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ABSTRACT  

   

The United States building sector was the most significant carbon emission contributor 

(over 40%). The United States government is trying to decrease carbon emissions by 

enacting policies, but emissions increased by approximately 7 percent in the U.S. between 

1990 and 2013. To reduce emissions, investigating the factors affecting carbon emissions 

should be a priority. Therefore, in this dissertation, this research examine the relationship 

between carbon emissions and the factors affecting them from macro and micro 

perspectives. From a macroscopic perspective, the relationship between carbon dioxide, 

energy resource consumption, energy prices, GDP (gross domestic product), waste 

generation, and recycling waste generation in the building and waste sectors has been 

verified. From a microscopic perspective, the impact of non-permanent electric appliances 

and stationary and non-stationary occupancy has been investigated. To verify the 

relationships, various kinds of statistical and data mining techniques were applied, such as 

the Granger causality test, linear and logarithmic correlation, and regression method. The 

results show that natural gas and electricity prices are higher than others, as coal impacts 

their consumption, and electricity and coal consumption were found to cause significant 

carbon emissions. Also, waste generation and recycling significantly increase and decrease 

emissions from the waste sector, respectively. Moreover, non-permanent appliances such 

as desktop computers and monitors consume a lot of electricity, and significant energy 

saving potential has been shown. Lastly, a linear relationship exists between buildings’ 

electricity use and total occupancy, but no significant relationship exists between 

occupancy and thermal loads, such as cooling and heating loads. These findings will 
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potentially provide policymakers with a better understanding of and insights into carbon 

emission manipulation in the building sector. 
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CHAPTER 1 

INTRODUCTION 

1.1. Background to Research 

Decreasing carbon emissions is the only way to reduce the impacts of global 

warming. Energy consumption and global warming issues are the most important problems 

humans face. Global warming is the one of the most critical issues of the last decade, and 

the threat of global warming is increasing. Several adverse effects of global warming have 

been observed. The Intergovernmental Panel on Climate Change (IPCC) reported that the 

global average combined land and ocean surface temperatures climbed about 0.85ºC 

between1980 and 2012, and global sea level increased by 0.19m between 1901 and 2010 

(IPCC 2014). The IPCC also predicted the global surface temperature and sea level will 

increase by a maximum of 4.8ºC and 0.82m, respectively, by 2100 (IPCC 2014). Therefore, 

most people or governments feel the need to decrease energy consumption and carbon 

dioxide emissions. Various factors affect energy consumption and carbon dioxide. 

Previous researchers tried to discover the causal relationship between energy 

consumption and carbon dioxide, which can provide policy makers deep insights into 

decreasing carbon dioxide. Using the Granger causality test, Soytas et al. (2007) verified 

that energy consumption causes carbon dioxide emission in the United States. The object 

data was the whole United States, but data should be narrower to be more practical and 

helpful because the main energy source for each sector in the United States is different 

(EIA 2015, Park and Hong 2013). For example, building, transportation, and industrial 

sectors mainly consume electricity, petroleum, and natural gas, respectively (EIA 2015). 
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An energy price variable is added because several researchers verified that energy price 

affects energy consumption (Nesbakken, 1999; Martinsen et al. 2007; Cho et al. 2007; 

Yuan et al. 2010). If the relationship is verified, it can be utilized practically because energy 

consumption can be controlled by price. 

In addition, according to previous studies, environmental degradation such as 

municipal waste generation and greenhouse gas emissions correlate with gross domestic 

production (GDP) per capita, as shown by the Environmental Kuznets Curve (EKC) (Stern 

et al., 1996). This hypothesis conjectures that environmental degradation initially tends to 

get worse as per capita income rises until it reaches a certain level. Degradation then 

subsides at high economic levels. (Shafik, 1994; Stern et al., 1996). Thus, economic growth 

can become a solution rather than a source of the problem (Rothman and de Bruyn, 1998). 

Researchers found various factors that affect energy consumption and carbon 

dioxide emissions. They were interested in the factors that influence a single building’s 

energy consumption from a microscopic perspective to form more practical suggestions 

for decreasing a building’s energy consumption. 

Researchers have also explored ways to reduce individual buildings’ energy use. 

Previous research mainly focused on climate, the building envelope, the building’s energy 

and service systems, indoor design criteria, and building operation and maintenance. 

Remarkable progress has been made in this research area. However, it is well known that 

a building’s occupants have a significant impact on its energy consumption although, in 

reality, current building energy systems work independently of occupants. Also, no proper 

energy model is related to occupancy. Because current systems do not consider the 

occupants’ impact, which can vary greatly, building energy simulations and predictions 
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deviate significantly from actual building energy consumption. Therefore, this dissertation 

focused on the factors related to building occupancy. 

Among the factors related to building occupancy, I first verified the impact of 

electric appliances on electricity consumption and patterns of use. A wide variety of 

electrical appliances is used in buildings, and the appliances serve various functions and 

consume a significant amount of energy. Plug loads are driven by various factors, such as 

HVAC and lighting. The amount of energy HVAC systems consume depends on the 

weather, but plug loads do not. Nevertheless, very few studies focused on electric 

appliances and plug loads even though plug loads constitute a significant portion of a 

building’s energy consumption (Kamilaris et al. 2014; Ouf et al. 2016). 12% to 50% of a 

commercial building’s total electricity is consumed via plug loads, and this figure is 

expected to continue growing as the types of equipment and appliances continue to increase 

and occupants continue to supplement their spaces with new equipment and appliances to 

meet their new needs. Gandhi and Brager (2016) showed that energy consumed by 

appliances is growing at an annual rate of 0.8%. 

Second, there are two types of building occupants. One is non-stationary occupants, 

such as visitors or students, and the other is stationary occupants, such as faculty members 

and graduate students. The stationary occupants have a more significant impact on building 

energy loads. The two groups’ energy consumption patterns are very different. For example, 

non-stationary occupants use small plug loads to, for example, charge smartphones or 

laptops and sometimes classroom desktops and projectors for class. However, stationary 

occupants create large plug loads by using such items as computers, monitors, desk lamps, 

and refrigerators during working hours. Moreover, the appliances also come with appliance 
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heat loads, which increase the cooling load (Yan et al., 2015). Because the two groups’ 

impacts on the energy load are obviously different, they should be analyzed separately 

(Chen and Ahn, 2014), so I intend to investigate stationary occupants’ impact on energy 

loads and verify the relationships between occupancy and building energy loads. 

1.2. Research Objectives 

The primary objective of the dissertation is to discover more effective ways to 

decrease greenhouse gas emissions. To do so, each chapter has specific objectives. Chapter 

2 examines and uses the causal relationships between energy resource consumption, energy 

prices, and carbon dioxide emissions (from 1973 to 2012) to determine the effects of energy 

sources and prices on carbon emissions. Chapter 3 verifies the Environmental Kuznets 

Curve’s (EKC) relationship with waste generation and GDP across the U.S. This EKC 

hypothesis conjectures that initially, environmental degradation such as carbon emissions 

and waste generation tends to worsen as per capita income rises until it reaches a certain 

level, at which point degradation subsides. Thus, economic growth may become a solution 

rather than a source of the problem. It also confirmed that total waste generation and 

recycling of waste influence carbon dioxide emissions from the waste sector. Chapter 4 

presents the impact of electric appliances on energy/electricity consumption patterns and 

ways to reduce electricity consumption. The buildings’ electricity usage patterns were 

analyzed and compared with the number of appliances in the buildings. Chapter 5 presents 

the relationships between occupancy and building energy loads, such as electricity, cooling, 

and heating. The relationships were verified using statistical methods. The next objective 

is to make a proposal to reduce buildings’ energy consumption based on the results. 
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1.3. Dissertation Format 

The dissertation is composed of four journal papers. It includes four subsequent 

chapters, and each chapter represents an independent journal paper that has been accepted 

or is in review. Therefore, each chapter has its own introduction, methodology, results, and 

conclusion. Chapters 2 and 3 are already published in Elsevier journals, Chapter 4 has been 

submitted to a Springer journal, and Chapter 5 is being prepared for publishing in a journal. 

Chapter 1 is mainly organized into overall research background and objectives and 

follows dissertation format. Chapters 2 and 3 focus on verifying the causal relationships 

for decreasing greenhouse gas from a macroscopic viewpoint. Each chapter analyzes the 

United States’ building and waste sectors. Chapters 4 and 5 concentrate on individual 

buildings’ energy consumption from a microscopic perspective. Chapter 4 present an 

analysis of the use of buildings’ non-permanent electric appliances, and Chapter 5 presents 

the impact of a building’s occupancy. 
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CHAPTER 2 

CAUSAL RELATIONSHIPS OF ENERGY CONSUMPTION, PRICE, AND CO2 

EMISSIONS IN THE U.S. BUILDING SECTOR1 

2.1 Research Needs 

Reducing carbon emissions is the only way to reduce the impacts of global warming. 

The Intergovernmental Panel on Climate Change (IPCC) reported that the global average 

combined land and ocean-surface temperature climbed about 0.85ºC from 1980 to 2012, 

and global sea level increased by 0.19m between 1901 and 2010 (IPCC 2014) due to the 

increase of carbon present in the atmosphere. IPCC predicted that global surface 

temperatures will increase by 4.8ºC and sea levels by 0.82m by 2100 (IPCC 2014). Climate 

change also creates significant impacts on the local and global economies. Stern (2007) 

estimated that if there is no immediate action to reduce carbon emissions, between 5% and 

20% of the annual global GDP will be lost. The Kyoto Protocol is still the most 

comprehensive policy to reduce carbon emissions. It is a global agreement developed by 

the United Nations Framework Convention on Climate Change (UNFCCC) in which 

countries attempted to set binding emissions-reduction targets. The Copenhagen Accord 

(CA) is another example of the global efforts to reduce greenhouse gas emissions by the 

UNFCCC. At the 15th session of the conference of parties in Copenhagen, countries 

pledged to voluntarily cut down the levels of greenhouse gas emissions further (UNFCCC 

2015). Most countries have yet fulfilled their carbon cuts. 

                                                 
1 Lee, S., and Chong, W.O., 2016. Causal relationships of energy consumption, price, and CO2emissionsin 

the U.S. building sector. Resour. Conserv. Recycl. 107, 220–226 
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China, the United States, and the European Union emitted 10.3 billion, 5.3 billion, 

and 3.7 billion tons of carbon dioxide, and these represent 29 percent, 15 percent, and 11 

percent of the total global carbon dioxide emissions, respectively (Olivier et al. 2014). The 

White House estimated that extreme weathers caused by global warming (due to 

greenhouse gases) cost the American economy more than $100 billion in 2012 alone. 

Extreme weather also threatens public health in terms of heat stress, air pollution, and 

extreme weather events, and it also exposes children, the elderly, and the poor to 

environmental vulnerability (The White House 2015). Steps have been taken by the United 

States government to reduce carbon dioxide emissions by enacting policies to better 

manage energy, water, and resource consumptions, and carbon emissions, such as with an 

energy efficiency program and the development of renewable energy sources (Greenstone 

et al. 2013; Grant et al. 2014; DSIRE 2015). Despite these efforts, carbon emission has 

increased by nearly 7 percent in the United States between 1990 and 2013 (EIA 2015). 

According to an EIA report, approximately 78 percent of the global warming 

potential comes from carbon emissions due to the combustion of fossil fuel since 1990 (US 

EPA, 2014), and a significant amount of such greenhouse gas is generated by the burning 

of fossil fuels to generate electricity. Thus, it is important to understanding the causal 

relationships between energy consumption, energy price, and carbon emission as this 

would provide insights into the effectiveness of various policies in reducing energy use and 

carbon emissions. Soytas et al. (2007) confirmed the positive relationship between energy 

consumption and carbon emissions in the United States using Granger causality test. The 

context of analysis is an extremely important factor in understanding the causality of 

energy use and carbon emissions. Energy use differs between and among different sectors 
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based on its purposes and uses (EIA 2015; Park and Hong 2013), for example, buildings in 

the United States rely mostly on electricity generated by coal, oil, natural gas, and various 

forms of renewable energy, while vehicular transportation relies mostly on oil. Each sector 

could have its own unique consumption-carbon-cost relationship, and thus the causality of 

each sector could be different. Prior studies did not address the causalities of different 

sectors. 

The price of energy is often thought to have impacts (negative and positive) on the 

demand for energy (Nesbakken 1999; Cho et al. 2007; Martinsen et al. 2007; Yuan et al. 

2010). How effective is price as a mechanism to manage energy consumption and thus 

carbon emissions? The first purpose of this research is to understand and identify the causal 

relationships between consumption, price, and carbon emission of different energy sources 

(coal, petroleum, natural gas, electricity) of the building sector (only residential and 

commercial buildings) in the United States. The building sector is the largest carbon 

emitting sector in the United States. For example, the building sector emitted 1,912 million 

metric tons of carbons (38%), compared to 1,743 by the transportation sector (34%), and 

1,367 by the industrial sector (27%) in the United States (EIA 2015). The second purpose 

is to discover which energy source generated the most carbon emissions. This would 

provide important insights to policymakers on potential ways to reduce carbon emissions. 

2.2 Literature Reviews  

Prior research showed that relationships exist between energy price and demand, 

and between energy consumption and carbon emissions. These studies suggested that the 

total energy consumed and fossil fuel used (coal, natural gas, and oil) had positive causal 

relationships with carbon emissions (as shown in Table 1). These studies were conducted 
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for Pakistan (Mumtaz et al. 2014), Indonesia (Shahbaz et al. 2013; Hwang and Yoo, 2012), 

the Middle East, and North African (Omri 2013; Arouri et al. 2012), Sub-Saharan Africa 

(Al-mulali and Sab, 2012; Menyah and Wolde-Rufael 2010), Bangladesh (Alam et al. 2012; 

Amin et al. 2012), India and China (Jayanthakumaran et al. 2012), India (Alam et al. 2011), 

China (Wang et al. 2011; Zhang and Cheng 2009), Brazil (Pao and Tsai 2011), Russia (Pao 

and Tsai 2010), Europe (Hatzigeorgiou et al. 2011; Acaravci and Ozturk 2010), 

Commonwealth of Independent States (Apergis and Payne 2010), Turkey (Halicioglu 2009; 

Soytas and Sari 2009), and the United States (Soytas et al. 2007). Moreover, Shafiei and 

Salim (2014), Bölük and Mert (2014), Al-mulali (2011), and Chang (2010) indicated that 

non-renewable and fossil fuels increased carbon dioxide emission in OECD, EU, MENA, 

and China, respectively.  

However, some studies concluded different results. In these studies, the total energy 

consumption was found to have little to no relationship to carbon emissions. In addition, 

other studies verified that such relationships were dependent on circumstances. Khan et al. 

(2014) showed in their study the different causal relationships in different countries. In 

several groups of countries, the relationships between energy consumption and carbon 

emissions were not significant. Kivyiro and Arminen (2014) confirmed no causal 

relationship between energy consumption and carbon dioxide in some Sub-Saharan 

African countries. Similar results were found in Latin America and the Caribbean (Al-

mulali et al. 2013), and in Indonesia and Turkey (Jafari et al. 2012; Ozturk and Acaravci 

2010). In addition, Niu et al. (2011), Lotfalipour et al. (2010), and Lean and Smyth (2010) 

highlighted that electricity and fossil fuels, including coal, natural gas, and oil, did not 

directly increase carbon emissions in Asia-Pacific countries, in the Association of South 
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East Asian Nations (ASEAN) countries, and Iran, respectively. Table 2 summarizes these 

studies. 

Table 2.1. Summary of studies on the significant causality among energy consumption 

and CO2 emissions 

Author Country/Region Period Methodology Causality 

Mumtaz et al. (2014) Pakistan 1975−2010 Granger 

causality test 

(ECM) 

Energy → CO2 (per capita) 

Shahbaz et al. (2013) Indonesia 1975−2011 Granger 

causality test 

(VECM) 

Energy → CO2 (per capita) 

Hwang and Yoo 

(2012) 

Indonesia 1965−2006 Granger 

causality test 

(ECM) 

Energy → CO2 

Omri (2013) MENA 1990−2011 GMM Energy → CO2 (per capita) 

Al-mulali andSab 

(2012) 

Sub-Saharan 

Africa 

1980−2008 Granger 

causality test 
Energy → CO2 

 Alam et al. (2012) Bangladesh 1972−2006 Granger 

causality test 

(VECM) 

Energy → CO2 (per capita) 

Jayanthakumaran et 

al. (2012) 

China and India 1971−2007 ECM Energy → CO2 (per capita) 

Arouri et al. (2012) MENA 1981−2005 PECM Energy → CO2 

Amin et al. (2012) Bangladesh 1976−2007 Granger 

causality 

test(VAR) 

Energy → CO2 

Hatzigeorgiou et al. 

(2011) 

Greece 1977−2007 Granger 

causality test 

(VECM) 

Energy → CO2 

Pao and Tsai (2011) Brazil 1980−2007 ECM Energy → CO2 

Alam et al. (2011) India 1971−2006 TY procedure Commercial energy→ CO2 

Wang et al. (2011) China 1995−2007 ECM Energy → CO2 

Pao and Tsai (2010) BRIC 1971−2005 VECM Energy → CO2 

Acaravci and Ozturk 

(2010) 

Europe 

countries 

1960−2005 Granger 

causality test 
Energy → CO2 (per capita) 

Apergis and Payne 

(2010) 

Commonwealth of 

Independent States 

1992−2004 Granger 

causality test 
Energy → CO2 (per capita) 

Menyah and Wolde-

Rufael (2010) 

South Africa 1965−2006 TY procedure Energy → CO2 

Halicioglu (2009) Turkey 1960−2005 ECM Commercial energy→ CO2 (per 

capita) 

Soytas and Sari 

(2009) 

Turkey 1960−2000 TY procedure Energy → CO2 

Zhang and Cheng 

(2009) 

China 1960−2007 TY procedure Energy → CO2 

Soytas et al. (2007) United States 1960−2004 TY procedure Energy → CO2 

Shafiei and Salim  

(2014) 

OECD 1980−2011 STIRPAT Non-renewable energy → CO2 

Bölük and Mert 

(2014) 

EU 1990−2008 Penal data 

analysis 

Fossil Fuel Energy → CO2 (per 

capita) 

Al-mulali (2011) MENA 1980−2009 ECM Oil → CO2 

Chang (2010) China 1981−2006 VECM Crude oil, natural gas, coal, 

electricity→CO2 

Notes:→ represents causality 
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Table 2.2.Summary of studies on the conditional and no causality among energy 

consumption and CO2 emissions 

Author Country/Region Period Methodology Causality 

Khan et al. (2014) Various country 

groups 

1975−2011 VECM Energy ⇢ CO2 (depending on 

country groups) 

Kivyiro and Arminen  

(2014) 

Sub-Saharan 

Africa 

1971−2009 VECM Energy ⇢ CO2 (per capita) 

(depending on country) 

Al-mulali et al. 

(2013) 

Latin America and 

the Caribbean 

1980−2008 CCR Energy ⇢ CO2 (depending on 

country) 

Jafari et al. (2012) Indonesia 1971−2007 TY procedure Energy ↛ CO2  

Ozturk and Acaravci  

(2010) 

Turkey 1968−2005 ECM Energy ↛ CO2 

Niu et al. (2011) Asia-Pacific 

countries 

1971−2005 VECM Total energy, coal, oil→ CO2  

Natural gas⇢ CO2 (depending on 

developed or developing country) 

Electricity ↛ CO2(per capita) 

Lean and Smyth 

(2010) 

ASEAN 1980−2006 ECM Electricity ↛ CO2 

Lotfalipour et al. 

(2010) 

Iran 1967−2007 TY procedure Fossil fuel energy↛ CO2 

Natural gas, petroleum→ CO2 

Notes:→ represents causality; ↛ represents no causality; ⇢represents causal relationship depend on conditions 

Table 2.3.Summary of studies on the causality among energy price and energy 

consumption 

Author Country/Region Period Methodology Causality 

Yuan et al. (2010) China 1993−2007 VECM Price → Industrial, household 

energy 

Martinsen et al. 

(2007) 

Germany  Reference 

scenario 

Oil, natural gas, imported coal price 

→  Total energy 

Mahadevan and 

Asafu-Adjaye (2007) 

20 countries 1971−2002 VECM Price → energy (net energy 

importers) 

Zhang and Xu (2012) China 1995−2008 VECM Price ⇢ energy (depending on 

sectors and regions) 

Cho et al. (2007) South Korea 1991−2003 Logistic 

diffusion 

model 

Industrial electricity price ⇢ 

electricity 

Hang and Tu (2007) China 1985−2004 Own model Total energy, coal, oil price → 

energy 

Electricity price ↛ electricity 

Asafu-Adjaye (2000) Asian developing 

countries 

1973−1995 ECM Price ⇢ commercial energy (per 

capita) 

(depending on country) 

Nesbakken (1999) Norway 1993−1995 Discrete-

continuous 

choice 

models 

Price ⇢ household energy 

(depending on income) 

Masih and Masih 

(1998) 

Thailand and Sri 

Lanka 

1955−1991 VECM Price ↛ energy 

Abdel-Khalek (1988) Egypt 1960−1981 Ordinary least 

squares 

Price ↛ energy 

Notes:→ represents causality; ↛ represents no causality; ⇢ represents causal relationship depend on conditions 

Research on the causal relationship between energy price and energy consumption 

found both negative and insignificant relationships. Yuan et al. (2010) study on both the 
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industrial and household sectors in China, Martinsen et al. (2007) study on the oil, natural 

gas, and imported coal prices in Germany, and Mahadevan and Asafu-Adjaye (2007) study 

on net energy import countries like the United States, found negative relationships between 

prices and demand. Alternatively, Zhang and Xu (2012) and Hang and Tu (2007) 

concluded that the effects of energy prices on energy consumption varies by sector, region, 

and energy source in China. Cho et al. (2007) indicated that industrial energy prices had 

limited effects on energy consumption in the South Korean industrial sector. Asafu-Adjaye 

(2000) showed that energy prices did not cause energy consumption in Asian developing 

counties, except in Thailand. Nesbakken (1999) concluded that low-income households are 

less sensitive to energy prices in Norway. Masih and Masih (1998) found that energy prices 

did not cause increased energy consumption in Thailand and Sri Lanka. Abdel-Khalek 

(1988) found evidence that energy consumption is significantly less elastic with respect to 

energy price than generally believed in Egypt. Table 3 summarizes these studies. 

Prior studies found mixed causal relationships between energy consumption, prices, 

and carbon emission, and these relationships were influenced by their sectors, countries, 

and geographical regions. Even studies in the same countries generated different results, 

for example, Halicioglu (2009) and Soytas and Sari (2009) verified that energy 

consumption causes carbon emissions in Turkey, but Ozturk and Acaravci (2010) showed 

there was no causality or relationship. Shahbaz et al. (2013) and Hwang and Yoo (2012) 

concluded that energy consumption affects carbon emissions in Indonesia, but Jafari et al. 

(2012) showed different results. In addition to the relationships, not many studies could be 

found to determine the particular relationships between different energy sources (e.g. coal, 

petroleum, and natural gas) and carbon emissions. 
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Little to no research were conducted to study the building sector’s relationships 

between energy sources and prices, and carbon emissions, even though the sector generated 

the largest amount of carbon compared to the other sectors. There is apparently a gap in 

such literature on understanding the causal relationships between energy consumption, 

price, and carbon emissions of the building sector. Applying similar techniques and 

methodologies used by prior research, this paper focuses on identifying such relationships 

and causalities. The paper also focuses on incorporating different factors and understanding 

the reliability of the Toda and Yamamoto (TY) method. TY method is considered a more 

reliable method for the detection of causality between factors. While the Granger causality 

test, which is the basis of the TY method, has been widely used to determine the causal 

relationship between the variables, the TY method would avoid the loss of information 

during the analysis process. TY involves a vector auto-regression (VAR) at different levels 

to eliminate such loss (Soytas et al. 2007). In addition to the advantage, the TY procedure 

does not require testing for co-integration. TY employs the vector error correction model, 

and is robust to the unit root and co-integration properties of the series (Pao and Tsai 2010; 

Soytas and Sari 2009; Soytas et al. 2007). Loss of information during the analysis could 

have contributed to the differences in the above results, and thus the TY method is used. 

2.3 Methodology and empirical results 

2.3.1 Data collection 

The building sector analyses (and their data) were divided into residential and 

commercial sectors. The analyses focus on the causal relationships between different and 

relevant variables, and these include a) total energy consumed and generated from coal, 

natural gas, petroleum, and retail electricity consumption (in trillion Btu, and dollars per 
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million Btu); b) the total amount of carbon emissions (million metric tons), which is 

estimated by multiplying the total energy consumed by the carbon emission factor(s) and 

ratio(s) (from the U.S. Energy Information Administration database). The data are time 

series data between 1973 and 2012. 

The effect of inflation on energy prices was removed from the data since inflation 

affects purchasing power and energy demand. Inflation affects the real price of energy and 

how residents respond to their purchasing decisions. The effect of inflation was eliminated 

using consumer price index (CPI). In addition to the inflation, no variables used in this 

research were based on per capita data as it only scales down the effects of variables (Soytas 

and Sari 2009), and that the goals of the Kyoto Protocol relate to decreasing the percentage 

of greenhouse gas emissions from the base level of total emissions rather than per capita 

emissions (Friedl and Getzner 2003). The data used in this research are documented in 

Appendix A and B. 

2.3.2 Unit root test results 

In order to apply the TY procedure, the unit root test is used to obtain the maximal 

integration order (dmax) of the variables. This research conducted two different unit root 

tests, the augmented Dickey and Fuller (ADF), and Phillips and Perron (PP). The unit root 

test results are shown in Tables 4−6. Table 5 and Table 6 show that the integration order 

of energy price and carbon dioxide emission is 2. Thus, the unit root test results identified 

that the maximal integration order of variables used in this research is 2, which is required 

for TY procedures for Granger causality testing. 
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Table 2.4.Unit root test results of energy consumption factors 

 
Residential Sector Commercial Sector 

ADF PP ADF PP 

Levels 

Intercept Coal -4.482031
a 
(0) -4.122059

a
 (2) -0.805702 (0)  0.01584 (33) 

Natural gas -3.039682
b 
(0)  -3.081159

b
 (1)  -1.548438 (0)  -1.507751 (1)  

Petroleum -2.112495 (0)  -2.092467 (3)  -1.699005 (0)  -2.06400 (10)  
Electricity -0.748933 (1)  -0.710208 (3)  -0.712182 (0)  -0.658053 (3)  
Total energy -1.159436 (0)  -1.125040 (2)  -1.112124 (0)  -1.038310 (3)  

Intercept and Trend  Coal -5.038679
a 
(0)  -5.038679

a
 (0)  -4.098702

b 
(0)  -3.58485

b
 (10)  

Natural gas -2.952540 (0)  -2.995373 (1)  -2.356259 (0)  -2.246990 (2)  
Petroleum -2.196587 (0)  -2.341181 (2)  -2.749468 (0)  -2.807070 (2)  
Electricity -2.760439 (1)  -2.916113 (4)  -0.874861 (0)  -1.498955 (3)  
Total energy -2.169160 (0)  -2.173547 (3)  -0.081260 (0)  -0.659810 (3)  

First difference 

Intercept Coal -4.682785
a 
(0)  -4.682785

a
 (0)  -7.186396

a 
(0)  -13.7574

a
 (32)  

Natural gas -6.439811
a 
(1)  -7.144926

a
 (8)  -6.497129

a 
(0)  -6.589488

a
 (3)  

Petroleum -4.114766
a 
(1)  -4.381381

a
 (3)  -6.039132

a 
(0)  -6.633138

a
 (6)  

Electricity -5.443359
a 
(1)  -8.166056

a
 (3)  -4.734704

a 
(0)  -4.799628

a
 (3)  

Total energy -4.970907
a 
(1)  -6.989921

a
 (1)  -4.479221

a 
(0)  -4.629119

a
 (3)  

Intercept and Trend  Coal -4.936664
a 
(0)  -4.936664

a
 (0)  -7.099508

a 
(0)  -14.0101

a
 (29)  

Natural gas -6.352604
a 
(1)  -7.158097

a
 (7)  -5.891475

a 
(1) -6.480058

a
 (3)  

Petroleum -4.073637
a 
(1)  -4.240004

a
 (4)  -5.949477

a 
(0)  -6.774067

a
 (7)  

Electricity -5.227649
a 
(1)  -8.053182

a
 (3)  -4.788744

a 
(0)  -4.790691

a
 (2)  

Total energy -4.915285
a 
(1)  -6.963287

a
 (1)  -4.642770

a 
(0)  -4.732753

a
 (3)  

a 1% significance; b 5% significance; c10% significance 

Note: Lag lengths are listed in parentheses and were determined via SIC for ADF and via Bandwidth-NeweyWest for 

PP. 
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Table 2.5.Unit root test results of energy prices 

 
Residential Sector Commercial Sector 

ADF PP ADF PP 

Levels 

Intercept Coal price -0.371867 (0)  -0.345024 (2)  -2.457017 (3)  -1.539086 (3)  
Natural gas price -2.144372 (0)  -2.269409 (3)  -2.294905 (0)  -2.425483 (3)  
Petroleum price -0.364550 (0)  -0.516621 (2)  -0.942525 (0)  -0.816964 (2)  
Electricity price -1.101050 (1)  -0.830667 (3)  -0.886191 (1)  -0.664695 (4)  

Total energy price -2.374867 (0) -2.404522 (4) -3.214622a (0) -3.079131a (4) 

Intercept and Trend  Coal price -4.786327
a 
(0)  -4.862702

a
 (3)  -0.577781 (3)  -1.762547 (3)  

Natural gas price -1.683947 (0)  -1.986116 (3)  -1.734435 (0)  -1.992723 (3)  
Petroleum price -0.805558 (0)  -0.938673 (2)  -1.304849 (0)  -1.191638 (2)  
Electricity price -2.701416 (1)  -2.767226 (4)  -1.655564 (1)  -3.097967 (4)  
Total energy price -2.054171 (0) -2.271640 (4) -2.862026 (0) -2.820341 (4) 

First difference 

Intercept Coal price -8.095202
a 
(0)  -11.00585

a
 (8)  -2.761654

c
 (2)  -6.737067

a
 (3)  

Natural gas price -5.148310
a 
(0)  -5.212167

a
 (3)  -5.202963

a 
(0)  -5.281446

a
 (3)  

Petroleum price -5.519236
a 
(0)  -5.524486

a
 (1)  -7.055603

a 
(0)  -7.106894

a
 (2)  

Electricity price -4.691586
a 
(0)  -4.691047

a
 (1)  -5.016853

a 
(0)  -5.008021

a
 (1)  

Total energy price -4.774574a (0) -4.849272a (3) -4.718428a (0) -4.709248a (2) 

Intercept and Trend  Coal price -7.814943
a 
(0)  -10.52375

a
 (8)  -8.416040

a
 (1)  -8.929033

a
 (7)  

Natural gas price -5.289425
a 
(0)  -5.307445

a
 (2)  -5.444114

a 
(0)  -5.506960

a
 (3)  

Petroleum price -5.642607
a 
(0)  -5.642607

a
 (0)  -5.135019

a 
(1) -7.223941

a
 (1)  

Electricity price -4.493760
a 
(0)  -4.493760

a
 (0)  -4.782328

a 
(0)  -4.778194

a 
(1)  

Total Energy price -4.713903a (0) -4.806242a (3) -4.749877a (0) -4.755912a (2) 

CO2emissions -1.633819 (2) -6.120377
a
 (4) -1.110919 (2)  -5.100625

a
 (4)  

Second difference      

Intercept Coal price -9.366394
 a 

(0) - -11.24939
 a 

(1) - 

Intercept and Trend Coal price -9.239583
 a 

(0) - -11.10031
 a 

(1) - 
a 1% significance; c10% significance 

Note: Lag lengths are listed in parentheses and were determined via SIC for ADF and via Bandwidth-NeweyWest for 

PP. 
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Table 2.6.Unit root test results of CO2 emissions 

 
Residential Sector Commercial Sector 

ADF PP ADF PP 

Levels 

Intercept CO2emissions -1.183406 (0)  -1.205723 (4)  -1.727853 (3)  -1.261508 (4)  

Intercept and Trend  CO2 emissions -0.930875 (0)  -1.203317 (4)   0.512623 (0)  -0.229426 (4)  
First difference 

Intercept CO2 emissions -5.980950
a 
(0)  -6.073683

a
 (4)  -0.703354 (2)  -4.868260

a
 (4)  

Intercept and Trend  CO2emissions -1.633819 (2) -6.120377
a
 (4) -1.110919 (2)  -5.100625

a
 (4)  

Second difference      

Intercept CO2 emissions -9.150812
 a 

(1) - -10.31891
 a 

(1) - 

Intercept and Trend  CO2 emissions -5.072535
 a 

(3) - -10.52008
 a 

(1) - 
a 1% significance 

Note: Lag lengths are listed in parentheses and were determined via SIC for ADF and via Bandwidth-NeweyWest for 

PP. 

2.3.3 Granger causality analysis results 

Table 2.7. Granger causality test results 

Null Hypothesis χ2 Probability Decision 

Residential Sector (energy price → energy consumption) 

Coal price does not affect coal consumption 6.3741 0.4968 Accepted 

Natural gas price does not affect natural gas consumption 10.3892 0.0155 Rejected 

Petroleum price does not affect petroleum consumption 4.9451 0.5509 Accepted 

Electricity price does not affect electricity consumption 11.8401 0.1585 Accepted 

Total energy price does not affect total energy consumption 4.0821 0.8496 Accepted 

Residential Sector (energy consumption→ CO2 emissions) 

Coal consumption does not cause CO2 5.6625 0.5797 Accepted 

Natural gas consumption does not cause CO2 4.5030 0.2120 Accepted 

Petroleum consumption does not cause CO2 4.3593 0.6282 Accepted 

Electricity consumption does not cause CO2 16.5523 0.0351 Rejected 

Total energy consumption does not cause CO2 12.5932 0.1266 Accepted 

Commercial Sector (energy price → energy consumption) 

Coal price does not affect coal consumption 4.6615 0.4586 Accepted 

Natural gas price does not affect natural gas consumption 8.2334 0.0414 Rejected 

Petroleum price does not affect petroleum consumption 12.0738 0.0338 Rejected 

Electricity price does not affect electricity consumption 3.2542 0.8605 Accepted 

Total energy price does not affect total energy consumption 5.2618 0.1536 Accepted 

Commercial Sector (energy consumption→ CO2 emissions) 

Coal consumption does not affect CO2 12.6400 0.0270 Rejected 

Natural gas consumption does notaffectCO2 1.1682 0.7606 Accepted 

Petroleum consumption does notaffectCO2 4.3335 0.5025 Accepted 

Electricity consumption does notaffectCO2 4.6619 0.7011 Accepted 

Total energy consumption does notaffectCO2 3.8919 0.2734 Accepted 
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To apply the TY procedure, the optimal lag length (k) should also be decided, as 

the lag length plays a critical role in the Granger causality test to avoid bias causality 

(Clarke and Mirza 2006). In this research, the optimal lag length was determined by the 

method proposed in Lutkepohl (1997). The five criteria were checked, including the 

sequential modified likelihood ratio test statistic (LR), final prediction error (FPE), Akaike 

information criteria (AIC), Schwarz information criterion (SC), and Hannan-Quinn 

information criteria (HQ). As consistency is the yardstick for evaluating the criteria, 

majority voting that selects the optimal lag length by getting more than half of the criteria 

was adopted to determine the optimal lag length (Lutkepohl 1997). So, among the five 

criteria, if three or more criteria select the same value, the value is selected as the optimal 

lag length. Using the maximal integration order (dmax) and the optimal lag length (k), the 

augmented VAR(k+dmax) level was estimated for the Granger causality test. The results 

of the Granger causality test are shown in Table 7. At the 5% significance level, five null 

hypotheses were rejected that had probabilities lower than 0.05. These results are 

summarized in Figures 1 and 2. 
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          Figure 2.1. Summary of causal relationship in the residential sector 

 

         Figure 2.2. Summary of causal relationship in the commercial sector 

2.3.4 Generalized impulse response function results 

The TY procedure is a method for examining the long-term Granger causality 

relationships among the variables. However, the Granger causality test does not consider 

how each variable in general responds to innovations in other variables and how long such 

variable's shock last, which can provide useful insights about the short run causality (Soytas 

and Sari 2009). This problem can be solved by the generalized impulse response analysis 

(Koop et al. 1996; Pesaran and Shin 1998). The analysis can show how one variable 

initially responds to a shock in another variable and whether the shock is permanent or not 

(Soytas et al. 2007). Moreover, the generalized impulse response analysis is insensitive to 
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the ordering of variables in the VAR system, and overcomes the orthogonality problem in 

traditional out-of-sample Granger causality testing (Soytas and Sari 2009). Figures 3 to 6 

show the responses of energy consumption and carbon dioxide emissions to shocks of one 

standard deviation in energy price and energy consumption in the VAR, in the residential 

and commercial sectors. 

   

  

Figure 2.3. Generalized impulse responses of energy consumption to energy price in 

residential sector 
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Figure 2.4. Generalized impulse responses of energy consumption to energy price in 

commercial sector 

   

  

Figure 2.5. Generalized impulse responses of CO2 to energy consumption in the 

residential sector 
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Figure 2.6. Generalized impulse responses of CO2 to energy consumption in the 

commercial sector 

2.4 Discussion 

2.4.1 Energy price and energy consumption 

The above Granger causality tests show that changing coal prices do not impact 

total energy consumption in the building sector. The proportion of energy generated by 

coal coupled with the low coal price are the reason why coal price has little effect on the 

total energy consumed by the building sector (*note that this coal refers to direct use coal 

instead of coal used to generate electricity by power plants). Most of the coal is used to 

heat air and water, though natural gas and electricity can be substituted for coal, they are 

more expensive. The analyses find that the price of natural gas influences the consumption 

in both sectors. The residential buildings used 93.7% and commercial buildings used 77.2%, 

of the total natural gas for space heating, water heating, and cooking in 2013 (US EIA 

2015). These functions can be substituted by electricity, but natural gas is cheaper than 

electricity in most counties/states. 
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The analyses show that a significant causality exist between petroleum prices and 

consumption only for commercial buildings. As petroleum is used mainly for heating of 

air and water (US EIA 2015). Finally, the causality between electricity consumption and 

prices is insignificant, and this result corresponds with Azevedo et al. (2011). This indicates 

that electricity consumption is inelastic in the United States. Electricity is indispensable to 

every aspect of personal and business lives and thus it is inelastic. 

The generalized impulse responses analyze the short-run the causality between 

energy price and energy consumption for both residential and commercial buildings. As 

shown in Appendix F, the consumptions of coal, petroleum, and electricity for the 

residential buildings do not respond to price shocks, whereas price shocks affect the 

consumption of natural gas. The effects of natural gas price shock also last longer. These 

results are consistent with the results of the Granger causality tests. In Appendix G 

(commercial buildings), only the prices of natural gas, electricity, and total energy prices 

affect energy consumption and the effects are significant in the long run. This result 

indicates that the consumption of electricity and natural gas are more vulnerable to changes 

in price. This may be because the commercial sector mostly consumed the electricity and 

natural gas. According to the EIA database, commercial sector used 3,563 Trillion BTU of 

natural gas and 4,632 Trillion BTU of electricity in 2014. Total energy use was 18,394 

Trillion BTU which includes 9,441 Trillion BTU of energy losses. Thus, the portion of 

natural gas and electricity use is about 91.5% of total energy use except energy losses. In 

addition, the results also show that the energy consumption of the commercial buildings is 

more vulnerable to changes in energy prices than the residential buildings in the short run. 
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2.4.2 Energy consumption and carbon emissions 

The Granger causality tests also affirm the causal relationships between energy 

consumption and carbon emissions. The results showed that an increase in electricity 

consumption also increases in the carbon emissions of residential buildings, while only 

increasing coal consumption increases carbon emissions among the commercial buildings. 

These results imply that reduction in electricity consumption among the residential 

buildings would result in the reduction in carbon emissions, similar to coal consumption 

and carbon emissions for the commercial buildings. Interestingly, the study also finds that 

carbon emissions are not caused by increasing energy consumption of other energy sources 

(especially electricity). These results highlight the increasing use (and thus proportion) of 

lower carbon or carbon neutral energy sources (e.g. renewable and natural gas) to generate 

electricity over the past decades and possibly the increasing efficiency to generate powers. 

In the same vein, the results showed that natural gas consumption does not increase the 

overall carbon emissions in either buildings while coal consumption increases carbon 

emissions in the commercial sector (the use of coal has been stopped for residential use 

since 2008). On petroleum, though its carbon intensity is high, its use is limited in both 

sectors (8.6 percent for residential and 7 percent for commercial over total energy). As a 

result, the causality tests do not find significant relationships. 

The most unexpected result is the causality of the commercial buildings’ electricity 

consumption and carbon emissions. Figures 5 and 6 show the generalized impulse 

responses of carbon emissions to energy consumption of the residential and commercial 

buildings. The increase in carbon emissions of each energy resources are mostly caused by 

to the increase in the consumption of the energy resources in the short run of the residential 
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buildings (except for coal as it is not used in the residential buildings after 2008), but the 

causality tests show that the effect faded quickly. The effects of energy resource 

consumption of the commercial buildings last longer than the residential buildings (except 

for petroleum) and made almost no contribution to increase carbon emissions. This result 

shows that, in both buildings, there are causalities between carbon emissions and electricity 

consumption, but there is insignificant causality for natural gas. It is expected that this 

result is highly related to carbon intensity as shown in the result of the long-run causality. 

In addition, carbon dioxide emissions levels in the commercial sector are more vulnerable 

and lasted longer in regards to energy consumption than those of the residential sector in 

the short run. 

2.5 Conclusion 

This research investigated the causalities between energy consumption, energy 

prices, and carbon emissions in the U.S. residential and commercial building sectors using 

Granger causality testing and generalized impulse response analysis. The results showed 

that only natural gas prices influence the consumption of natural gas, and carbon dioxide 

emissions are caused only by electricity consumption in the residential sector in the long 

run. In the commercial sector, natural gas and petroleum prices affect the consumption of 

natural gas and petroleum but carbon dioxide emissions are caused only by coal 

consumption in the long run. Even though only a few long-term causal relationships were 

determined among energy prices, consumption, and carbon dioxide emissions, there are 

many more short-term causal relationships. These results verified that, basically, energy 

prices negatively cause energy consumption and that consumption causes carbon dioxide 

emissions, but the detailed results varied depending on the sector. By verifying the causal 
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relationships, policymakers can make more effective policies. Using Granger causality (TY 

method) and generalized impulse response analysis, the analyses concluded the followings: 

1. Energy consumption and prices generate different impacts on carbon emissions 

based on the types of buildings, and energy sources: This concludes that energy policies to 

reduce energy consumption and carbon emissions have to be separately developed for 

building and energy types. The control of energy use of residential and commercial 

buildings are not the same too. 

2. The study also concludes the importance of increasing the proportion of energy 

from low-carbon and carbon-neutral sources: The analyses have shown this has reduced 

the overall carbon emissions even though energy consumption has been increasing. The 

more expensive the energy sources are, the more likely they will affect its consumption in 

the long and short run. 

3. Energy prices are only effective tools in managing energy use and carbon 

emissions if the prices are high enough: The analyses show that low energy prices (like 

coal) have little effects in reducing carbon emissions and overall energy consumption. 

Furthermore, the research find that: 1) Coal consumption should be limited in the 

commercial sector: The consumption of coal causes carbon dioxide emissions in both the 

short and long run; 2) Increasing the use of natural gas could reduce carbon emissions: 

Natural gas consumption does not cause carbon dioxide emissions in the long run, and its 

impact is lower than electricity in the short run; 3) The carbon intensity of natural gas is 

much lower than that of electricity: Since natural gas and electricity are consumed by both 

types of buildings, increasing the use of natural gas and decreasing electricity will be an 

effective approach in reducing carbon emissions; 4) The use of natural gas can be promoted 
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by reducing its price: In both sectors, natural gas consumption is caused by the price of 

natural gas, in long run as well as the short run. Thus, by decreasing the price of natural 

gas, carbon emissions would be expected to decrease; and 5) Finally, decreasing electricity 

consumption is essential to reduce carbon dioxide emissions: Although no long-run 

causality was found between electricity consumption and carbon emissions for the 

commercial buildings, there is a significant causality in the short run while and both short- 

and long-term causality were exhibited for the residential buildings. The carbon intensity 

of electricity is the highest of all the energy resources. 

The study also shows that there is no causality between electricity prices and 

consumption in the residential buildings, and thus controlling electricity consumption 

through price can be futile. Policies should focus on promoting the consumption and use 

of low-carbon and carbon neutral energy resources (like renewable and natural gas). In the 

case of the commercial buildings, electricity consumption responds to price, so the 

consumption can be controlled by making changes to price. 

While real data from the U.S. building sector were used in the analyses, the results 

cannot be validated (due to the lack of alternative sources of data) and applied to other 

countries. The characteristics of other countries’ building sectors can be different. A large 

number of previous research studies have also reported different results for different 

countries in terms of these causal relationships. Thus, further research about other countries 

is necessary to generalize the relationships. In addition, the industrial and transportation 

sectors also have their own characteristics, so further research should be conducted 

regarding these sectors. Finally, energy consumption and carbon dioxide emissions can 
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respond to other factors such as weather or economic conditions. Thus, these variables 

could be considered in future research. 
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CHAPTER 3 

THE CAUSES OF THE MUNICIPAL SOLID WASTE AND THE GREENHOUSE 

GAS EMISSIONS FROM THE WASTE SECTOR IN THE UNITED STATES2 

3.1 Introduction 

Global Municipal Solid Waste (MSW) amounts to approximately 1.3 billion tons 

per year and is expected to increase to approximately 2.2 billion tons per year by 2025 

(Hoornweg and Bhada-Tata, 2012). Developed countries produce more waste per capita 

due to the higher levels of waste consumption (e.g., plastics, metals, and paper) (UNEP, 

2005). Waste generation in Organization for Economic Cooperation and Development 

(OECD) countries has increased approximately 14% from 1990 up to now (OECD, 2006). 

In the case of the United States, the U.S. generates the most waste per capita compared to 

other OECD countries—approximately 730 kilograms per capita in 2013 (OECD, 2013). 

Since 1960, the United States’ total municipal solid waste generation has increased 288% 

(EPA, 2015). Moreover, the U.S. produced the most greenhouse gas emissions compared 

to other OECD countries (OECD, 2013). Based on an U.S. Environmental Protection 

Agency (EPA) study in 2014, 117.2 Tg CO2 Eq. of methane (CH4) was emitted from waste 

in the United States. Approximately 18.1% of total U.S. methane emissions were generated 

from the waste landfills sector in 2013, which is the third largest contribution of methane 

emission in the United States (Agency, 2014). 

Solid waste, which has reactivity, toxicity, explosiveness, erosive, or other 

characteristics, can result in adverse effects to human health and the environment (Alam 

                                                 
2 Lee, S., Kim, J., and Chong, W.O., 2016. The causes of the municipal solid waste and the greenhouse gas 

emissions from the waste sector in the United States. Waste Manage. 56, 593–599. 
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and Ahmade, 2013). In particular, waste produces a large amount of greenhouse gas 

emissions, which is the most critical issue affecting changes to global climate (Bogner et 

al., 2008). As the amount of GHGs increase in the atmosphere, increased solar heat will be 

trapped in the gas and, therefore, atmospheric temperatures will continue to increase 

(Calabrò, 2009; Miah et al., 2011). The best way to reduce the impacts of global warming 

is by reducing greenhouse gas emissions. According to the Intergovernmental Panel on 

Climate Change (IPCC), global surface temperature will increase by 4.8º C and sea levels 

by 0.82 m by 2100 (IPCC, 2014). In addition, the climate change originating from 

greenhouse gas will drop between 5% and 20% of the annual global GDP if the greenhouse 

gas does not decrease immediately. Therefore, reduction of greenhouse gas is a critical 

issue to be resolved. 

Several efforts to reduce waste have been made in the past by the U.S. government. 

In 1976, the Resource Conservation and Recovery Act (RCRA) gave the EPA the authority 

to manage hazardous waste, which includes its generation, transportation, treatment, 

storage and disposal. In 1984, the Federal Hazardous and Solid Waste (FHSW) 

amendments to RCRA focused on waste minimization and phasing out land disposal of 

hazardous waste (Barke, 1985; U.S. Congress Office of Technology Assessment, 1983). 

Moreover, according to the Weitz et al. (2002), the U.S. communities’ appropriate actions, 

such as technological advancements, environmental regulations, and emphasis on resource 

conservation and recovery, have significantly reduced the environmental impacts of 

municipal solid waste, including greenhouse gas emissions. However, solid waste 

generation is not decreasing and the recycling rate is not increasing. The U.S. recycling 

rate is only 26%, and it is lower than other OECD countries (http://www.oecd.org/). 
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Americans on average recycled and composted 0.68 kilograms out of an individual waste 

generation rate of 2 kilograms per person per day (EPA, 2015). The highest recycling rate 

among OECD countries is found in South Korea, which is almost 60% 

(http://www.oecd.org/). South Korea started implementing recycle performance measures 

in 1995 and expects to increase to an 87% recycling rate by 2020. 

The current situation of the U.S. waste sector is severe. Not only the waste 

generation per capita, but also the greenhouse gas emissions from the waste sector are 

significantly high. Thus, the main objective of this research is to mitigate the solid waste 

and greenhouse gases from waste sector. In order to achieve the main objective, first, we 

investigated the causal relationship with solid waste across the U.S. If the main cause of 

the solid waste is verified, the waste can be decreased effectively. Second, it is confirmed 

that the solid waste and recycling waste influence greenhouse gas emissions from the waste 

sector. By verifying the relationship between the waste and greenhouse gas from the waste 

sector, appropriate strategies can be developed for decreasing the greenhouse gas from the 

waste sector. Lastly, based on the research results, we provide important insights and 

suggestions to policymakers on potential ways to reduce the solid waste and greenhouse 

gas emissions from the waste sector. The rest of this paper is organized as follows: Section 

2 reviews the related previous literature, Section 3 presents the methodology used in this 

research and research results, Section 4 discusses the research results, and Section 5 is the 

conclusion. 

3.2 Literature review 

The solid waste generation per capita can be correlated to Gross Domestic 

Production (GDP) per capita. According to the previous research, environmental 
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degradations that include municipal waste per capita, greenhouse gas emissions per capita, 

dissolved oxygen in rivers, and change in forest area relate to GDP per capita, and this 

relationship is called the Environmental Kuznets Curve (EKC) (Stern et al., 1996). The 

EKC hypothesis is that there is an inverted-U relationship between per capita income and 

environmental degradation  (Stern et al., 1996). This hypothesis conjectures that initially 

environmental degradation tends to get worse as per capita income rises until it reaches a 

certain level and the degradation subsides and drops at the highest economic level (Shafik, 

1994; Stern et al., 1996). Thus, economic growth may become a solution rather than a 

source of the problem (Rothman and Bruyn, 1998). There have been a lot of studies of the 

ECK relationship. Most of the studies focused on the relationship between economic 

growth per capita and carbon dioxide emissions for various countries, and the research 

showed different results depend on the country. (Apergis and Payne, 2014; Bölük and Mert, 

2014; Kivyiro and Arminen, 2014; Omri and Nguyen, 2014; Shafiei and Salim, 2014; Omri, 

2013; Arouri et al., 2012; Jayanthakumaran et al., 2012; Saboori et al., 2012; Acaravci and 

Ozturk, 2010; Dinda and Coondoo, 2006).  

Among the previous studies, several studies tried to verify whether or not the EKC 

relationship exists in the United States. Some studies confirmed that the United States has 

the EKC relationship for environmental degradation factors. Roach (2013) concluded that 

the United States has the EKC relationship at the state level for carbon dioxide emissions. 

Gawande et al. (2000) verified the EKC relationship for hazardous waste in the United 

States. List and Gallet (1999) provided initial evidence that states’ NOX and SO2 

emissions have followed an inverted-U shape relationship. However, other research has 

showed different results. Soytas et al. (2007) concluded that there is no EKC relationship 



33 

in the case of the U.S. for carbon dioxide emission. Cole et al. (1997) suggested that 

municipal waste of OECD countries does not have significant EKC relationship. Some 

prior research analyzed the relationship between the waste and GDP in some countries. 

Mazzanti (2008) and Mazzanti et al. (2008) concluded that there is de-linking of waste 

generation from economic growth in Italy. However, in Bangladesh, it was shown that the 

EKC relationship is supported for waste and greenhouse gas emissions from waste. 

There have been various prior studies, however, the studies have some limitations, 

so additional research is essential. First of all, most previous studies usually focused on 

carbon dioxide emissions when analyzing the EKC relationship. However, there are 

various other environmental degradation factors, and municipal solid waste is one of the 

degradation factors that is most deadly to environment. Second, there is insufficient EKC 

and municipal solid waste research in the United States. As shown in the previous research, 

depending on the environmental degradation factors or countries, the relationships either 

exist or they do not. Moreover, there is insufficient research about the causal relationship 

between municipal solid waste, recycling waste generation, and greenhouse gas emission. 

Thus, this research focused on municipal solid waste in the United States and verified the 

causality between the factors. 

3.3 Methodology and empirical results 

3.3.1 Data collection 

Two causality models are proposed for achieving the research objectives. The first 

model is for the EKC relationship, which verifies whether or not there is inverse proportion 

between GDP per capita and MSW generation per capita. The U.S. annual data from 1990 

to 2012 used in this study were collected from various data sources. The GDP per capita 



34 

(current U.S. dollar) and municipal solid waste generated per capita (kilograms per capita), 

which is comprised of various items such as packaging, furniture, electrical appliances, and 

food waste, but does not include industrial, hazardous, or construction waste, were 

collected from the World Bank website database (http://www.worldbank.org/) and OECD 

website database (http://stats.oecd.org/) for the first model. The second model confirms 

how the total MSW and recovery waste, which is selectively extracted materials from 

disposed waste for next use and includes recycling and composting waste generation, 

causes greenhouse gas emissions from the waste sector. The total MSW and recovery waste 

generation (tons) and greenhouse gas emissions from the waste sector (Tg CO2 Eq.) data 

were obtained from the U.S. Environmental Protection Agency website database 

(http://www.epa.gov/) for the second model. Figure 1 summarizes the proposed two 

causality models, and the data used in this research are documented in appendixes A and 

B. 

GDP

per capita

MSW generation             

per capita

Total MSW generation

Greenhouse gas emissions  

from waste sector

Recovery waste 

generation

 

Figure 3.1. Proposed causality models 
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3.3.2 Theoretical background of methodology – Causality test 

Conventional Granger causality is applied by estimating vector autoregressive 

(VAR) models, and it requires pretests for unit root test and co-integration test. Based upon 

the two pretests, if co-integration exists, the causality test is applied. However, the unit root 

and co-integration test might cause size distortions, and it can lead to an inaccurate model 

for the non-causality test (Clarke and Mirza, 2006). Moreover, the Johansen-type co-

integration test is susceptible to the values of the nuisance parameters, so the causality 

results based upon ECM might be extremely biased (Toda, 1995). Thus, a modified Wald 

(MWALD) test in an augmented VAR model was proposed by Dolado and Lütkepohl 

(1996) and Toda and Yamamoto (1995). The MWALD is simpler and relatively 

straightforward compared to other causality tests and does not need pretesting for co-

integration test (Altinay and Karagol, 2005). The basic idea of the Toda–Yamamoto (TY) 

test is to artificially augment the actual lag length (k) of the VAR model by the maximal 

order of integration (dmax). Once this is done, the VAR model with a (k+dmax) order is 

estimated and the coefficients of the last dmax lagged vectors are ignored. The augmented 

VAR guarantees the asymptotic distribution of the Wald statistic, whether the process is 

stationary or nonstationary, because the TY test requires the estimation of an augmented 

VAR (Wolde-Rufael and Menyah, 2010). In addition, the procedure can avoid the potential 

biases of pretesting that undermine the conventional causality test since the pretesting for 

the co-integration test is not required (Wolde-Rufael and Menyah, 2010; Zapata and 

Rambaldi, 1997). Lastly, since TY procedure estimates a VAR in level, there is no 

information loss due to data differencing (Doǧrul and Soytas, 2010). 
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3.3.3 Unit root test results 

The TY procedure requires determining the maximal integration order (dmax) of 

the variables. Thus, this research investigates the time series properties of the variables by 

conducting two different unit root tests for Augmented Dickey Fuller (ADF) and Phillips-

Perron (PP) tests. The results of the unit root test that show the integration order of the 

variables are demonstrated in Table 1 and 2. According to the results, waste per capita, 

total waste, and recovery waste were I(1), but GDP per capita and CO2 from waste were 

I(2). This result indicates that the series of the variables have been integrated by the 

different orders, and it verifies once again that the TY procedure is the most appropriate to 

this research (Soytas and Sari, 2006). Then, based on the results, the maximum order of 

integration is identified as 2 (dmax=2), and using the value the TY test was conducted. 

Table 3.1. Unit root test results of the first model 

 ADF PP 

Level    

Intercept GDP per capita 0.057799 (0) -0.018109 (1) 

Waste per capita -1.494404 (0) -1.494404 (0) 

Intercept and Trend  GDP per capita -3.202435 (1) -2.220288 (1) 

Waste per capita -1.053742 (0) -1.083733 (1) 

First difference    

Intercept GDP per capita -2.971919c (3) -3.010054c (1) 

Waste per capita -4.318115a (0) -4.322330a (1) 

Intercept and Trend  GDP per capita -2.769857 (3) -2.935903 (1) 

Waste per capita -4.660895a (0) -4.660895a (0) 

Second difference    

Intercept GDP per capita -4.652898a (0) -4.775660a (3) 

Intercept and Trend GDP per capita -4.332957a (4) -4.600143a (3) 
a 1% significance; b 5% significance; c 10% significance 

Note: Lag lengths and Bandwidth are listed in parentheses and were determined via SIC for ADF and 

via   Bandwidth-NeweyWest for PP. 
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Table 3.2. Unit root test results of the second model 

 ADF PP 

Level    

Intercept 

Total waste -1.494404 (0) -1.494404 (0) 

Recovery waste -3.996031a (2) -11.51943a (21) 

GHG from waste -0.894238 (0) -0.971476 (2) 

Intercept and Trend  

Total waste -1.053742 (0) -1.083733 (1) 

Recovery waste -0.824079 (2) -0.350148 (21) 

GHG from waste -1.038904 (0) -1.367161 (2) 

First difference    

Intercept 

Total waste -4.318115a (0) -4.322330a (1) 

Recovery waste -1.321733 (2) -2.755865c (6) 

GHG from waste -3.038081b (0) -2.976843c (1) 

Intercept and Trend  

Total waste -4.660895a (0) -4.660895a (0) 

Recovery waste -5.295455a (1) -7.085626a (20) 

GHG from waste -3.035106 (0) -2.964701 (1) 

Second difference    

Intercept GHG from waste -7.062914a (0) -7.421130a (2) 

Intercept and Trend GHG from waste -6.870439a (0) -7.205458a (2) 
a 1% significance; b 5% significance; c 10% significance 

Note: Lag lengths and Bandwidth are listed in parentheses and were determined via SIC for ADF and 

via Bandwidth-NeweyWest for PP. 

 

3.3.4 Optimal lag length selection 

The next step to applying the TY procedure is to determine the appropriate lag 

length (k), which plays an important role in the procedure for avoiding biased causal 

relationship (Clarke and Mirza 2006). Moreover, the results of the causality test is very 

sensitive to the lag length. If the selected lag length is less than the actual lag length, bias 

can be caused by the omission of relevant lags. If the selected lag length is more, the 

irrelevant lags in the equation cause the estimates to be inefficient (Clarke and Mirza 2006). 

In this research, the optimal lag length was estimated by five lag order selection criteria. 

The five criteria are the sequential modified likelihood ratio test statistic (LR), final 

prediction error (FPE), Akaike information criteria (AIC), Schwarz information criterion 

(SC), and Hannan-Quinn information criteria (HQ). In the case of the first model, all five 
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criterion selected optimal lag length as 1, so the optimal lag length was determined as 1. In 

the second model, four criterion chose optimal lag length as 1, and only the AIC criterion 

selected 3. Thus, the optimal lag length of the second model was also selected as 1. Table 

3 and Table 4 show the results in detail. 

Table 3.3. Optimal lag length selection results of the first model 

Lag LR FPE AIC SC HQ 

0 NA 2.72E+09 27.39895 27.49852 27.41839 

1 101.3302* 10502878* 21.83835* 22.13707* 21.89667* 

2 4.309223 11958679 21.95107 22.44894 22.04826 

3 2.593084 15212434 22.1516 22.84862 22.28767 
* indicates lag order selected by the criterion 

 

Table 3.4. Optimal lag length selection results of the second model 

Lag LR FPE AIC SC HQ 

0 NA  200398.1 20.72144 20.8708 20.7506 

1   122.1208*   242.6584* 13.98889   14.58633*   14.10552* 

2 7.446642 363.2544 14.31607 15.36159 14.52017 

3 13.71036 277.8945   13.84504* 15.33863 14.1366 
* indicates lag order selected by the criterion 

3.3.5 Causality test results 

Using the estimated maximal integration order (dmax = 2) and the optimal lag 

length (k = 1), the augmented VAR (3) level was estimated for the TY causality procedure. 

By using the VAR model, the following system equations are estimated as 

[
MSW𝑝𝑐𝑡

GDP𝑝𝑐𝑡
] = A0 + A1 [

MSW𝑝𝑐𝑡−1

GDP𝑝𝑐𝑡−1
] + A2 [

MSW𝑝𝑐𝑡−2

GDP𝑝𝑐𝑡−2
] + A3 [

MSW𝑝𝑐𝑡−3

GDP𝑝𝑐𝑡−3
] + [

𝜀MSW𝑝𝑐𝑡

𝜀GDP𝑝𝑐𝑡
] (1) 

[

GHG𝑤𝑎𝑠𝑡𝑒𝑡
MSW𝑡𝑜𝑡𝑎𝑙𝑡

MSW𝑟𝑐𝑦𝑡

] = A0 + A1 [

GHG𝑤𝑎𝑠𝑡𝑒𝑡−1
MSW𝑡𝑜𝑡𝑎𝑙𝑡−1

MSW𝑟𝑐𝑦𝑡−1

] + A2 [

GHG𝑤𝑎𝑠𝑡𝑒𝑡−2
MSW𝑡𝑜𝑡𝑎𝑙𝑡−2

MSW𝑟𝑐𝑦𝑡−2

] + A3 [

GHG𝑤𝑎𝑠𝑡𝑒𝑡−3
MSW𝑡𝑜𝑡𝑎𝑙𝑡−3

MSW𝑟𝑐𝑦𝑡−3

] + [

𝜀GHG𝑤𝑎𝑠𝑡𝑒𝑡
𝜀MSW𝑡𝑜𝑡𝑎𝑙𝑡

𝜀MSW𝑟𝑐𝑦𝑡

]  (2) 

where GDP𝑝𝑐 is GDP per capita, MSW𝑝𝑐 is MSW generation per capita, MSW𝑡𝑜𝑡𝑎𝑙 is total 

MSW generation, MSW𝑟𝑐𝑦 is recovery waste generation, and GHG𝑤𝑎𝑠𝑡𝑒 is greenhouse gas 

emissions from the waste sector. In Eq. (1) A1. . . A3 are 2 × 2 matrices of coefficients with 



39 

A0 being the 2 by 1 identity matrix and 𝜀 as the disturbance terms. In Eq. (2) A1. . . A3 are 

3 × 3 matrices of coefficients with A0  being the 3 by 1 identity matrix and 𝜀  as the 

disturbance terms. Eq. (1) can test the hypothesis that GDP per capita does not cause MSW 

generation per capita with the following hypothesis: H0 = a112 = a212 = a312 = 0, where 

ai12 are the coefficients of the GDP per capita in the first equation of the system presented 

in Eq. (1). In the same way, the all causal relationships between variables were verified. 

Table 5 shows the results of the causal relationship in detail, and it confirms that 

only two null hypotheses were rejected at the 5% of significance level. In the first model, 

which tried to verify the EKC relationship, there is no causal relationship between GDP 

per capita and waste generation per capita. This means that even if the GDP per capita 

increases or decreases, it does not affect waste generation per capita. In addition, there is 

no reverse causality as well. In the second model, it was confirmed that total waste 

generation significantly causes greenhouse gas emissions from the waste sector, and the 

sum of lagged total waste generation coefficient was 0.971866, which is positive in the 

VAR model. In addition, it was also proved that recovery waste generation causes 

greenhouse gas emissions, and the sum of lagged recovery waste generation coefficient 

was -0.963539, which is negative in the VAR model. These imply that if the total waste 

generation increases, then greenhouse gas from the waste sector also increases, but if 

recovery waste increases, then greenhouse gas decreases. 
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Table 3.5. Results of the Granger causality test 

Null Hypothesis Values Lag Probability Decision 

First model 

       GDP per capita ↛ Waste generation per capita 0.438204 3 0.9322 Accepted 

       Waste generation per capita ↛ GDP per capita 0.595914 3 0.8974 Accepted 

Second model 

       Total waste generation ↛ GHG from waste 16.76564 3 0.0008 Rejected 

       GHG from waste ↛ Total waste generation 4.143431 3 0.2464 Accepted 

       Recycling generation ↛ GHG from waste 22.84908 3 0.0000 Rejected 

       GHG from waste ↛ Recycling generation 0.470454 3 0.9253 Accepted 

 

3.4 Discussion 

3.4.1 GDP per capita and municipal solid waste generation per capita 

The results showed that GDP per capita growth does not, by itself, result in 

environmental improvement like a decrease in waste generation, and it means that there is 

no ECK relationship in the waste sector in the United States. This result is in accordance 

with a previous research (Cole et al., 1997; Soytas et al., 2007). If there was a significant 

causal relationship between GDP per capita and waste generation per capita in the United 

States, then it would be expected that the GDP per capita growth itself will cause a decrease 

in waste generation, and that governments will not have to be concerned about the waste 

generation problem when GDP per capita is increasing. However, unfortunately there was 

no causal relationship. Thus, the U.S. governments should find alternative ways to solve 

the waste generation problem. For example, public support and institutional reform are 

needed for accomplishing environmental improvement, and promoting waste recycling 

also can decrease waste generation, but needs incentives or compulsion. 

Several previous papers suggested ways to reduce waste. Timlett and Williams 

(2008) studied increasing the recycling rate in households and concluded that personalized 

incentives and feedback were significantly effective. Wagner and Arnold (2008) 
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introduced a case study of Nova Scotia in Canada. Nova Scotia implemented a solid waste 

management strategy that included restricting disposal, increasing recycling, and 

increasing the use of diverted materials, and about 50% of solid waste decreased in five 

years. In addition, Mühle et al. (2010) compared the municipal solid waste management of 

Germany and the U.K. The results showed that the U.K., which accounts for higher levels 

of land fill and lower use of energy from waste, emits greenhouse gas associated with MSW 

management at a rate about five times higher than Germany, which highlights recycling 

and recovery. Thus, the U.S. federal or state governments should enact a law encouraging 

people to reduce solid waste and increase recycling materials. 

3.4.2 Municipal solid waste, recycling waste generation, and CO2 emission from waste 

According to the results, municipal waste generation significantly leads to 

increased greenhouse gas emissions in the waste sector in the United States. Moreover, the 

results also verified that the more waste is recycled, the less greenhouse gases are emitted. 

These results are reasonable, and the results are consistent with previous research. On 

average, American generates approximately 5.9 lbs./year of PET beverage containers 

(Barlaz et al., 2003). If it is possible that all of the PET can be recycled, based on data 

developed by the EPA and used in Solano et al. (2002), about 10.4 lbs./year of greenhouse 

gas can be avoided (Barlaz et al., 2003). Thus, MSW should be reduced and recycling of 

waste should be increased for mitigating greenhouse gas emissions. 

Decreasing waste materials is the most direct way to reduce greenhouse gas 

emission from the waste sector, but there can be another way. If the causal relationship 

between waste and greenhouse gas is broken, greenhouse gas will not increase even if solid 

waste increases. For example, the greenhouse gas emitted from the solid waste sector can 
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be used as an energy source, because the greenhouse gas is mostly CH4 and the gas is able 

to be used for energy. By applying this method, which is simple technology that can be 

installed at any site, greenhouse gas emissions can be mitigated (Barlaz et al., 2004; Bogner 

et al., 2008). Another alternative example is increasing the recycling rate, and this method 

is more efficient. According to the Morris (1996), recycling conserves more energy than 

incineration for generating energy from waste for most materials. Thus, if most CH4 

generated from waste is utilized as an energy source or if the recycling rate increases, 

greenhouse gas emissions from the waste sector will not increase even if the amount of 

waste increases, and the causal relationship will be disconnected. 

3.5 Conclusion 

Municipal solid waste not only contaminates soil, but also emits greenhouse gas. 

In order to decrease these adverse effects, solid waste should be reduced. This research 

tried to verify the causal relationship between solid waste generation and greenhouse gas 

emission from the solid waste sector in the United States. Several previous studies showed 

that solid waste per capita decreased when GDP per capita increased, but that is not the 

case in the United States. The total amount of solid waste causes greenhouse gas emission 

from the waste sector, and recycling of waste mitigates greenhouse gas. Thus, it is 

concluded that since there is no causality between GDP per capita and MSW per capita, 

the government should find alternative strategies to decrease the solid waste per capita. In 

addition, by reducing MSW and increasing recycling of waste, greenhouse gas emissions 

from the waste sector are significantly mitigated. 

Based on the research results and conclusion, several suggestions were made. First, 

increasing the recycling of waste is the most critical. The recycling of waste not only 
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decreases solid waste, but also greenhouse gas emissions from the waste sector. In order to 

increase the recycling of waste, U.S. governments should enact a law that can encourage 

people to recycle waste. According to the previous research, personalized incentives and 

feedback can effectively make people to do recycling, so policymakers should consider it. 

Second, breaking the causal relationship between MSW and greenhouse gas emission from 

the waste sector is recommended. One of the methods for accomplishing this is applying 

waste-to-energy technology. So, the government can encourage applying the technology 

and increasing the efficiency of the technology. Lastly, the U.S. federal or local 

governments can benchmark a successful case of waste management like Germany or Nova 

Scotia in Canada. The U.S. generates the most waste among OECD countries, and its 

recycling rate is lower than other OECD countries. Thus, the U.S. government should pay 

more attention to solving the problems, and the benchmarking can be a proper solution. 

Since this research focused on the United States, further research is needed. The 

further research can extend to other countries or focus on the states. Because each country 

or state has its own characteristics, the results can vary. Then, based on the different results, 

the country or the state should make an appropriate plan to fit the situation. Moreover, other 

factors can affects municipal solid waste generation and greenhouse gas emission from the 

waste sector. Thus, if the new factors are considered that cause waste or greenhouse gas, 

these can be handled more effectively. 
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CHAPTER 4 

THE IMPACT OF MAJOR NON-PERMANENT EQUIPMENT ON ELECTRICITY 

CONSUMPTION AND PATTERN OF USE IN EDUCATIONAL BUILDINGS 

CASE STUDY 

4.1 Introduction 

Increasing energy consumption resulted in increasing carbon emission which in 

turn affect global climate (International Energy Outlook 2016). The Intergovernmental 

Panel on Climate Change (IPCC) estimated that the global average-combined land- and 

ocean-surface temperatures rose by 0.85ºC between 1980 and 2012, while the global sea 

level raised by 0.19m between 1901 and 2010 (IPCC 2014). IPCC also predicted that global 

surface temperatures and sea levels would continue increase by 4.8ºC and 0.82m by 2100 

respectively (IPCC 2014). 

The building sector accounted for over a third of all energy consumed and 

approximately 30% of all carbon emissions produced globally (Costa et al. 2013; Shaikh 

et al. 2014). The proportion of energy consumed by buildings would surpass 60% in the 

near future (Schneider Electric; Shaikh et al. 2014). In the United States, 41% of primary 

energy was consumed by the building sector, and this is 44% higher than the transportation 

sector and 36% higher than the industrial/manufacturing sector (U.S. Department of 

Energy 2012). Prior research affirmed that the building sector has one of the highest 

energy-saving potentials among other sectors (Gul and Patidar 2015; Shaikh et al. 2014; 

Ye and Long 2014; Poirazis et al. 2008) and would potentially capable to reduce an amount 

equal to the entire transportation sector’s (WBCSD, 2009; Shaikh et al. 2014). The 

International Energy Agency (IEA) estimated that the electricity usage of the global 
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building sector would be reduced by 20 exajoules (EJ) annually from 2009 to 2030. This 

reduction is equivalent to the current annual electricity consumption in the United States 

and Japan combined (IEA 2011; Ye and Long 2014). Investment and research are thus 

needed to develop the energy consumption reduction paths. 

Prior research showed different concepts of building energy conservation and 

energy efficiency improvement. Vakiloroaya et al. (2013) reduced energy consumption of 

cooling systems by improving HAVC energy efficiency and integrated central cooling 

plant by an approximate 18%. Bhaskoro et al. (2013) proposed an adaptive cooling 

technique that increased the energy-saving potential of an academic building, and saved up 

to 305,150 kWh or an equivalent of 45% of cooling load compared to the current system. 

Bichiou and Krarti's (2011) optimized envelop and HVAC systems using a set of 

optimization algorithms to reduce the system’s life-cycle costs by 10–25%. Du et al. (2014) 

diagnosed and detected the HVAC system’s fault by using combined neural network and a 

robust diagnostics tool to improve the energy efficiency of building HVAC systems. 

Khooban's (2012) optimized intelligent control of air supply and pressure of a HVAC 

system showed better performance than conventional controllers. 

Very few studies were found to focus on electric appliances and plug loads even 

though plug loads constituted a significant portion of a building’s energy consumption 

(Kamilaris et al. 2014; Ouf et al. 2016). 12% to 50% of the total electricity of a commercial 

building is consumed by plug loads and this is expected continue to grow as the types of 

equipment and appliances would continue to increase. And, plug loads are driven by 

different factors than HVAC and lighting. Energy consumed by HAVC systems is 

influenced by the outdoor temperature but plug loads are not. Occupants would continue 
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to supplement their spaces with new equipment and appliances as the demand for new 

appliances and computers grows. Study showed that energy consumed by appliances is 

growing at a rate of 0.8% annually (Gandhi and Brager 2016). Study also showed that the 

proportion of plug loads would increase as building energy efficiency improve, as 

increasing efficiency of HVAC and lighting reduce the proportion of energy consumed for 

heating, cooling, ventilation and lighting. Focusing on efficiency of plug loads would lead 

to equivalent energy reduction. The National Renewable Energy Laboratory (NREL)’s 

low-energy office building in Golden, Colorado, attempted to reduce the plug load by using 

highly efficient fridges and removing mechanically cooled drinking fountains, and these 

decreased the plug loads by nearly 50% (Lobato et al. 2011). 

Spaces in university buildings are classified among the buildings that consume the 

highest energy consumption per square foot (Deb et al. 2015; Gul and Patidar 2015; Yang 

et al. 2015). For example, an ASU laboratory building consumed eight to ten times more 

energy per square foot than any other building types on the ASU campus. Moreover, many 

university buildings also have high energy conservation potential. According to previous 

research, the energy-saving potential for a university building ranges from 6% to 29% 

(Chung and Rhee 2014). Several studies have been conducted regarding plug loads, but 

university buildings have not been researched (Lobato et al. 2011; Kamilaris et al. 2014; 

Gandhi and Brager 2016; Ouf et al. 2016). 

4.1.1 Space Use and Energy Consumption 

Building use influences energy consumption patterns, and the type of appliances 

and occupants, usage hours, and appliances in the building influence how energy is 

consumed. There are many electric appliances located in all parts of a university building 
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and they consume a significant amount of energy. The types and number of regular 

occupants also influence the types of appliances and unique equipment used in the spaces. 

For example, the use of space drives the controllability of energy consumption of the space. 

Public spaces, such as share classroom, meeting room and corridor, would not contain 

appliances that are individually controlled. Individuals have more control over private 

spaces, such as laboratory and office, where individualized appliances or special equipment 

could be installed. 

4.1.2 Research Objective 

The objective of this research is to understand and verify the impact of electric 

appliances on energy/electricity consumption patterns, and the approaches to reduce 

electricity consumption in these university buildings. The buildings’ electricity usage 

patterns were first analyzed and compared with the number of appliances in the buildings. 

The energy saving is then separated by time, particularly during lunch time and in the 

evening (base on the absence of occupants during the period). Third, the research 

establishes the relationships between electrical appliances and occupancy where occupants 

were separated into permanent and temporary occupants. Finally, the results are analyzed 

to establish the foundations for potential energy savings from electrical appliances. The 

research is structured into four following sections: Section 2 presents the method of data 

collection, Section 3 shows the results of this study, Section 4 discusses the results, and 

Section 5 presents the conclusion. 
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4.2 Data Collection 

4.2.1 Appliances Data 

The electric-appliance data was first collected from the selected buildings. The data 

included the number of monitors, servers (CPUs), laser printers, inkjet printers, fax 

machines, fridges, vending machines, workstations, and lighting fixtures. These data were 

initially collected by physical site visits and surveys on 55 buildings on the Arizona State 

University’s (ASU) Tempe campus. 27 buildings were excluded from the study as 

information from the buildings was incomplete especially when over 30% of the room from 

these buildings were unavailable for visual inspection or occupants were unable to provide 

information on the spaces. Only 10 buildings’ data were found to be reliable for the 

research. Table 1 shows the buildings’ detailed information. 

Table 4.1. Description of the buildings 

# Building name Purpose of use # floor 
Gross Area 

(m2) 

Built 

(year) 

1 Business Administration Academic 4 12,244 1968 

2 College Avenue Common Academic 5 13,827 2014 

3 University Center Building A Administrative 1 4,201 1985 

4 
Schwada Classroom Office 

Building 
Academic 3 11,797 1979 

5 McCord Hall Academic 4 13,015 2013 

6 Ross-Blakley Law Library Library 3 6,294 1993 

7 Memorial Union Student Services 3 25,295 1955 

8 
Physical Education Building 

West 
Athletics 3 5,570 1953 

9 Dixie Gammage Hall Academic 2 2,188 1941 

10 Center for Family Studies Academic 2 901 1940 
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4.2.2 Electricity consumption data 

The buildings’ electricity consumption data were collected from the ASU’s 

metabolism website. The website provides the ASU buildings’ energy consumption data, 

such as electricity consumption, and cooling/heating load. The electrical energy (kw) data 

include power lights, electronics, and fans to circulate air throughout the buildings. The 

electricity data were collected during the summer and fall semesters in 2015. Data from the 

weekends and holidays were excluded from the analysis. 

4.2.3 Occupancy Data 

Many of these buildings are occupied by students who are mostly transient 

occupants. As such, study on the impact of transient occupants on the energy consumption 

was analyzed. The average and total number of transient occupants were surveyed and 

assumed as the exact numbers were not tracked or documented. The numbers were 

gathered from the ASU classroom data, and estimated number of students in each building 

from prior database. The average and total number of students at different period were 

worked out from the classroom data and estimated transient occupancy data. For example, 

it is assumed that the total number of students who remain in the building is equal to the 

number of students who took classes in the building, and an estimated 90% attendance rate 

was used in some cases. Through the ASU affairs information system, the number of 

students who take the class was estimated in 15-minute intervals. 

4.3 Findings and discussions 

The analyses and results are divided into three sections. The first section includes 

a study of the electricity consumption patterns of the ten selected buildings. The second 

section includes an analysis of the equipment loads of these buildings. The analyses 
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focused on the understanding of their impact on the electricity consumption, and to 

determine the potential savings due to occupant behavioral changes. The final section 

includes a case study of the impact of transient occupants on the buildings. 

4.3.1 Consumption pattern analysis  

Electricity consumption data is collected from the Energy Information System (EIS) 

of ASU. The EIS maintains a platform (campus metabolism website) that tracks energy 

consumption, such as cooling, and heating and renewable production data from all 

campuses at ASU. The goals of this analysis are to, first, understand the consumption 

pattern, which includes peaks and troughs, at different period during the summer semester, 

and, second, analyze and understand the effects the electrical appliances consumption. The 

consumption pattern shows peaks and troughs at different hours of the day (refer to Figure 

1). More details are needed to develop better understanding of the actual patterns and their 

relationships with different factors. The consumption patterns of 10 buildings, which are 

utilized for different purposes, are analyzed to determine the peak loads and minimum 

loads of the respective days. 
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Figure 4.1. Business Administration, CAVC, University Center A, Schwada Building 

Figure 1 shows the consumption patterns of similar types of buildings compared to 

their utilization. Buildings 1, 2, 3, and 4 have the same spatial usages and thus similar space 

utilization patterns: such as office space, classrooms, and research areas (computer labs 

and graduate offices). Buildings 1 and 4 have similar square footage, whereas building 3 

is about 3,700 ground square meters, and building 2 is about 11,900 square meters. The 

consumption patterns of these buildings are similar and this suggests that the building space 

and orientation have very little effect on the pattern of energy consumption. The peak 

occupancy time of these buildings is between 8 am and 5 pm, while trough energy 



52 

consumption period took place between 10 pm and 4 am (where least amount of activities 

took place during this period). 

The peak loads vary widely between the buildings. Their peaks occurred at about 

the same period between 8 am to 4 pm, and is considered the peak time for these types of 

buildings. Building 5, shown in Figure 2, has similar energy utilization and utilization 

period, but its pattern of energy consumption is different than the other buildings. Its peak 

load time occurred between 2 am and 8 am, and the trough loads occurred between 11 pm 

and 1 am. Building 5 is a new building that has an energy efficient precooling technology 

and chilled beams to run its cooling system. Air is pre-cooled during the off-peak and 

cooler hours, and delivered to the occupants when they are in the buildings (from 8 am to 

5 pm). 

The study also found that the energy consumption during lunchtime was not 

significantly reduced and this suggested that occupants left their appliances and computers 

on during lunch. 

 

Figure 4.2. McCord Hall 



53 

The study found that Building 6, a library with significant office space, had a 

different energy consumption pattern than the other buildings. While its energy 

consumption followed a unique pattern during the day and is consistent/does not change at 

all during the day. The appliances are almost always turned on all the time, and occupants 

have little to no control over them. The peak load occurred between 8 am and 4 pm, and 

the trough load occurred between 5 pm and 5 am. 

 

Figure 4.3. Ross-Blakley Law Library 

Building 7 spatial usages are extremely diverse. The building is located at the 

middle of campus and contains different facilities like multiple student centers, conference 

halls, offices, restaurants, and sports centers. Even though its energy consumption pattern 

shown in Figure 4 is similar to an office building’s most of the time, its energy consumption 

uniquely peaked during lunch hours. Thorough investigation showed that students and staff 

utilized the building for lunch, and there are many restaurants in the building (that operate 

during lunch time). The cooking, serving and large number of transient occupants drive the 
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building energy load dramatically upward during lunch time. The peak load occurred 

between 10am and 5 pm and the trough load occurred from 8 pm to 2 am. 

 

Figure 4.4. Memorial Union 

Building 8 is a sport facility that has a sports center and a gymnasium. Its energy 

consumption is extremely irregular and do not exhibit any regular pattern. Figure 5 shows 

a pattern of irregularity and it is difficult to identify a pattern of peaks and lows. The points 

do not converge with one another, and are spread out wide. A visual line could not be 

identified in this type of pattern. Building 8’s electricity consumption deviation throughout 

the day is extremely large compared to the other buildings, and the pattern is vague and 

disorderly. The pattern continues through the night. Even though the other buildings 

exhibited large pattern deviations during the day, their deviations were dramatically 

reduced during the night. As a result, consistent patterns were determined for all buildings 

except Building 8. 
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Figure 4.5. Physical Education West 

Figure 6 shows the consumption patterns of two office buildings, 9 and 10. They 

are smaller buildings among the 10. Building 9 is an office building with an auditorium, 

and building 10 is a general office building. Both buildings exhibited large variations in 

their consumption patterns, and the patterns are irregular. While most buildings patterns 

peak between noon and 1pm followed by decreasing consumption after, building 10’s 

energy consumption continued to increase until 4pm. This suggests that use of appliances 

continued to increase until 4pm. Building 9 and 10 peak times were from 9am to 5pm and 

6am to 5pm, and their trough load occurred from 8 pm to 5 am and 10pm to 5am, 

respectively. 
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Figure 4.6. Consumption patterns of Building 9 and Building 10 

# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 
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Figure 4.7. Electricity consumption intensity of the buildings 

The buildings had similar electricity consumption patterns, even as Buildings 8, 9 

and 10 exhibited irregular patterns and were not conclusive. Figure 7 explains the 

electricity consumption’s intensity during a 24-hour period. The figure shows that most of 

the buildings peak from 8 am to 4 pm except Building 5 (which has a unique consumption 

pattern because of its precooling technology). However, the buildings had different peak 

time. For instance, the peak time of buildings 3, 4, and 8 were at 12 noon, while Buildings 
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1, 2, 7, and 9 were right before or right after 1 pm. Building 6’s peak time was from 9am 

to 4pm, and Building 10’s peak time was 4pm. The differences in the buildings’ energy 

consumption characteristics were caused by the building size, utilization types and 

strategies, and orientation. 

4.3.2 Class hours and the pattern of electricity use 

Further study was conducted to investigate the effects of occupancy on appliances’ 

energy consumption. The data was collected from the classroom scheduling department for 

different classes specific to the College Avenue Common building. Figure 8 below shows 

the number of students taking class and the consumption at different hours of the day. From 

Figure 8, the number of students increased between 7am and 9am, 2pm and 3pm, and 5pm 

and 6pm, but the electricity consumption only increased from 7am to 9am. Even though 

there was a huge drop in the number of students between 9am and 12pm, electricity 

consumption remained consistent. The figure shows that enrolled students use classrooms 

just for classes and rarely consume electricity (through plug). This analysis suggests that 

the number of students inside the building do not impact the electricity consumption 

throughout the day. Thus, we can safely infer that the permanent occupants (who spend 

most of the time in the building - the faculty, officers, and researchers) affected the energy 

consumption more than the transient occupants. 
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Figure 4.8. The number of students taking classes and the hourly electricity consumption 

of building 2 

4.3.4 Refrigerators and Vending Machines 

This section details the analysis of different appliances used in the 10 buildings. 

This section also includes their energy consumption patterns. The analysis found that 

refrigerators and vending machines consumed the most amount of energy among all the 

appliances and their energy consumption is independent of the time periods. Table 2 shows 

the number of refrigerators and vending machines per area in each building, their peak and 

minimum load, and the analyses between the number of refrigerators/vending machines 

and the peak energy load of a building. However, the analysis showed that refrigerators 

generate very impact on the minimum and peak energy loads on the buildings. There is no 

relationships between the number of refrigerators per square meter and the minimum and 

peak energy loads per square meter (see Table 2). On the other hand, data in Table 2 and 

graphical plot in Figure 9 (for the only four buildings where vending machines located at) 
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suggest that there could be some relationships between the total number of vending 

machines per square meter and the minimum and peak energy loads.  

As discussed before, increasing number of vending machines has a relationship 

with increasing minimum and peak energy loads (refer to Figure 9). Refrigerators, on the 

other hand, did not affect the peak and minimum loads as suggested by the case study. The 

case study highlighted the key reasons for the energy impact difference between 

refrigerators and vending machines – Their locations and operational process. Building 7 

has over four refrigerators per 1,000 m2, and its peak load is significantly higher than 

Building 4’s, while Building 4’s minimum load is much higher. Case study also showed 

that the types and locations of vending machines influence the peak and minimum load. 

Soda stations in Building 7 were exposed to the sun require more energy. Measurements 

from the National Renewable Energy Laboratory (NREL) showed that a typical machine 

dispensing 500 12-oz cans with an illuminated front consumes between 7 and 11 kWh/day 

in an office environment (Deru et al., 2003). In addition, new Energy Star® certified 

refrigerators use 1-2 kWh/day. Under the sun, the soda vending machines consumed more 

energy to cool the drinks. Refrigerators inside the building are not exposed to the outside 

heat. As a result, outdoor soda vending machines have to be cooled day and night. As a 

result, the energy load remains more consistent for Building 4, while lower energy use of 

refrigerators at night helped reduce some energy consumption. 
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Table 4.2. Fridges and vending machines and electricity load 

# 
# Fridges 

(per 1,000 m2) 

# Vending 

Machines 

(per 1,000 m2) 

Peak Load 

(W/m2) 

Min. Load 

(W/m2) 

Difference between 

Peak and Min. Loads 

(W/m2) 

4 0.158 1.104 37.060 33.724 33.724 

7 4.689 0.603 43.368 26.092 26.092 

2 3.944 0.408 29.902 17.696 17.696 

8 0 0.266 18.719 12.185 12.185 

10 8.475 0 24.187 10.882 10.882 

9 3.108 0 17.987 13.821 13.821 

6 2.084 0 31.571 13.670 13.670 

5 1.788 0 38.998 32.712 32.712 

1 0.734 0 14.413 5.909 5.909 

3 0.671 0 19.375 3.466 3.466 

 

 

Figure 4.9. Number of vending machine and minimum load 
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4.3.5 Monitors and Computers 

A prior research found that the energy consumption dropped significantly at 

lunchtime for three office buildings where the study was conducted (Wang and Ding, 2015). 

The research suggested that the occupants left their office for lunch and likely turned off 

their computers. Gandhi and Brager (2016) also found a significant drop in energy 

consumption from computers and monitors at lunchtime and it indicated that the occupants 

either turn off or put their computers into sleep mode when they left. 

These studies were conducted in Asia and their occupants could behave differently 

than the occupants in the United States. The research found dissimilar energy consumption 

patterns among the 10 buildings during lunchtime. Figures 1 to 6 show that there was no 

significant difference in nine buildings while Building 1 electricity consumption fell at 

lunchtime. Does this explain that occupants do not turn off their computers during lunch? 

Normally, the average consumption of LCD monitors is 44.5 watts and 7.5 watts in 

the sleeping mode, and the average computer electricity consumption is 155 watts and 3.5 

watts in the sleeping mode (source: http://michaelbluejay.com/electricity/computers.html). 

This represents a significant energy-saving potential in occupants turning off or using sleep 

mode during their absence. Data was collected through both physical and occupants’ 

survey, and then the total number of monitors, computers and laptops were then divided 

into the total square areas of the buildings then multiply by 100, so that the monitors, 

computers and laptops can be presented as number per 100 square meters. Buildings 9 and 

10 are excluded from the student as their gross floor areas are small and do not have enough 

monitors and computers in the buildings. 
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Table 4.3. Saving potential during lunch time I 

Building 
# Monitors 

(per 100 m2) 
Computer 

(W per m2) 
Monitor  

(W per m2) 

Computer + 

Monitor 

(W per m2) 

1 4.583 7.104 2.088 9.193 

2 4.583 7.104 2.088 9.193 

3 1.508 2.336 0.689 3.025 

4 1.183 1.830 0.538 2.368 

5 0.908 1.410 0.409 1.819 

6 1.366 2.121 0.624 2.745 

7 0.590 0.915 0.269 1.184 

8 0.372 0.581 0.172 0.753 

The research also assumes that all monitors, computers and laptops were turned on 

during office hours, and a certain proportion (20%) of the computers were left on after 

office hours. Table 4a shows the total number of monitors and their energy consumed. 

Table 4b shows the total electricity saving potential if 50 percent of computers and 

monitors were turned off. The comparison in Tables 4a and 4b highlight the potential 

savings from these buildings. Buildings 1, 2, and 7 generate the most potential savings of 

56.277 kW, 63.553 kW, and 14.975 kW, respectively. These are significant savings if all 

ASU buildings (over 500) would commit to turning off the computers and monitors during 

lunch, and after work. 
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                                  Table 4.4. Saving potential during lunch time II 

Building 
Saving Potential 

(W per m2) 

Total Saving 

Amount 

(kW) 

1 4.596 56.277 

2 4.596 63.553 

3 1.507 6.331 

4 1.184 13.968 

5 0.915 11.908 

6 1.367 8.604 

7 0.592 14.975 

8 0.377 2.098 

 

A prior study showed that a large number of computers and monitors were not 

turned off after work. Bray (2006) conducted an extensive study on the nighttime power 

status of monitors and computers and found a high potential energy savings could be 

achieved if monitors and computers are turned off after work. Bray (2006) found that 

between 25% and 60% of the computers, and 15% to 30% of the monitors were active at 

night. The author calculated a potential saving percentage of 42.5% on computers and 22.5% 

on monitors. Similar percentage in this study. 

Table 5a shows the hourly consumption of active computers and monitors at night. 

Table 5b shows each building’s average night time consumption and saving potential (7pm 

- 6am). The results show that there is a potential savings of 17.149 kW to 468.270 kW if 

all the monitors and desktops are switched off after work. Buildings 1 and 2 could save 

approximately 45 kW per hour. Approximately 500 kW could be saved every day for all 

ten buildings. The energy saving potential overnight is far greater than during lunchtime. 

More energy could be saved over the weekend and holidays if they are turned off. 
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Table 4.5. Saving potential at nighttime I 

Building 
# Monitors 

(per 100 m2) 

Active desktop 

(W per m2) 

Active monitor 

(W per m2) 

Desktop and 

monitor 

(W per m2) 

1 4.583 3.014 0.463 3.477 

2 4.583 3.014 0.463 3.477 

3 1.508 0.990 0.151 1.141 

4 1.183 0.775 0.118 0.893 

5 0.908 0.603 0.086 0.689 

6 1.366 0.904 0.140 1.044 

7 0.590 0.388 0.054 0.441 

8 0.372 0.248 0.032 0.280 

 

          Table 4.6. Saving potential at nighttime II 

Building 

Hourly saving 

potential 

(W per m2) 

Hourly saving 

amount 

(kW) 

Total saving 

amount 

(kW) 

1 3.477 42.570 468.270 

2 3.477 48.073 528.803 

3 1.141 4.793 52.723 

4 0.893 10.540 115.940 

5 0.689 8.966 98.626 

6 1.033 6.504 71.544 

7 0.452 11.436 125.796 

8 0.280 1.559 17.149 

 

Current computer and monitor settings allow them to be set to sleep mode after a 

fixed time. Sleep mode would reduce power consumption and save energy. Computer and 

monitor would be configured accordingly and go into sleep mode after idling for a certain 

period. The sleep mode can be centrally managed by the Information Technology 

department. 
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4.3.6 Intelligent Technology  

With the rapid advancement in artificial intelligent technology, automated energy 

control and computational optimization techniques are becoming increasingly popular. 

Such techniques are often added to energy monitoring system and frameworks through 

computational algorithms to enhance the efficiency of the building energy control schemes 

(Shaikh et al., 2014). In addition, phantom loads consumed by different equipment on 

standby or sleep mode would affect the energy system operation and thus AI algorithms 

address it effectively. Phantom loads also contributed to a significant of energy consumed 

by the buildings and they are considered inefficient load. For example, the new school’s 

classroom at ASU consumed 28.7% of its plug load electricity during non-working hours, 

but only 0.5% of energy for lighting was consumed during those hours. The lighting is 

controlled by sensors and other intelligent technology to switch idling lighting off when 

not in used. Unlike lighting, plugs are not controlled by such sensors or technology, and 

equipment connected to the plugs would continue to consume electrical power. This 

highlights that artificial intelligent technology offers a great opportunity to reduce building 

energy loads (Ouf et al., 2016). 

 

 

4.4 Conclusion 

Although the building sector is the highest sector of energy consumption, but the 

building sector also has a high energy saving potential. This research reconfirmed it and 

estimated the amount how much the buildings electricity can be saved. Through the simple 

ways such as turning off the desktops and monitors during lunch time or nighttime, a 
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significant amount of energy can be conserved. And, the research affirms three critical 

concepts: 

Concept 1: While total energy consumption is driven by the total anticipated 

number of occupants in a building, however, variation and actual energy consumption is 

driven by the occupants’ behaviors and operational procedures: A building energy load is 

designed at the design phase with a total anticipated permanent and transient occupants, 

and their occupation period of the building in mind. The total occupancy is used to size the 

equipment and spaces, so as to provide sufficient good quality air to the occupants. Energy 

efficiency and consumption are solely dependent on the equipment efficiency and 

operation procedures.  

In order drive up energy conservation effort, this study studied the energy consumption 

patterns of the occupants, equipment and appliances. These include monitors, desktops, 

vending machines, and refrigerators in university buildings. Other appliances, such as 

washer and dryers, are excluded from the study as they do not represent a significant 

portion of the buildings. The study shows that there is a significant relationships between 

the energy consumption, occupants’ behaviors, and the operational procedures, and the 

effects are most significant during lunchtime and after office hours. 

Concept 2: Controllability and locations of appliances influence the maximum and 

minimum, and variability of energy use of a building. The analysis shows that vending 

machines, and to some extent, refrigerators, influence the minimum and maximum energy 

loads of a building, while computers and monitors influence the variability of energy 

consumption throughout the day. The locations of the vending machines increase the 

energy consumption, increase use of refrigerators during the day increases energy 
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consumption but they do not impact the overall energy consumed in the building like the 

vending machines. Unlike lighting, plug loads are not controlled by sensors or intelligent 

technology and thus equipment plugged into the plugs have to be turned off manually by 

their users. Vending machines are beyond the control of the building occupants and 

operators, even though they are demand a lot of energy. Operators need to develop some 

solutions to better control the equipment that are connected to the plugs so that they can 

better manage the energy consumed by the equipment. 

Concept 3: Plug loads from buildings consumed significant amount of energy and 

they behave different from one another. Unlike permanently installed equipment, such as 

the heating, ventilation and air-conditioning and lighting systems, non-permanent 

equipment is more diverse and used differently. As a result, the management and control 

of different equipment and appliances connecting to the plug loads require differing 

approaches to reduce their energy consumptions. This could be done by dividing the 

operation of the equipment into different periods and make use of the equipment control. 

For example, plugs to auto-shut monitors, computers and vending machines should be 

installed at the connections and automatically turn off during non-working hours and 

weekends. Such automated system that match with the period of operation and control 

would reduce energy waste as a result. 

This research focused on educational buildings, and thus the results would not be 

valid or applicable to other commercial or industrial buildings. Building energy 

consumption is driven by the equipment installed in the buildings and how the occupants 

behave. Different types of occupants behave differently, and thus energy consumption 

characteristics differ among building types. For example, a restaurant may have more 
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refrigerators and cooking equipment, and the thermostats are set at lower temperature 

compared to institutional buildings. 

Energy consumption is also influenced by climate zones and human needs. While 

the building types and climate are different, the factors driving the behavior are quite 

similar. Many occupants leave for lunch and do not turn off their computers, and they leave 

their computers on after office hours, and vending machines continue to refrigerate soda 

even though soda purchases are done sparsely throughout the day. Occupants’ behaviors 

may change by region but their gaps are extremely narrow – for example, they would 

require different ambient temperatures in different climate zones, they do not turn off their 

computers during lunch. Thus, more research is needed to better understand the gaps and 

similarities. 
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CHAPTER 5 

EXAMINING THE RELATIONSHIPS BETWEEN STATIONARY OCCUPANCY 

AND BUILDING ENERGY LOADS 

5.1 Introduction 

Energy issue is the one of the most important problem faced by human beings. 

Global population keeps growing year after year (The World Bank, 2017); this causes 

increasing amounts of energy consumption, particularly of fossil fuels, which results in 

increasing greenhouse gas emissions. This leads to and accelerates global warming (Li et 

al., 2012). Within the total energy consumption that has a direct impact on carbon dioxide 

emissions, the building sector accounts for approximately 20% of worldwide energy 

consumption, and building sector’s consumption will increase by an average of 1.5% per 

year from 2012 to 2040 (IEA 2016#). In the case of the United States, the building sector 

is responsible for 40% of energy use, 75% of electricity consumption, and 38% of carbon 

dioxide emissions (IEA 2016*). For those reasons, the building sector not only has great 

potential for energy savings but is affordable and potentially profitable (Diraco et al., 2015;  

Yan et al., 2015). Therefore, optimization and reduction of building energy consumption 

is a significantly important topic (Li et al., 2012). 

There have been various research studies on building energy conservation. Previous 

approaches mostly focused on the climate, the building envelope, the building energy and 

service systems, indoor design criteria, and building operation and maintenance. There has 

been remarkable progress in these factors (Yan et al., 2015). Conventional approaches 

appear to be closely aligned with the aforementioned factors (Martani et al., 2012; Chen 

and Ahn, 2014). However, although it is commonly well known that building occupants 
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have a substantial impact on a building’s energy consumption, in reality, current building 

energy systems are disconnected from human occupancy, and there is no robust energy 

model related to building occupancy (Kwok and Lee, 2011; Martani et al., 2012; Yan et 

al., 2015). Because there was no consideration of the occupants’ impact, which has a high 

uncertainty, building energy simulation or prediction deviates significantly from actual 

building energy consumption (Yan et al., 2015). 

Building occupancy plays a critical role in building energy consumption (Liao and 

Barooah, 2010; Kwok and Lee, 2011; Yan et al., 2015). Firstly, the current building energy 

approach assumes that all rooms are occupied during office hours, but several rooms, such 

as conference rooms, are normally left vacant during part of the day (Erickson et al., 2009). 

Moreover, the actual number of occupants is usually much fewer than the designed 

occupant capacity. In the case of office buildings, only a third of the design occupancy was 

present even at peak hours (Brandemuehl and Braun, 1999), since some people may work 

outside of the office, and others are absent from work due to vacations or illness (Kwok 

and Lee, 2011). On the other hand, sometimes a person may work overtime at night (Kwok 

and Lee, 2011). Secondly, occupants interact with a building to increase their personal 

comfort and meet their needs (Kwok and Lee, 2011). For instance, occupants can control 

the heating, ventilation, and air conditioning (HVAC) systems, lighting systems, blinds, 

windows, and individual appliances (Humphreys and Nicol, 1998; Kwok and Lee, 2011; 

Yan et al., 2015). If occupancy impact is reflected in the building energy system, a large 

amount of energy can be saved, as has been proved in previous studies. Erickson et al. 

(2009) suggested that 14% of HVAC energy can be reduced by applying an optimal control 

strategy based on occupancy estimates. Lo and Novoselac (2010) showed that cooling load 



71 

can be reduced by 30% through occupancy control. Yang and Becerik-Gerber (2017) 

confirmed that a minimum of 10.4% and a maximum of 28.3% of the building energy load 

decrease was accomplished based on occupancy transitions. 

There has been diverse and in-depth research, but they still have had limitations. 

Most previous research counted or estimated only total occupants at one time. However, in 

reality, there is not just one kind of occupancy. Some occupants may stay for long periods, 

and others may stay for short periods. For instance, in the case of office buildings, workers 

normally stay during the total business hours, but visitors remain for a short time period. 

In the case of university buildings, faculty members and graduate students stay during 

working hours, but students who take classes usually stay only at class period. The two 

groups’ energy consumption pattern is different. For example, short-term residents use 

small plug loads, such as charging smartphones or laptops, and sometimes use classroom 

desktops and projectors. However, long-term occupants consume large plug loads, such as 

computers, monitors, desk lamps, and refrigerators, during all the working hours. Moreover, 

the appliances also come with a heat load, and the heat load increases the cooling load (Yan 

et al., 2015). Since the two groups’ impact on the energy load is obviously different, they 

should be analyzed separately (Chen and Ahn, 2014). However, previous studies did not 

separate the stationary and non-stationary occupants. Li et al. (2012) counted the two types 

of occupancy separately, but did not verify occupancy impact on energy consumption. 

Therefore, the first research objective was to suggest how to estimate stationary occupancy. 

This study proposed a new and simple approach to infer stationary occupancy. The second 

objective was to examine the relationships between occupancy and building energy loads, 

such as electricity, cooling, and heating. The relationships were verified using statistical 
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methods. The last objective was to propose how to conserve building energy consumption, 

based on the results. 

5.2 Research methods 

To examine the relationship between the occupancy and energy consumption 

pattern, it is necessary to estimate building occupancy. There are varied methods to 

estimate building occupancy, such as sensor networks (Dodier et al., 2006), wireless 

camera sensor networks (Erickson et al., 2009), radio-frequency identification (RFID) (Li 

et al., 2012), passive infrared sensors (Duarte et al., 2013), and 3D depth sensors (Diraco 

et al., 2015); each method has strengths and weaknesses. This study’s authors applied 

existing information technology, also called implicit occupancy sensing (Melfi et al., 2011). 

Most importantly, if a building has the infrastructure, such as Wi-Fi router, this method is 

immediately applicable to the building. Moreover, the existing technology does not require 

additional costs or labor-intensive sensor and hardware installation and maintenance, 

because it is not originally intended for occupancy sensing. (Melfi et al., 2011; Labeodan 

et al., 2015). Some previous studies pointed out that the drawback of the existing 

infrastructure is inaccurate (Yang et al., 2016). Certain applications require precision, but 

energy management applications do not; an approximate calculation of the number of 

occupants is enough to manage building energy loads (Melfi et al., 2011). In other words, 

the application just needs to know that there are roughly 10 occupants in the room, not 8, 

9, 11, or 12. Erickson et al. (2009) verified that there was negligible impact (0.28%) on 

HVAC energy savings estimation of 14%, with a 20% occupancy estimation error. 

Among the existing infrastructure in buildings, the Wi-Fi network is usefully 

applied as a proxy for human occupancy. Previous studies estimated occupancy using Wi-
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Fi networks (Melfi et al., 2011; Martani et al., 2012; Chen and Ahn, 2014; Christensen et 

al., 2014; Depatla et al., 2015; Lu et al., 2016), and these studies concluded that Wi-Fi 

connection frequency can estimate occupants’ residency without difficulty (Chen and Ahn, 

2014). Balaji et al. (2013) determined the number of occupants successfully with 86% 

accuracy using Wi-Fi connections. Moreover, Chen and Ahn (2014) verified that there is a 

positive relationship between Wi-Fi connections and building energy use. However, Wi-Fi 

networks have limitations, one of which is that the network cannot differentiate stationary 

and non-stationary occupants (Chen and Ahn, 2014). 

This research proposes to infer the stationary occupancy in buildings using wired 

Ethernet connections. Estimating each long-term and short-term occupancy separately is 

necessary for developing energy consumption forecasting and for supporting building 

energy feedback systems (Chen and Ahn, 2014). One of the greatest differences between 

long-term and short-term occupants is whether they use wired Ethernet or not. In general, 

wired Ethernet is faster, more stable, and delivers more consistent speeds than wireless 

(Reference). However, short-term occupancy use only wireless internet connections, 

because they do not have access to the wired Ethernet, and most of them do not carry an 

Ethernet patch cable for using wired Ethernet, though wireless is more inconvenient to use. 

However, long-term occupants have their own place to work, and for them, wired Ethernet 

is ready and available. The most stationary occupants use wired Ethernet when they use 

their desktops or laptops. Thus, it can be assumed that there is a positive relationship 

between stationary occupants and wired Ethernet traffic. So, in this research, wired 

Ethernet data traffic is used as a proxy for stationary occupancy. 
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The object building of this research is Interdisciplinary Science and Technology 

Building 4 (ISTB4) at Arizona State University (ASU), which has various types of space, 

such as laboratories, administrative and academic offices, and classrooms. This university 

building was selected because it contains both long- and short-term occupants who use 

wired Ethernet and Wi-Fi frequently. Data were collected January 1–30 in 2017, since both 

cooling and heating were required during this period. The outside temperature data were 

collected from the U.S. climate data website (http://www.usclimatedata.com); electricity, 

cooling, and heating load data were collected from the ASU Metabolism system, which 

provides ASU buildings’ energy consumption data, and ISTB4’s hourly–based Ethernet 

traffic and the daily–based number of Wi-Fi connection data were collected from the ASU 

University Technology Office. This study performed Pearson correlation analysis and 

regression analysis to determine the relationships between the data, using a statistical 

software package (Statistical Package for Social Science; SPSS version 17.0). 

5.3 Results 

Figure 1 shows the Ethernet data traffic pattern for the day. The data traffic begins 

to increase at 7 am and continues to increase until 2 pm, which is the peak time. The traffic 

then decreases until 6 pm and remains constant through the night. If there is a huge traffic 

gap from 9 am to 4 pm, then the gap is because of weekends and holidays, when there is 

low stationary occupancy. This trend is reasonable and understandable, because during 

working hours, long-term occupants use the Ethernet, which causes the data traffic increase. 

In addition, during the nighttime, weekends, and holidays, the data traffic consistently 

remains low, since there is almost no one using the Ethernet. Thus, it can be surmised that 
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there is a significant positive relationship between permanent occupants and wired Ethernet 

traffic. 

 
Figure 5.1. Ethernet data traffic pattern for the day 

5.3.1 Temperature vs. cooling and heating loads 

The relationship between daily average outside temperature and building cooling 

and heating loads was examined. Table 1 shows the results of the Pearson correlation 

analysis, and Figure 2 is a scatter plot of the temperature and the loads. There are significant 

relationships between temperature and cooling and heating loads. In detail, there is a strong 

positive relationship between outside temperature and cooling load and a moderate 

negative relationship between the temperature and heating load. In other words, if that day 

was hot, the cooling load rose almost as much as the outside temperature did. And, if that 

day was cold, heating load rose to some degree. As shown in Table 2, hourly-based data 

analysis showed similar results. These results are straightforward and intuitive. In addition, 

if the outside temperature is lower than approximately 47℉, cooling load remains the 

lowest, but in case of heating load, there seems no definable borderline. Moreover, it is 

worth mentioning that it was difficult to determine the cooling and heating load gap 
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between weekdays and weekends in Figure 3, which are scatter plots of the temperature 

and the loads. In most cases, there are far fewer occupants during weekends and holidays 

than during weekdays, so cooling and heating loads should also have been far lower, like 

the data traffic in Figure 1, but it was not. 

Table 5.1 Daily-based Pearson correlation analysis – Temperature vs. Energy loads 

Energy loads Temperature 

Electricity Load 0.026 (0.891) 

Cooling Load 0.879*(0.000) 

Heating Load -0.538*(0.002) 

                                                *Correlation is significant at the 0.01 level (2-tailed). 

 

 
Figure 5.2 Scatter plot of the temperature and the loads 

 

Table 5.2 Hourly-based Pearson correlation analysis – Temperature vs. Energy loads 

Energy loads Temperature 

Electricity Load 0.454* (0.000) 

Cooling Load 0.848*(0.000) 

Heating Load -0.548*(0.000) 

                                                *Correlation is significant at the 0.01 level (2-tailed). 
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Figure 5.3 Hourly-based Scatter plot of the temperature and the loads 

5.3.2 The number of Wi-Fi connections vs. energy loads 

The study investigated the relationship between the number of Wi-Fi connections 

and building energy loads. Table 3 shows the results of the Pearson correlation analysis; 

the results indicate that there is a strong positive relationship between the number of Wi-

Fi connections and electricity load but not between the number of Wi-Fi connections and 

cooling and heating loads. This means that if the Wi-Fi connections, which implies the 

number of occupants, grows, electricity load, which is related to electric appliances such 

as desktop, monitors, or refrigerators, also increases. However, even if the number of 

occupants increase or decrease, cooling and heating loads are immune to occupancy. Figure 

4 displays the relationship between the number of Wi-Fi connections and electricity load. 

There are two groups based on the number of Wi-Fi connections; the upper group, which 

has more than 600 Wi-Fi connections, represents weekdays after the beginning class. If 

one looks only at the upper group, there seems to be a low relationship between the number 

of Wi-Fi connections and electricity loads, Contrary to this, the lower group, which has 

lower than 400 Wi-Fi connections, represents weekends, holidays, and weekdays before 

the beginning class. During these periods, the correlation is stronger than in the upper group. 
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Table 5.3 Results of the Pearson correlation analysis – Wi-Fi user vs. Energy loads 

Energy loads Wi-Fi User 

Electricity Load 0.848* (0.000) 

Cooling Load -0.146 (0.432) 

Heating Load -0.233 (0.208) 

                                                *Correlation is significant at the 0.01 level (2-tailed). 

 

 
Figure 5.4 Relationship between the number of Wi-Fi connections and electricity load 

5.3.3 Data traffic vs. energy loads 

The research examined the relationship between wired Ethernet data traffic and 

building energy loads. Table 4 displays the results of the Pearson correlation analysis. It 

shows that only the electricity load has a significant moderate relationship with the data 

traffic. The cooling and heating loads have very week relationships with data traffic. These 

results are almost same as the Wi-Fi connection results, but there is a difference. The 

Pearson correlation analysis measures the linear association strength between two variables; 

the Pearson correlation coefficient was 0.571 between the data traffic and the electricity 

load. However, if the relationship is not linear, the coefficient can be distorted. Figure 5 

shows a scatter plot of the data traffic and the electricity load, and it indicates that the 

relationship is logarithmic rather than linear. When the logarithmic relationship was 
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applied to the relationship, the correlation coefficient increased to 0.743. If data traffic 

increased, the electricity consumption also increased. However, the more the data traffic 

increased, the less the margin of the electricity load increased. 

Table 5.4 Results of the Pearson correlation analysis – Wired data traffic vs. Energy loads 

Energy loads Wired Data Traffic 

Electricity Load 0.571* (0.000) 

Cooling Load 0.148* (0.000) 

Heating Load -0.278* (0.000) 

                                                *Correlation is significant at the 0.01 level (2-tailed). 
 
 

 
Figure 5.5 Scatter plot of the data traffic and the electricity load 

According to the above results, there were significant correlations between the two 

loads and data traffic, though the correlations were weak. The research authors applied 

multiple linear regression, in order to verify the relative influences of the data traffic and 
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the temperature to cooling and heating loads. Table 5 shows the results in detail. The 

magnitude of the standardized coefficient of the regression model measures the relative 

effect of the independent variables on the dependent variables, so it makes comparison 

readily in the same units. The dependent variable of the first regression model was cooling 

load; independent variables were the data traffic and the outside temperature. The result 

shows that the model was significant and that the R value of the model was 0.849, which 

was high enough. The standardized coefficient of temperature was 0.864, and the data 

traffic was -0.074. This indicates that the temperature’s influence was overwhelming to 

cooling load. Though the sign of the data traffic is negative, it can be negligible, because 

the impact was very limited. In the second regression model, the dependent variable was 

heating load. The second model was also significant, and the R value was 0.554, which 

was less than the first model. The standardized coefficient of temperature was -0.496, and 

the data traffic was -0.152. In case of the heating load, the outside temperature had a much 

stronger impact to heating load than did the data traffic, but not as much as it did on cooling 

load. The data traffic also had a certain influence on heating load. 
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Table 5.5 Results of the multiple linear regression 
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5.4 Discussion 

5.4.1 Wi-Fi vs. electricity consumption 

The results demonstrate that there is a strong positive relationship between the 

number of Wi-Fi connections, which imply the total number of occupancy in the building, 

and electricity load. This is because almost all occupants consumed plug-loads during their 

stay in the building. For example, students who were short-term occupancy charged their 

laptops and smartphones, and computers, monitors, and projectors were used during class. 

Long-term occupants used their own desktop computer, laptop, monitors, and other electric 

appliances, and also charged a smartphone or other device. The same result was verified 

by a previous study (Martani et al., 2012). 

However, among the two types of occupancy, long-term occupancy might have a 

larger impact on the electricity load than short-term occupancy. As mentioned at the end 

of section 3.2, the lower group in Figure 4, which represents weekends, holidays, and 

weekdays before the beginning class, had a stronger correlation between the number of 

Wi-Fi connections and electricity load. This implies that the electricity load is more 

affected by stationary occupancy than by non-stationary. This is because in most cases, the 

non-stationary occupants did not come to the building on weekends or similar time periods, 

but some permanent occupants, such as faculties or graduate students, did. When they did, 

they increased the electricity load by using their electric appliances. However, the upper 

group in Figure 4, which is weekdays after the beginning class, had a low relationship 

between the Wi-Fi connections and electricity load. This might be because non-stationary 

occupancy has a lower impact on electricity load. During this period, the electricity load 

did not rise, even if the number of Wi-Fi connections increased. Normally, the greatest 
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number of faculty members and graduate students were in the building at that period, so 

the variation of the Wi-Fi connection might be from the students who attended class. Thus, 

it is surmised that the students’ influence on electricity load was not significant. 

5.4.2 Data traffic vs. electricity consumption 

It is also proved that there is a significant relationship between the wired Ethernet 

data traffic as a proxy for stationary occupancy and the electricity load. The relationship is 

logarithmic rather than linear, which means even if the data traffic increases, after the 

inflection point the electricity load does not increase that much. There are two probable 

reasons for the logarithmic relationship. The first reason is that, before the inflection point, 

the more stationary occupants that came in the building, the more the data traffic increased, 

since the stationary occupants use the wired Ethernet. At the inflection point, it seems that 

the most long-term occupancy had entered the building. After the inflection point, a large 

amount of the data traffic increase might be from preexisting stationary occupants and not 

from a new stationary occupant. Since the number of stationary occupants did not increase 

as much as the data traffic did, the slope of electricity load increase decreases. Then, if all 

or almost all stationary occupants stayed in the building, data traffic and the electricity load 

might only have increased very slightly, since there was almost no change in the number 

of stationary occupants. The second reason is because of the heavy data user. In the Figure 

5, there are several points that seem like outliers that have a large data traffic with a 

relatively low electricity load. This can happen when a few occupants use the data 

overwhelmingly at a specific point of time. Thus, the inflection point and heavy data user 

should be carefully considered when estimating the stationary occupancy using the data 

traffic. 
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5.4.3 Heating & cooling load vs. occupancy 

According to the results, there was no correlation between the thermal loads and 

occupancy. In addition, when comparing the impacts of the outside temperature and 

occupancy on thermal loads by multiple regression analysis, occupancy’s influence was 

severely limited when compared to the temperature. However, it is reasonable that the more 

occupants in a building, the higher the HVAC loads. At the least, there must be a significant 

relationship between cooling load and occupancy, because the presence of occupants 

causes metabolic heat and increases the indoor temperature (Kwok and Lee, 2011). 

Furthermore, the various electrical appliances the occupants use also produce internal heat, 

which also increase the cooling load (Kwok and Lee, 2011). 

Surprisingly, previous studies also revealed that there was a lack of correlation 

between HVAC system and occupancy (Martani et al., 2012), which seems to be due to the 

current HVAC systems. HVAC systems normally operate based on fixed schedules and 

maximum occupancy assumptions (Li et al., 2012). In addition, HVAC systems do not 

consider whether the building is partially occupied; there are only “occupied” or 

“unoccupied” periods of the day (Li et al., 2012). The object building of this research is 

operated in a similar way. According to the ASU Facilities Services, the building HVAC 

system is controlled by periods that are set by manager, and there are only “occupied,” 

“unoccupied,” “preoccupancy,” and “setback” periods. This system is too rough and simple, 

so it is not helpful for energy saving. Thus, there seems to be high energy saving potential 

if HVAC loads can be adjusted automatically based on real-time occupancy information 

(Liao and Barooah, 2010; Li et al., 2012). For example, during occupied periods, if there 

are no Wi-Fi connections or wired data traffic in certain rooms, the room does not need 
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cooling or heating. And if there are a few Wi-Fi connections or a little data traffic in a room, 

the HVAC system only needs to reduce the loads, and vice versa. By doing this simple 

modification, a large amount of energy can be saved. 

5.5 Conclusion 

This study investigated the relationship between building occupancy and building 

energy loads such as electricity, cooling, and heating loads, using correlation and multiple 

regression analyses. The results revealed that stationary occupants, such as faculty 

members and graduate students, can be successfully estimated by the existing infrastructure, 

the wired Ethernet data traffic. There was a significant linear relationship between 

electricity consumption and total occupancy, and the impact of stationary occupancy on 

electricity load was higher than was non-stationary occupancy on electricity load. There 

was a significant logarithmic relationship between electricity load and the Ethernet data 

traffic, which is a proxy of the stationary occupancy. However, there was no relationship 

between the occupancy and thermal loads; this might be because the current HVAC 

systems almost do not consider the state of the occupancy, though the occupancy option is 

roughly divided, such as “occupied” or “unoccupied.” 

It is expected that the research results can be utilized practically and usefully. Since 

this study applied the existing infrastructure of Wi-Fi connections and Ethernet data traffic, 

additional cost and labor intensive process, such as sensor installation, is unnecessary. Thus, 

if the building use a Wi-Fi and the wired Ethernet, the occupants in the building can be 

estimated immediately in real-time. Furthermore, at present, a large amount of thermal and 

heating loads are being wasted on vacant or partially occupied room. Thus, if the HVAC 

systems could consider occupancy information in real time, a huge amount of energy can 
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be conserved. Moreover, the accuracy of building energy simulations or predictions can be 

improved by applying the occupancy data. This is because the current simulation or 

prediction do not apply the occupancy information, and it can cause a big difference in 

accuracy between the simulated and actual consumption. 

Unfortunately, this study analyzed only one month of data because of data 

unavailability, so more long-term period analyses should be made for further research. The 

object building can be extended to other types of buildings or to a building in another region. 

This research did not estimate the number of stationary occupants in the building. However, 

the approximate number, if not an exact estimation, of stationary occupancy can be 

estimated by using Ethernet data traffic in future research. The final suggestion is to utilize 

data from existing infrastructure efficiently and successfully. A huge and varied amount of 

data is produced from existing infrastructure; these data are of great value and can be 

connected to big data at no additional cost or need for labor. So, by making use of the data, 

it can be used in various ways, such as optimizing the use of building energy and water, to 

improve occupant comfort. 
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CHAPTER 6 

CONCLUSION 

6.1 Dissertation Summary 

In this dissertation, I tried to provide ways to decrease greenhouse gas emissions 

by verifying the critical factors that significantly impact emissions. Some results were 

straightforward and predictable, but others were not. All these results are valuable, though, 

and the unexpected results are more useful. For example, if a government decreases natural 

gas consumption to reduce its carbon emissions, the results can be the opposite of what 

was expected. And if a government decides to raise the price of coal to decrease its 

consumption, the effort can be fruitless. 

Chapter 2 presented the causalities between energy consumption, energy prices, 

and carbon emissions in the U.S. residential and commercial building sectors, using the 

Granger causality testing and generalized impulse response analysis. The results show that, 

first, energy consumption and prices have various impacts on greenhouse gas emissions 

based on building and energy sources. Policy makers can concentrate on promoting the use 

of low-carbon and carbon-neutral energy resources (like renewable and natural gas). 

Second, increasing the proportion of low-carbon and carbon-neutral sources, such as 

natural gas, can reduce carbon emissions. Decreasing energy consumption is not the only 

way to reduce emissions, however. Lastly, inexpensive energy sources, such as coal, may 

be unaffected by price. 

Chapter 3 presented the causal relationship between solid waste generation, which 

not only contaminates soil but also emits greenhouse gasses, and greenhouse gas emission 

from the U.S. solid waste sector. Previous research confirmed that when GDP per capita 
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increased, solid waste per capita decreased, but that is not the case in the U.S. waste sector. 

Therefore, it was concluded that the government should find alternative strategies to reduce 

solid waste per capita because no causal relationship exists between GDP per capita and 

MSW per capita. Moreover, decreasing solid waste and increasing waste recycling mitigate 

the waste sector’s carbon emissions significantly. 

Chapter 4 presented an investigation of electrical appliance usage patterns, which 

included the use of monitors, desktops, vending machines, and refrigerators in university 

buildings, to contribute to the reduction of building electricity use. This research also 

involved the relationship between electricity consumption and occupant influence at 

lunchtime and nighttime. The results showed that electric appliances affect building energy 

use significantly. Vending machines use the most plug loads, which significantly 

contributes to the minimum plug load. Therefore, a possible recommendation is to decrease 

the number of underutilized vending machines or use energy-efficient vending machines. 

In addition, a large amount of electricity is wasted at lunchtime and nighttime; therefore, 

energy-saving potential is very high. If an automated system is applied in buildings, the 

waste can be prevented. 

Chapter 5 presented the relationship between building occupancy and building 

energy loads, such as electricity, cooling, and heating loads. The results showed that 

stationary occupants, such as faculty members and graduate students, could be estimated 

by a building’s existing infrastructure and the wired Ethernet data traffic. A significant 

linear relationship exists between electricity use and a building’s total occupancy, and the 

impact of stationary occupants on electricity load was higher than that of non-stationary 

occupants, such as undergraduate students and visitors, on electricity load. Also, a 
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significant logarithmic relationship exists between electricity consumption and Ethernet 

data traffic, which is a proxy for stationary occupancy. However, no relationship exists 

between occupancy and thermal loads because most current HVAC systems do not 

consider the building’s occupancy, but the occupancy status is roughly divided into 

“occupied” or “unoccupied.” 

6.2 Future Directions and Recommendations 

Chapters 2 and 3 focused on the United States, so it is difficult to extend and apply 

the results to other countries because each country has unique characteristics. Previous 

studies showed various results for various countries in terms of causal relationships. 

Therefore, further research about other countries is necessary to generalize the 

relationships. And based on the results, each country should make an appropriate plan to 

fit its situation. Also, more factors can be considered. For instance, energy consumption 

and carbon emissions can respond to weather or economic conditions, and government 

policies can affect the generation of solid waste and carbon emission from the waste sector. 

Therefore, these variables could be analyzed in future research, and more critical factors 

could be discovered. 

Chapter 4 focused on university buildings, so the results might be invalid for or 

inapplicable to other types of buildings because each building has unique characteristics. 

For example, a restaurant uses more refrigerators and cooking equipment. In addition, the 

results can change based on climate zones. The climate in a subtropical desert, for example, 

is hot and dry in summer, and occupants usually stay indoors during the day. Therefore, 

occupants’ habits will1 differ from those in a mild marine climate zone. Further research 

accounting for climate in building sectors is necessary. Last, it is essential to discover the 
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most effective ways to save plug loads at lunchtime and nighttime. These periods have 

extremely high energy saving potential. If the appropriate methods are applied in the 

buildings, the plug loads can be reduced substantially. 

Chapter 5includes some recommendations for future research. First, unfortunately, 

the research analyzed only a month of data because of data unavailability, so a long-term 

analysis period such as 1 year or more should be used for further research. Research can 

also be extended to other building types, such as offices, residential buildings, or buildings 

in other regions. I did not estimate the number of stationary occupants in buildings. 

However, the approximate number of stationary occupants can be estimated by using 

Ethernet data traffic in future research. The final recommendation is to utilize data from 

existing infrastructures efficiently and successfully. Various kinds of data are produced 

from existing infrastructures; these data are of great value and can be connected to big data 

without additional cost or need for labor, which is a great advantage. It can be used in 

various ways, such as optimizing the use of building energy and water, to improve occupant 

comfort by making use of the data. 
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APPENDIX A. RESIDENTIAL SECTOR DATA 

Year Coala 
Natural 

gasa 
Petroleuma Electricitya 

Total 

energya 

Coal 

priceb 

Natural 

gas 

priceb 

Petroleum 

priceb 

Electricity 

priceb 

Total 

Energy 

Priceb 

CO2 

emissionsc 

1973 94 5,001 2,800 1,976 14,919 6.21 6.52 10.81 38.47 14.01 906.93 

1974 82 4,898 2,554 1,973 14,651 10.25 6.61 13.27 42.33 15.74 873.11 

1975 62 5,024 2,479 2,007 14,814 10.46 7.13 12.89 43.91 16.22 867.23 

1976 59 5,149 2,703 2,069 15,417 9.72 7.83 13.07 44.10 16.66 912.63 

1977 57 4,914 2,681 2,202 15,662 9.59 8.71 13.79 44.97 18.03 934.51 

1978 49 4,987 2,607 2,301 16,143 9.12 8.87 13.28 44.48 18.06 938.39 

1979 38 5,052 2,099 2,330 15,813 8.51 9.23 16.82 43.01 18.94 918.00 

1980 31 4,855 1,734 2,448 15,731 8.08 10.03 20.17 43.77 20.79 911.36 

1981 30 4,652 1,531 2,464 15,247 8.99 10.58 21.85 45.89 22.28 878.41 

1982 32 4,751 1,434 2,489 15,497 8.68 12.02 20.60 47.85 23.24 872.63 

1983 31 4,515 1,353 2,562 15,399 7.28 13.55 19.34 48.50 24.57 866.89 

1984 40 4,685 1,531 2,662 15,920 7.51 13.15 18.65 46.32 23.56 902.12 

1985 39 4,566 1,565 2,709 16,041 6.96 12.67 17.37 46.22 23.28 908.65 

1986 41 4,432 1,541 2,795 15,951 6.54 11.88 14.18 45.56 22.52 904.92 

1987 38 4,436 1,617 2,902 16,228 5.54 10.89 13.32 44.10 21.65 934.22 

1988 37 4,757 1,675 3,046 17,132 5.07 10.32 12.75 42.54 20.69 982.37 

1989 31 4,926 1,660 3,090 17,776 4.89 10.13 13.96 41.49 20.40 1,004.88 

1990 31 4,519 1,394 3,153 16,937 5.29 9.89 15.27 40.33 20.85 963.38 

1991 25 4,684 1,381 3,260 17,406 5.23 9.54 14.29 39.73 20.36 980.10 

1992 26 4,820 1,414 3,193 17,337 4.73 9.38 12.76 39.37 19.59 981.42 

1993 26 5,098 1,439 3,394 18,211 4.80 9.52 12.14 38.77 19.50 1,039.56 

1994 21 4,981 1,408 3,441 18,098 4.14 9.65 11.73 38.06 19.52 1,032.22 

1995 17 4,984 1,374 3,557 18,515 3.89 8.87 11.28 37.11 18.98 1,039.04 

1996 16 5,391 1,484 3,694 19,506 3.70 9.01 12.63 35.85 18.57 1,099.09 

1997 16 5,125 1,422 3,671 18,962 3.55 9.66 12.32 35.35 18.95 1,089.79 

1998 12 4,671 1,304 3,856 18,950 3.47 9.31 10.63 34.10 18.93 1,097.44 

1999 14 4,857 1,465 3,906 19,541 3.27 8.96 10.72 32.98 18.12 1,121.60 

2000 11 5,104 1,554 4,069 20,393 2.99 10.17 14.83 32.19 18.95 1,185.04 

2001 11 4,902 1,529 4,100 20,029 3.80 12.21 14.56 32.62 20.25 1,171.45 

2002 12 5,006 1,457 4,317 20,767 3.31 9.81 12.75 31.59 18.70 1,202.57 

2003 12 5,224 1,547 4,353 21,090 3.07 11.53 14.76 31.89 19.70 1,232.03 

2004 11 4,993 1,520 4,408 21,056 3.68 12.73 16.20 31.87 20.67 1,227.26 

2005 8 4,958 1,451 4,638 21,586 4.07 14.51 19.70 32.54 22.52 1,260.92 

2006 6 4,483 1,224 4,611 20,643 4.00 15.20 21.89 34.72 24.47 1,191.40 

2007 8 4,849 1,254 4,750 21,514 3.88 14.07 23.38 34.58 23.88 1,240.55 

2008 0 5,018 1,330 4,708 21,664 0 14.42 27.41 35.20 24.60 1,234.27 

2009 0 4,899 1,161 4,656 21,087 0 12.64 22.26 36.09 23.58 1,156.78 

2010 0 4,887 1,125 4,933 21,819 0 11.72 24.73 35.60 23.60 1,209.66 

2011 0 4,817 1,052 4,855 21,376 0 11.00 27.56 35.05 23.31 1,149.69 

2012 0 4,252 896 4,690 19,925 0 10.44 28.42 34.82 23.50 1,043.09 
a Trillion Btu; b Dollars per Million Btu ;c Million Metric Tons                                       Data source: http://www.eia.gov/ 
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APPENDIX B. COMMERCIAL SECTOR DATA 

Year Coala 
Natural 

gasa 
Petroleuma Electricitya 

Total 

energya 

Coal 

priceb 

Natural 

gas 

priceb 

Petroleum 

priceb 

Electricity 

priceb 

Total 

Energy 

Priceb 

CO2 

emissionsc 

1973 160 2660 1607 1517 9553 2.69 4.71 6.21 36.51 13.19 609.25 

1974 174 2614 1461 1501 9391 4.66 4.89 10.48 41.49 15.83 586.73 

1975 146 2556 1346 1598 9489 5.59 5.63 10.2 43.14 17.33 582.86 

1976 144 2717 1500 1678 10065 4.96 6.5 10.05 43.66 17.67 627.48 

1977 148 2547 1552 1754 10206 4.93 7.58 10.76 45.43 19.4 645.02 

1978 165 2642 1490 1813 10515 4.89 7.75 10.28 45 19.33 647.59 

1979 151 2834 1367 1854 10650 4.62 8.51 13.09 43.39 19.83 661.27 

1980 117 2666 1318 1906 10576 4.26 9.25 15.66 44.75 21.82 661.85 

1981 137 2578 1122 2033 10614 4.52 9.88 17.55 46.58 23.92 662.66 

1982 155 2671 1037 2077 10840 4.45 11.18 15.75 47.85 24.6 664.53 

1983 162 2505 1170 2116 10923 4.01 12.52 14.96 47.42 25.15 671.31 

1984 169 2594 1227 2264 11417 3.98 11.93 14.32 46.16 24.57 704.4 

1985 138 2503 1083 2351 11455 3.78 11.39 13.78 45.45 24.82 704.5 

1986 136 2383 1162 2439 11591 3.52 10.35 9.3 44.2 23.46 710.71 

1987 127 2499 1131 2539 11921 3.11 9.38 9.6 41.31 22.15 735.59 

1988 131 2744 1099 2675 12581 2.99 8.75 8.73 39.48 20.98 772.48 

1989 115 2800 1041 2767 13186 2.85 8.54 9.42 38.46 20.83 794.08 

1990 124 2698 991 2860 13319 2.88 8.26 10.61 37.24 20.85 792.65 

1991 115 2807 935 2918 13503 2.66 7.91 9.42 36.63 20.31 794.28 

1992 117 2883 893 2900 13445 2.62 7.77 8.79 36.25 19.88 795.86 

1993 117 2944 819 3019 13824 2.56 8.07 8.17 35.59 19.94 819.41 

1994 117 2978 825 3116 14086 2.43 8.29 7.82 34.63 19.71 833.43 

1995 116 3117 769 3252 14689 2.34 7.44 7.74 33.58 19.01 851.32 

1996 120 3251 790 3344 15176 2.21 7.7 9.03 32.44 18.67 882.6 

1997 129 3306 743 3503 15692 2.16 8.11 8.73 31.51 18.64 926.03 

1998 101 3098 702 3678 15984 2.13 7.58 7.17 30.26 18.38 946.82 

1999 102 3132 707 3766 16396 2.08 7.19 7.66 28.95 17.69 960.34 

2000 86 3261 807 3956 17170 1.93 8.72 11.03 28.69 18.53 1021.97 

2001 88 3109 790 4063 17137 2.04 10.79 10.22 29.8 20.15 1027.23 

2002 88 3223 726 4110 17342 2.08 8.28 9.11 29.11 18.71 1026.26 

2003 83 3271 843 4090 17337 1.98 10.07 10.73 29.37 19.48 1037.06 

2004 103 3211 810 4198 17653 2.24 11.17 12.35 29.11 20.12 1053.06 

2005 96 3083 762 4351 17825 2.65 12.91 15.93 29.86 21.85 1068.54 

2006 64 2908 664 4435 17676 2.7 13.21 18.12 31.57 23.49 1042.87 

2007 70 3095 651 4560 18215 2.74 12.17 19.4 31.31 22.96 1077.52 

2008 80 3235 666 4558 18355 4 12.68 24.55 32.4 23.93 1075.18 

2009 73 3199 666 4460 17854 4.55 10.38 16.59 31.9 22.12 1007.32 

2010 70 3173 655 4539 18013 3.93 9.69 19.84 31.45 22.02 1025.01 

2011 62 3226 644 4531 17931 4.07 8.97 24.54 30.62 21.59 990.19 

2012 44 2969 574 4529 17343 4.38 8.03 24.02 29.57 21.03 932.01 
a Trillion Btu; b Dollars per Million Btu ;c Million Metric Tons                                       Data source: http://www.eia.gov/ 
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APPENDIX C. UNIT ROOT TEST RESULTS OF ENERGY CONSUMPTION 

FACTORS 

 
Residential Sector Commercial Sector 

ADF PP ADF PP 

Levels 

Intercept Coal -4.482031
a 
(0) -4.122059

a
 (2) -0.805702 (0)  0.01584 (33) 

Natural gas -3.039682
b 
(0)  -3.081159

b
 (1)  -1.548438 (0)  -1.507751 (1)  

Petroleum -2.112495 (0)  -2.092467 (3)  -1.699005 (0)  -2.06400 (10)  
Electricity -0.748933 (1)  -0.710208 (3)  -0.712182 (0)  -0.658053 (3)  
Total energy -1.159436 (0)  -1.125040 (2)  -1.112124 (0)  -1.038310 (3)  

Intercept and Trend  Coal -5.038679
a 
(0)  -5.038679

a
 (0)  -4.098702

b 
(0)  -3.58485

b
 (10)  

Natural gas -2.952540 (0)  -2.995373 (1)  -2.356259 (0)  -2.246990 (2)  
Petroleum -2.196587 (0)  -2.341181 (2)  -2.749468 (0)  -2.807070 (2)  
Electricity -2.760439 (1)  -2.916113 (4)  -0.874861 (0)  -1.498955 (3)  
Total energy -2.169160 (0)  -2.173547 (3)  -0.081260 (0)  -0.659810 (3)  

First difference 

Intercept Coal -4.682785
a 
(0)  -4.682785

a
 (0)  -7.186396

a 
(0)  -13.7574

a
 (32)  

Natural gas -6.439811
a 
(1)  -7.144926

a
 (8)  -6.497129

a 
(0)  -6.589488

a
 (3)  

Petroleum -4.114766
a 
(1)  -4.381381

a
 (3)  -6.039132

a 
(0)  -6.633138

a
 (6)  

Electricity -5.443359
a 
(1)  -8.166056

a
 (3)  -4.734704

a 
(0)  -4.799628

a
 (3)  

Total energy -4.970907
a 
(1)  -6.989921

a
 (1)  -4.479221

a 
(0)  -4.629119

a
 (3)  

Intercept and Trend  Coal -4.936664
a 
(0)  -4.936664

a
 (0)  -7.099508

a 
(0)  -14.0101

a
 (29)  

Natural gas -6.352604
a 
(1)  -7.158097

a
 (7)  -5.891475

a 
(1) -6.480058

a
 (3)  

Petroleum -4.073637
a 
(1)  -4.240004

a
 (4)  -5.949477

a 
(0)  -6.774067

a
 (7)  

Electricity -5.227649
a 
(1)  -8.053182

a
 (3)  -4.788744

a 
(0)  -4.790691

a
 (2)  

Total energy -4.915285
a 
(1)  -6.963287

a
 (1)  -4.642770

a 
(0)  -4.732753

a
 (3)  

a 1% significance; b 5% significance; c10% significance 

Note: Lag lengths are listed in parentheses and were determined via SIC for ADF and via Bandwidth-NeweyWest for 

PP. 
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APPENDIX D. UNIT ROOT TEST RESULTS OF ENERGY PRICE 

 
Residential Sector Commercial Sector 

ADF PP ADF PP 

Levels 

Intercept Coal price -0.371867 (0)  -0.345024 (2)  -2.457017 (3)  -1.539086 (3)  
Natural gas price -2.144372 (0)  -2.269409 (3)  -2.294905 (0)  -2.425483 (3)  
Petroleum price -0.364550 (0)  -0.516621 (2)  -0.942525 (0)  -0.816964 (2)  
Electricity price -1.101050 (1)  -0.830667 (3)  -0.886191 (1)  -0.664695 (4)  

Total energy price -2.374867 (0) -2.404522 (4) -3.214622a (0) -3.079131a (4) 

Intercept and Trend  Coal price -4.786327
a 
(0)  -4.862702

a
 (3)  -0.577781 (3)  -1.762547 (3)  

Natural gas price -1.683947 (0)  -1.986116 (3)  -1.734435 (0)  -1.992723 (3)  
Petroleum price -0.805558 (0)  -0.938673 (2)  -1.304849 (0)  -1.191638 (2)  
Electricity price -2.701416 (1)  -2.767226 (4)  -1.655564 (1)  -3.097967 (4)  
Total energy price -2.054171 (0) -2.271640 (4) -2.862026 (0) -2.820341 (4) 

First difference 

Intercept Coal price -8.095202
a 
(0)  -11.00585

a
 (8)  -2.761654

c
 (2)  -6.737067

a
 (3)  

Natural gas price -5.148310
a 
(0)  -5.212167

a
 (3)  -5.202963

a 
(0)  -5.281446

a
 (3)  

Petroleum price -5.519236
a 
(0)  -5.524486

a
 (1)  -7.055603

a 
(0)  -7.106894

a
 (2)  

Electricity price -4.691586
a 
(0)  -4.691047

a
 (1)  -5.016853

a 
(0)  -5.008021

a
 (1)  

Total energy price -4.774574a (0) -4.849272a (3) -4.718428a (0) -4.709248a (2) 

Intercept and Trend  Coal price -7.814943
a 
(0)  -10.52375

a
 (8)  -8.416040

a
 (1)  -8.929033

a
 (7)  

Natural gas price -5.289425
a 
(0)  -5.307445

a
 (2)  -5.444114

a 
(0)  -5.506960

a
 (3)  

Petroleum price -5.642607
a 
(0)  -5.642607

a
 (0)  -5.135019

a 
(1) -7.223941

a
 (1)  

Electricity price -4.493760
a 
(0)  -4.493760

a
 (0)  -4.782328

a 
(0)  -4.778194

a 
(1)  

Total Energy price -4.713903a (0) -4.806242a (3) -4.749877a (0) -4.755912a (2) 

CO2emissions -1.633819 (2) -6.120377
a
 (4) -1.110919 (2)  -5.100625

a
 (4)  

Second difference      

Intercept Coal price -9.366394
 a 

(0) - -11.24939
 a 

(1) - 

Intercept and Trend Coal price -9.239583
 a 

(0) - -11.10031
 a 

(1) - 
a 1% significance; c10% significance 

Note: Lag lengths are listed in parentheses and were determined via SIC for ADF and via Bandwidth-NeweyWest for 

PP. 
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APPENDIX E. UNIT ROOT TEST RESULTS OF CO2 EMISSIONS 

 
Residential Sector Commercial Sector 

ADF PP ADF PP 

Levels 

Intercept CO2emissions -1.183406 (0)  -1.205723 (4)  -1.727853 (3)  -1.261508 (4)  

Intercept and Trend  CO2 emissions -0.930875 (0)  -1.203317 (4)   0.512623 (0)  -0.229426 (4)  
First difference 

Intercept CO2 emissions -5.980950
a 
(0)  -6.073683

a
 (4)  -0.703354 (2)  -4.868260

a
 (4)  

Intercept and Trend  CO2emissions -1.633819 (2) -6.120377
a
 (4) -1.110919 (2)  -5.100625

a
 (4)  

Second difference      

Intercept CO2 emissions -9.150812
 a 

(1) - -10.31891
 a 

(1) - 

Intercept and Trend  CO2 emissions -5.072535
 a 

(3) - -10.52008
 a 

(1) - 
a 1% significance 

Note: Lag lengths are listed in parentheses and were determined via SIC for ADF and via Bandwidth-NeweyWest for 

PP. 
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APPENDIX G. GENERALIZED IMPULSE RESPONSE OF ENERGY 

CONSUMPTION TO ENERGY PRICE IN COMMERCIAL SECTOR 
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APPENDIX I. GENERALIZED IMPULSE RESPONSES OF CO2 TO ENERGY 

CONSUMPTION IN THE COMMERCIAL SECTOR 
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APPENDIX A. FIRST MODEL DATA FOR EKC RELATIONSHIP 

Year GDP per capita a Total MSW generation per capita b 

1990 23,954.5 208.3 

1991 24,405.0 207.7 

1992 25,493.0 214.9 

1993 26,464.8 218.0 

1994 27,776.4 221.3 

1995 28,782.0 217.3 

1996 30,068.2 216.0 

1997 31,572.6 223.1 

1998 32,949.0 227.1 

1999 34,639.1 234.9 

2000 36,467.3 243.5 

2001 37,285.8 240.8 

2002 38,175.4 245.3 

2003 39,682.5 246.4 

2004 41,928.9 254.1 

2005 44,313.6 253.7 

2006 46,443.8 257.1 

2007 48,070.4 256.5 

2008 48,407.1 252.5 

2009 46,998.8 244.3 

2010 48,357.7 250.5 

2011 49,854.5 250.4 

2012 51,755.2 250.9 
a current US dollar; b kilograms per capita 
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Appendix B. SECOND MODEL DATA FOR WASTE GENERATION AND 

GREENHOUSE GAS FROM WASTE SECTOR 

Year 
Total MSW            

generation a 

Recovery waste      

generation a 

Greenhouse gas               

from waste sector b 

1990 208.3 33.2 165.0 

1991 207.7 37.3 166.4 

1992 214.9 41.4 167.5 

1993 218.0 44.7 166.7 

1994 221.3 51.8 165.6 

1995 217.3 55.8 158.6 

1996 216.0 58.0 155.4 

1997 223.1 60.0 146.8 

1998 227.1 61.8 139.7 

1999 234.9 65.5 135.5 

2000 243.5 69.5 132.8 

2001 240.8 69.7 128.3 

2002 245.3 71.0 129.3 

2003 246.4 75.1 134.9 

2004 254.1 78.6 131.0 

2005 253.7 79.8 133.2 

2006 257.1 82.6 132.5 

2007 256.5 84.8 133.1 

2008 252.5 84.1 136.0 

2009 244.3 82.4 136.5 

2010 250.5 85.1 131.1 

2011 250.4 86.9 128.5 

2012 250.9 86.6 124.0 
a million tons; b Tg CO2 Eq. 


