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ABSTRACT

The reliable operation of critical infrastructure systems is of significant importance

to society. The power grid and the water distribution system are two critical infras-

tructure systems, each of which is facilitated by a cyber-based supervisory control

and data acquisition (SCADA) system. Although critical infrastructure systems are

interdependent with each other due to coupling (a power grid may be the electrical

supply for a water distribution system), the corresponding SCADA systems operated

independently and did not share information with each other. Modern critical infras-

tructure systems tend to cover a larger geographic area, indicating that a SCADA

control station supervising a small area is far from meeting the demands.

In this thesis, the above-mentioned problem is addressed by building a middleware

to facilitate reliable and flexible communications between two or more SCADA sys-

tems. Software Defined Networking (SDN), an emerging technology providing pro-

grammable networking, is introduced to assist the middleware. In traditional net-

works, network configurations required highly skilled personnel for configuring many

network elements. However, SDN separates the control plane from the data plane,

making network intelligence logically centralized, and leaving the forwarding switches

with easy commands to follow. In this way, the underlying network infrastructures

can be easily manipulated by programming, supporting the future dynamic network

functions.

In this work, an SDN-assisted middleware is designed and implemented with open

source platforms Open Network Operating System (ONOS) and Mininet, connecting

the power grids emulator and water delivery and treatment system (WDTS) emula-

tor EPANet. Since the focus of this work is on facilitating communications between

dedicated networks, data transmissions in backbone networks are emulated. For the

interfaces, a multithreaded communication module is developed. It not only enables
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real-time information exchange between two SCADA control centers but also supports

multiple-to-multiple communications simultaneously. Human intervention is allowed

in case of emergency.

SDN has many attractive benefits, however, there are still obstacles like high upgrade

costs when implementing this technique. Therefore, rather than replace all the routers

at once, incremental deployment of hybrid SDN networks consisting of both legacy

routers and programmable SDN switches is adopted in this work. We emulate on the

ratio of SDN deployment against the performance of the middleware and the results

on the real dataset show that a higher fraction of SDN results in a higher reliability

and flexibility of data transmissions. The middleware developed may contribute to

the development of the next-generation SCADA systems.
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Chapter 1

INTRODUCTION

Supervisory Control and Data Acquisition (SCADA) systems are a class of control

system architecture utilizing computers, networked data communications, and graph-

ical user interfaces for high-level process supervisory management [21]. It is widely

used in many critical infrastructures, such as power grids, to collect real-time data

from sensors, analyze operational status, and provide instructions to the actuators.

SCADA systems are of vital importance for the reliable operation of critical infras-

tructures, especially in severe conditions like mega-droughts or during an unexpected

attack.

Power grids and water distribution system are two examples of critical infrastruc-

tures, which are sometimes physically interdependent. For example, power grids pro-

vide electricity for water distribution systems, while water systems provide the power

plants with cooling water. However, the respective SCADA systems historically have

operated independently without sharing information. To enable communications be-

tween two or more SCADA systems, an SDN-assisted middleware is designed in this

thesis.

Previously, SCADA systems utilized proprietary equipment and dedicated networks.

Today, since SCADA systems expand over larger geographical areas, they incorpo-

rate Local Area Networking (LAN), Wide Area Networking (WAN) or the Internet

[16] to communicate within the system or collaborate with other SCADA systems.

Therefore, in this work, the backbone of the networking is considered.

An autonomous system (AS) is considered to be a region of networks belonging to a

shared entity or running the same protocol. As of early 2018, the Internet consisted of
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over 60,000 AS entities [19]. Two or more SCADA systems are likely located within a

different AS that are both connected to the backbone network, which typically adopts

the Border Gateway Protocol (BGP). When the network topology changes or traffic

shifts drastically, a BGP update is triggered, which consumes significant CPU re-

sources and possibly causes slower convergence, thereby inducing heavy packet losses.

BGP supports some complicated network policies from different entities, which adds

substantially to the complexity [3], and one solution is to adopt a new routing mech-

anism. In this work, Software Defined Networking (SDN) is introduced, which over-

comes many disadvantages of the traditional decentralized network, such as complex-

ity and the heavy dependence on connectivity structure [25, 26, 26, 28]. It separates

the control plane from the data plane and makes the routing more reliable and flexi-

ble.

In this work, we design and implement an SDN-assisted middleware for intercon-

necting power grids and water distribution systems, as illustrated in figure 1.1. The

middleware is a virtual layer built between the application layer and the underlying

routing layer. The controller in the application layer determines the packet forwarding

behaviors. The topology and traffic information controller requirements are collected

through the middleware.

Although SDN outperforms the general routing scheme, it remains unrealistic to up-

grade all routers simultaneously due to significant costs. Instead, it is reasonable to

assume incremental deployment through deploying SDN on the selected routers and

realizing the customized routing between individual SCADA systems. We analyze

this hybrid deployment model for SDN switches and legacy routers.

Finally, the proposed middleware is implemented on the open source platform, Open

Networking Operating System (ONOS), Mininet, and the routing software Quagga.

The results demonstrate that the customized routing, with the aid of SDN, out-

2



Figure 1.1: the Communication System between Two SCADA Systems

performs the general routing in terms of flexibility and reliability, which are critical

factors for SCADA systems. Regarding interfaces, we develop a module enabling real-

time communication between two or more SCADA systems, which allows bi-direction

data transmissions.

The proposed middleware offers a wide range of applications. It can interconnect to

SCADA systems as well as enterprise networks and data centers. Internet Service

Providers (ISPs) can profit by selling this special virtual middleware service to util-

ities. It also provides insight into the design and implementation of next-generation

SCADA systems [12].

The contributions of this work include:
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1. Propose a middleware method to solve the cooperation problems between oth-

erwise isolated SCADA systems, enabling efficient communications between

SCADA systems.

2. Introduce an SDN technique offering flexible and reliable customized routing

services. SDN provides possibilities of innovations towards next-generation net-

working.

3. Adopt a hybrid deployment of SDN switches and legacy routers to avoid the

significant costs of upgrading all devices simultaneously, which is practical for

implementations.

4. Implement the design using network emulators Mininet, software router Quagga,

and the open source controller ONOS, paving the way for future hardware

deployment.

5. Develop middleware not only for SCADA systems but also applicable to com-

munications between enterprise networks and data centers.

The thesis follows with the background of SCADA systems and SDN in Chapter 2

as well as state of the art for this technology. Chapter 3 describes the middleware

design, including the algorithms for formulating the deployment patterns. Chapter 4

outlines the implementation details of the middleware and demonstrates the results

of the hybrid deployment. Chapter 5 concludes the work and identifies future work.
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Chapter 2

BACKGROUND

2.1 Evolution of SCADA Systems

Figure 2.1 summarizes the evolution of SCADA systems through three stages. The

first-generation monolithic SCADA systems were standalone with limited or connec-

tivity to other systems. Networks were implemented exclusively for the control center

to communicate with Remote Terminal Units (RTUs). The RTU equipment vendors

often developed the communication protocols used on SCADA networks without ac-

commodating other types of data traffic [4].

The second-generation distributed SCADA systems took advantage of developments

Figure 2.1: the Involvement of SCADA Communication System

in system and LAN technologies to distribute the processing across multiple stations,

each with a specific function, such as historical data storage or real-time data pro-

cessing. The networks connecting the individual stations and RTUs were based on

LAN protocols and not capable of reaching beyond the local network.

The third-generation networked SCADA systems adopted an open system architec-

ture by utilizing open standards and protocols, such as Internet Protocol (IP), instead
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of proprietary vendor-controlled protocols. This approach enabled the distribution

of SCADA functionality across a WAN without limitation to only a LAN. SCADA

system engineers could then concentrate on the development of master stations and

higher-level software.

2.2 Introduction of SDN

Software Defined Networking (SDN) is an emerging technique in networking. Un-

like the practice in traditional networks where each router decides its forwarding

behaviors based on a pre-defined routing protocol, SDN leverages the intelligence

from individual routers and centralizes the control to a controller. This allows the

network operations to be directly programmable, and the underlying infrastructure

to be abstracted and easily manipulated by applications.

The SDN controller dynamically interprets the intention of applications, and inject

rules into SDN-capable switches. According to these rules, the SDN switches per-

form packet inspection, manipulation, and forwarding. They can inspect and modify

packet headers at different levels of the protocol stack from the data link layer to

application layer. The framework of SDN is illustrated in figure reffig:sdn-framwork.

The goal of SDN is to support the rapid response of network administrators to

changing topology, traffic or business requirements via a centralized controller. In

our work, we deploy SDN in the backbone networks transmitting packet flows to fa-

cilitate reliable and flexible data exchange between SCADA systems. With the aid of

SDN, adapting to situations is easier, and a low packet loss rate and flexible packet

forwarding can be achieved.
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Figure 2.2: Framework of SDN

2.2.1 Data Forwarding Plane

The most salient feature of SDN is that it separates the control plane from data

forwarding plane. Instead of allowing legacy routers to make forwarding decisions,

SDN only requires switches to process simple commands, such as ”match-action.”

Controllers generate these commands and transmit directly to SDN switches. Intelli-

gence is centralized, which is one reason to call these components a ”switch” instead

of a ”router.”

Mininet is a network emulator developed for rapidly prototyping large networks by

creating a virtual network running a real kernel on a single machine. This is realized
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by using different namespaces, which creates an illusion that each node is running on

a separate machine. Mininet provides a straightforward and extensible Python Appli-

cation Programmable Interface (API) for network creation and emulations. Mininet

networks run real code, including standard Unix/Linux network applications, as well

as the real Linux kernel and network stack. The code developed and tested on Mininet

for controllers, switches or hosts can move to a real system with minimal changes to

support real-world testing, performance evaluation, and production deployment. This

feature enables the development of designs that if they work in Mininet, then it is

expected they can be easily moved to hardware switches for packet forwarding.

2.2.2 Control Plane

Various SDN controllers exist in the market, including ONOS [2], which stands

out because it is a newly released open-source SDN controller focusing on service

provider use cases. Therefore, it is considered to be the best candidate for backbone

networks as it satisfies our needs as we are interested in backbone networks, which are

operated by service providers. The architecture of ONOS is illustrated in figure 2.3.

It is a composition of different layers. Northbound and Southbound are abstracted

interfaces toward the application layer and the packet forwarding layer, respectively.

In this work, we focus on Northbound by defining the controlling behaviors.

The ONOS platform is developed in Java as a multi-module project with modules

managed as OSGi (Open Service Gateway Initiative) bundles in the Karaf environ-

ment. An advantage of using OSGi is that applications can be developed indepen-

dently and deployed to the platform. In this work, the customized modules are devel-

oped based on the ONOS platform, and then loaded to the platform and activated,

which is easier and safer.
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Figure 2.3: Architecture of ONOS

2.3 state-of-the-art and applications

2.3.1 State-of-the-Art

SDN significantly influences both academic and industrial research. Today, Open-

Flow is a standardized protocol between the controller and switches, and switch for-

warding tables can be populated directly via OpenFlow. Many commercial switches,

including HP, NEC, and Pronto [6], support the OpenFlow APIs. Before the emer-

gence of OpenFlow, the ideas for a programmable network were proposed for decades.

From the mid-1990s to early 2000s, active networks introduced programmable func-

tions into the network. Around 2001 to 2007, control and data planes were separated,

and from 2007 to 2010, the OpenFlow API and network operating systems were de-

veloped [6].

Programmability in the network lowered the barrier to innovations. Recently, Google
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B4 networks [8] adopted the prevailing Software-Defined Wide Area Networking (SD-

WAN), and many other academic and industrial groups are participating in the field

of SDN.

2.3.2 Applications

In this work, the communication between SCADA systems is discussed, although

applications of SDN-assisted middleware extend to enterprise networks and data cen-

ters. Additional scenarios where SDN or SDN-assisted middleware can be valuable

range from network engineering, the Internet of Things (IoT), and mobile communi-

cations.

SDN dramatically enhances the quality of network traffic engineering as it offers a

unified and global view of complex networks providing a powerful control environment

for network flows [1]. SDN-assisted middleware serves as a good platform IoTs. A

comprehensive software-defined based framework model simplifies the IoT manage-

ment process and provides a vital solution for the challenges in the traditional IoT

architectures [9]. SDN-assisted middleware can be used in mobile communications

to increase the efficiency, scalability, and elasticity of the Wireless Sensor Networks

(WSNs) by estimating functions of initial measurements [23, 29] or learning global

data information at sensors [24, 27].

SDN introduces the concept of Software-Defined, which expands opportunities for

automation and innovation. We believe there will be more systems adopting these

types of programmable features in the near future.
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2.4 Summary

In this chapter, we introduced the evolution of SCADA systems and the back-

ground of SDN. The irresistible trend of enlarging SCADA systems expedites the

development of communication systems to evolve from small, dedicated networks to

large, public data networks. SDN brings about a new opportunity for SCADA com-

munication systems by enabling the programmability of networking and shielding the

difference in hardware equipment, policies or protocols. These advancements are of

great importance to next-generation networking technologies.
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Chapter 3

DESIGN OF MIDDLEWARE

3.1 Feedback with Controller in the Loop

Despite the rigid mechanism of running predefined protocols in the routers, SDN

offers a new perspective for controlling the networking.

By modifying the header of packets, the SDN controller can block, redirect, or split

the traffic to diverse neighborhoods. The controller manipulates the forwarding logic

centrally, to affect the packet forwarding behaviors in the data plane. The actual

traffic changes in the data plane will in return provide references for the controllers

decision process. This formulates a feedback loop with the controller in the loop,

illustrated in figure 3.1.

The upper cloud in figure 3.1 represents the application layer, like the network

controlling authorities or Internet Service Providers (ISPs). The lower cloud stands

for network resources, the links and intermediate nodes for data transmissions. The

controller receives both the optimization policies and service requests from the appli-

cation layer and the actual network resource states (bandwidth, delay, etc.) from the

lower forwarding layer. Then, it determines the rules for forwarding a given flow of

packets and modifying the resource state by issuing match-action commands to the

forwarding plane.
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Figure 3.1: SDN Controller in a Feedback Loop[15]

3.2 Hybrid Deployment

To avoid replacing all the routers at one time, we adopt a hybrid deployment of

SDN switches and legacy routers. Beginning with the partial deployment of SDN,

we pick some important nodes to deploy SDN, under a limited budget. Then, as

the better performances of SDN-assisted network can be seen by ISPs and network

authorities, more SDN deployment will be gradually introduced.

3.3 SDN Island

SDN islands are subsections of networks that are SDN controlled. Each island

may have one or more hops through a legacy network in between it and another is-

land [20].

The SDN controller provides a global view of the network. However, in the hybrid
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deployment setting, Link Layer Discovery Protocol (LLDP) probes are dropped at the

edge of the SDN-controlled network and legacy network. This may give the illusion

to the controller that those are separate networks. Open Networking Operating Sys-

tem (ONOS) uses Broadcast Domain Discovery Protocol (BDDP) probes to discover

paths between islands, as legacy devices do not drop or mark BDDPs. Connections

across legacy networks will appear as single hops regardless of how many legacy de-

vices may be along that path [20].

Therefore, the less fragmented the network topology is, the better global view the

controller will get. Otherwise, the topology that the controller sees is different from

the real topology. To compensate it, a penalty is added to the boundary. SDN-IP is

a module on the boundary to let SDN islands communicate through Border Gateway

Protocol (BGP) at the data-plane level.

The middleware with SDN island views is illustrated in the figure 3.2. Legacy routers

are grouped into a few SDN islands, represented by small clouds. The larger could

above is the abstraction of SDN islands, seen from the controller perspective.

the whole communication network: G = G1 ∪G2 ∪ ...∪GN , where Gk, k = 1, 2, ...N

is an Autonomous System (AS).

Gk = {V,E}, V is the vertex set, E is the edge set.

V = {Vs, Vl}, where Vs is the subset of SDN nodes, Vl is the subset of legacy nodes.

E = {Ess, Ell, Esl}, where Ess is the subset of edges joining two SDN nodes, Ell is

the subset of edges joining two legacy nodes, Esl is the subset of edges joining one

SDN node and one legacy node.

Definition 3.3.1. legacy region A legacy region Gl is a connected subgraph of the

graph G, any node v ∈ V [Gl] is legacy node. Gl contains all Ell edges with both

vertices in Gl and all Esl edges with one of the vertices in Gl.
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Figure 3.2: SDN Islands in Middleware

Definition 3.3.2. frontier of legacy region A frontier Fm of the mthlegacy region Gm
l

is a subset of the edge set E[G]. Fm contains Esl edges with one of the vertices in

Gs, the other in Gl.

Definition 3.3.3. path cost path cost PCp for a path p = {(p∩Ess)∪(p∩Ell)∪(p∩Esl)}

is the sum of the costs on every edge from the beginning node to the end node (without

loop). PCp =
∑

i β · (p∩Ess) + δ · (p∩Ell) + γ · (p∩Esl) where β, δ, γ are the average

link cost of three kinds of links (defined in section 3), respectively.

3.4 Seamless Internetworking of SDN and IP

After collecting the topology information of the network, we can choose either a

predetermined SDN deployment plan or a fixed ratio of deployment plan. The former

characterizes different shapes of SDN islands (a collection of SDN switches). The
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latter describes the level of SDN penetration. In either way, the concrete deployment

plan is determined.

One challenge lies in the place where the SDN switches and legacy routers interact.

Internal BGP Speaker sits inside our SDN network and its job is to peer with all the

External BGP Routers (running on software router Quagga), learn BGP routes from

them, and relay those routes to the SDN-IP application running on ONOS. Therefore,

messages can be conveyed and understood by each other, thus hybrid deployment is

realized. The module working on this process is called the SDN-IP module.

ONOS used to be confined in his wonderful world, using OpenFlow protocol, unable

to communicate with the outside. SDN-IP came and gave the ability to ONOS to

speak to the rest of the world. ONOS started to communicate with IP components

similar to it, using a widely used protocol BGP, which is a traditional communication

protocol.

3.5 Related Work

In the legacy networks, BGP is the most common protocol for interdomain com-

munications. F. Wang [17]finds that while routing changes can lead to longer delay

and out-of-order packets, routing changes impact end-to-end loss more significantly

and can lead to loss bursts lasting as long as 20 seconds.

Prior to the introduction of SDN, Route Control Platform (RCP) had been developed

to control interdomain routing centrally. RCP computes the BGP routing table for an

entire AS in a centralized server, and distributes the BGP routing table to individual

routers. However, the intradomain routing is still performed in individual routers.

V. Kotronis [11] notices that the control plane can take several minutes to converge

after a routing change; this may be unacceptable for real-time network services. Mul-
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tidomain SDN centralization can be achieved by outsourcing routing functions to an

external contractor, so that interdomain routing benefits through a birds eye view

over several networks. SDN centralization helps linearly to reduce BGP convergence

times and churn rates with expanding SDN deployments.

D. Lin [14] proposes an interdomain routing brokerage framework, and showed that

an inter-AS routing path can be totally dominated by a small set of ASs and IXPs to

provide end-to-end QoS guarantee. Lin models the problem as a Maximum Coverage

with B-dominating path Guarantee (MCBG) problem.

W. Wang [18] plans SDN placement to enhance the SDN controllability over the hy-

brid network. Wang defines PathControllability to make sure that controllability

should remain even if flows leave SDN nodes to ensure the effectiveness of SDN con-

trol. However, in our work we define the controllability of a region.

W. Wang plans SDN placement to enhance the SDN controllability over the hybrid

network. Wang defines PathControllability to make sure that controllability should

remain even if flows leave SDN nodes to ensure the effectiveness of SDN control.

However, in our work we define the controllability of a region.

For dynamically admitting new SDN switches, R. Katiyar [10] proposes an autocon-

figuration mechanism to provide configuration parameters to the newly detected SDN

switch, overcoming the difficulty of a heterogeneous hybrid network.

3.6 Metrics of Performance

The backbone networks are usually run by ISPs, conforming to carrier-grade stan-

dards. In carrier-grade networks, the SDN control plane has to support high through-

put to meet carrier requirements. The throughput of the SDN control plane can be

evaluated by measuring its throughput under load at the northbound and southbound
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interfaces.

In addition, failures or fluctuations occur and the SDN control plane needs to be able

to detect and react to these failures swiftly to ensure seamless operation. Reaction to

fluctuated traffic or unexpected network problems can be approximated by measuring

the latency of the SDN control plane. This is why we choose topology change latency,

flow/intent operation throughput as key metrics for ONOS performance.

3.7 Virtual Layer

3.7.1 Metrics

Proposition 3.7.1. distance between nodes distance between nodes dA,B is a value

measuring the total costs if a packet travels from node A to node B. If two nodes are

joint by a single link, then dA,B is the cost of that link. If not, then dA,B is the cost

of minimum sum of link costs joining two nodes.

Proposition 3.7.2. proportion of overlap proportion of overlap Prop{pa, pb} is a

value measuring how much two paths are overlapped.

Prop{pa, pb} =
∑
i,j

Iai,bj · Cost(ai)

for any i, j pairs, where Iai,bj is an indicator, Iai,bj = 1 if ai and bi are the same link.

Proposition 3.7.3. path similarity Path similarity PS{pa, pb} is a metric measuring

how much impact on end-to-end performance if a packet changes its path from pa =

{a1, a2, ..., am} to pb = {b1, b2, ..., bn}.

1. distance between starting nodes dA1,B1 + distance between ending nodes dAm,Bn
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2. difference of the length + sum of costs

3. proportion of overlap Prop{pa, pb}

3.7.2 Virtual Layer Building Algorithm

We designed an offlineonline combined algorithm to build the virtual layer (mid-

dleware) between the networking layer and the application layer. The offline part

(see algorithm 1) of the algorithm is based on the topology. The online part (see

algorithm 2) is based on both the topology changes and traffic changes.

3.7.3 Stability Evaluation

There are various ways of defining stability. The goal of our virtual layer is to sup-

press small fluctuations while keeping or even amplifying large fluctuations. Because

the small fluctuations do not have significant effect on routing, the system suppresses

them to avoid unnecessary routing table changes. However, if the fluctuation is large

enough, the system must pay attention to it and make corresponding changes in the

routing table to tackle the problem.

Proposition 3.7.4. excitation excitation of the AS routing system Excit comprises

of two perspectives:

1. extent of topology change. Topo C is the difference between the influence on

routing (packet traversing the given AS) from the previous topology and the influ-

ence from current topology. Topo C = Size(V irt E[G])
Size(E[G])

, where Size(V irt E[G]) is

the number of virtual links that this specific changing link involves. Size(E[G])

is the number of links in the whole network.
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2. drastic traffic change. Traff C is the amount that an elephant traffic going

through a specific link far exceed the average traffic. Traff C = T
Expct[T ]

.

Excit = Topo C + Traff C

The stability we are talking about are within the range of excitation ∈ [0, ω]

3.8 Summary

In this chapter, we introduced various design aspects when building an SDN-

assisted middleware. Apart from the overall design idea that putting the controller in

the feedback loop, we also introduced the concept of SDN island, which is a building

block of the SDN-IP hybrid deployment scheme. Then the algorithms for formulat-

ing the virtual layer was elaborated in detail. For the performance evaluation, some

metrics were introduced or defined.
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Algorithm 1 virtual layer building algorithm (offline part)

Input: adjacency matrix Q, maximum AS delay Max D, Output: virtual layer

V irt G = {V irt G1, V irt G2, ..., V irt Gs}, s = m ·n where each element V irt Gi, i =

1, ..., s is a graph with simplified topology, corresponding to a virtual sub-layer.

1: define key = {a11, a12, ..., a21, ..., amn}: set of all elements of the transfer matrix

Am×n (defined in section 4.B). The size of key is m · n. Each element keyi, i =

1, ...,m · n represents an {ingress, egress} pair.

2: define Ukey = {Ukey1, Ukey2, ..., Ukeys}, s = m · n, where Ukeyi, i = 1, ..., s is the

temporary virtual path serving the keyi {ingress, egress} pair.

3: define Group = {g1, g2, ..., gs}, where each element is a set of valid paths for a

given {ingress, egress} pair.

4: for i in m do

5: for j in n do

6: find the shortest path p∗ from ingress point xi to each egress points xj,

using Shortest Path First algorithm.

7: while path similarity PS{pi, p∗ < threshold %} do

8: i+ +, get another path.

9: add path pi to g(i−1)·j+j

10: for i in m do

11: for j in n do

12: aij = key(i−1)·j+j

13: assign each element in the Group = {g1, g2, ..., gs} as an aggregated virtual path.

return Group
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Algorithm 2 virtual layer building algorithm (online part)

Input: Group = {g1, g2, ..., gs}, topology change matrix Topo C, traffic

change matrix Traff C, signal Itopo = 1, ITraff = 1, indicating if there

is topology/traffic changes, respectively, Output: Abstract virtual layer

AbsV irt g = {AbsV irt g1, AbsV irt g2, ..., AbsV irt gs}, s = m · n where each element

AbsV irt gi, i = 1, ..., s is a virtual layer solution.

1: import the output Group from the off-line algorithm

2: if Itopo = 1 then

3: while non-zero element exists do

4: find the coordinates of of non-zero elements, mapping to a link ei

5: for k in s, s = m · n do

6: if ei ∈ gk then

7:
return AbsV irt g
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Chapter 4

IMPLEMENTATION OF MIDDLEWARE

4.1 Overall Function

The goal of the SDN-assisted middleware is to connect two or more SCADA sys-

tems, which touch the real-world SCADA systems and all networks involved. In our

emulation, SCADA systems are represented by sophisticated computer models such

as the EPANET model, while the proposed middleware is represented by a Linux

hosting machine (control plane) as well as the virtual-box (data plane) embedded

in it. Communication modules are the interfaces between SCADA systems and the

middleware. The correspondence between real system and emulators is illustrated in

Figure 4.1.

In real SCADA systems, raw sensor data (e.g., water level information) are gen-

erated and put into a buffer of Remote Terminal Units (RTUs). Then, the RTU is

responsible for reporting all data to the control center servers (including real-time

data server, historical data server, etc.). This process can be done either through

a wireless hotspot or through wired Local Area Networks (LANs). Raw data must

go through a state generator before they make sense to the SCADA control centers.

Afterward, data processed by a state generator will be shown on HumanMachine In-

terfaces (HMIs) or stored in servers.

In this work, computer models of power grids and water distribution systems are

built through emulators. The raw data collection process is out of the scope of this

work. We focus on the process that data are transmitted from one SCADA control

center (server) to one or more other SCADA control centers (servers), traversing the
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Figure 4.1: Implementation of SDN assisted Middleware Connecting SCADA Systems

backbone networks, Wide Area Networks (WANs), or even the Internet.

4.2 Network Topology Data

We utilize the free data set from some enterprises or universities. For example,

Amazons AWS Public Data Sets program and Stanfords Large Network Dataset Col-

lection (SNAP) provide real-world networking data to the public for free. Figure 4.2

is a screenshot of the SNAP data set. The real network data outperform synthesized

network data as they fit better to performance in real systems. Data are introduced

to the network emulator Mininet with Python scripts. Figure 4.3 is a sketch of the

imported topology, plotted with R packages. Although a real-world data set is more

practical, we use a smaller data set here for the ease of a clear presentation. Visual-

ization of the demo topology is shown in figure 4.4. Circles (blue) with bold lines are

SDN switches, while others (red) are legacy routers. Links between SDN switch and
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Figure 4.2: Stanford Large Network Dataset Collection - SNAP

Figure 4.3: Network Topology Data Imported From Dataset

SDN switch are in blue. Links between legacy router and legacy routers are in red.

Links with different types of ends are in gray.
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Figure 4.4: Network Topology with Hybrid Deployment

4.3 System Setting

We implement the design with network emulator Mininet [13] and SDN controller

ONOS [2]. Mininet sets up the data-plane topology and is responsible for carrying

out the forwarding rules, while ONOS is the control plane determining the forwarding

logic and behaviors. The Mininet in virtualBox and the ONOS are depicted in the

following figure 4.5 and figure 4.6.

Figure 4.5 shows the network emulator Mininet embedded in the virtualBox. The

Ethernet interface eth0 is configured as a bridged adapter, which is allocated an IP

address. The interface eth1 is configured as host-only adapter, which is to communi-

cate with the host machine only, as we need to use shell (ssh command) to log into

Mininet from the host machine for graphics (e.g., xterm, miniedit applications).

The left part of figure 4.6 is the result after compiling the ONOS source code and
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Figure 4.5: Mininet in VirtualBox

installing together with Karaf (ONOSKaraf clean install). The right part of figure

4.6 is the interactive terminal of ONOS.

Figure 4.7 is the initial topology. There is one controller, 20 SDN switches running

Figure 4.6: Open Networking Operating System (ONOS)

OpenFlow protocol, and two hosts, representing the power SCADA control center

and water SCADA control center.

The legacy routers run the BGP part of Quagga. There is a converting module SDN-

IP, within which there is a BGP speaker, who can talk using BGP with these routers

to exchange traffic between the different SDN islands. Controller ONOS cannot see

either these hosts or legacy switches directly. Transit traffic (traffic from one BGP
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peer outside the local SDN network that traverses a local SDN network and goes to

another BGP peer) are proactively installed by the SDN-IP application.

For a given topology, the SDN deployment rate is defined as the ratio of number of

Figure 4.7: Emulator Topology

SDN switches to the number of total switches (routers). Figure reffig:rate shows the

SDN deployment rates varying from 95% to 70%.

There are 3 types of links between switches:

1. SDN switch - SDN switch (homogeneous)

2. legacy router - legacy router (homogeneous)

3. SDN switch - legacy router (heterogenous)
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Figure 4.8: Different SDN Deployment Rate

If we are sending an Internet Control Messages Protocol (ICMP) message from host

1 to host 2, there are several possible paths:

1. h1-s1-s2-s4-s12-s15-s20-h2

2. h1-s1-s7-s10-s9-s18-s19-s20-h2

3. ......

Different paths have different costs and performances. The metrics we are evaluating

are:

1. End-to-end delay: a time stamp is recorded at the beginning; another time

stamp is recorded at the end. Then end-to-end delay is calculated.

2. Throughput: Each link has a real-time bandwidth. For a path (a few links

concatenated), throughput is defined as the smallest bandwidth along the path.
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The topology discovered by the LLDP probes can be directed to a Graphical User

Interface (GUI). Figure 4.9 is the GUI of the ONOS controller. All SDN switches can

be detected by LLDP probes and reported to the central controller.

Figure 4.9: IP Addresses of Hosts

4.4 Program Architecture

The program consists of a few blocks:

1. packet generation block

(a) ICMP packets

The ping command generates ICMP packets. It is a protocol used by net-

work devices to send error messages and operational information indicating

that a host or router could be reached or not. Testing the connection with

ICMP packets is easy. However, the amount of data is less than Scapy

(elaborated later) or Iperf.

The details of captured packets are shown in figure 4.10. The highlighted
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lines are the type of packets we are interested in.

Figure 4.10: Packet Flows in the Networks

(b) Scapy

Scapy generates any type of packet, IP, TCP, ICMP, etc. They can come

from different layers. The forwarding rules running on the network layer

will check for the IP packets, making decisions based on IP header; while

forwarding rules on transport layer will check for TCP/UDP packets, look-

ing at TCP/UDP headers; forwarding rules on the application layer will

check for ICMP packets, interested in application layer header or content

of the messages.
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The bandwidth of each link are measured. Result of a part of the network

is shown in figure 4.11.

Figure 4.11: All Flows Going through a Given SDN Switch

2. network programming block

(a) general forwarding sub-block

There are two general ways of programming the network: flow entry table

and intent.

Flow entries are forwarding rules programmed manually into switches or

injected by controllers.

The Intent Framework depicted in figure 4.12 is a subsystem that allows

applications to specify their network control desires in the form of a policy

rather than mechanism.

Intents are more flexible than flow entries. Intents track the status of the

network, ready to reconfigure the network whenever there is a link break-
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Figure 4.12: Intent Conveys Policies to Data Plane

down. Intent can reroute to an alternative path if needed.

(b) SDN-IP sub-block

The components for the SDN-IP block are shown in figure 4.13.

3. performance evaluation block

(a) end-to-end delay:

It is a metric measuring the real-time capability of the middleware, as the

critical infrastructure needs immediate notice and response.

(b) throughput:

It is a bandwidth-related metric to measure the amount of traffic that the

middleware can handle within a period of time.

4. SDN-IP Module block

An SDN-IP module acts as a transit interconnecting SDN-controlled networks

and IP networks. Each external legacy network (IP network) is a different do-

main, which interfaces with our SDN network through its BGP-speaking border
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Figure 4.13: Components for SDN-IP

routers [22].

Within the SDN-IP network, there are one or more internal BGP speakers. The

BGP speakers can be existing BGP routers or any software that implements

BGP. The speakers use eBGP to exchange BGP routing information with the

border routers of the adjacent external networks, and iBGP to propagate that

information among themselves and to the SDN-IP application instances [22].

The routes advertised by the external border routers belonging to external net-

works are received by the BGP speakers within the SDN-IP network, processed,

and eventually re-advertised to the other external networks. The routes are pro-

cessed according to the normal BGP processing and routing policies. Similarly,

those routes are also advertised to the SDN-IP application instances, which act
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as iBGP peers. The best route for each destination is selected by the SDN-IP

application according to the iBGP rules, and translated into an ONOS Appli-

cation Intent Request. ONOS translates the Application Intent Request into

forwarding rules in the data plane. Those rules are used to forward the transit

traffic between the interconnected IP networks [22].

The major function blocks are shown in figure 4.14.

Figure 4.14: Diagrams for the Program

4.5 Communication between Emulators and Middleware

4.5.1 Multi-threaded Communication

To guarantee the real-time data transmission, a multithreaded program is devel-

oped and encapsulated as a Communication module (a Python class). One SCADA

system may need to communicate to one or more other SCADA systems. Once the
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emulation program instantiates the class, simulation results can be transmitted to the

target receivers reliably in real time. At the same time, each receiver listens to any

incoming connection. Operations of the multithreaded program are shown in figure

4.15.

In Figure 4.15, there are four threads in the communication module of utility 1:

Figure 4.15: Multithreaded Communication Module

1. Thread-1 is a receiving thread, listening constantly to a designated port; once a

connection comes, it forks another new thread to take care of the data reception

task, the original thread keeps listening.

2. Thread-2 is a transmit thread, initiating a data transmission to a specific target,

by specifying the IP address and port of the target. If the file to transmit is

not ready, thread-2 will keep trying fetching. If the target is not responding,
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thread-2 will try to connect repeatedly after a given interval, until connection

is established finally.

3. Thread-3 is a quit thread. It is for human intervention in case one wants to

stop transmitting files to the target utility. Thread-3 is routinely querying from

the console/keyboard input, generating interrupts whenever there is any input.

If the captured input is not the desired one for quit, it will prompt an error and

keep querying.

4. Thread-4 is an exit thread, waiting for console/keyboard interrupt, similar to

thread-3. The major difference from thread-3 is that thread-4 is to stop listening

on a port and close the server, thus it stops the reception.

4.5.2 Relation to Emulator

The block diagram of the communication module is shown in figure 4.16. Each

block in the diagram represents a Python program. It comes in such a complicated

manner because the power and water emulators run on the Windows operating sys-

tem while the middleware runs on the Linux operating system. Some control and

convert processes need to be carried out. It is almost symmetric so let us take the

power side for example.

The result generated from power simulations and optimizations are named power-

OutFile 0.txt, powerOutFile 1.txt, etc. Then the Python script comm win power.py

handles the file transmission, forwarding the files one after another to module mininet.py

in middleware. Middleware is a container divided into sub-containers by different

namespaces. mininet1.py runs on the hosting container, while host1.py and host2.py

are two emulated nodes running on sub-containers. Data are transmitted from the

source host, through the emulated networks, reaching the destination host.
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Figure 4.16: Block Diagram of Communication Module

All the block programs are controlled by ctrl win power.py, which governs the time se-

quence of operations. All programs are configured by config.py files (config default.py

is the default setting, config override.py is the changes on a particular run).

4.5.3 Cross Platform Features

The result data are generated at the emulators, passed through SCADA gateways

to the backbone network. Then, after traversing the backbone, it ends up with an-

other gateway and reaches the destination emulator.

The emulators run on the Windows operating system, while the middleware runs

on the Linux operating system. Therefore, to cater for cross-platform needs, the

communication module adopts some features so that it can be applied to Win-

dows/Linux/Mac systems.

Features include but not limited to: Each system has its own buffer. To avoid buffer

overflow, data are read and written line-by-line. Every time the communication mod-
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ule runs, it uses the socket API to detect the host IP, for better portability.

In this way, the communication module can be reused easily by embedding into em-

ulation code. Another programmer can instantiate the class and use it for efficient

data transmissions.

4.6 Apply the Module to the Platform

ONOS application is built using the standard OSGi bundle management services.

After the function module is developed, it should be installed and activated on the

ONOS platform.

The activation of the module is shown in the figure 4.17.

4.7 Varied Ratio of SDN Deployment

Seen from the SDN controller, the topology of SDN deployment with varied ratio

are illustrated in figure 4.18. It shows that the higher SDN penetration, the less

conversion from SDN switches to legacy routers are needed, which makes the data

transmission more efficient.

4.8 Performance Evaluations

For the performance evaluation:

The end-to-end delay of hosts is one of the most important factors for a SCADA

communication system. A smaller delay will not only benefit the function of critical

infrastructure but also provide a better user experience.
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Figure 4.17: Install and Activate the Applications in ONOS

Figure 4.18: Varied Ratio of SDN Deployment
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The results can be seen in figure 4.19. It is easily seen that with the decrement of

SDN deployment, the delays are increasing gradually.

Figure 4.19: Experiment Results:End-to-End Delay

The throughput of both the OpenFlow Controller and OpenFlow switches is a

key performance indicator for the Control Plane operation [7]; the number of flow

entries in the table of the OpenFlow switch can impact the forwarding efficiency of

the switch, as every incoming packet has to be matched against entries in the flow

table [7].

The throughput against SDN deployment ratio is illustrated in Figure 4.20. As we

can see from the figure, the reduced deployment of SDN will negatively affect the

throughput of the network. In conclusion, more SDN should be adopted if conditions

permit.
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Figure 4.20: Experiment Results:Throughput

4.9 Summary

In this chapter, the implementation details of the proposed middleware were pre-

sented. Firstly, we imported network data from Stanford Large Network Dataset

Collection, which is a real-world data set. However, for the ease of clearer presenta-

tion, we used a simpler topology in the experiment. Secondly, topology information

was put into network emulator Mininet. Thirdly, we programmed the forwarding be-

haviors as intents and injected into controller and activated it on the ONOS platform.

Lastly, network functions were tested and performances are evaluated.
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Chapter 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

For the critical infrastructure communications, it is a trend to gradually move

from dedicated networks to public networks (e.g., Internet or WANs). Instead of us-

ing proprietary devices and wires, critical infrastructures will choose to embrace the

new method of leasing them from the service providers. The trend of going beyond

the local networks facilitates the collaboration of two or more SCADA systems. In

this work, we provide an insight on this trend.

In this work, an SDN-assisted middleware is designed and built to facilitate the cy-

berphysical (power SCADA systems and water distribution SCADA systems) co-

simulations. As SDN is a software-centric approach for communication networks, the

packet forwarding mechanism is determined by the software in the centralized con-

troller. Programmability of networks simplifies the configuration process and provides

a more reliable and flexible communication.

To improve the network reliability and efficiency of SDN-based forwarding, we uti-

lized multipath transmission. The result shows that the alternative path guarantees

a better connectivity and thus a lower packet loss rate.

A full upgrade of network devices may result in huge capital expenditures for an

operator. A gradual deployment approach is proposed. Hybrid deployment of SDN

switches and legacy routers is adopted and discussed in this work. The results show

that a higher SDN deployment rate results in a better performance of data transmis-

sions.

43



The proposed middleware is implemented with the prevailing open source controller

platform ONOS. A multithreaded real-time communication module to connect the

SCADA system gateway is developed. Relevant codes are tested, commented, and

documented before uploading to GitHub for reproduction purpose or potential future

usage.

5.2 Future Work

In this work, we built a middleware to interconnect two or more SCADA systems.

There are some other opportunities or open problems to discuss in future.

As a large number of requests will be handled by a single controller, for better net-

work scalability, more controllers can be utilized. The problem of the coordination

among controllers is a direction of further research.

In this work, only the node or link breakdown in physical networks was consid-

ered. There are other categories of accidents or attacks worth considering in future.

For example, compromised network switches, broken grid devices, or missing SDN

controllers [5]. New cyber-security solutions are needed immediately to protect the

SCADA communication systems.

Many aspects of the network operation besides resilience deserve our attentions. More

QoS metric options should be provided in the middleware. For example, efficient traf-

fic engineering, load balancing, algorithm convergence speed, etc. Those problems can

be addressed by utilizing SDN, because SDN provides the central controller with a

global view of the topology and traffic.

Apart from communications between SCADA systems, SDN-assisted middleware can

also be used between enterprise networks, data centers, or service provider networks.

It virtualizes the resource allocation process, making it reliable and efficient. Solu-
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tions adapted to those specific scenarios should be developed.

The control plane provides APIs to various applications. Therefore, it is convenient

to develop third party software to employ some sophisticated functions. The appli-

cations can contribute to open source communities.

5.3 Summary

In this chapter, we conclude our work and identify some possibilities for future

research. Various interesting problems or topics can be extended in the future. We

believe the concept of software-defined will enable innovations in many areas beyond

the problem discussed in this thesis.
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