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ABSTRACT

The popularity of social media has generated abundant large-scale social networks,

which advances research on network analytics. Good representations of nodes in a

network can facilitate many network mining tasks. The goal of network representa-

tion learning (network embedding) is to learn low-dimensional vector representations

of social network nodes that capture certain properties of the networks. With the

learned node representations, machine learning and data mining algorithms can be

applied for network mining tasks such as link prediction and node classification. Be-

cause of its ability to learn good node representations, network representation learn-

ing is attracting increasing attention and various network embedding algorithms are

proposed.

Despite the success of these network embedding methods, the majority of them

are dedicated to static plain networks, i.e., networks with fixed nodes and links only;

while in social media, networks can present in various formats, such as attributed

networks, signed networks, dynamic networks and heterogeneous networks. These

social networks contain abundant rich information to alleviate the network sparsity

problem and can help learn a better network representation; while plain network em-

bedding approaches cannot tackle such networks. For example, signed social networks

can have both positive and negative links. Recent study on signed networks shows

that negative links have added value in addition to positive links for many tasks such

as link prediction and node classification. However, the existence of negative links

challenges the principles used for plain network embedding. Thus, it is important

to study signed network embedding. Furthermore, social networks can be dynamic,

where new nodes and links can be introduced anytime. Dynamic networks can reveal

the concept drift of a user and require efficiently updating the representation when

new links or users are introduced. However, static network embedding algorithms
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cannot deal with dynamic networks. Therefore, it is important and challenging to

propose novel algorithms for tackling different types of social networks.

In this dissertation, we investigate network representation learning in social me-

dia. In particular, we study representative social networks, which includes attributed

network, signed networks, dynamic networks and document networks. We propose

novel frameworks to tackle the challenges of these networks and learn representations

that not only capture the network structure but also the unique properties of these

social networks.
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Chapter 1

INTRODUCTION

The popularity of social media has generated abundant large-scale social networks,

which advances the research on various network mining tasks such as node classifi-

cation, node clustering and link prediction. Network representation learning, which

aims at learning low-dimensional vector representations of nodes that capture certain

properties of a network, can facilitate many network mining tasks. Generally, network

representation learning has two advantages. First, it learns a good representation of

nodes, enabling many machine learning and data mining algorithms designed for i.i.d

data to be applied for network mining tasks. For example, with the learned represen-

tation, the node classification problem is reduced to a classical classification problem.

Classifiers such as Support Vector Machines (SVMs) and deep neural networks can be

used to perform classification. Second, the low-dimensional dense representation of

nodes alleviates the network sparsity problem and the curse of dimensionality prob-

lem. Therefore, network representation learning or network embedding has attracted

increasing attention [51, 55, 5, 64, 79, 89, 62, 91, 28, 91, 94]. However, the major-

ity of existing network embedding algorithms are dedicated to static plain networks,

i.e., networks with nodes and links; while in social media, networks can be present

in various formats, such as attributed networks, signed networks, dynamic networks

and heterogeneous networks.

These social networks contain abundant rich information to alleviate the network

sparsity problem and can help learn a better network representation, while static plain

network embedding approaches cannot tackle such networks. For example, attributed

social networks are very popular because different types of information such as user

1



profile and preferences can be treated as node attributes. The attributes describe the

preferences or properties of the node, which provide complementary information over

network structure [40]. Thus, it is important to learn embedding that preserves both

network information and node attributes. However, network embedding methods for

plain networks don’t take attributes into consideration. Similarly, signed social net-

works, which have both positive and negative links, are also pervasive. For example,

in Epinions 1, positive and negative links denote trust and distrust; and in Slashdot 2,

positive links mean friendships and negative links denote foes. In addition to existing

signed social networks, many algorithms are proposed to construct signed networks

from positive and negative interactions between users or documents [53]. Recent

studies on signed network shows that negative links have added value over positive

links for node classification [71] and link prediction [73]. Thus, it is important to

learn embedding that encodes the semantic meanings of both positive and negative

links. Furthermore, social networks can be dynamic, where existing users can change

their preferences, add new friends and join new groups, or new users can join a so-

cial network and create new links anytime. Dynamic networks requires embedding

algorithms to capture the concept drift of users and to efficiently update the repre-

sentation of nodes when new links and new users are introduced. It is insufficient to

directly apply plain network embedding algorithms on dynamic networks by ignoring

the temporal information.

Therefore, in this dissertation, I investigate network representation learning in

social media. In particular, I study representative social networks, which includes

attributed network, signed networks, dynamic networks and document networks. I

propose novel frameworks to tackle the challenges of these networks and learn repre-

1http://www.epinions.com/
2https://slashdot.org/
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sentations that not only capture the network structure but also the unique properties

of these networks.

1.1 Research Challenges

To learn representation for complex social networks, we are faced with several

challenges:

• For attributed social networks, the attributes are usually presented as high-

dimensional sparse binary vectors, with “1” meaning the existence of an at-

tribute and “0” denoting missing attribute. How can we efficiently extract

meaningful latent features from such binary vectors? And how can we learn

network representations that encode both node attributes and network struc-

ture?

• For signed social networks, the existence of negative links challenges the prin-

ciples used for unsigned network embedding. In unsigned social networks, ho-

mophily and social influence are applicable, which suggest that two linked nodes

are likely to be similar to each other. However, in signed networks, two neg-

atively linked nodes distrust each other or are foes. How can we tackle the

semantic meanings of both positive and negative links? In addition, the under-

lying structure of the network is highly non-linear [52, 89]. The positive and

negative links further increases its non-linearity. How can we design a model to

tackle such highly non-linear networks?

• For dynamic networks, new links and new users can join any time and users’

preferences can gradually change over time. How can we capture the concept

drift of nodes? How can we efficiently update/learn representations when new

links/users are introduced anytime?
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• For document networks, each node in the network is now represented as a docu-

ment. One simple way is to use the bag-of-word representation, which converts

the document network to an attributed network. However, such conversion dis-

regards the order of words and ignores the semantic meaning of words. There-

fore, how can we simultaneously capture the semantic meaning of words and

documents? And how can we also take the links between two documents into

consideration?

1.2 Contributions

The contributions of this dissertation are summarized as follows:

• Studying novel problems of network representation learning in social media such

as signed network embedding and dynamic network embedding;

• Providing principled approaches to design network embedding algorithms guided

by social theories for various types of networks in social media;

• Proposing novel frameworks to learn network representations from various social

networks. The resulting representations preserve not only the network network

structures, but also the unique properties of the social networks such as node

attributes, signed links and dynamic patterns.

• Conducting experiments on real-world datasets to verify and demonstrate the

effectiveness of the proposed frameworks.

1.3 Organization

The remainder of this dissertation is organized as follows. In Chapter 2, I review

related works in network representation learning and its alternatives. In Chapter 3, I
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investigate attributed network embedding. I first give details of the proposed frame-

work paired Restricted Boltzmann Machine (pRBM), its training algorithms and time

complexity. I then conduct experiments to evaluate the effectiveness of pRBM for

attributed social network representation learning. In Chapter 4, I study signed net-

work embedding. I first introduce the details of the proposed deep framework SiNE,

whose design is guided by extended social balance theory. I then detail how to train

SiNE, its time complexity and experimental results. In Chapter 5, I study dynamic

network embedding. I first introduce a probabilistic framework DNE to dynamically

learn representation in dynamic networks. I then give details of training with varia-

tional inference and reparameterization tricks and analyze time complexity. I further

conduct experiments to understand DNE. In Chapter 6, I propose LDE for document

network embedding. I first introduce how to capture the relations among words,

documents and labels with LDE for representation learning. I then conduct exper-

iments to evaluate LDE. I conclude the dissertation and point out broader impacts

and promising research directions in Chapter 7.
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Chapter 2

FOUNDATIONS AND PRELIMINARIES

In this section, we will briefly introduce the background about researches in plain

network embedding and alternatives to network embedding.

2.1 Plain Network Embedding

Network representation learning (or network embedding) aims at learning low-

dimensional vector representations for nodes of a given network. It has been proven

to be useful in many tasks of network analysis such as link prediction [51], community

detection [63, 19], node classification [7, 92] and visualization [84, 77]. The hetero-

geneity in data representation, the sparsity of the network, and the varying degrees

of various nodes, all play a significant role in making network mining tasks more

challenging. To address these issures, network embedding encodes and represents

each node in a unified low-dimensional space, which facilitates a better understand-

ing of semantic relationships and enables the application of classical machine learning

algorithms for network mining talsk [64]. For example, with the learned network rep-

resentations, community detection problem is reduced to classical clustering algorithm

and K-means can be applied.

Network embedding has attracted increasing attention in recent years and various

network embedding algorithms are proposed [66, 5, 51, 64, 79, 62, 89, 93, 91, 29, 86, 65,

27]. For example, in [5], spectral analysis is performed on Laplacian matrix and the

top-k eigenvectors are used as the representations of network nodes. t-SNE proposed

in [84] embeds the weighted network to low dimension for visualization by using

stochastic neighbor embedding. SocDim [81] exploits network modularity to learn
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the latent social dimensions as the node representation. The state-of-the-art network

representation learning algorithms borrow the idea from word2vec [56] techniques.

The essential idea is to first extract the node proximity from the network structure and

then train the embedding to preserve the node proximity [64, 79, 28]. For example,

DeepWalk [64] introduces the idea of Skip-gram [56], a word representation model in

NLP, to learn node representations by extracting node proximity using random-walk

sequences. Node2Vec [28] extends DeepWalk by introducing 2nd order random walk

to extract node proximity [28]. LINE [79] exploits first order proximity and second

order proximity to learn network embedding.

Deep learning is effective in representation learning, which has achieved great suc-

cess in many domains such as computer vision [32], natural language processing [23]

and speech recognition [26]. Therefore, more and more effort is dedicated to investi-

gate deep learning models for network representation learning [89, 85]. For example,

Wang et. al. [89] propose Structural Deep Network Embedding (SDNE), which uti-

lizes deep networks to learn highly non-linear features. Graph attention network [85]

adopts the attention mechanism to learn network representation, where attention

mechanism is widely used in deep learning models [85]. Graph convolutional net-

works [43, 17] try to extend the concept of convolution in signal processing to learn

network representation.

However, the majority of the aforementioned network representation learning al-

gorithms are designed for plain networks, i.e., networks with fixed nodes and links;

while in social media, networks can be present in different formats, such as attributed

networks, signed networks, dynamic networks and document networks. Different type

of social networks contains rich information that can help to alleviate the network

sparsity problem. For example, negative links in signed social network usually mean

distrust or foe relationship, which have different semantic meaning from positive links
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and can be used to learn better network representation. However, existing plain net-

work embedding algorithms cannot handle these rich information. Therefore, in this

dissertation, we propose novel algorithms to tackle the challenges brought by these

complex social networks, and learn representation that can simultaneously capture

the network structure and unique properties of complex social networks.

2.2 Alternative Options to Network Embedding

There are several alternative options to network embedding. The goal of network

embedding is to learn low dimensional vectors of nodes in a network such that the

vectors capture certain properties of the network. These properties can be node

structural proximity, node attributes, edge attributes and others, depending on the

given networks. A high quality network embedding can preserve such properties

and the representation can facilitate downstream network mining tasks such as link

prediction, community detection and node classification. In other words, network

embedding is also feature learning from networks to facilitate downstream network

mining tasks. Based on this understanding, there are two alternatives to network

embedding: (1) feature engineering; and (2) network mining algorithms.

Feature engineering [18] is the process of using domain knowledge of the data

to create features that make machine learning algorithms work. If we can use the

domain knowledge about the network or the downstream task to manually design

and extract features from a network, these features may have as good quality as the

features learned by network embedding algorithms. For example, for link prediction

tasks, handcrafted features such as number of common neighbors between a pair of

nodes are very indicative features for predicting links.

The ultimate goal of network embedding algorithms is to learn features that can

facilitate downstream tasks. Thus, another choice is to design network mining algo-
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rithms directly by utilizing the properties of a network without the explicit process

of learning network embedding. For example, for community detection in signed net-

works, we want the majority of links within a group to be positive while the links

between two groups to be negative. This can be used to design objective function

for community detection without first learning network embedding and then perform

clustering based on the learned embedding.

It is worth noting that these two alternatives can also be used together with net-

work embedding. For example, the handcrafted features and the features leaned by

network embedding algorithms may contain complementary information, which can

result in better network mining performances if they are concatenated together. In de-

signing network mining tasks, the features learned by network embedding algorithms

can be used as another source of input.

9



Chapter 3

ATTRIBUTED NETWORK EMBEDDING

In this chapter, we investigate attributed network embedding. An illustration

of attributed network is shown in Figure 3.1. In addition to the network structure

information, each node is associated with attributes. Attributed networks are very

pervasive in social media. Various information can be treated as attributes of users

in a social network. For example, a user’s profile such as gender, age, major, location

and preferences can all be converted into binary vectors as attributes of the user.

In addition to a user’s profile, social behaviors such as groups the user participated

and genres of musics the user likes can also be treated as attributes of the user. Ob-

viously, these attributes encode complementary information in addition to network

structures, which has potential to alleviate the network sparsity problem in network

representation learning. For example, as shown in Figure 3.1(a), u4 and u5 are not

directly connected and thus it is difficult to know the similarity of these two users;

while from node attributes, we have more information to understand their similarity.

Therefore, it is important to learn an embedding that can simultaneously capture the

network information and attribute information. In an attempt to learn attributed

network embedding, we are faced with two challenges: (i) The attributes are usually

represented as high-dimensional sparse binary vectors with “1” meaning the existence

of this attribute and “0” denoting missing attributes. How to effectively model such

high-dimensional sparse attribute information? and (ii) how to simultaneously cap-

ture both network structure and attribute information. To solve these two challenges,

We proposed a novel framework paired restricted Boltzmann machine (pRBM), which
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(a) Attributed Network (b) Attribute-Value (c) Attributes and Network

Figure 3.1: An Illustrative Example of Attributed Network.

will be introduced in detail next.

3.1 Modeling Attributes with Restricted Boltzmann Machine

To model the high-dimensional sparse attributes, restricted Boltzmann machine

(RBM) [35] is a good fit because an RBM is an undirected graphical model that

defines a probability distribution over a vector of observed, or visible, variables v ∈

{0, 1}m and a vector of latent, or hidden, variables h ∈ {0, 1}d. It is widely used for

unsupervised representation learning and for pretraining deep learning models. Thus,

RBM can learn meaningful features from such high-dimensional sparse attributes.

Figure 3.2(a) gives a toy example of an RBM. In the figure, each node of the hidden

layer is connected to each node in the visible layer, while there are no connections

between hidden nodes or visible nodes. Figure 3.2(b) is a simplified representation

of RBM, where the connection details between hidden layers and visible layers are

simplified. In this work, we consider both v and h as binary vectors, i.e., elements of

v and h can only take the value of 0 or 1. An RBM defines a joint probability over

v and h as,

P (v,h) = exp(−E(v,h))/Z (3.1)

where Z is a normalization constant, i.e., the partition function, which is defined as

Z =
∑

v

∑
h exp(−E(v,h)) and E is an energy function given by

E(v,h) = −hTWv − bTh− cTv (3.2)
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where W ∈ Rd×m is a matrix of pairwise weights between elements of v and h (see

Figure 3.2(a)), while b ∈ Rd×1 and c ∈ Rm×1 are biases for the hidden and visible

variables, respectively1. Since there are no explicit connections between hidden units

in an RBM, given a randomly selected training instance v, the hidden units are

independent of each other

P (h|v) =
d∏
i=1

P (hi|v) (3.3)

and the binary state, hi, i = 1, . . . , d, is set to 1 with conditional probability given as

P (hi = 1|v) = σ
( m∑
j=1

Wijvj + bi
)

(3.4)

where σ(·) is the sigmoid function defined as σ(x) = (1+exp(−x))−1. Similarly, given

h, the visible units are independent of each other, which result in

P (v|h) =
m∏
j=1

P (vj|h) (3.5)

and the binary state, vj, j = 1, . . . ,m, is set to 1 with conditional probability given

as

P (vj = 1|h) = σ(
d∑
i=1

Wijhi + vj) (3.6)

With the attributes v as input, we can learn the latent representation of the user,

i.e., h, with RBM.

3.2 Paired Restricted Boltzmann Machine for Attributed Network Embedding

With RBM modeling the attributes, we are now going to incorporate the network

information. The homophily and social influence theory are two social theories that

can be used to design the model. The essential idea of homophily and social influ-

ence is that similar nodes may be more likely to attach to each other than dissimilar

ones and two connected nodes become more similar. This suggests us to force the

1For simplicity, bias terms are not shown in Figure 3.2.
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(a) RBM (b) Simplified RBM

Figure 3.2: An Illustration of Restricted Boltzmann Machine. Figure (a) Is the

Structure of an RBM. Figure (b) Is Simplified Representation of an RBM.

Figure 3.3: Paired Data

latent features of two linked users to be similar. Thus, we first extract pairs of users

as 〈u1, u2〉 if u1 and u2 are linked, and represent attributed network from the edge

perspective. For example, Figure 3.3 shows the pair representation of the attributed

network in Figure 3.1, where each row in Figure 3.3 is a pair of nodes corresponding

to an edge in Figure 3.1. The vector a contains the link information and matrices

V(1),V(2) contain the attributes of pairs of nodes. For the linked pair 〈u1, u2〉, we use

h(1) ∈ {0, 1}d×1 and h(2) ∈ {0, 1}d×1 to denote their latent feature representations. In

order to model attribute networks from the edge perspective, we force latent feature

representations of linked pairs of instances to be similar. To achieve this goal, we

propose a novel representation learning algorithm paired Restricted Boltzmann Ma-

chine pRBM as demonstrated in Figure 3.4. pRBM is composed of two RBMs, which

is designed for the pair representation. Since we assume that links are undirected,

the two RBMs share the same parameters, such as W,b and c, which ensures that
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〈u1, u2〉 has the same effect to pRBM as 〈u2, u1〉, i.e., switching the order of a pair of

nodes does not matter. Furthermore, by sharing the same parameters, we can reduce

the number of parameters of pRBM greatly, which is significant for small datasets

with high dimensionality of attributes because when datasets are small and the di-

mensionality of attributes is high, a complex model with large number of parameters

cannot be well trained. As shown in Figure 3.4, hidden layers of the two RBMs are

linked, which means that the feature representations h(1) and h(2) are fully connected.

The connection between h(1) and h(2) allows interaction between them. This models

the link between 〈u1, u2〉. More specifically, as 〈u1, u2〉 are linked, it is likely that

〈u1, u2〉 share similar interests/topics, which implies that the similarity between h(1)

and h(2) should be high. Thus, we learn a metric M ∈ Rd×d to force latent feature

representations of pairs of linked instances as 〈u1, u2〉 to be similar. Therefore, the

joint probability of pRBM is defined as

P (v(1),v(2),h(1),h(2), a;θ) = exp(−E(v(1),v(2),h(1),h(2), a))/Z (3.7)

where θ = {W,b, c,M} is the parameter set and the energy function is defined as

E(v(1),v(2),h(1),h(2), a) =− a(h(1))TMh(2) − (h(1))TWv(1) − cTv(1)

− bTh(1) − (h(2))TWv(2) − cTv(2) − bTh(2)

(3.8)

where (h(1))TMh(2) forces the latent feature representations of 〈u1, u2〉 to be close.

Obviously, if M is the identity matrix I, then (h(1))TMh(2) reduces to (h(1))Th(2),

which is the similarity between h(1) and h(2). In this way, learning M can help us to

capture more complex similarity while M = I is a special case. The vectors v(1) and

v(2) are the original feature vectors of a pair of instances, and the scalar a is the weight

of the link between v(1) and v(2). For a pair of linked users, a is set to 1, which forces

the latent representation of these two users to be similar. For a pair of non-linked

users, a is set to 0. Then pRBM reduces to RBM and theirs not interaction between
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Figure 3.4: An Illustration of Paired Restricted Boltzmann Machine for Attributed

Network Embedding

these two users. The partition function is given as

Z =
∑
v(1)

∑
v(2)

∑
h(1)

∑
h(2)

exp(−E(v(1),v(2),h(1),h(2))) (3.9)

And the marginal distribution P (v(1),v(2), a) is given as

P (v(1),v(2), a) =
∑
h(1)

∑
h(2)

P (v(1),v(2),h(1),h(2), a;θ) (3.10)

The paired Restricted Boltzmann Machine pRBM introduced in this work im-

proves upon RBM for attributed networks and is different from Deep Boltzmann

machines (DBM) [67]. An illustration of a 3 hidden-layer DBM is shown in Figure

3.5. From Figures 3.2, 3.4 and 3.5, we can see that the differences are

• RBM and 3 hidden-layer DBM work with independent data instances (or nodes);

while pRBM works with pairs of linked data instances, which results in substan-

tially different structures. RBM has one visible layer v and one hidden layer

h as shown in Figure 3.2, the 3 hidden-layer DBM has one visible layer v and

three hidden layers h(1), h(2), h(3) for leaning higher lever features as shown in

Figure 3.5, while pRBM has two visible layers v(1),v(2) and two linked hidden

layers h(1),h(2) for modeling linked nodes as shown in Figure 3.4; and

• The 3 hidden-layer DBM stacks three RBMs and has different weights for each

layer as shown in Figure 3.5; while pRBM shares weights for the two RBMs
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Figure 3.5: An Illustration of 3 Hidden-layer DBM

and has weights to model the inteaction between h(1) and h(2) as shown in

Figure 3.4. Therefore, pRBM has fewer parameters to train and can model

attributed networks.

3.3 Training pRBM

The training process of pRBM involves sampling from P (h(1),h(2)|v(1),v2)). How-

ever, unlike RBM, because of the link between the two hidden layers h(1) and h(2) of

pRBM, sampling from P (h(1),h(2)|v(1),v2)) becomes difficult, which makes training

pRBM challenging. Next, we give details about how to train pRBM.

Given V(1), V(2), and a, the log-likelihood function of pRBM can be written as

l(θ) =
1

N

N∑
i=1

logP (v
(1)
i ,v

(2)
i , ai;θ) (3.11)

We use the gradient ascent method to update the variables M,W,b and c. For

simplicity of notation, let h = {h(1),h(2)} and v = {v(1),v(2)}. Then the marginal

distribution P (v(1), v(2), a) is written as P (v, a). The derivative of logP (v, a) with

respect to W is:

∂logP (v, a)

∂W
=
∑

h

P (h|v)[h(1)(v(1))T + h(2)(v(2))T ]

−
∑

h

∑
ṽ

P (h, ṽ)[h(1)(ṽ(1))T + h(2)(ṽ(2))T ]

(3.12)
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Thus, the derivative of the objective function in Eq.(3.11) w.r.t W can be written as

∂l(θ)

∂W
= EPdata

[
h(1)(v(1))T + h(2)(v(2))T

]
− EPmodel

[
h(1)(v(1))T + h(2)(v(2))T

]
(3.13)

In Eq. (3.13), EPdata [·] denotes an expectation with respect to the data distribution

Pdata(h,v
(1),v(2)) = P (h|v(1),v(2))Pdata(v

(1),v(2)) (3.14)

where Pdata(v
(1),v(2)) represents the empirical distribution as

Pdata(v
(1),v(2)) =

1

N

∑
i

δ(v(1),v
(1)
i )δ(v(2),v

(2)
i ), (3.15)

and δ(x, y) is the delta function whose value is 1 if x = y and 0 otherwise. In

Eq. (3.13), EPModel
[·] is an expectation with respect to the distribution defined by the

model, i.e., P (v(1),v(2),h(1),h(2)). Using the same procedure, the derivative of the

objective function w.r.t b is given by

∂l(θ)

∂b
= EPdata(h

(1) + h(2))− EPmodel(h
(1) + h(2)). (3.16)

Similarly, we can get the derivative of the objective function w.r.t c as

∂l(θ)

∂c
= EPdata(v

(1) + v(2))− EPmodel(v
(1) + v(2)) (3.17)

The derivative of logP (v, a) w.r.t W can be written as

∂logP (v, a)

∂M
=
∑

h

P (h|v)[ah(1)(h(2))T ]−
∑

h

∑
ṽ

P (h, ṽ)[ãh(1)(h(2))T ] (3.18)

where ṽ = {ṽ(1), ṽ(2)} with ṽ(1) ∈ {0, 1}m and ṽ(2) ∈ {0, 1}m. The scalar ã is

the weight of link between ṽ(1) and ṽ(2). Thus, for each pair of ṽ(1) and ṽ(2), we

need to estimate the corresponding ã, which is intractable. We use ā = 1
N

∑
i ai to

approximate ã. Note that this approximation has no effects on unweighed links since
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we always have a = 1 in the energy function. Therefore, we can get the derivative of

the objective function with respect to M as

∂l(θ)

∂M
=

1

N

N∑
i=1

∑
h

P (h|v(1)
i ,v

(2)
i )
[
aih

(1)(h(2))T
]
− āEPmodel

[
h(1)(h(2))T

]
(3.19)

As with RBMs, in Eqs.(3.13), (3.16), (3.17) and (3.19), the second terms are ref-

ereed to as negative gradient and the exact calculation of EPmodel[·] is intractable.

Following the common way to deal with the negative gradient [50, 36], we use Per-

sistent Contrastive Divergence (PCD) [82] to approximate EPmodel[·]. Specifically,

Contrastive Divergence is to get samples of EPmodel[·] by starting a Gibbs chain at a

training instance and run it for few steps [34]. Instead of using a new Gibbs Chain

for each parameter, Persistent Contrastive Divergence is to use one Gibbs chain for

all the parameters. With the approximation, the gradient of W takes the form

∆W =EPdata
[
h(1)(v(1))T + h(2)(v(2))T

]
− EPT

[
h(1)(v(1))T + h(2)(v(2))T

]
(3.20)

where PT represents a distribution defined by running the Gibbs chain for T full

steps [36]. Similarly, the gradient of b, c and M are

∆b = EPdata(h
(1) + h(2))− EPT (h(1) + h(2))

∆c = EPdata(v
(1) + v(2))− EPT (v(1) + v(2)) (3.21)

∆M =
1

N

∑
i

∑
h

P (h|v(1)
i ,v

(2)
i )(aih

(1)(h(2))T )− āEPmodel(h(1)(h(2))T )

To run Gibbs sampling, we need an efficient Gibbs sampler that alternates between

sampling the states of the hidden units independently given the states of the visible

units, and vice versa. From Figure 3.4, we can see that v(1) and v(2) are conditionally

independent on h(1),h(2). So when h(1) and h(2) are given, we have

P (v(1),v2|h(1),h(2)) = P (v(1)|h1)P (v(2)|h(2)) (3.22)
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where P (v(1)|h1) has the same form as RBM

P (v(1)|h(1)) =
m∏
i=1

P (v
(1)
i |h(1)) (3.23)

with

P (v
(1)
i = 1|h(1)) = σ

(
ci + (h(1))TW·i

)
(3.24)

Similarly, we have

P (v(2)|h(2)) =
m∏
i=1

P (v
(2)
i |h(2)) (3.25)

with

P (v
(2)
i = 1|h(2)) = σ

(
ci + (h(2))TW·i

)
(3.26)

Therefore, sampling of the visible layers given the hidden layers is very efficient.

However, since h(1) and h(2) are not independent given v(1) and v(2) (see Figure

3.4), the sampling of P (h|v) becomes intractable when the dimension of h(1) and

h(2) are large. We use mean-field inference to deal with this problem. Consider any

approximation distribution Q(h|v;µ), parameterized by a vector of parameters µ, for

the posterior P (h|v;θ). Then the likelihood of the pRBM model has the following

variational lower bound [59]

logP (v;θ) ≥
∑

h

Q(h|v;µ) logP (v,h;θ) +H(Q) (3.27)

whereH(·) is the entropy function. The bound becomes tight if and only ifQ(h|v;µ) =

P (h|v;θ)

For simplicity and efficiency, we approximate the true posterior P (h|v;θ) with a

fully factorized approximating distribution over the two sets of hidden units, which

correspond to the mean-field approximation

QMF (h|v;µ) =
d∏
i=1

q
(1)
i (h

(1)
i )

d∏
j=1

q
(2)
j (h

(2)
j ) (3.28)
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where d is the dimension of the hidden layer, and µ = {µ(1),µ(2)} are the mean-field

parameters with q
(1)
i (h

(1)
i = 1) = µ

(1)
i and q

(2)
j (h

(2)
j = 1) = µ

(2)
j . With mean-field

approximation, to maximize the lower bound of Eq.(3.27), we only need to set q
(1)
i

as [59]

log q
(1)
i (h

(1)
i ) = E−qi [log p̃(h)] + const (3.29)

where E−qi [log p̃(h)] is defined as

E−qi [log p̃(h)] =
∑
h
(1)
−i

∑
h(2)

∏
m6=i

q(1)m (h(1)m )
d∏
j=1

q
(2)
j (h

(2)
j ) log p̃(h) (3.30)

and p̃(h) ∝ exp(−E(v,h;θ)) with all the variables being constant except h
(1)
i and

h
(1)
−i is h(1) except h

(1)
i . Thus, E−qi [log p̃(h)] can be calculated as

E−qi [log p̃(h)] =
∑
h
(1)
−i

∑
h(2)

∏
m6=i

q(1)m (h(1)m )
d∏
j=1

q
(2)
j (h

(2)
j )[−E(v,h;θ)]

=h
(1)
i [a

∑
j

Mijµ
(2)
j +

∑
j

Wijv
(1)
j + bi]

(3.31)

From the above equation, we can get

q
(1)
i (h

(1)
i ) ∝ exp

(
h
(1)
i [a

∑
j

Mijµ
(2)
j +

∑
j

Wijv
(1)
j + bi]

)
(3.32)

Then the mean of q
(1)
i (h

(1)
i ) is given as,

µ
(1)
i =

q
(1)
i (h

(1)
i = 1)

q
(1)
i (h

(1)
i = 1) + q

(1)
i (h

(1)
i = 0)

= σ(a
∑
j

Mijµ
(2)
j +

∑
j

Wijv
(1)
j + bi)

(3.33)

which can be written as

µ(1) = σ(aMµ(2) + Wv(1) + b). (3.34)

With the same procedure, we can get that

q
(2)
j (h

(2)
j ) ∝ exp

(
h
(2)
j [a

∑
j

Mijµ
(1)
i +

∑
i

Wjiv
(2)
i + bj]

)
(3.35)
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and thus µ(2) is estimated as

µ(2) = σ(a(µ(1))TM + Wv(2) + b) (3.36)

As we can see from Eq.(3.34) and Eq.(3.36), the update rules of µ(1) and µ(2) are

fixed-point equations and are coupled together. To solve these fixed-point equations,

we simply cycle through layers by updating the mean-field parameters within a single

layer, i.e., updating µ(1) and µ(1) alternatively by fixing one and update the other

one until they converge. To make it smoother, we use damped updates as

µ(1) ← λµ(1) + (1− λ)(aMµ(2) + Wv(1) + b) (3.37)

µ(2) ← λµ(2) + (1− λ)(a(µ(1))TM + Wv(2) + b) (3.38)

Given µ(1),µ(2), we can sample h(1),h(2) from the distribution QMF (h|v;µ) effi-

ciently. Then h(1),h(2) are used to sample v(1),v(2) using Eq.(3.24) and Eq.(3.26),

which gives us a Gibbs chain. Thus, with mean-field inference, we can perform Gibbs

sampling efficiently, which allows us to calculate both EPdata [·] and EPT [·]2. The

training algorithm for pRBM is summarized in Algorithm 1. Next we briefly review

Algorithm 1. We first pretrain pRBM by using RBM to initialize W,b, c. After

that, we prepare the paired training data V(1),V(2) and a from the attribute-value

matrix V and the adjacency matrix A. Since we use mini-batch training, we split

the data into mini-batches. For each mini-batch, we perform PCD by running Gibbs

sampling with mean-field inference to calculate the gradients, i.e., ∆W,∆b,∆c and

∆M. With the gradients, we update W,b, c and M using gradient descent where ε

is the learning rate.

2The calculation of EPdata
[·] also depends on the calculation of P (h|v). For simplicity and

efficiency, we also use mean-field inference to approximate
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Algorithm 1 Training pRBM

Require: V ∈ Rm×n,A ∈ Rn×n, d

Ensure: M ∈ Rd×d,W ∈ Rd×m,b ∈ Rd, c ∈ Rm

1: initialize W,b, c using an RBM

2: prepare paired data V(1),V(2), a from V and A

3: for epoch = 1:maxepoch do

4: for batch = 1:numbatch do

5: perform PCD by running Gibbs sampling with mean-field inference

6: calculate ∆W using Eq.(3.20)

7: calculate ∆b, ∆c, and ∆M using Eq.(3.21)

8: update W as W = W + ε∆W,

9: update b as b = b + ε∆b

10: update c as c = c + ε∆c,

11: update M as M = M + ε∆M

12: end for

13: end for

3.3.1 Representation Learning with pRBM

After pRBM is trained, learning representations is equivalent to sampling from the

posterior distribution P (h(1),h(2)| v(1),v(2)). As we discussed in the previous subsec-

tion, because of the dependence between h(1) and h(2), the sampling of P (h(1),h(2)|v(1),h(2))

is very difficult. Thus, we use the same method, i.e., mean-field approximation, to

infer this posterior distribution. Specifically, if we want to get the feature repre-

sentation of ui whose corresponding input feature vector is vi, we first find the set

Ui = {uj : ui is connected to uj}. For each uj ∈ Ui, we can get the input data

(vi,vj, Aij). Ideally, we want to sample from P (hij,hj|vi,vj) to get hij where hij
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means that the feature representation is from (vi,vj, Aij). Due to the reason that

sampling from P (hij,hj|vi,vj) is difficult, we use the mean-field inference instead.

We first calculate µ(1) and µ(2) using Eq.(3.37) and Eq.(3.38) with vi,vj as input. We

then sample hij from QMF (hij,hj|vi,vj;µ), whose definition is given by Eq.(3.28).

Finally, the feature representation of ui is given by the weighted sum as

h̄i =

∑
j:uj∈Ui Aijhij∑
j:uj∈Uj Aij

(3.39)

3.3.2 Time Complexity

Given a training instance v(1),v(2), we need to perform PCD, which involves run-

ning Gibbs sampling using mean-field approximation. The main cost of Gibbs sam-

pling is on the calculation of µ(1) and µ(2), which is O(d2 + dm). Thus, it takes

O(d2 + dm) to perform Gibbs sampling with mean-field inference for one pair of

training instance. The total computational cost of ∆W,∆b,∆c, and ∆M using

Eq.(3.21) and Eq.(3.20) is also O(d2 + dm). Similarly, the total time complexity of

updating W,b, c,M using gradient ascent as shown in line 8 to line 11 in Algorithm

1 is O(d2 + dm). Since there are N pairs of training instances, the computational

cost of each epoch is O(Nd2 +Ndm).

3.4 Evaluating pRBM

In this section, we conduct experiments to evaluate the effectiveness of pRBM for

attributed network embedding. Specifically, we aim to answer the following questions:

• Is the proposed framework pRBM effective in learning useful representations

for attributed networks?

• How robust is pRBM when datasets are small?
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To answer these questions, we conduct extensive experiments on two real-world

datasets and compare the proposed framework pRBM with state-of-the-art algo-

rithms. We begin by explaining the experimental setting.

3.4.1 Experimental Settings

We use two datasets from real-world social media websites, i.e., BlogCatalog3

and Flickr4. These datasets are publicly available datasets used in [76] to study

unsupervised feature selection for attributed networks. The statistics of the datasets

are shown in Table 3.1. In both datasets, the number of links is much larger than

that of data instances, thus, links have potential to provide extra information over

attributes; and the number of features is larger than that of data instances, thus,

it is necessary to learn dense representations. These characteristics make these two

datasets suitable to assess the performance of unsupervised representation learning

methods for attributed networks.

# nodes # links Avg Degree # Features # Classes

BlogCatalog 5,198 27,965 5.38 8,189 6

Flickr 7,575 47,344 6.25 12,407 9

Table 3.1: Statistics of the Attributed Social Network Datasets.

Following the common way to assess the performance of unsupervised represen-

tation learning algorithms, we use clustering performance to evaluate the quality of

learned representations. Intuitively, better representations will lead to better cluster-

ing performance. Each unsupervised representation learning algorithm is first per-

formed to learn feature representations, and then k-means clustering is performed

3http://www.blogcatalog.com
4http://www.flickr.com
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based on the learned features. The clustering quality is evaluated by two commonly

used metrics: accuracy (ACC) and normalized mutual information (NMI).

3.4.2 Quality of Learned Representations

In order to answer the question of “is the proposed framework pRBM effective

in learning useful representations by exploiting node attributes and network infor-

mation?”, we assess the quality of representations learned by different representation

learning algorithms via clustering performance. pRBM is compared with the following

representative and state-of-the-art methods:

• ALL: We perform clustering on the original data without representation learn-

ing.

• PCA: Principle Component Analysis [39] performs dimensionality reduction by

seeking orthogonal projections of the data onto a low-dimensional linear space

such that the variance of the projected data is maximized. It is a popular

and effective linear feature learning algorithm. We use it as a representative

traditional representation learning algorithm.

• DAE: Denoising autoencoder [87] is a variant of autoencoder that is to learn a

feature representation that is able to reconstruct the input data. Specifically,

DAE is trained to reconstruct a clean “repaired” input from a corrupted version,

which makes it able to extract more robust features. The encoded feature is

used to perform clustering. We use it as a representative nonlinear feature

learning algorithm.

• SDAE: Stacked denoising autoencoder [88] is a deep network based on stacking

layers of denoising autoencoders which are trained locally to denoise corrupted
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versions of their inputs. Compared with the denoising autoencoder, features

learned in a purely unsupervised fashion by SDAE are higher-level and could

boost the performance of clustering. We used a three-layer stacked denoising

autoencoder and the third layer feature representation is used for clustering in

our experiment. SDAE is used as a representative deep learning algorithm for

unsupervised representation learning.

• RBM: Restricted Boltzmann machine [22] is an undirected graphical model

which defines a probability distribution over a vector of observed and a vector

of latent variables. The learned latent variable is used for clustering in our

experiment. RBM can be seen as pRBM without link information.

• RTM: Relational Topic Model [13] is a variant of Latent Dirichlet Allocation

(LDA), which takes attribute and link information into consideration for learn-

ing topic distributions. The learned topic distributions of documents are treated

as the representations.

• TADW: Text-associated DeepWalk [96] incorporates both attribute and link

information into the matrix factorization framework to learn representations of

each nodes. It is state-of-the-art representation learning algorithm for network

with rich attributes.

• LRBM: LRBM [50] combines graph factorization and conditional RBM using

four-way tensor for social networks. It is the closest work to ours and their

differences will be detailed in the related work section.

We use the “grid” search method to determine the values of parameters of the

unsupervised representation learning algorithms. For the proposed model, we empir-

ically set the number of hidden units to be 500 for both datasets. For each method,
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Method ALL PCA DAE RBM SDAE RTM TADW LRBM pRBM

BlogCatalog 36.00 42.45 53.73 53.60 55.77 54.35 54.76 49.60 56.79

Flickr 53.82 58.00 54.81 59.71 59.74 55.38 58.87 56.71 61.95

Table 3.2: Accuracy(%) Comparison on BlogCatalog and Flickr.

Method ALL PCA DAE RBM SDAE RTM TADW LRBM pRBM

BlogCatalog 0.2176 0.2787 0.4047 0.3829 0.4078 0.3802 0.3954 0.3547 0.4142

Flickr 0.4334 0.4601 0.4459 0.4646 0.4831 0.4472 0.4553 0.4481 0.5659

Table 3.3: NMI Comparison on BlogCatalog and Flickr

we first learn feature representations and then use k-means clustering. Since the re-

sults of k-means depend on the initialization, we repeat each experiment 20 times

and report the average performance. The comparison results, i.e., accuracy and NMI

performance in Flickr and BlogCatalog, are shown in Table 3.2 and 3.3. From the

tables, we make the following observations:

• The performance of representation learning methods outperforms ALL, i.e.,

using all features for clustering without learning representations, which suggests

that representation learning can improve the performance.

• pRBM obtains better performance than RBM in both datasets. For example,

on BlogCatalog dataset, pRBM gains 5.95% relative accuracy improvement and

8.17% relative NMI improvement compared to RBM. The performance improve-

ment of pRBM compared with RBM demonstrates that link information does

provide complementary information that could help learn better representa-

tions.

• SDAE, RBM and DAE outperform PCA, which suggests nonlinear features
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learned by SDAE, RBM and DAE are more effective than linear features learned

by PCA. In addition, SDAE outperforms DAE and RBM. SDAE is a deep net-

work by stacking DAEs, which is able to learn more effective high-lever rep-

resentations. However, pRBM outperforms SDAE, which is because pRBM

leverages both attribute and link information while SDAE only learns represen-

tations from attribute information.

• Though RTM, TADW and LRBM consider both attribute and link informa-

tion, pRBM obtains better performance than them. We perform t-test on these

results, which suggests that the improvement is significant. These results sug-

gest that pRBM is more effective in leveraging both information for learning

representations. In particular, LRBM, which utilizes conditional RBM, doesn’t

perform as well as RBM. RBM shares parameter for each data instance, i.e.,

the parameter have dimension W ∈ Rd×m, where d is the number of latent

dimensions and m is the number of attributes, thus we can still learn good

representations from data with high dimensionality, i.e., m ≤ n, where n is the

data size. However, for LRBM, the parameter is a four-way tensor that is much

more complex. Therefore, given the small and sparse characteristics of the used

datasets, LRBM doesn’t perform well.

From these findings, we can draw a positive answer to the first question - pRBM

is effective in learning representations by exploiting both attribute information and

link information.

3.4.3 Robustness of pRBM to Small Data

To answer the question of “how robust is pRBM when datasets are small?”, we

examine how the performance of pRBM varies with changes to the size of data. To
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achieve this goal, we randomly select x% of the data instances from each class to

construct smaller datasets from original datasets. We vary x as {10, 20, 40, 60} in

the paper and correspondingly we can get four smaller datasets from each original

dataset. For example, we construct BC10, BC20, BC40 and BC60 from BlogCatalog

by randomly selecting 10%, 20%, 40% and 60% of its data instances. Furthermore,

we compare each reduced dataset with the full dataset, named BC100. Since we

make similar observations on both BlogCatalog and Flickr, we only report results

on BlogCatalog. The statistics of these four datasets are shown in Table 3.4, where

“Ratio” in the table refers to feature dimension over data size. Generally, it can also

be used as a measure of how large the dataset is. A large ratio of feature dimensions

as a function of the data size usually implies a small dataset.

BC10 BC20 BC40 BC60

Size 523 1042 2081 3121

Features 8189

Classes 6

Links 2,782 5,480 10,717 16,885

Avg Degree 5.32 5.26 5.15 5.41

Ratio 15.66 7.86 3.94 2.62

Table 3.4: Statistics of the Reduced Datasets

From the table, we can see that though the number of instances is small, we still

have a relatively large number of links, which could be sufficient to train pRBM.

Similarly, we use accuracy and NMI clustering performance to assess the quality of

learned features and k-means is chosen as the basic clustering algorithm. Since the

results of k-means depend on the initialization, we repeat each experiment 20 times

and report the average performance. The performance variances w.r.t. the size of data
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Figure 3.6: The Impact of the Size of Data on the Performance of Representation

Learning Methods.

are shown in Figures 3.6(a) and 3.6(b) for accuracy and NMI, respectively. We also

show the results of PCA, RBM and TADW for comparison because PCA represents

linear representation learning algorithm, RBM can be seen as pRBM without link

information and TADW is the state-of-the-art method for attributed networks. From

the figures, it can be observed:

• In general, traditional feature learning algorithm PCA is stable with the changes

of the size of data; while the performances of RBM, TADW and pRBM increase

with the increase of the data size. This suggests that with larger dataset, RBM,

TADW and pRBM can be better trained.

• When data size is small such as BC10, we cannot observe performance improve-

ment from RBM compared to PCA; while pRBM and TADW always outperform

PCA, which supports that link information is useful for representation learning

when data size is small.

• In addition, pRBM always outperforms TADW. We also perform t-test on these

results, which suggests that the improvement is significant. This implies that

pRBM is more effective in leveraging link data and pRBM is also robust to
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small dataset.

3.4.4 Parameter Sensitivity
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Figure 3.7: Sensitivity of pRBM to Dimensionality

In this subsection, we investigate the impact of the dimensionality of the latent rep-

resentations, d, on the performance of pRBM. We test d at {100, 200, 500, 800, 1000}.

For each dataset, we first apply pRBM to learn representations and then perform

clustering to access the quality of the representations. We repeat each experiment

20 times and report the average performance. Since we make similar observations

on both BlogCatalog and Flickr, we report results on BlogCatalog. The performance

variances w.r.t d are shown in Figures 3.7(a) and 3.7(b). From the figures, we can

see that, generally, as the dimensionality of the latent representation increases, the

performance first increase until it reaches a certain point, then the performance de-

creases. For the two datasets used, we find that a value of d between 300 to 700 works

well, which eases parameter selection.
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Chapter 4

SIGNED NETWORK EMBEDDING

In this chapter, we study signed social network embedding. Social networks can

contain both positive and negative links, and these signed social networks are present

on a variety of social media sites, such as Epinions with trust and distrust links,

and Slashdot with friend and foe links. In addition to existing signed social networks,

many algorithms are proposed to construct signed networks from positive and negative

interactions between users or documents [53, 31]. The availability of negative links in

signed networks challenges some principles that explain the formation and properties

of links for unsigned social networks; and principles for signed social networks can be

substantially different from that of unsigned network [49, 73]. For example, homophily

effects and social influence for unsigned networks may not be applicable to signed

networks [74]. Therefore, signed network embedding cannot be carried out by simply

extending embedding algorithms for unsigned social networks. Recent research on

mining signed social networks suggests that negative links have added value over

positive links in various analytical tasks. For example, a small number of negative

links can significantly improve positive link prediction performance [48], and they

can also improve recommendation performance in social media [72]. While signed

network embedding is challenging, the results of such an approach have the potential

to greatly advance tasks of mining signed social networks such as link prediction.

Next, we propose a novel signed network embedding algorithm.
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4.1 An Objective Function for Signed Network Embedding

Recent research about signed social networks suggests that negative links present

distinct properties from positive links, and the fundamental principles that drive the

formation of links for signed and unsigned social networks are very different [74, 49].

This suggests that we need a new objective function for signed network embedding

because we cannot apply those for unsigned social networks directly on signed social

networks.

Social theories are developed by social scientists to explain social phenomenon in

signed social networks and they provide fundamental understandings about signed

social networks. Social theories have been widely exploited in various tasks of mining

signed social networks such as link prediction [49] and community detection [14]. The

successful experiences on exploiting social theories in mining signed social networks

suggest that social theories may guide us to develop objective functions for signed

network embedding. Actually, social theories for unsigned social networks have been

widely used to design objective functions for unsigned social network embedding. For

example, social correlation theories such as homophily [95] and social influence [83]

suggest that two connected users are likely to share similar interests, which are the

foundations of many objective functions of unsigned network embedding [79, 28].

Inspired by the success of applying social theories in unsigned network, we seek social

theories on signed network for signed network embedding. Among the social theories,

structural balance theory is one of the most important and popular theories for signed

social networks. Thus, in this work we develop an objective function for signed

network embedding based on it.

Structural balance theory was originally proposed in [33] at the individual level,

generalized by Cartwright and Harary [11] in the graph-theoretical formation at the
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Figure 4.1: Three Types of Triplets of Users.

group level and then was developed to the concept of clusterizable graph in [16]. It

is recently extended by [15] as: a structure in signed social network should ensure

that users should be able to have their “friends” closer than their “foes”, i.e., users

should sit closer to their “friends” (or users with positive links) than their “foes”

(or users with negative links). In other words, the key idea of extended structural

balance theory suggests that a user should be more similar to her friends than her

foes. The extended structural balance theory provides us a guidance to model signed

social network for learning network embedding. We will now introduce the detail of

how we model signed social network based on extended structural balance theory.

Let P be a set of triplets (vi, vj, vk) as shown in Figure 4.1(a) from a given signed

social network G, where vi and vj have a positive link while vi and vk have a negative

link. Formally, P is defined as:

P = {(vi, vj, vk)|eij = 1, eik = −1, vi, vj, vk ∈ V},

The extended structural balance theory in [15] suggests that with a certain similarity

measurement, for a triplet (vi, vj, vk) ∈ P , vi is likely to be more similar to the user

with a positive link, i.e. vj, than a user with a negative link, i.e. vk, which can be

mathematically modeled as:

f(xi,xj) ≥ f(xi,xk) + δ, (4.1)

where xi, xj and xk are the d-dimensional vector representations of vi, vj and vk

respectively, which we need to learn by the proposed embedding framework. In
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f(xi,xj), f is a function that measures the similarity between xi and xj. We will

discuss more details about the function f in the proposed framework in the following

subsection. The parameter δ is a threshold that is used to regulate the difference

between these two similarities. A large δ will push vi, vj more close and vi, vk more

far away. The range of δ will be discussed in experimental analysis section.

(a) 2-hop Network (b) triplets contains vi (c) Adding a virtual node

v0

Figure 4.2: Dealing with Special Case

In a real-world signed network, the objective function in Eq. (4.1) has no effect on

those nodes whose 2-hop networks1 have only positive or negative links. Figure 4.2(a)

gives an example, where vi’s 2-hop network only has positive links. Then vi will not be

included in any triplets that has one negative link with vi as shown in Figure 4.2(b).

That is to say, we cannot learn the d-dimensional vector representations for those

nodes whose 2-hop networks are all positive or negative because there are no triplets in

P that contains them. Those nodes are involved in triplets as shown in Figures 4.1(b)

and Figures 4.1(c). According to a recent study [74], the cost of forming negative

links is higher than that of forming positive links in social media. Therefore, in a

signed social network, positive links are denser than negative links. This determines

that there are many nodes whose 2-hop networks have only positive links while very

1vi’s 2-hop network is defined as the network formed by vi, users whose distance from vi is within

2 hops and links among them.
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Figure 4.3: Adding a Virtual Node.

few nodes whose 2-hop networks have only negative links. Therefore, next we only

consider handling nodes whose 2-hop networks have only positive links although a

similar solution can be applied to dealing with the other type of nodes.

We first introduce a virtual node v0 and then create a negative link between v0 and

each node whose 2-hop network has only positive links. For example, after adding a

virtual node to vi as shown in Figure 4.2(c), we can extract triplets such as (vi, vj, v0)

and (vi, vk, v0) as shown in Figures 4.3(b) and 4.3(c). Let P0 be the set of triplets

(vi, vj, v0) where vi and vj have a positive link while vi and v0 have a negative link,

and a similar objective function as Eq. (4.1) can be developed as:

f(xi,xj) ≥ f(xi,x0) + δ0, (4.2)

where δ0 is a threshold to regulate the similarities. The reason of using δ0 in Eq.(4.2)

and δ in Eq.(4.1) is that we can have more flexibility to distinguish triplets with or

without the virtual node by tuning δ and δ0. By adding the virtual node, we can make

a node vi whose 2-hop network contains only positive links closer to their neighbors.
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4.2 The Proposed Framework SiNE

Based on Eq.(4.1) and (4.2), the objective function for signed social network em-

bedding guided by the extended structural balance theory can be written as:

min
X,x0,θ

1

C

[ ∑
(xi,xj ,xk)∈P

max(0, f(xi,xk) + δ − f(xi,xj))

+
∑

(xi,xj ,x0)∈P0

max(0, f(xi,x0) + δ0 − f(xi,xj))
]

+ α
(
R(θ) + ‖X‖2F + ‖x0‖22

)
,

(4.3)

where C = |P| + |P0| is the size of the training data and X = {x1,x2, . . . ,xm} is

the low-dimensional representation of the m nodes, and θ is a set of parameters to

define the similarity function f . R(θ) is the regularizer to avoid overfitting and α is

a parameter to control the contribution of the regularizers.

4.3 The Architecture of SiNE

With the objective function given above, the task now is to find a function f that

is able to give good similarity measure and learn good representations of nodes in

signed network. Since signed networks are highly nonlinear, one choice of f is non-

linear functions, which have shown to be superior than linear functions for similarity

measure and representation learning [6]. Among various non-linear functions, deep

learning has been proven to be the state-of-the-art and very powerful for nonlinear

representation learning [70, 6]. This suggests us to utilize the power of deep learning

for learning nonlinear embedding of the nodes. In particular, we design a deep learning

framework SiNE, which defines f with θ and optimizes the objective function in

Eq. (4.3). To help better understand SiNE, we first work on an illustrative example

of the architecture of the proposed deep learning framework with 2 hidden layers (see

Figure 4.4) and then generalize it to N layers. Note that we do not show bias in the
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Figure 4.4: An Illustration of the Architecture of SiNE with 2 Hidden Layers.

figure. The input to the framework is the set of triplets extracted from the signed

social network as (vi, vj, vk) with eij = 1 and eik = −1. The model is composed of

two deep networks that share the same parameters. The outputs of the first hidden

layer of the two deep networks (or “1st Hidden Layer ” in Figure 4.4) are given as:

z11 = tanh(W11xi + W12xj + b1), z12 = tanh(W11xi + W12xk + b1) (4.4)

where tanh is the hyperbolic tangent function, which is one of the most widely used

activation function in deep networks. W11 and W12 are the weights of the first hidden

layer and b1 is the bias. z11 and z12 are then used as inputs to the second hidden

layer (or “2nd Hidden Layer” in Figure 4.4) of the two deep networks, separately.

Similarly, the outputs of the second layer are z21 = tanh(W2z11 + b2) and z22 =

tanh(W2z12 + b2). f(xi,xj) and f(xi,xk) are the output of the two deep networks:

f(xi,xj) = tanh(wTz21 + b), f(xi,xk) = tanh(wTz22 + b) (4.5)

which are the terms in Eq. (4.3) and the vector w is the weights and the scalar b

is the bias2. With the illustration of the proposed framework with 2 hidden layers,

2Note that for the proposed framework SiNE, the weights and bias to generate output f(xi,xj)

are a vector and a scalar, separately
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we can see that the similarity function f is defined by the deep network with a set

of parameters as shown in Figure 4.4. Particularly, in Figure 4.4, θ is defined as

θ = {W11,W12,W2,w,b1,b2, b} and correspondingly we define R(θ) as:

R(θ) =‖W11‖2F + ‖W12‖2F + ‖W2‖22 + ‖w‖22 + ‖b1‖22 + ‖b2‖22 + b2 (4.6)

Note that we can also choose other regularizers for θ such as those based on `1-norm

and we would like to leave it as one future work.

We now extend the 2 hidden layer example to a N layer deep network. For a N

layer deep network, the parameters are X, x0 and θ = {W11,W12,W2, . . . ,WN ,b1

, . . . ,bN ,w, b} where Wn are the weights for the n-th layer and bn is the bias for n-th

layer with 1 < n ≤ N . The input to the first hidden layer is triplet (vi, vj, vk), i.e.,

xi,xj,xk. And the input to the n-th layer, 1 < n ≤ N , is the output of the (n−1)-th

layer, i.e., z(n−1)1 and z(n−1)2. The output of the first layer is given by Eq. (4.4) and

the output of the n-th layer, 1 < n < N is given as:

zn1 = tanh(Wnz(n−1)1 + bn), zn2 = tanh(Wnz(n−1)2 + bn) (4.7)

And the output of the N -th layer is given as

f(xi,xj) = tanh(wTzN1 + b), f(xi,xk) = tanh(wTzN2 + b) (4.8)

4.4 Optimization of SiNE

Following the common way, we employ the backpropagation to optimize the deep

network for SiNE. The key idea of backpropagation is to update the parameters

in a backward direction by propagating ”errors” backward to efficiently calculate the

gradients. Basically, we want to optimize Eq. (4.3) w.r.t to X, x0 and θ. The key step

of optimizing Eq. (4.3) is to get the gradient of max(0, f(xi,xk) + δ − f(xi,xj)) and

max(0, f(xi,x0) + δ − f(xi,xj)) with respect to the parameters, X,x0 and θ. With
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the gradient, we then can update the parameters using gradient descent method.

The details of how to derive the derivatives for backpropagation can be found in

Appendix 3.

4.5 Training SiNE

We train SiNE based on mini-batch stochastic gradient descent with respect to

the parameters of the deep network, i.e. θ, the signed network embedding X and

the virtual node embedding x0. It is well known that for signed social networks

in social media, the number of links of nodes follows power-law distributions, i.e.,

many nodes have only a small number of links while only a small number of nodes

have a large number of links. This will cause some nodes to have a large number of

training triplets. To save computational cost, following the same idea used in word

embedding [56], for a node that has a large number of training triplets, we randomly

sample a subset of the training triplets for training. The size of the subset is chosen

as S = 300. In other words, each node has at most 300 training triplets. The

initialization of the parameters of the deep network follows the approach introduced

in [24]. Specifically, we initialize the weights of hidden layer i by a uniform sampling

from the interval
[
−
√

( 6
di−1+di

),
√

( 6
di−1+di

)
]
, where di−1 is number of units in the

(i − 1)-th layer and di is the number of units in the i-th layer. The signed network

embedding X is initialized as a zero matrix. The training algorithm for the proposed

framework SiNE is summarized in Algorithm 2. From line 1 to line 9, we prepare

the mini-batch training triplets. In line 10, we initialize the parameters of the deep

network and the low-dimensional representations and we train the deep network from

line 11 to line 24.

3Available on http://www.public.asu.edu/ swang187/
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Algorithm 2 Signed Network Embedding

Require: Signed social network G = {V , E}, d, δ, α

Ensure: vector representation of nodes X

1: Initialize P and P0 as P = ∅ and P0 = ∅

2: for i=1:n do

3: if vi whose 2-hop networks have only positive links then

4: extract triplets with virtual nodes and put them into P0 (sample some if

necessary)

5: else

6: extract triplets and put them in P (sample some if necessary)

7: end if

8: end for

9: prepare mini-batch from P and P0

10: initialize the parameters of the deep network and signed network embedding

11: repeat

12: for each mini-batch do

13: Forward propagation

14: for n = 1:N do

15: calculate zn1, zn2

16: end for

17: Backpropagation

18: Update w and b

19: for n= N:1 do

20: update Wn, bn (or W11,W12 if n = 1)

21: end for

22: update related X and x0

23: end for

24: until Convergence

25: return X
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4.5.1 Time Complexity

Let d be the dimension of the embedding and dn, 1 ≤ n ≤ N, be the number

of nodes in the n-th layer of the deep network. For a triplet, the computational

cost of forward propagation in the n-th layer, i.e., the computation of zn1, zn2, is

O(di−1di) and the computational cost of back-propatgation in the n-th layer, i.e. the

computation of ∂f(xi,xk)
∂Wn , is also O(di−1di). Thus, the cost of forward and backward

propagation for one triplet is O(dd1 +
∑N

n=1 di−1di). Since for each node, we sample

no more than S = 300 training triplets, the total number of triplets for training, i.e.,

C = |P| + |P|0, is approximately O(m · S), where m is number of nodes. Thus, the

overall computational cost for training SiNE is O(tmS(dd1 +
∑N

n=1 di−1di)), where t

is number of epochs it takes to converge. And in our experiments, t is about 100 for

the datasets used.

4.6 Extending SiNE for Attributed Signed Social Network

The proposed framework is designed for signed network without attributes. How-

ever, it is also a flexible model that can be extended for simultaneously handling both

attributes and signed network [90]. One simple way is to concatenate the node at-

tributes with the learned node embedding as the new node representation. However,

such simple concatenation may not be optimal as the information contained in node

attributes and signed network structure are not well fused. Thus, we propose to mod-

ify SiNE to learn embeddings that model both node attributes and signed network.

To do this, we first need to investigate the attributes similarity of two positively or

negatively linked users in signed social networks, which serves as a foundation to

extend SiNE.

The data analysis of the attributes similarity between two positively or negatively
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linked users in signed social networks are as follows. Let pi and ni denote the number

of positive and negative links of vi, respectively. We construct two sets for each user

ui with the same size of min(pi, ni). These sets correspond to (i) a friend circle Pi

including randomly selected users who have positive links with vi; and (ii) a foe circle

Ni containing randomly selected users who have negative links with vi. We then

create the positive link set P and negative link set N as

P = {(vi, vk)|vk ∈ Pi, i = 1, . . . , n}

N = {(vi, vk)|vk ∈ Ni, i = 1, . . . , n}
(4.9)

With these two sets, we can then calculate the similarity for each pair of users (vi, vk)

in P and N . We investigate two ways of calculating similarity as follows

• CA: For a pair of users, (vi, vk), we compute the similarity sim(vi, vk) as the

number of common attributes by both vi and vk; and

• COSINE: We compute sim(vi, vk) as the cosine similarity between the attributes

of vi and attributes of vk

Let sp ∈ R|P|×1 denote the similarity vector of each pair of users in P and sn denote

the similarity vectors for N . The mean values of sp and sn are shown in Table 4.1.

From the table, we observe that users are likely to have more similar attributes with

their friends than their foes. To statistically verify the observations, we conduct a

two-sample t-test.

For two vectors {x,y}, the null hypothesis H0 and the alternative hypothesis H1

of the two-sample t-test are defined as follows:

H0 : x ≤ y H1 : x > y (4.10)

where the null hypothesis indicates that the mean of x is less than or equal to that of y.

We perform the t-test on {sp, sn} to substantiate the aforementioned observation. The
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Epinions Slashdot

CA COSINE CA COSINE

P 75.93 0.0650 21.24 0.0332

N 67.16 0.0540 16.64 0.0289

Table 4.1: Average User Attributes Similarities in P and N

Epinions Slashdot

CA COSINE CA COSINE

{sp, sn} 2.31e-31 7.72e-110 3.27e-144 7.85e-148

Table 4.2: P-value of t-test Results

null hypothesis is that positively linked users have less common attributes than that of

negatively linked users; therefore, if we reject the null hypothesis, then the assumption

that positively linked have more common attributes than negatively linked users is

verified. The null hypothesis is rejected at significance level α = 0.01 with p-value

shown in Table 4.2, which verifies our observations statistically.

Figure 4.5: An Illustration of the Architecture of the Proposed SiNE for Attributed

Signed Network.
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This suggests that the principle for modeling both attributes and signed links is

consistent with the principle used in SiNE, i.e., we should have our friends closer than

our foes. Therefore, we can reuse the objective function of SiNE

min
x0,θ

1

C

[ ∑
(xi,xj ,xk)∈P

max(0, f(xi,xk) + δ − f(xi,xj))

+
∑

(xi,xj ,x0)∈P0

max(0, f(xi,x0) + δ0 − f(xi,xj))
]

+ α
(
R(θ) + ‖x0‖22

)
,

(4.11)

where C = |P| + |P0| is the size of the training data, and θ is a set of parameters

to define the similarity function f . R(θ) is the regularizer to avoid overfitting and

α is a parameter to control the contribution of the regularizers. An illustration of f

is shown in Figure 4.5. Note that now X ∈ Rd×N is the node attributes matrix with

each column xi being the attributes of node vi. The attributes are first projected as

g(Pxi + e) to form the node embedding, where P is the weights, e is the bias and g

is activation function such as sigmoid, tanh or ReLu. The rest of the network are the

same as the original SiNE.

4.7 Evaluating SiNE

In this subsection, we conduct experiments to evaluate the effectiveness of the

proposed framework SiNE. We begin by introducing datasets. We then analyze the

embedding learned by SiNE. To measure the quality of the embedding, we use the

embedding for signed link perdition.

4.7.1 Datasets

The experiments are conducted on two real-world signed social network datasets,

i.e., Epinions and Slashdot. Epinions is a popular product review site in which users

can create both trust (positive) and distrust (negative) links to other users. Slashdot is

a technology news platform where users can create friend (positive) and foe (negative)
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links to other users. For both datasets, we filter out users who have no links, which

leaves us 27,215 users for Epinions dataset and 33,407 users for Slashdot dataset.

Some key statistics of the two datasets are summarized in Table 4.3. It is evident

from the table that (1) both networks are very sparse; (2) positive links are denser

than negative links.

Dataset # users # pos links # neg links

Epinions 27,215 326,909 58,695

Slashdot 33,407 477,176 158,104

Table 4.3: Statistics of the Signed Network Datasets

4.7.2 Analysis of the Signed Embedding

In this subsection, we would like to check whether the embedding learned by the

deep learning framework SiNE can preserve the principle suggested by the extended

structural balance theory - users are likely to be more similar to their friends than

their foes. Specifically, we first train the model on the two datasets and learn the

signed network embedding. In the experiment, we set d as 20, α = 0.0001 and N = 3

with all the hidden layer dimension as 20. We will discuss the effects of d and N in

detail later. Since we use tanh as the activation function whose range is (1,−1), from

Eq.(4.8), we have that f(xi,xj) ∈ (−1, 1) and f(xi,xk) ∈ (−1, 1). In order to let

f(xi,xj) ≥ f(xi,xk)+δ be valid, δ should be within the range (0, 2). The same holds

for δ0. We empirically set δ = 1 and δ0 = 0.5. Then for each triplet (vi, vj, vk) where

vi and vj have a positive link while vi and vk have a negative link, we calculate the

Euclidean distance for pairs of (vi, vj) and (vi, vk) and the average Euclidean distance

(with standard deviation) are demonstrated in Table 4.4. From the table, we note
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Dataset Dis. to Friends (+) Dis. to Foes (-)

Epinions 0.0584±0.0275 0.1195±0.0335

Slashdot 0.0538±0.0245 0.1028±0.0254

Table 4.4: Average Distance Between Users and Their Friends and Foes.
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Figure 4.6: A Case Study of Signed Network Embedding.

that after embedding, nodes are indeed closer to their friends (positive link) than

their foes (negative link), which suggests that the embedding from SiNE can perverse

the principle suggested by extended structural balance theory.

A case study of the embedding distance between a user (or node 2) and his/her

friends and foes is shown in Figure 4.6. The red lines denote positive links and the blue

lines denote negative links. We use the length of the line to represent the embedding

distance of two nodes. The longer the line is, the larger the embedding distance is.

We observe from the figure that node 2 is likely to be closer to his/her friends than

his/her foes.
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4.7.3 Signed Link Prediction in Signed Social Networks

The learned signed network embedding can benefit various mining tasks of signed

social networks. In this subsection, we check whether the learned signed network

embedding can improve the performance of link prediction for signed social networks.

For both datasets, we randomly select 80% links as training set and the remaining

20% as test set. We use the training set to learn the signed network embedding.

With the learned signed network embedding, we train a logistic regression classifier

on training dataset. Then we predict link on the test set with the logistic regression

classifier. In real-world signed social networks such as Epinions and Slashdot, positive

links are often much denser than negative links; hence positive and negative links are

imbalanced in both training and testing sets. Therefore, following the common way

to evaluate the signed link prediction problem [48, 4], we use AUC and F1 instead

of accuracy to assess the performance. The random selection is carried out 5 times

independently and the average AUC and F1 are reported in Table 4.5 and 4.6. The

baseline methods in the tables are defined as:

• SC [45]: A spectral clustering algorithm is proposed where a signed version of

Laplacian matrix is defined. In this experiment, for the link prediction purpose,

we choose the top-d eigen-vetors corresponding to the smallest eigenvalues of

the signed Laplacian matrix as the low dimensional vector representations of

nodes.

• FExtra [48]: This method extracts features from signed social networks. For

each pair (vi, vj), the extracted features include degree based and triad based

features. Degree based features contain the degree information such as the

number of incoming positive and negative links of vi, the number of outgoing

positive and negative links of vj and so on. Triad based features include the
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Dataset SC FExtra MF SiNE/P0 SiNE

Epinions 0.8527 0.8626 0.8879 0.8845 0.9242

Slashdot 0.8495 0.8536 0.8725 0.8701 0.8979

Table 4.5: AUC Comparison of Signed Link Prediction on Epinions and Slashdot

Dataset SC FExtra MF SiNE/P0 SiNE

Epinions 0.9089 0.9178 0.9343 0.9306 0.9622

Slashdot 0.8792 0.8839 0.8952 0.8924 0.9149

Table 4.6: F1 Comparison of Signed Link Prediction on Epinions and Slashdot

structure information of the triad that contains vi and vj.

• MF [37]: Matrix factorization based method which factorizes the adjacency

matrix into two low rank latent matrices and predicts the links by the matrix

reconstructed by the two low rank matrices.

• SiNE/P0: a variant of the proposed framework SiNE without considering virtual

nodes. In other words, for SiNE/P0, we set P0 = ∅ in Eq.(4.3).

For SC, FExtra and the proposed framework SiNE, we first obtain the new represen-

tations and then choose logistic regression as the basic classifier for a fair comparison.

5-fold cross validation is performed on the training set to select the parameters for

SC, FExtra and MF. For SiNE, we empirically set d = 20 δ = 1, δ0 = 0.5 and N = 3

with all hidden layer dimension as 20. More details about parameters of SiNE will

be discussed in the following subsection. From the Table 4.5 and 4.6, we make the

following observations:

• The performance of the proposed framework SiNE is much better than FExtra.

FExtra uses feature engineering to extract features manually; while SiNE learns
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the representations from the data automatically. These results suggest that the

representations learned by SiNE can greatly improve the performance of link

prediction; and

• The performance of SiNE outperforms SC and MF. SC designs a signed Lapla-

cian to preserve pair-wise relations of nodes, while SiNE preserves the principle

suggested by the extended structural balance theory, which supports the capa-

bility of the objective function of signed network embedding.

• SiNE outperforms SiNE/P0 because without considering the virtual node, the

representation of nodes whose 2-hop networks have only negative links cannot

be well trained. Since such nodes are few, the performance decrease is not much

without considering virtual node.

We perform t-test on comparisons and it is evident from t-test that the improve-

ment of SiNE compared to baseline methods is significant. In summery, the rep-

resentations learned by the proposed framework SiNE can significantly improve the

performance of link prediction in signed social networks.

4.7.4 Parameter Analysis

In this subsection, we investigate the impact of embedding dimesnion d, δ, δ0 and

number of layers N on the performance of link prediction. Throughout the exper-

iments for parameter sensitively analysis, we randomly select 80% links as training

set and the remaining 20% as test set. The random selection is repeated 5 times and

the average AUC will be reported.
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Figure 4.7: The Impact of Embedding Dimension d on SiNE for Signed Link Pre-

diction

Impact of d:

To investigate the sensitivity of SiNE on d, we fix δ = 1, δ0 = 0.5 and N = 3. We then

vary d as {5, 10, 20, 50, 100, 200}. The average AUC for signed link prediction on both

datasets are shown in figure 4.7(a) and 4.7(b), respectively. From the two figures, we

note that with the increase of d, the signed link prediction performance first increases

and then decreases after certain values. When d is small, we may lose too much

information and embeddings do not have enough representation capacity. When d is

large, the embedding tends to overfit. A value of d around 20 gives relatively good

performance, which eases the parameter selection for d.

Impact of δ and δ0:

As shown in Eq.(4.3), δ and δ0 controls the similarity of a node with its friend and

the node with its foe. To investigate the impact of δ and δ0, we fix the dimension d

to be 20 and N = 3. We then vary both δ and δ0 as {0.1, 0.5, 1, 1.5}. The results in

terms of AUC under different combinations of δ and δ0 are shown in Figure 4.8. From

the figure, we note that: (i) As the increase of δ, the performance generally increases.

This is because when δ is large, we enforce a friend to sit closer to its friends and sit
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Dataset N = 2 N = 3 N = 4 N = 5 N = 6

Epinions 0.9124 0.9242 0.9278 0.9297 0.9254

Slashdot 0.8817 0.8979 0.9048 0.9044 0.9027

Table 4.7: AUC of SiNE on Signed Link Prediction with Different Number of Layers

N

more far away from his foes, which help us to learn high quality embedding for signed

link prediction; and (ii) When δ0 is large and δ is small, e.g., δ0 = 1.5 and δ = 0.1, the

performance is relatively bad. A combination of (δ0, δ) chosen from [0.5, 1] generally

result in good embedding for signed link prediction.
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Figure 4.8: The Impact of δ and δ0 on SiNE for Signed Link Prediction.

Impact of N:

To investigate the effects of N , we first fix d to be 20, δ to be 1 and δ0 to be 0.5.

We then vary N as 2, 3, 4, 5, 6 with all the hidden dimensions as 20. The results

in terms of AUC are reported in Table 4.7. From the table, we can see that as the

network becomes deeper, the performance increases first then the increase become

small, which suggests that by setting N = 2 or N = 3, we can learn a relatively good

embedding and at the same time save computational cost.
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Chapter 5

DYNAMIC NETWORK EMBEDDING

In this chapter, we study dynamic network embedding. In many scenarios, net-

works are dynamic. For example, in a social network, existing users can change their

preferences, add new friends and join new groups; and new users can join a social

network and create new links. It is reported that 6 new profiles are created every

second in Facebook 1; and the number of Instagram users grows from 90 millions in

Jan. 2013 to 800 millions in Sep. 2017 2.

Dynamic networks present new challenges and opportunities for network represen-

tation learning because dynamic networks have unique characteristics that make static

network embedding inapplicable to dynamic networks. First, a dynamic network con-

tains temporal patterns that reveal the concept drift of nodes and can facilitate several

network mining tasks such as next timestamp link prediction [1]. Figure 5.1 gives two

snapshots of a dynamic social network at time t and t + 1, where a yellow line de-

notes a new link created within two consecutive timestamps. For example, in the

left network means, the yellow line (u3, u4) means that the line is connected during

(t− 1, t] while the black line (u4, u5) that the link is connected before t− 1. During

time (t− 1, t], u4 becomes a friend of u3, which implies that currently u4 is interested

in u3 and thus it is likely for u4 to join u3’s friend circle (befriending with u1 and u2)

during (t, t+1] as shown in the right network. u4 and u6 are friends of u5 respectively

at time t, the fact that u4 and u6 are still not friends at time t + 1 indicates the

violation of balance theory, or they may not be friends in the near future. Therefore,

1http://www.pewresearch.org/fact-tank/2014/02/03/6-new-facts-about-facebook/
2www.statista.com/statistics/253577/number-of-monthly-active-instagram-users/
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it is important to learn dynamic node latent features to capture temporal patterns;

it would be sub-optimal to directly apply static network embedding by ignoring such

temporal patterns. Second, in dynamic networks, new nodes can join and new links

can be created. For example, in Figure 5.1, u7 joins the network and links (u1, u4),

(u2, u4) are created during (t, t+1]. It is important to learn embedding for new nodes

and update the embeddings to reflect these changes; while static network embedding

methods don’t have an efficient way to achieve this. Third, the network size is un-

known as new nodes can join while static network embedding usually assumes a fixed

node set. Therefore, it is important to learn dynamic network embedding that can (i)

capture temporal patterns of dynamic networks; and (ii) dynamically update/learn

existing node representation when new links and new nodes are introduced. However,

the work on dynamic network embedding is rather limited. The majority of existing

dynamic network embedding algorithms [20, 97, 98] assume that the number of nodes

is known and focus on updating node representations when new links are introduced

using tensor decomposition [20] or temporal matrix factorization [97]. However, it is

inflexible to assume that the node set is fixed as new nodes can join the network any-

time. In addition, these approaches learn embeddings that are good at reconstructing

the links, i.e., first-order proximity, however, recent advances in static network embed-

ding have demonstrated that exploiting both first-order and second-order proximity

can help learn better representations [79, 89]. Therefore, we investigate the challeng-

ing problem of dynamic network embedding where new nodes and new links can be

introduced to the network anytime. Next, we formally define the problem followed
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Figure 5.1: An Illustration of Dynamic Network

by the details of the proposed framework for dynamic network embedding.

5.1 Problem Formulation

Let Gt = {Ut, Et}, t = 1, 2, . . . , be a snapshot of a dynamic network at time t,

where Ut = {u1, u2, . . . , unt} is the set of nt nodes at time t and Et ⊂ Ut × Ut is the

set of edges. Note that usually we have Ut ⊂ Ut+1 as new nodes can join the net-

work during (t, t+ 1]. In addition, new links can also be introduced during (t, t+ 1],

i.e., Et ⊂ Et+1. We leave the deletion of links and nodes as one future work. We

use 4Gt+1 = {4Ut+1,4Et+1} to represent the set of new nodes and new links created

during (t, t+1]. For example, in Figure 5.1,4Ut+1 = {u7} and4Et+1 = {e14, e24, e57}.

With the aforementioned notations and definitions, the problem of dynamic network

embedding can be formally stated as follows:

Given a dynamic network G with the new snapshot Gt = {Ut, Et} arriving at time

t, we aim to learn the new representation Ut ∈ Rd×nt based on 4Gt, Gt−1 and

Ut−1 ∈ Rd×nt−1 as

f(4Gt,Gt−1,Ut−1)→ Ut (5.1)

where f is the function we want to learn, d is the embedding dimension, nt and nt−1

are the number of nodes at timestamps t and t− 1.
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5.2 Dynamic Network Embedding

In this section, we introduce the details of DNE. We will first provide a proba-

bilistic model for static network embedding, which serves as a basic model for DNE.

5.2.1 Static Network Embedding

Recent advances in static network embedding have shown promising results by

modeling first and second order proximity [79, 89]. Therefore, in this work, our basic

static network embedding also explores the first-order and second-order proximity.

Modeling First-Order Proximity The first-order proximity is the pairwise

proximity between vertexes. For any pair of vertexes, if eij = 1, there exists a positive

first-order proximity between ui and uj. Otherwise, the first-order proximity between

ui and uj is 0. The homophily theory [54] suggests that if two nodes are friend, then

they are more likely to have common interests than two non-friend nodes. Thus, if

two nodes are linked, they should have similar embedding; while for two non-linked

nodes, they are less likely to share common properties. Therefore, we model the

first-order proximity as:

p(eij = 1|ui,uj) = σ(uTi uj),

p(eij = 0|ui,uj) = 1− σ(uTi uj)

(5.2)

where ui ∈ Rd×1 is the first-order embedding of ui and d is the embedding dimension.

σ(x) is the sigmoid function defined as σ(x) = 1
1+exp(−x) . By maximizing Eq.(5.2), we

push two nodes with positive first-proximity to be close while two nodes without link

to be far away. Let U be the first-order embedding of the network with ui being the

i-th column. With Eq.(5.2), the objective function for modeling first-order proximity

is given as

p(N+
i ,N−i |U) =

∏
j∈N+

i

σ(uTi uj)
∏
k∈N−

i

[1− σ(uTi uk)] (5.3)
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where N+
i is a set of nodes that have links with ui; while N−i is a set of nodes that are

not linked with ui. However, in real-world social networks, the links observed are only

a small proportion, with many others missing [51]. Thus, |N−i | will be much larger

than |N+
j |, which may result in the case that N−i dominates the objective function.

To avoid this effect, for each j ∈ N+
i , we randomly select r negative samples to build

N−i , where r is a positive integer we can tune.

Modeling Second-Order Proximity Modeling first-order proximity alone is

not sufficient for preserving the network structure [79]. For example, it is very usual

that two nodes are not linked because the network is sparse, but the two nodes

can share many neighbors in common. These two nodes are likely to have similar

properties because of their common neighbors. However, such proximity cannot be

captured by Eq.(5.2) as their first-order proximity is 0. Therefore, it is important

to seek an alternative notion of proximity that addresses the problem of sparsity.

The second-order proximity between a pair of nodes describes the proximity of the

pair’s neighborhood structure. For a pair (ui, uj), the second-order proximity is de-

termined by the similarity of N+
i and N+

j . We use wij = |N+
i ∩N+

j | to calculate the

second-order proximity, which counts the number of times ui and uj share a common

neighbor. The probability that uj appears wij times in the “contexts” of ui can be

given as

p(wij|ui,vj) = σ(uTi vj)
wij (5.4)

where vj ∈ Rd×1 is the second-order embedding of uj and V is the second-order

embedding with vj being it’s j-th column. By maximizing Eq.(5.4), we enforce ui

and vj to be close if wij is large. Obviously, the approach for modeling second-order

proximity can be naturally extended to k-order proximity with a similar idea. In this

work, we only consider first and second order proximity and leave the higher-order

proximity as future work.
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Figure 5.2: Graphical Illustration of DNE

Given the approach to model first-order and second-order proximity, the objective

function for static network embedding is

p(G|U,V) =
( N∏
i=1

p(N+
i ,N−i |U)

)( ∏
wij>0

p(wij|ui,vj)
)

(5.5)

=
∏
i

∏
j∈N+

i

σ(uTi uj)
∏
k∈N−

i

[1− σ(uTi uk)]
∏

j:wij>0

σ(uTi vj)
wij

It is possible that some pairs of nodes share large amount of common friends, which

result in large wij that dominates the objective function. To avoid this, for each node,

we normalize the second-order proximity as wij ← wij∑
j wij

.

5.2.2 Bayesian Dynamic Network Embedding

In this section, we extend the static network embedding to model dynamic net-

works. Let Ut ∈ Rd×nt and Vt ∈ Rd×nt denote the first and second order embedding

at time t. In addition, ui,t and vi,t represent the i-th column of Ut and Vt, respectively

In dynamic networks, nodes change their latent positions gradually over time,

which is generally called concept drift. To model the concept drift, we consider a

diffusion process of the embedding vectors over time as

p(ui,t+1|ui,t) ∝ N (ui,t, σ
2
t I)N (0, σ2

0) = N
(

ui,t
1 + σ2

t /σ
2
0

,
1

σ−2t + σ−20

I

)
p(vi,t+1|vi,t) ∝ N (vi,t, σ

2
t I)N (0, σ2

0) = N
(

vi,t
1 + σ2

t /σ
2
0

,
1

σ−2t + σ−20

I

)
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The basic idea is that ui,t+1 is dependent on ui,t by the Gaussian distributionN (ui,t, σ
2
t I),

where the variance σ2
t of the transition kernel is given as

σ2
t = D(τt+1 − τt) (5.6)

D is a global diffusion constant and (τt+1 − τt) is the time between subsequent ob-

servations [8]. Thus, a larger (τt+1 − τt) can result in larger σ2
t , which means the

latent features can diffuse more. However, it is possible that σ2
t is too large, which

can result in large ui,t+1. To guarantee the smoothness, at every time step t, we also

add an additional Gaussian prior with zero mean and variance σ2
0 which prevents the

embedding vectors from growing too large [3]. The effect of N (0, σ2
0) is to drag ui,t+1

to origin so that ui,t+1 will not become too large. Specifically, when σ2
t is small, i.e.,

σ2
0 � σ2

t , the damping to the origin is very weak; when σ2
t becomes larger, i.e., σ2

t is

close to or larger than σ2
0, the damping effect becomes strong, which can avoid the

embedding becomes too large.

At time t = 1, all nodes are treated as new nodes and we define p(ui,1|u0) and

p(vi,1|v0) as

p(ui,1|ui,0) = p(ui,1) ≡ N (0, σ2
0I),

p(vi,1|vi,0) = p(vi,1) ≡ N (0, σ2
0I)

Similarly, when a new node uk joins during time (t− 1, t], we have

p(uk,t) ≡ N (0, σ2
0I), p(vk,t) ≡ N (0, σ2

0I) (5.7)

We further assume that given Ut and Vt, Ut+1 is conditionally independent with

Vt+1, i.e.,

p(Ut+1,Vt+1|Ut,Vt) = p(Ut+1|Ut)p(Vt+1|Vt)

=
∏

p(ui,t+1|ui,t)p(vi,t+1|vi,t)
(5.8)
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Given the above assumptions, our joint distribution factorizes as

p(F1:T ,U1:T ,V1:T ) (5.9)

=
T−1∏
t=0

p(Ut+1,Vt+1|Ut,Vt)
T∏
t=1

p(Ft|Ut,Vt)

=
[ T−1∏
t=0

p(Ut+1|Ut)p(Vt+1|Vt)
][ T∏

t=1

nti∏
i=1

p(N+
i,t,N−i,t|Ut)

∏
wij,t>0

p(wij,t|ui,t,vj,t)
]

(5.10)

where F1:T = {F1, . . . ,FT} represents the set of observed data from time 1 to T with

Ft = {N+
t , N−t ,Wt}. Here N+

t = {N+
t,i, i = 1, . . . , nt}, N−t = {N−t,i, i = 1, . . . , nt}

andWt = {Wt,i, i = 1, . . . , nt}. Note that N+
t,i, N−t,i andWt,i are the first and second-

order proximity of ui at time t which are built based on 4Gt and Gt−1. A graphical

representation of DNE is shown in Figure 5.2.

Discussion It is noteworthy that DNE can dynamically update existing nodes’ latent

features when new links are introduced and can also learn new nodes’ representations.

When an existing node ui creates new links, DNE moves ui’s latent representation

towards the new position by modeling the first and second-order proximity with the

new observations. Meanwhile, DNE uses a latent diffusion process to make sure that

ui’s latent features don’t drift too much so as to keep partial past information. Sim-

ilarly, when a new nodes uk is introduced, DNE samples the latent representation of

the new node from a prior distribution and then move the representation by modeling

its first-order and second-order proximity.

5.3 Parameter Inference

In this section, we introduce details of parameter inference. We are interested in

maximizing the posterior distribution over parameters conditioned on the observa-
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tions as

p(U1:T ,V1:T |F1:T ) =
p(U1:T ,V1:T ,F1:T )∫

p(U1:T ,V1:T |F)dU1:TdV1:T

(5.11)

However, the denominator of the above equation is intractable. Therefore, we adopt

variational inference [9] to tackle this problem.

5.3.1 Update Rules

The essential idea of variation inference is to approximate the posterior with a sim-

pler variational distribution qθ(U1:t,V1:t) by minimizing the Kullback-Leibler (KL)

divergence to the posterior, where θ is the set of the parameters of the variational

distribution, which will be explained in detail below. Minimizing the KL divergence

is equivalent to optimizing the evidence lower bound (ELBO), which is given as

L(θ) = Eqθ [log p(U1:T ,V1:T ,F1:t)]− Eqθ [log qθ(U1:T ,V1:T )] (5.12)

In dynamic networks, the data arrives sequentially. Thus, we can only condition

our model on the past instead of the future observations. The inference algorithm

needs to iteratively update the variational distribution qθ as evidence from each time

step t becomes available. Thus, we use a variational distribution that factorizes across

all times, i.e.,

qθ(U1:T ,V1:T ) =
T∏
t=1

qθt(Ut,Vt) (5.13)

With the above simplification, we can update the variational factor at a given time t

based on the evidence at time t and the approximate posterior of the previous time

step. Furthermore, at every time t, we use a fully-factorized distribution as

qθt(Ut,Vt) =
nt∏
i=1

N (ui,t;µui,t,Σui,t)N (vi,t;µvi,t,Σvi,t) (5.14)

where θt = {µui,t,Σui,t,µvi,t,Σvi,t, i = 1, . . . , nt}. µui,t and µvi,t are the means and

Σui,t = diag(s2ui,t) and Σvi,t = diag(s2vi,t) are diagonal matrices with s2ui,t and s2ui,t as
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the on diagonal elements. We now describe how we sequentially compute qθt(Ut,Vt)

and use the result to proceed to the next time step. Following other Markovian

dynamical systems [3], we assume following recursion

p(Ut,Vt|F1:t) ∝ p(Ft|Ut,Vt)p(Ut,Vt|F1:t−1) (5.15)

With the above assumption, the ELBO in Eq.(5.12) can be written as L(θ) =
∑T

t=1 Lt,

where Lt is given as

Lt = Eqθt [log p(Ft|Ut,Vt)] + Eqθt [log p(Ut,Vt|F1:t−1)]− Eqθt [log qθt(Ut,Vt)] (5.16)

The entropy −Eqθt [log q(Ut,Vt)] can be analytically calculated as

−Eqθt [log q(Ut,Vt)] =−
∫
qθt(Ut,Vt) log qθt(Ut,Vt)dUtdVt

=
∑
i

K∑
k=1

(log sui,t(k) + log svi,t(k)) + ntK(1 + log 2π)

(5.17)

where sui,t(k) means the k-the element of sui,t. To tackle the second term of Lt, we

need to consider two cases, i.e., new nodes joined at time t and existing nodes. For a

new node ui joined at t, it is independent of F1:t−1. Then p(ui,t,vi,t|F1:t−1) reduces

to

p(ui,t,vi,t|F1:t−1) = p(ui,t,vi,t) = N (0, σ2
0I)N (0, σ2

0I) (5.18)

For existing nodes, directly calculating p(ui,t,vi,t|F1:t−1) is intractable. Since p(ut−1,

vt−1|F1:t−1) ≈ q(ut−1,vt−1), we can approximate p(ut,vt|F1:t−1) as

p(ui,t,vi,t|F1:t−1) = Ep(ui,t−1,vi,t−1|F1:t−1)[p(ui,t,vi,t|ui,t−1,vi,t−1)]

≈ Eqθt (ui,t−1,vi,t−1)[p(ui,t,vi,t|ui,t−1,vi,t−1)]
(5.19)

With qθt(ui,t−1,vi,t−1) given in Eq.(5.14), p(ui,t,vi,t|ui,t−1,vt−1) given in Eq.(5.8) and

the above approximation, we can get that

p(ui,t,vi,t|F1:t−1) ≈ N (ui,t; µ̃ui,t, Σ̃ui,t)N (vi,t; µ̃vi,t, Σ̃vi,t) (5.20)
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where µ̃ui,t and Σ̃ui,t are given as

µ̃ui,t = Σ̃ui,t(Σui,t−1 + σ2
t I)−1µui,t−1

Σ̃ui,t = [(Σui,t−1 + σ2
t I)−1 + (1/σ2

0)I]−1
(5.21)

Note that Σui,t is a diagonal matrix and thus the calculation of µ̃ui,t and Σ̃ui,t is very

efficient. In addition, the resulting matrix Σ̃ui,t is also diagonal. For simplicity of

notation, these two cases can be written as

p(ui,t,vi,t|F1:t−1) ≈ N (ui,t; µ̃ui,t, Σ̃ui,t)N (vi,t; µ̃vi,t, Σ̃vi,t)

µ̃ui,t =

 Σ̃ui,t(Σui,t−1 + σ2
t I)−1µui,t−1, ui joins before t-1

0, ui joins at (t-1,t]

Σ̃ui,t =

 [(Σui,t−1 + σ2
t I)−1 + (1/σ2

0)I]−1, ui joins before t-1

σ2
0I, ui joins at (t-1,t]

(5.22)

The calculation of µ̃vi,t and Σ̃vi,t are the same as that in Eq.(5.22) by replacing the

subscript u by v and we omit the detail here. With this approximation, the second

term can be written as

Eqθt [log p(Ut,Vt)|F1:t−1]

≈−
∑
i

K∑
k=1

[log s̃ui,t(k) +
sui,t(k)2 + (µui,t(k)− µ̃ui,t(k))2

2s̃ui,t(k, k)2
]

−
∑
i

K∑
k=1

[log s̃vi,t(k, k) +
svi,t(k, k)2 + (µvi,t(k)− µ̃vi,t(k))2

2s̃vi,t(k, k)2
]− ntK(1 + log 2π)

(5.23)

Obtaining a closed form format of the first term in Lt is intractable. Thus, we

estimate the gradient of the first term in Lt by sampling from the variational dis-

tribution. We use reparameterization tricks to efficiently sample U
(s)
t and V

(s)
t [42].

The essential idea of the reparameterization trick for Gaussian distribution is that

sampling from N (µ, σ) is equivalent to sampling a noise ε from N (0, 1) and then

63



represent the sample as z = µ + σε. It is easy to verify that z ∼ N (µ, σ). With

reparameterization trick, Lt becomes

L̃t ≈
1

L

L∑
l=1

log p(Ft|U(l)
t ,V

(l)
t ) + Eqθt [log p(Ut,Vt)|F1:t−1]− Eqθt [log qθt(Ut,Vt)]

u
(l)
i,t = µui,t + sui,t � ε

(l)
ui,t, ε

(l)
ui,t ∼ N (0, I), l = 1, . . . , L

v
(l)
i,t = µvi,t + svi,t � ε

(l)
vi,t, ε

(l)
vi,t ∼ N (0, I), i = 1, . . . , nt

(5.24)

where the second term and third term are given in Eq.(5.23) and Eq.(5.17), respec-

tively. The reason we calculate closed form solution for the second and third term is to

reduce gradient variance introduced by Monte Carlo sampling [42]. With Eq.(5.24),

the gradient of Lt w.r.t µui,t, Σui,t, µvi,t and Σvi,t are given as

∂L̃t
∂µui,t

=− (µui,t − µ̃ui,t)� s̃−2ui,t +
1

L

L∑
l=1

[ ∑
j∈N+

i

(
1− σ(u

(l)
i,t

T
u
(l)
j,t)
)
u
(l)
j,t

−
∑
k∈N−

i

σ(u
(l)
i,t

T
u
(l)
k,t)u

(l)
k,t +

∑
j:wij,t>0

wij,t
(
1− σ(u

(l)
i

T
v
(l)
j )
)
v
(l)
j

] (5.25)

∂L̃t
∂sui,t

=s−1ui,t − sui,t � s̃−2ui,t +
1

L

L∑
l=1

[ ∑
j∈N+

i

(
1− σ(u

(l)
i,t

T
u
(l)
j,t)
)
u
(l)
j,t

+
∑

j:wij,t>0

wij,t
(
1− σ(u

(l)
i

T
v
(l)
j )
)
v
(l)
j −

∑
k∈N−

i

σ(u
(l)
i,t

T
u
(l)
k,t)u

(l)
k,t

]
� ε

(l)
ui,t (5.26)

∂L̃t
∂µvi,t

= −(µvi,t − µ̃vi,t)� s̃−2vi,t +
1

L

L∑
l=1

∑
j:wji,t>0

wji,t
(
1− σ(u

(l)
j

T
v
(l)
i )
)
u
(l)
j (5.27)

∂L̃t
∂svi,t

= s−1vi,t − svi,t � s̃−2vi,t +
1

L

L∑
l=1

[ ∑
j:wji,t>0

wji,t
(
1− σ(u

(l)
j

T
v
(l)
i )
)
u
(l)
j

]
� ε

(l)
vi,t (5.28)

5.3.2 A Training Algorithm

With the updating rules given, we summarize the training algorithm of DNE in

Algorithm 3. Next, we briefly review Algorithm 3. For each time t, we first initialize
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µui,t, sui,t, µvi,t, and svi,t in Line 4. In Line 5, we calculate µ̃ui,t, s̃ui,t, µ̃vi,t, and s̃vi,t

via Eq.(5.22) using µui,t−1, sui,t−1, µvi,t−1, and svi,t−1 learned in t − 1. From Lines

7 to 15, we update µui,t, sui,t, µvi,t, and svi,t alternatively using reparameterization

trick and gradient descent until convergence. After convergence, we can sample Ut

and Vt. Note that at each time t, we only learn the embeddings based on previous

embedding and the training data Ft. No future information after t are used. This

ensures that we can dynamically learn/update embeddings for time T + 1, T + 2, . . .

when these training data are available.

5.3.3 Time Complexity Analysis

We mainly focus on the time complexity in learning Ut given Ft and the pa-

rameters learned in t − 1, i.e., Lines 7 to 15. First, the cost of sampling U
(s)
t and

V
(s)
t for L times is approximately O(nt · d · L). In each iteration, the time com-

plexity of updating µui,t and sui,t using Eq.(5.25) and Eq.(5.26) are both approxi-

mately O
(
d · L(|N+

t,i| + |N−t,i| + |Wt,i|)
)

. Similarly, the cost of updating µvi,t and

svi,t are both approximately O(d · L · |Wt,i|). Thus, the cost of updating all the

parameters in one epoch is O
(
d · L · (|N+

t | + |N−t | + |Wt|)
)

. Therefore, the to-

tal time complexity of learning {µui,t, sui,t,µvi,t, svi,t, i = 1, . . . , nt} is approximately

O
(
p · d · L · (|N+

t |+ |N−t |+ |Wt|+ nt)
)

, where p is the number of iterations.

5.4 Experiments

In this section, we conduct experiments to evaluate the effectiveness of the pro-

posed framework DNE. Specifically, we begin by introducing the datasets and the

compared representative and state-of-the-art static and dynamic network embedding

methods. We then compare DNE with other methods on next timestamp link pre-

diction, which can indicate if DNE can capture the dynamic patterns of the network.
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Algorithm 3 Dynamic Network Embedding

Require: G1:T ,4G1:T , r, d, σ0, D, L

Ensure: U1:T ,V1:T

1: for t=1 : T do

2: Construct Ft from 4Gt and Gt

3: for i ∈ Ut do

4: Initialize µui,t, sui,t, µvi,t, and svi,t

5: Calculate µ̃ui,t, s̃ui,t, µ̃vi,t, and s̃vi,t via Eq.(5.22)

6: end for

7: repeat

8: Sample U
(s)
t ,V

(s)
t , s = 1, ..., L, using reparameterization

9: for ui ∈ Ut do

10: Update µui,t as µui,t = µui,t − η ∂L̃t
∂µui,t

via Eq.(5.25)

11: Update Σui,t as Σui,t = Σui,t − η ∂L̃t
∂Σui,t

via Eq.(5.26)

12: Update µvi,t as µvi,t = µvi,t − η ∂L̃t
∂µvi,t

via Eq.(5.27)

13: Update Σvi,t as Σvi,t = Σvi,t − η ∂L̃t
∂Σvi,t

via Eq.(5.28)

14: end for

15: until convergence

16: end for

17: return U1:T ,V1:T

We also report the running time to show the efficiency of DNE. To further check the

quality of the network embedding, we then compare DNE with other methods on

node classification. Finally, we give a case study of DNE on DBLP to qualitatively

check if DNE captures the concept drift of nodes. Further experiments are conducted

to investigate the sensitivity of DNE on hyper-parameters.
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5.4.1 Datasets

We conduct experiments on 5 publicly available dynamic network datasets, which

includes three datasets from KONECT network collection [44] 3, i.e., Infectious, Digg

and DBLP, and two Google Plus datasets, i.e., Google Plus (Major) and Google Plus

(Places).

• Infectious [38]: It contains daily dynamic contact networks collected during

the Infectious exhibition, where nodes represent exhibition visitors and edges

represent face-to-face contacts.

• Digg: This dataset is the reply network of the news aggregation website digg.com,

where each node is a user and each edge denotes the reply between two users.

• DBLP: This is the collaboration graph of authors from DBLP computer sci-

ence bibliography. We choose snapshots form year 2000 to year 2013. The

original networks contain millions of users. We filtered out authors who have

few coauthors.

• GPM: This is a subset extracted from the Google+ social network dataset

from [25]. The original dataset consists of 4 Google+ snapshots, where each

snapshot includes both social links and node attributes. We use the attribute

Major to select a subset of nodes and their neighbors as the GPM dataset. The

major of the user is also used as the label for node classification. We selected 18

popular majors such as “Computer Science”, “Mechanical Engineering”, “Elec-

trical Engineering” and “Political Science”.

• GPP: This is also a subset extracted from the Google+ social network from [25].

In this dataset, we use the attribute Place Lives to construct the dataset. Sim-

3Available at http://konect.uni-koblenz.de/networks/
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Dataset Nodes Links T Cum. Node Dist. New Link Dist.

Infectious 410 2,765 8

Digg 30,398 86,404 14

DBLP 113,168 3,737,308 14

GPM 130,182 4,414,894 4

GPP 149,671 5,531,455 4

Table 5.1: Statistics of the Datasets

ilarly, the place a user lives is used as the node label. We selected 27 popular

places such as “Chicago”, “London”, “San Francisco” and “Los Angeles”.

All the five datasets are used for next timestamp link prediction. In addition, GPM

and GPP are also used for node classification as we have node labels. The statistics

of the datasets are summarized in Table 5.1, where the cumulative user distribution

and new link distribution in each timestamp are also given. We include dynamic

networks of different sparsity, different cumulative user distributions and different

new link distribution to give a comprehensive understanding of how DNE performs

under various conditions.

5.4.2 Compared Network Embedding Algorithms

We compare DNE with representative and state-of-the-art static and dynamic

network embedding algorithms. The details are listed as follows:

• CN: Common neighbor [51] is a popular link prediction method. For any pair

of nodes ui and uj, the link prediction strategy is to define the score(ui, uj) =

|Nui ∩ Nuj |. We use it as a baseline to understand what’s the performance of

utilizing the network structure without feature learning.
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• MF: Matrix factorization [55] is a classical and popular network embedding

algorithm on static networks. It factorizes the network into two low-rank ma-

trices.

• CPTM: CP tensor-model [20] treat the dynamic network as a 3-dimensional

tensor and uses CP decomposition to decompose the tensor to learn the repre-

sentation of nodes. It’s a dynamic network embedding algorithm that considers

the temporal patterns of networks.

• node2vec: node2vec [28] is the state-of-the-art static network embedding algo-

rithm that learns low-dimensional vector representations of nodes that maximize

the likelihood of preserving network neighborhoods of nodes.

• TMF: Temporal matrix factorization [97] is a variant of matrix factorization

model proposed for dynamic networks. It extracts a low rank representation

of the underlying adjacency matrices, in a way which are parameterized with

time.

• LIST: LIST [98] characterizes the network dynamics as a function of time,

which integrates the spatial topology of network at each timestamp and the

temporal network evolution. It is state-of-the-art method for dynamic network

embedding.

5.4.3 Next Timestamp Link Prediction

In this section, we evaluate the next timestamp link prediction for each method,

which aims at checking if the embedding can capture dynamic patterns. We use the

first (T − 1) timestamps as training set, and the T -th timestamp as test set. We

vary T as {2, 3, 4, 5, 6, 7, 8} for Infectious, {2, 4, 6, 8, 10, 12, 14} for Digg and DBLP
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and {2, 3, 4} for GPP and GPM. The purpose of increasing T is to simulate the

dynamic networks as at each timestamp new links and new users will be introduced.

The datasets are characterized by extreme imbalance: the number of edges known to

be present is often significantly less than the number of edges known to be absent.

Thus, following the common way to evaluate the link prediction problem, we use

AUC instead of accuracy to assess the performance [55]. AUC [21] measures the

probability that the classifier will rank a randomly chosen positive instance higher

than a randomly chosen negative one; a higher AUC would indicate a better predictive

performance, which implies the effectiveness of the embedding.

There are some hyper-parameters to be tuned for the compared methods and

DNE. To determine the hyper-parameters, we use the first (T − 2) timestamps as the

training set and the (T−1)-th timestamp as the validation set to tune the parameters.

With the chosen parameters, we then use the first (T − 1) timestamps, G1:T−1, to

train the model and calculate AUC on the T -th timestamp. Specifically, for DNE, we

empirically set σ2
0 = 1, D = 10−3, L = 5, r = 5, and d = 20 for Infectious, d = 50 for

Digg and d = 100 for the other datasets. More details about the sensitivity of DNE

to the parameters will be discussed in Section 5.4.6. For DNE, we predict the link

score between ui and uj at time t as uTi,t−1uj,t−1. For MF, CPTM, node2vec, TMF,

LIST and DNE, the embedding is randomly initialized, which introduces randomness

of the result. To alleviate this issue, each experiment is conducted 5 times and the

averaged performance with standard deviation is reported in Table 5.2, 5.3, 5.4, 5.5

and 5.6. From the tables, we make the following observations:

• When T = 2, the problem reduces to static network embedding, i.e., we learn

embedding using G1 only. The performance of DNE is better than CPTM, TMF

and LIST for T = 2, which shows the effectiveness of DNE by exploiting first

and second order proximity.
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• The methods CPTM, TMF and LIST are temporal models based on matrix

factorization; while their performances are better than that of MF when T >

2. This demonstrates the importance of taking the temporal patterns into

consideration as temporal pattern contains the concept drift of nodes, which is

important signal for learning better representation.

• Though node2vec doesn’t consider temporal information, generally, the perfor-

mance of node2vec is better than TMF and comparable to LIST. This is because

node2vec explicitly capture the K-hop node similarity; while TMF and LIST

simply learn embedding to reconstruct the links.

• Generally, DNE outperforms all the compared methods when T > 2, which is

because DNE captures the temporal patterns using a Markovian process and at

the same time exploits the first and second order proximity.

Running Time Comparison: One important goal of dynamic network embedding

is to efficiently update/learn node representations when new links/nodes are intro-

duced to the network.
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T 2 3 4 5 6 7 8

CN 0.625±0.000 0.669±0.000 0.711±0.000 0.657±0.000 0.628±0.000 0.738±0.000 0.694±0.000

MF 0.624±0.004 0.649±0.002 0.704±0.007 0.628±0.003 0.620±0.003 0.715±0.003 0.671±0.007

CPTM 0.624±0.002 0.659±0.004 0.708±0.001 0.655±0.005 0.638±0.010 0.780±0.007 0.762±0.013

node2vec 0.651±0.001 0.686±0.001 0.730±0.001 0.651±0.001 0.654±0.001 0.736±0.002 0.719±0.004

TMF 0.626±0.002 0.691±0.002 0.741±0.002 0.641±0.002 0.670±0.004 0.743±0.002 0.759±0.005

LIST 0.627±0.003 0.690±0.003 0.753±0.003 0.669±0.002 0.678±0.003 0.779±0.003 0.767±0.004

DNE 0.643±0.003 0.694±0.004 0.766±0.003 0.680±0.002 0.690±0.002 0.791±0.003 0.790±0.004

Table 5.2: Link Prediction Performance Comparison on Infectious in Terms of AUC.

T 2 4 6 8 10 12 14

CN 0.598±0.000 0.599±0.000 0.602±0.000 0.605±0.000 0.606±0.000 0.608±0.000 0.613±0.000

MF 0.620±0.006 0.637±0.003 0.659±0.002 0.670±0.003 0.677±0.006 0.671±0.004 0.702±0.006

CPTM 0.629±0.005 0.654±0.004 0.677±0.004 0.694±0.004 0.695±0.004 0.710±0.007 0.726±0.006

node2vec 0.650±0.002 0.653±0.002 0.673±0.004 0.687±0.002 0.692±0.002 0.700±0.002 0.716±0.001

TMF 0.626±0.007 0.656±0.001 0.668±0.001 0.692±0.005 0.703±0.002 0.714±0.004 0.729±0.002

LIST 0.6290±0.003 0.668±0.004 0.6799±0.003 0.704±0.003 0.712±0.007 0.726±0.002 0.733±0.003

DNE 0.641±0.006 0.672±0.006 0.685±0.002 0.713±0.005 0.730±0.002 0.732±0.0068 0.744±0.003

Table 5.3: Link Prediction Performance Comparison on Digg in Terms of AUC.

T 2 4 6 8 10 12 14

CN 0.613±0.000 0.692±0.000 0.739±0.0000 0.781±0.000 0.819±0.000 0.833±0.000 0.887±0.000

MF 0.652±0.003 0.716±0.003 0.745±0.004 0.792±0.002 0.840±0.004 0.851±0.005 0.905±0.004

CPTM 0.657±0.005 0.722±0.006 0.756±0.002 0.819±0.006 0.858±0.001 0.879±0.005 0.922±0.005

node2vec 0.686±0.002 0.773±0.002 0.818±0.002 0.869±0.005 0.877±0.001 0.906±0.002 0.944±0.003

TMF 0.659±0.001 0.760±0.004 0.787±0.005 0.852±0.004 0.869±0.004 0.913±0.004 0.939±0.003

LIST 0.660±0.005 0.770±0.005 0.806±0.001 0.873±0.003 0.876±0.002 0.924±0.004 0.945±0.005

DNE 0.680±0.004 0.779±0.005 0.829±0.003 0.880±0.002 0.887±0.002 0.935±0.003 0.953±0.002

Table 5.4: Link Prediction Performance Comparison on DBLP in Terms of AUC.

To show the time efficiency of DNE in updating/learning node representations in

a dynamic environment, we plot the time cost of network representation learning for

node2vec, LIST and DNE on Digg and DBLP in Figure 5.3. From the figure, we

have the following observations: (i) The time cost of node2vec and LIST increases

significantly as T increases. This is because as T increases, new users and new links
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T 2 3 4

CN 0.7654±0.0000 0.8448±0.0000 0.8483±0.0000

MF 0.7822±0.0037 0.8669±0.0021 0.8549±0.0057

CPTM 0.7813±0.0043 0.8753±0.0032 0.8579±0.0039

node2vec 0.8239±0.0028 0.8983±0.0028 0.8958±0.0016

TMF 0.7839±0.0055 0.8894±0.0057 0.8820±0.0037

LIST 0.7898±0.0021 0.9022±0.0015 0.8993±0.0028

DNE 0.8189±0.0031 0.9107±0.0026 0.9056±0.0021

Table 5.5: Link Prediction on GPM in Terms of AUC.

T 2 3 4

CN 0.7807±0.0000 0.8625±0.0000 0.8793±0.0000

MF 0.8038±0.0042 0.8796±0.0045 0.8837±0.0022

CPTM 0.8058±0.0031 0.8684±0.0022 0.8927±0.0024

node2vec 0.8379±0.0036 0.9024±0.0028 0.9147±0.0020

TMF 0.8085±0.0063 0.8916±0.0038 0.9096±0.0024

LIST 0.8101±0.0043 0.9134±0.0024 0.9235±0.0036

DNE 0.8249±0.0047 0.9202±0.0031 0.9345±0.0029

Table 5.6: Link Prediction on GPP in Terms of AUC.

are created, which makes the network become larger. node2vec is a static network

embedding algorithm, which requires retraining for each timestamp. Thus, the time

cost of training node2vec increases as T increases. Though LIST is designed for

capturing temporal patterns for dynamic networks, it assumes the network size is

fixed in advance. In other words, it cannot dynamically update the embedding. At

timestamp t, we need to retrain LIST using G1:t. Thus, the time cost of training LIST

also increases as T increases; and (ii) The time cost of training DNE is much more

efficient than node2vec and LIST, especially when the network becomes larger. This

is because DNE can iteratively update or learn representation when new links and
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Figure 5.3: Running Time Comparison on Digg and DBLP

new users are introduced. At each time stamp, it’s time cost mainly relies on the

size of the new users and links, and the size of the second order proximity extracted.

These observations demonstrated the training efficiency of DNE for large dynamic

networks.

In summary, it is worth noting that DNE can significantly reduce the training time

and slightly improve performance of next time-stamp link prediction, which demon-

strates the effectiveness of DNE in dynamically learning good network representation.

5.4.4 Node Classification

In this subsection, we conduct node classification to check the discriminativeness

of representation learned by DNE. We use GPM and GPP for node classification as

we have ground truth node labels for these two datasets. Note that the classes for

these two datasets are imbalanced. Following the common way to measure the quality

of classification on multi-class imbalanced datasets [92, 78], we adopt two widely used

evaluation metrics, i.e., Micro-F1 and Macro-F1. The larger Micro-F1 and Macro-F1

scores are, the better the representation is for classification task. We compare with
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the embedding algorithms described in Section 5.4.2 except CN as it is not suitable

for node classification. Specifically, for both datasets, we use the first T timestamps,

G1:T , to learn the network embeddings. We vary T as {2, 3, 4}. With the embeddings,

we use the embedding at time T , i.e., [UT ,VT ], to predict the label of the nodes that

join during (T − 1, T ]. Specifically, we use nodes that already exist at time T − 1,

i.e., UT−1, to train a linear SVM. With the trained SVM, we predict the labels of

node that join during (T − 1, T ], i.e., 4UT . We design the experiment in this way to

check the quality of the embedding, especially those of the new nodes. We use cross

validation on the training data to tune the parameters. Each experiment is conducted

5 times and the average performances are shown in Figure 5.4. From the figure, we

observe that: (i) Though CPTM, TMF and LIST are based on MF, they outperforms

MF. This is because when new nodes join, they are more likely to build links with

existing nodes that have similar labels with them. Thus, by capturing such temporal

pattern, CPTM, TMF and LIST have better performance; (ii) node2vec outperforms

CPTM and TMF, and is comparable to LIST. This is because the random walk

sequences used by node2vec can provide better node similarity; and (iii) Generally,

DNE outperforms the compared methods, which shows the ability of DNE in dealing

with new nodes and new links by exploiting the diffusion process together with the

first and second order proximity.

5.4.5 Discovering Temporal Concept Drift: A Case Study

In this section, we further demonstrate that the proposed framework DNE can

capture the temporal drift of networks with a case study on DBLP. We aim to use the

embeddings of two consecutive years to detect authors whose coauthor list changed

significantly in two consecutive years. The assumption is that good dynamic network

embedding should capture the temporal drifting of network structures, and thus such
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Figure 5.4: Node Classification Performance Comparison

coauthor (neighbor) changes should be reflected in the embedding. Specifically, we

calculate ‖µt − µt−1‖2 and sort the authors in descending order of ‖µt − µt−1‖2.

A larger ‖µt − µt−1‖2 means that there’s significant change of user representation,

which implies that the neighborhood of the user changes a lot. The top 5 authors with

largest ‖µt−µt−1‖2 for year 2002 to 2003 are reported in Table 5.7. For comparison,

we also reported the number of unique coauthor differences for these authors between

year 2002 and year 2003. From the table, we observe that: The retrieved authors all

have a significant coauthor changes from year 2002 to year 2003, which shows that
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the embedding is able to capture such network structure changes. This case study

further implies the effectiveness of DNE in learning representations that can capture

temporal patterns.

# ‖µt − µt−1‖2 Authors Coauthor Diff

1 0.1047 HongJiang Zhang 152

2 0.0996 Steffen Staab 121

3 0.0979 Heung-Yeung Shum 102

4 0.0968 Erik D. Demaine 95

5 0.0896 Ian T. Foster 109

Table 5.7: Top 5 Authors Sorted by ‖µt − µt−1‖2 for Year 2003

5.4.6 Parameter Analysis

The proposed framework has two important parameters to be tuned, i.e., r is

the number of negative samples and d denotes the embedding dimension. In this

section, we investigate the impact of these parameters on link prediction and node

classification performance. We use the same experimental setting as previous section.

For link prediction, we only show results in terms of AUC for T = 14 on DBLP and

T = 4 on GPM as we have similar observations on other datasets and other values of

T . Similarly, for node classification, we only show results in terms of MicroF1. We set

σ2
0 = 1 and D = 10−3. We vary the values of r as {1, 3, 5, 10, 15} and the values of d as

{20, 50, 100, 200, 500}. Each experiment is conducted 5 times and the average results

for link prediction and node classification are shown in Figure 5.5 and Figure 5.6,

respectively. From these two figures, we observe that: (i) Generally, as the increase of

d, the performance first increases and then decreases slightly after d reaches certain

value. This is because embeddings with a small d don’t have enough representation
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Figure 5.5: Parameter Analysis of DNE on Link Prediction
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Figure 5.6: Parameter Analysis of DNE on Node Classification

capacity to capture the first and second order proximity; while embeddings with a

too large d makes the model too complex, which can result in overfitting. A similar

observation holds for r; and (ii) The performance is generally better and more stable

when the value of r is in [5, 10], and the value of d is in [50, 200]. This observation

eases the parameter selection.
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Chapter 6

DOCUMENT NETWORK EMBEDDING

In attributed networks, attributes are represented as binary vectors. However,

attributes can also present in more complex formats. For example, in social media,

a user can have a short bio or description to introduce him/herself. The description

can be treated as a document. Together with social links, it forms a document net-

work (or linked documents). A toy example of a document network is illustrated in

Figure 6.1(a) where {d1, d2, . . . , d5} are documents and {w1, w2, . . . , w8} are words

in documents. In addition to content information, documents are linked and links

suggest the inter-dependence of documents. One very straightforward way to handle

a document network is to simply convert each document to bag-of-word represen-

tation, which essentially transform the document network to an attributed network

and we can apply attribute network embedding algorithms to learn the representa-

tion. However, it ignores the word order and semantic meaning of words within a

document, which can result in sub-optimal results. Therefore, we propose to investi-

gate document network embedding that can simultaneously consider word semantic

meanings and link information. In social media, it is possible to get certain user’s

label; while others may not reveal their labels. The partial label information in docu-

ment networks can help to learn better representation for certain tasks such as node

classification. Thus, we also take the partial label information into consideration
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(a) Linked Documents (b) Three Types of Relations

Figure 6.1: A Toy Example of Linked Documents. {d1, d2, . . . , d5} Are Documents;

{w1, w2, . . . , w8} Are Words; y2 Is the Label of d2 and y5 Is the Label of d5.

during representation learning. Next, we formally define the problem.

6.1 Problem Statement

Let D = {d1, d2, . . . , dN} be a set of N documents and W = {w1, w2, . . . , wM}

be the word dictionary of size M for D. Documents in D are linked, which forms

a document network G = (V , E), where each vertex is a document and eij = 1

if documents di and dj are connected. We use Y to denote the subset of labeled

documents in D where yi represents label information of the document di. Let D ∈

Rd×N be the document embedding matrix where the i-th column of D, i.e., di ∈

Rd×1, is a d-dimensional vector representation of the document di. Similarly we use

W ∈ Rd×M to denote the word embedding matrix where the j-th column of W, i.e.,

wj ∈ Rd×1, is a d-dimensional vector representation of the word wj in W .

With aforementioned definitions and notations, the problem under study is for-

mally stated as:

Given the document set D, the document network G and partial label information
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of D, i.e., Y, we want to learn the document embedding matrix D and the word

embedding matrix W. Mathematically, the problem is written as :

f(D,G,Y)→ {D,W} (6.1)

where f is the learning algorithm we propose to investigate.

6.2 The Proposed Framework

To model content, link and label information for word and document embedding,

we extract three types of relations by examining Figure 6.1(a). The three types of

relations are demonstrated in Figure 6.1(b): (1) word-word-document relations from

content information shown in Figure 6.1(b1); (2) document-document relations from

link information shown in Figure 6.1(b2); and (3) document-label relations from label

information shown in Figure 6.1(b3). Next we elaborate these three relations and their

corresponding model components before introducing the proposed framework LDE.

6.2.1 Modeling Word-Word-Document Relations

The distributional hypothesis that “you shall know a word by the company it

keeps” suggests that a word has close relationships with its neighboring words. For

example, the phrases win the game and win the lottery appear very frequently; thus

the pair of words win and game and the pair of words win and lottery could have very

close relationship. When we are only given the word win, we would highly expect

the neighboring words to be words like game or lottery instead of words as light or

air. This suggests that a good word representation should be useful for predicting

its neighboring words, which is the essential idea of Skip-gram [57]. Meanwhile,

depending on the topics of the documents, the probabilities of words appearing in the

documents are different [10]. For example, though the appearance of the phrase win
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the lottery is frequent, if we know that the topic of a document is about “sports”,

we would expect words as game or competition after the word win instead of the

word lottery because win the game/competition is more reasonable under the topic

of “sports”. On the contrary, if the topic of the documents is about “lottery”, then

we would expect lottery after win. These intuitions suggest that the predictions of

neighboring words for a given word also strongly rely on the document. Therefore,

we extract word-word-document relations from content information.

For a word wi, we use a window of size c to extract wi and its (c − 1) neighbors

with wi at the center and then wi and each of its c − 1 neighbors wj form a pair

as (wi, wj). At the same time, we record which document the pair of words (wi, wj)

comes from, say dk. The pair of words (wi, wj) and the document dk form a triplet

(wi, wj, dk). An illustrative example of such process is given in Figure 6.1(b1), where

window size c is 2. We denote all these triplets as a set P . Note that in P , there may

be multiple (wi, wj, dk) if the co-occurrence of wi and wj happens multiple times in

dk and there may be also (wi, wj, ds) and (wi, wj, dk) if the co-occurrence of wi and

wj appears in both ds and dk. After extracting P , the word-word-document relations

can be captured by maximizing the average log probability:

max
W,D

1

|P|
∑

(wi,wj ,dk)∈P

logP (wj|wi, dk) (6.2)

where P (wj|wi, dk) means the probability of given dk, word wj is a neighboring word

of wi, which is defined as

P (wj|wi, dk) =
exp(wT

j wi + wT
j dk)∑M

t=1 exp(wT
t wi + wT

t dk)
(6.3)

6.2.2 Modeling Document-Document Relations

Links between documents indicate the inter-dependence of documents. For exam-

ple, a piece of online news about “sports” is likely to have hyperlinks to other news
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on “sports” and a web mining article is likely to cite other web mining articles. Two

linked documents are likely to share similar topics, which is a property commonly

exploited in many tasks such as classification [69] and feature selection [75]. There-

fore, we extract document-document relations from link information. For two linked

document di and dj, i.e., eij = 1, the embedding vector for di is a good indicator of

that of dj since they are likely to share similar topics, which can be achieved by the

following optimization problem:

max
D

1

|E|

N∑
i=1

∑
j:eij=1

logP (dj|di) (6.4)

where |E| is the number of links and P (dj|di) is given as

P (dj|di) =
exp(dTj di)∑N
k=1 exp(dTkdi)

(6.5)

From Eq.(6.5), we can see that if two linked documents have similar representations,

then P (dj|di) will be large. Thus, Eq.(6.4) aims at maximizing the similarity between

two linked documents based on their embedding vectors.

6.2.3 Modeling Document-Label Relations

For the classification problem, we have some labeled samples and label information

could guide the document embedding algorithms to learn better embedding. Let

Y ∈ Rd×Nc be the label embedding matrix where Nc is the number of unique labels

and the k-th column of Y, yk, is the embedding vector for the k-th label. yi is the

label of the i-th document and the corresponding label embedding vector for yi is

yyi . However, to avoid the notation confusion, we use ydi instead of yyi to denote the

representation of the class label that is assigned to di in the remainder of the paper.

A good document embedding vector for di should be a good indicator of the label of

di. In other words, given the document, we should be able to predict its label; hence
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we extract document-label relations from label information, which can be captured

as follows:

max
Y,D

1

|Y|
∑
i:yi∈Y

logP (ydi|di) (6.6)

where P (ydi |di) is the probability that di’s label is ydi , which is given as

P (ydi |di) =
exp(yTdidi)∑Nc
k=1 exp(yTk di)

(6.7)

6.2.4 Linked Document Embedding

With model components to capture content, link and label information, the pro-

posed linked document embedding framework LDE is to solve the following optimiza-

tion problem:

min
W,D,Y

− 1

|P|
∑

(wi,wj ,dk)∈P

logP (wj|wi, dk)−
1

|E|

N∑
i=1

∑
j:eij=1

logP (dj|di)

− 1

|Y|
∑
i:yi∈Y

logP (yi|di) + γΩ(W,D,Y)

(6.8)

In Eq.(6.8), the first term aims to learn document and word embeddings that are

useful for predicting the neighbor word, which captures content information. The sec-

ond term models link information and the third term captures label information that

allows the document embeddings with the capability to predict labels. Ω(W,D,Y) is

the regularizer to prevent the model from overfitting. We can choose the regularizer

with `1-norm if the dimension of the embedding is high. Since we want to repre-

sent documents and words with low-dimensional vectors for classification, we use the

Frobenius in our model:

Ω(W,D,Y) = ‖W‖2F + ‖D‖2F + ‖Y‖2F (6.9)

6.3 Learning LDE

In this section, we introduce the details of how to use stochastic gradient method

to train the model. We will first introduce how to speed up the training process and
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then give the update rules and the detailed algorithm.

6.3.1 Approximation by Negative Sampling

To update wj, we need to take derivative of logP (wj|wi, dk) w.r.t. wj, which is

given by:

∇wj
logP (wj|wi, dk) = (1 + P (wj|wi, dk))(wi + dk) (6.10)

From Eq.(6.10), we find that updating wj requires the calculation of P (wj|wi, dk).

However, the calculation of P (wj|wi, dk) is expensive, because the denominator of

P (wj|wi, dk) is written as
∑M

t=1 exp(wT
t wi + wT

t dk). It requires summation over all

the words, which could be very inefficient since the number of words is usually very

large. To accelerate the speed, following the method used in Skip-gram model, we

use the trick of negative sampling. In detail, the negative sampling is defined by the

following objective function [57]:

log σ(wT
j (wi + dk)) +

K∑
t=1

Ewt∼Pn(w)[log σ(−wT
t (wi + dk))] (6.11)

which replaces every logP (wj|wi, dk) term in the objective function of Eq.(6.8). Thus

the task becomes to distinguish the target word wj from K words drawn from the

noise distribution Pn(w). The idea behind negative sampling is that we want to max-

imize the similarity between wj and (wi + dk) and minimize the similarity between a

randomly sampled word wt and (wi + dk). In this way, we can approximately maxi-

mize logP (wj|wi, dk). In practice, the noise distribution is chosen to be U(w)3/4/Z,

where U(w) is the unigram distribution of the words and Z =
∑

w U(w)3/4 is the

normalization term.

Thus, for a training instance (wi, wj, dk) ∈ P , we would draw K negative word

samples, say one negative sample is wt, from the noise distribution as wt ∼ Pn(w)

and then we put (wi, wt, dk) into the negative training set N . It is easy to verify that
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|N | = K|P|. Now with N and P , we can approximate the first term in Eq.(6.8) using

Eq.(6.11) as

min
W,D
− 1

|P|
∑

(wi,wj ,dk)∈P

log σ(wT
j (wi + dk))−

1

|P|
∑

(wi,wt,dk)∈N

log σ(−wT
t (wi + dk))

(6.12)

Similarly, we approximate P (dj|di) as

log σ(dTj di) +
K∑
t=1

Edt∼P̃n(d) log σ(−dTt di) (6.13)

where dt in Eq.(6.13) is randomly sampled from documents that are not linked with

di. Thus, for each linked document pair (di, dj), we need to randomly sample K

documents, dt, that are not linked to di and put (di, dt) to the negative document set

NE. We can see that |NE| = K|E|. Now the second term in Eq.(6.8) can be written

as

min
D
− 1

|E|

∑
eij∈E

log σ(dTj di) +
∑

(di,dt)∈NE

log σ(−dTt di)

 (6.14)

With the similar idea, P (ydi |di) can be approximated as

log σ(yTdidi) +
∑
y 6=ydi

log σ(−yTy di) (6.15)

With these negative sampling approximations, the objective function of Eq.(6.8) can

be approximated as

min
W,D,Y

− 1

|P|
∑

(wi,wj ,dk)∈P

log σ(wT
j (wi + dk))−

1

|P|
∑

(wi,wt,dk)∈N

log σ(−wT
t (wi + dk))

(6.16)

− 1

|E|
∑
eij∈E

log σ(dTj di)−
1

|E|
∑

(di,dt)∈NE

log σ(−dTt di)

− 1

|Y|
∑

i:ydi∈Y

[log σ(yTdidi) +
∑
y 6=yi

log σ(−yTy di)] + γΩ(W,D,Y)
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6.3.2 Updating Rules

We use stochastic gradient descent method to train the proposed model. Thus

for each training sample, we need to update the involved word, document or label

representations. For a given training instance, (wi, wj, dk) ∈ P , Eq.(6.16) reduces to

f1 = − 1

|P|
log σ(wT

j (wi + dk)) + γ(‖wi‖22 + ‖wj‖22 + ‖dk‖22)

The derivatives of the above equation w.r.t. wi,wj and dk are given as

∇wi
f1 =

1

|P|
[σ(wT

j (wi + dk))− 1]wj + 2γwi

∇dkf1 =
1

|P|
[σ(wT

j (wi + dk))− 1]wj + 2γdj

∇wj
f1 =

1

|P|
[σ(wT

j (wi + dk))− 1](wi + dk) + 2γwj

(6.17)

Then wi,wj and dk are updated as

wi ← wi − η∇wi
f1

dk ← dk − η∇dkf1

wj ← wj − η∇wj
f1

(6.18)

where η is the learning rate.

Similarly, when the training instance is (wi, wt, dk) ∈ N , Eq.(6.16) is reduced to:

f2 = − 1

|N |
log σ(−wT

t (wi + dk)) + γ(‖wi‖22 + ‖wt‖22 + ‖dk‖22)

Then wi,wt and dk are updated as

wi ← wi − η∇wi
f2

dk ← dk − η∇dkf2

wt ← wt − η∇wtf2

(6.19)

When a training instance is from E , say (di, dj), we update di and dj by the

gradient descent method. When a training instance is from NE, say (di, dt), we
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update di and dt. Similarly, when the training instance is (di, yi), we update di

and Y since all the label representation Y is involved as shown in the forth line of

Eq.(6.16) . We omit the detailed derivations here since they are very similar to the

aforementioned ones.

6.3.3 Subsampling of Frequent Words

There is another issue we need to deal with. In large corpora, the most frequent

words such as (“in”, “a”) can easily occur millions of times. In each epoch, these

words will be trained millions of times correspondingly and the vector representations

of these words will not change significantly after several epochs [57]. On the contrary,

some rare words are trained less frequently in each epoch thus they need more epochs

to train. To account the imbalance between rare and frequent words, we use the

sub-sampling approach as in [57]: each word wi in the training set is discarded with

a probability computed by the formula:

P (wi) = 1−

√
t

f(wi)
(6.20)

where f(wi) is the frequency of the word wi and t is a chosen threshold, typically

around 10−5. The advantage of this subsampling formula is that it aggressively sub-

samples words whose frequencies are greater than t while preserving the ranking of

the frequencies.

6.3.4 A Learning Algorithm for LDE

With the negative sampling and the update rules, the algorithm to learn LDE is

summarized in Algorithm 4. We first prepare the training instances from line 1 to

line 7. In line 8, we initialize the parameters W,D and Y. Following the common

practice, we initialize each element of W,D and Y by randomly sampling from the
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uniform distribution [-0.2,0.2]. We then train LDE and update W,D and Y given

the training data using the gradient descent method from line 9 to line 13. Finally,

the document embedding D and word embedding W are obtained.

D is the document embedding which we name LDE-Doc. We can also represent

documents using word embeddings. In particular, to get the document representa-

tion from word-embeddings W, for a document di, we average all the words in the

document as

d̃i =
1

Ni

∑
wi∈di

wi (6.21)

where, Ni is the length of the document di and d̃i is used as the document rep-

resentation for di. We denote the document representation by word embedding as

LDE-Word.

6.3.5 Time Complexity

When the training instance is (wi, wj, dk) ∈ P , from Eq.(6.17) and Eq.(6.18), we

can see that the cost of calculating the derivative of f1 w.r.t. wi and updating wi are

both O(d). With similar analysis, we find that the computational cost of calculating

gradients and updating parameters are also O(d) when training instances are from

N ,P , E ,NE or Y . Thus, we only need to count the size of the training data, which is

(K+1)|P|+(K+1)|E|+Nc|Y|. Therefore, the total computational cost in one epoch

is
(
(K+ 1)|P|+ (K+ 1)|E|+Nc|Y|

)
O(d). Considering the fact that E is usually very

sparse, the complexity is comparable to Skip-gram, which is scalable to millions of

documents [57].
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Algorithm 4 LDE - Linked Document Embedding

Require: D,G = {V , E},Y , λ, window size c, dimension d

Ensure: D,W

1: Construct P by using a sliding window size c to extract instances as (wi, wj, dk)

from documents where (wi, wj, dk) is added to P with the probability
√

t
f(wi)

2: for each training sample in P do

3: Draw K negative samples from noise distribution and put to N

4: end for

5: for eij in E do

6: Randomly sample K documents that are not linked with di and put them into

NE

7: end for

8: Initialize W,D and Y

9: repeat

10: for each training instance do

11: Update involved parameters using SGD as described in Section 6.3.2

12: end for

13: until Convergence

14: Return D, W

6.4 Experiments

In this section, we conduct experiments to evaluate the effectiveness of the pro-

posed framework LDE. Specifically, we aim to answer the following questions:

• How effective is the proposed framework in learning document representations

compared to the state-of-the-art methods?

• How does label information affect the performance of the proposed framework?
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and

• Does the network information provide additional information for learning better

document representations?

We begin by introducing the datasets and experimental settings, and then we

compare LDE with the state-of-the-art algorithms for classification to answer the fist

question. We also investigate the sensitivity of LDE w.r.t. label and link information

to answer the second and third questions.

6.4.1 Datasets and Experimental Settings

Datasets

The experiments are conducted on two real-world linked document datasets, DBLP

and BlogCatalog. DBLP dataset is extracted by Arnetminer [80] from the DBLP

website. Each document in DBLP dataset contains the title, authors and year of a

paper. Some documents also contain venues, abstracts and reference papers. We use

titles and abstracts as the document contents. Thus, we remove documents whose

abstracts and titles are missing. We then choose six categories from the corpus1, in-

cluding “Computer networks”, “Database:Data mining:Information retrieval”, “Com-

puter graphics:Multimedia”, “Software engineering”, “Theoretical computer science”

and “High-Performance Computing”. After that, we randomly select 2550 samples

from each chosen category and add links between two documents if one document

cites another document. BlogCatalog2 is a blog directory where users can register

their blogs under predefined categories. The categories are used as class labels of

blogs. Each blog has a text description added by the owner, which is used as docu-

1Categories are defined according to venue by Arnetminer
2https://www.blogcatalog.com/
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Dataset DBLP BlogCatalog

# of documents 15,300 62,652

# of links 36,359 378,161

# of classes 6 27

Table 6.1: Statistics of the Datasets

ment content in our work. The homepage of each blog lists several blogs related to

this blog, which forms links between a blog and its related blogs. In addition, if the

owner of blog A follows the owner of blog B, we also add a link from blog A to blog

B. We remove categories whose number of blogs are less than 500, which leaves us 27

categories and 62,652 blogs. Note that BlogCatalog dataset is unbalanced. For both

datasets, we remove stop words and no further text normalizations such as stemming

are done. The statistics of two datasets are summarized in Table 6.1.

Evaluation Metrics

Our goal is to learn vector presentations of documents for classification. Therefore, we

use classification performance to assess the quality of learned document representa-

tions. In fact, the classification task is also a common way to evaluate these word and

document embedding algorithms with unsupervised settings [46]. Two widely used

classification evaluation metrics, Micro-F1 and Macro-F1, are adopted. The larger

the Micro-F1 and Macro-F1 scores are, the better the document representation is for

the classification task.

6.4.2 Performance Comparison

To answer the first question, we compare the proposed framework LDE with other

classical and state-of-the-art document representation learning algorithms. Since

92



Dataset DBLP BlogCatalog

Name Micro-F1 Macro-F1 Micro-F1 Macro-F1

BOW 78.50±0.64 78.61±0.63 46.35±0.42 40.78±0.43

RTM 74.05±0.68 74.08±0.71 44.62±0.35 39.60±0.37

Skip-gram 81.00±0.40 80.98±0.41 47.38±0.28 41.97±0.25

CBOW 77.33±0.73 77.31±0.73 45.43±0.44 39.03±0.29

PV-DM 84.25±0.26 84.25±0.26 48.35±0.24 42.78±0.23

PV-DBOW 80.81±0.30 80.82±0.29 47.56±0.23 41.68±0.25

LP 72.88±0.75 72.90±0.76 38.54±0.42 35.51±0.40

GC 84.75±0.82 84.74±0.81 48.76±0.37 42.98±0.34

TADW 85.59±0.65 85.58±0.64 49.85±0.31 43.95±0.32

CNN 84.07±0.45 84.09±0.48 49.01±0.51 43.38±0.47

PTE 85.26±0.47 85.23±0.49 50.36±0.43 44.58±0.42

LDE-Word 80.87±0.36 80.83±0.39 48.77±0.29 42.96±0.25

LDE-Doc 87.69±0.42 87.70±0.45 53.14±0.42 46.85±0.39

Table 6.2: Document Classification Performance Comparison on DBLP and Blog-

Catalog

LDA utilizes contents, links and labels during learning process, for fair compari-

son, the compared algorithms include state-of-the-art algorithms that utilizes links

and contents such as RTM, TADW, contents and labels such as PTE, CNN and

also graph-based classifier such as GC, which utilizes contents, link and labels for

classification. The details of these algorithms are listed as follows:

• BOW [68]: the classical “bag-of-words” represent each document as a M -

dimensional vector, where M is the size of the vocabulary and weight of each
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dimension is calculated by the TFIDF scheme.

• RTM [13]: relational topic model is an extension of topic modeling that models

document content and links between documents.

• Skip-gram [57]: one of the state-of-the-art word embedding model and its train-

ing objective is to find word representations that are useful for predicting the

surrounding words of a selected word in a sentence. After obtaining word em-

beddings by Skip-gram, we use Eq.(6.21) to get document representations.

• CBOW [57]: another state-of-the-art word embedding model. Unlike Skip-

gram, the training objective of CBOW is to find word representations that

are useful for predicting the center word by its neighbors. Similarly, we use

Eq.(6.21) to get document representations.

• PV-DM [46]: the distributed memory version of paragraph vector which con-

siders the order of the words. It aims at learning document embeddings that

are good at predicting the next given context.

• PV-DBOW [46]: the distributed bag-of-words version of paragraph vector model

proposed in [46]. Unlike PV-DM, the word order is ignored in PV-DBOW. It

aims to learn document representations that are good at predicting words in

the document.

• LP [99]: a traditional semi-supervised algorithm based on label propagation,

which performs classification by propagating label information from labeled

data to unlabeled data through the graph. LP denotes a traditional method

that utilizes both network information and label information for classification.
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• GC [2] a graph-based classification method which utilizes both document con-

tents, link and label information into a probabilistic framework for classification.

• CNN [41]: convolution neural network for classification. It uses word embed-

dings as input to train convolution neural network with label information3.

• TADW [96]: text-associated DeepWalk is a matrix factorization based method

that utilizes both link and document data4.

• PTE [78]: predictive text embedding which considers label information to learn

word embedding but cannot handle link information among documents.

• LDE-Word: the proposed framework trains both word embedding and doc-

ument embedding. This variant uses the average of the word embeddings to

represent a document.

• LDE-Doc: the proposed framework. Instead of using the word embeddings, we

use the document embeddings directly as the representations of the documents.

The experiment consists of two phases, i.e., the representation learning phase and

the document classification phase. During the representation learning phase, all the

documents in the training set and testing set are used to learn word embeddings or

document embeddings. For LDE-Word and LDE-Doc, labels of training data and link

information are also used for learning embeddings during the representation learning

phase. Labels of testing data are held out and no algorithm can use labels of testing

data during the representation learning phase. During the classification phase, we use

libsvm5 [12] to train a SVM classifier using the learned document embeddings and

3Code available at https://github.com/yoonkim/CNN sentence
4We use the code from https://github.com/albertyang33/TADW
5Avaliable at https://www.csie.ntu.edu.tw/ cjlin/libsvm/
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the training data. The trained SVM classifier is then assessed on the testing data6.

Dataset Algorithm Metrics 0% 20% 40% 60% 80% 100%

DBLP

LDE-Word
Micro-F1 76.62 77.30 78.25 78.79 79.69 80.87

Macro-F1 76.63 77.26 78.23 78.76 79.65 80.83

LDE-Doc
Micro-F1 78.68 79.05 81.85 83.87 85.65 87.69

Macro-F1 78.68 79.04 81.85 83.87 85.65 87.70

BlogCatalog

LDE-Word
Micro-F1 45.45 45.92 46.36 47.05 47.98 48.77

Macro-F1 39.62 40.09 40.73 41.47 42.20 42.96

LDE-Doc
Micro-F1 46.57 47.12 48.83 50.17 51.62 53.14

Macro-F1 40.65 41.24 42.76 44.15 45.51 46.85

Table 6.3: Effects of Label Density for LDE.

There are some parameters to set for the baseline algorithms. For a fair compar-

ison, for Skip-gram, CBOW, PV-DM, PV-DBOW, CNN, RTM and LDE, we set the

embedding dimension to be 100. For Skip-gram, CBOW, PV-DM, PV-DBOW and

LDE, following the parameter setting suggestions in [57], we set the window size to

be 7 and the number of negative samples also to be 7. We follow the setting in [78] for

PTE and we use the default setting in the code of TADW. For the proposed model,

we choose γ to be 0.0001. As of CNN, we use the default architecture in [41]. For

both datasets, we randomly select 60% as training data and the remaining 40% as

testing data. The random selection is conducted 5 times and the average micro-f1

and macro-f1 with standard deviations are reported in Table 6.2. From the table, we

make the following observations:

6For Skip-gram, CBOW, PV-DM and PV-DBOW, we use the implementation by Gensim, which

is available at https://radimrehurek.com/gensim/
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• Skip-gram and PV-DM outperforms BOW slightly on both datasets. This shows

that word/document embeddings can learn dense representations of documents

which can improve the classification performance slightly. In contrast, LDE-Doc

is much better than BOW on both datasets, which demonstrates the effective-

ness of the proposed framework by incorporating link and label information.

• Most of the time, CNN outperforms other baseline methods. CNN uses label

information for training and it is likely to obtain better performance. PTE

outperforms CNN, which is consistent with previous observations [78].

• Comparing LDE-Doc and TADW, we can see that the performance of LDE-Doc

is better than TADW. This is because though TADW utilizes link information,

it doesn’t consider label information for learning document representation.

• The performance of LDE-Doc is much better than LDE-Word. This is because

LDE focuses on learning document representations. The link information and

label information are used by LDE specific to document embedding instead of

word embedding. LDE-Word is comparable to Skip-gram.

• The performance of LDE-Doc is better than the graph-based classification

method GC, which also utilizes contents, link and label information for classi-

fication. This suggests that by utilizing the distributional hypothesis idea and

exploiting the word-word-doc, doc-link and doc-label relationships, the learned

document representations is good for classification.

• Though both PTE and LDE-Doc follow the idea of distributional hypothesis

and use the label information, LDE-Doc significantly outperforms PTE. This is

because in addition to label information, LDE-Doc also models the link infor-

mation among documents which is pervasively available for linked documents.
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• The proposed document embedding algorithm LDE-Doc outperforms repre-

sentative document representation algorithms including PV-DM, RTM, PV-

DBOW, PTE and TADW and graph-classification based methods such as GC,

which further demonstrates that by considering link and label information, the

proposed framework LDE is able to learn better document representations.

We conduct t-test on all performance comparisons and it is evident from t-test

that all improvements are significant. In summary, the proposed framework can learn

better document embeddings for classification by exploiting link and label informa-

tion.
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Figure 6.2: Relative Performance Improvement of LDE with Increasing Label In-

formation.

6.4.3 Impact of Label Density

In this subsection, we perform experiments to investigate the effects of the label

density on the quality of word and document embeddings. We first split each dataset

into 60% and 40%, where 40% is fixed as testing data. From the 60% part, we sample

x% as labeled data in the embedding learning phase. The remaining (100-x)% are

not used for learning the embeddings. We vary x as {0, 20, 40, 60, 80, 100}. Similarly,
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the experiment is composed of two phases. During the representation learning phase,

we use all the documents with the x% labeled data and link information to learn the

embeddings. After the embeddings are learned, we use libsvm to train an SVM clas-

sifier. Each experiment is conducted 5 times and we report the average classification

performance in terms of Micro-F1 and Macro-F1 in Table 6.3. To help understand

the effects, we plot the relative performance improvement compared to that without

label information (x = 0) in terms of Micro-F1 in Figure 6.2. Note that we omit

the figure for Macro-F1 since we have similar observations. From the table and the

figures, we make the following observations:

• For both datasets, with the increase of labeled data in the representation learn-

ing phase, the performance of both word embedding and document embedding

increases, which demonstrates that by incorporating label information, we can

learn better document and word embeddings.

• From the figure, we can see that with the increase of labeled data, the dif-

ference between LDE-Word and LDE-Doc also increases, which indicates that

label information is more useful for the proposed framework to learn document

embeddings than word embeddings. This is reasonable because we explicitly

model document and label relations to enable the capability of the learned rep-

resentations in predicting labels.

6.4.4 Effects of Link Density

In this subsection, we perform experiment to investigate the effects of the link

density on the quality of word and document embeddings. Each time, we randomly

sample x% of links. We vary x as {0, 20, 40, 60, 80, 100}. We then split the dataset

into 60% and 40%, where 60% are used for training and 40% are used for testing. The
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Dataset Algorithm Metrics 0% 20% 40% 60% 80% 100%

DBLP

LDE-Word
Micro-F1 76.83 79.15 79.25 79.51 79.35 80.87

Macro-F1 76.82 79.12 79.23 79.48 79.32 80.83

LDE-Doc
Micro-F1 78.03 81.31 82.78 83.56 85.20 87.69

Macro-F1 78.05 81.30 82.79 83.57 85.22 87.70

BlogCatalog

LDE-Word
Micro-F1 45.87 46.48 46.84 47.07 47.75 48.77

Macro-F1 39.87 40.38 40.97 41.52 42.13 42.96

LDE-Doc
Micro-F1 46.89 48.04 49.23 50.15 51.65 53.14

Macro-F1 40.91 41.62 42.65 44.27 45.71 46.85

Table 6.4: Effects of Link Density on LDE.

experiment is composed of two phases. During the representation learning phase, we

use all the documents, the label for the training data and the x% of links to learn

embeddings. After learning embeddings, we use libsvm to train a SVM classifier. We

report the classification performance in terms of Micro-F1 and Macro-F1 in Table 6.4.

Similarly, to help understand the effects, we plot the relative performance improve-

ment in terms of micro-f1 w.r.t. compared to that without links (x = 0) in Figure

6.3. From the table and the figures, we make the following observations:

• For both datasets, as the percentage of links increases during the representation

learning phase, the performance of both word embedding and document embed-

ding increases, which demonstrates that by incorporating link information, we

can learn better document and word embeddings.

• From the figure, we can see that as the percentage of links increases, the differ-

ence between LDE-Word and LDE-Doc also increases, which suggests that link

information helps document embedding more than word embedding. The rea-
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son is that we extract document and document relations from link information

and then explicitly model them based on document embeddings.
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Figure 6.3: Relative Performance Improvement of LDE with Increasing Link Infor-

mation.

6.4.5 Effects of Embedding Dimensions

In this subsection, we investigate how the embedding dimensions affect the per-

formance of the proposed framework LDE. In detail, we first randomly select 60% as

training and the remaining 40% as testing. All the documents, link information and

label information of the 60% training data are used for learning document and word

embeddings. After that, we train a SVM classifier to perform document classification

with the learned document and word embeddings on the testing data. We vary the

number of embedding dimension d as {20, 50, 100, 200, 400, 1000}. The random selec-

tion process is done 5 times and the average Micro-F1 are shown in Figure 6.4. Note

that we only report Micro-F1 since the performance in terms of Macro-F1 is very

close to Micro-F1. From the figures, we note that as the dimension of embeddings

increases, the performance of both document embedding and word embedding first

increases and then decreases. This is because when the embedding dimension is too

small, the representation capability of the embedding vectors is not sufficient and
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we may lose information. However, when the embedding dimension is too large, the

model is too complex and we may overfit to the data.
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Figure 6.4: The Effects of Embedding Dimension on the Classification Performance

of Document and Word Embedding.
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Chapter 7

CONCLUSION AND FUTURE WORK

In this chapter, we summarize our research results and their broader impacts, and

discuss promising research directions.

7.1 Summary

In this dissertation, we investigate network representation learning in social media.

We provide principled approaches of exploiting social theories to design algorithms to

tackle the challenges of representation learning for complex social networks. In par-

ticular, we study four innovative research tasks - (1) attributed network embedding;

(2) signed network embedding; (3) dynamic network embedding; and (4) document

network embedding. We propose novel frameworks to tackle the challenges of these

networks and learn representations that not only capture the network structure but

also the unique properties of these networks.

For attributed networks, we propose a novel RBM for linked data called pRBM,

which is able to leverage both attribute and link information for representation learn-

ing. Specifically, pRBM is composed of a pair of RBMs so as to model nodes linked

together. Gibbs sampling with mean-filed inference is used to solve for efficient pa-

rameter estimation.

For signed networks, we introduce a new objective function for signed network em-

bedding guided by extended structural balance theory and propose a deep learning

framework SiNE to optimize this objective function. Via experiments on two signed

networks in social media, we demonstrate that (1) the learned embedding can pre-

serve the principle of signed social networks indicated by extended structural balance
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theory; and (2) the embedding learned by SiNE can significantly improve the link

prediction performance compared to representative baseline methods.

For dynamic networks, we investigate the challenging problem of dynamic network

embedding where new nodes and new links can be introduced to dynamic networks

anytime. We propose a novel probabilistic framework DNE, which exploits first-order

and second-order proximity to learn better network embedding. In addition, DNE

adopts a diffusion process to capture the node concept drift and can dynamically

learn/update node representations for new nodes and new links. Experimental re-

sults on real-world datasets demonstrated the effectiveness of DNE in capturing the

temporal patterns for next timestamp link prediction and node classification

For document networks, we investigate the problem of linked document embed-

ding for classification. We propose a novel framework LDE that captures content,

link and label information into a coherent model for learning document and word em-

beddings simultaneously. Experimental results on real-world datasets show that the

proposed framework outperforms state-of-the-art document representation algorithms

for classification.

Overall, we provide novel algorithms on four representative social networks, i.e.,

network with node attributes, network with edge attributes, networks with evolv-

ing nodes and links and networks with complex node information. These four novel

algorithms facilitate the design of network representation on other types of social

networks. In fact, many other types of social networks can be treated as the combi-

nation or variants of the studied social networks. For example, dynamic attributed

network is a combination of attributed networks and dynamic networks. The principle

or methodology used to design attributed network embedding and dynamic network

embedding can be applied. Heterogeneous social networks, which is composed of

multiple types of objects and various relations of between objects, can be treated as
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a various of networks with edge attributes.

7.2 Future Work

Network representation learning is still in its early stages of development and

remains an active area of exploration. Below we present some promising research

directions:

• Improving Scalability: Though the majority of the network embedding al-

gorithms are highly scalable in theory (i.e., O(E) training time), there is still

significant work to be done in scaling node and graph embedding approaches

to truly massive datasets (e.g., billions of nodes and edges) [30]. The massive

datasets causes three problems: (i) large memory to fit in the training data;

(ii) large storage to store a unique embedding for each individual node; and

(iii) efficient methods to measure the similarity of node embeddings for link

prediction. Therefore, it is necessary to develop representation learning frame-

works that are truly scalable to realistic production settings. One potential way

to solve these issues is to develop distributed network embedding algorithms,

which distribute the burden of calculation and storage to many machines. An-

other promising direction is binary vector representation learning, which can

alleviate the storage requirement and provide efficient approximate search [58].

• Generalizing to Other Domains: Though network embedding methods have

achieved state-of-the-art performance on many network mining tasks, the ma-

jority of existing network embedding algorithms are designed for social networks

or mainly evaluated with social networks. In real-world applications, there are

many other domains which also require understanding and learning represen-

tations of networks, such as biology networks, airline networks and financial
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networks. The principle used for learning social network representation may

not be applicable to other domains. We need domain knowledge to help adapt

network embedding algorithms on these domains.

• Improving Interpretability: One weakness of network embedding is it’s in-

terpretability [30]. It is unclear if the embedding algorithms truly learn to

represent relevant graph information, or just exploit statistical tendencies of

benchmarks. In addition, a node is represented as a vector while we have no

understanding of the semantic meanings each dimension carry. This is a big

weakness compared with handcrafted features. Therefore, it is important to

Improve the interpretability of network embedding algorithms.

• Representing Networks as Vectors: We have been focusing on learning vec-

tor representations of nodes in a network. There’s another very important and

promising network representation learning direction, which tries to learn vector

representations of networks, i.e., representing each network as a vector. The

learned network representation can be used for many network level downstream

tasks such graph classification and measuring network similarity. In fact, many

domains require vector representation of networks. For example, each chemical

compound can be treated as a network, where an atom is a node in the network

and the chemical bond between two atoms is the weighted edge in the network.

With the learned vector representation of each chemical compound (network),

we can train a classifier to predict if a chemical compound is toxic or not. The

work on learning vector representations of networks is rather limited [60, 61].

Thus, it’s a promising direction which needs further investigation.
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OPTIMIZATION OF SINE
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Following the common way, we employ the backpropagation to optimize the deep
network for SiNE [47]. The key idea of backpropagation is to update the parameters
in a backward direction by propagating ”errors” backward to efficiently calculate the
gradients. Basically, we want to optimize Eq. (4.3) w.r.t to X, x0 and θ. The key step
of optimizing Eq. (4.3) is to get the gradient of max(0, f(xi,xk) + δ − f(xi,xj)) and
max(0, f(xi,x0)+δ−f(xi,xj)) with respect to the parameters, X,x0 and θ. With the
gradient, we then can update the parameters using gradient descent method. Let’s
first analyze max(0, f(xi,xk) + δ − f(xi,xj)).

• If max(0, f(xi,xk)+δ−f(xi,xj)) = 0, or equivalent, f(xi,xk)+δ−f(xi,xj) ≤ 0,
the parameters have already been optimized for the inputs xi and xj. In other
words, the gradient of max(0, f(xi,xk) + δ− f(xi,xj)) is 0 when f(xi,xk) + δ−
f(xi,xj) ≤ 0.

• If max(0, f(xi,xk) + δ− f(xi,xj)) > 0, max(0, f(xi,xk) + δ− f(xi,xj)) is equal
to f(xi,xk) + δ − f(xi,xj).

The same idea can be applied to max(0, f(xi,x0)+δ0−f(xi,xj). Based on the afore-
mentioned analysis, we only need to take gradient of f(xi,xj) w.r.t the parameters.
Then we are able to get the gradient of Eq. (4.3) with some calculations. We will
start from the parameters of the N -th layer and go backward to get derivatives for
other layers. First, using Eq (4.8), the derivative of f(xi,xj) w.r.t w is given as

∂f(xi,xj)

∂w
= [1− f 2(xi,xj)]

∂

∂w
[wTzN1 + b]

= [1− f 2(xi,xj)]z
N1

(A.1)

and similarly, the derivative of f(xi,xj) w.r.t b is

∂f(xi,xj)

∂b
= 1− f 2(xi,xj) (A.2)

Next, the gradient of f(xi,xj) w.r.t zN1 is given as

∂f(xi,xj)

∂zN1
= [1− f 2(xi,xj)]

∂

∂zN1
[wTzN1 + b]

= [1− f 2(xi,xj)]w
(A.3)

Let δN1 be a vector with its s-th element δN1
s defined as

δN1
s =

∂f(xi,xj)

∂zN1
s

[1− (zN1
s )2]

= [1− (zN1
s )2][1− f 2(xi,xj)]ws

(A.4)

where zN1
s is the s-th element of zN1. δN1 is the “error” generated by the output

layer and will propagate back to the N -th layer as shown later. Using the chain rule
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and Eq. (4.7), the derivative of f(xi,xj) w.r.t. WN is given as:

∂f(xi,xj)

∂WN
st

=
∑
k

∂f(xi,xj)

∂zN1
k

∂zN1
k

∂WN
st

=
∂f(xi,xj)

∂zN1
s

[1− (zN1
s )2]z

(N−1)1
t

(A.5)

With Eq. (A.4), the above equation is simplified as

∂f(xi,xj)

∂WN
st

= δN1
s z

(N−1)1
t (A.6)

Similarly, the derivative of f(xi,xj) w.r.t. bN is given as:

∂f(xi,xj)

∂bNs
= δN1

s (A.7)

From Eqs (A.6) and (A.7), we can see that the ”error” δN1 is propagated backwards,
i.e., it is used for the calculation of the gradients of the parameters for the N -th layer.

Generally, the “error” for the n-th layer is denoted as δn1, 1 ≤ n < N , with it’s
s-th element defined as

δn1s =
∂f(xi,xj)

∂zn1s
[1− (zn1s )2] (A.8)

where the derivative of f(xi,xj) w.r.t zn1 is given as

∂f(xi,xj)

∂zn1s
=
∑
k

∂f(xi,xj)

∂z
(n+1)1
k

∂z
(n+1)1
k

∂zn1s

=
∑
k

∂f(xi,xj)

∂z
(n+1)1
k

[1− (zn1k )2]Wn+1
ks

=
∑
k

δ
(n+1)1
k W

(n+1)
ks

(A.9)

Thus, we have

δn1s = [1− (zn1s )2]
∑
k

δ
(n+1)1
k W

(n+1)
ks , 1 ≤ n < N (A.10)

It is clear from the above equation that the “error” δ
(n+1)1
k from the (n+1)-th layer is

back propagated to the n-th layer for the calculation of δn1s . With δn1s , the derivative
of f(xi,xj) w.r.t Wn and bn is given as

∂f(xi,xj)

∂Wn
st

=
∑
k

∂f(xi,xj)

∂zn1k

∂zn1k
∂Wn

st

=
∂f(xi,xj)

∂zn1s
[1− (zn1s )2]z

(n−1)1
t

= δn1s z
(n−1)1
t , 1 < n < N

(A.11)
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and
∂f(xi,xj)

∂bns
= δn1s , 1 ≤ n < N (A.12)

The derivative of f(xi,xj) w.r.t W11 and W12 are

∂f(xi,xj)

∂W11
=
∑
k

∂f(xi,xj)

∂z11k

∂z11k
∂W11

= δ11(xi)
T (A.13)

and
∂f(xi,xj)

∂W12
= δ11(xj)

T (A.14)

Finally, the derivative of f(xi,xj) w.r.t xi is

∂f(xi,xj)

∂xi
=
∑
k

∂f(xi,xj)

∂z11
k

∂z11
k

∂xi
= (W11)Tδ11 (A.15)

and the derivative of f(xi,xj) w.r.t xj is

∂f(xi,xj)

∂xj
= (W12)Tδ11 (A.16)

Similarly, for f(xi,xk) = tanh((wN+1)TzN2 + bN+1), we define δn2s as

δn2s =
∂f(xi,xk)

∂zn2s
[1− (zn2s )2] (A.17)

With the same procedure as f(xi,xj), we can get the derivatives of f(xi,xk) w.r.t
the parameters. We omit the details here and just

With these derivatives, it’s easy to get the derivatives of the objective in Eq (4.3)
w.r.t to the parameters. We denote the objective as L(X,x0, θ). In each iteration,
the parameters are updated using gradient descent. Taking x0 as an example, the
update rule is given as

x0 ← x0 − γ
∂L(X,x0, θ)

∂x0

(A.18)

where γ is the learning rate.

A.1 Summary of Derivatives

In this section, we summarize the derivatives. For f(xi,xj) = tanh(wTzN1 + b),
we have

δn1s =

{
[1− (zn1s )2]

∑
k δ

(n+1)1
k W

(n+1)
ks , 1 ≤ n < N

ws[1− (zN1
s )2][1− f 2(xi,xj)], n = N

(A.19)
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and the derivatives of f(xi,xj) w.r.t θ are given as

∂f(xi,xj)

∂w
= [1− f 2(xi,xj)]z

N1

∂f(xi,xj)

∂Wn
st

= δn1s z
(n−1)1
t , 1 < n < N

∂f(xi,xj)

∂W11
= δ11(xi)

T

∂f(xi,xj)

∂W12
= δ11(xj)

T

∂f(xi,xj)

∂b
= 1− f 2(xi,xj)

∂f(xi,xj)

∂bns
= δn1s , 1 ≤ n < N

(A.20)

the derivatives of f(xi,xj) w.r.t xi,xj are given as

∂f(xi,xj)

∂xi
= (W11)Tδ11∂f(xi,xj)

∂xj
= (W12)Tδ11 (A.21)

For f(xi,xk) = tanh(wTzN2 + b), we have

δn2s =

{
[1− (zn2s )2]

∑
k δ

(n+1)2
k W

(n+1)
ks , 1 ≤ n < N

ws[1− (zN2
s )2][1− f 2(xi,xk)], n = N

(A.22)

and the derivatives of f(xi,xk) w.r.t θ are given as

∂f(xi,xk)

∂w
= [1− f 2(xi,xk)]z

N2

∂f(xi,xk)

∂Wn
st

= δn2s z
(n−1)2
t , 1 < n < N

∂f(xi,xk)

∂W11
= δ12(xi)

T

∂f(xi,xk)

∂W12
= δ12(xj)

T

∂f(xi,xk)

∂b
= 1− f 2(xi,xk)

∂f(xi,xk)

∂bns
= δn2s , 1 ≤ n < N

(A.23)

the derivatives of f(xi,xk) w.r.t xi,xk are given as

∂f(xi,xk)

∂xi
= (W11)Tδ12 and

∂f(xi,xk)

∂xk
= (W12)Tδ12 (A.24)
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