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ABSTRACT

This dissertation is focused on developing an algorithm to provide current state

estimation and future state predictions for biomechanical human walking features.

The goal is to develop a system which is capable of evaluating the current action

a subject is taking while walking and then use this to predict the future states of

biomechanical features.

This work focuses on the exploration and analysis of Interaction Primitives (Amor

et al., 2014) and their relevance to biomechanical prediction for human walking. Built

on the framework of Probabilistic Movement Primitives, Interaction Primitives utilize

an EKF SLAM algorithm to localize and map a distribution over the weights of a set

of basis functions. The prediction properties of Bayesian Interaction Primitives were

utilized to predict real-time foot forces from a 9 degrees of freedom IMUs mounted to

a subjects tibias. This method shows that real-time human biomechanical features

can be predicted and have a promising link to real-time controls applications.
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Chapter 1

INTRODUCTION

1.1 Introduction

Bipedal locomotion is a fundamental motor skill for humans. In urban environ-

ments adults walk about 6,500 steps per day and children usually double that. Yet for

many, amputations are unavoidable. Diabetes (72%), infections (8%), and trauma

(7%) are the leading causes of amputation. Furthermore, 90% of all amputations

affect the lower leg. With approximately 185,000 new lower-limb amputations in

the United States each year, novel prosthetic technology has the potential to restore

human capabilities that have been previously lost. Enabling these technologies will

improve millions of peoples’ lives. Unfortunately, even advanced, powered prosthetics

are far from this vision.

Most prosthetics controls implementations have focused on a tuned mechanical

or impedance based, spring damper system to mimic the Achilles tendon of an able-

bodied individual (Holgate et al., 2009). These systems utilize controllers that output

a desired actuator position based on IMU sensor data. The major limitations of

these simple controllers are that the actuator position profile must be tuned for each

amputee, they do not easily map to different gait patterns such as slopes or stairs, and

once tuned the quality of the profile degrades as walking speed moves away from the

speed at tuning. As a result, these limitations lead to unintended biomechanical and

ergonomical ramifications on the human body. Actions which the controller deems

correct can be applying unnecessary internal stresses to the human musculoskeletal

system. This has been proven to lead to serious chronic secondary conditions such as
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osteoarthritis (OA) (Morgenroth et al., 2012).

While a myriad of factors contribute to the development of OA in amputees,

the most notable cause is the repeated cyclical loading caused by walking with an

asymmetrical gait (Royer and Koenig, 2005). Since amputees will often develop

unique gait characteristics from others with similar pathological conditions (McNealy

and A. Gard, 2008), each different condition presents unique challenges to tuning

individual prosthetic devices for an amputee. The main reason these controllers

are in such prevalent use is the fact that it is notoriously hard to anticipate the

many possible biomechanical variables as well as the correct prosthetic response in

every situation. To properly accommodate able-bodied movement while maintaining

biomechanically sound actuation it is necessary to develop a transformative method

for human-machine symbiosis which can predict, in real-time, biomechanical features

across multiple walking gaits and conditions.

Leg prosthetics must possess the basic skills to interact with human movement

in both known and unknown environments. Programming a controller with such

high-level skills is a difficult task, as each individual has a different natural body

movement that will produce different timing and gait motion. Imitation Learning, or

learning from demonstrations, is ideal for this application as it allows for the complex

relationships of the human walking system to be learned without generic patterns or

controls. By learning the relationships between and being able to predict current and

future biomechanical variable such as joint forces and moments a prosthetic device

could steer the human robot interaction towards a biomechanically safe movement

regime.

To this end, I introduce Predictive Biomechanics - a novel biomechanical feature

prediction, such as internal force prediction, to create generalized predictions from

observed data of a human subject. In contrast to traditional controls or system iden-
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tification solutions, which focuses on creating generalized rigid solutions, Predictive

Biomechanics seeks to create an adaptive model of human force interaction which can

be used in countless locomotive situations while accurately predicting future states

based on current actions. Built on the framework of Probabilistic Movement Primi-

tives, Interaction Primitives utilize a novel method to localize and map a distribution

over the weights of a set of basis functions. The goal of this project is to utilize the

prediction properties of the Probabilistic Movement Primitives (Maeda et al., 2014)

to predict real-time foot forces from IMUs mounted to a subjects tibias during hu-

man walking motion. Being able to show that complex biomechanical human walking

features are able to be predicted in real-time will show that Probabilistic Movement

Primitives can also be used for prediction and control in prosthetic devices.

The outline of this Dissertation is as follows; Chapter two gives a brief description

of the background and math that accompanies: Probabilistic Movement Primitives

and the extension into interaction primitives along with key insights into human walk-

ing. Chapter three is an overview of the construction and performance of the sensors

used in data collection and testing. Chapter four describes the tasks and algorithmic

setup. Chapters five and six outline the experiments and denote important results

obtained through the experimentation, respectively. Finally, Chapter seven expresses

conclusions and notable future work.

1.2 Overview

The following overview covers the system flow of the finished algorithm. Illustrated

in Figure 1.1 is the complete algorithm and setup including the steps for learning,

testing and validation. In the following section each of these steps is explored and the

details of how each section applies to the next is related. The following diagram is split

up into two main portions, the learning stage where learning through demonstration
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is done and the execution stage where testing and validation is accomplished.

The learning methods are comprised of two main tasks. The first task is to create

the phase projection surface covered in Section 4.1.1. In order to create this surface

a set of prerecorded data is used and cut up into a set of individual steps using the

heel sensor as an indicator of heel strike. Each step demonstration contains all of

the data from both IMUs and both shoes as a trajectory in time from the start of

one step to the start of the next. These demonstrations are passed into the custom

program which uses the biomechanical features within the data to generate the Phase

Projection surface.

Second, the preprocessing task must generate the mean and covariance of of the

demonstrations such that they can be used later on in the cyclical interaction primi-

tives. Previously generated step demonstrations are put through the Phase Projection

method in order to put the data in the phase domain instead of in time. Generated

step demonstrations in phase are then used as per Section 2.2.2 to create the mean and

covariance of the trajectories using von Mines Basis Functions described in Section

4.1.2.

The execution stage focuses on the live testing and validation of the data. As

such the testing stage takes live data observations as input data and first using the

Phase Projection surface, developed in the Learning step, generates the current phase

estimation. This phase estimation and the original observation and input into the

Cyclical Interaction Primitives in order to find the current foot force prediction.

Foot force prediction is then sent to the validation stage where it is compared

against live observations of the foot force in two ways. First it is plotted directly

against the actual foot force to get an idea of how the prediction compares. Second

the mean squared error(MSE) and mean absolute percent error(MAPE) are calculated

to find the amount of difference between the predicted and actual forces.
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Figure 1.1: Diagram illustrating the three main portions of the designed algorithm
and the data transfer through them.

5



Chapter 2

BACKGROUND INFORMATION

This chapter gives an introduction to previous and relevant work in literature

related to Imitation Learning, Interaction Primitives, phase detection, and Bayesian

Interaction Primitives. These concepts form the conceptual backbone for why Inter-

action Primitives are used in this work and are imperative to gain an understanding

of this Dissertation. The subsequent sections focus on the background and general

information regarding classical Imitation Learning and their accompanying details.

2.1 Imitation Learning in Collaboration

Imitation Learning is a machine learning process that aims to mimic human be-

havior in a specific task. This idea, often called programming by example or learning

from demonstration, is one in which an agent is trained to implement a behavior from

demonstrations by learning relationships between observations and actions. Despite

the fact that this method has been around for many years it has recently gained

traction due to advances in computation and sensing. Systems are often too complex

to program by hand and accurately depict interactions between robots and the envi-

ronment (Schaal, 1999). Therefore, Imitation Learning is used because it allows for

these complex tasks to be learned from a minimal number of expert demonstrations

of the given task.

Aforementioned advances in computation and sensing has allowed Imitation Learn-

ing to expand considerably across many fields of research including: robotics, com-

puter science, biology, and neuro-science, due to its prevalence and effectiveness in

human and non-human mammals (Rao, 2005). Movement or locomotion by imitation
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is a fundamental behavior in humans. We employ this ability nearly every day and

are able to continuously able to both learn new tasks and modify old tasks based

on demonstrations by ourselves and others. In fact, human infants can imitate body

movements of others nearly from birth (Meltzoff and Moore, 1997). This type of

learning is important because it limits the space in which learning is done. For ex-

ample, a friend performs an action for you to mimic, even if you are not able to

perfectly perform the action on the first try; the action simply being performed gives

situational and biomechanical insight into how the action is performed such that it

can be perfected during the next try.

While this method is important for biological systems it is equally as important for

robotic systems. When a robotic systems needs to explore or modify actions in differ-

ent environments to find optimal solutions to tasks, there is an exponential increase

in the number of actions available to take in every state. Hence, the system becomes

more and more complex causing the number of degrees of freedom or control inputs

to increase. This means it is computationally implausible to search the entire space

to determine good from bad actions, let alone for an optimal solution. In these cases,

Imitation Learning is widely used to provide a more concise state-action space within

which learning can be achieved (Hussein et al., 2017). However, Imitation Learning

has recently been extended from pure movement imitation to physical interaction by

Lee et al. (2010) and then later to true human robot interaction (HRI) under the

concept of Interaction Primitives (Amor et al., 2014), (Maeda et al., 2014); which

allow robots to learn and execute collaborative tasks with a human or non-human

partner.
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2.2 Interaction with Probabilistic Movement Primitives

This section discusses the formulation of Probabilistic Movement Primitives (ProMPs)

by showing how a single task can be warped into a low dimensional space of weights

then decoupled from time with a phase variable. By then adding multiple demonstra-

tions of the task a correlation can be built which describes the relationship between

observations for a single degrees of freedom (DOF) as well as corresponding observa-

tions across all other DOF. An understanding of this description is fundamental for

the following sections.

Interaction with ProMPs (Maeda et al., 2014) is a formulation of Interaction

Primitives which creates an interaction method that is able to recognize an observed

action to then generate an appropriate movement primitive for the robot actor. This

leveraging of Imitation Learning within a probabilistic framework is done by modeling

the interaction probabilistically as a distribution of observations using ProMPs as

described in (Paraschos et al., 2013). Such a distribution can be obtained by observing

the interaction a number of times and recording the trajectories in all degrees of

freedom and time. These trajectories can then be used to create a prior model of the

interaction space where the trajectories are decomposed into a set of weights of basis

functions. In the event that a new partial observation is obtained the model is able

to recognize the intention of the observed agent and will use the correlation between

the observations and the actions from the demonstrations to generate an action to

control the robot.

The following section Section 2.2.1 illustrates the concept of ProMPs with a single

DOF. Then, methodology and main characteristics of using the ProMPs in Interaction

Primitives will follow in Section 2.2.2.
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2.2.1 ProMPs for a Single DOF

For the following derivations a DOF will refer to any robot or human sensor or joint

with position q and velocity q̇. Since this is a single DOF, we denote the state vector

trajectory y(t) = [q(t) q̇(t)]T as the sequence τ = {y(t)}t=0,...,T . By adopting linear

regression with n Gaussian basis functions ψ, the state vector can be characterized

with an n-dimensional column vector of weights w as

y(t) =

q(t)
q̇(t)

 =

ψ(t)

ψ̇(t)

w + εy.

In this case Ψ =
[
ψ(t)

ψ̇(t)

]
is a 2xn dimensional time-dependent matrix of basis

functions. The assumption being made here is that the noise variable εy ∼ N (0,Σy)

is zero mean i.i.dGaussian noise. With this noise assumed the probability of observing

the entire trajectory can be computed with

p(τ |ω) =
T∏
0

∼ (y(t)|Ψtω,Σy).

ProMPs are similar to Dynamic Movement Primitives in the way in which they

are decoupled from time. For instance, instead of the speed of execution being linked

directly to a rate in time, the speed of the original trajectory is decoupled from time

using a phase variable z(t). The phase variable is a direct replacement for time in

the equations in order to control the location of the basis functions with ψ(z(t)). For

this reason, the phase variable is directly substituted for time with z(t) = t such that

ψ(t) = ψ(z(t)). Keep in mind that z(t) can be any monotonically increasing function

(Paraschos et al., 2013).

All of the trajectories in time are now represented by a low-dimensional space

of basis function weights w in phase. This is done to reduce the complexity of the
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problem since n number of basis functions used is usually much smaller than the

number of time steps. In order to obtain an accurate representation of the space

multiple demonstrations are required. Therefore, trajectory variations within the

demonstrations are characterized by defining the distribution over the weights p(ω|θ),

where θ is the learning constant. Due to this, the probability of observing the whole

trajectory becomes

p(τ |θ) =

∫
p(τ |ω)p(ω|θ)dω.

Hence, θ captures the correlation both between the individual weights within each

trajectory, and between each DOF from trajectory to trajectory.

2.2.2 ProMPs for Interaction

Now we will discuss the intricacies of moving from ProMPs to a full state linear es-

timator of the controlled agent. The full state linear estimator utilizes a Kalman filter

to recursively apply Gaussian conditioning to a matrix of basis weights. Estimations

use the correlations across all DOF and an engineered measurement noise model. This

type of stochastic filtering provides and optimal estimation of the controlled agent

state based on the observed agent state and state estimation.

One key aspect of ProMPs necessary for the realization of Interaction Primitives

is the use of the parameter θ. This parameter is extended to the expression of the

correlation between all DOFs of multiple agents directly together using the correlation

of their trajectories. The big assumption made in this work is that the distribution

of trajectories of all DOFs including those of different agents is normal. Therefore

p(ω|θ) = N (ω|µω,Σω), redefines the vector of weights ω to represent all DOF of

all agents. Following the work made by Heni Ben Amor in Amor et al. (2014), the

human agent will be referred to as the observed agent and the robotic system will be
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referred to as the controlled agent. For a pure human robot interaction system these

descriptions will hold, but this work can be extended to any interacting agent. Thus,

the observed and controlled agents are not strictly required to be a human-robot pair.

In order to tie this formulation into Interaction Primitives, first a row vector of

all DOF weights is constructed by concatenating the weights of the observed agent

P followed by the weights of the controlled agent Q

ωd =
{[
ωT1 , ...ω

T
p , ...ω

T
P

]
,
[
ωT1 , ...ω

T
q , ...ω

T
Q

]}
.

Where ωd is the full weight vector corresponding to the d-th demonstration, ωTp is

the n-dimensional column vector of weights of the p-th DOF of the observed agent,

and ωTq is the n-dimensional column vector of weights of the q-th DOF of the controlled

agent. At this point, the mean (µω) and covariance (Σω) are computed by layering the

weights from each demonstration as below where D is the number of demonstrations.

µω = mean
(

[ω1, ...ωd, ...ωD]T
)

Σω = Cov
(

[ω1, ...ωd, ...ωD]T
)

Since the assumption was made that the distribution of trajectories of all DOF

across the demonstrations is normal, Gaussian conditioning can be applied live as

each new observation is collected by applying a Kalman filter in the form

K =
(
Σ−ω ∗HT

z(t)

)
∗
(((

Hz(t) ∗ Σ−ω
)
∗HT

z(t)

)
+ Σ∗y

)−1

µ+
ω = µ−ω +

(
K ∗

(
y∗(t)−Hz(t) ∗ µ−ω

))
Σ+
ω =

(
I −

(
K ∗Hz(t)

))
∗ Σ−ω .

The first equation is the Kalman gain equation where K is the Kalman gain matrix

which controls the filters use of the current state estimate. The next two equations
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generate a prediction for the state estimate and error covariance. In these equations

the + and - symbols denote the predicted and previous states respectively. Finally,

y∗t denotes the observation at time-step t, Σ∗y is the measurement noise, and δ is the

current phase, independent of time. It is important to note here that in order to get

an accurate prediction from the Kalman filter an accurate estimation of the phase

state is required. Phase state estimation does not come from the Kalman filter, but

from an outside algorithm which can produce phase estimation in real-time, this will

be described more in Section 2.3. The observation matrix (Hδ) is a block diagonal

matrix with each diagonal entry corresponding to each DOF of the observed agent as

2xn basis
[

ΦTδ
Φ̇Tδ

]
.

Hδ =


ΦT
δ . . . 0

...
. . .

...

0 . . . ΦT
δ


The observation matrix includes the DOFs of both the observed and controlled

agents, but in an interaction setting the goal is to use only the observed agent during

the Gaussian conditioning stage. To orchestrate this setup and to maintain consis-

tency with the previous definition of ωd, where the entries are concatenated such

that the observed agent comes before the controlled agent, the observation matrix is

partitioned off into sections and the controlled agent weights are set to zero.

Hδ =



(
ΦTo
δ

)
1,1

0 0 0

0
(
ΦT
δ

)
(P,P )

0 0

0 0 0c(1,1) 0

0 0 0 0c(Q,Q)


Where the superscripts o and c denote the observed and controlled agents, respec-

tively, and each 0 entry is on size 2xn dimensions to maintain consistency across the
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matrix dimensions. In general, only a partial combination of observations is able to

provide an optimal estimate since the Gaussian conditioning in the Kalman filter is

a full state estimator.

2.3 Phase Detection

A main problem with Interaction Primitives using ProMPs is that an external

algorithm is required to generate an estimation of the phase. The requirement is

due in part to the tendency of demonstrations to be warped in time compared to

one another. Human demonstrations, specifically, can be slower or faster than one

another or even change locally. Any warping of this type must be corrected or time-

aligned in order to achieve a valid state estimation. In most cases algorithms such as

this time warping function below uses local optimization of the time warping function

with

tj+1
ω = vj0 + g(vj)tjω.

Where tjω represents a vector containing a raw time series of demonstration yωwith

or without warping, at the j-th iteration of the optimization. In this case g is treated

as a smooth, linear Gaussian basis model vj =
[
vj1, ..., v

j
B

]
with B weights, as op-

timization model. Also included is the time shift value vj0 which is used when the

reference trajectory and the trajectory to time-align are indistinguishable but start

at different times. The basis weights are optimized using gradient descent with the

objecting of decreasing the absolute cumulative error between the two trajectories.

v = argmin
K∑
k=0

|yr(tr(k))− yω(vj0 + g(vj)tjω)|
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This method is slightly from the traditional Dynamic Time Warping (DTW) func-

tion seen in (Sakoe and Chiba, 1978). This local method which utilizes the smoothing

function g gets around the traditional problems of DTW which include jumping the

indexes and difficulty of tuning a slope constraint to help with smoothing. Addition-

ally, the smoothing function acts to preserve the overall shape of the trajectory while

shifting it into correct local alignment.

2.4 Bayesian Interaction Primitives

Bayesian Interaction Primitives (BIP) in Campbell and Amor (2017) extend the

idea of Simultaneous Localization and Mapping (SLAM) into Interaction Primitives

such that phase estimation and Bayesian inference are performed in the same step.

Phase estimation is required when there is only a partial observation of the trajectory

y∗ and it is desired to obtain the controlled trajectory through Bayesian inference.

The approach here is to view the goal of attaining a phase estimation as a localization

problem instead of one of time alignment. Using an Extended Kalman Filter (EKF)

localization, a map of N landmarks is used to find the pose st with respect to the

landmarks. This phase variable st = δt is the robot state in the map of possible

trajectories and shows where the robot is relative to the demonstrations. With this

out of the way the demonstration weights, µω and Σω, can be represented by the

map. To finish the implementation of SLAM in Interaction Primitives, the basis

weights of the robot state replace the landmarks on the map such that, st = [ δt
δ̇t

]

∈ R(Do+Dc)B+2∗1. Each basis weight of a basis function represents a single landmark.

The relevant EKF SLAM equations are:
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st =


δt

δ̇t

ωT


p(st|z1:t) = N (st|µt,Σt)

µ0 =


0

β

µTω



Σ0 =

 Σδ,δ Σδ,Σω

ΣΣω ,δ Σω,ω

 .
Where µt ∈ R(D0+Dc)B+2∗1,Σt ∈ R(D0+Dc)B+2∗(D0+Dc)B+2,β is the phase velocity

in the demonstrations, z1:t = y∗1:t and Σω,ω = Σω. This forms the constant velocity

model,

µt = µt−1 +



1 0

∆t 1

...
...

0 0


︸ ︷︷ ︸

F

1

1

+N (0, F T

σδ,δ σδ,δ̇

σδ̇,δ σδ̇,δ̇


︸ ︷︷ ︸

Qt

F )

Gt =

0

0

 .
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The measurement model remains the same as in traditional Interaction Primitives.

zt =



ΦT
δ ω1

ΦT
δ ω2

...

ΦT
δ ωDc


︸ ︷︷ ︸

h(µt)

+N (0,



σ1 0 . . . 0

0 σ2 . . . 0

...
...

. . .
...

0 0 0 σDc


︸ ︷︷ ︸

Rt

)

The main change is that the calculation of the Jacobian must now take into

account the two new variables: phase and phase velocity. This is done by

Ht =
∂h(µt)

∂xt
=


∂ΦTδ ω1

∂δ

∂ΦTδ ω1

∂δ̇

∂ΦTδ ω1

∂ω1
. . .

∂ΦTδ ω1

∂ωDc
...

...
...

. . .
...

∂ΦTδ ωDc
∂δ

∂ΦTδ ωDc
∂δ̇

∂ΦTδ ωDc
∂ω1

. . .
∂ΦTδ ωDc
∂ωDc

 .
By zeroing out the phase velocity and substituting in the basis function weights

you get,

Ht =
∂h(µt)

∂xt
=


∂ΦTδ ω1

∂δ
0 ΦT

δ . . . 0

...
...

...
. . .

...

∂ΦTδ ωDc
∂δ

0 0 . . . ΦT
δ

 .
2.5 Key Gait Biomechanics

In persons with Trans-Tibial Amputations (TTA) it is common to find significant

strength discrepancies between the legs due to the natural limb being significantly

stronger than the prosthetic limb (Lloyd et al., 2010). Noted strength difference can

appear as different symptoms in different individuals but is usually characterized by

an asymmetrical weight distribution with the center of mass shifter underneath the

normal limb (Sanderson and Martin, 1997). A natural center of mass while walking is
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necessary for efficient and healthy walking. If the center of mass shifts in an unnatural

way towards one leg, that leg is forced to take on more weight and this leads to

diminished gait efficiency and joint degradation (Agrawal et al., 2013). Within TTA,

asymmetrical gait is the leading cause of secondary conditions such as osteoarthritis.

Other secondary conditions associated with TTA are: lowered walking speed,

reduction in the power generated during stance phase, increased medial loading in

natural knee during loading, reduced medial/lateral ground reaction forces, and in-

creased metabolic cost of normal activities such as walking, standing, and running

(Svoboda et al., 2012), (Winter and Sienko, 1988), (Mattes et al., 2000). During

normal gait function the knee extensors and plantar flexors are the dominant cause

of forward motion. In persons with Trans-Tibial amputations it has been found that

with the lack of these two functions, increases in hamstring function accounted for

the difference by increasing power at the hip.

Finally, the last big difference in walking with a Trans-Tibial amputation is a

decrease in step size (Farrokhi et al., 2016). Generally speaking, the main reasoning

behind this decrease is two fold. First, trans-tibial amputees are not able to generate

the same push-off force and therefore take smaller steps. Second, a reduction in step

length help to provide needed stability. Since step length is caused by these two

functions it is not able to be addressed by modern treatment options.
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Chapter 3

SENSOR CONSTRUCTION AND PERFORMANCE

A general purpose sensor network consisting of multiple IMUs and two force sen-

sitive shoes were pertinent for the tasks. After reaching out to a few companies about

each device type, it was decided that the optimal solution was to build customized

platforms for each device. Of the shoe platforms commercially available all of them

were deemed to be both too expensive and too unwieldy to be effective in the kind

of testing desired. Likewise, off the shelf blue-tooth enabled IMUs were simply not

powerful enough for this application. The desired requirements are: minimum 100Hz

data rate, low latency pipeline (less than 5ms), low cost, and high accuracy with

minimal noise. In light of the requirements noted above, it was necessitated that

solutions for both shoe and IMU platforms would need to be custom built. Details

regarding the end devices are as follows.

3.1 Force Sensitive Shoe Platform

The shoe platform is a custom force sensing device that uses four amplified baro-

metric pressure sensors embedded in the shoe. With this custom platform, measure-

ments can be gathered for human ground reaction forces in a single dimension at

four individual points on the foot. In this case, force sensor locations are across the

heel, toe, inner metatarsal, and outer metatarsal; Figure 3.2 below illustrates the

sensor locations in greater detail. These four sensors locations allow a wide variety

of feedback from a human user which includes, but is not limited to, heel strike de-

tection, lateral or medial weight shift, and forward of backward weight shift. Having

this combination of sensors allows for the calculation of center of force on the foot
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and center of mass of a human assuming the subject stays relatively non-dynamic.

In addition to custom placement, these particular pressure sensors are temperature

compensated, absolute pressure sensors with 12bits precision and a 0.5ms response

delay. Due to the high precision, high accuracy, and very fast response time, these

sensors are perfect for collection data on dynamic human motion. The basis for all

device communication is the Arduino platform that utilize the Adafruit Pro Trinket

as the main microprocessor board. Platform communication with a PC is handled by

a serial blue-tooth device, running at 115200baud.

Figure 3.1: Force Sensitive Shoe Platform
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Figure 3.2: Shoe platform sensor locations: A. Toe sensor, B. Inner Metatarsal
sensor, C. Outer Metatarsal sensor, D. Heel sensor.

3.2 IMU Platform

The IMU sensor uses the Arduino platform as the base of all device communi-

cation, for these units utilize the Adafruit Pro Trinket as the main microprocessor

board, which takes 5V for an accompanying power board, also from Adafruit. The

platform communication with a PC is handled by a serial blue-tooth device, running

at 115200baud. Inertial sensing is handled by a BNO055 9-axis absolute position

sensor and transmits requested data to the microprocessor via I2C communication

standard. This device was chosen due to its high accuracy, high frequency, and unique

features. As well as meeting the other requirements this sensor contains and on board
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16-bit processor which does real-time absolute position calculations. This enables the

sensor to send raw 3-DOF data for linear acceleration, angular velocity, and magnetic

readings; as well as calculated linear position, angular position, and quaternion data.

All data is collected with 16 bits of precision and the position and orientation of the

coordinates can be seen in Figure 3.4 below.

Figure 3.3: IMU Platform

XY

Z

Figure 3.4: IMU Platform Front
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3.3 Hardware Setup

Due to the nature of Interaction Primitives and the statistical methods that form

them, this method is highly impaired by changes in the sensor mean, both within

and between individuals tests. Due to the dynamic nature of human locomotion if a

sensor slips or changes positing this will act to shift the observed sensor mean and

therefore cause aberrant behavior in the algorithm. In the interest of minimizing this

type of error it is imperative to mount the devices to the human subject in an easy

and repeatable way. To this end the sensors, hardware, and mounting process were

all engineered to maximize data integrity and to facilitate accurate and consistent

data.

The IMU hardware shell was designed with a substantial concavity in order to bet-

ter fit against the curvature of human limb, which enables the sensor to have a sound

connection to the body and will therefore collect cleaner data. A flat sensor would

have a tendency to want to tilt or shift against a curved human surface and would

cause abnormal behavior in the sensor data. A simple Velcro strap was connected to

the sensor body and will fit a wide variety of limb sizes. Additionally, it was found

that the IMU sensor had a tendency to slip down the limb therefore a foam rubber

sheet was adhered to the back of the sensor shell to create a better connection. All of

the decisions made in the design of the shell greatly reduce the difficulty of mounting

the device to a limb accurately. To insure sensor repeatability a single measurement

is used to position the bottom of the sensor shell proximal to the subjects ankle joint.

Lastly, the sensor is adjusted by eye while the subject is in a normal standing position

to be even with the frontal plane. This setup ensures valid data during runtime.
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Figure 3.5: Mounting constraints for all units

Data integrity for the shoe sensors is a little trickier to maintain. Like the IMU

sensors both mounting and hardware constraints impact the consistency of the data

between tests. The barometric absolute pressure sensors are compensated to the

ambient pressure, therefore as weather patterns or altitude change the sensors will not

drift due to the environment. Instead, the drift was found during early trials to come

from two sources, the placement of the foot within the shoes, and the method in which

the shoe is laced up. In order to compensate for the first source of situational bias a

hard insole was placed within the shoe which acts as a filter to transmit the forces

from the foot to the sensors, while mitigating bias noise caused by foot placement.

The second source of situational noise is more difficult in order to mitigate the bias

noise caused by lacing it was imperative to develop a system which is repeatable and

accurate. When viewing the data is it noted that the inner and outer metatarsal

sensors are most affected by the lacing. This is because both the heel and toe sensors
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are further away from the laces. Consequently, a process was put in place by which

the the data is viewed in real-time while the foot is off the ground and being laced.

The laces are then tightened until the foot in comfortably snug while minimal force is

being exerted on the sensors by the lacing process. This ensures that pressure sensors

are not pre-loaded and will give accurate force measurements.

3.4 Software

Robot Operating System (ROS) is a flexible software framework that was built to

enable robotics software development. ROS provides a collection of tools and libraries

with the purpose of simplifying the task of developing complex and robust robot

behavior. This software framework provides features such as: libraries, visualization,

messaging, package management, and hardware abstraction. In a practical sense ROS

can best be described as a network of ROS nodes each running independently. Nodes

can listen to or publish messages to specific topics which is how nodes communicate

with one another.

The data pipeline for all sensors was built to utilize ROS because of the, ease

of use, flexibility and robustness. Furthermore, the data pipeline through ROS has

low latency, less than one millisecond, and a vast open-source community exist which

makes development a breeze. A node is set up for each individual device, a low-level

driver is written for each device type and the node interfaces with the driver to read

serial data from the devices and then publish the data to the associated topic. This

methodology provides a robot hardware abstraction layer such that real-time data can

be maintained independent of hardware changes. In addition, the nodes are separate

from one another if a single device fails or runs out of battery, the entire system does

not fail. Figure 1.1 illustrates the entire data pipeline from device data to the main

algorithm.

24



Chapter 4

LEARNING PRIMITIVES FOR HUMAN WALKING

Estimating biomechanical features from bipedal walking is a difficult problem for

a number of reasons. Fist, the human body contains 244 DOF which makes for a very

high dimensionality problem. In fact this only includes DOF of the positions of joints

and does not include any biomechanical features such as internal or external stresses

on the body. Optimal control theory is well suited to solving the generic problem

and has been done successfully by: Lin et al. (2018), Ackermann and Van den Bogert

(2010), Meyer et al. (2016), and Anderson and Pandy (2001). These types of solutions

utilize control theory, traditional filtering methods, and system identification which

are all well known and effective solutions in general, but cannot be tailored well to

an individual. Other methods derived from pure mathematical models (Collins and

Kuo, 2010), biomechanical observation (van Dijk and Van der Kooij, 2014), and even

investigating through using humanoid robots to test methods (Ijspeert, 2014). Since

each member of the population has a different body size and shape, relationships

among joints while walking will likewise differ greatly. While there is research being

done on the subject there is not a precise understanding of how these relationships

change with differences such as: gender, weight, and height. This knowledge gap,

means that the traditional model based design or model predictive control solutions

are not going to be effective. Currently the only effective solutions proposed have

involved manually tuning devices ether by an expert in the field, or through human-

in-the-loop optimization such as in (Zhang et al., 2017).

The question is how to get to an effective model. Statistician George Box said

”Just as the ability to devise simple but evocative models is the signature of the
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great scientist so over-elaboration and over-parameterization is often the mark of

mediocrity.” Or in layman’s terms, simple effective models that can be dealt with

and explored will always be more effective that those which are too complex to treat

with effectively. Under this advice, I propose using a data driven approach that can

effectively learn complex models while maintaining low dimensionality and computa-

tional efficiency. In order to be effective for real-time control applications there are a

few additional requirements for the chosen model. Namely, the model must support

both future state prediction and an estimation of the future state uncertainty. These

are necessary because the speed at which reactions and interactions happen in the

human walking system is incredibly fast. It has been shown in Smeesters et al. (2001)

that reaction time is directly related to a persons stability. Prediction capability will

allow a future controller to make decision earlier such that when a specific position or

force is necessary such as in a scenario where one looses their balance, the controller

can act before it is to late. Estimation of future state uncertainty will give the ability

to reason about how likely the current action is to lead to an undesired state. Ad-

ditionally, the algorithm must have sufficient faculty to combine multiple modalities

such as sensors and biomechanical features such that the model is sufficient to map

from observed sensor data to unobserved data. Furthermore, the model should be

able to model different types of human walking gaits such as walking on level ground,

up and down slopes, or up stairs. How different the models are and what generaliza-

tion capability exists in the generated models is an important question that will be

addressed in the later portion of this dissertation. Lastly, the most basic component

of bipedal walking is a cyclical or rhythmic structure, while the understanding of hu-

man robot interaction is one of individual discrete actions. All together, if real-time

prediction is desired there are some significant barriers to its implementation.
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Interaction Primitives have been used for human robot interaction for years and

are able to deliver: predictions of future states with an estimation of uncertainty,

estimations across multiple modalities, and generalizations to different spaces or tra-

jectories. Also, Interaction Primitives are very fast in their prediction and estimation

abilities and would therefore be an excellent candidate for this dissertation. However,

Interaction Primitives lack a few important features to work well with human walking;

namely due to the cyclic nature of walking. Traditional Interaction Primitives assume

that a trajectory has a beginning and an end, and that and changes in the phase are

monotonically increasing as seen in Figure 4.1. This trajectory will only lead to a

single action, if the trajectory is to be used again then none of the information about

the previous states will be passed into the next trajectory. This is not the case for

cyclical human walking shown in Figure 4.2 below which repeats over and over. Re-

peating or non-monotonically increasing phase conditions in traditional Interactions

Primitives will not work due to how the conditioning applies to future states. In or-

der to transition traditional Interaction Primitives to work with cyclical trajectories

I will investigate typical human walking behavior in order to create a novel approach

to interaction primitives where the cyclical nature of walking is present in the phase

estimation, basis structure, and conditioning.
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Figure 4.1: Probabilistic prediction of multiple variables as single trajectory.
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4.1 Transitioning to Cyclical Interaction Primitives

In order to move from a trajectory space into a space where repetitive actions are

available I took inspiration from biomechanical analysis of walking. Burgess-Limerick

et al. (1993) discusses how complex joint movements within tasks such as walking or

picking up items can be quantitatively described by phase plane evaluation. They

show that phase angle analysis of multi-joint coordination is sufficiently sensitive to

measure alterations in the task caused by changes in body kinematics or kinetics. By

expressing joint positions, velocities, and loads on a phase plane the cyclic nature

of this task becomes evident as a limit cycle. The limit cycle shown in Figure 4.4

below is formed by tibia angle and tibia angular velocity. This limit cycle has two

main portions shown in Figure 4.3, the first of which starts at heel-strike, at this

point in time the heel of the descending foot makes first contact with the ground and

oscillates as the rest of the foot contacts the ground as well. This is the start of the

stance phase where by bringing the foot under the body the center of mass is raised,

in stance the Achilles tendon acts as a spring to store energy. The end of this phase

and the beginning of the next is push-off where the Achilles tendon releases its stored

energy pushing the raised body forwards and initiating the following swing phase. In

the swing phase the leg uses mostly inertia from the push-off to return to a forward

position ready for the next heel strike.
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Figure 4.3: Human gait cycle during normal walking from Nandy and Chakraborty
(2017).
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Figure 4.4: Limit cycle from tibia angular velocity and angular position at different
speeds.
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4.1.1 Phase Projection

In order to create a unified system around this Phase Plane method multiple

changes will have to be made to the Interaction Primitives. Most important is the

method used to get a continuous estimation of phase within this new space. Prior

work in Interaction primitives has used methods such as DTW to achieve a phase

estimation. DTW has a number of drawbacks; most notable is the fact it is an

incredibly slow algorithm, it has a tendency to make random jumps, and it does not

model well in a cyclical space. Other work has used SLAM functions to first localize

within a space and then to map to the Interaction Primitive, this method is also

computationally heavy and requires the entire DOF space to be mapped. A more

optimal method is to use the advantages that the limit cycle imparts, by localizing

on a single low dimensional Phase Plane. The simplest method of doing this is shown

in Figure 4.5 below where within the limit cycle the angular component of the polar

coordinates are used to generate a phase estimation.
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Figure 4.5: Limit cycle from tibia angular velocity and angular position at different
speeds with basic phase estimation overlay method.

While this method seems fairly effective, unfortunately, it does not correctly map

phase in a few areas of the limit cycle. These areas shown in Figure 4.6 below. The

main problem areas are heel-strike and push-off where the polar angle does not line

up across multiple observations. Matching phase across multiple demonstrations is

incredibly important to the usefulness of the algorithm. When working with human

subjects it has been found that one of the most important aspects human robot

interaction in exoskeletons or prosthetics is the ability to match the human timing

(Young et al., 2017), (Sugar et al., 2015).
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Figure 4.6: Limit cycle from tibia angular velocity and angular position at different
speeds with points showing biomechanical features at each speed.

For the purpose of producing a more advantageous phase estimation, a novel ap-

proach of Phase Projection will be used to map individual biomechanical observations

into the phase space. In Phase Projection the limit cycle is divided up into discrete

phases by drawing lines through the biomechanical feature space of the observations,

shown in Figure 4.7 below.

33



-80 -60 -40 -20 0 20 40 60 80 100

Angular Position [deg]

-600

-400

-200

0

200

400

600

800

1000

A
ng

ul
ar

 V
el

oc
ity

 [d
eg

/s
]

Tibia Limit Cycle

1mph
2mph
3mph
3.5mph
4mph
4.5mph
5mph
5.5mph

Figure 4.7: Expanded phase mapping across entire limit cycle.

Next, the biomechanical feature space is used to generate a three dimensional

surface seen in Figure 4.8 and Figure 4.9 below, by creating a cubic interpolation

between points. When a new observation is projected onto this surface it will map

the observation from the limit cycle into the new phase dimension. This method of

Phase Projection is computationally efficient and highly accurate because it relies

on the assumption that the kinematics and kinetics of the human body are linked

through the joint relationships. The proposed Phase Projection method creates a

manifold which is cyclic in nature and can decompose any observation in the given

limit cycle space into a estimated phase. This is an astonishingly efficient method for

estimating phase.
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4.1.2 Basis Functions

In typical Interaction Primitive methods basis functions are used in order to lower

the dimensionality of the problem. For this to be effective the number of basis func-

tions should be much less than the number of points in the trajectory in time. Dimen-

sionality reduction remains effective because the typical basis functions are formed

from Gaussian curves, where the mean of each Gaussian is shifted in phase to form a

typical set shown in Figure 4.10 generated from Figure 4.11 below. Any trajectory is

then decomposed into a set of weights on these basis functions like the one shown in

Figure 4.12. The set of weights acts as smoothing function as it reduces the trajectory

to a lower dimensionality, therefore the number of basis functions is indicative of the

lever of accuracy desired in the reproduction seen in Figure 4.13.

Figure 4.10: Phase Surface for phase projection in 3-dimensions.
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Figure 4.11: Phase Surface for phase projection in 3-dimensions.

Figure 4.12: Phase Surface for phase projection in 3-dimensions.
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Figure 4.13: Phase Surface for phase projection in 3-dimensions.

Unfortunately, this traditional method does not account for cyclical or recurrent

trajectories, they are instead designed to have a distinct start and end point. For the

correlation analysis to work in the Interaction Primitives the basis functions must be

moved into a cyclical domain. In a cyclical domain the functions would not have a

beginning and end but rather wrap around such that it creates a cohesive cycle. I

propose two methods for this cyclical basis functions: Sine series basis functions and

von Mises basis functions.

Sine Series Basis Functions

Fourier series is an obvious choice when discussing functions that can approximate

repeating sequences in a low dimensional space. The effectiveness of Fourier series to

reproduce square, sawtooth, or any other repeating signal in electrical engineering is
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well known. The Fourier series is able to represent a periodic function by decomposing

that function into a possibly infinite set of oscillatory functions, such as sines, cosines,

or complex exponentials. In this way the dimensionality reduction is done such that

all power in frequencies above that of the highest frequency function in the Fourier

series is lost. While there are a number of mathematical ways of calculating the

exact Fourier series for any given function, since there is not specific function in this

case but rather a collection of data the series will be attained numerically. Examples

of the Series being used on a single dimension of some collected data is shown in

Figures 4.15 and Figure 4.16 below. The basis function frequencies are limited to

ones which match at the zero degree location on the polar plot. This means that the

function will not have any gaps or jumps from one cycle to the next.

Figure 4.14: Phase Surface for phase projection in 3-dimensions.
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Figure 4.15: Phase Surface for phase projection in 3-dimensions.

Figure 4.16: Phase Surface for phase projection in 3-dimensions.
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von Mises Basis Functions

The von Mises distribution is a continuous probability distribution on a circle and

is very similar to the Gaussian function. In fact, the von Mises distribution is a

close approximation to a wrapped normal distribution. It was created as a stationary

distribution of the drift and diffusion process on a circle, and is therefore intrinsic

to the cyclical space this requires. The von Mises distribution is an excellent basis

function for this work because both the mean and variance are controllable through

the Probability Density Function(PDF)

f(x|µ,K) =
eKcos(x−µ)

2πI0(K)
.

Where µ is the location of the mean of the PDF, K is the reciprocal measure of

dispersion 1/K is comparable to σ2. I0 is the value of the modified Bessel function

of order zero with the concentration parameter K:

I0(K) =
∞∑
i=0

K2i

22i(i!)2

An example of von Mises basis functions can be found in the polar plot of Fig-

ure 4.17. For the von Mises basis function, dimensionality reduction happens locally

instead of on a frequency basis. The dimensions are reduced such that local changes

in the function exist but are dependent on the number of basis functions and where

they fall. One final thing to note is that some of the basis functions will extend be-

yond 0 or 360 degrees such that the space will not be separated at the 0/360 degree

mark.
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Figure 4.17: Phase Surface for phase projection in 3-dimensions.

Figure 4.18: Phase Surface for phase projection in 3-dimensions.
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Figure 4.19: Phase Surface for phase projection in 3-dimensions.
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Chapter 5

EXPERIMENTS

To thoroughly examine the effectiveness of these new methods for incorporating

cyclical or repeating motions into Interaction Primitives a number of experiments

were developed around the concept of human walking. As explained earlier, human

walking contains complex symbiotic relationships between kinematics and kinetics.

This work intends to learn the interactive relationship between the three dimensional

kinematics of the tibia and the forces on the foot that accompany them. Usefulness

of these tests are two-fold. First, it will prove that Cyclical Interaction Primitives are

able to predict future states of recurrent systems accurately and efficiently. Second,

it will show that Cyclical Interaction Primitives have the power to intuit future non-

observed biomechanical state within a human system. Both of these reasons are key

to the further development of Preventative Robotics proposed in the introduction.

For most of the experiments the IMU sensors will be used as observed variables and

the shoe force sensors will be seen as controlled or predicted variables.

The following is composed of a number of sections which describe in detail the

experiment, how they were carried out, and the important results that came from

them. Section 5.1 discuses that data that was used in the experiments, how it was

obtained and any pre-processing of the data that was done. Next, Section 5.2 details

basic analysis of the data to get a general idea for the modalities that are present

as well as the importance of each variable to the prediction of the shoe forces. Sec-

tion 5.4 examines the two proposed basis functions (series of sines and von Mises) and

compares the two to determine which is better suited for probabilistically modeling

in a cyclical space. Section 5.5, Section 5.6, and Section 5.7 examine the statistical
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power of Cyclical Interaction Primitives on the task of walking on level ground, on

slopes, and up stairs, respectively.

5.1 Data Collection

For the purpose of successful prediction on a human system a number of modal-

ities were desired. It is well known that synergies exist within the human body and

the synergies are stronger the closer the joints are together. For this reason, kine-

matic lower leg data (motion of tibia in space) was desired to form the basis of the

interactions. Along with the tibia data, force measurements for the foot as the pre-

dicted variable were also imperative to have. To date, there has been a great deal of

testing and data collection done in human kinematics and kinetics to analyze analyt-

ical solutions to the problem of human motion prediction and estimation. Therefore,

previous works were analyzed to see if databases were available and had the requi-

site data for this dissertation’s experiments. Unfortunately no cohesive data set was

freely available that had the level of detail which was desired. The majority of the

foot force data was extrapolated from force measurements on a split treadmill. While

these treadmills produce very high quality data with many DOF, the treadmills are

not able to tell which part of the foot is producing the force. If the biomechanical

data is to be used in a real-time control strategy seeing the synergisms between forces

on individual segments of the foot will be imperative to developing robust probability

distributions. Additionally, the tibia data that was present was entirely 3D odom-

etry data from motion capture cameras which would require a significant amount

pre-processing to get into a usable state. For these reasons it was decided that the

data should be captured specifically for this dissertation. In this way the sensors and

data rate can be specified to fit optimally within the designed algorithmic setup.
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The sensors chosen are the 9 DOF IMU Platform listed in Section 3.2 and the

Shoe Force Platform detailed in Section 3.1. After careful consideration and some

algorithmic tuning the data rate of each device was set to 100Hz. This rate was chosen

based on a number of factors, but mainly due to the algorithmic bottleneck; 100Hz

was the maximum speed at which the algorithm could consistently function without

skipping over any data. Further work was not done to increase algorithm speed

because 100Hz was determined to be an adequate speed to accommodate features

within the walking and running trajectories. Having a constraint of 100Hz still allowed

real-time functionality of the algorithm.

After mounting onto the body as detailed in Section 3.3, a majority of the data

was collected on a treadmill with variable speed and slope settings. Individual trials

were conducted for five minute intervals walking on the treadmill at varying speeds

and inclinations to gather a substantial amount of data that can be used in analysis.

In all, 20 trials were run on the treadmill by setting the speed to [1.8, 2.0, 2.2,

2.5, 3.0] mph and the angle to [-3.0, 0.0, 3.0, 6.0] % grade. Additional trials were

done to gather stair data by finding the largest continuous staircase at Arizona State

University and walking up it multiple times. Upon completion of the trials, the data

was cut such that the dataset starts on the first step on the treadmill and ends on

the last step. Further description of the data processing done can be found in each

section below.

Sensor choice for the IMU made a big difference in choosing which data types

to use in the algorithm. The IMU sensor is not the traditional paired accelerome-

ter/gyroscope/magnetometer sensors, but also includes an on board microprocessor

that uses the raw data to compute the quaternions of the sensor for every instant in

time. This gave access to the raw data as well as world coordinate linear accelera-

tion in 3 DOF and world coordinate angular positions in 3 DOF. It is a traditionally
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frustrating problem to correctly and effectively integrate angular velocity from a gy-

roscope into position because small errors in the integration lead to drift overtime,

so having the calculations done automatically is very useful. Since it is well known,

see Section 2.5, that both tibia velocity and tibia position are highly related to foot

pressure during walking the data types from the IMU that will be used are 3 DOF

angular velocity, 3 DOF angular position, 3 DOF linear acceleration. Additionally,

all pressure sensors on the shoes will be used.

Data from all sensor units was collected at the aforementioned rate of 100Hz.

By keeping the rate the same between data collection and real-time testing, the

algorithmic parameters such as noise do not have to be re-tuned. Also of note is only

a single test subject was used in the entirety of this testing. While it is suspected

that the learned models should transfer fairly well to other participants, Institutional

Review Board (IRB) considerations restrained this testing until a future date.

5.2 Data Analysis

To get a good view of the data and to begin to form some opinions of how the

interactions are formed within the human subject the data was put through a number

of processing steps to view the data in different ways. Visualizing the data in a

number of different ways will show features of the data that would otherwise be

indistinguishable.

5.2.1 Principal Component Analysis

The first visualization method used is Principal Component Analysis (PCA) which

is a statistical method that transforms data into a set of linearly uncorrelated vari-

ables. It does this in such a way that the variables are organized so that the first com-

ponent contains the most variability (accounts for the largest amount information)
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and the last variable contains the least variability. When used on a high-dimensional

dataset it is often used to reduce the dimensionality, or to provide a low dimensional

projection of the data viewed from the most informative direction. PCA components

therefore illustrate how data within a dataset is related internally and to what degree.

To use PCA in a way that reveals the internal structure of the subjects walking, it

is used on the subjects self-selected speed of 2mph on level ground. Since PCA is

sensitive to the scaling of individual variables the data was first normalized around

each variables mean. This is not guaranteed to give an optimal result, as no opti-

mal scaling rules have been found, but it should be efficient enough for this level of

analysis.

Looking at Components

While getting a perfect result from PCA analysis is nearly impossible, a number of

things can be shown from the PCA analysis. First, the analysis shows that the first

four principal components account for 82.0% of the variability in the entire data set.

This means that viewing four dimensions should provide a fairly accurate representa-

tion of the main relationships in the data. When these four principal components are

plotted as in Figure 5.1 it can be seen that there are two different types of relation-

ships. The first and strongest relationship is quite nearly circular; the relationship

between components one and two clearly represents cyclical data within the dataset.

This circular relationship is also present between components three and four; though,

as expected of later components the data is not as well defined as can be seen in the

first two. Within the data a second type of relationship can also be seen which is a

cyclical relationship with a doubled frequency in one direction. A relationship of this

type looks like a figure-eight on Figure 5.1 and represents the binary relationships

that exist due to two legs walking at once. PCA analysis of this type provides strong
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evidence that Cyclical Interaction Primitives have merit in this application. Since the

strongest principal component is cyclical it makes sense to base the model around the

circularity of the data. Likewise, it shows that it is imperative to properly model the

relationships within the space because some relationship have a doubled frequency

component.

Figure 5.1: Four largest principal components from PCA analysis on level ground
walking at 2.0mph.

Looking at individual variables

PCA analysis is so powerful because it delivers the Eigen Vectors along with the

percentage of the variability that is explained by each component. From this in-

formation it is possible to calculate the explanative power of each variable on the

variability from the PCA. Figure 5.2 plots each variable from all sensors against its
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percent of explanation. By plotting the data in this manner it is possible to see which

variables explain the most variability and which explain the least. Accelerometer data

is by far the lowest of all the data. This makes sense due to the high frequency nature

of accelerations at the tibia. Next lowest are the angular velocities in the Y and Z

directions which can be explained by seeing that this data is most variable during

swing when it is the least important to the step. Finally, all around at the same

level are angular position in all three directions, angular velocity in the x direction

and all of the forces at the foot. Between these eight components they explain 82.5%

of the variability in the data. As a significant portion of the variability, it can be

inferred that these variables will be the most important in the Cyclical Interaction

Primitives. These variables clearly have the most power to explain the variability.

However, it should be noted that this does not mean the data is correlated in this

manner. Principal components are by definition linearly uncorrelated to one another

and therefore caution should still be taken when trying to form statistical models

around this data.
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Figure 5.2: Percent of total variance explained by each variable from PCA Analysis
on Level Ground Walking at 2.0mph.

5.3 Phase Projection Analysis

Before going any further the phase analysis is important to review and analyze

to ensure it is functioning as intended. A trial of data was run through the Phase

Projection method; to test the method itself the output was viewed in two ways:

projection analysis and phase coherence.

5.3.1 Projection Analysis

First, each individual point from a single step is projected onto the phase plane.

As a result, another layer of dimensionality to the data such that the efficacy can

be viewed in two and three dimensions demonstrated via Figure 5.3 and Figure 5.4.
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It is important to note that there are no jumps in the data in the phase dimension.

The phase projection method used can easily remap from 100% to 0% phase, which

is a significant issue with traditional methods. The cyclical nature of the phase

projection method eliminates the need to time intensive algorithms such as Dynamic

Time Warping (Sakoe and Chiba, 1978), or a particle filter.

Figure 5.3: Data in red is projected onto the two dimensional phase plane in order
to map the data into the phase dimension.
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Figure 5.4: Data in red is projected onto the three dimensional phase plane in order
to map the data into the phase dimension.

5.3.2 Phase Coherence

Even if transitions between points are smooth in the phase dimension the real

question is, are they consistent? If points that share fundamental features in the

biomechanical space, such as heel strike or toe-off, are not mapped together in phase

then the data can not be said to be coherent in phase. Instead, coherence implies that

biomechanical features are mapped together in phase. This is especially important

because biomechanic feature prediction is the ultimate goal. In order for interaction

primitives to work best they require accurate measurements of the variance at each

point in phase. If biomechanical features are not mapped properly the underlying

distributions built in Interaction Primitives will provide inaccurate predictions later

on.
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Table 5.1: Feature Coherence Evaluation

Feature Type Mean Phase Location Phase Variance

Heel Strike 0.11 0.56

Max Pushoff 54.6 1.15

To view the phase coherence a single trial of 23 steps at the self-selected speed of

2.0mph on level ground was mapped into the phase dimension using the Phase Pro-

jection method. Then the data was post processed to cut up and plot the trajectories

of tibia angular velocity, heel sensor force, and toe sensor force. Next, force sensor

data was compared to the phase information such that exact location of individual

features could be pinpointed. The mean and variance of these features, plotted in

Table 5.1. Figure 5.5, Figure 5.6, Figure 5.7, were used to evaluate the efficacy of the

phase projection in regard to coherence. Variance of the location of actual heel strike

in phase and variance of the location of maximum toe force in phase are two critical

values to measure coherence in this case. As seen in Table 5.1, both of these values

are around 1% which is excellent.
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Figure 5.5: Angular velocity plotted against phase after Phase Projection method
was used to align trajectories in phase.

Figure 5.6: Heel force plotted against phase after the Phase Projection method was
used to align trajectories in phase.
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Figure 5.7: Toe force plotted against phase after the Phase Projection method was
used to align trajectories in phase.

5.4 Basis Function Comparison

For the purpose of to moving further into the creating optimal models from the

data, it is important to first evaluate the proposed basis functions and to choose

a single one for the following experiments. This section includes information on

the testing process, methodology, and outcome of the analysis done on the series of

sines and von Mises Basis functions, to determine which one is better at regressing

distributions of cyclical data.

The criteria being examined in the following Sections is (a) ability to accurately

reproduce the mean of a set of trajectories (B) ability to accurately reproduce variance

of a set of trajectories (C) ability to handle circular distributions. If these four

criteria are not met then the basis function cannot be said to be useful for circular

distributions. The following two Sections 5.4.1 and 5.4.2 analyze both of the proposed

basis functions against one of the given criteria.
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5.4.1 Reproduce Mean of Trajectories

Being able to reproduce the mean of a set of trajectories is fundamental to the

effectiveness of a basis function in Cyclical Interaction Primitives. As the mean is

used later in the Kalman filter step the accuracy of the mean is of vital importance.

For the mean to be decomposed accurately into a set of weights shows that the lower

dimensionally of the basis functions is sufficient to handle the data. Additionally,

the ability to handle recursive distributions should be thoroughly examined. A cycli-

cal basis function should have no true beginning or end, but rather be a constant

continuation of the distribution.

With the intention of testing the accuracy of the two types of basis functions two

data types should be sufficient; one from angular velocity and one from angular posi-

tion. The chosen variables are angular velocity in the x direction and angular position

in the x direction. Each of these variables have been reproduced in the right plots of

Figure 5.8, Figure 5.9, Figure 5.10, and Figure 5.11 below.Additionally the Table 5.2

shows the mean squared error and mean absolute percent error of each data type on

reproducing the mean of the trajectories as well as the percent discontinuity between

0◦ and 360◦. Any discontinuity that exists will be effected by changes in distribution

is undesirable. For the purposes of this testing the trial at the subjects self selected

speed of 2.6mph on level ground was used. In total the entire trajectory consists of

25 steps.
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Table 5.2: Trajectory Reproduction Error

Angular Position Angular Velocity

von Mises MSE: 0.13 MSE: 101.31

MAPE: 1.18% MAPE: 4.66%

gap%: 0.00 gap%: 0.00

Sines MSE: 1.41 MSE 56,866

MAPE: 14.66% MAPE: 18.78%

gap%: 1.96% gap%: 0.75%

Between the mean squared error and mean absolute percent error it is clear that

the von Mises basis functions far out perform the Sines. The feature accuracy is really

the shining star of the von Mises functions as was expected of a local basis function

type as compared to the global basis function type of the Sines functions. The ability

to create local features without affecting the rest of the cycle was a tremendous

benefit. With about 15% and 19% average percent error the sines basis function

were neither incredible accurate globally nor did they have the requisite features to

be accurate locally. It is also important to note that while the von Mises functions

form a continuous trajectory in phase the Sines functions contain a discontinuity

at the 0◦ mark. This junction is important because a discontinuity means that the

distribution will not be effectively transfered across heel strike to the next step. Since

the heel strike feature is the most important to be able to predict across will, due

to prediction of trips or sudden steps, a discontinuity at this location would be very

disadvantageous to the model.
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5.4.2 Reproduce Distribution of Trajectories

Even more important than accurate reproduction of the mean to Cyclical In-

teraction Primitives is that ability to learn the distribution of the weights of the

basis functions. Learning an accurate representation of the distribution will allow

the model to have an understanding of the relationships between variables. As one

variable changes with regard to the mean the model will be able to expect changes

in other variables through the learned relationship. Since Cyclical Interaction Prim-

itives utilize Gaussian distributions, looking at how the variance is modeled by the

basis functions will give an indication to the efficacy of each basis function type.

Testing of each basis function type and how it handles variance and the re-currency

of cyclical distributions was done by the same methods as in Section 5.4.1. The left

plots of Figure 5.8, Figure 5.9, Figure 5.10, and Figure 5.11 illustrate the distributions

of the weights and how they influence the overall generated mean trajectory. In these

figures the standard deviation of each weight on the basis function is shown as the

thickness of the basis functions ±σ and the standard deviation of the mean trajectory

is shown as the gray thickness line around the mean also ±σ. While the von Mises

functions act as expected the Sine function generate a considerable standard deviation

on the individual weights which is magnified in the mean trajectory. Since the sine

waves act over large portions of the phase the standard deviation must be large

in order to achieve the desired local features. Unfortunately this means that the

relationships between weights is going to be odd and quite possible useless due to the

extreme size. Overall, the sine basis functions make for a unreliable basis function

source for Cyclical Interaction Primitives.
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Figure 5.8: Left: Colored regions show the standard deviation of the von Mises basis
function weights with the mean distribution trajectory of angular position in black.
Right: Colored lines show the mean values of the von Mises basis functions with
mean distribution trajectory of angular position in black compared against actual
mean trajectory of observations in red.

Figure 5.9: Left: Colored regions show the standard deviation of the von Mises
basis function weights with the mean distribution trajectory of angular velocity in
black. Right: Colored lines show the mean values of the von Mises basis functions
with mean distribution trajectory of angular velocity in black compared against actual
mean trajectory of observations in red.
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Figure 5.10: Left: Colored regions show the standard deviation of the Sine basis
function weights with the mean distribution trajectory of angular position in black.
Right: Colored lines show the mean values of the Sine basis functions with mean
distribution trajectory of angular position in black compared against actual mean
trajectory of observations in red.

Figure 5.11: Left: Colored regions show the standard deviation of the Sine basis
function weights with the mean distribution trajectory of angular velocity in black.
Right: Colored lines show the mean values of the Sine basis functions with mean
distribution trajectory of angular velocity in black compared against actual mean
trajectory of observations in red.
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Figure 5.12: Samples taken from the distribution around the mean trajectory of
angular position.

Figure 5.13: Samples taken from the distribution around the mean trajectory of
angular velocity.
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5.5 Learning Level Ground Interactions

Level ground walking is the most common of all gait tasks. As seen in the above

section level ground walking can be efficiently modeled with cyclical interaction prim-

itives in order to create a cohesive distribution that can estimate current states and

predict future states. In this section the cyclical interaction primitives, utilizing Phase

projection and von Mises basis functions will be tested on level ground walking in

order to test the efficacy at predicting biomechanical features.

For this test a single trial of level ground walking on a treadmill at 3.0mph for five

minutes was used. The trial was broken up into two portions such that the first 70% of

steps collected during the testing was used for the learning step of Cyclical Interaction

Primitives and the final 30% was reserved for the testing step. For this experiment the

observed variables that the Cyclical Interaction Primitives are conditioned upon are

angular position in 3DOF and angular velocity in the x direction, and the controlled

variables of the Cyclical Interaction Primitives are the four foot forces which will be

predicted. Even though real-time processing of the interaction primitives is possible

the data was collected separate from the conditioning and testing step.

Results of the testing can be seen in the Table 5.3

Table 5.3: Level Ground Walking Prediction Errors

Immediate Estimation Prediction

MSE 0.11 0.56

MAPE 54.6 1.15
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Figure 5.14: Red: Individual foot force predictions for a single step vs Blue: foot
force standard deviations for level ground walking.

64



Figure 5.15: Red: Foot force prediction for a single step vs Black: foot force
observations during same step for level ground walking.
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Figure 5.16: Red: Foot force prediction for a single step vs Blue: foot force
observations during same step shown as a force trajectory across the bottom of the
shoe for level ground walking. 66



5.6 Learning Sloped Interactions

Similar to walking on lever ground, traversing inclines both positive and nega-

tive is extremely common in every day walking. Modern powered prosthetics have

trouble dealing with sloped walking because common controller types have trouble

distinguishing slopes from level ground and therefore produce unsatisfactory control

outputs. Some device manufacturers have adjusted for this by adding additional

springs into the devices to absorb extra loads but the outputs are still suboptimal.

Cyclical interaction primitives hope to improve on the current state of the art by

creating distributions around the changes in variable observations given slope condi-

tions such that future states can be accurately predicted. In this section the cyclical

interaction primitives, utilizing Phase Projection and von Mises basis functions will

be tested on inclined walking in order to test the efficacy at predicting biomechanical

features.

For this test a single trial of walking on a treadmill at 3.0mph and 6% grade for

five minutes was used. The trial was broken up into two portions such that the first

70% of steps collected during the testing was used for the learning step of Cyclical

Interaction Primitives and the final 30% was reserved for the testing step. For this

experiment the observed variables that the Cyclical Interaction Primitives are con-

ditioned upon are angular position in 3DOF and angular velocity in the x direction,

and the controlled variables of the Cyclical Interaction Primitives are the four foot

forces which will be predicted. Results of the testing can be seen in the Table 5.4
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Table 5.4: Inclined Walking Prediction Errors

Immediate Estimation Prediction

MSE 0.11 0.56

MAPE 54.6 1.15
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Figure 5.17: Red: Individual foot force predictions for a single step vs Blue: foot
force standard deviations for inclines.
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Figure 5.18: Red: Foot force prediction for a single step vs Black: foot force
observations during same step for inclines.
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Figure 5.19: Red: Foot force prediction for a single step vs Blue: foot force
observations during same step shown as a force trajectory across the bottom of the
shoe for inclines. 71



5.7 Learning Stair Climbing Interactions

While level ground and inclines are are fairly easy for a modern prosthetic device

to accommodate for, stairs are significantly trickier. A significant amount of time has

been put into modifying modern control strategies for powered prosthetics to work

with stairs. The best are able to distinguish stairs from normal walking about 99% of

the time. If a normal control output for level ground is used while walking up stairs

the prosthetic device actuates the ankle far too quickly causing the subject to be

pushed backwards. This means that the best robotic prosthetic controllers actively

try to kill the human subject about once out of every one hundred steps. This section

works to develop an effective biomechanical prediction algorithm based on Cyclical

Interaction Primitives, utilizing Phase Projection and von Mises basis functions to

predict biomechanical features from distributions of the observed kinematic feature

space.

For this test multiple trials of walking up a flight of stairs at a self-selected speed

was used. The trials were cut into individual steps and then concatinated to form the

full dataset. An additional trial walking up the same flight of stairs was used as the

test case. Results of the testing can be seen in the Table 5.4

Table 5.5: Stair Walking Prediction Errors

Immediate Estimation Prediction

MSE 0.11 0.56

MAPE 54.6 1.15
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Figure 5.20: Red: Individual foot force predictions for a single step vs Blue: foot
force standard deviations for stairs.
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Figure 5.21: Red: Foot force prediction for a single step vs Black: foot force
observations during same step for stairs.
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Figure 5.22: Red: Foot force prediction for a single step vs Blue: foot force
observations during same step shown as a force trajectory across the bottom of the
shoe for stairs. 75



Chapter 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

In Conclusion the introduced cyclical interaction primitives are very efficient at

generating predictions in real-time of biomechanical features inherent in a humans

gait. It supplies excellent estimation during the current time step and is able to

predict future states is phase reasonable well as well. Best of all the algorithm is able

to run in real-time on the actual devices. Additionally it is important to note that

the demonstrations needed to get good results is less than 100 demonstrations.

6.2 Future Work

This Dissertation is the first step towards the larger goal of incorporating the

biomechanical well-being of the human user into the robot control and decision making

process, entitled Preventative Robotics. In contrast to rehabilitation which seeks to

help an individual recover after an injury, Preventative Robotics seeks to reduce the

liability of using a prosthetic device by constantly evaluating the gait characteristics

of the human user and directing the robotic prosthetic in a way that pro-actively

limits the risks of injuries and musculoskeletal disorders. To accomplish this goal

there two areas which need further research and study: (1) human state estimation

and biomechanical prediction (2) symbiotic control algorithms.

Moreover, it is a goal to transition this research onto a prosthetic ankle. The ankle

which will be used is the Ruggidized Odyssey, created by SpringActive Inc., shown

in Figure 6.1. The Odyssey ankle comes equipped with custom titanium tension
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springs in parallel with a high-power motor and controller. Setting the spring and

motor in parallel allows the spring to store energy efficiently while using the motor

to add or subtract energy from the gait. The ankle will be controlled using novel

micro-controllers and sensors which will facilitate real-time applications.

Figure 6.1: SpringActive inc. Odyssey Robotic Ankle.

6.2.1 Human State Estimation and Biomechanical Prediction

The key question, a question I find incredibly compelling, is how does a humans’

intentions, kinematics, and kinetics change in response to robot actions. All research

in the field of prosthetics control focuses on an optimal control strategy for a robotic
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prosthetic in regard to a human. More important to a humans welfare is what effect

that control strategy will have on not just their ability to walk but on their body

in general. Any action executed by a prosthetic will have an impact on the state of

the human user and will effect not only the immediate kinetics and kinematics of the

human but also the response the elicited for the human. The main objective here is to

create a feature rich, dynamic representation of the mutual dependencies in a strongly

coupled human-robot interaction scenario. This main objective can be broken up into

the three subtasks: (1a) biomechanical data augmentation, (1b) predictive modeling

of human-robot interaction dynamics, (1c) efficient multi-modal state representation.

Biomechanical Data Augmentation

This area covers this dissertation. To truly understand the interaction happening in

the human-robot system both prediction and estimation of internal biomechanical

kinematics and kinetics are required. Since truly in vivo measurements of joint move-

ments and loads require invasive surgery, the internal variable must be calculated

based on other human body parameters. Modern techniques use inverse dynamics on

observable variables such as EMG, motion capture data, and force plates to calcu-

late analytically the corresponding non-observable internal variables. However, this

is both too costly and too computationally expensive to run in real-time. Therefore

instead of using a simulation framework to get analytical solutions, we will utilize the

predictive models of Cyclical Interaction Primitives to estimate these internal vari-

ables with learned distributions. Internal variable estimation is pivotal to learning

the human-robot interaction dynamics.
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Predictive Modeling of Human-Robot Interaction Dynamics

A human-robot system that is as tightly coupled as a robotic prosthetic must be

thought of as a symbiotic system. Each system effects the other in innumerable ways.

The goal is to use a low-dimensional space in order to learn and relate the effects

properly such that efficient and safe control can be enacted. Again, instead to trying

to develop analytical solutions to this problem, which would be far too computation-

ally expensive to be a reasonable solution, the information and relationships will be

extracted from data of real world interactions with a robot prosthetic. The learned

model will represent how the actions of the human and robotic prosthetic are mutually

affecting and influencing each others high dimensional states. A learned model will

provide predictions of future actions of human and robot given current states while

maintaining an estimation of the uncertainty underlying these predictions. The most

important work here is to create a low-dimensional coupling of the two systems with

a projection into a high-dimensional space, which will allow for the efficient modeling

of the symbiotic dynamics while employing the high-dimensional space to analyze the

ramifications of the pairing.

Efficient Multimodal State Representation

Since these tasks must run in real-time it is important that the models are efficient

at storing and utilizing data. Most traditional machine learning approaches do not

have significant real-time requirements and those that do mostly make up for it with

increased computational power or hardware optimization. Prosthetic devices though

bring along with them the additional challenges of having to carry both power and

computer on a human body at all times. It is therefore important to develop multi-

modal models which are effective under these harsh conditions. The strategy incor-
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porated will be to use a newly developed method by Joe Campbell in Campbell and

Amor (2018). This method utilizes ensemble Kalman filters to reduce the computa-

tional dimensionality of the interaction space while enabling more efficient processing

of multimodal data. This method is about 50x faster than traditional Interaction

Primitives, is more accurate, and more robust. Since it is dealing with multimodal

data it also add additional usefulness to Interaction Primitives in its ability to han-

dle multiple different basis function types at once, something traditional Interaction

Primitives is incapable of.

6.2.2 Symbiotic Control Algorithms

In the first section a model is produced from collected human-robot interaction

data that is able to anticipate the state of both the human and robotic prosthetic and

infer the complex relationship between them. This section will utilize this complex

model in order to generate optimal control strategies for the prosthetic device. By uti-

lizing the predictive power of the generated model the action space of the prosthetic

can be examined to determine the action which minimizes risks to the musculoskele-

tal system. This goal will also be divided into three distinct tasks: (2a) symbiotic

model predictive control, (2b) continuous activity switching via mixtures of symbiotic

controllers, (2c) human-machine co-adaptation.

Symbiotic Model Predictive Controller

In order to generate optimal controls outputs given the human-robot state a model

predictive controller will be used. A model predictive control acts by minimizing a

given cost function over a control horizon given a predicted state. In this case the

predicted state will be supplied by the state estimation solution from the Section 6.2.1.

In contrast to traditional prediction solutions, this prediction solution will contain

80



information about the joint symbiotic human-robot relationship. Therefore the model

predictive controller will jointly optimize the control signal with respect to its effect

on both the robotic prosthetic and the human user. Given state observations from

the human user and the intended robot actions, predictions can then also be made

regarding the future state of the human movement and impending biomechanical

implications. By incorporating the biomechanical implications into the symbiotic

model predictive controller, the robot is able to optimize the robot constants, such

that control schemes are chosen that elect healthy behavior from the user. The cost

function is crucial to the success of this step and different cost function will have to

be tested and analyzed for their efficacy on the human biomechanical system and risk

of injury.

Continuous Activity Switching via Mixtures of Symbiotic Controllers

It is understood that the symbiotic interactions between human user and robotic

prosthetic will encompass a variety of tasks and situations. Learning a single, highly

complex model which includes the entire space of possible actions and interactions will

likely not function well, as it must be generalizable to all possible scenarios. Instead,

a modular architecture for combining a library of models will be used. Individual

model and controller schemes will first be trained and designed for specific tasks

or situations. Subsequently, individual models are then integrated together via a

mixture-of-experts model, which is able to select and combine different model and

controllers together through a learned model. As a human user traverses and interacts

with the environment accompanied by a robotic prosthetic, the mixture-of-experts

model is able to recognize tasks and situations in order to blend a weighted sum of

individual controller outputs to perfectly handle the situation.
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Human-Machine Co-Adaptation

Each human user will bring with them a new set of biomechanical features and chal-

lenges. It is for this reason that human prosthetics users must return periodically

to a Prosthetist in order to have their device recalibrate for changes in: the device,

gait characteristics, or body shape. A Prosthetist does this through expert obser-

vations and feedback from the user. While Prosthetists are trained in traditional

methods, modern powered prosthetics have proven a challenge for properly tuning.

There are simply to many parameters Prothetists are unfamiliar with in the robotic

tuning process for it to be effective. To combat this, the model will incorporate an

auto-calibration procedure, that adapts the control parameters to changes in the cou-

pled human-robot system. This adaptation will be framed as a policy search problem

under which the cost function is continuously updated in a search process. Of par-

ticular interest is finding and quantifying specific features that emerge as a result of

the symbiotic dynamical system.
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