges with the TMF, changing trend towards the east, where the BRF begins 
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(Figures 1-5 and 1-6). The coalescence of these fault structures occurs within, or adjacent 

to Burnt Valley, which is filled with Bautista and undifferentiated alluvial sediments. 

Burnt Valley is situated between Lookout Mountain and Table Mountain to the north and 

south, respectively (Figure 1-6). At the northern base of Table Mountain, the SFJZ 

includes a pair of northern and southern shallow dipping thrust faults, juxtaposing 

metamorphic rock of the Burnt Valley Complex (BVC) over Bautista, and tonalite of the 

Coahuila Valley Pluton (CVP) over BVC. Along strike to the NW, the southern thrust 

fault evolves into multiple faults with varying sense of slip in a small basin termed Sage 

Brush Flat (SGB).  

1.3 Initiation of the San Jacinto Fault Zone 

Determining the timing and mechanics of the SJFZ inception through traditional 

palinspastic restoration is difficult, as much of the fault displaces crystalline rocks and 

terrain uplifted from an ancestral (Cretaceous) tectonic system, with resulting complex 

fault zone geometry. The 24 km cumulative offset of the SJFZ (Sharp, 1967) is just under 

10% of the total offset measured on the entire SAF (Crowell, 1962; Sharp, 1967; 

Matthews, 1976; Graham et al., 1989), which lead many workers to suspect, correctly, 

that the SJFZ is a much younger fault within the SAF system. Using a constant average 

slip rate of 10 mm/yr, (Sharp, 1981; Rockwell, 1990) and 24 km cumulative offset along 

the SJFZ (Sharp, 1967) yields an inception age of 2.4 Ma, however, models and 

stratigraphic analyses suggest the fault is younger by roughly 1 Myr (Matti and Morton, 

1993; Morton and Matti, 1993; Lutz et al., 2006; Li and Liu, 2007). 
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Initiation of the SJFZ is thought to have resulted from development of a left bend 

in the Mission Creek strand of the SAF circa 4.0 to 2.5 Ma, at a location known as the 

“San Gorgonio Pass knot” (Figure 1-3) (Matti and Morton,1993; Morton and 

Matti,1993). This complex structure of contractional and extensional faults, ultimately 

led to initiation of the SJFZ at approximately 1.5 to 1.2 Ma, as a new structure 

transferring right slip around the complex “knot” (Matti and Mortion, 1993). Within or 

adjacent to the Transverse Ranges, initiation of the new structure involved activation or 

acceleration of uplift of the eastern San Gabriel Mountains and San Gorgonio Pass, as 

well as inception of basin deposition in San Bernardino and San Jacinto, and cessation of 

deposition in the San Timoteo badlands. Based on the stratigraphic ages and depositional 

rates within the basins, as well as slip rates estimated in the northern part of the San 

Timoteo badlands, Morton and Matti (1993) concluded that right slip along the fault 

began around 1.5 Ma.  

Evidence for the SJFZ inception model described above is based primarily on data 

from the northwest portion of the fault, at or near convergence with the SAF. The 

geology in the central and southeast portion, and through the Peninsular Ranges, of the 

SJFZ consists of Mesozoic crystalline rock overlain by younger Quaternary sediments 

(Sharp, 1967), which makes estimating the age of the SJFZ in this section problematic. 

To constrain timing of the SJFZ initiation in the southeast, and to better understand 

Pliocene-Pleistocene faulting history in Southern California, Lutz et al. (2006) performed 

a detailed study of Borrego Badlands stratigraphy. The southwestern portion of the Salton 

Trough contains a sedimentary record from the Miocene through the Pleistocene. Based 

on the thickness and spatial distribution of sedimentary units, and basin rotation 
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(recorded by paleo-current data and magnetostratigraphy), this high resolution 

stratigraphic study concluded initiation of the SJFZ in the Borrego Badlands occurred 1.1 

Ma (Lutz et al., 2006).  

1.4 Recent Earthquakes and Slip Rates on the San Jacinto Fault near Anza 

Between 1890 and 1969 there were nine (6<M<7) earthquakes along the SJFZ 

between the convergence with the SAF (Cajon Pass), and Superstition Mountain 

(Thatcher et al., 1975). Four of the earthquakes occurred in the early part of the 20th 

century (1899 – 1923) NW of Anza, and the remaining five occurred during the early to 

mid 20th century (1937 – 1969) SW of Anza. Thatcher et al. (1975) estimated the average 

seismic slip (𝑢) of each earthquake by determining the seismic moment (M0) and area of 

rupture (A) using a constant shear modulus (𝜇): M0 = 𝜇	𝑢 A. Mapping the seismic slip 

distribution of the nine moderate earthquakes reveals a roughly 40 km gap between Anza 

and Coyote Mountain bordering Borrego Valley(Borrego Badlands) (Thatcher et al., 

1975) (Figure 1-1). Thatcher et al. (1975) noted a complex fault zone at Anza, with 

multiple fault strands as mapped by Sharp (1967) and concluded the gap may indicate 

strain accumulation and thus a locus for a future moderate earthquake. In the same 

vicinity, Sanders and Kanamori (1984) evaluated the location of earthquake epicenters 

along the SJFZ, revealing a 20 km quiescent segment of the fault known as the “Anza 

Seismic Gap” (Figure 1-3). The implications of the gap in seismic slip and seismicity 

include an increased hazard for a large magnitude earthquake. This has spurred a number 

of focused studies to establish the paleoseismic record of large earthquakes along this 
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segment of the SJFZ (e.g; Salisbury et al., 2012; Rockwell et al., 2015; Salisbury et al., 

2017).  

Estimating slip rates is critical to evaluating fault activity and seismic hazard, 

based on detailed studies involving displacement measurements, dating geologic units, 

and determining prior earthquake events recorded in geologic layers. Slip rates are often 

variable across different strands and segments. At the southern base of Table Mountain 

north of Anza, an alluvial fan consisting of Bautista deposits, incised by younger 

channels, has been the subject of two SJFZ slip rate studies (Sharp, 1981; Rockwell et al., 

1990) (Figure 1-5). Previous mapping and displacement measurements of marker gravels, 

and dating of the 760 ka Bishop tuff, yield a slip rate of roughly 8 to 12 mm/yr (Sharp, 

1981). Through further mapping of the late Quaternary deposits, 14C dating and detailed 

soil profiles, Rockwell et al. (1990) validated Sharp’s estimate at a finer scale deriving 

slip rates since 9.5, 14, 17, and 50 ka at 9.2, 11, 12, and 13 mm/yr, respectively. Using a 

long-term average slip rate of 12 mm/yr, the authors of the latter study concluded 

between 0.8 and 1.1 m of slip accumulation on the Anza segment of the SJFZ based on 

the potential of through going ruptures from 1918 or 1899 earthquakes, respectively. 

The 1995 Working Group on California Earthquake Probabilities delineated the 

Clark fault (CF) as the 90 km Anza segment of the SJFZ. To establish the amount of slip 

for the most recent surface rupturing events (MRE) on the CF, Salisbury et al. (2012) 

measured 168 offset features using high resolution topography from lidar and field 

observations. Twenty-four of these offset measurements were made within Burnt Valley, 

NW of SGB, and ranged from 2.2 to 3.9 m with an average of approximately 3.3 m. Over 

the entire 80 km evaluated segment, average slip for the most recent earthquake, 
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postulated as 21 April 1918 Mw 6.9 earthquake, ranged from 2.5 to 2.9 m of dextral 

displacement, and a maximum of roughly 4 m at Anza.  

Paleoseismic studies at Hog Lake (Rockwell et al., 2015) near the southern base 

of Thomas Mountain and roughly 5 km to the NW in the South Fork Wilderness 

(Salisbury et al., 2017) demonstrate at least two large surface rupture events on the CF in 

the past 300 years, inferred as the Mw 7.3 and Mw 6.9 events that occurred on 22 

November 1800, and 21 April 1918, respectively.  

1.5 Seismic Structure of the San Jacinto Fault Zone  

There is significant work characterizing seismic structure of the SJFZ through 

evaluation of seismicity and seismic waves in the vicinity of Anza (Sanders and 

Kanamori, 1984; Li and Vernon, 2001; Lewis et al., 2005; Allam et al., 2014; Yang et al., 

2014; Qiu et al., 2017; Ross et al., 2017; Share et al; 2017). 

 Seismicity is useful for evaluating fault zone structure by resolving earthquake 

hypocenters and focal mechanisms to indicate slip planes and fault geometry at depth. 

Employing this method at Anza, Sanders and Kanamori (1984) revealed a 20 km gap in 

seismicity compared to the previously reported 40 km seismic slip gap (Thatcher et al., 

1975), and suggest the gap is resultant from a locked fault due to two primary 

mechanisms. The first involves convergent fault plane geometries of the CC, CF, and 

BRF interpreted from hypocentral locations. The second is the non-preferential 

orientation of the San Jacinto fault at Anza (N53˚W) with respected to the regional 

maximum compressive stress of N05˚E-S05˚W. These and other factors led Sanders and 
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Kanamori (1984) to conclude this locked segment of the SJFZ has a high potential for a 

large (6 < M < 7) earthquake.  

Another useful feature for evaluating fault zones are low velocity zones detected 

from seismic energy or waves, radiated from earthquakes and other energy sources. 

Seismic waves traveling through rock mass decelerate when passing through fractured 

rock mass within fault zones and thus may define low velocity structures or zones. 

Within a low velocity zone, fault zone trapped waves (FZTW) are slow seismic energy 

associated with critically reflected phases, and in a coherent zone of damaged rock can 

act as a wave-guide highlighting the fault zone structure (Igel et al., 1997; Ben Zion, 

1998). Near Anza, FZTW were identified along the BRF, CC and CF strands helping 

constrain shallow (3-5 km) fault zone structure and geometry (Li and Vernon, 2001; 

Lewis et al., 2005) (Figure 1-3). Three linear seismic arrays were installed across the 

fault strands listed above and recorded roughly 250 micro-earthquakes (Li and Vernon, 

2001). Analysis of these events indicate the following; 1) a 25–30% reduction in shear 

wave velocity when passing through the three fault strands, 2) thrust faults located within 

Horse Canyon act as a shallow (< 10 km) barrier for wave-guides, 3) antithetic NW and 

SE dipping planes of the Clark and Buck Ridge faults, respectively as previously 

suggested (Sanders and Kanamori, 1984), and 4) continuation of the Clark fault through 

the Anza gap. Analysis of FZTW using the same arrays but evaluating earthquakes from 

sources outside the fault zone defined a roughly 100 m “trapping structure” at depths 

between 3 and 5 km (Lewis et al., 2005). Furthermore, the structure outlined by FZTW is 

not centered along the fault’s surface trace, but offset by 50–100 m to the northeast 

(Lewis et al., 2005). Similar findings from linear arrays at Black Burn Saddle (Share et 
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al., 2017) and Jackass Flat (Qiu et al; 2017) report a roughly 200 m wide trapping 

structure along the SJFZ. In both cases, the fault separates material with higher and 

slower seismic wave velocities (bi-material interface) from the NE and SW, respectively, 

and the trapping structure is wider on the NE side of fault. These observations of 

asymmetric FZTW are significant and may suggest a preferred rupture propagation 

direction (Ben-Zion and Shi, 2005; Shi and Ben-Zion, 2006).  

1.6 Fault Zone Structure and Rock Damage along the San Jacinto Fault Zone 

Fault rocks observed at the surface, within fault zones, can vary in composition 

and texture depending on the age, mode, and depth of deformation. An early 

classification of fault rocks based on an exhumed fault, spanning the brittle-ductile 

boundary, provided a model for rock deformation in fault zones (Sibson, 1977). At or 

near the surface, rocks exclusively undergo brecciation. Sibson (1986) provided detailed 

descriptions of breccia and the mechanisms involved in its formation, after making post-

earthquake observations on faults in southern California. These descriptions included 

discussions of fault zone complexities, e.g., dilatational and anti-dilatational fault jogs, 

and their role in perturbing earthquake ruptures and damaging the fault zone rocks. 

Exposed ancient faults associated with the SAF, such as the San Gabriel and Punch Bowl 

faults, provide an excellent resource for evaluating fault zone structure (Chester et al., 

1993; Dor et al., 2006). A model for the internal structure of these faults include a core 

bordered by a roughly 100 m wide damage zone of the host rock (Chester et al., 1993) 

(Figure 1-1). A traverse across a bi-material interface, juxtaposing sandstone against 

igneous rock along the Punch Bowl fault, reveals higher fracture density and damage 
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intensity within the material with higher seismic wave velocity (sandstone) (Dor et al., 

2006). In addition to damage asymmetry, Dor et al. (2006) described organized fractures 

in the sandstone with a preferred orientation and intensity values proportional to distance 

from the fault core. This contrasts with the igneous rock showing no dependency on 

distance to the fault, and damage style possibly related to other phases of deformation 

and/or metamorphic fabric (Dor et al., 2006).  

Rock damage on the SJFZ has been observed at macro- (Wechsler et al., 2011), 

meso-/outcrop (Dor et al., 2006) and micro-scale (Morton, et al., 2012; Whearty et al., 

2017; Peppard et al., 2018). Table 1 lists authors, methods, scales, and sense of damage 

asymmetry of all fault zone damage studies on the CF, and figure 1-4 depicts the study 

locations. Summaries of these studies are detailed in the following subsections.  

1.6.1 Macro-scale Fault Zone Damage 

Both movement of crustal plates and displacements along faults have clear and 

distinctive effects on topography and geomorphic processes. Mountain streams and 

drainages are effected by regional uplift of the earth’s crust (e.g., Whipple, 2004) and 

through fracturing of the rock mass (e.g., Molnar et al, 2007). Although fracturing of rock 

mass within a fault zone from coseismic damage can initially increase permeability; 

successive damage and/or pulverization reduces the fractured rock grain size, ultimately 

decreasing permeability. This effect may increase moisture retention in the near surface, 

decreasing infiltration capacity, forcing more runoff and channel initiation, resulting in 

higher drainage density closer to the fault (Wechsler et al., 2009). This hypothesis was 

tested on the central CF (Figure 1-4) through analysis of digital elevation models (DEM) 

for geomorphic metrics, chiefly drainage density (Wechsler et al., 2009). Data sets 
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included broad (up to 2.5 km scale) and local (≤ 1 kilometer scale) topography from 

shuttle radar topography mission (SRTM) and B4 lidar 1-m DEMs, respectively. Both 

were analyzed using hydrologic modeling tools in a GIS to evaluate drainage patterns and 

variations in the drainage network. Taking into account changes in drainages associated 

with geologic material, the results from the SRTM analysis indicate a roughly 1-km wide 

damage zone centered on the CF. Further analysis of the 1-km swath using high 

resolution B-4 lidar indicates greater damage on the NE side of the fault (Wechsler et al., 

2009). Wechsler et al. (2009) also describe more pronounced fault zone damage, 

recorded in the lidar analysis, in areas with complex structure, e.g. fault bends, double 

bends and junctions. The authors cautiously note that results of the study indicate 

damaged rock mass recorded in their analysis is most likely in the form of widely spaced 

fractures (5 – 20 cm scale) rather than pulverization, per se.  

1.6.2 Meso/Outcrop-scale Fault Zone Damage 

North of Anza, at the southern base of Thomas Mountain, three excavations along 

a 140-m long section of the CF exposed the fault core for a detailed structural analysis 

(Dor et al., 2006) (Figure 1-4). There, the CF juxtaposes middle and late Pleistocene 

alluvium and alluvial fan deposits. The fault core, in each exposure, was divided into 

structural domains based on fracture density and cumulative fracture length. An 

important uncertainty noted by Dor et al. (2006) is to what extent measured fractures 

formed in the gouge and deformed sedimentary layers are fault related structures as 

opposed to desiccation of the exposed clayey material. The three fault core exposures 

displayed consistent asymmetrical deformation with higher fracture densities and greater 

gouge extent on the NE side of the CF principle slip surface (Dor et al., 2006). 
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1.6.3 Micro-scale Fault Zone Damage 

Three recent studies examined micro-structural properties of fault zone damage 

on the CF southwest of Anza (Morton et al., 2012; Whearty et al., 2017; and Peppard et 

al., 2018). Thin section and geochemical analysis from 61 samples collected along two 

transects across the CF in Horse Canyon revealed chemical alteration and elemental mass 

change within the fault core (Morton et al., 2012) (Figure 1-4). The fault zone 

architecture described in the Morton et al. (2012) study includes a primary and secondary 

fault core (gouge and cataclasite), transition zone (a matrix that supports small, lensoid 

tonalite fragments), and damage zone (rock fractures filled with dark, fine-grained 

material that thickens towards the fault). The total damage zone extents are 9 m and 1.25 

m wide on the SW and NE side of the fault, respectively. However, the more intensely 

damaged rock within the fault core and transition zone is thicker on the NE side.   

In Rock House Canyon, the SJFZ juxtaposes Cretaceous tonalite against 

Pleistocene Bautista sediments (Sharp, 1967). Thin section analysis of these rocks reveal 

intense fragmentation in the tonalite without grain rotation, and contrasting fracture 

densities in the Bautista with significantly higher values in samples from lower burial 

depths (Whearty et al., 2017). Cracks observed within the crystal faces exhibit fault 

normal preferred orientation consistent with studies on the SAF (Dor et al., 2009) which 

are attributed to dynamic rupture processes. Partial erosion of the damage zone within the 

Bautista prevented evaluation of lateral extent and possible asymmetry. However, the 

results from Whearty et al. (2017) demonstrate that rock pulverization can occur within 

the shallow subsurface at confining pressures as low as 1.4 to 2.4 MPa (i.e., ~100 m).  
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Within the Peninsular Range, the fault zone structure of the SJFZ is complex. It 

consists of multiple splays, dilatational jogs (between the CF and CCF), and thrust faults 

(Sharp, 1967) (Figure 1-5). Works described in the previous paragraphs focus primarily 

on damage associated with strike-slip faults of the main SJFZ or CF. South of SGB, 23 

samples were collected at three locations within Alkali Wash to characterize damaged 

Bautista sediments, in the footwall of a SW dipping thrust fault (described as part of 

dismembered positive flower structure), for petrologic and clay minerology content, 

porosity, and crystal fragmentation (Peppard et al., 2018). At this location, contrasting 

~10–12 cm and 15 m wide damage zones are observed within the Bautista sedimentary 

rock and Burnt Valley complex metamorphic rock on the NW and SE sides of the thrust 

fault, respectively. This contrasts with findings from Dor et al. (2006) who observed 

opposite damage asymmetry on the SJFZ, NE of Anza. Peppard et al. (2018) argue that 

host rock rheological differences (porous sedimentary vs. metamorphic rocks) control 

damage asymmetry along faults, consistent with a similar finding from laboratory 

experiments (Aben et al., 2017). 
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Figure 1-1: Schematic diagram of strike slip fault zone architecture. Major components 
include the fault core which is surrounded by a damage zone (damaged host rock), and 
protolith or undamaged host rock.  
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Figure 1-2: Conceptual sketches and model of fault ruptures on a right lateral strike slip 
fault. a) Upper right box shows compressional (+) and tensional (-) quadrants on a right 
lateral strike slip fault. Lower left block model depicts a single unilateral rupture (red arrow 
indicates rupture direction) with damage produced in tensional quadrant. Lower right block 
model depicts a single bilateral rupture or multiple unilateral ruptures with no preferred 
rupture direction. b) Left box shows stable self-sustaining rupture propagating along a 
material interface as a unidirectional pulse in the direction of slip on the more compliant 
side of the fault. Right block model depicts asymmetric damage zone development from 
successive unilateral ruptures from preferred rupture direction. c) Model of maxima 
dynamic stress change (white lines indicate stress contours) from a northward unilateral 
rupture propagation on a right lateral strike slip fault during the 1992 MW 7.3 Landers 
earthquake, modified from Cotton and Coutant (1997).
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Figure 1-4: Fault zone damage study locations. SRTM hillshade base map with the 
central Clark strand of the SJFZ (red line) (USGS, 2006) evaluated by Wechsler et al. 
(2009) and other fault segments of the central SJFZ; all segments labeled in red letters; 
BR-Buck Ridge fault, CC-Coyote Creek fault, CF-Clark fault, HSF-Hot Springs fault, 
TMF-Thomas Mountain fault. Individual study locations of localized fault zone rock 
damage shown as triangles, for fault zone trapped wave studies using seismic arrays, 
and squares, for geologic and/or microstructural study locations. The town of Anza is 
shown for reference.  



    29 

 

Fi
gu

re
 1

-5
: G

en
er

al
iz

ed
 g

eo
lo

gi
c 

m
ap

 o
f t

he
 S

an
 Ja

ci
nt

o 
Fa

ul
t Z

on
e 

in
 th

e 
Pe

ni
ns

ul
ar

 R
an

ge
s, 

si
m

pl
ifi

ed
 fr

om
 S

ha
rp

 (1
96

7)
 

(D
ig

iti
za

tio
n 

by
 S

al
is

bu
ry

 in
 S

al
is

bu
ry

 e
t a

l.,
 2

01
2)

. B
la

ck
 b

ox
 in

di
ca

te
s e

xt
en

t o
f F

ig
ur

e 
1-

6.
 



 

  30 

 

 

 

Fi
gu

re
 1

-6
: G

en
er

al
iz

ed
 g

eo
lo

gi
c 

m
ap

 o
f t

he
 c

en
tra

l S
an

 Ja
ci

nt
o 

Fa
ul

t Z
on

e 
si

m
pl

ifi
ed

 fr
om

 S
ha

rp
 (1

96
7)

 (D
ig

iti
za

tio
n 

by
 S

al
is

bu
ry

 in
 S

al
is

bu
ry

 e
t a

l.,
 2

01
2)

. S
G

B
 st

ud
y 

lo
ca

tio
n 

lo
ca

te
d 

as
 sm

al
l p

at
ch

 o
f a

llu
vi

um
 b

et
w

ee
n 

pK
m

 a
nd

 K
t i

n 
th

e 
ce

nt
er

 p
or

tio
n 

of
 th

e 
m

ap
. 



 

  31 

 

CHAPTER 2 

GEOLOGIC AND STRUCTURAL CHARACTERIZATION OF THE ROCK VOLUME 

IMAGED BY THE DENSE NODAL SEISMIC ARRAY ALONG THE SAN JACINTO 

FAULT AT SAGE BRUSH FLAT, SOUTHERN CALIFORNIA 

 

2.1. Introduction 

 Studies of structural properties of modern and ancient fault zones through 

geophysical imaging and observations of fault rocks are fundamental to understanding 

earthquake processes. Slip along a fault induces the formation of secondary damage 

zones within the host rock (Okubo and Schultz, 2005). In the shallow brittle crust, strike-

slip fault zones typically consist of a fault core which accommodates primary slip, 

surrounded by damaged rock which transitions outward to intact protolith (e.g., Chester 

et al., 1993; Chester et al., 2004, Mitchel et al., 2011, Lin et al., 2013). Detailed imaging 

of fault zone velocity structure can reveal important information about the cumulative 

damage along the fault (Allam et al., 2014).  

 The San Jacinto fault zone (SJFZ) is a major splay of the San Andreas fault system 

(SAF) (Sharp, 1967), and is historically the most seismically active part of the plate 

boundary (Sanders and Kanamori, 1984) (Figure 1-3). Slip rates along the SJFZ have 

spatio-temporal variability, ranging from 8 mm/yr to 23 mm/yr (Sharp, 1967; Sharp, 

1981; Rockwell et al., 1990; Morton and Matti, 1993; Rockwell et al., 2015). Initial 

mapping of the SJFZ within the Peninsular Ranges segmented the system into five 



 

  32 

strands; Buckridge fault (BR), Coyote Creek fault(CC), Hot Springs fault (HSF), Thomas 

Mountain fault (TMF), and the San Jacinto fault (Sharp, 1967). A 40 km (Thatcher et al., 

1974) and 20 km (Sanders and Kanamori, 1984) section of the SJFZ near the town of 

Anza is termed the “Anza seismic gap,” due to a lack of seismic slip and seismicity. This 

section of the SJFZ was termed the Clark fault (CF) by the Working Group on California 

Earthquake Probabilities (1995). Evaluations of paleoseismicity near Anza indicate a 

relatively large earthquake recurrence interval of roughly 250 years (Rockwell et al., 

2015), and detailed slip distribution observations along the CF estimate the most recent 

large (>M7) earthquake occurred on 22 November 1800 (Salisbury et al., 2012, 2017).  

 Multiple geophysical studies imaging fault-zone trapped waves (FZTW) (Lewis et 

al., 2005; Qiu et al. 2017; Share et al., 2017; Qin et al., 2017), outcrop mapping (Dor et 

al., 2006), and regional topographic analysis (Wechsler et al., 2011) (Figure 1-4), observe 

an asymmetric damage zone along the SJFZ. Results from each study indicate fault zone 

rock damage has a greater extent on the NE side. Fault zone damage asymmetry is a 

predicted outcome for preferred unidirectional rupture along a fault juxtaposing differing 

material types (bi-material interface) (Ben-Zion and Shi, 2005; Shi and Ben Zion, 2005) 

(Figures 1-3). In such a case, ruptures along the fault propagate preferentially in the slip 

direction of the compliant (low seismic velocity medium) side, which persistently places 

the stiffer (higher seismic velocity medium) in the tensional quadrant of the radiated 

seismic field. Within the fault zone, the expected result is an asymmetric pattern of 

damaged rock consistently observed on one side of the fault. The asymmetric damage 

described by FTZW, outcrop mapping, and topographic analyses, are possible indicators 
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for a preferred NW rupture propagation along the CF as explained by a unidirectional 

pulse rupture along a bi-material interface.  

 Along the CF, microstructural and geochemical analyses of fault zone rocks at 

Horse Canyon, Rock House Canyon, and Alkali Wash (Morton et al., 2012; Whearty et 

al., 2017; Peppard et al, 2018) help define fault zone architecture along the CF (Figures 

1-4). At Rock House Canyon, partial erosion and colluvial cover prevent accurate 

measurements of damage zone width. However, petrographic analysis reveal clear 

pulverization of tonalite on the NE side of the fault and incipient pulverization of weakly 

consolidated sediments on the SW side (Whearty et al., 2017). In Horse Canyon, the 

damage zone (rock fractures filled with dark, fine-grained material that thickens towards 

the fault) extent is wider on the SW side of the fault, however the more intensely 

damaged transition zone (a matrix that supports small, lensoid tonalite fragments) is 

wider on the NE side (Morton et al., 2012). Fault zone architecture in Alkali Wash, 

reported from a transect across a dismembered positive flower structure (part of the CF), 

includes a fault core, followed by an inner intensely damaged zone, and a surrounding 

outer non-pervasively damaged zone (Peppard et al., 2018). Within the footwall, or NE 

side of the fault, a weakly consolidated sandstone has a narrow inner damage zone (10 – 

12 cm thick) which contrasts with a much wider (5 m) thick inner damage zone in 

metamorphic rock observed in the hanging wall, SW side. Peppard et al. (2018) argue the 

asymmetric damage observed in Alkali Wash (within the depths of the sandstone), is 

indicative of rheological controls on rock damage extent rather than a preferred rupture 

direction, in agreement with recent laboratory results (Aben et al., 2017)  
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 Imaging of fault zones through geophysical surveys and seismic wave analyses 

offer a glimpse of seismic structural properties; e.g. low velocity zones, FZTW, and 

waveform characteristics. What is often lacking from these informative investigations, 

however, is a clear connection linking individual geophysical elements to observed 

geologic units and structures in overlying rock mass. Most often this quandary results 

from two factors; 1) geophysical surveys often resolve fault zone structure at seismogenic 

depths and 2) interpretations are often simplified based on scales ranging from 100 m to 1 

km. At Sage Brush Flat (SGB) near Anza, California, data from a dense seismic array 

deployed in a 10-m grid spacing to image the shallow crust (Ben-Zion et al., 2015), 

provide a special opportunity to test how fault zone seismic properties may manifest in 

the geology at the surface (Figure 2-1). This study addresses three main challenges in 

fault zone studies; 1) compare and contrast geophysical properties derived from the SGB 

dense array with surficial geologic and structural observations at a similar dekameter 

scale resolution, 2) evaluate fault zone structure and rock damage distribution to aid in 

the analysis of structural controls on damage asymmetry along the SJFZ, and 3) improve 

understanding of local geology and structural complexity within the vicinity of the SGB 

basin using high resolution topography.  

Products from this research include maps of surficial geology and rock damage, 

and models of subsurface structure including a 3D model of the CF at SGB validated 

with high resolution seismic velocity tomography. Detailed in this chapter are the 

methods and results of mapped geology and structure, and fault zone damage within and 

around the dense array. These observations reveal, in general a greater NE damage 
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asymmetry; consistent with a NW fault rupture propagation direction, and damage extent 

which may grow along pre-existing flaws in rock mass. Use of high resolution 

topography helps identify multiple fault strands through Alkali Wash and retraces the 

active fault away from the main lithologic contact as previously mapped.  

2.2 Review of SGB Dense Seismic Array Design and Results  

 A spatially dense array of geophones was deployed in the small (~700 m x 350 m) 

SGB basin from May to June of 2014 and has been used to develop a variety of new 

seismic imaging and earthquake detection techniques. The dense array was designed 

specifically to image shallow (upper 1 km) fault zone structure at high (~10 m or 

dekameter) resolution. The subsections below provide summaries of the SGB dense 

seismic array construction, and studies thereof.  

2.2.1 Array Construction and Initial Observations 

The array configuration includes 1108 geophones arranged in 20 rows with 50 

sensors per row, perpendicular to the main trace of CF, at a roughly 10-m grid spacing 

recording data over a 4 week time period in 2014 (Ben-Zion, 2015). The remaining 108 

sensors were added as extensions to selected rows within the grid. Total surface area 

coverage of the array is approximately 600 m x 600 m, incorporating the entire SGB 

basin and portions of the northeast and southwest slopes (Figure 2-1). The dense array 

augments continuous monitoring at SGB from a linear PASSCAL array of six (6) 

accelerometers, part of larger deployment spanning the SJFZ that began in 2010 (Vernon 

and Ben-Zion 2010).  
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In addition to detecting seismic events, the dense array recorded Betsy gunshots 

and noise data at a frequency of 500 s-1 to study fault zone seismic structure at SGB. The 

tight spacing of the dense array provides a special opportunity to study how wave fields 

propagate through the subsurface and to image structural features in the upper few 

hundred meters of the fault zone.  

 In describing the preliminary results, Ben-Zion et al. (2015) noted numerous 

recorded earthquakes during each day of the dense array deployment with a peak of 120 

observed events in a single day. Anomalous spikes and bursts of high-frequency waves 

recorded in the array are explained as cultural noise and possibly the interaction of 

wind/weather with stationary equipment located on site. Study of the effects of local and 

regional cultural noise on ground sensors at SGB has recently been undertaken to help 

filter these sources from the dense array dataset.  

 Within the SGB dense array, two (2) zones of amplification were reported by 

Ben-Zion et al. (2015) and later refined by Qin et al. (2017). Over the 4 weeks of 

recording, amplified seismic energy is observed in both the northeast and southwest 

regions of the site. The latter area has been explained as local basin effects and/or cultural 

noise associated with local land owners. The former, northeast portion of SGB, is 

interpreted as a seismic trapping structure; a zone reducing seismic wave velocities 

thereby amplifying motions at the ground surface (Figure 2-1).  
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2.2.2 Velocity Model Local Calibration and Earthquake Detection from the SGB Dense 

Array 

 As part of the 2014 array deployment, thirty-three (33) Betsy gunshots were fired 

at selected nodal locations. Betsy gunshots are a method of generating seismic energy at 

the surface, communicated through the substrate, and recorded by geophone nodes within 

the grid. Time intervals between energy sources and individual nodal locations provide a 

local velocity model used to characterize the geophysical properties of the fault zone 

(Meng and Ben-Zion, 2017). Using the velocity model, Meng and Ben-Zion (2017), 

developed a methodology for detecting a greater number of small events through the 

dense array which are not included in the standard earthquake catalog. Their technique, 

originally developed for underwater acoustics, adopts a method of beamforming and back 

projection of moving time windows to detect and locate energy sources. Applying this 

method to data recorded on 2014 Julian day 146, resulted in 723 potential detections, 220 

of which were determined local energy sources. 103 of these events were validated as 

earthquakes from regional seismic recording stations, and the remaining 117 are 

considered earthquakes too small to detect within the regional network.  

2.2.3 Internal Fault Zone Structure and Trapped Waves 

 In addition to earthquake detection, the dense array at SGB enables fine scale 

imaging of fault zone seismic structure (Qin et al., 2017). Using data from both dense and 

linear arrays within the basin, Qin et al. (2017) searched for waveform changes, and 

analyzed for P wave delay times as well as S and P FZTW (trapping structure from Ben-

Zion et al., 2015, described above; Figure 2-1). Observation of waveforms from multiple 
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events recorded across the entire SGB array display a clear change in phases across a 

discrete set of sensor nodal columns coincident with a mapped trace of the SJFZ (Figure 

2-1). Based on the observed phase change, Qin et al. (2017) concluded that the lineament 

outlined by the discrete columns represents a bi-material interface between different 

crustal blocks, and is the main seismogenic structure (at depth) of the local fault zone.  

To characterize the velocity structure from the SGB array, Qin et al. (2017) 

evaluated P wave arrival times from nine (9) teleseismic events. By analyzing data from 

both the dense and linear arrays, a gradual decrease in delay times is observed SW of the 

fault indicating a local reversal in the velocity structure. To evaluate the structure in more 

detail, the dataset was processed for slowness (the ratio of observed P-wave travel time 

and the along-path distance). Similar to patterns in the delay times analysis, a marked 

decrease in slowness, from both dense and linear arrays, is observed SW of the fault 

confirming the velocity structure reversal.  

To explain the anomalous area NE of the fault forcing the observed slowing of 

waveforms recorded within the array, Qin et al. (2017) performed analysis for FZTW. 

FZTW occur as seismic waves travel through a fault zone, following both P and S body 

waves, referred to as P-type and S-type FZTW respectively, and have relatively high 

amplitude and low frequencies. At SGB, FZTW were detected using an automatic 

algorithm for P-type, in order to observe and model S-type FZTW. Results of the analysis 

show regular occurrence of P- and S-types FZTW, localized in a zone NE of the Clark 

fault (Figure 2-1).  
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2.2.4 3-D Shear Wave Velocity Model from Ambient Noise Imaging 

 The dense array data collected at SGB allows detailed analysis of waveforms, as 

described above. These include large sets of longer bursts normally grouped as ambient 

seismic noise, which through extraction and inversion are used for high resolution 

tomographic imaging (Mordet et al., 2018). Using a double beamforming phase 

extraction technique (Roux et al., 2016), Mordet et al. (2018) isolated and extracted 

Rayleigh waves, or earthquake generated surface waves, in wavelengths characterizing 

shallow crustal depths between 50 and 500–700 m. These data are further processed in a 

Monte Carlo simulation using a Neighborhood Algorithm, producing a three-dimensional 

shear wave velocity (3D-Vs) model based on the average of 110 best models. The reader 

is referred to Mordet et al. (2018) for a detailed description of the model development.  

 Results of the 3D-Vs model indicate strong lateral variability across the array 

dataset at all depths. Similarities between findings from both the Mordet et al. (2018) 

model and Qin et al. (2017) results include low velocity zones in the NE and SW portions 

of SGB and strong contrasts delineating a boundary at depth below the western most 

trace of the CF. Authors of the 3D-Vs model attribute the sharp velocity contrast (Vs = 

850 m/s) as the transitional boundary between loose surficial deposits and the crystalline 

basement rock. This boundary produces a fault parallel velocity high at depth bordered by 

low velocity troughs to the NE and SW, explained as local effects from the fault damage 

zone and a deep sedimentary basin, respectively. Based on both the inversion depth 

uncertainties, and final misfit, Mordet et al. (2018) note the deeper trough (SW low 

velocity zone) should be interpreted with caution.  



 

  40 

2.3 Methods 

 The high quality and fine spatial scale of the seismological imaging at SGB is at a 

scale at which detailed geological observations and interpretations can be made and the 

opportunity was thus presented to advance the geologic models of the SGB site to a 

similar level of detail. Therefore, the methods adopted for this study included surficial 

geologic mapping of SGB and surrounding areas using both desktop (computer based) 

and field methods, and analysis of high resolution topography. Field geologic and 

structural mapping were recorded using Midland Valley’s mobile applications Field 

Move and Field Move Clino. Topographic basemaps included bare earth digital terrain 

models (DTM) and hillshade models derived from both B4 lidar (Bevis et al., 2005) and 

small unmanned aircraft system (sUAS) based structure from motion (SFM) digital 

elevation models (DEM) (e.g. Johnson et al., 2014). The latter were also produced at fault 

outcrops for structural measurements and three-dimensional detailed mapping not 

possible using traditional plan view topographic maps (Bemis et al., 2014). Thick 

vegetation obstacles were challenging not only for making observations in the field, but 

also in using high resolution SFM DEMs for topographic analysis. Field mapping and 

structural measurements were recorded using a traditional paper map and Brunton 

compass, but primarily using tablet and smart phone devices with the mobile applications 

described above. All field data were compiled into the software package MoveTM, 

produced by Midland Valley, for structural analyses and cross section interpretation, and 

ArcGIS Pro for map integration/composite and establishing a geodatabase. 

Topographic/geomorphic and displacement analyses were performed using the B4 lidar 
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DTM in Matlab using Topotoolbox (Schwanghart, 2014): and LiDaCaoz 2.1 (Haddon et 

al., 2016) respectively. Cross-sectional depth slice images of the shear wave velocity 

model developed from the dense array (Mordet et al., 2018) were produced in Matlab, 

and imported into Move for comparison and interpretation with surficial mapping. 

General observations of shear wave velocity images are described in Section 2.10.  

2.4 SGB Site Morphology 

The SGB array is situated within a small basin (Figures 2-2 and 2-3) flanked by 

northwest-southeast trending ridgelines. Salisbury et al. (2012) termed this section of the 

fault “Burnt Valley” after the broader valley located just beyond the northern most 

ridgeline at SGB (Figure 2-2). Much of the terrain within Burnt Valley and surrounding 

hilltops support dense vegetative cover which include manzanita, oak, sagebrush, yuccas, 

tall grasses and pinyon pines. SGB was chosen for the dense array deployment due to its 

vicinity to the CF as well as the low relief within the small basin and favorable 

landowners. Broadly speaking, the morphology of the basin consists of a northwest-

southeast long axis with asymmetrical flanking sides of long and arcuate vs short and 

linear, NE and SW slopes, respectively. The topography of the basin’s floor generally 

slopes inward draining southeast into Alkali Wash. A pronounced linear ridge rises above 

the basin floor and plunges towards the NW (Figure 2-3). NW of SGB, the basin 

gradually narrows as the gently sloping western flank coalesces with the east ridge at 

Burnt Valley Road. The southern boundary of the small basin narrows to a small 

southeast ephemeral stream (Alkali Wash) responsible for draining most of the SGB site 

as well as draws (gullies) sourced in the adjacent slopes.  
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Similar to the SGB basin, Alkali Wash is oriented northwest-southeast with 

asymmetric flanking slopes. These slopes, particularly on NE side of the wash, consist of 

a series of pronounced draws and spurs, contrasting the subdued gentle slopes to the 

south. The orientation of the draws and spurs often show asymmetric properties as well, 

as the majority of the draws in the NE side consistently showing a NW deflection, 

interpreted as the fault trace (discussed further in section 2.6). Figure 2-3a depicts the 

hillshade of a digital terrain model (DTM) from B4 lidar data and the traces of fourteen 

topographic profiles. Profile 1 is drawn across the middle portion of the SGB basin to 

illustrate topography from SW to NE (Figure 2-3b). Profile 1 is slightly asymmetric, with 

a longer slope on the SW flank. Topography perpendicular to gullies incised into the 

flanking SW and NE slopes are shown in profiles 2 and 4, and 3 and 5, respectively 

(Figure2-3c). Profiles 3 and 5, show relatively low frequency incision and a smoother 

surface, contrasted against the rugged surface and high frequency incision observed in 2 

and 4. Even and odd number profiles 6 through 14 illustrate longitudinal topography of 

selected spurs formed along the SW and NE slopes leading into Alkali Wash respectively 

(Figure 2-3d). Consistent, albeit subtle, asymmetric gradients with steeper slopes are 

observed on spurs to NE.  

2.5 SGB Geologic Mapping  

 Geologic maps of the SGB vicinity are principally at 1:24,000 scale and were 

compiled using topographic contour base maps (Sharp, 1967). The accuracy and detail of 

these maps are exceptional given the scales of presentation, yet, one question raised in 

this study includes: is there more we can learn about geology and structure in the study 
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area using new technology, notably high resolution topography? DEMs derived from 

lidar and SFM provide higher detailed topographic data in shorter collection times than 

traditional manual survey techniques. Removal of vegetation and cultural features 

(DTMs) allow the observer improved visibility of offset geomorphic features used for 

tracing fault strands, and landforms. SFM data provides the additional utility of mapping 

in orientations other than traditional horizontal map view. For this analysis, these 

techniques were employed to capture the spatial distribution of surficial geologic units 

(described in the following subsections), fault surface traces (section 2.5), and rock 

damage (section 2.7). Figure 2-4 displays a geologic map, produced as part of this study, 

and includes key locations discussed within following subsections. An ANSI C-sized 

sheet (17 in. x 22 in.) version of the geologic map is provided in the supplemental 

material.  

2.5.1 Rock units 

 Within and surrounding the SGB basin are two primary crystalline rock types: 

high grade metamorphic and younger plutonic. At SGB, Sharp (1967) termed these 

metamorphic and plutonic rocks the Burnt Valley Complex (BVC) and Coahuila Valley 

Pluton (CVP) respectively. Although not directly observed within the SGB study area, 

outcrops of the Horse Canyon Pluton (HCP) underlie Bautista sediments south of Burnt 

Valley (Sharp, 1967). Based on stratigraphic evidence in the western portion of the 

Peninsular Ranges, Sharp (1967) gave an approximate age of middle Cretaceous to 

plutonic rocks surrounding the SJFZ. Potassium-Argon ages of the batholith, range from 

120 Ma to 70 Ma (Krummenacher et al., 1975). Subsequent thermochronology constrain 
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the intrusion ages to 99-97 Ma (Miggins et al., 2014). The following subsections provide 

descriptions from field observations of the mapped rock units.  

2.5.1.1 Metamorphic Rocks of the Burnt Valley Complex 

Within SGB and Alkali Wash, BVC includes high grade metamorphic rocks of 

banded gneiss and migmatite, and have been described as pre-middle Cretaceous in age 

(Sharp, 1967). Discerning the metamorphic fabric is somewhat difficult due to secondary 

brittle deformation and poor exposure due to weathering and vegetative cover. However, 

1 to 2 m diameter float observed within drainages and the main channel of Alkali Wash 

shows strong foliations and shear bands (Figure 2-5a). Locally, the banded gneiss is fine-

grained with roughly equal parts mafic and felsic minerals, but varies compositionally in 

mica content. Leucocratic dikes and sills are common within the BVC, and appear 

compositionally as a fine-grained mode of the adjacent plutonic rock. Dikes and sills 

range in thickness from cm to tens of meters (Figure 2-5d). 

2.5.1.2 Plutonic Rocks of the Coahuila Pluton (CVP) 

 Rocks of the Cretaceous CVP (Sharp, 1967) are observed exclusively on the SW 

side of the SJFZ. At SGB, these rocks are primarily medium-grained, phaneritic, 

hornblende, biotite tonalite. Exposure of the CVP within the SGB basin is limited to the 

local land owner’s road cut. The rock mass is highly weathered with only fresh indurated 

core-stones (Figure 2-5c). As the weathered material erodes downslope, boulders are 

often translated downslope as observed within and on the SW flanking slopes of Alkali 

Wash (Figure 2-5d). Pegmatite dikes are observed in outcrops on the SW slopes of both 
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the SGB basin and Alkali Wash. Within several meters of the contact with the BVC, the 

long axis of darker mineral grains in the tonalite have a similar NNW-SSE orientation as 

the metamorphic foliation.  

2.5.1.3 Quaternary Bautista Beds 

 Sharp (1967) mapped a thick deposit of poorly consolidated sediments, termed the 

Bautista beds, overlying the basement plutonic and metamorphic rocks in the Peninsular 

Range. The deposit fills the majority of the topographic lows within the range including 

Burnt Valley, and were initially dated as Pleistocene in age based on vertebrate fossils 

(Frick, 1921). The deposits, as described by Sharp (1967), range in coarseness from 

boulder gravel to silt and clay beds, having accumulated through fluvial and lacustrine 

processes within the intermontane basins. The mapping unit, Bautista beds, was applied 

to all poorly consolidated Quaternary sediments mapped in vicinity of the SJFZ in the 

Peninsular Range (Sharp, 1967).  

2.5.2 Quaternary Landforms and Deposits 

 Sedimentary deposits and associated landforms developed within the SGB basin 

are alluvium and colluvium eroded from the surrounding slopes. Within the main basin 

floor, these deposits consist of dark grayish brown sand and silt with gravels, cobbles and 

boulders generally fining towards the basin interior. At the southern end of the basin, one 

and two stream channels are incised into the hillslopes and alluvium from the east and 

west flanks of the basin, respectively, and feed the main drainage into Alkali Wash. At 

the surface, these channels are filled with loose coarse sand, gravels and cobbles and 

occasional boulders.  
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 Located on the lateral extents of Burnt Valley are thick deposits of massive to 

weakly bedded sands and gravels (Figure 2-6). Opposite the NE ridge of SGB, within 

Burnt Valley, the topography is incised by numerous drainages that flow into and across 

the valley floor. Exposed within the drainages are roughly 10 m high remnants of 

deposits of fine to medium grained light yellowish-brown to orangish-brown sand, 

capped by gravels in some locations (Figure 2-6a). Similar deposits are found on the NW 

and SE side of Burnt Valley Road (Figure 2-6 b and 2-7). A small outcrop of fine to 

medium sands and gravels are also observed in between Burnt Valley Road and the SGB 

basin (Figure 2-6c). 

 Within Alkali Wash are two generations of deposits; 1) the modern stream 

channel which is covered with a mixture of gravels, cobbles and boulders, and 2) an older 

coarsening upwards sequence of sands and gravels with remnants that stand over 20 m 

above the modern channel (Figure 2-6d). Older sedimentary materials in the wash are 

similar in clast lithology and size as those observed in road cut in the Burnt Valley Road 

roughly 2 km north the SGB basin (Figures 2-3a and 3). Larger boulders, almost 

exclusively tonalite, ranging up to 2 meters in diameter are strewn across the 

southwestern slopes, create knickpoints within the wash channel and to lesser extent rest 

upon the lower edge of the northeastern slopes.  

2.6 SGB Fault Nomenclature and Surface Trace  

At large mapping scale, the CF appears as a single, relatively simple and straight 

structure (Figures 1-1 and 1-3), however, at smaller scales the fault consists of multiple 

curved strands (Figure 2-8). Discussed in the following paragraphs are previous fault 
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trace mapping, revisions to fault traces using high resolution topography, and fault 

identification nomenclature and fault parameters adopted for the three dimensional model 

discussed in section 2.10.  

2.6.1 Previous Fault Mapping  

Previous mapping of the CF through SGB by Sharp (1967) shows multiple strands 

within vicinity of SGB; these include a west-dipping thrust fault juxtaposing 

metamorphic rock over the Bautista beds, a ridge bounding fault with SW side down 

vertical displacement on the northern edge of SGB, and three NW trending faults within 

the basin (Figure 1- 6). At the head of Alkali Wash, Sharp mapped the faults merging into 

a single strand which juxtaposes the Coahuila Valley Pluton (CVP) against the Burnt 

Valley Complex (BVC) metamorphic rock, evolving into a second SW dipping thrust 

fault farther to the SW.  

2.6.2 Fault Trace Mapping Using High Resolution Topography and Focused Field Work 

Previous mapping of the CF described in the paragraph above is based on coarse 

scale topographic contour maps and 1:24,000 scale geologic mapping. Surface trace 

mapping of the CF for this study uses a high resolution (0.25–0.5 m) DTM and hillshade, 

which allows for identification of topographic lineaments and offset geomorphic features 

(Figure 2-8). Individual fault traces are assigned a numerical identifier (ID) to help guide 

fault descriptions within this section, and are used as parameters for the 3D fault model 

(discussed in Section 2.10). Fault traces illustrated in figure 2-8 are based on the 

following; 1) topographic lineaments, 2) breaks in slope, 3) displaced landforms, and 4) 

offset geologic units observed primarily in the field. Faults labeled 100 - 109, and 200 
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through 206 are considered most recent, or active within the Holocene, and Quaternary 

active (no sense of Holocene activity), respectively. Described from NW to SE, faults 

presented in figure 2-8 are summarized in the text below beginning at Burnt Valley road.  

Faults F100 and F102 are both observed as strong NW-SE trending lineaments 

within the DTM. Salisbury et al. (2012) measured six offset drainages along fault 102 

SW of Burnt Valley road. The road cut is oblique to the fault trace and contains a roughly 

60 m section with multiple fault planes bisecting the BVC and a consolidated gravel bed 

of the Bautista (Figure 2-7). A small failure of the road cut slope exposes a free face of 

the eastern most plane (Figure 2-7d). Between the eastern and western most extents, the 

fault juxtaposes cemented Bautista gravels against BVC. Both faults (F100 and F102) 

trend parallel along a linear ridge before diverging from one another roughly 840 m SW 

of the road cut. There, F100 offsets the linear ridge approximately 400 m to the SE and 

terminates. Along strike to the SE, F102 is mapped at the base of the ridgeline and the 

northeastern boundary of the SGB basin. F102 appears to terminate, or merge into faults 

F104 and F106, near the main channel stem that drains SGB into Alkali Wash.  

Located at the northwestern margin of the SGB basin, a large outcrop of BVC 

protrudes from the valley floor with multiple NW-SE trending lineaments labeled F101, 

F103 and F104. The higher ground surface is covered by thick vegetation making direct 

observations difficult, however, at the NE edge of the outcrop, F104 displaces a small 

drainage by approximately 3 meters (Salisbury et al., 2012). Following F104 SW along 

strike, the fault splits along a shutter ridge that extends roughly one-half to two-thirds of 

the E-W width of the basin. On the NE side of the wash, F104 is easily traced using 
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multiple small shutter ridges with dextral offset. At the edge of the mapping area, F104 is 

observed in the DTM deflecting a small SW draining channel, and in the field 

juxtaposing young colluvium against the metamorphic rock (Figure 2-8d). Fault F106 is 

mapped along SW boundary of the long linear ridge extending into SGB. F108 is drawn 

as an inferred fault based on a small stream channel deflection to the SW of the offset gap 

in F106, and topographic lineaments channel meanders at the head of Alkali Wash. At the 

latter location, F106 and F108 are mapped as single strand where in the field, the fault 

was located within a terrace juxtaposing BVC and CVP (Figure 2-4). Surface trace of 

F110, within a large SW flowing drainage into Alkali Wash, is slightly obscure with a 

small dextral deflection in the channel thalweg, but in the field is roughly coincident with 

intense fracturing/brecciation of the rock mass. Detailed descriptions of displacement 

measurements and fault zone rock damage observed during this study are provided in 

sections 2.6 and 2.8 respectively. Faults F103, F105, F107 and F109 were not observed in 

the field, but appear as sharp lineaments/topographic features in the DTM and 

topographic profiles (Figure 2-3).  

Faults F202, F204, F206, and F208 are thrust faults with poor to no expression in 

the topography. F202 is a SW dipping thrust fault originally mapped by Sharp (1967), 

juxtaposing BVC over Bautista sediments within Burnt Valley and near the head of 

Horse Canyon. Best exposure of this fault is near the Pacific Crest Trail, within a deep 

erosional cut on the NE side of the ridge opposite Alkali Wash. An outcrop of the thrust 

fault is also found within a small NE flowing drainage within Burnt Valley (Figure 2-8). 

F204, F206 and F208 are discontinuous east-dipping thrust faults, observed primarily as 
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low dipping fault planes offsetting and/or brecciating internal structures within the 

metamorphic fabric.  

2.7 SGB Fault Displacement  

Displacement from the most recent large surface rupturing earthquake, within or 

near Anza, produced an average 2.5–2.9 m of right-lateral slip, possibly during the large 

earthquake on 22 November, 1800 (Salisbury et al., 2012). The Burnt Valley section 

measurements collected by Salisbury et al. (2012) are primarily field based on faults 

F102 and the northern extreme of F104. For this study, displacement along the fault 

traces within SGB and Alkali Wash were measured from B4 lidar DTM using the Matlab 

application LaDiCaoz 2.1 (Zielke et al., 2015; Haddon et al., 2016) (Figures 2-9 and 2-

10) to better characterize the recent offset along each structure. All displacements 

measured for this study and discussed in the text below are based on dextral stream 

channel offsets in SGB and Alkali Wash; value, fault trace, and location information of 

each offset are listed in table 2, and illustrated in figure 2-9. Detail images of measured 

displacement from LaDiCaoz are found in figure 2-10. We followed standard procedures 

for measurement and quality assessment as discussed by Zielke et al., 2015 and 

Salisbury, et al., 2015.  

Only the main elements including fault ID, displacement feature and location, are 

discussed within this paragraph. Estimation of slip distribution for the faults within SGB 

are found in the Section 3.1.2. Fault trace F102 represents the NE border of the SGB 

basin, bounding a NW-SE trending linear ridge. Gullies developed within the ridge’s 

eastern slope are shallow with little to no channel development impeding fault horizontal 
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displacement evaluation (Figure 2-8). Only one location, SCO-02b, near the southern end 

of the SGB basin, is coincident with a 15 m channel deflection and the mapped fault trace 

(Figures 2-9 and 2-10). Farther downstream, the channel is offset approximately 16 m at 

SC-02a along F104. Approximately 150 m along strike to the SE along F104, ~3.4 m of 

dextral displacement is measured at SCO-06. Along F106, displacement measurements 

include 12.3 m, 16 m, and 3.1 m at locations SCO-01, SCO-03, and SC-04, respectively. 

Fault F108 is primarily mapped from lineaments at the head of Alkali Wash, however, at 

location SCO-07, a small stream measures 2.8 m of dextral offset. Finally, fault F110, 

near the source of larger drainage feeding into Alkali Wash, and roughly coincident with 

a zone of intense rock damage (discussed further in Section 2.8, displaces the channel 3.4 

m at location SCO-05). 

2.8 Observations from Site Excavation 

Despite strong surface expression of fault scarps within SGB, alluvial fill and 

channel deposits covering the valley floor obscure direct observation of fault zone 

damage. To expose a cross-sectional view of the fault zone and underlying rock units, a 

roughly 50 m long by 1.4 m deep trench was excavated across the prominent NW-SE 

trending ridgeline transecting the northern portion of the basin (Figure 2-11). The 

excavation location was chosen based on three elements; 1) distinct fault scarps along a 

fault parallel ridgeline, 2) previous geologic mapping indicating metamorphic rock 

composition of the ridgeline (bounded by Quaternary units), and 3) clearance from 

vegetation and cultural features. Figure 2-11 includes the surface fault trace mapping of 

SGB and location of the excavation, and includes a sUAS SFM digital surface model 
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(DSM) hillshade collected to record the excavation extent with reference to mapped 

faults. The southern trench wall was cleaned and photographed to create an orthomosaic 

for logging using methods prescribed by Gray et al. (2016) (Figures 2-12 through 2-15). 

Soil units were described using the unified soil classification system (ASTM, 2006) 

(Table3). The subsections below provide detail descriptions of observations made within 

the SGB excavation.  

2.8.1 Trench rock units 

 Units observed within the SGB excavation are classified into two main groups 

based on texture; chiefly grain size and consolidation. Generally, these 2 units consist of 

consolidated stiff clast-rich material, and loose dark brown fine grained deposits, units 

200 through 205, and 100 through 103, respectively (Table 3 and Figures 2-12 through 2-

15).  

Units 100 through 103 include grayish brown sandy silts, clayey sands to sand 

with clay, contain abundant mica and quartz grains, and observed at the lateral extremes 

of the excavation. Units with higher sand concentrations have weak to no cementation 

and generally lack soil structure, while the more fine-grained soft material has a weakly 

developed platy structure. Units 101-1 and 101-2, on the SW and NE ends of the 

trench,in color and texture but differ in gravel and cobble concentrations and sizes, with 

larger values of each on the latter side of the trench.  

 The majority of the excavation consists of units 200 through 205; composed of 

angular to sub-angular cobble to boulder-rich deposits with no soil structure 

development. Clasts in units 200 through 205 are chiefly metamorphic rock, range in size 
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between 10 cm and 2 m, have chaotic orientations and are at various stages of 

weathering/disintegration. Larger boulders are generally intensely fractured to 

disintegrated with a well-developed chemical weathering rind. In general, larger clasts 

are more concentrated on the NE side of the excavation. Units 200 through 205 each have 

a variety of colors including dark orangish brown, grayish brown, greenish gray, and dark 

gray. Units with cohesive matrix include stiff medium plasticity clays.  

2.8.2 Excavation Geologic Structures  

 Based on Sharp’s (1967) mapping and initial observations at SGB, the substrate 

of the fault scarp and ridgeline were anticipated to be metamorphic rock of BVC. The 

purpose of the excavation was to expose fault zone structure preserved in the rock mass 

of fault F104 and F106 as well gradational variations in damage between the traces.  

 Unexpectedly, the near surface stratigraphy within the excavation, lacks the 

metamorphic rock mass as previously mapped (Sharp, 1967). The fault surfaces within 

the vicinity of F106, in the excavation, are interpreted based on a thin vertical fracture 

penetrating units 201 and 202, and a sub-vertical oriented long flat boulder clast (Figures 

2-13 and 2-14). In contrast, the excavation exposed much more developed zones of 

structural planes below mapped trace F104. These include five zones, labeled A through 

E, primarily defined by thin light gray to orangish brown clayey zones that dip between 

50° and 70° toward the NE (Figure 2-12). Between the shear planes are elongated clasts 

of intensely fractured, brecciated, and pulverized metamorphic rock.  

Depth to bedrock was deeper than expected in the excavation (none was 

encountered), and the exposed material lacked the strength to preserve the greater fault 
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structure initially anticipated. However, the material encountered was beneficial to the 

overall understanding of the basin stratigraphy and indicates material translation along 

the main fault planes within SGB. Interpretation of these features with greater context of 

fault zone structure are expanded upon in the Section 3.1.1.  

2.9 Rock Damage Survey and Transects 

To assess the extent of rock damage within SGB and help validate observations of 

FZTW in the dense array (Qin et al., 2017), outcrops within the study area were classified 

for damage characteristics and intensity using definitions from Dor et al. (2006) (Table 5) 

(Figure 2-15). These qualitative ratings are relatively straightforward to make in the field. 

We worked to make many and maintain consistency among a few different observers. 

Within the surveyed extent, rock damage ranges from weak fracturing (class 1) to 

weak/selective pulverization (class 4) (Table 5). Survey points color coded by damage 

class are depicted in Figures 2-15 to 2-18.  

Rock exposure within the SGB basin is limited to the NE and SW slopes. These 

surfaces however, are often covered by colluvium, saprolite, and vegetation. On the SW 

slope, a road-cut leading into the basin provides some exposure. Outcrops on the SW are 

generally low in observed damage, with fracture spacing greater than 10 cm. Much of the 

NE slope is covered by thick brush and trees, which limit the survey to gully exposures 

and occasional fresh rock faces found near the base of drainages. These exposures reveal 

large variations in damage intensity from trace fracturing to pulverization. Zones of 

pulverized rock in the NE slope are generally white, light gray and yellowish to orangish 

brown, loose, and fine grained (sand to silt sized particles) material.  
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Although rock damage observations within the SGB basin are relatively 

asymmetric, the lack of continuous exposure, particularly across the sediment covered 

basin floor, hinders that assessment’s spatial coverage. To supplement this 

characterization, the survey was extended south of SGB into Alkali Wash (Figures 2-15 

through 2-17) where there is significantly better exposure. The main channel of the wash 

is generally covered by recent deposits, offering few rock exposures, however, drainages 

incised into the NE and SW slopes allow for additional damage assessment and structural 

characterization. As described in section 2.3, the NE and SW slopes of Alkali Wash are 

asymmetric with more incision observed in the former. The best exposure of fresh rock, 

within the drainages, is generally restricted to the base of deeply cut channels. Figure 2-

15 provides example images of each rock damage class observed during the survey, an 

overview map of all the survey points color coded by damage classification, and the 

location of transects 1 through 4 in Alkali Wash. The transects included four drainages 

incised into the NE and SW slopes; 2 transects on each side of the wash. The transects 

provide the best opportunity make observations across the fault zone to assess the extent 

and intensity of rock damage. Figures 2-16 and 2-17 include mapped geology, structural 

measurements, and rock damage classification survey points of transects 1 and 2, and 3 

and 4, described in the following subsections. 

2.9.1 Transect 1 

Within a large tributary drainage on the NW slope of Alkali Wash, Transect 1 

spans three mapped fault strands (F106/F108, F104, and F110) and the two major rock 

units (CVP and BVC) (Figures 2-15 and 2-16). At the start of the transect within the main 
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channel of Alkali Wash, there is little exposure of rock damage, but metamorphic rock 

observed farther downstream consists of partially pulverized rock on the NE side of F106 

(Figure 2-16). The initial ~100 m of Transect 1 is within sedimentary deposits of sand, 

silt, gravels and cobbles. These are juxtaposed against a metamorphic outcrop and a 

deflected/shutter ridge along F106. Damage at the juxtaposition appears primarily as 

brecciated rock, but transitions to more pulverized material immediately to the NE. From 

100 and roughly 130 m of Transect 1, the rock mass is covered by a veneer of colluvium, 

and terrace deposits obscuring damage assessment. Between 130 m and F110 the main 

channel of the drainage has incised between 1 and 2 m providing good exposure. This 

stretch of the transect includes banded gneiss of the BVC, and numerous faults ranging 

between 10 cm and 50 cm wide, dipping primarily towards the SW to sub-vertical, which 

cut across the metamorphic fabric. Damage within the rock volume ranges from weak 

widely spaced fractures to intense fracturing. The location of F110 is demarcated by a 

roughly 1.5 to 2 meter knickpoint and adjacent boundary with a >100 m thick leucocratic 

dike (BVC-t). The initial ~50 m of BVC-t along Transect 1 ranges in damage from 

fragmentation (class II) to partial pulverization (class IV). Surveying of damage within 

the upper portion of the transect proved difficult due to steep terrain, but generally 

indicated lower damage intensity.  

2.9.2 Transect 2 

 Transect 2 (Figure 2-16) includes observations up slope of the main Alkali Wash 

drainage and a portion of the Pacific Crest Trail on the SE slope. The transect does not 

directly cross any fault trace, but includes observation points adjacent to F106 entirely 
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within the tonalite of CVP. Observations of Kt in transect 2 are consistent with those on 

the SW slopes of SGB exposing relatively indurated corestones surrounded by a loose 

weathered matrix. Discerning damage class within the tonalite (CVP) along transect 2 is 

somewhat ambiguous as the exposures are highly weathered. The loose material contains 

granules of intact mineral grains and do not resemble the powdery, fine grained texture of 

pulverization. Survey points are based on exposed corestones within the weathered 

matrix. Exposures at the base of the drainage and within Alkali Wash contain no core 

stones and are classified as class 3. Exposures near the start of the transect on SW side of 

the wash appear primarily as class 2. Corestones in the remainder of the transect range 

from class 2 to 1.  

2.9.3 Transect 3 

 Transect 3 (Figure 2-17) spans a complex set of structures that include the NE 

dipping thrust fault (F206) that appears offset along F105. Between and adjacent to the 

faults, damage intensity ranges from class 2 to 4. From approximately 100 m upstream 

along transect 3, damage intensity gradually decreases, before outcrops reveal sharp 

increases near the end of the traverse. Rock exposure quickly fades at the top of the ridge 

due to thick brush and trees. Within the drainage of transect 3 exposure is relatively poor 

due to a lack of incision, soil and regolith cover, and vegetation within and surrounding 

the channel.  

2.9.4 Transect 4 

 Transect 4 (Figure 2-17) traverses the gentle gradient of a drainage on the SW 

slope spanning both CVP and BVC/BVC-t. Damage class values are low within the main 
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channel of Wash, and increase to class 2 near the mapped main fault trace of the SJFZ 

from Sharp (1967) and the USGS (2006) (queried fault trace in this study) (figure 2-17). 

Exposure is relatively poor upstream of approximately 50 m along transect 4. Near the 

contact between the CVP and BVC the damage class 3 and gradually decreases to class 1 

near the end of the transect.  

In summary, the transects provide a first order observation of damage distribution 

across the mapped fault traces spanning the two main rock units (BVC and CVP). These 

observations depict asymmetric properties, with more damage intensity concentrated on 

the NE side of the main fault trace. Transects 1 and 3, on the NE side of the Alkali Wash, 

also contain more structures/mapped fault traces in contrast with Transects 2 and 4.  

2.10 Geologic Model of Fault Zone Structure 

 Analysis of the CF internal fault zone structure using seismic wave data recorded 

in the dense array indicates that the main seismogenic fault is coincident with the 

southwestern most fault trace, and define a trapping structure located on the NE side of 

the basin (Qin et al., 2017). The 3D-Vs model developed by Mordre et al. (2018) 

illustrates the heterogeneity and complexity of the shallow subsurface below the SGB 

basin, and a low velocity section below the fault zone and trapping structure. To 

accomplish the task of building a geologic model and help validate these geophysical 

findings, two sets of cross sections were constructed. The transect line of each cross-

section is drawn over the geologic map in figure 2-18. The first set of cross sections is 

based solely on the data collected from surface observations, and the second set is guided 
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by both geologic mapping and depth slices of the 3D-Vs dataset (Figures 2-19 through 2-

24).  

2.10.1 Geologic Model from Structural Measurements in Alkali Wash 

 Structural elements, recorded mainly in BVC, include foliations, thin faults (>0.5 

m thick) and fractured rock. In Transect 1, between the intensely fractured rock of BVC-t 

and fault trace F104, the foliation is primarily sub-vertical possibly folded, and cut by 

two sets of faults; one shallow and one steeply dipping. Above BVC-t, the foliation fabric 

exhibits a gentle dip towards the NE, roughly parallel to fault trace F204. In Transect 3, 

the fabric has variable geometry, and thin faults occur exclusively at low angles. 

Opposite the NE ridge of Alkali Wash, within Burnt Valley, BVC is juxtaposed over the 

Bautista sediments along fault F202. Although not directly observed within the study 

area, south of Burnt Valley, the Horse Canyon Pluton (HCP) underlies the Bautista. For 

this geologic model, HCP is interpreted directly underlying the Bautista, and juxtaposed 

against BVC. The geometry of the fault at the surface is constrained by measurements 

within Burnt Valley.  

2.10.2 Geologic Model from 3D Vs Data and geologic map data at SGB 

 Using the 3D-Vs model developed by Mordret et al. (2018), twenty-one vertical 

depth slices were generated at equal intervals, normal to the mapped average orientation 

of the fault traces at SGB. The depth slices were given a numerical ‘line’ identifier listed 

sequentially from SE to NW. Four slices were selected, (Lines 05, 10, 15 and 20) for 

integration and geologic interpretation with site mapping (Figures 2-21 through 2-24). 

Two sets of each 3D-Vs (Mordret et al., 2018) slice were produced to illustrate 1) the 
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upper 100 m and 2) lower 300 to 700 m depth interval. Common features amongst all 

four lines in the deeper interval include: 1) apparent highest velocity values occur 

between depths of 200 to 400 m which extend to the bottom of the domain; and 2) 

apparent low velocity “troughs’ observed in 2 to 3 locations within each depth slice 

(Figures 2-21b through 2-24b). The troughs are located on the SW, within the NE half 

(middle trough) and extreme NE of the dataset. The SW trough forms a relatively long 

thin tabular body extending to a depth of roughly 600 m, while the middle trough 

expresses a wedge shape with a slightly elongated NE side which transitions to an 

apparent higher velocity between 350 m and 500 m depths. The trough to the NE is most 

pronounced in Line 05 (Figure 2-21) and appears either removed towards the NW (Lines 

10 through 20) or perhaps merging with the middle trough.  

 Vs depth slices of the upper 100 m are displayed with velocity values between 

300 and 600 m/s, to better show contrast in the lower velocity material in the shallow 

subsurface (Figures 2-21c though 2-24c). In general, the apparent lowest velocity is 

visible within the upper 10 m, with no sharp discontinuities. Lines 5 through 15 show a 

thick transitional zone between roughly 10 m and 90 m. Line 20 shows a similar 

transition, with an NE down dip surface. 

An additional tool to assist in visualizing discontinuities within Vs data involved 

calculating the numerical gradient. The numerical gradient estimates the partial 

derivatives in the x and y direction using known values at certain points. For a function of 

two variables, F(x,y):  

𝐹 𝑥, 𝑦 =
𝜕𝐹
𝜕𝑥 𝑖 +	

𝜕𝐹
𝜕𝑦 𝑗 
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Part d of figures 2-22 through 2-25 shows a color map illustrating the gradient of the 

depth slice down to 700 m depth. The gradient plot also helps provide confidence to 

geologic interpretations based the strength of the discontinuity. Changes observed in the 

gradient plot appear consistent with the Vs depth slice plots, and depict no to relatively 

subtle changes between the upper 200 m, and a gradual transition between roughly 350 m 

to 500 m. By far the strongest contrast in velocity is observed adjacent to the SW low 

velocity trough of the Vs depth slices.  

 Geologic interpretations of Lines 05 through 20 are a synthesis of both the 

surficial mapping, and geophysical data. Part a, of figures 2-21 through 2-24, depict the 

geologic model of the SGB basin. The highest velocity values, observed consistently 

across each Vs depth slice are sensibly the plutonic rock. The middle low velocity trough 

is coincident the three mapped fault traces F102, F104 and F106. The gradient map 

indicates a lack of significant velocity contrast on either side of the middle trough 

suggesting that in the upper few hundred meters, the fault does not juxtapose significantly 

contrasting material. The “V” shaped taper of the middle trough implies the fault zone 

structure narrows, most likely merging into a single structure at depth. Also persistent 

within each Vs depth slice, the middle low velocity trough has an asymmetric form, with 

lower velocity values extending deeper on the NE side, interpreted as the overall dip of 

the fault zone structure.  

The second constant, and most pronounced trough appears in the SW end of the 

Vs-depth slice. The feature extends to almost the entire depth range of the dataset; 

however, Mordret et al (2018) cautioned on the interpretation of this trough based on the 
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misfit and uncertainty of the model there. In vicinity to Line 10 is the borehole location 

for B946 which involved the installation of a strain meter as part of the Plate Boundary 

Observatory (UNAVCO, 2010). The borehole is roughly coincident with the SW trough, 

encountering fractured rock and clayey material at depths between 400 ft and 500 ft. 

Cuttings from the borehole were described entirely as granitic, corresponding to the 

tonalite rock of CVP. On the basis of these data, the large discontinuity in the SW portion 

of the data is interpreted as a sub-vertical fault within the CVP.  

A third low velocity trough, best defined in Line 5 in the extreme NE of the Vs 

dataset (Figure 2-21), possibly merging with the middle trough in the subsequent Vs 

depth slices. The gradient plot does indicate a contrast in velocity within the area of the 

second trough in Line 5, but shows little change in Lines 10 through 20. In the geologic 

model, this feature is interpreted as fault F202 steepening to a vertical dip below the NE 

ridgeline of SGB.  

2.11 Three Dimensional Model of the Clark Fault  

 Surface trace mapping described in section 2.6 builds from previous work (Sharp, 

1967) using high resolution topography and field work. Structural attitudes collected 

from outcrops of the fault constrain the near surface geometry. In traditional structural 

geology, these attitudes are projected into the subsurface using two-dimensional (2D) 

cross-sections. Using Midland Valley’s software package Move allows the geologist to 

produce the same product in three-dimensions. Building a 3D model of the fault zone 

structure based on surface observations is necessary for the task of validating shallow 

geophysical properties at dekameter scale.  
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2.11.1 Fault Model Parameters and Justification.  

 Producing the 3D fault model in Move requires individual line sources (fault 

traces) and geometric attributes, and can be input by two methods. The first requires 

digitizing the surface trace line and projecting the fault using a plunge, or dip angle, 

down dip into the subsurface. The second involves more traditional methods of creating 

multiple successive 2D cross sections along strike, manually drawing the fault geometry, 

and digitally connecting the fault by projecting a surface between sections. For this 

analysis, a combination of these methods was implemented (See supplemental material 

for 3D pdf version of the fault zone model). Mapped fault surface traces from this study 

were imported into Move as a shape file from the project GIS, and the fault plane 

projected into the subsurface using attributes and constraints from Table 6 (Figure 2-25)  

 The Burnt Valley Road cut exposure provides an opportune location to collect 

attitudes of faults F100 and F102 (Figure 2-7). Multiple measurements were made on 

three separate fault planes yielding a mean dip of 77° towards the SW. The low angle 

failure planes observed in the excavation below F104 most likely are not representative 

of the fault at depth. The exposure of F104 at the southern end of the map area is vertical, 

and is a preferential orientation given the strong and straight fault trace. Geometry of 

F106 is difficult to constrain with a lack of clear exposure of the fault plane. Within the 

trench, the fracture penetrating units 201 and 202 dips approximately 80° towards the NE 

(Figure 2-12). Given this sub-vertical value and strong strike-slip offset observed in 

landforms, this measurement is adopted for the model. The last fault used in the model 

includes F202; a SW dipping thrust fault. Sharp (1967) approximated the dip on this fault 
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at 37° in the vicinity of SGB. During the mapping campaign, fault planes in a similar 

vicinity were measured closer to 55° at two locations approximately 1 km apart (see 

oversized geologic map in supplemental material), and is the value used in the 3D model. 

The remaining faults found on the geologic map (Figure 2-4, and 2-8) either because of 

poor exposure (odd numbered faults F101 through F109) making fault geometry difficult 

to constrain, and/or short trace length (F204 and F206) are not included in the fault model 

and most likely secondary features, not seismogenic. 
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Table 6: Parameters used to construct 3D fault zone model in Move (Figure 2-25). Fault 
surface trace location imported from ArcGIS and initial surface geometry projected based 
surface measurements listed in the table below.  

Fault ID Sense of motion Geometry/Dip Justification 
F100 Dextral Strike Slip 77° SW Burnt Valley Rd Cut 
F102 Dextral Strike Slip 77° SW Burnt Valley Rd Cut 
F104 Dextral Strike Slip 90° Alkali Wash Outcrop 
F106 Dextral Strike Slip 80° NE Trench exposure 
F202 Thrust (SW up) 55° SW Burnt Valley Outcrops 



 

  76 

 
. 

Figure 2-1: SGB dense array configuration and FZTW locations. B4 DTM hillshade 
base map with mapped fault traces (red lines) based on USGS (2006) Quaternary fault 
database and my mapping. 1108 black dots indicate individual node locations. Orange 
polygon and black box indicate FZTW as identified by Ben-Zion et al. (2015) and Qin 
et al. (2018), respectively. Plot of Vs shear wave model (Mordret et al., 2018) from 300 
m depth georeferenced and shown below the array configuration 
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Figure 2-2: Overview photographs of Sage Brush Flat (SGB). Upper photograph shows the 
linear ridge line separating Burnt Valley (seen in background) and the SGB basin, and 
mapped fault traces (red lines) as viewed towards the north. Cultural features (land owner’s 
equipment) are observed scattered throughout the basin floor. Lower photograph shows the 
linear ridge on the NE side of the basin, mapped fault trace, and narrowing of the basin 
towards the SW into Alkali Wash (to the right; not observed in this photograph).  
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Figure 2-3: Overview of SGB site morphology. a) B4 hillshade basemap with locations, 
and topographic profile lines in yellow. b) Profile line 1 represents slope parallel 
topography across the valley floor from SW to NE illustrating a longer slope on the SW 
side and prominent linear ridge and lineaments used for fault trace mapping. c) Profile lines 
2 through 5, even and odd numbers represent SW and NE flanking slopes respectively. 
Lines 2 and 4, and 3 and 5, show relatively low frequency incision and a smoother surface 
contrasted against the rugged surface and high frequency incision observed in 2 and 4. d) 
Profile lines 6 through 14, even and odd numbers illustrated by warmer and cooler colors, 
and representing SW vs NE spurs in SGB and Alkali Wash. Spurs on the NE side the study 
area (within the BVC) generally have steeper gradients. 
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Figure 2-5: Examples of metamorphic and plutonic rock units of SGB (see locations in 
Figure 2-4): a) float of gneiss showing shear bands in Alkali Wash (BVC), b) roughly 20 
cm leucocratic dike (outlined with parallel black lines) within BVC outcrop in landowner’s 
road cut (BVC), c) indurated core-stone of tonalite within weathered material, observed on 
SW slope of SGB basin CVP); d) tonalite boulders strewn on SW slope and main channel 
in Alkali Wash (CVP). 
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Figure 2-6: Thick older sedimentary deposits observed throughout the study area. 
Locations for each image are found on the geologic map in Figure 2-3. a) 8 m thick massive 
silt and sand deposit observed in NW flowing drainage within Burnt Valley. b) Gravel and 
sand unit found near the Burnt Valley Road cut. c) 2.5 to 3 m thick exposure of sand and 
gravel between SGB basin and Burnt Valley Road. d) 20 m thick deposit of interbedded 
sand and gravel within Alkali Wash.  
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Figure 2-10: LaDiCaoz displacement measurements at 8 locations (SCO-01 through SCO-
07) on faults F102, F104, F106, F108, and F110within the SGB basin. Turquoise, blue, and 
red lines indicate the fault trace, locations of channel profiles used to measure offset 
respectively. A listing of geographic coordinate location, displacement values and 
corresponding faults is found on Table 2
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Figure 2-21: Geologic Cross-section Vs Line 05. a) Interpretive cross section incorporating 
geologic mapping from this study and depth slice from 3D Vs model (Mordret et al., 2018). 
b) Vs depth slice from 3D Vs model extending from ground surface to 700 m. c) Vs depth 
slice from 3D Vs model extending from ground surface to 100 m. d) Gradient depth map 
based on a. Warmer colors indicate areas with greater velocity contrast (e.g., yellow patch 
adjacent to low velocity trough on SW of a and b. 
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Figure 2-22: Geologic cross-section Vs Line 10. a) Interpretive cross section incorporating 
geologic mapping from this study and depth slice from 3D Vs model (Mordret et al., 2018). 
b) Vs depth slice from 3D Vs model extending from ground surface to 700 m. c) Vs depth 
slice from 3D Vs model extending from ground surface to 100 m. d) Gradient depth map 
based on a. Warmer colors indicate areas with greater velocity contrast (e.g. yellow patch 
adjacent to low velocity trough on SW of a and b.
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Figure 2-23: Geologic cross-section Vs Line 15: a) Interpretive cross section incorporating 
geologic mapping from this study and depth slice from 3D Vs model (Mordret et al., 2018). 
b) Vs depth slice from 3D Vs model extending from ground surface to 700 m. c) Vs depth 
slice from 3D Vs model extending from ground surface to 100 m. d) Gradient depth map 
based on a. Warmer colors indicate areas with greater velocity contrast (e.g. yellow patch 
adjacent to low velocity trough on SW of a and b.
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Figure 2-24: Geologic cross-section Vs Line 20: a) Interpretive cross section incorporating 
geologic mapping from this study and depth slice from 3D Vs model (Mordret et al., 2018). 
b) Vs depth slice from 3D Vs model extending from ground surface to 700 m. c) Vs depth 
slice from 3D Vs model extending from ground surface to 100 m. d) Gradient depth map 
based on a. Warmer colors indicate areas with greater velocity contrast (e.g. yellow patch 
adjacent to low velocity trough on SW of a and b.
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CHAPTER 3 

DISCUSSION AND CONCLUSIONS 

The results described in Chapter 2 include observations from geologic mapping 

and site excavation, rock damage survey, displacement measurements, and a model of 

subsurface geology and fault zone structure. A first order assessment of these 

observations are heterogeneity of structural properties and damage intensity and extent. 

Discussed below are the implications of these findings on local earthquake mechanisms.  

3.1 Discussion 

Characterizing fault zones and geologic structures are key elements to 

understanding earthquake processes. The focus of this study is to synthesize field based 

observations with interpretations from shallow seismic velocity data (Mordret et al., 

2018) for a fault spanning volume. This section presents a synthesis with discussions on 

excavation observations, fault trace mapping and displacement measurements, controls 

on damage extent and asymmetry, and the proposed geologic model.  

3.1.1 Excavation Stratigraphy and Structure 

The geologic units that bound the edges of the trench, units 100 through 103, are part 

of the young basin fill (alluvium) actively eroding from the hillsides and depositing 

across the valley floor. Samples of charcoal and soil were recovered from the NE end of 

the excavation within the younger alluvium, however, dating these material is beyond the 

scope of this project. Nonetheless, the general lack of soil structure and clay 

development, and poor consolidation are indicative of young material recently deposited 

during the Holocene.  
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The clast-rich material constituting the interior of the ridge and excavation, units 200 

through 205) are ambiguous. Based on previous mapping (Sharp, 1967) as well as the 

stiff consistency and numerous large metamorphic clasts at the ridge surface, hard rock 

was anticipated in the near subsurface. During excavation of the trench at the NE edge, 

this expectation was initially thought correct based on the laborious digging efforts of the 

backhoe machine, and exposed rock mass. The weathering of the observed rock within 

the excavation ranges from slightly weathered to completely decomposed. The clasts 

become relatively smaller towards the SE, however the weathering is fairly consistent. 

The low angle orangish-brown shear planes are coincident with surface trace mapping of 

F104. These observations could be suggestive of dip-slip movement along the fault which 

has uplifted basement rock along the shear planes to the surface. The disintegrated 

cobbles and boulders away from the fault representing part of the older deposits observed 

within Alkali Wash, with brittle deformation resulting from shearing and displacement 

during large earthquakes. Although the shallow dip of the shear planes seems inconsistent 

with the linear surface trace, changes in fault geometry at or near the surface are not 

uncommon. The lack of striations indicating a principle slip surface in such distinct 

planar features, and shallow shear wave velocity profiles with no near surface high values 

within the ridge does not support this hypothesis. The degree of clast fracturing and 

disintegration, chaotic clast orientation, no soil structure development, and obvious shear 

planes are most likely diagnostic of slope failure events. The lack of any landslide 

morphology near the trench suggests the material is derived from hillslope failures farther 

to the SW in the steeper slopes of Alkali Wash and displaced along the fault towards 

SGB. This material is therefore grouped with other sedimentary deposits observed to the 
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SE in Alkali Wash (Figure 2-6d) and NW of the SGB basin (Figure 2-6c) and mapped as 

a continuous unit of the Pleistocene age Bautista beds (Figure 2-4).  

3.1.2 Fault Trace Mapping and Slip Distribution  

 Mapped fault traces in this study are based on strong geomorphic lineaments 

observed in the B4 lidar, offset geomorphic features, and/or field observations (Figure 2-

8). The lack of continuity along strike of inferred faults (dashed lines in figure 2-8) F101 

through F109 implies—if indeed these features are fault related—that they are secondary 

structures. North of SGB, fault traces F100 and F102 both form strong geomorphic 

lineaments. Based on measurements from Salisbury et al. (2012), the most recent 

earthquake included displacement along F102 and F104, on the SW side of the Burnt 

Valley Road cut and just NW of the SGB basin, respectively (Figure 2-9). Analogous 

displacement measurements from this study are observed on fault traces F106 and F108 

within SGB, indicating slip is distributed relatively equally amongst the faults. Within 

Alkali Wash apparent displacement along fault trace F106 becomes less pronounced, 

suggesting slip occurs principally along F104 in that area. Previous mapping by Sharp 

(1967) traced the SJFZ primarily on the SE side of Alkali Wash as a thrust fault 

juxtaposing CVP over BVC. With the aid of high resolution DTM from B4 lidar, trace of 

the CF is realigned to multiple faults, F104 and F106, predominantly displaying strike-

slip displacement.  

3.1.3 Geologic Mapping, Surface Morphology and Rock Damage Asymmetry 

Several studies of rock damage along the SJFZ, including geophysical 

observations (Lewis et al., 2005; Qiu et al., 2017; Qin et al., 2017; Share et al; 2017), 
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fault zone outcrop scale mapping (Dor et al., 2006), and DEM analysis (Wechsler et al., 

2009) have suggested asymmetry could be resultant of preferred NW rupture propagation 

along a bi-material interface (Ben-Zion and Shi, 2005; Shi and Ben-Zion, 2006). The 

repeated occurrence of such ruptures is expected to produce greater damage on the side 

with faster seismic velocities (stiffer side). Another hypothesis suggests that damage 

extent along the SJFZ, in the shallow subsurface, is rheologically controlled (Peppard et 

al., 2018) based on surficial observations and microstructural analysis of Bautista 

sediments.  

Rock damage asymmetry has been noted on other large strike slip fault systems 

within the SAF (Dor et al., 2006), along the North Anatolian Fault (NAF) in Turkey (Dor 

et al., 2008), and along the Arima-Takatsuki Tectonic Line (ATTL)in Japan (Mitchel et 

al., 2011). Dor et al. (2008) performed detailed mapping of fault zone damage and DEM 

morphometric analyses at both the 1943 and 1944 earthquake epicenters along the NAF. 

Resulting asymmetric properties including 1) damage accumulation within the fault zone, 

2) stream erosion, and 3) drainage density values were identified at both locations leading 

Dor et al. (2008) to conclude the two locations experience preferred rupture propagation 

direction during large seismic events. The Hakusui-kyo outcrop along the ATTL, exposes 

the fault core and juxtaposition of rhyolite and granite the north and south of the fault 

respectively (Mitchell et al., 2011). Field mapping and thin section analysis of samples 

from the outcrop reveal both damage extent and intensity are much larger in the granitic 

rock. Results from the ATTL also indicate the rock pulverization is only observed within 

the granitic rock, which led Mitchell et al (2011) to conclude the asymmetry results from 

repeated fault ruptures in a preferred direction along the bi-material interface.  
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FZTW indicating a trapping structure in the top 1 km of the CF at SGB are 

localized between two mapped fault traces; F104 and F102 of this study (Figure 3-1). The 

portion of the map area outlined as the trapping structure is located below the alluvial 

cover within the SGB basin, however metamorphic outcrops surveyed on the NE slope do 

provide some exposure to damage extent. Figure 3-1 includes a kriging interpolation of 

damage intensity based on the survey points discussed in Section 2.8. The interpolation 

map is least representative of actual rock damage conditions in areas with sparse survey 

points, e.g. areas with large surface/soil cover, regolith, or vegetation. Numerous points 

were recovered near the trapping structures outlined by seismic waves (Ben-Zion et al., 

2015; Qin et al., 2017), marking areas with intense damage. The rock damage survey and 

interpolation highlights the heterogeneity of damage intensity both along the fault and at 

distance from the fault. Such heterogeneity is also expected at depth and explains the 

confined shape of the trapping structure within the dense array data set. 

Geologic mapping and morphometric analysis of SGB show subtle contrasts 

between the NE and SW portions of the study area. From the north end of the SGB basin 

southward, mapped rock units on opposite sides of the valley and Alkali Wash are both 

crystalline, but vary from metamorphic rock with strong foliations, fractures, leucocratic 

dikes and minor faults, to granitic rock with some fractures and occasional pegmatite 

dikes. Drainages and ridgelines formed into the NE and SW slopes are asymmetric with a 

general increase in drainage count and ridgeline steepness formed on slopes to the NE. In 

Alkali Wash the opposing ridgeline slopes also vary in both vegetation cover and aspect, 

with thicker vegetation on the N facing slopes (SW side). In the northern hemisphere 

north facing slopes are associated with more shade and therefore more water retention 
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which can affect the overlying soils and vegetation (e.g. Hicks and Frank, 1984). The 

thicker vegetation cover on the north facing slopes provide more stability and therefore 

some control on slope gradient. Results from this study, however, do correlate with those 

of the broader macroscale evaluation of drainage density values (Wechsler et al., 2009); 

higher values on the NE side of the CF. The best exposures of outcrops in Alkali Wash 

demonstrate, at outcrop scale, strongest dissimilarities between rock mass of opposing 

slopes are pre-existing flaws in the form of geologic structures (e.g. small faults, 

fractures, and foliations), and the degree of rock damage intensity. This correlation agrees 

with conclusions from Wechsler et al. (2009) that rock damage may exercise at least 

partial control of morphology adjacent to the fault.  

Based on the model proposed in this study, within the upper roughly 700 m of 

3D-Vs model (Mordret et al., 2018), higher velocity values occur within the tonalite 

plutonic rock, which in outcrops expresses far fewer flaws. Griffith et al. (2010) 

described the effect of fractures on effective stiffness of fault zone rocks through 

mapping, microstructural analysis and numerical simulations. The results reveal that 

reduction in rock mass stiffness from mesoscopic scale fractures can induce a greater 

material contrast than a bi-material interface. Therefore, if rheological properties exert 

dominant control of damage extent during earthquake ruptures, observations at SGB 

should be reversed, with higher intensities in the CVP. In an effort to explain how 

pulverized fault zone rocks can form from subshear ruptures, Xu and Ben-Zion (2016) 

examine the effects of pre-existing flaws on a rupture propagated along a bi-material 

interface using numerical simulations. Their model results demonstrate that activation of 

pre-existing flaws can govern the growth and extent of rock pulverization during dynamic 
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ruptures (Xu and Ben-Zion, 2016). This processes may help explain the high damage 

intensity observed within the leucocratic dike near the end of Transect 1.  

Potential flaws within the rock mass observed in the field include foliations, 

fractures, and small faults. In the geologic model proposed in this study, fault trace F110 

extends down dip, possibly connecting to other flaws in the rock mass (Figure 2-19). This 

subsurface network could allow for the growth and extension of pulverization and rock 

damage preferentially within the metamorphic rock of the BVC. Therefore, the rock mass 

damage distribution observed at SGB and the northern end of Alkali Wash is probably 

best explained through repeated NW uni-directional earthquake ruptures and 

growth/extension of damage intensity away from the fault through pre-existing flaws of 

the BVC.  

3.1.4 Geologic and Fault Zone Model 

The main seismogenic fault within the SGB basin as defined by Qin et al. (2018) 

is consistent with the geologic model proposed here (fault trace F106), and at depth 

demarks the transition between the CVP and BVC. The basis for this assertion is derived 

from the strong contrast in velocity observed in each depth slice produced from the 3D-

Vs model (Mordret et al., 2018) (Figures 2-21 through 2=24). The overall NE dip of the 

fault zone structure within SGB is consistent with results from deeper geophysical data 

on the CF (Li and Vernon, 2001). This implies that geometry of the CF within the upper 

500–700 m conforms to a similar orientation as observed deeper in the crust. The low 

velocity trough observed on the SW side of each Vs depth slice was previously 

interpreted as a sedimentary basin (Mordret et al., 2018). This interpretation does not 

seem plausible given its location within the basin, the overall shape, depth, and the 
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geologic mapping presented here. The SW low velocity trough is not directly below the 

basin, but farther to the basin edge and underneath the mapped tonalite of the SW slope. 

Secondly, the depth of the trough, between 500 m to 600 m, seems rather excessive for a 

less than 500 m wide basin. By comparison, elevation differences between the top and 

base of sediments filling the broader Burnt Valley measure roughly 300 m thick using the 

B4 lidar DEM. Lastly, UNAVCO (2010) boring B946 is coincident with the low velocity 

feature within the vicinity of Vs depth slice line 10 (Figure 2-22). Descriptions from the 

boring’s cuttings and downhole data include granitic rocks at the surface, and fractured 

rock with clayey material between 400 ft and 500 ft depths; strong evidence the 

discontinuity denotes faulting. Connecting the feature to the greater structure of the SJFZ 

is possible according to along strike projection in Move (supplemental 3d fault model). 

The lack of topographic signature over the discontinuity, though, suggests either it does 

not breach the surface, or has not failed during recent earthquakes as would be expected 

by the lineaments and displacements within fault traces observed in the basin floor.  

Producing three dimensional fault zone models are often produced by the 

petroleum industry to help characterize complex structures and illuminate potential 

hydrocarbon resources. 3D models of strike slip faults provide a unique and useful 

perspective particularly for understanding complexities and producing more accurate 

models for seismic hazard assessment. In Northern California, along the Hayward-

Calaveras fault junction, a 3D model incorporating both surface mapping and deep 

seismic data, help constrain and visualize the connection between the complex fault 

surface traces down to seismogenic depths (Watt, 2007). Using high resolution seismic 

reflection data along the Hosgri fault zone allowed for correlation between strike-slip 
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fault mechanics, substrate deformation, and fluid migration (Kluesner and Brothers, 

2016). In the southwestern Qaidam Basin, Cheng et al (2017) compiled both surface fault 

trace and structural mapping with seismic reflection data to help visualize a positive 

flower structure along the Huangshi structure in the northeastern Tibetan Plateau (Cheng 

et al., 2017). The fault zone model proposed in the study, based on surficial mapping and 

observations, as well as interpretations from 3D-Vs depth slice, illustrate the CF in SGB 

(within upper 700 m) and northern portion of Alkali Wash is a complex system consisting 

of multiple fault strands. Geometry of the fault zone dips steeply to the NE, conforming 

to similar conditions of the fault at depth (Li and Vernon, 2001).  

3.2 Conclusions and Recommendations for Further Research 

Results of this study include a geologic map of the SGB basin and surrounding 

area, a geologic model based on both surficial observations and 3D-Vs data (Mordret et 

al., 2018), transects, and map of rock damage distribution, displacement measurements of 

fault traces mapped from high resolution B4 lidar, and a synthetic 3D fault zone model. 

Surficial geology revealed in the geologic map traces consolidated sediments of the 

Bautista from Alkali Wash, through SGB, to the northern edge of the mapping area at 

Burnt Valley Road. These deposits are missing from previous maps and with dating and 

further analysis using them as a marker could help establish slip rates on faults imaged in 

the dense array data set.  

The geologic and fault zone model proposed in this study, agrees with 

interpretations from seismic velocity models suggesting the SW fault trace at SGB (F106) 

is the main interface juxtaposing differing material types (BVC and CVP) at depth, and 
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the measured displacement corresponds to the most recent large earthquake defined by 

Salisbury et al. (2012). Distribution of rock damage at SGB and the northern portion of 

Alkali Wash is asymmetric about the fault trace. The highest damage intensity appears 

concentrated predominately on the NE side supporting the argument of preferred NW 

rupture propagation (Lewis et al., 2005, Dor et al., 2006; Yang et al., 2014; Qiu et al., 

2017; Share et al; 2017; Qin et al., 2017). Pulverization expansion and growth through 

pre-existing flaws in the form of faults and fractures agrees with numerical simulations of 

fault damage growth (Xu and Ben-Zion, 2016).  

Further analysis of subsurface geophysical and material properties of the trapping 

structure determined by FZTW (Ben-Zion et al., 2015; Qin et al., 2017) would greatly 

improve understanding of fault zone complexity. Surface observations and shallow 

excavations may not provide the best representable sample set to fully characterize this 

structure which may play an influential role in earthquake propagation. Collecting core 

samples for laboratory testing, downhole large diameter geological borings and in-situ 

geophysical measurements would provide valuable information to improve both 

characterization of the structure, and validation of the geologic model presented in this 

research.
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