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ABSTRACT

The objective of this thesis is to achieve a detailed understanding of the loss

mechanisms in SHJ solar cells. The working principles of these cells and what affects

the cell operation, e.g. the IV characteristics at the maximum power point (MPP)

and the correspondingly fill factor (FF ) are investigated. Different loss sources are

analyzed separately, and the weight of each in the total loss at the MPP are evaluated.

The total series resistance is measured and then compared with the value obtained

through summation over each of its components. In other words, series resistance

losses due to recombination, vertical and lateral carrier transport, metalization, etc,

are individually evaluated, and then by adding all these components together, the

total loss is calculated. The concept of fill factor and its direct dependence on the

loss mechanisms at the MPP of the device is explained, and its sensitivity to nearly

every processing step of the cell fabrication is investigated. This analysis provides a

focus lens to identify the main source of losses in SHJ solar cells and pave the path

for further improvements in cell efficiency.

In this thesis, we provide a detailed understanding of the FF concept; we ex-

plain how it can be directly measured; how it can be calculated and what expressions

can better approximate its value and under what operating conditions. The relation

between FFand cell operating condition at the MPP is investigated. We separately

analyzed the main FF sources of losses including recombination, sheet resistance,

contact resistance and metalization. We study FF loss due to recombination and its

separate components which include the Augur, radiative and SRH recombination is

investigated. We study FF loss due to contact resistance and its separate components

which include the contact resistance of different interfaces, e.g. between the intrinsic

and doped a-Si layers, TCO and a-Si layers. We also study FF loss due to lateral

transport and its components that including the TCO sheet resistance, the finger and
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Chapter 1

Introduction

1.1 Motivation

Several countries have already installed solar panels and reached grid parity in many

locations. The Compound Annual Growth Rate (CAGR) of PV installations was 40%

between 2010 to 2016 [1]. Cell processing related costs are typically less than around

20% of the total module cost and only about 10% of the system level. While at first

sight, it seems that increasing the cell power efficiency may not play a significant

role, it can actually provide a direct path to decrease the levelized cost of electricity

(LCOE)1.

With the goal of boosting cell efficiency, in this thesis we focus mainly on

advances in silicon photovoltaic (PV) technology, which compared with other tech-

nologies has already successfully transformed to large scale and mass-production,

where it is currently leading the photovoltaic market [5, 6]. Si-wafer based PV tech-

nology accounted for about 94% of the total world production in 2016. The share of

multi-crystalline technology is now about 70% of the total production. In the last 10

years, the efficiency of the average commercial wafer-based silicon modules increased

from about 12% to 17%.

Silicon solar cell industry takes advantage of the stability, abundance and non-

toxicity of silicon material. It’s energy band gap is at 1.12 eV and is well matched

to the solar spectrum, very close to the optimum value for solar-to-electric energy

conversion using a single semiconductor optical absorber [7]. Figure 1.1 shows the

1The levelized cost of electricity (LCOE) is a measure of a power source which attempts to com-
pare different methods of electricity generation on a consistent basis. It is an economic assessment
of the average total cost to build and operate a power-generating asset over its lifetime divided by
the total energy output of the asset over that lifetime. The LCOE can also be regarded as the
average minimum cost at which electricity must be sold in order to break-even over the lifetime of
the project.

1



Figure 1.1: Efficiency chart for various PV technologies (taken from www.nrel.gov).

efficiency chart for various solar technologies; silicon PV technologies are shown in

blue. The evolution of the energy conversion efficiencies of silicon PV is shown in Fig.

1.2 in more detail. Advanced cell architectures are one route that can be applied to

silicon PV technology to achieve significantly higher cell efficiency. Currently, high-

quality mono crystalline silicon (c-Si) heterojunction (SHJ) solar cells hold the world

record for a single junction cell with an efficiency at 26.6% [8].

Heterojunction cells have a unique advantage over traditional homojunction

cells. Their high open circuit voltage (Voc) is the result of the better passivation

quality resulting from depositing hydrogenated amorphous silicon (a-Si:H) on c-Si and

also the doped a-Si:H layers, which act as hole and electron selective carrier contacts

(the emitter and the back/front surface field) compared with traditional diffused

junction cells that have higher Auger recombination rates and accordingly lower Voc

because of the highly doped contact regions. The use of such layers in heterojunction

cells has other technological advantages, including low processing temperatures (below

2



Figure 1.2: Evolution of the energy conversion efficiencies of various silicon PV tech-
nologies according to entry year in the tables of ref. [1]

200◦C) that result in lower thermal budget [9], and the ability to deposit a-Si over

large areas with high growth rates using plasma-enhanced chemical vapor deposition

(PECVD), owing to the geometrical one dimensional nature of the free alignment

architecture of this technology [10].

However, there are still many challenges remaining with high efficiency SHJ

cells and the physics behind this technology has not been extensively investigated.

These challenges mainly affect the cell IV characteristics at its maximum power point

(MPP) and not necessarily at Voc which has been the main concern with diffused

junction solar cells.

Low performance at the MPP could be related to the selective collection of

positive and negative charges at two spatially separated terminals. Cuevas et al,

and Wurfel et al. specify that an electron selective contact must have the following

properties: 1) the voltage drop produced by the electron current towards the electron

3



Figure 1.3: Sketch of a typical SHJ solar cell.

contact needs to be less than a few millivolts to maintain high fill factor (FF ) and

2) the hole current towards the electron contact must be negligible [11, 12]. The

same can be said for the hole contact by replacing the word hole for electron. These

conditions are realized when, as described by Cuevas, et al., a contact: 1) has a high

conductivity for one of the carriers and 2) a large asymmetry in the conductivities of

the two carriers; the conductivity of the minority carrier must be low [13].

Doped amorphous silicon layers (p-type and n-type a-Si:H) deposited on top

of the intrinsic a-Si:H layers (see Fig 1.3) are currently applied to provide contact

selectivity for both electrons and holes [14]. This allows for very high Voc of over 750

mV that are only about 10 mV below the upper theoretical limit for a high-quality

crystalline silicon absorber [15]. However, this does not guarantee a perfect selectiv-

ity at the MPP. In fact, the carrier selectivity of doped a-Si layers can be further

improved, first by quantitative evaluation of the contact resistances at the interfaces

of these thin films [16, 17], and then by applying alternative contact materials such

as metal oxides, mostly adopted from organic electronics [18, 19].

Parasitic absorption and low lateral conductivity in thin a-Si:H layers can also

lead to low performance at the MPP [20] by increasing the total cell series resistance.

Lateral conduction can be obtained by growing a transparent conductive oxide layer

on top of the doped a-Si:H layers. In fact, employing TCOs results in an optically

4



transparent electrode that allows photons into the solar cell, and then transporting

the photo-generated electrons to the external device terminals [21]. Accordingly,

beside the requirement for high lateral conductivity, TCO layers should have very

low UV-IR absorption because they are deposited both on the front and back sides of

the solar cell. Therefore, specifically in the near IR region, layers with high mobility

but lower carrier densities are preferred in order to maintain high conductivity while

avoiding parasitic absorption [22].

1.2 Research objectives

The objective of this thesis is to achieve a detailed understanding of the loss mecha-

nisms in SHJ solar cells. The cell operating principles and what affects cell operation,

e.g. the IV characteristics at the MPP and correspondingly FF are investigated. Dif-

ferent sources of loss are analyzed separately, and the weight of each in the total loss

at the MPP are evaluated. The total series resistance is measured and compared with

the value obtained through summation over each of its components. The series resis-

tance losses due to recombination, vertical and lateral carrier transport, metalization,

etc., are individually evaluated and then by adding all these components together, the

total loss is calculated. The concept of the fill factor and its direct dependence on the

loss mechanisms at the MPP of the device is explained and its sensitivity to nearly

every processing step of the cell fabrication is investigated. This analysis provides a

framework for identifying the main source of losses in SHJ solar cells and pave the

path for further improvement in the cell efficiency.

The main points can be summarized as follows:

- We provide a detailed understanding of the FF concept; we explain how it

can be directly measured; how it can be calculated and what expressions can better

approximate its value and under what operating conditions. The relation between

5



the FFand the cell operating conditions at the MPP are investigated.

- We separately analyze the main sources of FF loss including recombination,

sheet resistance, contact resistance and metalization.

- We study FF loss due to recombination and its corresponding components

including Auger, radiative and SRH recombination.

- We study FF loss due to contact resistance and its constituents including

the contact resistance of different interfaces, e.g. between the intrinsic and doped a-Si

layers, the TCO and the a-Si layers.

- We study FF loss due to lateral transport and its separate components

including the TCO sheet resistance, the finger and busbar resistances.

1.3 Outlines

This thesis is divided into the following chapters:

In Chapter 2 we review the theory and physics behind solar cells and explain

their IV characteristics. Then the concept of fill factor is discussed in more detail and

it’s relation with the cell operating condition at the MPP is illuminated. Specifically,

we explain what the difference is between the actual, pseudo and implied FF and

how each of them can be measured, calculated or approximated.

In Chapter 3, after further analysis of the fill factor concept, the approximate

expressions proposed by Green, Swanson and Sinton to predict the FF of a solar cell

from its Voc is discussed. The expressions were originally suggested for silicon solar

cells that behave according to a single-diode model and, in addition to Voc, they

require an ideality factor as input. They are now commonly applied to silicon cells

by assuming a unity ideality factor-even when the cells are not in low-level injection-

as well as to non-silicon cells. Here, we evaluate the accuracy of the expressions in
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several cases. In particular, we calculate the recombination-limited FF and Voc of

hypothetical silicon solar cells from their simulated lifetime curves, and compare the

exact FF to that obtained with the approximate expressions using assumed ideality

factors. Considering cells with a variety of recombination mechanisms, wafer dop-

ing densities, and photogenerated current densities reveals the range of conditions

under which the approximate expressions can be used accurately. We find that the

expressions are unable to predict FF generally.

In Chapter 4, the front transparent conductive oxide (TCO) layers of silicon

heterojunction solar cells are discussed and we examine how the IV characteristics,

and specifically FF , are affected by the TCO. We investigate how to optimize TCO

layers electrically and optically to minimize losses due to sheet resistance and free

carrier absorption. We study TCOs for different wavelength ranges: 300 − 1200 nm

(full sun)and 700−1200 nm (half sun). The latter is required if the silicon cell were to

be used in a tandem structure as the bottom cell. Here, we demonstrate a procedure

for determining the total loss associated with the front TCO layer, and employ it to

determine which carrier density, mobility, and finger pitch combinations minimizes

loss.

In Chapter 5, series resistance in SHJ cells is investigated, which is the main

source of performance degradation for SHJ cells will be studied. Until recently, little

has been done to understand the main factors contributing to the high resistance.

Here we begin a systematic analysis to determine the important interactions between

the different layers in the hole-collecting contact consisting of a stack of a-Si:H(i)/a-

Si:H(p)/ITO/Ag. We attempt to address how the stack performs when the intrinsic

and doped amorphous silicon layers thickness are varied, how the work function of

the ITO - varying by the oxygen concentration - can affect the contact resistance at
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it’s interface with the a-Si layer and what it’s contribution to total series resistance

loss is. We also determine how the thickness affects the fill factor of the cell and

assess how much loss is due to the contact resistivity.

In Chapter 6 we summarize the main finding of this thesis and give an outlook

for future work.
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Chapter 2

Concept of fill factor for silicon solar cells

2.1 Recombination mechanisms

The fundamental recombination mechanisms that can occur in silicon solar cells in-

clude:

- Radiative recombination

- Auger recombination

- Defect recombination

In the above, surface recombination is not introduced as a separate mechanisms be-

cause it is a particular case of the the third process; the discontinuity at the surface

of crystalline silicon results in high number of dangling bonds that create a large

number of defects within the bandgap. Recombination through these surface defects

is basically very similar to that of bulk defects, and can be represented by similar

physical models.

2.1.1 Radiative recombination

Radiative recombination occurs when an electron from the conduction band state falls

into a vacant valance band state. The excess energy will then be released as a photon

with an energy close to that of the bandgap. The corresponding lifetime expression

for radiative recombination is

τrad =
1

B(p0 + n0) +B∆n
(2.1)

in which, B is the radiative coefficient [23], ∆n is the excess carrier density, and n0, p0

are the equilibrium electron and hole densities. Depending on the illumination level,

one of the terms in the denominator of the above expression will play the dominant

role. Under high level injection, ∆n is much larger than (p0 + n0) and the first term
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is dominant. Under low level injection, (p0 + n0) is much larger than ∆n, so the

second term is dominant. In general, however, for crystalline silicon, the radiative

lifetime is relatively low mainly due to its indirect band gap; for any single radiative

recombination event to conserve both energy and momentum, one or more phonons

are needed as well, that has inherently a low probability of occurring. The factor B in

the above expression reflects this phenomenon. From detailed balance considerations,

the value of B is calculated to be 9.5× 10−15 cm3s−1 [24, 25].

2.1.2 Auger recombination

Auger recombination occurs when an electron and hole recombine, but unlike radiative

recombination, the excess energy is transferred to a third free electron or hole. The

charge carriers involved are assumed to be non-interacting quasi-free particles. For

Auger recombination, there are always three free carriers involved and, because of

that, its probability of occurring is higher for higher carrier densities, e.g. in highly

doped material or for high injection conditions. The most recent parametrization

for Auger recombination was introduced in Ref [26], which also applies the theory

of Coulomb-enhanced Auger recombination. We discuss that in more detail in the

next chapter. Here, we just provide a simple expression that more clearly depicts the

dependency of Augur recombination on carrier density,

τAugur, li =
1

CnN2
dop

, τAugur, hi =
1

(Ca)∆n2
(2.2)

where Cn and Ca are the respective ambipolar Auger coefficients [27] and Ndop is

doping density. As seen, for high doping densities or illumination level, the rate of

Auger recombination increases.

2.1.3 Defect recombination

Semiconductor materials are not perfect, they always include defects. These defects

can be a result of impurities within the bulk of the material or due to the disruption
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of the perfect crystal at the surface. In both cases, these defects provide a site for an

electron or hole to be trapped by an energy state in the forbidden region (bandgap).

Trapped carriers in these states have the chance to recombine with an opposite type

of carrier. Recombination through defects, also called Shockley-Read-Hall or SRH

recombination, is parametrized for the bulk and surface of a crystalline silicon as

follows [28, 29].

2.1.3.1 Bulk defects

The SRH lifetime for bulk defects can be expressed as

τSRH =
τn0(p0 + p1 + ∆n) + τp0(n0 + n1 + ∆n)

(n0 + p0 + ∆n)
(2.3)

in which

n1 = NCexp(
Et − EC

kBT
) , p1 = NV exp(

EC − Eg − Et

kBT
) (2.4)

In the above, n1 and p1 are the SRH electron and hole densities, Ec and Ev are the

energies of the conduction and the valence band edges, Et is the energy of the trap, Nc

and Nv are the effective densities of states in the conduction and the valence bands,

and kB and T have their usual meanings.

As shown in above expression, the SRH lifetime is a function of the carrier

injection level and the dopant density, as well as the defect trap density, their energy

levels and their capture cross-sections. The rate at which a carrier moves into an

energy level in the forbidden gap depends on the distance of the energy level from

either of the band edges. Therefore, if an energy level is introduced close to either

band edge, recombination is less likely as the electron (hole) is likely to be re-emitted

to the conduction (valance) band edge rather than recombine with a hole (electron)

which moves into the same energy state from the valence (conduction) band. For this

reason, energy levels near mid-gap are very effective for recombination. Specifically,
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Figure 2.1: Dependence of the SRH densities n1 and p1 on the energy level Et

measured from the valence band edge for different temperatures (solid lines) at 300K.
To allow for a direct estimation of their magnitude, the doping region relevant for
photovoltaic applications is marked by the dash line and the depth of the defect
energy level is denoted by the blue color gradient.

for the case of deep defect levels close to midgap, as the SRH densities n1 and p1

become equal by definition to the intrinsic carrier density ni = 1010cm−3, and so

substantially smaller than the doping concentration and Eq. (3.2) simplifies for p-

type doping to τn0 and for n-type doping to τp0. Thus, in the limiting case of low

level injection, recombination through deep level states is limited by the capture of

minority carriers. Figure 2.1 shows the SRH defect densities as a function of defect

energy level and temperature. As explained, for mid gap trap states, n1 and p1 drop

significantly. As the temperature increases, however, the dependency of the defect

densities on their energy level decreases; higher temperatures allow carriers need to

jump between larger energy separated states.

2.1.3.2 Surface defects

Termination of the crystal at the surface of the silicon substrate leads to large num-

bers of partially bonded silicon atoms, which give rise to many dangling bonds, and

therefore a large density of defect levels that are found within the bandgap near the
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semiconductor surface. The SRH analysis classified above can apply if we reformulate

it in terms of recombination events per unit surface area, rather than per unit volume.

The surface recombination lifetime for a single defect can expressed as [30]

τS =
nSpS − n2

i

∆n(nS+n1

Sp0
+ pS+p1

Sp0
)

(2.5)

where ns and ps are the concentrations of electrons and holes at the surface, and Sn0

and Sp0 are related to the density of surface states per unit area, Nts, and the capture

cross-sections, σp and σn, for the specific defect

Sn0 = σnνthNts , Sp0 = σpνthNts (2.6)

where νth is the thermal velocity. As can be concluded from the above expressions,

the main mechanisms that result in a reduction of surface recombination include: a)

chemically passivating the dangling bonds and reducing their densities and capture

cross section values by growing silicon oxide, silicon nitride or a-Si:H, b) reducing

the surface concentration of electron or holes that can be achieved by doping the

semiconductor surface to repel one type of carriers, e.g. electrons for a p-doped

emitter or holes for a n-doped emitter. Fixed charges in an overlying dielectric can

be used alternatively to create this electric field and repel one type of carriers [31]. In

reality, the reduction of surface recombination in SHJ cell technology takes advantage

of both of these mechanisms to some extent.

2.1.4 Effective lifetime

All the recombination mechanisms discussed above may contribute in silicon. Under

different conditions, different recombination mechanisms may be dominant, however.

For high quality crystalline silicon, bulk recombination is negligible. Under high

injection levels or for wafers with high doping density, Auger is dominant. Surface re-

combination could be the dominant mechanism in cases where the passivation quality
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is poor, e.g. growing a III/V material on Si as a passivation layer. Radiative recombi-

nation is in most cases negligible due to the indirect bandgap of silicon. The effective

lifetime is given by

1

τeff
=

1

τrad
+

1

τAug

+
1

τSRH

+
1

τsurf
(2.7)

.

2.2 IV characteristics and diode equation
2.2.1 I-V characteristics

To determine the I-V characteristics of silicon solar cells limited by the recombination

mechanisms discussed above, the following approach, introduced in ref. [7, 32], can be

followed. This approach models zero-resistance ideal cells, without perfect front-side

antireflection coatings, reflecting rear mirrors and metalization. The current-voltage

characteristic can be expressed as

J = JL − qWR (2.8)

where JL is the photo-generated short circuit current, W the cell thickness, R the

recombination rate (including radiative, Auger and defect recombination), and q the

elementary charge. Obtaining effective lifetime value, τeff (see Eq (2.7), the re-

combination rate at each specific carrier density can be calculated through following

expression

R =
∆n

τeff
(2.9)

Under the assumption of a narrow base, the change of the quasi-Fermi levels within

the base are very small, and the quasi-Fermi level separation can be considered to be

constant. When additionally assuming ideal contacts, the quasi-Fermi level separation

equals the cells output voltage, V , and thus the excess carrier density, ∆n is related

to V by [33]

(n0 + ∆n)(p0 + ∆n) = n2
i,effexp(

qV

kBT
) (2.10)
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where the electron and hole equilibrium concentrations are n0 and p0. In (2.10), it

is assumed that bulk series resistance losses are negligible; this is a valid assumption

for cells operating under high illumination levels or with highly doped silicon wafers.

As seen in Eqs (2.9) and (2.10), both the current and voltage can be calculated

versus excess carrier density. So, by sweeping the excess carrier density, the IV

characteristics can be obtained. The quasi-Fermi level separation has its highest

value at open circuit where there is no current flow, and the photo-generated voltage is

limited by recombination processes. When current is flowing, e.g. at the MPP, carriers

are extracted and so the gap between the Fermi levels decreases and the voltage drops.

The Fermi-level gap separation decreases up until short-circuit conditions for which it

becomes zero. Under this condition, photogenerated carriers will be ideally extracted

from the absorber without loss.

2.2.2 Diode equation

The above parametrization can be applied for cases in which the carrier lifetime is

well known; It is difficult for materials with bulk lifetime ranges of below 1µs. Even

for high quality silicon wafers, lifetime measurements are not practical after the final

metalization steps. To calculate the IV characteristics under these conditions (the

lifetime is difficult to measure directly), we may use the more traditional representa-

tion of the diode physics. Solar cells, like any other diode which includes a rectifying

p-n junction, can be modeled with a diode equation (in the dark). Under illumi-

nation, however, the I-V curve shifts as the cell begins to generate power. As the

light intensity increases, the upward shift increases as well. Since the cell is gener-

ating power, following the usual convention, we invert the current axis. The diode

expression under illumination can be written as

J = JL − J0(exp[
qV

nkT
]− 1) (2.11)
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Figure 2.2: Schematic equivalent circuit diagram of a solar cell based on the two
diode model

In the above parametrization, J0 represents the recombination current. The recom-

bination current itself can be divided to two different factors; one represents the

intrinsic recombination (Auger and radiative), J01, mostly dominant under high in-

jection levels while the other represents bulk and surface defect recombination,J02,

mostly dominant under low injection levels. The solar cell operation condition can

also be modeled by another parameter named the ideality factor, n, which represents

how closely the solar cell operation is near to that of ideal diode behavior. In the two

diode model, the ideality factor also can have different values; n1 represents ideality

factor under high level injection, and has values between 0.7 and 1. n2 represents the

ideality factor under high injection and depending on the defect density and surface

passivation can have values 2 or above. The concept of ideality factor for solar cells

and its limitations will be discussed in more details in Chapter 3. In reference [34],

an expansive study of ideality factor dependency to ∆n is provided. In addition to

the recombination mechanism parameters, every solar cell has a series resistance, Rs

(see Chapter 4 and 5) and shunt resistance, Rsh, which can be also included in the

diode expression. The schematic of the above two diode model is shown in Fig 2.2.

The corresponding expression is as follows

J = JL − J01(exp[
q(V + JRs)

n1kT
]− 1)− J02(exp[

q(V + JRs)

n2kT
]− 1)− V + JRs

Rsh

(2.12)
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Figure 2.3: Output current as function of voltage. Also shown are the cell short-
circuit current (Jsc) and open-circuit voltage (Voc) points, as well as the maximum
power point (Vmpp, Jmpp).

2.3 Loss mechanisms

The fill factor is the ratio of the product of the voltage and current at the MPP to

the product of the open circuit voltage and short circuit current which are the key

parameters in evaluating the performance of solar cells (see Eq 2.13). Graphically, the

FF is a measure of the ”squareness” of the solar cell IV curve, and is also the ratio

of the area of the largest rectangle which will fit in the IV curve formed by Vocand

Jsc (from PVCDROM [35]). In fact, we can calculate the fill factor by dividing the

area of the smaller(dashed) rectangle to the larger(solid) rectangle in Fig. 2.3

FF =
VmppJmpp

VocJsc
(2.13)

Series resistance, shunt resistance and additional recombination currents can strongly

affect the fill factor of silicon wafer based solar cells. For cell process optimization,

we need to determine and evaluate sources of each of these loss mechanisms. A good

understanding of the physics behind these losses and a methodology to quantify, and

then approximate these loss the sources is needed accordingly. In the next sections,

using the equivalent diode equation, we briefly provide an approximate description
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of the dependency of FF to each of above parameters in brief and then in the next

chapters in more details we will discuss in more details both theoretically and exper-

imentally the contribution of each separate factor to the fill factor.

2.3.1 Fill factor loss due to recombination

For silicon solar cells, it is now common to calculate the fill factor in the absence of

external series resistance (the so-called pseudo fill factor, pFF) from Suns-Voc mea-

surements [36] (see Section 2.3.5), and to use this value as an upper limit against

which the often varying actual FF can be compared [37]. In particular, suns-Voc

measurements give the series-resistance-free voltage at the MPP, across the contacts,

from which the series resistance can be calculated [38], and the quasi steady state

photoconductivity (QSSPC) or quasi steady state photoluminescence (QSSPL) mea-

surements give the internal voltage at the MPP from which the voltage drop across

the contacts can be calculated [39]. From these measurements, the loss on FF and

Voc of the device imposed by recombination in the quasi-neutral bulk and at the

two cell surfaces is readily accessible, which sets a practical upper limit for the FF

and Voc of crystalline solar cells operating under high and low injection. We call

this recombination limited FF (or Voc) the internal (or implied fill factor (or Voc),

abbreviated by iFF (or iVoc) [40]. The weight of this upper limit in the total loss

is becoming increasingly significant specifically due to the recent improvements, e.g.

lowering the contact resistances in SHJ solar cell operation conditions. Accordingly, as

our attention is directed towards the recombination sources of FF loss, a well detailed

evaluation and differentiation between SRH, surface and intrinsic recombination loss

contributions to the fill factor becomes more demanding. That is, we would like to

resolve the iFF (or iVoc) into recombination factors that are intrinsic to the absorber

bulk, e.g. radiative and Auger recombination, and those that can be engineered out,

e.g. SRH and surface recombination. We will discuss and analyze in detail the FF
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Figure 2.4: IV characteristic dependency to SRH recombination current, J02 (a) and
extracted FF (b).

loss due to recombination in chapter 3 of this thesis. As seen in Eq (2.12), intrinsic

recombination mechanism can be represented by J01 while defect recombination can

be represented by J02 parameters in the two diode model approximation. Figure 2.4

shows how the maximum power point and accordingly FF is affected by J02.

2.3.2 Fill factor loss due to shunt resistance

Shunt resistance can play a significant role in the performance of solar cells, and

can be one of the sources of fill factor loss. Ideally, shunt resistance should have an

infinite value; however, specifically for thin film silicon solar cells, its value decreases

and leads to lower current flow through the load due to leakage current that in most

cases is the result of the formation of cracks. Current channels through parallel

paths will ultimately be lost as heat which increases the cell operating temperature,

which can be further detrimental. Beside degrading the solar cell performance, low

shunt resistance makes optimization of solar cells difficult because it masks other

characteristic information such as the recombination currents, J01 and J02, and the

ideality factors n1 and n2. To study specifically the effect of shunt resistance on fill

factor, we may vary the Rsh parameter in the two diode model expression, assuming
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Figure 2.5: IV characteristic dependence on the shunt resistance, Rsh (a) and the
extracted FF (b).

there is no loss due to series resistance. The IV characteristics obtained and the

resulting FF are shown in Fig. 2.5.

For interdigitated back contact (IBC) solar cells, another type of shunting can

occur which is different from conventional front-collecting-junction solar cells. Such

shunting can be due to lithography related defects at the metal separation, or some

laser-processed features along with possible edge effects associated with the perimeter

of the laser-doped regions. To avoid this shunting losses, a thick, possibly multi-layer

dielectric can be deposited to isolate the hole and electron contacts from each other

[41, 42].

For non-IBC, front-collecting-junction solar cells SHJ cells (the main point of

the present study) for which high quality n-type wafers are used, the defect density

is low and shunting paths through the wafer are all blocked. Accordingly, very high

values of shunt resistance are measured, that result in insignificant loss of fill factor.

Therefore, in rest of this work, we have not investigated shunting losses assuming

they are negligible.
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Figure 2.6: IV characteristic dependency to series resistance Rs(a) and extracted FF
(b).

2.3.3 Fill factor loss due to series resistance

Series resistance is another parameter that can significantly affect the performance

of solar cells and lead to a decrease in fill factor. Series resistance does not normally

affect the open circuit voltage of silicon solar cells, because at that point no current is

flowing through the device. However, at voltages near open circuit, e.g. at maximum

power point, high series resistance values can have a very detrimental effect on the

performance. To study specifically the effect of series resistance on fill factor, we may

vary the Rs parameter in (2.12), assuming there is no loss due to shunt resistance.

The resulting IV characteristics and corresponding FF are shown in Fig. 2.6. There

are two types of series resistance that should be distinguished from another; 1) se-

ries resistance under illuminated conditions [43], and 2) series resistance under dark

conditions [44]. Current may flow differently under each condition; under illumina-

tion, we have photo-generated carriers almost homogeneously all over the entire cell

area which result in a relatively large lateral current toward the contacts, so a higher

series resistance loss compared with dark conditions, since the current is specifically
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limited to flow through the screen fingers and bus-bars. For SHJ solar cells that

are operating in a tandem structure and as the bottom cell, the illumination level

decreases almost by half of that in a single junction cell under one-sun illumination,

which correspondingly leads to lower lateral current. This effect will be studied in

more detail in Chapter 4.

Different methods to determine the lumped series resistance, Rs of solar cells

is suggested in the literature and are well discussed and compared in Ref. [37].

The most reliable and prevalent ones are illumination intensity variation [45], the

comparison of a Suns-Voc with a one-sun IV-curve [46], and the modified comparison

a one-sun IV-curve with the dark IV-curve method [47]. In this work, we have used

the comparison of the Suns-Voc with a one-sun IV-curve to investigate the series

resistance loss. This method is specifically applicable to the Si solar cell industry for

which Suns-Voc can be measured at the early stages of device processing.

Beside losses due to metalization that can be easily measured, series resistance

can have two other sources of losses that are more complicated and less investigated.

These main loss sources for fill factor are introduced in the next two subsections and

will be analyzed extensively in Chapters four and five of this thesis. A schematic

of the cell is provided in Fig. 2.7, that beside highlighting the necessity for lateral

transport in TCO layers, illustrates the different layers and their interfaces in SHJ

cells.

2.3.3.1 Sheet resistance loss

Sheet resistance in SHJ cells is due to the need for lateral current transport. A

transparent conductive oxide is sputtered on top of the doped a-Si:H layers on the

front side of the SHJ cell to provide this transport path. The sheet resistance can be
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Figure 2.7: Schematic of SHJ solar cells (borrowed from [2]).

calculated through following expression,

Rsh =
1

eµnt
(2.14)

Here, e is the electronic charge and µ, n, and t are the TCO electron mobility, free

electron density, and thickness, respectively. To decrease the sheet resistance and

resulting fill factor loss, we can adjust three parameters. First is the thickness that

is fixed to 65-80 nm for SHJ cells under one-sun illumination because the front TCO

should also serve as an anti-reflection layer. For SHJ cells that are used in a tandem

structure and are illuminated by wavelength ranges between 700-1200 nm due to the

assumed absorption in the top cell, this thickness can be fixed to 100-110 nm to

again minimize the reflection at this specific range. From above expression, its clear

that for higher thicknesses (e.g. the TCO for a SHJ cell in a tandem structure), the

sheet resistance is smaller which means the TCO layer is less electrically constrained.

The other parameter that can decrease the sheet resistance is the carrier density.

However, higher values of carrier density lead to higher parasitic absorption. So,

its value should be kept as small as possible. The final adjustable parameter in
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Eq (2.14) is the mobility, which offers the only way to decrease the sheet resistance

without compromise, yet it is the most difficult to control in practice [48].

It is worthwhile to mention that in SHJ cells, an inversion layer is present

at the front interface between a-Si and c-Si, that may help to decrease the sheet

resistance as well. However, as demonstrated in Ref. [21], the contribution of the

inversion layer to lateral transport is negligible; this is due to its low conductivity in

this region compared with the TCOs. Carriers can just travel a few hundred microns

in this inversion layer before recombination, which is not enough for screen printed

front grids with finger spacing in the milimeter range. Increasing the valence band

offset can make this layer more conductive; however, this also impedes transport

across the barrier to the emitter.

2.3.3.2 Contact resistance loss

To understand how significantly the hole and electron contacts play in the total series

resistance, we should first have a look at the band structure of SHJ cells as shown

in Fig. 2.8 (borrowed from Ref. [3]). As seen, the silicon absorber is sandwiched

between the intrinsic, doped a-Si:H and TCOs on each side. There is a contact

resistance at the interface of each of these thin layers: between c-Si and the intrinsic

a-Si:H, between the intrinsic a-Si:H and the doped a-Si, between the doped a-Si:H and

the TCO, and finally between the TCO and the metal contacts which are basically

determined by the Fermi-level and work function of each of these layers. Specifically,

the a-Si:H work function must be high/low enough to induce the junction into the

c-Si (green and red shaded dotted lines in figure 2.8). The work function can be tuned

by changing the doping density. However, increasing the dopant atoms leads to an

abundance of defects that may lower the doping efficiency significantly below the level

of c-Si which can create a barrier for carrier transport and result in further resistance.
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Figure 2.8: The equilibrium band diagram of the standard SHJ cells. It can be seen
that the c-Si absorber is sandwiched between three thin films on each side, two a-Si:H
films and one TCO. Similar films are applied to the front and rear with the only
significant difference that the opposite doped a-Si:H film is used at either side. (from
Ref.[3])

Another approach to tune the work function is by the alloying of the a-Si:H (see Ref.

[49],[50]). Another function of doped a-Si is to provide a path for charge transport to

the TCO. Again, a mismatch between the work function of the TCO and the a-Si:H

layers lead to a parasitic band bending and an increase in contact resistance at this

interface. With respect to the TCO, as discussed in previous section, their function

is more than providing a good contact. In fact, an ideal TCO should have a low sheet

resistance to provide good lateral transport for carriers. Moreover, it should be highly

transparent and without any parasitic absorption. These two requirements limit our

options in TCO materials and tuning their work-function to reach a minimum contact

resistance. For further information on the concept, see Ref. [51]. In chapter five, we

analyze the contact resistances between the above interfaces quantitatively.
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2.3.4 Fill factor approximated expressions

Similar to the two common models introduced in Section 2.2 to simulate the IV

characteristics of a solar cell, approximate models have been suggested to calculate the

FF Ṗrior to the introduction of the Suns-Voc technique, two approximate expressions

were suggested by Green [38] and Swanson and Sinton [52] to predict the pFF from

the Voc of a silicon solar cell. These expressions are convenient because they allow

one to, e.g., calculate the pFF of a cell reported in the literature without Suns-Voc

data or to use the implied open-circuit voltage (iVoc) to gain insight into the FF in

the early stages of cell processing (e.g., after passivation). However, the expressions

proposed only explain the behavior of cells operating in low injection, for which the

recombination rate is linear in the excess carrier density. Both expressions can be

extended to higher injection by including a non-unity ideality factor. However, the

formulas only use a single ideality factor as input, and, as ideality factor varies with

injection level and is determined by the dominant recombination mechanism, it is not

obvious which ideality factor to use. In recent years, these expressions, especially that

proposed by Green have been occasionally used to calculate the FF without regard

to the aforementioned limitations. The approximate empirical equation for the FF in

terms of Voc proposed by Green is shown below. Note that the series resistance and

the shunt resistance are assumed to be zero and infinite, respectively.

FF = υoc − ln
(υoc + 0.72)

(υoc + 1)
(2.15)

in which

υoc =
Voc

mkBT/q
(2.16)

Swanson and Sinton derived a similar but less common expression for the FF in

terms Voc from a different starting point. These authors observed that, over a wide
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range of conditions, the power of a solar cell evaluated at 95% of its Jsc is uncannily

similar to the maximum power of the cell. Consequently, in the particular case in

which the recombination rate is proportional to the excess carrier density, the excess

carrier density at the maximum power point is 5% (a factor of 1/20) its value at open

circuit. The output current and voltage at maximum power and finally fill factor are

thus

Jmpp = 0.95Jsc, Vmpp = Voc − (
mkBT

q
)ln(20) (2.17)

FF =
VmppJmpp

VocJsc
= (1− 1

20
)
υoc − ln(20)

υoc
≈ υoc − ln(20)

υoc + υoc/20
(2.18)

2.3.5 Fill factor measurement

One advantage of silicon solar cells technology is that different sources of losses and

accordingly fill factor can be measured and separated at different stages of cell pro-

cessing. Here, we introduce labels for the fill factor obtained at each stage and discuss

the relevant measurement methods. Figure 2.9 summarizes above-mentioned losses

in which:

FF0 represents intrinsic fill factor. To obtain it, we assume there is infinite

shunt resistance, no series resistance and that the bulk and surface defect recombina-

tion is ignorable. The only source of loss considered is intrinsic (Auger and radiative)

recombination. Using the Auger and radiative recombination expressions obtained

by Richter et al. [26] and applying the methodology introduced in Section 2.2, the

IV characteristics and resulting FF0 are calculated.

iFF represents the implied fill factor. To obtain it, we assume there is infinite

shunt and no series resistance. However, beside intrinsic recombination, losses due

to bulk and surface recombination are considered. In other words, all recombination

mechanisms are taken into account. Similar to FF0, iFF will be calculated applying

27



methodology introduced in Section 2.2. However, instead of using theoretical expres-

sions, here, recombination is experimentally measured by applying photo-conductance

technique using Sinton instrument lifetime tester. For further information regarding

Sinton lifetime tester, see reference [26, 53]. Comparing iFF and FF0, the fill factor

losses due to defect recombination can be recognized and its role weighted over the

whole FF loss can be determined.

pFF represents the pseudo fill factor. To obtain it, we assume there is infinite

shunt and no series resistance. However, losses due to the formation of a reverse diode

are taken into account which is the result of non-ideal carrier selectivity for holes and

electrons at each surface. In fact, the hole and electron quasi- Fermi levels drop grad-

ually as we pass through the selective layers on both sides of the cell and reach the

surface. Therefore, the resulting Voc, equal to the difference between electron and

hole quasi- fermi levels, is actually smaller right at the contacts, compared with that

in the bulk [51]. The pseudo-IV characteristics can then be calculated by varying the

illumination level in discrete steps, and extracting Voc for each. For further informa-

tion regarding Pseudo IV measurement and the Sinton Suns-Voc tester, see reference

[54, 55]. Note that the Sinton Suns-Voc tester does not include shunt resistance.

FF represents the actual fill factor. To obtain it, we consider all sources of

losses including shunt, series, recombination and non-ideal carrier selectivity of the

contacts. The actual FF is measured by the IV tester at the end of cell processesing

i.e after metalization and all the annealing steps.

2.3.6 Fill factor excess carrier dependency

As demonstrated, the fill factor may be a good metric and well accepted parameter

for all different solar cell technologies to evaluate the performance of a cell at its

maximum power point. Here, we study how well the fill factor represents the working
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Figure 2.9: Summary of different fill factor loss mechanisms

operation condition at the maximum power point operation for silicon solar cells with

different quality of bulk material and surface passivisation. Specifically, we compare

the dependency of the fill factor with respect to the variation of both the illumination

level, and the doping density. First, lets have another look at the FF expression once

again and its relation to the voltage and current at the MPP and the efficiency.

Efficiency =
Pout

Pin

=
Vmpp × Jmpp

Pin

=

Vmpp×Jmpp

Voc×Jsc
× Voc × Jsc
Pin

(2.19)

In the above expression, while the efficiency is just dependent on the voltage and

current at the MPP, the FF is in fact determined by the ratio of the product of

voltage and current at the maximum power point to the product of the voltage at open

circuit and the current at short circuit. Under varying illumination levels, the carrier

concentration is different, and accordingly, the dominant recombination mechanism

may be different for a cell under operation at its MPP or its open/short circuit

conditions. As a result, the FF may have different variation trends compared with the

MPP operation condition alone due to its additional dependency to the open and short

circuit operation conditions, which basically determines the efficiency. Figure 2.10

shows the variation of FF and VmppJmppderivatives versus photo-generated current

29



Figure 2.10: Variation of FFderivative (solid lines) and VmppJmpp derivative
(dashed lines) versus photo-generated current for four different values of doping
concentration assuming a) intrinsic recombination is the only existed recombination
mechanism, b) SRH recombination is the only existed recombination mechanism and
c) both intrinsic and SRH recombination mechanism are active.

for four different values of doping concentration assuming: a) intrinsic recombination

is the only existing recombination mechanism, b) SRH recombination is the only

existing recombination mechanism and c) both the intrinsic and SRH recombination

mechanisms are active. We chose to study and compare the derivative trends of FF

and VmppJmppbecause it can represent well the variation of these parameters. By

having a closer look, it is clear that the two studied parameters are not necessarily

sharing the same trends specifically in case (b) for which the SRH recombination

is assumed to be the dominant recombination mechanism. The deviation between

the two demonstrates that the fill factor may not be the best parameter to track the

performance of solar cells at the MPP. For instance, figure 2.10 shows that for a silicon

wafer with bulk doping density of 1016 cm−3, the fill factor slope of variation decreases

as the photo-generated current varies from 10mA to 100mA while the VmppJmpp

slope of variation increases.
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Chapter 3

Recombination

As discussed in previous Chapter, the fill factor of a solar cell is sensitive to nearly

every processing step during cell fabrication, and therefore tends to fluctuate across

a batch and between batches of solar cells more than the open-circuit voltage Voc

or short-circuit current Jsc. For silicon solar cells, it is now common to calculate

the fill factor in the absence of an external series resistance (the so-called pseudo fill

factor, pFF ) from Suns-Voc measurements [36], and to use this value as an upper

limit against which the actual FF can be compared (see Section 2.3.4). Prior to the

introduction of the Suns-Voc technique, two approximate expressions were suggested

by Green [38] (see Eq 2.15) and Swanson and Sinton [52] (see Eq 2.16) to predict

the pFF from the Voc of a silicon solar cell (see Section 2.3.5). These expressions

are convenient because they allow one to, e.g., calculate the pFF of a cell reported

in the literature without Suns-Voc data or to use the implied open-circuit voltage

(iVoc) to gain insight into the FF at the early stages of cell processing (e.g., after

passivation) [36, 37, 40]. However, these expressions were proposed to explain the

behavior of cells operating in low-level injection, for which the recombination rate

is linear in the excess carrier density. Both expressions can be extended to higher

injection by including a non-unity ideality factor. However, the formulas accept only

a single ideality factor as input, and, as the ideality factor varies with injection level

and is determined by the dominant recombination mechanism [34], it is not obvious

which ideality factor to use.

In recent years, these expressions have been occasionally used to calculate

FF without regard for the aforementioned limitations, especially that proposed by

Green. In particular, the expressions have been applied for silicon cells under mid
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to high injection and even for non-silicon solar cells including polymer, organic, dye-

sensitized and multi-junction concentrator cells [14, 56–64]. In addition, regardless

of the injection level and dominant recombination process(es), most often an ideality

factor of 1 is assumed. In this Chapter, we investigate the accuracy of the FF

approximations to understand the range of conditions for which they can safely be

used. Meanwhile, it can provide a concrete understanding of which and how different

variables will affect the fill factor, and so pave the way towards the next Chapters in

which we mostly focus on evaluating, analyzing, designing and finally optimizing of

parameters that determine the fill factor.

Here, our approach is to consider hypothetical solar cells with known recombi-

nation, from which we can calculate the effective lifetime of minority carriers. From

the lifetime curves, we calculate the corresponding exact iVoc and iFF , and compare

the latter to the iFF computed with the approximate expressions using the exact

iVoc. We find that the deviations are significant whenever the incorrect ideality fac-

tor is assumed, and non-negligible even with the correct ideality factor. Along the

way, we elucidate the dependence of Voc and FF on the recombination mechanism,

wafer doping density, and illumination.

3.1 Modeling
3.1.1 Calculation approach

For simplicity, we limit our analysis to solar cells on n-type silicon wafers, though it

can be easily extended to p-type wafers. We begin by generating lifetime data for

hypothetical silicon solar cells using recent models for intrinsic (radiative and Auger)

[65] and bulk defect (SRH) recombination. We neglect surface recombination and

assume perfect passivation for simplicity; intrinsic and bulk recombination turn out

to be sufficient to evaluate the accuracy of the approximate FF expressions. Next,

using the detailed balance model of Richter et al. [20], we compute current density-
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voltage (J-V) characteristics from the lifetime data and find the exact FF and Voc

values for each hypothetical cell. We also extract the injection-dependent ideality

factor from the lifetime using an expression developed by Hameiri et al. [34]. In

select cases, the ideality factor of a cell at open circuit or at maximum power is then

inserted, along with the exact Voc of that cell, into the expression proposed by Green

to find the corresponding approximate FF İn other cases, the injection dependence

of the ideality factor is ignored and a value of 0.7, 1, or 2 is assumed. Finally, we

compare the approximate and exact FF values and calculate the relative difference

between them. Figure 3.1 shows this calculation approach schematically.

3.1.2 Lifetime curves

3.1.2.1 Intrinsic recombination model

We used the parametrization recently published by Richter et al. to model intrinsic

recombination in silicon solar cells [26]. The model outputs the minority-carrier intrin-

sic lifetime as a function of excess carrier density. The main advantage of this model

over previous models is that it considers the increased Auger recombination prob-

ability caused by the Coulomb interactions between electrons and holes. Radiative

recombination within the Richter parameterization is based on the radiative coeffi-

cients measured by Trupke et al. [23], which are 50% smaller than those measured

by Schlangenotto et al. [66], and as with Auger recombination, the effect of Coulomb

interactions are included using the model introduced by Altermatt et al. [67]. The

parametrization also considers the influence of bandgap narrowing on the effective

intrinsic carrier density, which increases with doping and injection level [68, 69].

According to the Richter model, the intrinsic minority-carrier lifetime in silicon
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Figure 3.1: Illustration of the calculation approach used to find both the exact and
approximate FF of a given hypothetical solar cell. Note that, though not done in
the present work, measured lifetimes (dashed box) may be substituted for calculated
lifetimes.

is given by

τintr =
∆n

(np− n2
i,eff )(2.5× 10−31geehn0 + 8.5× 10−32gehhp0) + 3× 10−32∆n0.92 +BrelBlow

(3.1)

with the Coulomb interaction enhancement factors

geeh(n0) = 1 + 131− tanh[(
n0

N0,eeh

)0.66] , gehh(p0) = 1 + 7.51− tanh[(
p0

N0,ehh

)0.63]

(3.2)

In these equations, n and p are the electron and hole densities, n0 and p0 are the equi-
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librium electron and hole densities, ni,eff is the effective intrinsic carrier density, ∆n

is the excess carrier density, Blow = 4.73×10−15cm3s−1 is the radiative recombination

coefficient for lightly doped silicon in low injection [23], Brel is the relative radiative

recombination coefficient according to Ref. [67], and N0,eeh = 3.3 × 1017cm−3 and

N0,ehh = 7× 1017cm−3 are empirical constants.

3.1.2.2 Bulk-defect recombination model

A SRH model [28, 29] was used for recombination through bulk defect states. The

SRH model consider a single trap level within the bandgap that has an assumed

carrier capture behavior. The SRH model introduced by Rein et al. [70] gives the

minority carrier lifetime in n-type silicon as

τSRH = τp0[
n0 + p1 + ∆n

n0 + p0 + ∆n
+K

n1 + p0 + ∆n

n0 + p0 + ∆n
] (3.3)

In Eq 3.3, τp0 is the equilibrium capture time constant of holes, given by

τp0 =
1

σpυthNt

(3.4)

where σp is the capture cross section for holes, υth is the thermal velocity, and Nt is

the defect density. The symmetry factor, K, in Eq 3.3 is characteristic of a defect

and defined by the ratio of the hole and electron capture cross sections: K = σpσp .

n1 and p1 are the SRH electron and hole densities, given by

n1 = Ncexp(−
Ec − E − t

kBT
) , p1 = Nvexp(−

Et − E − v
kBT

) (3.5)

where Ec and Ev are the energies of the conduction and the valence band edges, Et is

the energy of the trap, Nc and Nv are the effective densities of states in the conduction

and the valence bands, and kB and T have their usual meanings.

As shown in previous Chapter 2.1.4, Eq 2.7, the effective lifetime τeff can

then be obtained from the intrinsic and SRH lifetimes by adding them in parallel.
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Later, in Fig. 3.4, injection-dependent lifetime curves of silicon solar cells for intrinsic

recombination, SRH recombination, and intrinsic and SRH recombination, will be

shown and their relation with Voc will be analyzed.

3.1.3 J − V characteristics and exact FF

The approach introduced in Section 2.2.1 is used here to obtain the J − V charac-

teristics. This model was demonstrated recently by Richter [7], to assess the limiting

efficiency of silicon solar cells in the absence of parasitic optical and electrical losses.

We assume narrow-base conditions (the quasi Fermi levels are constant within the

base), for which the quasi Fermi level separation is equal to the output voltage, given

by

V = Vjn + Vjp = (ϕi − ϕn) + (ϕp − ϕi) =
kBT

q
ln((n0 + ∆n)(p0 + ∆n)/n2

i,eff ) (3.6)

where ϕi, ϕn and ϕp are the intrinsic Fermi potential, electron quasi-Fermi potential,

and hole quasi-Fermi potential. Note that the narrow-base assumption is not valid

when the minority-carrier diffusion length is comparable to or smaller than the wafer

thickness (e.g., for low-quality multicrystalline wafers with τp0 < 50µs), a situation

not encountered in this study. The output current of the solar cell is given by the

difference between the generation and recombination current densities

J = Jph − qW∆n/τeff (3.7)

where Jph is the photogenerated current density, q is the electronic charge, W is

the cell thickness, and R is the total recombination rate. For a given value of ∆n,

Equations 3.6 and 3.7 yield the output voltage and current of the solar cell (after τeff

is calculated with Eq. 2.7); sweeping ∆n thus results in a J − V curve from which

the FF can be determined.
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3.1.4 Injection-dependent ideality factor

The approximate FF expressions require a single ideality factor m as input. Most

often, a value is assumed or extracted from the J-V curve of a completed solar cell

by fitting with a diode model. Here, in select instances, we used the formalism

reported by Hameiri et al. [34] to calculate the ideality factor from the minority-

carrier effective lifetime (expressed as the recombination rate) as a function of the

excess carrier density

m = (
1

n
+

1

p
)R
d∆n

dR
=

2∆n+ n0

∆n(∆n+ n0)
R
d∆n

dR
(3.8)

3.2 Results

We begin by comparing the approximations introduced by Green and Swanson and

Sinton. Figure 3.2 shows the FF calculated with the expressions for the commonly

assumed ideality factors m = 0.7, 1, and 2. Despite their different origins and func-

tional dependencies, the two expressions give very similar results, particularly for

low-level injection (m = 1). For simplicity, we therefore investigate the accuracy of

only the expression suggested by Green, and assume that any limitations encountered

apply equally to the expression suggested by Swanson and Sinton in what follows.

Furthermore, the approximate FF is hereafter used to refer to the FF values calcu-

lated with Greens expression (2.15). In assessing Eq 2.15, we consider a hypothetical

solar cell exhibiting only intrinsic recombination, only SRH bulk recombination, or

both mechanisms simultaneously. The first two cases are illustrative because they

have well-defined limiting ideality factors under high and low injection, whereas the

third is representative of a real solar cell with a mediocre bulk lifetime but excellent

surface passivation. The third is likely also representative of a solar cell with excellent

bulk lifetime but mediocre surface passivation (which we do not explicitly treat here)
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Figure 3.2: FF values calculated with the approximate expressions from Green and
Swanson and Sinton for a range of typical Vocs and ideality factors.

because surface recombination is also accurately modeled with the SRH formalism

in most cases. Figure 3.3 shows the Vocs calculated for these three cases using the

methodology described in Section 2.2.1 for a 170µm thick solar cell. The data are

displayed as a contour plot in which the wafer doping density and photogenerated

current density are varied. These quantities were chosen for the axes because the

doping density is the only variable parameter that influences the intrinsic lifetime

(Eq 3.1) and is one of the few parameters that an ingot manufacturer can easily

control; the photogenerated current density appears in Eq 3.7 and changes the ex-

cess carrier density at open circuit and thus the corresponding Voc. In practice, the

photogenerated current density changes over the course of a day, when placing a cell

under concentration, or when using a silicon cell in a tandem. It also varies with

wafer thickness, which is a suitable alternative x-axis variable for Fig. 3.3 if par-

ticular illumination conditions (e.g., AM1.5G) are assumed [7], though the two are

treated independently in Eq 3.7. Doping density enters into the SRH lifetime (Eq.

3.3) in addition to the intrinsic lifetime, but so do several other parameters that char-

acterize the assumed bulk defect. Throughout this paper, we assumed τp0 = 500µs,
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Figure 3.3: Exact Vocs of silicon solar cells on n-type, 170µm thick wafers with vary-
ing doping density under varying illumination levels (photogenerated current densi-
ties). Vocs are shown for cells with intrinsic recombination, SRH recombination, and
intrinsic and SRH recombination in (a), (b), and (c), respectively. The color scale
is the same for each plot. The dash-dotted green lines denote doping densities and
photogenerated current densities for which n/n0 is 0.1 or 10; these values are used to
denote the boundaries of low injection (region above the upper green line) and high
injection (region below the lower green line). The yellow stars correspond to a typical
solar cell with a 2Ωcm n-type wafer under AM1.5G illumination.

K = 1, and Et = 0.5eV (with EV = 0). This hypothetical defect is representative of

many real recombination-active defects in silicon (e.g., Mo, Cr, Ti, and Fe), which

are near mid-gap and have near-unity capture cross section ratios [71–75]. In fact,

the SRH lifetime changes little for 0.3eV < Et < 0.8eV and 0.2 < K < 5. τp0

was arbitrarily chosen based on measured lifetimes in, e.g., high-quality multicrys-

talline or low-quality Czochralski wafers [76]. As Eq. 3.3 indicates, τp0 simply scales

the SRH lifetime. The intrinsic-recombination-limited Voc (Fig 3.3a) and the SRH-

recombination-limited Voc (Fig. 3.3b) are both independent of doping density on

high injection (∆n > 10n0), but they have opposite dependencies on doping in low

injection (∆n < 0.1n0). We briefly digress to explore why. At open circuit, J = 0
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and Eq. 3.7 can be rearranged as

∆n =
Jphτeff
qW

(3.9)

Inserting this into Eq. 3.7 and noting that p0 is negligible in n-type wafers yields an

expression for Voc that can be further simplified in low injection to

Voc = C0(ln(
Jph
W

) + ln(n0) + ln(τeff,oc)) + C1 (3.10)

and in high injection to

Voc = 2C0(ln(
Jph
W

) + ln(τeff,oc)) + C2 (3.11)

where

C0 =
kBT

q
, C1 = −kBT

q
ln(qn2

i,eff ), C2 = −kBT
q
ln(qni,eff ) (3.12)

are constants and τeff,oc is the effective lifetime at open circuit. We first consider

SRH recombination (Fig. 3.3b), which is the simpler of the two cases. Looking at

Eq 3.3 and Fig. 3.4, in high injection the effective lifetime is independent of the

photogenerated current density (or, specifically, ∆n) and the doping density (τSRH =

τp0(1 + K) = 1ms), and thus Eq 3.11 indicates that Voc scales with the logarithm

of Jph and is unaffected by n0. Hence the evenly spaced vertical contour lines in the

lower right half of Fig. 3.3b. In low injection (upper left corner of Fig. 3.3b), the

lifetime is again independent of photogenerated current density and doping density

(τSRH = τp0 = 0.5ms; see Fig. 3.4), but the extra term in Eq. 3.11 causes the Voc to

increase with the logarithm of no in addition to Jph. Hence the diagonal contour lines

(evenly spaced along both the x- and y-axes). For intrinsic recombination (Fig. 3.3a),

in high injection the effective lifetime falls with increasing Jph (increasing ∆n in Eq.

3.1; see Fig. 3.4a) but not as fast as Jph itself increases (Eq. 3.11). This again causes

a logarithmic increase of Voc with Jph (C1 is small), but with weaker dependence than
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Figure 3.4: Injection-dependent lifetime curves of silicon solar cells on n-type, 170µm
thick wafers with varying doping density. Lifetimes are shown for cells with intrinsic
recombination, SRH recombination, and intrinsic and SRH recombination in (a), (b),
and (c), respectively.

for SRH recombination (evenly spaced vertical contour lines with wider spacing). In

low injection, the lifetime is constant with respect to Jph (Fig 3.4a) yet again giving

a logarithmic increase of Voc with JphU̇nlike for SRH recombination, however, the

low-injection lifetime decreases with increasing n0 and does so faster than n0 itself

increases, so that Voc decreases with increasing doping (see Eq 3.11). Interestingly,

the trends in Fig 3.3a, which display the injection-level dependence just described,

are not directly determined by the recombination mechanism (radiative or Auger).

In particular, Auger recombination dominates whenever the excess carrier density

(n = n0 + ∆n) is large, which occurs for increasing values along either axis. That

is, Auger recombination dominates in low injection and some cases of high injection.

Radiative recombination, by contrast, affects Voc approximately as much as Auger,

only in the lower left corner of the Fig, which corresponds to high injection!

Finally, Fig. 3.3c is a blend of Figs. 3.3a and 3.3b, with the Voc lower than

the lowest of the two Vocs from those figures. With the chosen SRH parameters,

SRH recombination dominates at low photogenerated current density, while intrinsic
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recombination dominates at high current density and at very high doping (Fig 3.4c).

For a typical solar wafer and one-sun illumination, which is indicated by a yellow

star, the Voc is 725 mV and is nearly equally determined by intrinsic and SRH

recombination. The cell is approaching high injection at open circuit (∆n = 5n0).

Fig. 3.5ac show contour plots of the exact FF s extracted from the same

J − V curves used to create Fig. 3.3. (Note that each column in Fig. 3.5 has a

different color scale because the range of FF values varies considerably depending

on the recombination mechanism.) As is commonly observed experimentally, the

FF and Voc are somewhat correlated (c.f. Fig. 3.3 and 3.5). However, the shape

of the FF and Voc contours are far from identical because, unlike Voc the FF

is approximately the ratio of voltages: the voltages at maximum power and open

circuit. (This simplified statement in fact assumes that Jmpp/Jsc is constant. In

fact, it varies from 0.9 to 0.97 across the contour plots, see Appendix B). In addition,

the FF s in the case of only intrinsic and only SRH recombination give us little

insight into the FF when both mechanisms are present. Figure 3.5c looks more like

Fig. 3.5b than 3.5a, but with considerably higher values. In particular instances, FF

is additionally complicated by the fact that the dominant recombination mechanism

can be, e.g., SRH at the maximum power point but Auger at open circuit. For a

typical solar wafer under one-sun illumination the FF is 79%, denoted again by a

yellow star, which is nearly 10% lower than the intrinsic-recombination-limited FF

and roughly equal to the SRH-limited FF İnterestingly, increasing or decreasing the

photogenerated current density for this cell will result in a larger FF even though the

Voc increases monotonically with current density. The cell is between low and mid

injection at maximum power (∆n = 0.3n0). Using the exact Vocs in Fig 3.3, we can

now return to Eq 2.16 to find the associated approximate FF s and compare them to

the exact FF s in Fig. 3.5. However, to use the expression, we also require an ideality
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Figure 3.5: (a-c) Exact and (d-i) approximate FF s of silicon solar cells on n-type,
170 µm thick wafers with varying doping density under varying illumination levels
(photogenerated current densities). FF s are shown for cells with intrinsic recombina-
tion, SRH recombination, and intrinsic and SRH recombination in the first, second,
and third columns, respectively. The color scale is the same for each column, but
not across columns. The dash-dotted green lines in (a-c) denote doping densities and
photogenerated current densities for which n/n0 is 0.1 or 10; these values are used to
denote the boundaries of low injection (region above the upper green line) and high
injection (region below the lower line). The yellow stars correspond to a typical solar
cell with a 2Ωcm n-type wafer under AM1.5G illumination. The approximate FF s
in (d-i) were calculated using the Vocs shown in Fig. 3.3 and the assumed (constant)
ideality factors shown. The blue dashed lines are contours of constant error in the
FF in absolute percent. 43



factor. An ideality factor of m = 1 is most commonly assumed in the literature, and

Fig. 3.5df show the resulting approximate FF . Note that the Vocs in Fig 3.3a were

used to generate Fig 3.5d, the Vocs in Fig 3.3b were used to generate Fig 3.5e, and

the Vocs in Fig 3.3c were used to generate Fig. 3.3f. Comparing the colors in Figs

3.5df to those in Figs 3.5ac, there is little correlation between the exact FF and the

approximate FF for any of the three recombination cases. The blue dashed lines are

isocontours of the error in the FF in percent (absolute). Though the inaccuracy is

less than 1% in the upper left regions of Fig. 3.5df, it reaches about 6% for a typical

solar cell (yellow star) with both SRH and intrinsic recombination. That is, using

the approximate expression for this cell predicts an overestimated FF of 85% when

in fact the recombination limit is 79%.

What if, instead of assuming m = 1 under all conditions, we differentiate

between low and high-level injection? The cut-offs for low and high injection are

denoted by the green dash-dotted lines in Fig. 3.5ac. According to the theory,

intrinsic recombination has a constant ideality factor of m = 1 in low injection and a

constant ideality factor of m ≈ 0.7 in high injection (where it is dominated by Auger

recombination). SRH recombination also has a constant ideality factor of m = 1

in low injection, but the ideality factor converges to m = 2 in high injection. The

following shows how these constants for the ideality factor are determined.

In order to calculate the ideality factor in both low and high injection for

different recombination mechanisms, we rewrite Eq 3.6 as

(p0 + ∆n)(n0 + ∆n) = n2
i exp(fracqV kBT ) (3.13)

In low injection, Eq. 3.13 can be reorganized to give

∆n =
n2
i

n0

exp(qV kBT ) (3.14)
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In high injection, Eq. 3.13 instead becomes

∆n = niexp(
qV

2kBT
) (3.15)

The Auger, radiative, and SRH lifetime expressions (see Eq 3.1 and 3.3) can each also

be simplified in these two regimes as shown in Table 3.1. The Ci terms are constants.

According to Eq 3.7, the recombination current density is

Jrec = qW
∆n

τeff
(3.16)

Inserting Eq 3.14 and 3.15, as well as the lifetime expressions in Table 3.1, into

Table 3.1: Lifetimes in low and high injection for individual recombination mecha-
nisms

Recombination Low injection High injection

Aug τ = 1
CLow,Augn

2
0

τ = 1
CHigh,Aug∆n1.92

Rad τ = 1
CLow,Radn0

τ = 1
CHigh,Rad∆n

SRH τ = CLow,SRH τ = CHigh,SRH

Eq 3.16 leads to the recombination current density expressions in Table 3.2. The

ideality factors are bold-faced in each expression. Note that 2/2.92 ≈ 0.7. We can

Table 3.2: Recombination current densities in low and high injection for individual
recombination mechanisms

Recombination Low injection High injection

Aug Jrec = CLow,Augn0n
2
i exp(

qV
1kBT

) Jrec = CHigh,Augn
2
i exp(

qV
2

2.92
kBT

)

Rad Jrec = CLow,Radn
2
i exp(

qV
1kBT

) Jrec = CHigh,Radn
2
i exp(

qV
1kBT

)

SRH Jrec =
qWn2

i

n0CLow,SRH
exp( qV

1kBT
) Jrec = qWni

CHigh,SRH
exp( qV

2kBT
)

now understand why the approximate FF in Fig. 3.5df is most accurate in the upper

left corner of the plots, this area corresponds to low injection, for which m = 1,

as was assumed. The following shows how these constants for the ideality factor are

included. Figure 3.5g-i plot the FF calculated with the approximate expression using
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a high-injection ideality factor for each recombination mechanism. The expression is

again quite accurate in the injection range for which the ideality factor is appropriate

(the lower right corner of the contour plots) for intrinsic recombination and SRH

recombination. When the mechanisms are considered together in Fig 3.5i, however,

it is not clear which ideality factor to use, and using m = 0.7 and m = 2 in the areas

where intrinsic and SRH recombination dominate, respectively, produces unsatisfying

results. In particular, the FF of a typical solar cell is incorrect by 3.5% absolute.

Based on Fig. 3.5, it appears that the approximate FF expression may be

accurate if the correct ideality factor is used; the challenge is selecting that ideality

factor. Each data point in Figs 3.5 and 3.3ac was extracted from an implied J − V

curve generated from a simulated lifetime curve, and Eq 3.8 calculates the ideality

factor from such lifetimes. We therefore have the luxury of knowing the ideality

factor as a function of excess carrier density (m(∆n)) for every doping density and

photogenerated current density. Which carrier density should we use when calculating

the ideality factor for the approximate the FF expression? Since the expression gives

the FF a natural choice is the carrier density corresponding to the maximum power

point; the resulting ideality factor is plotted in Figs 3.6a-c. Another reasonable option

is the ideality factor corresponding to open circuit since the expression takes Voc as an

input; the ideality factor for this case is plotted in Figs 3.6d-f Note that in 3.6 a and d,

the ideality factor transitions from m = 1 to m = 0.7 when moving from low to high

injection, as expected from expression 3.14, 3.15, 3.16 for intrinsic recombination.

Similarly, it transitions from m = 1 to m = 2 in Fig. 3.6 b and e, as expected for

SRH recombination. Our typical solar cell has an ideality factor of m = 1.4 at both

maximum power and open circuit, which is not like any of the ideality factors assumed

in Fig. 3.5.
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Figure 3.6: Ideality factors at (ac) maximum power and (df) open circuit of silicon
solar cells on n-type, 170µmthick wafers with varying doping density under varying
illumination levels (photogenerated current densities). Ideality factors are shown
for cells with intrinsic recombination, SRH recombination, and intrinsic and SRH
recombination in the first, second, and third columns, respectively. The color scale
is the same for each column, but not across columns. The dash-dotted green lines
denote doping densities and photogenerated current densities for which n/n0 is 0.1
or 10; these values are used to denote the boundaries of low injection (region above
the upper green line) and high injection (region below the lower line). The yellow
stars correspond to a typical solar cell with a 2Ωcm n-type wafer under AM1.5G
illumination.
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Fig. 3.7 a and b depict the FF calculated with the approximate expression

using the precise ideality factors corresponding to the excess carrier densities at maxi-

mum power and open circuit, respectively. That is, Fig. 3.7 a and b are like Fig. 3.5 f

or 3.5 i, but instead of a constant ideality factor, the exact, injection-level-dependent

ideality factors shown in Fig. fig.Ideal c and f were used. Note that both intrinsic

and bulk defect recombination mechanisms were considered. Comparing the colors

in Fig. 3.7a, 3.7b, and 3.7c readily reveals that the approximate expression cannot

replicate the exact FF in all cases, even if the true ideality factor is known; there

is an inherent problem in using a single ideality factor to calculate a quantity that

depends on two injection levels. Nevertheless, the expression can come close in select

instances, even for cells not in distinctly low or high injection: For our typical solar

cell, the absolute error in the FF is 2.6% in Fig. 3.7a and 1.7% in Fig. 3.7b. (as

in Fig. 3.5, the blue dashed lines are error isocontours). However, even if somewhat

accurate, this approach is impractical. One is unable to simply guess the best ideality

factor to use, and the method employed here plots a J − V curve from lifetime data,

finds the maximum power point or open circuit, determines the associated Λn, and

uses Eq. 3.8 to calculate m at that ∆n yields the exact FF directly (from the J − V

curve) in fewer steps. Finally, as mentioned earlier, the shape of the FF and Voc,

contours are far from identical because, unlike Voc, the FF is approximately a ratio of

voltages-the voltages at maximum power and open circuit. This simplified statement

in fact assumes that Jmpp/Jsc is constant. In fact, it varies from 0.9 to 0.97 across

the contour plots as shown in Fig. 3.8.

3.3 Parametrization of fill factor upper limit

While it is apparently inappropriate to use the Green and Swanson approximations

in conditions other than those for which they were derived (low injection) and it is

improbable that there is a replacement expression that is generally applicable, it is
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Figure 3.7: Approximate FF s of silicon solar cells on n-type, 170µmthick wafers
with varying doping density under varying illumination levels (photogenerated current
densities). FF s are shown for cells with intrinsic and SRH recombination, and were
calculated using the Vocs shown in Fig. 3.3 and the ideality factors at (a) maximum
power or (b) open circuit (the ideality factors are shown in Fig. 3.6 c and f). The
color scale is the same for both plots. The yellow stars correspond to a typical solar
cell with a 2Ωcm n-type wafer under AM1.5G illumination. The blue dashed lines
are contours of constant error in the FF in absolute percent.
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Figure 3.8: (ac) Vmpp/Voc and (df) Jmpp/Jsc of silicon solar cells on n-type, 170µm
thick wafers with varying doping density under varying illumination levels (photogen-
erated current densities). Ratios are shown for cells with intrinsic recombination, SRH
recombination, and intrinsic and SRH recombination in the first, second, and third
columns, respectively. The color scale is the same for each column, but not across
columns. The yellow stars correspond to a typical solar cell with a 2Ωcm n-type
wafer under AM1.5G illumination. The noisy contours are the result of numerical
calculation error that arises when taking ratios.
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possible to obtain an approximate expression for iFF in the simple case considered

here of intrinsic recombination using only the MATLAB two dimensional curve fitting

tool. The advantage of using this expression is that we only need to know about the

doping concentration, wafer thickness and illumination intensity (photo-generated

current). As seen, both the intrinsic FF and Voc can be calculated independent of

each other and we do not need to know about the value of Voc in order to calculate

FF or vice versa. Furthermore, the equation is completely independent of the ideality

factor value. In fact, using this expression, one can differentiate between both FF and

Voc losses due to intrinsic recombination with the SRH and surface recombination

mechanisms.

F (Jph, N0) = C0+C1Jph+C2N0+C3J
2
ph+C4N0Jph+C5N

2
0 +C6J

2
phN0+C7N

2
0Jph+C8N

3
0

(3.17)

in which,

Jph = log(Jph/w) and N0 = log(n0) (3.18)

The constants are brought in reference [77], for n-type and p-type cells, respectively.

Figure 3.9 a and b, show the calculated FF and Voc using our suggested expression

for comparison with the exact simulations shown in Fig. 3.5. As seen, the trend of

variations is almost the same for both FF and Voc.

3.4 Conclusion

We investigated the accuracy of the Green and, in less detail, the Swanson approxi-

mate expressions for the recombination-limited FF of hypothetical silicon solar cells.

Though accurate for low-defect-density solar cells in very high and very low injection

if ideality factors of 0.7 and 1 are used, the formulas give unacceptable errors for

today’s cells in typical operating conditions. Furthermore, while we considered only

intrinsic recombination and SRH recombination at a single defect, introducing sur-
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Figure 3.9: the calculated FF (a) and Voc(b) using the suggested expression for
comparison with the exact simulations

face recombination or multiple bulk defects in our analysis may exacerbate the error,

particularly if the recombination mechanisms have strong injection dependence. The

root of the problem is that the FF is determined by the recombination at both the

maximum power point and open circuit (and, to a lesser extent, short circuit). As

the dependence of the recombination rate on the excess carrier density frequently

changes between these two operating pointswhich is reflected in a changing ideality

factorno simple analytical expression can capture the complexity of FF . An exten-

sion of this conclusion is that, to accurately reflect the physics inside an operating

cell, the ideality factor(s) in diode models should be a function of (implied) voltage.

What, then, are good practices for predicting the FF upper limit? We suggest

calculating iFF from measured -or, if necessary, simulated- lifetime curves, as we have

done here and others have done before [7, 40, 78]. This approach is becoming more

common for silicon solar cells and has recently been codified in the newest quasi-

steady-state photoconductance decay (QSSPC) software from Sinton Instruments.

Most other cell technologies, however, are not amenable to QSSPC measurements
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and no other comparatively simple technique presently exists to generate lifetime

data as a function of injection level. These technologies would greatly benefit from

new measurement methods, as they would facilitate accurate analysis of FF losses

and prevent misuse of approximate formulas like that from Green.

Alternatively, we extracted an expression to relate iFF and iVoc of solar cells to

the input parameters, i.e., wafer thickness, doping concentration, and photogenerated

current.
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Chapter 4

TCO optimization

As discussed in the introduction, series resistance can have different components,

including bulk series resistance, contact resistance between top and bottom thin films,

TCO sheet resistance and finger and busbar resistances. Among them, the silicon bulk

series resistance is known and provided by wafer manufacturers. Metalization losses

due to fingers and bus-bars are also easily measurable using a multimeter. However,

other sources of series resistance are not very well defined and not measurable. Two

of the most detrimental ones are the sheet resistance of front TCO layers, which limits

the lateral transport of carriers, and the contact resistance at the interface of (a-Si

and C-Si) and (doped a-Si and TCO). Here, we focus more on TCO layers and fill

factor relevant losses. We study the trade off condition between TCO electrical and

optical properties and discuss further the variation of this limitations when the SHJ

is used as the bottom cell.

4.1 Introduction

Single junction crystalline silicon (c-Si) solar cells are reaching their theoretical ef-

ficiency limit and now industrial scale processes are producing cells with efficiencies

above 25% [79]. As a result, further cost reduction of silicon based modules is not pos-

sible unless we come up with innovative designs that can boost the efficiency beyond

30%. Tandem solar cells that can integrate low- and high-bandgap materials are one

of the most promising ideas to accomplish efficiencies beyond 30%. For two junction

structures theoretical efficiencies of 44% can be obtained under 1-sun illumination [8].

Crystalline Silicon solar cells are promising for use as the bottom cell in such tandem

devices due to their near-optimum bandgap and existing giga-watt-scale production

capacity with cheap manufacturing costs [80].
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In a two junction tandem structure, the performance of the bottom cell is most

important for a wavelength range of 700-1200 nm (’IR spectrum’ is hereafter used to

refer to this wavelength range), because higher energy photons are mostly absorbed

by the top cell. Among different silicon technologies, silicon heterojuncton (SHJ)

solar cells are one of the most promising technologies to be used as the bottom cell.

They are well-known because of their high Voc, which results from the separation of

the metal contacts from the absorber. SHJ cells, however, are suffering from high

absorption at a wavelength range of 300-700 nm (’blue spectrum’ is hereafter used to

refer to this wavelength range) mainly in front intrinsic and doped a-Si layers. This

will not be a shortcoming for the SHJ cells that are used in a tandem structure because

this part of the light spectrum is already mostly absorbed in the top cell. Another

advantage of SHJ cells is that their front TCO layer can perform as a tunneling

recombination junction in two-terminal silicon solar cells [81]. TCO layers, however,

are responsible for several losses in the IR spectrum, including, but not limited to, free

carrier absorption (FCA) that can be categorized among optical losses, while sheet

resistance and contact resistance can be categorized among electrical losses of SHJ

cells. Optical losses in SHJ cell structure, is investigated expansively by several groups

[20]. Specifically, performance of TCO at front and back, exposed to wavelength range

of 300-1200nm (’full spectrum’ is hereafter used to refer to this wavelength range)

is compared and it is shown that front TCO layers play a more dominant role [82].

TCO source electrical losses are also investigated by current authors elsewhere under

full spectrum [83].

There is a trade-off between optical and electrical losses in silicon heterojunc-

tion solar cells due to free-carrier absorption (FCA) in the front TCO layer: reducing

FCA by lowering carrier density results in an increase in the sheet resistance and vice

versa. Furthermore, variation of carrier density changes the refractive index and thus
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the reflectance. Therefore, we need to optimize the front TCO thickness and carrier

density in such a way that the overall power loss caused by reflectance, FCA, and

series resistance is minimized. While optical optimization of the front TCO has al-

ready been thoroughly investigated [20, 82], a simultaneous study of ITO losses, both

electrically and optically, has not been performed yet at one sun (single junction), let

alone for a tandem structure, for which the SHJ cell exposure to light is limited to

the IR spectrum. Accordingly, for tandem application, the photo-generated current

drops to almost half of its value under full spectrum; this would result in lower elec-

trical losses by decreasing the sheet resistance. As a result, more transparent - lower

carried density with higher sheet resistance- TCOs can be applied on the front side,

which then lead to comparable optical losses of front and back TCOs.

Here, we introduce and validate a methodology to design the front TCO layer

of a SHJ solar cell to minimize the total associated power loss. We apply this method-

ology to the full spectrum - the wavelength range seen by a single-junction SHJ cell

- as well IR spectrum, the wavelength range seen by a SHJ cell in a tandem with an

approximately 1.75-eV-bandgap top cell. The latter analysis is limited to the case of a

four-terminal tandem configuration, as the constraints on the front TCO are substan-

tially different in a monolithic two-terminal configuration, and a TCO layer may not

be necessary at all. To highlight the importance of this optimization, we evaluate our

cells for IR spectrum and full spectrum, using four TCO films deposited with varying

carrier concentration, and therefore with different transparency and conductivity.

For IR spectrum optimized SHJ cells, in particular, that are designed specif-

ically to serve as bottom cells in four terminal tandems, the thickness of the front

TCO layer, which acts as an anti-reflection coating, is tuned to maximize transmis-

sion of the 700 − 1200nm light that will be incident on the bottom cell. The front
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TCO layer is also made with lower carrier density than in a one-sun cell, which de-

creases IR parasitic absorption without compromising lateral transport because the

cell operates at approximately a half-sun equivalent (the generation rate is halved).

Accordingly, for the IR spectrum, due to the lower value of photo-generated current,

higher sheet resistances are tolerable and so finger spacing can be increased, thereby

reducing shading losses.

Several groups have published silicon-based tandems, with NREL presently at

the top of the one-sun efficiency chart at 29.8% with an InGaP cell stacked on top of

a silicon heterojunction (SHJ) solar cell [84] in a four terminal structure. This four

terminal tandem could be significantly improved by a tuned silicon bottom cell: A

better infrared (IR) light response by minimizing reflection for IR light, as shown in

our previous works [22], would push the tandem beyond 30%.

4.2 Experimental: TCO and a-Si layers fabrication

The TCO material that we have used in this work is indium tin oxide (ITO), reactively

sputtered at room temperature using an MRC944 tool with a DC power supply using

a target with a 90/10 In2O3/SnO2 ratio. The oxygen concentration in the plasma

and the ITO film thickness were varied to obtain carrier densities that varied from

2.5 × 1020 to 5.8 × 1020cm−3; and mobilities of all 20 ± 10cm2/V s. ITO films were

deposited on glass substrates both with or without i/n a-Si stacks beneath for optical

and electrical characterization. Electron mobility and density were determined from

hall measurements.

ITO films, including also i-, n-doped and p-doped a-Si:H layers were also de-

posited on polished silicon wafers to measure their thickness, refractive index n, and

extinction coefficient k using a Woollam M-2000 spectroscopic ellipsometer. Ellip-

sometry spectra were recorded for an angle of incidence of 70◦ and a wavelength
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range of 300−1200nm; transmittance and reflectance spectra were recorded with the

Lambda 950 spectrophotometer. The a-Si:H layers were deposited on glass and their

ellipsometry and transmittance data were simultaneously fitted using a Tauc-Lorentz

dispersion relation. ITO layers were deposited on a-Si:H i/n stacks on polished silicon

wafers (the hydrogen in the a-Si:H layers alters the ITO properties upon annealing

and thus it is preferable to characterize structures similar to those in the cells of

interest) and their ellipsometry and reflectance data were simultaneously fitted us-

ing a combined Tauc-Lorentz and Drude dispersion relation. The complex refractive

indices of monocrystalline silicon and silver (Ag) were taken from literature. Deter-

mined optical constants (n and k) of each specific ITO film, were used to simulate

complete SHJ cells as a function of ITO thickness. Simulations of complete SHJ cells

were done with Module Ray Tracer (MRT) from PV Lighthouse. MRT combines

Monte Carlo ray-tracing with thin-film optics. Random pyramids of the textured

silicon were simulated with base angle of 50.5◦ as was determined from angle-resolved

reflectance measurements of the textured wafers.

Simultaneously, complete SHJ cells were fabricated applying all of the above

ITO conditions to observe the corresponding effects on cell outputs. In detail, phos-

phorous doped monocrystalline CZ silicon wafers were double-side textured in KOH

and subsequently cleaned in RCA-B and Piranha to remove metal and organic con-

taminants. The wafers were then dipped in 5% HF solution to remove the native

oxide layer and immediately put under vacuum for a-Si:H deposition. a-Si:H stacks

were deposited using PECVD (Applied Materials P − 5000); Chamber pressure and

temperature was set to 4 torr and 250◦C, respectively. ITO layers were sputtered

through a shadow mask to define several 4 cm2 cells per wafer. Silver was sputtered

on the back side of the wafer to form a full area hole electrode while on the front the

silver was screen printed to finish the electron electrode. The silver fingers crossed
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the cell with bus bars that were outside the measurement area. The cells were then

annealed at 200◦C for 20 minutes to dry the silver paste. External quantum efficiency

(EQE) and reflectance measurements were performed on cells and were recorded over

the 300 − 1200nm wavelength range using a PV Measurements QEX10 tool. The

total reflectance was measured over the same wavelength range using a PerkinElmer

Lambda 950 spectrophotometer equipped with an integrating sphere. The angle of

incidence was 7◦ from the wafer normal. Finally, Sinton FCT-450 flash tester was

used to measure the IV curve along with the Suns-Voc curve of each cell.

4.3 TCO layer properties

Our main goal here is to determine total power losses due to front TCO layers, both in

experiment and simulation, and to compare them. To perform the simulation we need

to know our layer characteristics, specifically a-Si layers and TCO, µ,N, n, k, t for a

wide range. We selected ITO as our TCO layer because it’s common and has tunable

thickness and carrier density nearly independent of mobility. The analysis can be

extended to any other TCO material. Several ITO layers with different characteris-

tics were studied, among them two sets of samples with different O2 concentrations,

selected for further discussion in this paper.

Before we focus on our simulation and methodology, we need to have accu-

rate n and k values of our layers. Other research groups have already studied ITO

optical characteristics [48, 85]. Our measurement shows strong coincidence with n, k

values already reported in the literature. However, as well studied in Ref. [86], we

found that having an under-layer, a-Si:H layers would affect both electrical and op-

tical characteristics of ITO layers significantly and complicate the role of variation

in layer thickness, O2 fraction and annealing state. The main reason is the effusion

of hydrogen from underlying a-Si:H layers into ITO after annealing for 20 min at
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220◦C. In fact, Hydrogen acts as a dopant and so its effusion leads to an increase in

both ITO conductivity and free carrier absorption. The pattern of Hydrogen effusion

in ITO layers is dependent to ITO layer O2 concentration, ITO layer thickness and

annealing time and temperature after ITO layer sputtering. Figure 4.1a-c shows mea-

sured carrier density, mobility and sheet resistances for ITO layers with two different

O2 concentrations (2.5% and 7%) sputtered on i- and p-doped and i- and n-doped

a-Si:H layers before (as-deposited) and after annealing. Please note that as ITO lay-

ers become more transparent (higher O2 concentration), hydrogen effusion plays a

more significant role and leads to a significant boost in the carrier density. The same

dependency is observed for layers sputtered on n doped a-Si:H layers. The carrier

density decreases with increasing thickness; this could be due to lower concentration

of hydrogen in thicker ITO layers compared with thinner ones. The mobility does

not seem to have a strong dependence on ITO layer thickness because an increase in

carriers concentration increases the mobility a little bit. The reason for this is unclear

to us. Given the large change in carrier concentration for the more transparent layer

after annealing, we investigated the effect of annealing temperature (the stars in each

figure correspond to TCO layers made with identical conditions) in Fig. 4.1d-f. A

unique feature of heterojunctions is their symmetry prior to TCO deposition, and

both front-emitter and rear-emitter configurations are common. For completeness,

these figures also include the properties of the same TCO layers deposited and an-

nealed on i/p. The take away from Fig. 4.1d-f is the following: (1) although the

i/n and i/p layers are quite different, they have the same effect on the overlying ITO

layers when annealed, (2) an increase in annealing temperature leads to a stronger

hydrogen effusion and results in higher carrier density. As a conclusion, the anneal-

ing temperature is critical in determining the final carrier density of front ITO layers.

Concurrently, it significantly affects the finger and bus bars series resistances. This
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Figure 4.1: Carrier density, mobility and sheet resistance for ITO layers with varying
thickness and O2 concentration conditions, with or without i/n and i/p a-Si stack
layers beneath. Blue stars show the conditions applied to our IR spectrum optimized
solar cell.
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Figure 4.2: Refractive indices of the four ITO films studied, with different layer
thicknesses leading to different carrier concentrations.

interdependency should be considered in any further device structural design.

For the rest of the paper, we chose four representative layers with the same

oxygen concentration and four thicknesses, which lead to four carrier densities, to

use for the loss simulation. These ITO layers are the ones shown in Fig. 4.1a-c with

empty dark blue color squares. Corresponding refractive index, n, and extinction

coefficient, k, values for these layers have been shown in Fig. 4.2. This data is used

in our simulations in rest of the paper.

4.4 Minimizing current loss

In most similar studies [20, 87–89], it is common to perform EQE loss analysis, which

focuses just on Jsc to optimize TCO and a-Si:H layer characteristics optically. We take

this approach to begin with, since it is also a convenient way to validate our optical

model. In the final analysis, however, electrical losses will be considered in parallel

to optical losses through designing a power (instead of current) loss model. First,

different components of current loss in front ITO layers is investigated, then parallel
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electrical loss due to variation in sheet resistance of these ITO layers is considered.

Adding them together, the output power loss is calculated and further optimization

and suggestion is provided based on illumination under both IR spectrum and full

spectrum.

Fig. 4.3 shows the reflected current, parasitic absorption current, escaped

current and photo-generated current in a textured silicon substrate covered with

four different ITO films with varying carrier concentration, calculated as a function

of thickness under both IR spectrum (solid lines) and full spectrum (dashed lines)

illumination.

Fig. 4.3a shows the reflected current for the four ITO films as a function

of thickness. To minimize the front surface reflectance in the IR spectrum with

a single layer ITO antireflection coating, the optimal refractive index (nopt), and

optimal thickness (topt) are given by nopt =
√
nair × nSi and topt = λ/(4 × nITO).

Thus, for nSi = 3.5 the nopt is equal to 1.87 and topt is ≈ 120nm for a minimum

at λ = 900nm and nITO ≡ nopt. Figure 4.3a shows the simulated front surface

reflectance loss expressed in terms of current for the four ITO films (four different

carrier concentrations) as a function of their thickness. Not surprisingly, the minimum

front-surface reflectance under IR spectrum illumination, occurs for ITO thicknesses

greater than 120nm, and the minimum value depends on the carrier concentration

because it alters the refractive index of the ITO film (see Fig. 4.2a). Among these four

ITOs the lowest value of minimum reflectance loss is for 2× 1020cm−3 concentration

ITO because its refractive index is closer to nopt at λ = 900nm and thus also its

thickness is closer to 120nm. For other ITOs that have higher carrier concentration

their refractive index at λ = 900nm is lower than nopt and thus their minimum

reflectance loss is achieved at thickness greater than 120nm. This thickness establishes
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a reflectance minimum near 900nm, in the middle of the IR spectrum wavelength

band. Figure 4.3a suggests that IR SHJ cells need thicker ITO layers; however, to

obtain the highest possible photo-generated current in the cell, FCA in the ITO films

should be taken into account in addition to reflection.

Fig. 4.3b shows FCA loss and its dependence on ITO layer thickness and

carrier concentration. The parasitic absorption current increases equally (with the

same slope) both under full spectrum and IR spectrum conditions because TCO

absorption is primarily in the IR region being the common part under both spectrums.

There is a constant offset between two sets of curves, however, that is due to the a-

Si:H layers absorption in the blue region. Figure 4.3c, shows the escape current loss

(λ ≥ 1000nm) for these four different ITO films. Escape reflectance (loss) is a result of

a low absorption coefficient of the absorber and non-optimal light trapping scheme.

But even in a hypothetical ’perfect’ solar cell with Lambertian light-trapping and

no front-surface reflectance and no parasitic absorption the escape reflectance would

still be present and would be the only loss. The only way to minimize escape loss

is either by changing the absorber to one that has higher absorption coefficient or

by adopting light-trapping scheme that is superior to Lambertian. Consequently,

escape reflectance is not ’bad’ and does not determine the optimal ITO thickness.

Therefore, for a given light trapping scheme and front-surface reflectance the escape

loss is inversely proportional (not linearly) to parasitic absorption. As expected, the

highest escape reflectance loss is given for the most transparent ITO (2× 1020cm−3)

and the reason is because it has the lowest parasitic loss.

The photo-generated current is shown in Fig. 4.3d and is given by the max-

imum current afforded by the random-pyramid texture (which is near-Lambertian)

minus the losses in Fig. 4.3a-c. It shows how the absorbed current varies as a func-
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Figure 4.3: Reflected (a), parasitic (b), escaped (c) and absorbed currents (d) for
ITO layers with varying thicknesses and O2 concentrations, with i/n a:Si stack layers
beneath. Stars show the corresponding measured EQE currents of fabricated cells
applying each specific layer.

tion of ITO thickness. Note that for IR spectrum illumination the current maximum

is shifted toward lower thicknesses than those found in Fig. 4.3b, because parasitic

absorption in the IR increases with film thickness. This is different than under full

spectrum illumination, for which the best ITO thickness is approximately 70nm, re-

gardless of the carrier concentration (i.e., front-surface reflection is more important

than FCA for full spectrum illumination). Furthermore, because of enhanced FCA

at higher carrier concentrations, the optimum ITO thickness decreases with increas-

ing carrier density-opposite the trend for reflectance minima, in which the optimized
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thickness was shifted to higher values for increasing carrier density because of decreas-

ing refractive index. The optimal ITO thickness for an IR SHJ cell-from a current

density perspective-is approximately 100nm for the corresponding carrier density of

to 2.5 × 1020cm−3. Under full spectrum, however, the optimum thickness would be

around 70nm and again for the corresponding carrier density of 7× 1020cm−3 which

is not shown here.

SHJ solar cells were fabricated with front ITO layers of varying thicknesses and

carrier concentrations corresponding to those modeled. This was achieved by varying

the thickness of ITO films deposited on a-Si layers for two different O2 concentrations

during sputtering, namely those shown in Fig. 4.1. The stars in Fig. 4.3d show

the short-circuit current densities (Jsc) obtained from integrating external quantum

efficiency (EQE) measurements on SHJ cells over the IR spectrum and one spectrum

wavelength range. The simulated and measured values are well matched and validate

the broad maximum around 100nm for the IR spectrum. Small discrepancies (with

at most 2% error) between the measured and modeled data are most likely due to

imprecise modeling of n and k values of ITO films sputtered on glass slides with i/n

a-Si layers beneath (totally three layers needed to be modeled and fitted).

4.5 Minimizing power loss

Optical optimization of the front TCO layer is important, however, there is always a

trade-off between electrical and optical losses. For each specific TCO carrier concen-

tration, to determine the TCO film thickness which leads to both the lowest optical

and electrical losses, we calculated power losses due to front-surface reflection, FCA

in the TCO layer, sheet resistance, escaped light and shading, separately and then

summed over them (see following expression).

Ploss(n, t, l) = Pshading(l) + Psheet(n, t, l) + Poptical(n, t) (4.1)
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where

Poptical(n, t) = Pparasitic(n, t) + Preflection(n, t) (4.2)

In which, Ploss, Pshading, Psheet, Poptical are corresponding to total, shading, sheet and

optical power losses, respectively. Optical power loss itself includes both parasitic and

reflection losses denoted by Pparasitic and Preflection respectively. n, t and l represent

carrier density, ITO thickness and finger spacing, respectively. Note that the TCOs

contribution to the lumped contact resistance, resulting from its interfaces with both

a doped a-Si:H layer and metal fingers, is ignored in this analysis. These losses

are not readily calculable, even if the precise properties of the adjacent layers are

known (which they are frequently not), but we anticipate that any contact resistance

may be a function of n but not t or l [22]. Note that power loss can be defined

and reported in different forms, e.g. power loss compared to silicon radiative-limit

efficiency assuming Lambertian light trapping. What we reported here, however, is

defined as a percentage of the total photon power in the wavelength range of 300 to

1200nm (full spectrum) or 700 to 1200nm (IR spectrum).

Ploss(n, t, l) = 1− Ptotal(n, t, l)

Pinput

(4.3)

The advantage of evaluating power loss instead of any other parameter is that even

if its absolute value is not accurate (e.g. because of imprecise modeling of optical

constants), the corresponding ITO thickness characteristics for which it would be

minimized (or optimized) will not change.

The optical power losses are calculated from the same reflectance and ab-

sorbance spectra, generated by the PVLighthouse Module Ray Tracer, used to cal-

culate the current losses in Figure 3. The spectra are multiplied by the AM1.5G

spectrum and integrated over the wavelength ranges identified above.

Pparasitic(n, t, l) =

∫ 1200

300 or 700

f(λ)Abs(n, t, l, λ)TCOdλ (4.4)
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Preflection(n, t, l) =

∫ 1200

300 or 700

f(λ)Ref(n, t, l, λ)TCOdλ (4.5)

Finally, the power loss resulting from shadowing of the cell by the fingers can be

calculated through

Pshading(l) = Pinput

(
awf + lwb

al

)
(4.6)

where a is the finger length, l is finger spacing and wf and wb are the finger and

busbar thicknesses, respectively.

The ohmic power loss Psheet is then obtained using the following expression

[90] under IR spectrum and full spectrum, respectively.

Psheet = (1/12)Rsh × J2
MPP × l2) (4.7)

where Jmpp is current at maximum power point (MPP). The sheet resistance for each

of the four ITO films was calculated using the following expression.

Rsh =
1

eµnt
(4.8)

where e and µ are electron charge and mobility. Measured values of mobility alongside

the carrier densities shown in figure 4.4a used to calculate the sheet resistance of each

of four specific layers. Corresponding sheet power loss is shown in figure 4.4b and

4.4c under IR and full spectrum, respectively. Sheet power loss increases both by

increment of finger spacing and sheet resistance. At the upper end, with wide finger

spacing and high sheet resistances, its value will not exceed 5%.

These figures can be used as a guide to determine the highest tolerable sheet

power loss for a given sheet resistance and finger spacing. Based on the obtained

value for sheet resistance, one may then determine the allowed pairings of carrier

concentration and mobility. For instance, with a finger spacing of 3mm and an

allowed power loss of 2%, under IR spectrum illumination, sheet resistances of up to
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Figure 4.4: a) Sheet resistance for four different ITO film carrier densities, b) Sheet
power loss (color scale), as a fraction of the input power, versus sheet resistance and
finger spacing. The vertical lines correspond to the ITO layer thicknesses for which
the power loss minimized in figure 4.5a and 4.5b for IR spectrum (solid lines) and full
spectrum (solid lines) illumination, respectively.
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200Ω/sq may be tolerated while under one sun, values lower than 120Ω/sq are needed.

Not surprisingly, this indicates that under IR spectrum illumination the front TCO

is less restricted by electrical optimization compared to illumination under one sun

condition.

Finally, by adding the optical and electrical power losses, the total power loss

versus ITO thickness and finger spacing is calculated for each of the four ITO lay-

ers with different carrier densities. The results are plotted in figure 4.5a and 4.5b,

corresponding to IR spectrum and full spectrum, respectively. Decreasing carrier

concentration, we shift toward lighter blue colors (figure a1 toward a4 and similarly

b1 toward b4) both under IR and full spectrum illumination. This shows the domi-

nance of optical power loss over electrical power losses (vertical axis does not play a

significant role in color variation). This can be observed by comparing contour values

in figure 4.5 with figure 4.4 b and c; The sheet power loss is much smaller compared

to the total power losses. Dashed and solid lines in figure 4.5 correspond to the ITO

thickness for which the total power loss is minimized. The optimum will be shifted

to the left (thinner ITO layer) by increasing the carrier concentration and resulting

boost in optical power losses. The solid and dashed lines in figures 4.4 and 4.5 are

actually corresponding to each other.

Figure 4.6 shows the total power loss for the optimized ITO thickness indi-

cated by the solid and dashed lines in figure 4.5. As seen, by considering reflection and

escape losses in addition to parasitic absorption, the role of sheet power loss becomes

less significant and correspondingly its dependency on finger spacing decreases, espe-

cially under half sun illumination. This figure can be used as a guide to design the

optimum finger spacing of the front screen for a specific carrier concentration. Figure

4.6 also shows that a finger spacing of around 3mm leads to the lowest loss under
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Figure 4.5: Total power loss versus ITO thickness and finger spacing for four ITO
layers with different carrier densitie under IR spectrum (a) and full spectrum (b).
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Figure 4.6: Total reflection, FCA, shading, and sheet power loss of SHJ cells with
four ITO films and varied finger spacing. Results are shown under half sun (solid
lines) and one sun (dashed lines) illumination.

half sun illumination for the TCO with a carrier density of around 2.5 × 1020cm−3.

Under one sun illumination using the same film, a finger spacing of 2.2mm has the

lowest loss. These two ITO layers have optimal thicknesses of 73nm and 103nm,

respectively. Note that as mentioned before, these presented values are all related to

the set of samples with an O2 concentration of 2.5% and varying thicknesses that were

all relatively conductive. For more transparent samples (7%O2), however, parasitic

losses in the front ITO layers diminish, while electrical losses increase; this leads to a

stronger dependence on finger spacing (sharper minima for the total power loss would

be observed). Note that, here we have presented the global optimum values which

means that for each specific ITO layer thickness, the total power loss was calculated

allowing us to select the minimum.

Figure 4.7 shows the contributing components of figure 4.6 in more detail.

These components are shading power loss, sheet power loss, absorption power loss

and reflectance power loss. The last two among them are categorized under optical

72



Figure 4.7: Building components of total power loss (shown in figure 4.6) including
shading power loss, sheet power loss, absorption power loss and reflectance power
loss.

power loss and thus do not depend on ITO thickness. The shading power loss is

shown for three varied finger line widths.

We can expand this analysis to other TCOs like indium zinc oxide (IZO) or

hydrogen-doped indium oxide; these layers are usually more transparent with higher

mobilities, but their contact resistance (to silver paste, doped amorphous silicon lay-

ers, or both) is larger. The rear TCO can also be further optimized for the half sun

range using a more transparent and thicker layer at the back [20].

Applying all TCO optimizations on complete cells, we measured EQEs for

IR SHJ cells that exceed that of the Panasonic SHJ record cell [4] for wavelengths
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Figure 4.8: EQE of IR SHJ cells with optimized ITO and IZO front layers, as well
as the EQE of the Panasonic record cell [4].

above 700nm as shown in figure 4.8. The Voc of the IR SHJ cell with IZO is 722mV

under one-sun illumination and 705mV at the half-sun illumination (using a neutral

density filter) that is nominally seen by a bottom cell in a tandem structure. The

FF is 77.9%, measured at half-sun illumination. For the range of 700− 1200nm, the

AM1.5G-weighted efficiency of the IR SHJ cell at half-sun illumination is 36%.

4.6 Cell outputs

In this Section we present our cell results, mainly FF and efficiency for both sets (2.5

and 7%O2) of our samples. As we will see later, Jsc(obtained from EQE measurement)

values confirm our simulated results. In figure 4.9, we can see that both FFand

efficiency are also following the predicted trends. As shown in figure 4.6, for the

range of the carrier densities that we presented, finger spacing between 2 and 3mm

have comparable losses so we we do not expect a recognizable dependence of FFon

the finger spacing. The importance of this optimization for IR light is clear: the

calculated difference in photo-generated current density between the two cases is

1.1mA/cm2. Note that this gain is significant for a silicon bottom cell working under

reduced illumination with a maximum theoretical photo-generated current density of
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Figure 4.9: shows the measured FFand efficiency values on three different cells with
different spacing. Cells in the left column are measured under half sun, while the ones
in the right column are measured under one sun. Red curves represent cells with set
of 2.5%O2 concentration, blue curves represent cells with set of 7%O2 concentration.

22.5mA/cm2 (1.1/22.5 = 4.9%).
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Chapter 5

Contact resistivity

1.

5.1 Introduction

As bulk quality and passivation quality of silicon wafers improves and so recombina-

tion losses decrease, series resistance related losses turn to become the most significant

source of loss in SHJ solar cells. As initially discussed by Wurfel and Cuevas [11, 12],

carrier selective contacts can be considered as the most detrimental source of total

series resistance losses. An electron selective contact must have the following prop-

erties: 1) the voltage drop produced by the electron current towards the electron

contact needs to be less than a few millivolts to maintain high fill factor (ideally, the

external voltage should be matched with the implied voltage) and 2) the hole current

towards the electron contact must be negligible . The same can be said for the hole

contact by swapping the word hole for electron. These conditions are realized when

a contact: 1) has a high conductivity for one of the carriers and 2) has a large asym-

metry in the conductivities of the two carrier types- the conductivity of the minority

carrier must be low.

While the above cited works give excellent qualitative definitions for selectiv-

ity in terms of the conductivities of the majority and minority carriers, Brendel and

Peibst capture the essence of these conductivities in terms of experimentally measur-

able parameters: the contact resistivity, ρc, and the contact recombination parameter,

J0. The conductivity of majority carriers is captured in ρc while the conductivity of

minority carriers is captured in J0 which can clearly be seen in the first mathematical

1This chapter is co-written by William Weigand, PhD student at Holman group, ASU; Contact
address: William.Weigand@asu.edu
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definition of selectivity. Brendel and Peibst define the selectivity of the contact as

the logarithm of the ratio of the thermal voltage, Vth, to the product of J0 and ρc:

S10 = log(Vth/(J0ρc)) [91]. This quantitative definition of selectivity clearly expresses

the requirements outlined above and provides an experimental pathway to determine

selectivity: J0 can be determined through lifetime measurements [92], while ρccan be

determined via transfer length method (TLM) measurements.

As an upper bound of contact resistivity for contacts that have a small area,

Schroeder and Meier propose a solar cell with a front contact fraction of 5% of the

cell area and a front sheet resistance of (100Ω/sq) from which they calculate that the

contact resistivity must be less than 2 mΩcm2 for a power loss of less than 0.5%. For

a contact that is full area, such as the rear side of a solar cell or either contact in

a heterojunction solar cell the conditions are a bit more relaxed, allowing a contact

resistivity as high a 83 mΩcm2 for the same power loss [93]. While one would expect

that a 20 fold increase in contact area would result in a 20 fold increase in contact

resistivity, the effect of current crowding for a smaller contact fraction becomes a

limiting factor in the calculation.

Contact resistivity measurements are not new in silicon solar cell development

and have been performed on contact structures with a wide range of values. There

are three main methods used to determine contact resistivity. The simplest method

is TLM, where one measures the resistance between a series of contact pads that are

spaced at varying distance between each other [90]. Circular TLM (CTLM) is similar

to TLM, except annular contacts are used instead of the traditional rectangular pads

[94]. Contact resistivity can also be extracted by measuring the resistance through

an entire device as described by Cox and Strack [95].

Table 5.1 provides a non-exhaustive list of different contacts, both metal to
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diffused emitter and multi-layer heterojunction types, and their respective contact

resistivities. Although heterocontacts tend to show a lower J0 than direct metal

contacts, their corresponding contact resistivities - with the exception of the Ca/T iOx

and LiFx/Al electron contacts and the MoOx hole contact - are 1 − 5 orders of

magnitude higher than a metal - to - diffused emitter contact. The relatively low

contact resistivity of the exceptions mentioned above reflects their potential candidacy

to boost the efficiency of silicon solar cells towards theoretical limits by acting as

carrier selective contacts.

Table 5.1: Contact resistivities of carrier selective contacts.

Contact type Contact test structure ρc(mΩcm2)

Metal to diffused emitter c-Si(p)/c-Si(n+)/Ag paste [96] 1-2
Metal to diffused emitter c-Si(p)/c-Si(n+)/Ni/Cu [97] 0.035
Metal to diffused emitter c-Si(p)/c-Si(n+)/Ti/Pd/Ag [97] 0.073
Electron Heterocontact Al/Mg/c-Si(n)/MgOx/Al [98] 17.5
Electron Heterocontact c-Si(n)/a-Si:H(i)/Mg/Al [99] 220-310
Electron Heterocontact c-Si(n)/TiOx/Ca/Al [100] 5
Electron Heterocontact c-Si(n)/LiFx/Al [101] 2
Electron Heterocontact c-Si(n)/a-Si:H(i)/a-Si:H(n) [16] 370
Electron Heterocontact c-Si(n)/a-Si:H(i)/a-Si:H(n)/Ti/Al [102] 30
Electron Heterocontact c-Si(n)/a-Si:H(i)/a-Si:H(n)/Ti/Cu [102] 10
Electron Heterocontact c-Si(n)/a-Si:H(i)/a-Si:H(n)/Ti/Pd/Ag [102] 10
Electron Heterocontact c-Si(n)/a-Si:H(i)/a-Si:H(n)/Al [102] 10
Electron Heterocontact c-Si(n)/a-Si:H(i)/a-Si:H(n) [103] 140
Electron Heterocontact c-Si(n)/a-Si:H(i)/BZO [104] 40
Electron Heterocontact c-Si(n)/LiF/Al [105] 26

Hole Heterocontact c-Si(p)/MoOx [19] 1
Hole Heterocontact c-Si(p)/a-Si:H(i)/µ c-Si [106] 800
Hole Heterocontact c-Si(p)/a-Si:H(i)/a-Si:H(p) [97] 380
Hole Heterocontact c-Si(p)/a-Si:H(i)//a-Si:H(p) [103] 240
Hole Heterocontact c-Si(p)/a-Si:H(i)//a-Si:H(p) [107] 11
Hole Heterocontact Glass/PEDOT:PSS/Ag [108] 28

Interestingly, a thorough contact resistance analysis has not been fully re-

ported for the most developed heterocontact to silicon solar cells: the amorphous

78



silicon/crystalline silicon heterocontact. This contact, originally developed by Sanyo,

is now a key ingredient in the highest efficiency silicon solar cells to date with effi-

ciencies greater than 26%, which utilized the heterojunction back contact technology

[8]. The importance of the a-Si:H/ITO interface has been shown by Gogolin, et al,

who measured all the resistive losses except the contact resistance of a typical sili-

con heterojunction solar cell (SHJ) and by subtracting the measured values from the

measured series resistance they show that the a-Si:H/ITO interface is typically the

most dominant resistive loss [17].

Similar to Gogolin, Lee, et al. attempted to understand the resistive losses in

HBC cells and calculated the contact resistance by creating test structures to measure

the total resistance through a stack containing metal, emitter a-Si:H(p), n c-Si, metal

(ohmic contact) and subtracting off the known resistances determined through similar

test structures. As seen in Table 1, they obtain values of 0.38 and 0.37 Ωcm2 for the

a-Si:H(i)/a-Si:H(n)/ITO/Ag and a-Si:H(i)/a-Si:H(p)/ITO/Ag contacts, respectively,

contradicting the well held belief that for SHJ the hole contact causes the most

detrimental resistive loss [16].

The most direct measurement of the contact resistance in SHJ solar cells came

from Lachenal, et al. [103]. In this work the authors used the method developed

by Sinton and Cuevas [103] to calculate a total series resistivity of 0.62 Ωcm2 for

a rear emitter bifacial SHJ solar cell. In addition, the authors used TLM to de-

termine the contact resistivity of the a-Si:H(i)/a-Si:H(n)/ITO/Ag and a-Si:H(i)/a-

Si:H(p)/ITO/Ag stacks with a value of 0.14 Ωcm2 for the n-type stack and 0.24

Ωcm2 for the p-type stack. Summing these two contact resistivities accounted for

just over 60% of the total series resistance in the cell indicating the importance the

resistivities of these contacts play in the overall performance of SHJ solar cells.
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In this Chapter we extend the analysis of Lachenal, et al. by measuring the

contact resistivity as a function of a-Si:H and ITO layer parameters and correlate with

cell performance. Specifically, we focus on the hole contact in a traditional SHJ solar

cell consisting of a-Si:H(i)/a-Si:H(p)/ITO/Ag and quantify the contact resistance

through the transfer length method, series resistance, pseudo- fill factor (pFF ), and

fill factor (FF ) as a function of easily tunable process parameters. In particular, we

vary the a-Si:H(i) thickness, the a-Si:H(p) thickness and gas flow during PECVD, and

the oxygen (O2) gas concentration during ITO sputtering. From our experiments we

quantify the impact of the hole contact resistance on SHJ solar cell device operation.

5.2 Hole Contact Resistivity
5.2.1 Materials and methods

To investigate the effects of the hole contact stack in the SHJ solar cell we made both

TLM structures, to measure contact resistance, and cells, to extract pFF , FF , and

series resistance, in parallel. As shown in figure 5.1a, the TLM structures consisted

of a p-type wafer, symmetric hole contacts and a TLM pattern in sputtered ITO and

Ag. As shown in figure 5.1b, the cells consisted of an n-type wafer with the same hole

contact on the back as that of the TLM structure except the sputtered ITO and Ag

are now full area and there is an electron contact on the front.

Boron- and phosphorous-doped CZ silicon (CZ Si(p,n)) wafers (156mm pseudo-

square) were double side textured in KOH to a thickness of 180 µm and subsequently

cleaned in RCA-B solution for metals removal, Piranha solution for organics removal,

and again in RCA-B solution for residual metals removal. The bulk resistivity of

the silicon wafers was approximately 2 Ωcm for the boron doped and 3.8Ωcm for

the phosphorous doped samples. The wafers were then dipped in a 1 : 10 buffered

oxide etch (BOE) solution for 1 minute to remove the native oxide on the surface and

subsequently put under vacuum for a-Si:H deposition.
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Figure 5.1: a) Schematic of TLM structures used to extract contact resistance. b)
Schematic of full solar cells used to extract pFF , FF , Rseries.

The a-Si:H layers were deposited using radio frequency (RF, 13.56MHz) plasma

enhanced chemical vapor deposition (PECVD) in an Applied Materials P5000. The

tool has three chambers which deposit either intrinsic a-Si or either of the doped a-Si

in order to prevent contamination of the chamber of the opposite dopant.

The standard ITO layers were sputtered in an MRC 944 using a DC source

power of 1kW using a target that was 90/10In2O3/SnO2. For the standard recipe

the chamber pressure was 7.1mTorr in an ambient gas with oxygen partial pressure of

0.21mTorr.The ITO layer thickness was 160nm. For the ITO oxygen flow series the

oxygen partial pressure during sputtering of the ITO varied from 0.14 to 0.85mTorr.

For the TLM structures the ITO was deposited with a shadow mask to create

TLM pads with spacings ranging from 250µm to 8000µm. The width of the pads

was 2mm and the length of the pads was 8mm. Silver was also sputtered on top of

the ITO pads to guarantee a constant potential. After depositing the TLM pads the
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wafers were annealed at 200◦C for 20 minutes to simulate the annealing necessary for

the screen printed silver in full cells. The samples were then cleaved and the TLM

pads removed from the wafer.

For the cells ITO was sputtered through a shadow mask to define several 4cm2

cells per wafer. Silver was sputtered on the back side of the wafer to form a full area

hole electrode while on the front the silver was screen printed to finish the electron

electrode. The silver fingers crossed the cell with bus bars that were outside the

measurement area. The cells were then annealed at 200◦C for 20 minutes to dry the

silver paste.

Three TLM samples were cleaved rather than laser removed from the wafers

because the laser cutting left edge damage, preventing accurate measurement. The

TLM measurements were initially done by placing four probes, two current and two

voltage, on subsequent sets of the silver pads and running an IV sweep. To make the

measurements quicker a digital multimeter with two probes was used and compared to

the four probe method. After comparing the four probe method and the multimeter

method, we found the results to be extremely accurate (within 1%) and all subsequent

measurements were done using the multimeter. All contact resistivity values are the

average of three TLM patterns from the same wafers with error bars representing the

standard deviation among the patterns.

For cell measurements a set of three 2cm×2cm cells were measured. A shadow

mask was placed on the cut out sample such that only one cell was subject to testing

at a time. Four probes, two current and two voltage, were placed on the silver bus

bars and arranged so that they did not shade the cell. A Sinton FCT-450 flash tester

was used to measure the IV curve along with the Suns-Voc curve of each cell. From

these measurements we report the pseudo- fill factor (pFF ), fill factor (FF ), and the
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series resistivity (Rs). This is calculated by comparing the Suns-Voccurve with the

one sun curve as described by Sinton and Cuevas [36] with the formula provided by

Pysch and Glunz [37]. All of the measurement are the average of the three cells with

error bars representing the standard deviation of the sample set.

5.2.2 Results and discussion

5.2.2.1 a-Si:H(i) layer thickness

Others have studied the effect of the thickness of the a-Si:H(i) layer on complete

silicon heterojunction solar cells, using current-voltage characteristics alone to reveal

trends. Tanaka, et al. found that inserting a 4nm a-Si:H(i) layer between the c-Si and

the a-Si:H(p) resulted in an increase in fill factor by approximately 0.8% while further

increases in the thickness caused a drop in fill factor [109]. The increase in FFwith

a 4nm a-Si:H(i) layer is the result of a reduced surface recombination compared to

a cell without this layer. Similar to Tanaka, Fujiwara and Kondo found that a 4nm

a-Si:H(i) layer produced the optimal efficiency; yet they did not observe the same

trend of a decreasing FFabove this thickness [110]. The same trend was seen by

Holman, et al. who found that an initial increase in the a-Si:H(i) layer from 3nm

to 4nm resulted in an increase in the FF while further increases did not change the

FF [110]. The FF in all the above papers was relatively low and did not exceed 75%.

Figure 5.2 shows the effect that the a-Si:H(i) thickness has on both complete

cells (pFF , FF , and Rs) and TLM structures (ρc). Figure 5.2a reveals a slight

increase in the pFF from 82.9% to 84.0% by increasing the a-Si:H(i) thickness from

4 to 16nm, which is due to the improved surface passivation. While the increase in

pFF can be used to gauge how well the final cells will perform, this same trend is not

represented in the final FFof the cell. Here, the FFdrops from 76.9% at a thickness

of 4nm to 71.1% at a thickness of 16nm; a drop of over 5%.
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Figure 5.2: (a) pFF and FFas a function of a-Si:H(i) layer thickness. (b) rsand
ρc. (c) Difference between rsand ρc. The red dashed line is the average resistivity
difference of all samples.
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Changing series resistivity, shown in figure 5.2b, is responsible for the drop in

FFand increases from 1.19 to 2.75Ωcm2 over the same a-Si:H(i) thickness range. This

increase in series resistivity correlates to the contact resistivity, measured on separate

TLM structures, which increases from 0.48 to 1.91 Ωcm2. In particular, figure 5.2c

shows that the difference between the series and contact resistivities is approximately

constant for the range of a-Si:H(i) thicknesses investigated, indicating that the drop

in FF is entirely attributable to growing contact resistivity. The contact resistivity

for the thinnest a-Si:H(i) layer is twice that reported by Lachenal for their baseline

layer [103] and approximately 1.2 times the value reported by Lee [16]. Not shown in

this plot is a set of experiments where we repeat the same set of contact resistivity

experiments and obtained values that range from 0.18 to 1.50Ωcm2. These contact

resisitivity samples did not have a matching set of solar cells;thus are not included

in this Chapter. Also, the contact resistivity for a 6nm a-Si:H(i) layer was 0.23Ωcm2

which is the same as that reported by Lachenal. This variation by a factor of two can

possibly be attributed to process variation from the layers deposited after a-Si:H(i)

(a-Si:H(p), ITO, Ag) or to additional interactions between that layers that were not

investigated in this work.

To thoroughly explain the trends shown here, an analysis of the conduction

mechanism through the a-Si:H(i) layer is required, but the exact conduction mecha-

nism through a-Si/c-Si heterojunctions is still debated. Early models show that for

thick a-Si:H(i) (approximately 1µm thick) the dominant transport mechanism is mul-

titunneling capture-emission [111]. Our a-Si:H(i) layers are significantly thinner than

this and the diffusive model proposed by Taguchi, et al. may be more appropriate

[112]. In fact, they propose this diffusive model because of the resulting decrease

in FFand increase in Rs with a-Si:H(i) layer thickness which are the same trends

realized in this Chapter. Schulze, et al. provide a thorough analysis of transport
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through a-Si/c-Si heterojunctions which showed that the dominant transport was

again diffusive at high forward bias but increased surface passivation revealed hetero-

junction transport properties [113]. The results shown in this section show that the

dominant transport mechanism is diffusive but we cannot yet disregard other possible

mechanisms and a thorough computational and experimental analysis is necessary to

pinpoint the exact mechanism or mechanisms.

5.2.2.2 a-Si:H(p) layer thickness and doping

Those reports in which the a-Si:H(i) thickness is varied usually also vary the a-Si:H(p)

thickness. Namely, Tanaka, et al. studied the effect of the a-Si:H(p) thickness on

heterojunction solar cells without an underlying a-Si:H(i) layer. They found that

increasing the thickness of the a-Si:H(p) layer resulted in a slight drop in the FF

[109]. Fujiwara and Kondo also studied the effects of a-Si:H(p) layer thickness and

found that the FF remained relatively constant as a function of a-Si:H(p) thickness

when the thickness exceeded 3nm, below which the FF sharply decreased [110]. In

contrast, Holman, et al. found that FF continued to increase for a thickness greater

than the 3nm threshold determined by Fujiwara and Kondo [20].

It is also important to note that previous studies did not mention how the

doping level of the a-Si:H(p) layer affected the cell characteristics. Bivour, et al.

indicated that for sufficiently high doping of the a-Si:H(p) layer a fill factor of greater

than 81% was achieved [114]. Bivour, et al. also performed simulations to obtain the

same FF trend of Fujiwara and Kondo when the doping was sufficiently high. At

lower doping the FF values were much lower and actually led to a loss in the FF with

increasing a-Si:H(p) thickness, indicating the importance of doping in the a-Si:H(p)

layer [51]. Note that in all the studies mentioned above, the a-Si:H(p) layer was at

the front of the solar cell, while in our experiments the a-Si:H(p) layer is on the back,
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as mentioned in section II.

Figure 5.3a shows that the pFF remains constant within experimental error

at 81.5% over the entire thickness range. Similar to Fujiwara and Kondo, when the

a-Si:H(p) layer is thicker than 3nm the FF remains relatively constant; in our case

with a value of approximately 78%. The FF shown in figure 5.3a remains relatively

constant at approximately 78% for thicknesses greater than 3nm, but the FF drops

to 76% for a thickness of 3nm. This trend is consistent with the work of Fujiwara

and Kondo.

As seen in figure 5.3b, for thicknesses greater than 3nm theRsremains constant

at 0.8Ωcm2 as would be expected by the constant FF . Figure 5.3c confirms that the

difference between Rsand ρcis also constant over this thickness range indicating that

there are no changes to the Rs regardless of a-Si:H(p) layer thickness.

The most interesting feature of figure 5.3 are seen for the thinnest a-Si:H(p)

layer. The FFof these cells is approximately 76% – a 2% decrease from the thicker

layers. The Rsof these cells is 1.1Ωcm2, which is only 0.3Ωcm2 greater than the

thicker layers but the ρcincreased to 0.99Ωcm2, which is a factor of three greater

than the thicker layers. The difference between the Rsand ρcis also much lower than

the others. The poor performance of this cell is likely due to a depletion width, which

is larger than the layer thickness [115].

For the a-Si:H(p) layer doping experiments, the pFF remains constant at

about 81% as seen in figure 5.4 which indicates that al the cells should perform

equally well in the absence of series resistance. The fill factor, shown in Figure 5.4a,

of these cells has a particularly interesting trend. At low doping the FF increases

from a low of 68% and reaches a maximum of 79% at a gas flow of 18sccm. At higher

gas flows, the FFdrops by about 4% as the gas flow approaches 50sccm and decreases
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Figure 5.3: (a) pFF and FF as a function of a-Si:H(p) layer thickness. (b) Rsand
ρc. (c) Difference between Rsand ρc. The red dashed line is the average resistivity
difference for the three thicker samples.

88



Figure 5.4: (a) pFF and FFas a function of TMB flow, (b) Rsand ρc(c) Difference
between Rsand ρc. The red dashed line is the average resistivity difference for gas
flows between 10 and 50sccm. Only one cell and TLM pad was measured for this
experiment.

by another 8% at 100sccm. The trend of increasing FFwas also seen by Bivour, et

al. for diborane (B2H6) concentrations up to 4300ppm.

This trend can be explained by again considering the depletion of the a-Si:H(p)
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layer. At low gas flows the amount of active dopants providing holes to the layer is

sufficiently low that the layer becomes depleted. For TMB gas flows greater than

18sccm the decrease in FF can be attributed to defect formation which occurs at a

faster rate compared to active dopant formation [37].

This hypothesis is supported by observing the Rsand ρcin figure 5.4b. The

trend is a mirror image of the FF trend where Rsdecreases and attains a local min-

imum at 18sccm of TMB. The contact resistivity also reaches a local minimum at

18sccm. Unlike the other process conditions we have varied so far, the difference

between Rsand ρcis a bit more spread out about an average of 0.6Ωcm2.

5.2.2.3 ITO oxygen concentration

The experimental work done on optimization of TCO layers for SHJ solar cells has

mostly focused on sheet resistance, contact resistivity between the metal and TCO,

and free-carrier absorption without regard to the layers role in the contact resistivity

of the whole stack [20, 82, 116]. However simulations have shown the importance

of carrier transport between the doped amorphous silicon layers and the TCO. In

particular, Kanevce and Metzger have shown that in order to produce reasonable

J-V curves there must be band-to-band tunneling across the a-Si/ITO interface [117,

118]. Additionally, Centurioni and Iencinella emphasize the impact of the TCO work

function on the built-in potential of the a-Si/c-Si heterojunction solar cell. They

mention that is important to have a TCO with a large work function on the emitter

side to get the highest Vocand efficiency from this cell structure [119].

Similar to the previous experiments, 5.5a shows that the pFF remains constant

indicating that changing oxygen partial pressure should result in solar cells with

equivalent performance in the absence of series resistance. There is a significant drop

in the FFof the cell from 77.7% to 65% by increasing the oxygen partial pressure
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Figure 5.5: (a) pFF and FFas a function of O2 partial pressure during ITO sputter-
ing, (b) Rsand ρc(c) Difference between Rsand ρc. The red dashed line is the average
resistivity difference of all samples.

from 0.14 to 0.85mTorr. This contradicts the work of Holman, et al. who found that

increasing the carrier density of the rear side ITO to 1020cm−2 resulted in a constant

fill factor [82].
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The detriment to the fill factor can again be attributed to the increasing Rs

which increases from 0.66 to 3.57Ωcm2 shown in figure 5.5b. By varying the properties

of a boron doped zinc oxide layer, Favier, et al. find a strong linear correlation of

the FFon Rs[120]. We also find a similar correlation between these two quantities

(not shown). Note that the lowest ρcshown here is the lowest value ever presented

for the classic hole contact in SHJ solar cells [16, 103]. The difference between Rsand

ρcis constant with a value of 0.7Ωcm2 over the entire range of partial pressures. The

large increase in ρc, and subsequent decrease in fill factor, as a the oxygen partial

pressure increases is most likely due to a decrease in the work function of the ITO with

increasing oxygen partial pressure. Centurioni and Iencinella simulate the a-Si/c-Si

solar cell with varying TCO work functions and show a drop in FFof over 30% with a

work function decrease from 5.1 to 4.75eV [119]. Brendel, et al. also simulate similar

decreases in FF to ours as a function of interfacial work function helping to validate

our theory that the decrease in ITO work fuction with doping leads to a lower fill

factor [51].

The effect of O2 partial pressure can be removed by utilizing an ITO bilayer.

The green line in figure 5.5b shows that by first depositing a 15nm ITO layer with

an O2 partial pressure of 0.142mTorr and then a 145nm layer of varying O2 partial

pressures between 0.142 and 0.852mTorr the contact resistivity remains constant

with a value of 0.15Ωcm2. This is in contrast to an ITO monolayer where the contact

resistivity increases by two orders of magnitude over the same O2 partial pressure

range. Because the contact resistivity does not change as a function of ITO O2 partial

pressure for a bilayer but does change for a monolayer, we can confidently state that

the most important interface for the contact resistivity is the a-Si:H(p)/ITO interface.

Since the bi-layer and the monolayer experiments were completed on different days

we redid the mono layer experiment (not shown) to demonstrate that the results
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are reproducible on a day-to-day basis (they are). We also vary the thickness of the

bilayers by making the 0.142mTorr layer 45nm and the 0.852mTorr layer 115nm. As

expected, this change in the thickness of the two layers did not influence the contact

resistivity in any way.

The fact that the ITO bilayer has constant contact resistivity independent of

the top layer doping implies that a cell made with a bilayer, in which the second layer

is more transparent, should have a higher Jscthan a cell made with a single ITO

layer. Unfortunately, the reflectivity and the EQE (not shown) of a cell made with a

0.14− 0.85mTorr bilayer is significantly lower in the infrared than any of the single

layers leading to lower Jsc. This deterioration of the optical properties is most likely

due to the hydrogen doping of the ITO from the a-Si:H layers [86].

5.2.2.4 Processes that dominate hole contact resistivity

Figure 5.6 shows a tornado plot dictating which processes in the development hole

contact for SHJ solar cells have an effect on the contact resistivity. Each of the

changes is a 33% variation above and below our standard process outlined in section

5.2.1.

Although figure 5.6 indicates that the TMB flow rate can dramatically affect

the contact resistivity, an appreciable change is observed only for large excursions

from the optium value. Figure 5.6 thus reveals that the contact resistivity is least

sensitive to TMB flow rate, of all the parameters explored. Unlike the other processes

that show both an increase and decrease in contact resistivity, the TMB flow increases

in either direction as our standard process flow sits at the contact resistivity minimum

in Figure 4(b).

The a-Si:H(p) layer thickness does not matter unless the thickness drops below

3nm (figure 5.3) which is not seen in figure 5.6 because this thickness is not within the
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Figure 5.6: Absolute change in contact resistivity as a function of the four varied
parameters in this Chapter. All variations are 33% of our baseline process.

33% perturbation. The thickness of the a-Si:H(p) layer is likely to become important

when the hole contact is placed on the front of the solar cell because of the increased

parasitic absorption of visible light with increased thickness. In this case a 33%

decrease in the thickness would lead to a serious increase in contact resistance.

By increasing the a-Si:H(i) layer thickness by only 2nm the contact resistivity

increases by 0.14Ωcm2 while decreasing the thickness by 2nm decreases the contact

resistivity 0.07Ωcm2. This may be significant for industrial scale PECVD systems

where it is entirely possible to have a thickness variation of the same magnitude across

the chamber [121–123]. Note that the change in contact resistivity is asymmetric

where an increase of 2nm increases the contact resistivity more than a decrease of

2nm decreases the contact resistivity. From a purely contact resistivity point of view

it would be wise to have too thin of a layer than too thick of a layer but a thinner

layer leads to poorer passivation and thus a loss in Voc.

The largest detriment to the contact resistivity comes from varying the ITO

partial pressure. By increasing the O2 partial pressure by 0.12mTorr the contact
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resistivity increases by 0.17Ωcm2 while a decrease of the same amount results in a

decrease of 0.10Ωcm2. This is not true when using the bilayers discussed in the

previous section. For a bilayer where the bottom layer is 15nm an increase in the

O2 partial pressure results in an increase of 4 × 10−4Ωcm2 while a decrease in the

O2 partial pressure results in a drop in contact resistivity of 0.014Ωcm2. When the

bottom layer is 45nm an increase in partial pressure increases the contact resistivity

by 0.006Ωcm2 while a decrease results in a decrease of 0.005Ωcm2. This analysis

shows that it is most important to control the ITO sputtering tool or to utilize an

ITO bilayer. Fortunately, a change in 0.12mTorr of oxygen during ITO sputtering is

quite large and can be easily controlled during SHJ cell manufacturing.

5.3 Electron Contact Resistivity

Similar possible variables for the n-doped layer stack has still remained to be ad-

dressed. The n-type amorphous silicion based contact consisting of intrinsic amor-

phous silicon (a-Si:H(i)), phosphorous doped amorphous silicion (a-Si:H(n)) and in-

dium tin oxide (ITO) is studied. We varied the thicknesses of the a-Si:H(i) (see figure

5.7) and a-Si:H(n) (see figure 5.8) and ITO O2 partial pressure (see figure 5.9) to de-

termine which layers have the most impact on the contact resistivity. Specifically, we

observe that increasing the thickness of the a-Si:H(i) and the ITO O2 partial pressure

results in an increase in the contact resistivity similar to p-layer stack. In parallel to

TLM contact resistance patterns, solar cells are fabricated and FF trends studied to

confirm if it’s trend of variation follows the contact resistivity.

5.4 Total contact resistance

Each source of losses is now well measured and we are able to evaluate the weight

of each variable and determine direction that future efforts should be focused on to

improve the fill factor of silicon solar cells.
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Figure 5.7: Contact resistivity as a function of a-Si:H(i) layer thickness.

Figure 5.8: Contact resistivity as a function of a-Si:H(n) layer thickness.

Figure 5.9: Contact resistivity as a function of ITO O2 partial pressure.
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Figure 5.10: Different components of series resistance as a function of ITO O2 partial
pressure.

To investigate the accuracy of our analysis, solar cells with varying intrinsic

a-Si layer thickness and ITO O2 partial pressure (the two most determining parame-

ters) are fabricated, actual IV curves obtained and total resistance is measured using

Sinton IV tester. All different series resistance components in a typical SHJ cell struc-

ture are measured and then summed up and compared with the total series resistance

loss measured with IV tester. Following figures show the results. As seen, the dif-

ference between what calculated through summing up different components with the

total values is less than 10% for almost all cases. According the above analysis,

we conclude then that contact resistance is actually the main source of resistance

losses and correspondingly fill factor loss in silicon heterojunction solar cells. Clearly,
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Figure 5.11: Different components of series resistance as a function of intrinsic a-Si
layer thickness.

by minimizing the contact resistivity of both contacts there would be a significant

increase in the fill factor of the cell.

5.5 Conclusion

We have shown the effect that changing hole and electron contact layer properties

has on silicon heterojunction solar cells performance. The hole contact resistivities

presented in this work are within the range shown by others and are considerably

higher than those of a metal to diffused surface. The a-Si hole contact also had

higher contact resistivity of some of the more novel hole contacts such as MoOx and

CuO : Nx. This does not mean that the hole contact of the traditional SHJ solar

cell should be replaced- in fact it is still the basis of the highest efficiency SHJ solar

cell. An analysis of the electron contact will also provided to complete analysis of the
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series resistance losses in SHJ solar cells.

The contact resistivity is most strongly affected by changes in the oxygen

partial pressure during ITO deposition indicating that this process should be closely

monitored to develop high quality SHJ solar cells.

While the contact resistivity is an important parameter in discussing the per-

formance of the solar cell, we did not include an analysis of the transport physics

across these interfaces. A comprehensive study of the processes varied here is the

next logical step to fully understand these contacts. As noted by the difference in

trends between an ITO monolayer and bilayer, the a-Si/ITO interface limits the per-

formance of the SHJ solar cell and an understanding of the charge carrier transport

across this interface is necessary to fully optimize this solar cell technology.

We also did not take into account interactions between the layers. For exam-

ple, our a-Si:H(i) layer thickness experiments had ITO layers with only one condition

for oxygen flow during sputtering. It is possible that repeating the same set of ex-

periments while also varying the oxygen concentration during ITO sputtering could

produce different values of the contact resistivity and cell parameters. We have al-

ready shown that utilizing an ITO bilayer with the layer with a low partial pressure

of oxygen at the a-Si/ITO interface removes the effect of oxygen partial pressure.

By choosing a different standard parameter for any layer in the stack, the effect of

varying a different layer could be hidden because the initial layer has become the

dominant layer affecting the contact resistance across the stack.
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Chapter 6

Conclusions and Future work

The objective of this thesis was to achieve a detailed understanding of the loss mech-

anisms in SHJ solar cells. The working principles of these cells and what affects the

cell operation, e.g. the IV characteristics at the maximum power point (MPP) and

the correspondingly fill factor (FF ) were investigated. Different loss sources were an-

alyzed separately, and the weight of each in the total loss at the MPP were evaluated.

The total series resistance was measured and then compared with the value obtained

through summation over each of its components. In other words, series resistance

losses due to recombination, vertical and lateral carrier transport, metalization, etc,

were individually evaluated, and then by adding all these components together, the

total loss was calculated. The concept of fill factor and its direct dependence on the

loss mechanisms at the MPP of the device was explained, and its sensitivity to nearly

every processing step of the cell fabrication was investigated. This analysis provided

a focus lens to identify the main source of losses in SHJ solar cells and paved the path

for further improvements in cell efficiency.

In this thesis, we provided a detailed understanding of the FF concept; we

explained how it can be directly measured; how it can be calculated and what ex-

pressions can better approximate its value and under what operating conditions. The

relation between FFand cell operating condition at the MPP was investigated. We

separately analyzed the main FF sources of losses including recombination, sheet

resistance, contact resistance and metalization. We studied FF loss due to recom-

bination and its separate components which included the Augur, radiative and SRH

recombination was investigated. We studied FF loss due to contact resistance and its

separate components which included the contact resistance of different interfaces, e.g.
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between the intrinsic and doped a-Si layers, TCO and a-Si layers. We also studied

FF loss due to lateral transport and its components that including the TCO sheet

resistance, the finger and the busbars resistances.

6.1 Summary

This thesis was divided in following chapters:

In Chapter 2 we reviewed some theory and physics behind solar cell and ex-

plained its IV characteristics. Then the concept of fill factor was discussed in more

detail and it’s relation with cell operating condition at the maximum power point

will was clarified. Specifically, we explained what the difference was between the ac-

tual, pseudo and implied FF and how each of them can be measured, calculated, or

approximated.

In Chapter 3 after further analysis of the fill factor concept, the approximate

expressions proposed by Green and Swanson and Sinton to predict the FF of a solar

cell from its Voc was discussed. The expressions were originally suggested for silicon

solar cells that behave according to a single-diode model and, in addition to Voc, they

require an ideality factor as input. They are now commonly applied to silicon cells by

assuming a unity ideality factor-even when the cells are not in low injection-as well as

to non-silicon cells. Here, we evaluated the accuracy of the expressions in several cases.

In particular, we calculated the recombination-limited FF and Voc of a hypothetical

silicon solar cells from its simulated lifetime curves, and compared the exact FF

to that obtained with the approximate expressions using assumed ideality factors.

Considering cells with a variety of recombination mechanisms, wafer doping densities,

and photogenerated current densities revealed the range of conditions under which

the approximate expressions can safely be used. We found out that the expressions

are unable to predict FF generally.
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In Chapter 4 the front transparent conductive oxide (TCO) layers of silicon

heterojunction solar cells were discussed and we examined how the IV characteristics

and specifically the FF are affected by that. We investigated how to optimize the

TCO layers electrically and optically to minimize losses due to sheet resistance and

free carrier absorption. We studied it for different wavelength ranges: 300− 1200 nm

(full spectrum)and 700−1200 nm (half spectrum). The latter is required if the silicon

cell are to be used in a tandem structure as the bottom cell. Here, we demonstrated

a procedure for determining the total loss associated with the front TCO layer and

employ it to determine which carrier density, mobility, and finger pitch combinations

minimize loss.

In Chapter 5 series resistance effects on SHJ solar cells was studied which is

the main source of loss in this technology.

Until recently, little has been done to understand the main factors contribut-

ing to the high resistance. Here we began a systematic analysis to determine the

important interactions between the different layers in the hole and electron-collecting

contact consisting of a stack of a-Si:H(i)/a-Si:H(p or n)/ITO/Ag. We attempted to

address how the stack performs when the intrinsic and doped amorphous silicon layers

thickness, is varied, how the work function of the ITO which is controlled by varying

the Oxygen partial pressure can affect the contact resistance at it’s interface with

the a-Si layer and what is it’s contribution to total series resistance loss. We also

determined how the ITO thickness affects the fill factor of the cell and assessed how

much of the reduction in FF is due to the contact resistivity.

6.2 Future work

What was not investigated in this thesis is considering the effects of above studies

under different illumination levels, e.g. the contact resistance is illumination level de-
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pendent which directly determines the injection levels of carriers and correspondingly

shifts the bulk silicon fermi level. Also, part of the blue light will be always absorbed

in the front a-Si layers. As a result, under operating conditions, the front contact

is under illumination while the back contact is in the dark. So, the band structure

geometry may possibly be different for front contact comparing with back contact.

This may break the symmetry and lead to a different weights of the front versus back

contact resistances and accordingly the fill factor losses. Furthermore, as observed in

current and proceeding chapters, the contact resistance for an n-layer stack may be

different compared with p-layer stack. This difference may be even more dramatic

depending on which stack is on the front side and hence under illumination, and

which one is on the back. In other words, the contact resistance may determine if it’s

better to have a front or back emitter contact.
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M. Grätzel, and B. Rech, “Towards optical optimization of planar monolithic
perovskite/silicon-heterojunction tandem solar cells,” Journal of Optics, vol. 18,
no. 6, p. 064012, 2016.

[89] I. Almansouri, A. Ho-Baillie, S. P. Bremner, and M. A. Green, “Supercharging
silicon solar cell performance by means of multijunction concept,” IEEE Journal
of Photovoltaics, vol. 5, no. 3, pp. 968–976, 2015.

[90] D. L. Meier and D. K. Schroder, “Contact resistance: Its measurement and
relative importance to power loss in a solar cell,” IEEE transactions on electron
devices, vol. 31, no. 5, pp. 647–653, 1984.

[91] R. Brendel and R. Peibst, “Contact selectivity and efficiency in crystalline sili-
con photovoltaics,” IEEE Journal of Photovoltaics, vol. 6, no. 6, pp. 1413–1420,
2016.

[92] A. Cuevas, R. A. Sinton, and M. Stuckings, “Determination of recombination
parameters in semiconductors from photoconductance measurements,” in Op-
toelectronic and Microelectronic Materials And Devices Proceedings, 1996 Con-
ference on. IEEE, 1996, pp. 16–19.

111



[93] D. K. Schroder and D. L. Meier, “Solar cell contact resistancea review,” IEEE
Transactions on electron devices, vol. 31, no. 5, pp. 637–647, 1984.

[94] G. S. Marlow and M. B. Das, “The effects of contact size and non-zero metal
resistance on the determination of specific contact resistance,” Solid-State Elec-
tronics, vol. 25, no. 2, pp. 91–94, 1982.

[95] R. Cox and H. Strack, “Ohmic contacts for gaas devices,” Solid-State Electron-
ics, vol. 10, no. 12, pp. 1213IN71 215–1214IN81 218, 1967.

[96] M. M. Hilali, A. Rohatgi, and S. Asher, “Development of screen-printed sil-
icon solar cells with high fill factors on 100/spl omega//sq emitters,” IEEE
transactions on electron devices, vol. 51, no. 6, pp. 948–955, 2004.

[97] E.-J. Lee, D. Kim, and S. Lee, “Ni/cu metallization for low-cost high-efficiency
perc cells,” Solar energy materials and solar cells, vol. 74, no. 1, pp. 65–70,
2002.

[98] Y. Wan, C. Samundsett, J. Bullock, M. Hettick, T. Allen, D. Yan, J. Peng,
Y. Wu, J. Cui, A. Javey et al., “Conductive and stable magnesium oxide
electron-selective contacts for efficient silicon solar cells,” Advanced Energy Ma-
terials, vol. 7, no. 5, 2017.

[99] Y. Wan, C. Samundsett, D. Yan, T. Allen, J. Peng, J. Cui, X. Zhang, J. Bullock,
and A. Cuevas, “A magnesium/amorphous silicon passivating contact for n-
type crystalline silicon solar cells,” Applied Physics Letters, vol. 109, no. 11, p.
113901, 2016.

[100] T. G. Allen, J. Bullock, Q. Jeangros, C. Samundsett, Y. Wan, J. Cui, A. Hessler-
Wyser, S. De Wolf, A. Javey, and A. Cuevas, “A low resistance calcium/reduced
titania passivated contact for high efficiency crystalline silicon solar cells,” Ad-
vanced Energy Materials, 2017.

[101] J. Bullock, P. Zheng, Q. Jeangros, M. Tosun, M. Hettick, C. M. Sutter-Fella,
Y. Wan, T. Allen, D. Yan, D. Macdonald et al., “Lithium fluoride based elec-
tron contacts for high efficiency n-type crystalline silicon solar cells,” Advanced
Energy Materials, vol. 6, no. 14, 2016.

[102] R. Labie, T. Bearda, O. El Daif, B. O’Sullivan, K. Baert, and I. Gordon, “Re-
sistance and passivation of metal contacts using n-type amorphous si for si solar
cells,” Journal of Applied Physics, vol. 115, no. 18, p. 183508, 2014.

[103] D. Lachenal, D. Baetzner, W. Frammelsberger, B. Legradic, J. Meixenberger,
P. Papet, B. Strahm, and G. Wahli, “Heterojunction and passivated contacts:
a simple method to extract both n/tco and p/tco contacts resistivity,” Energy
Procedia, vol. 92, pp. 932–938, 2016.

112



[104] F. Wang, S. Zhao, B. Liu, Y. Li, Q. Ren, R. Du, N. Wang, C. Wei, X. Chen,
G. Wang et al., “Silicon solar cells with bifacial metal oxides carrier selective
layers,” Nano Energy, vol. 39, pp. 437–443, 2017.

[105] Y. Zhang, R. Liu, S.-T. Lee, and B. Sun, “The role of a lif layer on the
performance of poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate)/si
organic-inorganic hybrid solar cells,” Applied Physics Letters, vol. 104, no. 8, p.
083514, 2014.

[106] G. Nogay, J. P. Seif, Y. Riesen, A. Tomasi, Q. Jeangros, N. Wyrsch, F.-J. Haug,
S. De Wolf, and C. Ballif, “Nanocrystalline silicon carrier collectors for silicon
heterojunction solar cells and impact on low-temperature device characteris-
tics,” IEEE Journal of Photovoltaics, vol. 6, no. 6, pp. 1654–1662, 2016.

[107] X. Zhang, Y. Wan, J. Bullock, T. Allen, and A. Cuevas, “Low resistance ohmic
contact to p-type crystalline silicon via nitrogen-doped copper oxide films,”
Applied Physics Letters, vol. 109, no. 5, p. 052102, 2016.

[108] S. Mahato, L. G. Gerling, C. Voz, R. Alcubilla, and J. Puigdollers, “Pedot:
Pss as an alternative hole selective contact for ito-free hybrid crystalline silicon
solar cell,” IEEE Journal of Photovoltaics, vol. 6, no. 4, pp. 934–939, 2016.

[109] M. Tanaka, M. Taguchi, T. Matsuyama, T. Sawada, S. Tsuda, S. Nakano,
H. Hanafusa, and Y. Kuwano, “Development of new a-si/c-si heterojunction
solar cells: Acj-hit (artificially constructed junction-heterojunction with intrin-
sic thin-layer),” Japanese Journal of Applied Physics, vol. 31, no. 11R, p. 3518,
1992.

[110] H. Fujiwara and M. Kondo, “Effects of a-si: H layer thicknesses on the perfor-
mance of a-si: H/ c-si heterojunction solar cells,” Journal of Applied Physics,
vol. 101, no. 5, p. 054516, 2007.

[111] H. Matsuura, T. Okuno, H. Okushi, and K. Tanaka, “Electrical properties of
n-amorphous/p-crystalline silicon heterojunctions,” Journal of Applied Physics,
vol. 55, no. 4, pp. 1012–1019, 1984.

[112] M. Taguchi, E. Maruyama, and M. Tanaka, “Temperature dependence of amor-
phous/crystalline silicon heterojunction solar cells,” Japanese Journal of Ap-
plied Physics, vol. 47, no. 2R, p. 814, 2008.

[113] T. Schulze, L. Korte, E. Conrad, M. Schmidt, and B. Rech, “Electrical trans-
port mechanisms in a-si: H/c-si heterojunction solar cells,” Journal of Applied
Physics, vol. 107, no. 2, p. 023711, 2010.

[114] M. Bivour, C. Reichel, M. Hermle, and S. W. Glunz, “Improving the a-si: H
(p) rear emitter contact of n-type silicon solar cells,” Solar Energy Materials
and solar cells, vol. 106, pp. 11–16, 2012.

113



[115] H. Schade and Z. E. Smith, “Contact resistance measurements for hydrogenated
amorphous silicon solar cell structures,” Journal of applied physics, vol. 59,
no. 5, pp. 1682–1687, 1986.

[116] K. Ellmer and R. Mientus, “Carrier transport in polycrystalline transparent
conductive oxides: A comparative study of zinc oxide and indium oxide,” Thin
solid films, vol. 516, no. 14, pp. 4620–4627, 2008.

[117] A. Kanevce and W. K. Metzger, “The role of amorphous silicon and tunneling
in heterojunction with intrinsic thin layer (hit) solar cells,” Journal of Applied
Physics, vol. 105, no. 9, p. 094507, 2009.

[118] ——, “Device physics of heterojunction with intrinsic thin layer (hit) solar
cells,” MRS Online Proceedings Library Archive, vol. 1153, 2009.

[119] E. Centurioni and D. Iencinella, “Role of front contact work function on amor-
phous silicon/crystalline silicon heterojunction solar cell performance,” IEEE
Electron Device Letters, vol. 24, no. 3, pp. 177–179, 2003.

[120] A. Favier, D. Munoz, S. M. De Nicolás, and P.-J. Ribeyron, “Boron-doped
zinc oxide layers grown by metal-organic cvd for silicon heterojunction solar
cells applications,” Solar Energy Materials and Solar Cells, vol. 95, no. 4, pp.
1057–1061, 2011.

[121] A. Howling, L. Sansonnens, J. Ballutaud, C. Hollenstein, and J. Schmitt,
“Nonuniform radio-frequency plasma potential due to edge asymmetry in large-
area radio-frequency reactors,” Journal of applied physics, vol. 96, no. 10, pp.
5429–5440, 2004.

[122] H. Takatsuka, Y. Yamauchi, K. Kawamura, H. Mashima, and Y. Takeuchi,
“World’s largest amorphous silicon photovoltaic module,” Thin solid films, vol.
506, pp. 13–16, 2006.

[123] B. Legradic, B. Strahm, D. Lachenal, D. Bätzner, W. Frammelsberger, J. Meix-
enberger, P. Papet, G. Wahli, J. Zhao, D. Decker et al., “High efficiency si-
heterojunction technology-it’s ready for mass production,” in Photovoltaic Spe-
cialist Conference (PVSC), 2015 IEEE 42nd. IEEE, 2015, pp. 1–3.

114


