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ABSTRACT

In the study of regional economic growth and convergence, the distribution dynamics

approach which interrogates the evolution of the cross-sectional distribution as a whole and

is concerned with both the external and internal dynamics of the distribution has received

wide usage. However, many methodological issues remain to be resolved before valid

inferences and conclusions can be drawn from empirical research. Among them, spatial

effects including spatial heterogeneity and spatial dependence invalidate the assumption of

independent and identical distributions underlying the conventional maximum likelihood

techniques while the availability of small samples in regional settings questions the usage

of the asymptotic properties. This dissertation is comprised of three papers targeted at

addressing these two issues. The first paper investigates whether the conventional regional

income mobility estimators are still suitable in the presence of spatial dependence and/or

a small sample. It is approached through a series of Monte Carlo experiments which

require the proposal of a novel data generating process (DGP) capable of generating spatially

dependent time series. The second paper moves to the statistical tests for detecting specific

forms of spatial (spatiotemporal) effects in the discrete Markov chain model, investigating

their robustness to the alternative spatial effect, sensitivity to discretization granularity, and

properties in small sample settings. The third paper proposes discrete kernel estimators with

cross-validated bandwidths as an alternative to maximum likelihood estimators in small

sample settings. It is demonstrated that the performance of discrete kernel estimators offers

improvement when the sample size is small. Taken together, the three papers constitute an

endeavor to relax the restrictive assumptions of spatial independence and spatial homogeneity,

as well as demonstrating the difference between the small sample and asymptotic properties

for conventionally adopted maximum likelihood estimators towards a more valid inferential
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framework for the distribution dynamics approach to the study of regional economic growth

and convergence.
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Chapter 1

INTRODUCTION

1.1 Background and Purpose of the Research

The study of economic growth and convergence has been greatly developed both

theoretically and methodologically since the publication of the seminal paper of Baumol

(1986). Many studies are centered around the famous β-convergence hypothesis implicated

by Solow growth theory (Solow, 1956; Barro and Sala-i Martin, 2003). The hypothesis

refers to the situation where poorer economies are catching up with richer ones in per

capita incomes and has been examined in numerous international and regional settings

using various econometric techniques ranging from cross-sectional econometrics, time

series econometrics to dynamic panel econometrics (Durlauf, 2001; Durlauf et al., 2005).

The benchmark for testing for the β-convergence hypothesis is the convergence equation

where the dependent variable is the average annual growth rate of per capita incomes and

the independent variable the logarithm of the initial per capita income. A conclusion of

absolute convergence could be drawn if the estimated coefficient is negative and statistically

significant. Various extensions to the benchmark regression equation have been made to

account for potential heterogeneity of steady states as well as exploring interactions among

economies. The former may give rise to conditional convergence if independent variables

determining the steady states are added to the right side of the equation (Mankiw et al.,

1992), club convergence if there exist a multitude of steady state equilibria and convergence

rates, or local convergence if convergence rates vary across economies but are more similar

for closer economies (definition of closeness may vary). The latter could be addressed by

1



relaxing the assumption of closed economies, that is, substituting them with open economies

(Barro and Sala-i Martin, 2003). Though a general conditional β-convergence consensus

seems to be reached, the perspective on the concrete rate of convergence varies from “Iron

law of convergence” contending an about 2% cross-country conditional convergence rate

(Barro, 2015, 2016) to the recognition of a wide range of empirical convergence rates (as

high as 65.59%) produced in numerous empirical studies (Abreu et al., 2005).

Another important notion of convergence is the so-called σ-convergence which hy-

pothesizes a diminishing tendency of cross-sectional variance in per capita incomes over

time (Islam, 2003). σ-convergence is not necessarily implied by the aforementioned

β-convergence since it is also impacted by the variance of random shocks occurring to

individual economies. Compared with β-convergence, which is usually investigated in a

confirmatory framework, σ-convergence is often examined in an exploratory setting.

Both of these convergence notions and approaches have their limitations. β-convergence

implicitly assumes a steady-state growth path well approximated by a time trend for each

economy, which is not born out by empirical data (Quah, 1993a). In addition, most coefficient

estimates for the β-convergence regression are not robust to alternations in the conditioning

variables (Levine and Renelt, 1992). As for σ-convergence, it is only concerned with the

dynamics of the variance, which is the second moment of the cross-sectional distribution,

and neglects the changes in all the other properties. In light of these limitations, Quah

proposed the distribution dynamics approach in early 1990s aimed at revealing a more

complete picture of the dynamics of the cross-sectional per capita income distribution while

imposing fewer assumptions about the underlying dynamics (Quah, 1993a,b, 1996a, 1997).

Specifically, the distribution dynamics approach interrogates the evolution of the cross-

sectional distribution as a whole and is concern with both external and internal dynamics

of the distribution. The external dynamics refers to changes in the overall morphological

2



properties of the distributions, such as shape, modality, variance and polarization, while

the internal dynamics concerns about the mixing and transitions of individual economies

from one part of the distribution to another over time, shedding light on the persistence or

mobility of the economies in terms of per capita incomes (Quah, 1996b). Two main types of

mobility notions are of interest, structural mobility and exchange mobility (Ruiz-Castillo,

2004). The former measures absolute income changes over time while the latter measures

income changes relative to one another. When one is silent in some cases, the other might be

able to identify some important mobility patterns. For example, if all the regions encounter

the same level of economic growth, their income rank positions remain unchanged. In

this case, the exchange mobility measures would not pick up anything while the structural

mobility measures could. On the other hand, if the regions only exchange income values, the

structural mobility measures would be silent while the exchange mobility measures would

not. Thus, these two types serve as complements to one another.

The distribution dynamics approach projects the cross-sectional distribution at t to the

future t + s. The projection operator could be a stochastic kernel (Villaverde and Maza,

2012), or a (k, k) transition probability matrix if the per capita income data are discretized

into k income classes. The latter is related to the discrete Markov chain (DMC) model which

has a well-developed theory and thus invites more empirical applications. One essential

property of the DMC model is the limiting (or steady state) distribution in the long run

which echoes the steady states implicated by the Solow growth theory. The difference is that

the former implicates the long run in a stochastic sense, claiming the probability of falling

into each income class stays the same over time and allowing for transitions between classes,

while the latter is deterministic, leaving no space for leapfrogging.

Many empirical studies of economic growth and convergence have been conducted from

a regional (subnational) point of view aimed at evaluating and guiding regional policies for
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eliminating or alleviating regional inequality (Bode and Rey, 2006). Adopting region as the

unit of analysis invites new challenges as regions are usually classified into geographically

connected groups at which different regional policies are targeted and they are characterized

by profoundly higher degrees of openness than nations potentially inviting strong spatial

interactions (Magrini, 2004). The former characteristic could lead to spatial heterogeneity

which is related to the lack of stability over space in the growth/convergence process. More

precisely, it implies that functional forms or parameters vary with location and are not

homogeneous throughout the dataset. The latter leads to spatial dependence, which could be

best summarized by Tobler’s first law of geography: “everything depends on everything else,

but closer things more so” (Tobler, 1970). It may be part of the growth process if originating

from spatial interactions among economies such as knowledge flows through trade, foreign

direct investment, technology transfers or human capital externalities - substantive spatial

dependence. Or, it could be nuisance spatial dependence due to mismatched boundaries

induced by data collection (Anselin, 1988). Since either spatial heterogeneity or spatial

dependence invalidates the independently and identically distribution (i.i.d) assumption

underlying the aforementioned classic approaches, these classic approaches need to be

extended or adjusted to properly address either form of spatial effect in regional economic

growth and convergence (Abreu et al., 2004; Rey and Janikas, 2005).

Various attempts have been made to address spatial effects in the three approaches.

For testing for β convergence, two perspectives exist. From a model-driven (theoretical)

perspective, the classical closed-form Solow growth theory is augmented to model spatial

externalities based on which a convergence equation with spatial components could be

derived and estimated using spatial econometric techniques (López-Bazo et al., 2004;

Egger and Pfaffermayr, 2006; Ertur and Koch, 2007; Fischer, 2011, 2016). From a

data-driven perspective, modern spatial econometrics techniques are performed on the
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benchmark (conditional) convergence equation where general-to-specific or specific-to-

general specification search is conducted leading to the specification of a spatial autoregressive

model (SAR), a spatial error model (SEM) or a spatial Durbin Model (SDM) (Rey and

Montouri, 1999; Florax et al., 2003; Lesage and Fischer, 2008; LeSage and Pace, 2009).

Substantive spatial dependence has been demonstrated in numerous studies, pointing to

an explicit spatial econometric specification (Arbia, 2006). Evidence of discrete spatial

heterogeneity in the form of spatially explicit club convergence has been found in European

regions (Fischer and Stirböck, 2006; Piribauer, 2016) and Chinese counties (Qin et al., 2013).

Here, clubs are comprised of contiguous regions close to one another. Local convergence

which refers to the situation where convergence rates vary across regions but are more

similar for geographically closer regions has also been found in European regions (Ertur

et al., 2007).

It was demonstrated that the empirical sample variance is a combination of aspatial

variance and a component capturing spatial dependence and/or spatial heterogeneity in a

regional context for σ convergence (Rey and Dev, 2006; Egger and Pfaffermayr, 2006). In

other words, the real cross-sectional variance could be overestimated because of potential

spatial effects. Evidence was found that the trend in σ convergence of US states 1979-2000

was mostly driven by the dynamics of spatial dependence instead of the dynamics of real

cross-sectional variance.

The distributional dynamics approach has also received attention in addressing potential

spatial effects. The concept of a spatially conditioned stochastic kernel was proposed by

Quah (1997) which maps the distribution of cross-sectional incomes to that of the weighted

average of neighbors at the same period. In light of its ignorance of temporal dynamics of

the income distribution, Rey (2001) proposed the spatial Markov chain model as a spatial

extension of the classic Markov chain model which conditions the transitional dynamics
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on the regional context. It is said that the probability of transitioning to a specific income

class at next period is not only dependent on the current income class but also on the current

income levels of neighbors. Another extension to the classic Markov chain model which

incorporates discrete spatial heterogeneity is to estimate m transition probability matrices

from m subsamples (regimes) of regional time series (Bickenbach and Bode, 2003).

Many methodological issues remain to be resolved in incorporating spatial effects

in the distributional dynamics approach (Rey, 2015). Focusing on the discrete Markov

chain framework, underexplored issues include the choice of discretization strategy, the

specification search, the tests for spatial effects, the properties of the maximum likelihood

estimators conventionally used for estimating transition probabilities to the presence of

spatial heterogeneity and/or spatial dependence as well as in small sample settings. This

dissertation attempts to address some of the issues towards providing an improvement to the

current distributional dynamics approach.

1.2 Significance and Contributions

The dissertation is comprised of three potentially publishable papers, each focusing on

specific issues related to the spatial dimensions of the distribution dynamics approach to the

study of regional economic growth and convergence.

The first paper focuses on several regional income mobility measures which are derived

from the Markov transition probability matrix, and looks at whether there is a significant

impact of spatial dependence on the statistical inference about these measures, and what

the form of the impact would be if there is any. The nature of the issue is similar to that

for σ convergence (Rey and Dev, 2006; Egger and Pfaffermayr, 2006). That is, properties

of conventional estimators assuming i.i.d might be impaired and thus the inference could
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be sabotaged if the spatial effects are left unattended. The difference is that the measures

considered here have a temporal dimension, which complicates the issue. The issue is

approached via a series of Monte Carlo experiments which requires the proposal of a novel

data generating process (DGP) capable of generating spatially dependent time series given a

transition probability matrix and the strength of the spatial dependence. An attempt towards

the correction of these statistics to maintain proper size and power properties in the presence

of spatial dependence is also made.

The second paper moves to the statistical tests for detecting specific forms of spatial

(spatiotemporal) effects in the discrete Markov chain model, including two forms of

spatiotemporal dependence, temporally lagged spatial dependence and contemporaneous

spatial dependence, as well as spatial heterogeneity. Though the asymptotic properties

can be constructed for these tests, the small sample properties remain unexplored. If the

asymptotic properties significantly deviate from finite sample properties, invalid inference

and conclusions would be made in empirical settings where the available regional income

dataset usually spans a quite short period. In addition, Rey et al. (2016) provide evidence

of the non-robustness of the test for temporally lagged spatial dependence to that for

spatial heterogeneity and vice visa. It is unclear whether the test for contemporaneous

spatial dependence suffers from the same issue. Further, the sensitivity of the tests to the

discretization granularity of regional incomes is also unclear. A series of Monte Carlo

experiments are conducted to shed light on these issues and provides guidance for employing

these tests in empirical studies.

The third paper is devoted to addressing the poor behavior of conventionally used

maximum likelihood estimators (MLEs) for transition probabilities in small sample settings.

More precisely, MLEs could easily give rise to zero estimates of probabilities when sample

size is small compared to the number of classes k, constituting a sparse transition matrix
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which has quite different properties from a non-sparse matrix. The sparsity issue becomes

more relevant for the spatial Markov chain model which requires estimating a larger number

of parameters. I find most empirical studies of regional income distribution dynamics

employing this model produced a large portion of zero transition probabilities, such as the

US (Rey, 2001), China (Pu et al., 2005) and Europe (Le Gallo, 2004; Maza et al., 2012).

Therefore, estimators which avoid producing too many zero probability estimates and better

recover the true underlying dynamics in small sample settings are desirable. The chapter

follows Kullback et al. (1962) and views the (k, k) transition matrix for the classic Markov

chain model and the (k, k, k) transition matrix for the spatial Markov chain model as two-way

and three-way conditional contingency tables in the sense that all the cells are filled with

conditional rather than joint probabilities. Then I modify the smoothing techniques for

high-order contingency tables and the relevant cross-validation technique for smoothing

parameter selection to suit the conditional contingency tables for Markov and spatial Markov

chain models. Monte Carlo experiments are conducted for a comparison of the proposed

smoothed estimators and MLEs.

Taken together, the three papers constitute an endeavor towards methodological improve-

ments of the discrete Markov chain approach in studying regional economic growth and

convergence. Spatial effects and small sample sizes which are commonly encountered in

practice are the two main themes. By relaxing the restrictive assumptions of spatial inde-

pendence and spatial homogeneity, as well as demonstrating the difference of small sample

properties and asymptotic properties for conventionally adopted MLEs, the dissertation

seeks to improve spatially explicit distributional dynamics approaches towards a more valid

inferential framework for regional economic growth and convergence.
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1.3 Organization

The rest of the dissertation is comprised of four chapters. Chapter 2 presents the

paper focusing on impacts of cross-sectional spatial dependence on regional income

mobility measures and attempts to correct for the dependence. Chapter 3 is the paper

on exploring issues related to statistical tests for detecting spatiotemporal dependence

and spatial heterogeneity in the discrete Markov chain model, including robustness to the

the other form of spatial effect, small sample properties, and sensitivity to discretization

granularity. Chapter 4 presents the paper on proposing discrete kernel estimators with

cross validation-based smoothing parameters selection for producing less sparse transition

probability matrices for the classic and spatial Markov chain models in small sample settings.

Chapter 5 concludes with main findings, limitations and potential research directions.
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Chapter 2

INFERENCE OF INCOME MOBILITY MEASURES IN THE PRESENCE OF SPATIAL

DEPENDENCE

2.1 Introduction

Income inequality is an important subject of interest around the world. Many indices

intended for measuring the income inequality of an economic system at a given time point

have been developed and popularized, including but not limited to the Gini index, coefficient

of variation and Theil’s measure (Allison, 1978; Shorrocks, 1980). However, concern is not

only about individuals’/households’ current economic status, but also where they would end

up and their lifetime welfare (Creedy and Wilhelm, 2002; Ruiz-Castillo, 2004; Khor and

Pencavel, 2008). It is becoming increasingly recognized that a static view of the income

distributions cannot reveal the whole picture, and that the dynamics of income distribution

shapes social welfare as well (Schorrocks, 1978; Chakravarty, 1995; Maasoumi, 1998).

Thus income mobility measures, which evaluate the changes in economic status over time or

generations, serve as a complement to income inequality measures to reveal a fuller picture

of income inequality dynamics and social welfare (Fields and Ok, 1996, 1999).

Similar issues arise when the focus shifts from the distribution of incomes taken over

individuals/households in a society to the question of income distributions of regions

(Rey, 2015). That is, in a national system what are the properties of the distribution of

regional incomes, and how do these evolve over time? Similarly, regional income mobility

measures offer a concise way to reveal the mobile nature of the regional income distribution

and serves as a complement to regional income inequality measures. There are two main
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types of income mobility: structural mobility and exchange mobility (Ruiz-Castillo, 2004).

The former measures absolute income changes over time while the latter measures income

changes relative to one another. When one is silent in some cases, the other might be able

to identify some important mobility patterns. For example, if all the regions encounter

the same level of economic growth, their income rank positions remain unchanged. In

this case, the exchange mobility measures would not pick up anything while the structural

mobility measures could. On the other hand, if the regions only exchange income values, the

structural mobility measures would be silent while the exchange mobility measures would

not. Thus, these two types serve as complements to one another.

Statistical inference about regional income mobility measures is of great importance

if a confidence interval is to be constructed for the estimate (Schluter, 1998), let alone

when it comes to a comparison of two regional systems. Rey and Ye (2010) compared the

regional incomemobility 1978-1998 between the U.S. and China based on permutation-based

sampling distributions. The theoretical inference framework has been built in Trede (1999)

assuming regional time series are independently and identically distributed. However,

spatial effects including spatial dependence and spatial heterogeneity are known as more

of a rule than exception in a regional context, which poses a serious question: would the

spatial effects impair classic inference so significantly that they could not be ignored? This

question motivates the research presented in the chapter. Here, I focus on the so-called

Markov-based mobility measures. I expect to expose the nature of the impact of spatial

dependence on the inference through a series of Monte Carlo simulation experiments. To

do this, I propose a novel data generating process (DGP) capable of generating spatially

dependent Markov chains given a transition probability matrix and the strength of spatial

dependence. Results suggest that spatial dependence does have a major influence on the

properties of the mobility estimators and relevant test statistics. Though it does not bias the
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maximum likelihood estimators (MLEs) of the mobility measures, it dramatically increases

the variances of their sampling distributions, raising the Type I error rate for one-sample

tests. As for the two-sample tests, the size tends to become increasingly upward biased with

stronger spatial dependence in either income system while the power decreases with stronger

spatial dependence. The asymptotic properties originating from MLEs do not hold well for

small sample sizes: not only the variance is underestimated, but also the MLEs are biased.

For the rest of the chapter I first introduce the definition of three mobility measures,

as well as the respective estimators, one-sample and two-sample test statistics. Then a

novel data generating process for producing spatially dependent Markov chains is proposed

and adopted in a series of Monte Carlo simulation experiments intended for examining the

properties of the aforementioned mobility estimators and test statistics. Next I discuss the

experiment results and propose adjustments to the critical values of the tests on purpose

of maintaining proper size and power properties. In the end I conclude and suggest some

further research directions.

2.2 Regional Income Mobility Measures

In this chapter, I focus on Markov-based mobility measures. The motivation is that

Discrete Markov Chain (DMC) theory has been widely applied in studying regional income

dynamics and convergence (e.g. Quah (1996a); Le Gallo and Chasco (2008); Liao and Wei

(2012); Rey and Gutiérrez (2015)) since the estimated transition probability matrix PPP can

reveal abundant information on transition probabilities across states over time. However, the

matrix PPP, comprised of m2 elements (m is the number of discrete states adopted to discretize

the income dataset), is not as simple and straightforward as a single index especially when it

comes to comparing two regional income systems. In this context, several Markov-based
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mobility measures have been proposed in the literature, all of which can be calculated from

the estimated transition probability matrix.1 Thus, I start by briefly introducing DMC theory

and then proceed to derive the relevant mobility measures.

2.2.1 Discrete Markov Chains (DMC)

As mentioned before, the transition probability matrix PPP, which is the core of DMC,

contains information regarding mobility across discrete states over time. Equation (2.1)

displays an example of such matrix in which pi j represents the probability of transitioning

from state i to state j over a given time interval.

PPP =



p11 p12 · · · p1m

p21 p22 · · · p2m

...
...

. . .
...

pm1 pm2 · · · pmm


, 0 ≤ pi j ≤ 1,

m∑
j=1

pi j = 1 ∀ i, j ∈ S = {1, 2, · · · ,m}. (2.1)

Here m states are adopted to discretize the income data. Class boundaries, as well as

preliminary transformations of incomes, are determined by the user. Cautions should be

taken when making such decisions as different strategies might lead to different results and

conclusions regarding income dynamics. For further discussion on the issue, please refer to

Rey (2015).

Each row ofPPP could be viewed as a multinomial distribution conditioned on the preceding

state. For example, the second row ofPPP represents the respective probabilities of transitioning

to each of the m states at t given that an observation was in the second state at t − 1. Since

1Refer to Shorrocks (1976), Formby et al. (2004), and Trede (1999) for a comprehensive survey of
Markov-based mobility measures.
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these multinomial distributions are conditionally independent, the maximum likelihood

estimator for each individual transitional probability could be derived as shown in Equation

(2.2) where ni j is the number of transitions from state i to state j (Anderson and Goodman,

1957). Usually, a single transition probability matrix is estimated from the pooled income

data across space and time. For the matrix to hold as the “ubiquitous” dynamic rule, several

assumptions must be valid. Shorrocks (1976) presented three major assumptions:

1. First-order Markov: the income dynamic system has such a short memory that its

current state is only influenced by the immediate past.

2. Population homogeneity: the same transition probabilities apply to all the regions

being studied.

3. Time homogeneity: the transition probabilities remain constant over time.

p̂i j =
ni j∑m

q=1 niq
. (2.2)

However, meticulous inspection of the above assumptions reveals its potential defect for

applications in regional contexts. If there exists cross-sectional spatial dependence (Rey

et al., 2016), which is very much likely, the assumption of random sampling that underlies

the properties of the maximum likelihood estimators of the transition probabilities will be

violated. As such the properties of these estimators and any mobility measure derived from

them may be impaired.
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2.2.2 Mobility Measures

A continuous real function M(· ) is defined over the set of transition probability matrices

to produce a real-value mobility measure. I concentrate on the following three mobility

measures:

M1(PPP) =
m −

∑m
i=1 pii

m − 1
, (2.3)

M2(PPP) = 1 − |det(PPP)|, (2.4)

M3(PPP) = 1 − |λ2 |. (2.5)

where det(PPP) is the determinant of PPP and λi represents the eigenvalue of PPP and 1 =

|λ1 | > |λ2 | > · · · > |λm |. M1 can be considered as the probability of leaving a class. As

demonstrated in Prais (1955), the expected length of stay in class i is 1
1−pii

. Normalizing

the reciprocal of the harmonic mean of the expected length of stay for every class by n
n−1

produces M1 (Shorrocks, 1978). M2 is the difference between 1 and the absolute value of

the determinant of the transition probability matrix (Shorrocks, 1978). The final measure

utilizes the absolute value of the second largest eigenvalue and deducts it from 1 (Sommers

and Conlisk, 1979). Based on spectral theory, the largest eigenvalue of PPP is 1 (λ1 = 1)

and the remaining ones have absolute values less than 1. What is relevant here is that the

absolute value of the second largest eigenvalue λ2 determines the rate of the convergence of

the Markov chain. That is, the smaller |λ2 | is, the faster the chain converges. I will refer to

these three mobility measures as Shorrocks mobility, determinant mobility, and eigenvalue

mobility respectively in the rest of the chapter.
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For any transition probability matrix with a quasi-maximal diagonal, all of the three

mobility measures take values on [0, 1]2. 0 refers to immobility and 1 perfect mobility.

Intuitively, if the transition probability matrix takes the form of the identity matrix, every

region is stuck in its current state implying complete immobility. On the contrary, when

each row of PPP is identical, current state is irrelevant to the probability of moving away

to any class. Thus, the transition matrix with identical rows is considered perfect mobile.

Although all three mobility measures have the same bounds, we should not expect that they

are comparable to each other. As we shall see later, the mean and variance of these measures

are rather different.

Another important property of mobility measures is monotonicity. Suppose that we

increase one off-diagonal element at the expense of the diagonal element in the same row,

we would expect the mobility measure to be able to pick up the change by raising its value. I

will utilize this property in designing the Monte Carlo experiments.

2.2.3 Statistical Inference

2.2.3.1 Mobility Estimator

The natural estimators for the three mobility measures are M1(P̂PP), M2(P̂PP), and M3(P̂PP)

where P̂PP is a maximum likelihood estimator whose elements are defined in Equation (2.2).

Asymptotically, P̂PP follows a multivariate normal distribution with the variance-covariance

matrix ΣP̂PP defined in Equation (2.6). Here, n is the total number of transitions and π̂i is the

estimate of the probability of falling in state i.

2Please refer to Shorrocks (1978) regarding the definition of the transition probability matrix with a
quasi-maximal diagonal.
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cov(p̂i j, p̂kl) =



p̂i j (1−p̂i j )
nπ̂i

if i = k and j = l,

−
p̂i j p̂il
nπ̂i

if i = k and j , l,

0 else,

(2.6)

To derive the asymptotic variance for mobility measures, the delta-method could be utilized.

Let M(P̂PP) represents any of the three measures.Then, the estimator of the asymptotic variance

for M(P̂PP) is:

σ2
M(P̂PP)
= DΣP̂PPD′, (2.7)

where D is the derivative of M(PPP) with respect to PPP as shown in Equation (2.8) and D′ is

the transpose of D.

D =
∂M(PPP)
∂vec(PPP′)′

. (2.8)

Here, vec converts a matrix into a column vector by stacking the columns on top of one

another. For the three mobility measures studied in this chapter, the derivatives are obtained

as follows (Trede, 1999):

DM1 = −
1

m − 1
vec(III)′, (2.9)

DM2 = −sign(det(PPP))vec(P̃PP
′
)′, (2.10)

DM3 = −vec(P̌PP
′

λ2
)′, (2.11)

where III is the m × m identity matrix, P̃PP is the cofactor matrix of PPP, and P̌PPλ2 is the derivative

of the second absolute largest eigenvalue with respect to PPP.
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With these derivatives in hand, we are able to calculate the asymptotic variance of M(P̂PP).

As shown in Trede (1999), the asymptotic sampling distribution of the estimator for each

of the above three mobility measures follows a normal distribution with mean M(P̂PP) and

variance σ2
M(P̂PP)

. I am going to investigate how the contemporaneous spatial dependence

across regional income time series impacts the properties of each of the three estimators.

2.2.3.2 One-sample test

It might be the case that researchers want to know whether the economic mobility of a

regional system is equal to or lower/higer than a specific level. A one-sample test about the

mobility measure could serve the purpose as shown in Equation (2.12):

z1 =
M − x
σM

, (2.12)

where z1 is the test statistic, M is the observed mobility estimate (for Shorrocks mobility,

determinant mobility, or eigenvalue mobility), x is a value between 0 and 1 representing the

anticipated mobility level we want to test against, and σM is the analytical variance of M.

Because M is asymptotically normally distributed, z1 obeys the standard normal distribution

asymptotically under the null hypothesis H0 : M = x.

2.2.3.3 Two-Sample Test

For a mobility comparison of two income systems, such as US (System A) and China

(System B), a two-sample test is required. Since it is known that the asymptotic sampling

distribution of the estimator is a normal distribution, a two-sample z-test can be utilized to

serve the purpose. The test statistic is defined in Equation (2.13).
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z2 =
M (A) − M (B)√
σ2

M (A)
+ σ2

M (B)

, (2.13)

where M (A) and M (B) are mobility measures estimated from income dynamic systems A

and B based on the same mobility function, such as M1, M2, or M3. The null hypothesis

is H0 : M (A) = M (B) while three alternatives can be specified as Ha : M (A) , M (B),

Ha1 : M (A) > M (B) and Ha2 : M (A) < M (B), leading to the two-tail test, upper-tail test, and

lower-tail test. Under each null, the asymptotic sampling distribution of the test statistic is

the standard normal distribution, that is, z2 ∼ N(0, 1).

Various factors might impact the properties of this test statistic as it concerns two systems.

Interaction between two income systems is one potential cause, though I am not going to

investigate it in this chapter. I will always assume that the two systems being compared

are independent of one another. Another factor concerns about the discretization strategy.

Application of identical classification boundaries to the real income values of the two systems

appears to be the natural way to proceed, but the possible unequal development status (such

as China and US) will lead to an almost absolute rejection of the null. Normalizing the real

incomes by the average and then using the quantile discretization strategy seems to be a

better way to go. Here, the mobility comparison considered is more likely a relative mobility

rather than an absolute one.

In addition to these two issues, contemporaneous spatial dependence across regional

income time series in either system might impair the properties of the test statistic. I will

investigate its impact via a series of Monte Carlo simulation experiments.
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2.3 Monte Carlo Experiment

In this section, I introduce a series of Monte Carlo simulation experiments which are

designed to examine the impact of contemporaneous spatial dependence between regional

time series on the properties of mobility measure estimators and relevant test statistics. Here,

the spatial dependence I consider is the so-called substantive spatial dependence rather than

nuisance spatial dependence (Anselin, 1988). The former is part of the underlying process

while the latter is not.

2.3.1 Data Generating Process

That all the three mobility measures are derived from the transition probability matrix

PPP makes PPP the core of the data generating process (DGP). That is, a DGP generating time

series mimicking the Markov chain governed by the transition matrix PPP needs to be proposed.

The other significant factor to be incorporated in the DGP is the contemporaneous spatial

dependence between time series. In the following sections, I first introduce a common

approach to simulating a Markov chain given PPP, followed by an extended approach to

simulating a set of spatially dependent Markov chains given PPP and spatial dependence level

ρ.

2.3.1.1 Generating a Markov Chain

The most common approach to producing a realization of a first-order Markov chain

{X0, X1, . . . , Xt}, t > 0 utilizes the continuous uniform distribution defined over the range

(0, 1). The cumulative distribution function (CDF) for the uniform distribution is a simple
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diagonal line F(x) = x, x ∈ (0, 1). Starting with a simple two-state Markov chain with the

transition probability matrix PPPp defined in Equation (4.19), we need to transform PPPp into

a “cumulative probability matrix (CPM)” first. As mentioned before, each row of PPPp is a

multinomial distribution conditional on the preceding state. That is to say, if the region is

in state 1 at t, then the probability of transitioning to state 1 and 2 at t + 1 are 0.7 and 0.3

respectively. Similarly, if the region is in state 2 at t, the probability of transitioning to state 1

and 2 at t + 1 are 0.5 and 0.5. To construct the CPM is to calculate cumulative probabilities

for each row. Thus, the CPM for PPPp would be PPPc as shown in Equation (4.19).

PPPp =


1 2

1 0.7 0.3

2 0.5 0.5

 PPPc =


1 2

1 0.7 1.0

2 0.5 1.0

 (2.14)

Suppose we need to simulate a Markov chain with length t > 3 given the initial state

X0 = 2, t random numbers are generated from the continuous uniform distribution. Let’s

say they are u = {0.7, 0.2, 0.8, . . .}. Because X0 = 2, we pick the second row of PPPc to

determine the state at t = 1. As the cumulative probability of the random number 0.7

is 0.7, which is greater than the cumulative probability of the first state 0.5, and smaller

than that of the second state 1.0, we assign 2 to the state at t = 1. The next two states

would be determined in a similar fashion. In the end, we would end up with the simulated

Markov chain {2, 2, 1, 2, . . .}. With t large enough, the maximum likelihood estimation of

the transition matrix would be very similar to the true matrix PPPp.

The rule for determining the state of Xt could be generalized as follows: compare

the cumulative probability cpt of the generated random number ut and the cumulative

probabilities of all m states conditional on Xt−1. That is to say, if Xt−1 = k, k ∈ {1, 2, . . . ,m},

the kth row row of the CPM would be utilized. If cpt < CPMk1, assign 1 to Xt; if not,

proceed to CPMk2. If cpt < CPMk2, 2 is assigned to Xt; if not, proceed to the next state
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CPMk3. Since the cumulative probability of the last state is always 1, Xt should always be

rightfully determined.

To summarize, the procedures of producing a T-long realization of a Markov chain given

a initial state X0 and a transition probability matrix PPP are:

1. Construct the CPM of PPP.

2. GenerateT random samples (Markov innovations) {u1, u2, . . . uT } from the continuous

uniform distribution. Set j = 1.

3. Use the above determination rule to find the state for X j .

4. If j < T , repeat step (3); otherwise stop.

In the case of a collection of N regions, we can repeat this process N times to generate

N independent Markov chains. If we collect the Markov innovations in the matrixUUU of size

N × T , we note that each pair of rows i , j have pairwise 0 covariance cov[UUUi,.,UUU j,.] = 0.

In other words, the innovation for region j in period t is independent of the innovation for

region i in the same period.

2.3.1.2 Generating a Set of Spatially Dependent Markov Chains

In the regional setting, we are confronted with a number of time series each of which

is the income trajectory of a specific region. Since common practice is to estimate one

transition probability matrix PPP from the pooled dataset, the implicit assumption would be

that PPP holds for every region. The complication here is that PPP would be a ubiquitous dynamic

rule indeed, but the estimator (Equation 2.2) might be impaired if these time series are

correlated to some degree. My interest lies in the influence of potential spatial dependence

between time series. Thus, a DGP producing a set of spatially dependent time series each of

which is governed by a common given transition probability matrix is required.
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The approach is based on three steps:

1. Construct the CPM of PPP.

2. Draw T samples from an N-dimensional joint normal distribution with a specified

level of spatial dependence. Define this as a matrixUUU with size N × T .

3. Derive N marginal univariate cumulative distribution functions based on which the

cumulative probability of each element i = 1, 2, . . . , n in sample t (t ∈ [1,T]), uit ,

could be obtained.

4. Apply the determination rule to the CPM of PPP and the cumulative probabilities from

the previous step for selecting the next state in the Markov chain currently in state Xit .

For step (b), I employ the spatial lag model (SAR) to produce spatially dependent

cross-sectional data:

UUUt = ρWWWUUUt + εεε t, (2.15)

where UUUt is a (1, N) vector of random variates at time t, ρ ∈ [0, 1) is the level of spatial

dependence constant over time,WWW is the row-normalized spatial weight matrix indicating

the interaction between regions, and εεε t is a vector of random errors independently and

identically distributed as a normal distribution εti ∼ N(µε, σ2
ε ), i ∈ {1, 2, ..., N} (N is the

number of regions). Rewriting Equation (2.15) in reduced form, we acquire:

UUUt = (1 − ρWWW)−1εεε t . (2.16)

Since εεε t follows a multivariate normal distribution, UUUt also follows a multivariate

normal distribution with a variance-covariance matrix whose nondiagonal elements are not

necessarily 0 when ρ is not equal to 0. More specifically,

23



UUUt ∼ N(µε, σ2
ε (I − ρWWW)

−1((I − ρWWW)−1)′). (2.17)

I then convert the these series to the Markov States based on steps 3-4. Note that when

ρ = 0 this approach collapses to the case of simulating N independent discrete Markov chains

as in the previous section, since now the rows of the matrixUUU are pairwise independent. In

contrast, when ρ , 0, the N rows ofUUU are no longer independent and thus the N Markov

chains are spatially correlated.

2.3.2 Simulation Design

A set of simulation experiments which are designed to examine the impact of contempo-

raneous spatial dependence on the sampling distribution of the (three) estimator(s), as well

as the size and power of the (three) test statistic(s) are introduced in this section.

2.3.2.1 Monotone Markov Matrix

As illustrated in before, the DGP requires a specification of a transition probability

matrix PPP. I restrict the research to the so-called monotone Markov matrix, which is usually

encountered in empirical economic analysis. A transition matrix is considered monotone if

each row stochastically dominate the row above it (Conlisk, 1990). As a consequence, the

probability of any region transitioning to better-off states would be higher next period if it is

currently in state i + 1 than i. One important implication of the monotone transition matrix

is given in Dardanoni (1995) as Lemma 1, which states that if two regions are faced with a

common monotone transition probability matrix, the income distribution for region l would

always stochastically dominate that for region h if the initial income distribution for region l
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stochastically dominate that for region h though both regions would converge to a common

steady state distribution in the long run. This echoes the neoclassical economic growth

theory (Barro and Sala-i Martin, 2003) in the sense of all regions monotonically converging

to a common steady state. A major difference to be noticed here is that the neoclassical

economic growth theory describes the income trajectory in a more deterministic sense while

the monotone Markov chain is a stochastic model. Thus, the monotone Markov chain leaves

more space for intradistributional dynamics such as leapfrogging.

2.3.2.2 Experiments for Mobility Estimator and one-sample test

I adopted a 5×5 transition probability matrixP5P5P5which was estimated from the discretized

(quantiles) relative US state income time series 1929-2010 for the DGP. It is obvious that P5P5P5

is a monotone transition matrix:

P5P5P5 =



0.915 0.075 0.009 0.001 0.000

0.066 0.827 0.105 0.001 0.001

0.005 0.103 0.794 0.095 0.003

0.000 0.009 0.094 0.849 0.048

0.000 0.000 0.000 0.062 0.938


. (2.18)

In addition to the transition matrix, the DGP also requires the specification of sample size

(N,T), a spatial weighting matrixWWW , a level of spatial dependence ρ, initial states and the

parameters (µε, σ2
ε ) of the normal distribution for the error term. To investigate whether the

asymptotic properties of the three estimators hold in small sample settings, I incorporated

N = 25, 169 and T = 50, 200 in the simulation experiments. The spatial configuration was a

N
1
2 × N

1
2 regular grid based on which a rook contiguity weight matrix is constructed and
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used in the DGP. I varied spatial dependence levels ρ = 0, 0.2, 0.5, 0.7, 0.9, 0.98 to investigate

the pattern of impacts imposed by dependence and whether there was a threshold value

above which the impact could not be readily ignored. The initial states were randomly

assigned and µε = 0, σ2
ε = 0.5 throughout the experiments.

For each combination of parameters, I simulated the DGP 1, 000 times and built the

empirical sampling distribution for each of the three mobility estimators. Since the “true”

transition probability matrix P5P5P5 is given, I could analytically derive the asymptotic sampling

distribution under the circumstances of no spatial dependence. Comparing the empirical and

analytical asymptotic distributions would shed light on the influence of contemporaneous

spatial dependence in small and large sample settings.

2.3.2.3 Experiments for Two-Sample Test Statistic

To investigate the properties of the two-sample test statistic, I need to simulate two

dynamic systems which requires two transition probability matrices PPP(A) and PPP(B). PPP(A)

serves as the dynamic rule for system A and PPP(B) for system B. As the null hypothesis is that

both systems share a common mobility value, I used the same transition matrix P5P5P5 for both

systems. That is, PPP(A) = PPP(B) = P5P5P5.

To examine the power of the two-sample tests for three different alternatives Ha, Ha1 and

Ha2, I need to come up with another transition probability matrix which is different from the

baseline matrix P5P5P5. The intuitive approach is to adjust the elements of P5P5P5 in a systematic

way so that I have control over the direction and magnitude of the difference in terms of

mobility.

As I have mentioned earlier, all of the three mobility measures have an important property,

monotonicity. Dardanoni (1995) discussed a type of perturbation to a transition matrix
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called “diagonalising shift” which decreases mobility by shifting probability mass towards

the main diagonal. Here, I slightly adjust the approach to make it more systematic and

operable. Instead of shifting towards the main diagonal, I shift from it. In order to control

the magnitude of the shifting, I shift a certain portion β ∈ [0, 1) at a time. As shown in

Equation (2.19), the shifted mass is proportionally assigned to the nondiagonal elements

in each row. For example, if I am to investigate the power of the tests when the mobility

difference between two systems is small, I can adopt a small portion β = 0.01 in the adjusted

diagonalising shift method. Thus, the new transition probability matrix P5P5P50.01 is acquired

as shown in Equation (2.20). By assigning PPP(A) = P5P5P5 and PPP(B) = P5P5P50.01 in the DGP, I

could simulate two regional income systems governed by two different transition probability

matrices.

pnew
ii = (1 − β)pii, i ∈ {1, . . . ,m},

pnew
i j = pnew

i j +
βpii

m − 1
, j ∈ {1, . . . ,m}, j , i.

(2.19)

P5P5P50.01 =



0.906 0.077 0.011 0.003 0.002

0.068 0.819 0.107 0.003 0.003

0.007 0.105 0.786 0.097 0.005

0.002 0.011 0.096 0.841 0.050

0.002 0.002 0.002 0.064 0.929


. (2.20)

When β = 0, the new transition probability matrix would be the same as P5P5P5. To

examine the power of the two sample test, I also varied β = 0.01, 0.03, 0.05 to investigate the

sensitivity of the tests to contemporaneous spatial dependence under different circumstances.

The “true” mobility differences for varied β based on the three measures are shown in Table
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Table 1. True Mobility Differences
Difference M (A) − M (B)

Mobility measure M (A) β = 0.01 β = 0.03 β = 0.05
M1 0.169 -0.011 -0.032 -0.054
M2 0.540 -0.024 -0.068 -0.110
M3 0.041 -0.011 -0.034 -0.057

1. The determinant mobility measure tends to give the largest difference. It is almost twice

the difference obtained from the other two measures.

Besides the two transition matrices, PPP(A) and PPP(B), the other parameters needed for

the DGP were the same as that used in the experiments for mobility estimators. That

is, N = 25, 169, T = 50, 200, a rook contiguity weight matrix for regular lattice, ρ(A) =

0, 0.2, 0.5, 0.7, 0.9, 0.98, ρ(B) = 0, 0.2, 0.5, 0.7, 0.9, 0.98, µε = 0 and σ2
ε = 0.5. For each

combination of parameters, I simulated from the DGP 2, 000 times (1, 000 for PPP(A) and 1000

for PPP(B)). For each set of simulated datasets, I calculated three test statistics, each for one

type of mobility measures, and recorded rejection ratios at the α = 0.05 significance level.

2.4 Results

2.4.1 Sampling Distributions of Mobility Estimators

Let us start with looking at the sampling distributions of three mobility estimators

M1(P̂PP), M2(P̂PP) and M3(P̂PP). As discussed earlier, when the regional time series are free of

spatial dependence, the asymptotic analytical sampling distribution for each measure is a

normal distribution with the mean and variance determined by the underlying dynamic rule

(the transition probability matrix PPP) and the sample size N,T . Since the “true” transition

probability matrix is given, we could easily derive the analytical sampling distribution. By
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comparing it with the empirical sampling distribution constructed from 1000 simulated

samples under various circumstances, we could observe the impact of contemporaneous

spatial dependence as well as sample size.

For Shorrocks mobility estimator M1(P̂PP), Figure 1 shows the asymptotic analytical and

empirical sampling distributions. The red curve depicts the former, while the grey curves the

latter. The darker the grey curve, the higher the level of spatial dependence. Each subplot

represents a different sample size. The subplots in the upper row display the sampling

distributions when T = 50, while those in the lower row T = 200. The subplots in the left

column display the sampling distributions when N = 25, while those in the right column

N = 169. Thus the upper-left subplot shows the case when sample size is fairly small

N = 25,T = 50 and the lower-right one shows a large sample case N = 169,T = 200.

We can observe from the lower-right subplot that when ρ = 0 the empirical distribution

fits quite well with the asymptotic analytical distribution. As ρ increases, it is still a normal

distribution though the variance increases dramatically. The normality of the distribution to

the presence of spatial autocorrelation has been validated by conducting several normality

tests including Kolmogorov-Smirnov test, Shapiro-Wilk test (Shapiro and Wilk, 1965) and

D’Agostino and Pearson’s normality test (D’Agostino and Pearson, 1973), none of which

rejects the null hypothesis of a normal distribution. When spatial dependence is very strong

ρ = 0.98, it can reach 28 times the analytical variance. On the other hand, the mean doesn’t

seem to deviate from the analytical mean until ρ = 0.98.

Moving to the upper-left subplot where sample size is small, the pattern is a little

different. Even when ρ = 0 the empirical distribution doesn’t seem to fit well with the

asymptotic analytical distribution 3. It is a little more dispersed and slightly shifts to the

3Two conservative normality tests, Shapiro-Wilk test and D’Agostino and Pearson’s normality test, reject
the null, though Kolmogorov-Smirnov normality test fails to reject the null.
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Figure 1. Asymptotic Analytical and Empirical Sampling Distributions of the Shorrocks
Mobility Estimator M1(P̂PP).

right of the latter. In other words, the asymptotic properties do not hold for small sample

sizes: not only the variance is underestimated, but also the estimator is biased. Therefore the

actual significance level would be larger than 0.05 leading to a higher Type I error rate even

the regional economic system is exempt from spatial dependence. When there is spatial

dependence between time series at work, both the variance and mean grow dramatically

with ρ increasing.

Figures 2 and 3 show the asymptotic analytical and empirical sampling distributions for

different sample sizes and under varied spatial dependence levels for mobility estimators

M2(P̂PP) and M3(P̂PP). The general pattern is quite similar to Shorrocks mobility estimator
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Figure 2. Asymptotic Analytical and Empirical Sampling Distributions of the Determinant
Mobility Estimator M2(P̂PP).

M1(P̂PP). That is, as the spatial dependence strength becomes stronger, the empirical sampling

distribution would still stay as a normal distribution though the variance grows dramatically

and the mean grows mildly. In addition, the asymptotic properties do not seem to hold well

in small sample settings, at least not when N = 25,T = 50.

The dramatic inflation of the variance makes sense. The contemporaneous spatial

dependence existing in the regional income systems invalidates the i.i.d assumption. The

effective sample size for the transition probability estimator P̂PP is less than N × T . Thus the

actual variance of each element of P̂PP should be larger than what is indicated in Equation
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Figure 3. Asymptotic Analytical and Empirical Sampling Distributions of the Eigenvalue
Mobility Estimator M3(P̂PP).

(2.6). Since all of the three mobility estimators are derived from PPP, their variances would

also be inflated.

2.4.2 Properties of Two-Sample Test Statistics

Results regarding the properties of the two-sample test statistics for the three mobility

measures are discussed in this section.
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Figure 4. Size Properties of the Upper-, Lower- and Two-Tail Two-Sample Tests for M1(PPP).

2.4.2.1 Size

The general pattern for the impact of the contemporaneous spatial dependence on the size

properties for three mobility measures are quite similar. Thus, we focus only on discussing

the results for Shorrocks mobility measure.

The rejection ratios of the null under various circumstances for the two-sample test

statistics for the Shorrocks mobility measure are displayed in Figure 4. The x-axis of each

subplot is indexed by ρ(A), the level of contemporaneous spatial dependence in System A,

and the y-axis indexes the rejection ratio of the null. The upper and lower bounds of the 95%

confidence interval (0.0365, 0.0635) are shown by two black horizontal dashed lines. The

upper-, lower- and the two-tail test are symbolized in blue, green and red lines respectively.
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Figure 5. Size Properties of the Upper-, Lower- and Two-Tail Two-Sample Tests for M2(PPP).

ρ(B), the contemporaneous spatial dependence in System B becomes stronger from the left

to the right subplot. From the top subplot to the bottom, the sample size increases. We

can easily observe that relatively strong spatial dependence in either distribution (such as

ρ(A) = 0.7 or ρ(B) = 0.7) has an significant influence on the size properties. It tends to make

the size biased upward. As the level of spatial dependence in either system becomes higher,

the upward bias tendency becomes stronger. It also seem to be the case that larger sample

size is companied with more upward biased size. Comparing three different alternatives, the

upper- and lower- tests seem to be more robust to spatial dependence than the two-tail test.

This is especially true when ρ(A) or ρ(B) is quite large.

Figure 5 shows the impact of contemporaneous spatial dependence of varied levels on

the size properties of the two-sample test statistics for the determinant mobility measure,
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Figure 6. Size Properties of the Upper-, Lower- and Two-Tail Two-Sample Tests for M3(PPP).

while Figure 6 for the eigenvalue mobility measure. The patterns are rather similar to what

we have observed for the Shorrocks mobility measure.

2.4.2.2 Power

Turning to the power properties of the test statistics, it turns out that they are also similar

among three mobility measures. To save the space, I am only going to discuss results for the

Shorrocks mobility measure in detail4.

Figure 7 displays the rejection ratios when the mobility difference between two income

systems is small (β = 0.01). Since the true mobility difference is negative, rejection ratios

4Results for determinant mobility measure and eigenvalue mobility measure are available upon request.
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of the lower- and two-tail tests shed light on their power properties, while the ratios of the

upper-tail test indicate its robustness as it is not supposed to pick up the negative difference.

The power for the lower- and two-tail tests tends to grow with the sample size: for the

lower-tail test, the rejection ratio increases from 0.146 all the way to 0.957 when both systems

do not suffer from spatial dependence. The reason is that the variance for each of the mobility

in the z test statistic decreases with the sample size N,T . Therefore, the denominator, which

is the difference between the standard deviations for mobilities measured for two economic

systems, decreases with the sample size. Thus facing the same mobility difference, the test

with a larger set of observations tends to reject more. The general pattern for the impacts

of spatial dependence also varies between small and large sample size. Looking at the

first row where sample size is fairly small N = 25,T = 50, it seems that the power for the

two-tail test increases with the spatial dependence level in either system, while the power

for the lower-tail test increases with the spatial dependence level in income system B and

decreases with the spatial dependence level in A. This is also true for some larger sample

cases N = 25,T = 200 and N = 169,T = 50. However, when sample size is quite large as

shown in the bottom row, the power decreases with stronger spatial dependence in either

system. For the upper-tail test, the rejection ratios are always close to 0 except when spatial

dependence is strong in either system and sample size is relatively small.

Increasing the difference between two transition probability matrices (β = 0.03) results

in a stronger mobility difference of −0.068 for Shorrocks mobility measure. As shown in

Figure 8, the power for the both of the lower- and two-tail tests mildly increases with the

spatial dependence level in income system B and decreases with the spatial dependence

level in A when sample size is very small N = 25,T = 50. For larger sample size, both tests

have good power properties. They become less powerful in detecting the mobility difference

when the spatial dependence is stronger in either system. However, as the sample size
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Figure 7. Power Properties of the Upper-, Lower- and Two-Tail Two-Sample Tests for M1

(β = 0.01).

becomes larger, the decreasing trend is more and more negligible. Looking at the third row,

it is clear that the power does not decrease until the dependence is very strong (ρ(A) = 0.9 or

ρ(B) = 0.9).

Turning to the power properties of the tests when the mobility difference is much larger

(−0.110), the patterns are more consistent as shown in Figure 9. Only when the sample

size is quite small does the power decreases as the spatial dependence level in either system

increases. This decreasing trend can be readily ignored when sample size is large: the

power is quite close to 1 even when spatial dependence is strong. The impact of the spatial

dependence is very similar for the other two mobility measures.
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Figure 8. Power Properties of the Upper-, Lower- and Two-Tail Two-Sample Tests for M1

(β = 0.03).

2.5 Adjusting Critical Values

As shown in the last section, contemporaneous spatial dependence inflates variances

of sampling distributions of mobility estimators and raises the Type I error rates for both

one-sample and two-sample tests. I resort to adjusting critical values to their “true" levels in

order to maintain a proper size for the tests. Since I adopted Monte Carlo simulations to

simulate the null where (1) mobility level equals a given level for the one-sample test, and

(2) two regional system are equally mobile for the two-sample test, the empirical sampling

distribution of estimates could be considered as the “true" sampling distribution to the

presence of spatial autocorrelation of varying levels. Thus, the “true" critical values at
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Figure 9. Power Properties of the Upper-, Lower- and Two-Tail Two-Sample Tests for M1

(β = 0.05).

the 5% significance level for a two-sided test are the 25th and 975th of the ordered 1000

estimated test statistics.

2.5.1 One-sample test

For the one-sample test in Equation (2.12), assigning the “true" mobility level which is

used as a simulation parameter (as shown in second column (M (A)) of Table 1) to x would

give z1 estimates under the null. Therefore, the z1 statistics estimated from 1, 000 realizations

should follow the standard normal distribution N(0, 1). By testing those estimates against

N(0, 1), we could know whether the empirical distribution deviates significantly from N(0, 1)

and thus whether adjustments are needed.
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Figure 10. Empirical Critical Values of a One-Sample Two-Tail Test for M1(PPP) .

Focusing on the Shorrock mobility measure, I plot the upper and lower empirical critical

values for its one-sample test where testing for N(0, 1) is rejected in Figure 10. Similar to

before, each subplot represents a specific sample size and the x-axis indexes contemporaneous

spatial autocorrelation level (ρ). From the plot, we could discern that adjustment is needed

for all cases when sample size is small. On the opposite, for a large sample size as shown

in the lower-right subplot, the critical values −1.96 and 1.96 obtained from N(0, 1) could

well serve the purpose for regional systems which are not highly spatially autocorrelated

(ρ < 0.5). However, strong spatial autocorrelation inflates critical values more severely for

larger sample sizes. Results for the other two mobility measures are similar and are available

upon request.
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2.5.2 Two-sample test

Turning to the two-sample test (Equation (2.13)), since the test statistic z2 follows a

standard normal distribution asymptotically, I adopt a similar approach. That is, I test for

the standard normal distribution and obtain empirical critical values for cases where the

tests are rejected. Those empirical critical values are visualized in Figure (11). The plots

suggest that when both regional systems are strongly spatially autocorrelated, the critical

values have to be increased for the comparison to be statistically valid. What’s more, the

inflation of critical values gets more severe with the increasing spatial autocorrelation level

in either system. If both regional systems are weakly spatially autocorrelated, there is no

need to make adjustment 5.

2.6 Conclusion

Regional income mobility measures are a useful complement to the inequality measures

as they allow for a fuller understanding of regional income systems and their dynamics.

However, the potential interactions between regions invalidate the i.i.d assumption of classic

statistical inference, posing a significant challenge to the statistical inference regarding

mobility measures. This challenge is rather pertinent in the regional context as the notion

of spatial dependence being a rule instead of an exception is widely acknowledged. This

chapter takes up the challenge and explores the impacts of spatial dependence on the mobility

inference via a series of Monte Carlo simulation experiments.

I focused on three Markov-based mobility measures, and found that the impacts from

5Results for the other two mobility measures are available upon request.
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Figure 11. Empirical Critical Values of a Two-Sample Two-Tail Test for M1(PPP) .

spatial dependence are rather similar. Dependence does have a major influence on the

properties of the mobility estimators, one-sample and two-sample test statistics. It does

not bias the mobility estimators when the spatial dependence is not extreme, but does

dramatically increase the variances, leading to a inflated Type I error rate for a one-sample

test. As for the two-sample test, the size tends to become more and more upward biased with

increasing spatial dependence in either income system, which indicates that conclusions

about differences in mobility between two different regional systems need to drawn with

caution as the presence of spatial dependence can lead to false positives. The reason for the

size distortion is due to the inflated variance of the test statistics. For the power properties,

the impact has a mixed pattern in small sample settings, while when sample size is large

the power decreases with stronger spatial dependence. Since the size is upward biased

when there is spatial dependence in either income system, the power acquired based on the
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theoretical critical value would be inflated. Therefore, the actual power under the impact of

spatial dependence is quite low.

Having found that spatial dependence impacts on the properties of mobility estimators

and related tests, I attempted to account for the dependence by making adjustments to the

critical values based on the results acquired from the Monte Carlo experiments. I have

also tested the empirical distributions of the test statistics against its analytical asymptotic

distribution - N(0, 1) to differentiate cases where the impact of spatial autocorrelation is so

trivial that an adjustment is not needed. It turns out that there is no need to make adjustment

under the circumstance of a relatively large sample size and weak spatial dependence.

Further research could be directed to the generalization of the adjustments to incorporate a

wider range of cases. Empirical applications of the adjusted one-sample and two-sample

tests are of great potential once a general formula is readily available.

Other approaches to accounting for spatial dependence could also be promising. Among

them, parametric and nonparametric spatial filtering methods (Anselin, 1988; Getis and

Griffith, 2002; Griffith and Chun, 2014) are tractable and commonly used. They treat the

spatial dependence as nuisance and attempt to filter out spatially correlated components

while leaving the independent components as the input for classic inference. We could also

resort to the spatial bootstrap technique (Nordman et al., 2007; Cavaliere et al., 2015) which

extends the conventional bootstrap to take account of dependence structure in the resampling

process.
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Chapter 3

CONDITIONAL AND JOINT TESTS FOR SPATIAL EFFECTS IN DISCRETE

MARKOV CHAIN MODELS OF REGIONAL INCOME DISTRIBUTION DYNAMICS

3.1 Introduction

Discrete Markov Chain (DMC) models have been widely applied to the study of regional

income distribution dynamics and convergence for the past 20 years (Quah, 1996a). A

vast number of studies apply a first-order time-homogeneous DMC to the discretized per

capita income data measured for a set of regional units and for a number of years with the

implicit assumption that time series are pairwise independent and obey the same transitional

dynamics rule (i.i.d. assumption). However, in the regional context, spatial effects including

spatial heterogeneity and spatial dependence, if present, will invalidate the assumption.

Ignoring space may give rise to misleading conclusions regarding transitional dynamics and

convergence (Arbia et al., 2006).

Amongst the literature of regional income growth and convergence, the definition of

spatial heterogeneity is similar to that in a cross-sectional context - underlying mechanisms

are different across space due to differences in structural characteristics, giving rise to spatial

regimes or spatial convergence clubs (Ertur et al., 2006). In the DMC framework, spatial

heterogeneity means that different transitional dynamics rules hold across spatial regimes

(Rey and Gutiérrez, 2015). Obviously, spatial heterogeneity invalidates the i.i.d. assumption.

In the spatiotemporal context, spatial dependence can take more complex forms than

in a pure cross-sectional context. Two types of spatial dependence can be differentiated,

contemporaneous spatial dependence and temporally lagged spatial dependence. The former
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is similar to the spatial dependence in a cross-sectional context in the sense of nonzero

covariance between incomes of regions and their neighbors at the same time point (Rey et al.,

2012). The latter only exists in the spatiotemporal setting as it describes the phenomenon

that current income of a region is influenced by that of its neighbors at the preceding

time point (Rey, 2001). Both of these two types of spatial dependence can be reasonably

anticipated because of potential trade, migration, and technological spillovers among regions

(Hammond, 2004; Le Gallo, 2004; Pu et al., 2005; Liao and Wei, 2012). Either type impairs

the i.i.d. assumption.

In light of this, several test frameworks for spatial effects in DMC have been proposed.

The Conditional Spatial Markov Chains (CSMC) test framework consists of two test statistics,

a likelihood ratio test statistic and a χ2 test statistic (Bickenbach and Bode, 2003; Anderson

and Goodman, 1957). Each can be used to test for temporally lagged spatial dependence

and spatial heterogeneity by specifying a particular form of conditioning. If temporally

lagged spatial dependence is to be detected, neighbors’ preceding income level serves as

the conditioning. Similarly, to test for spatial heterogeneity, conditioning is formed through

a spatial regime, which is a group of regions governed by the same transitional dynamics.

The Joint Spatial Markov Chains (JSMC) test framework, consisting of χ2 test statistic of

independence, can be used to detect contemporaneous spatial dependence (Rey et al., 2012).

Instead of conditioning on neighbors’ preceding income levels, it is aimed at testing the

(in)dependence of simultaneous spatial dynamics, that is, whether the transitional dynamics

a region faces are independent of that faced by its neighboring regions during the same time

interval.

All of these test statistics asymptotically obey χ2 distributions with appropriate degrees

of freedom. However, the small sample properties are of great significance for practice.

Indeed, available regional income time series span 100 years at most and the number of
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regional units is not large (for example N = 48 if US contiguous states are to be considered).

Rey et al. (2016) investigated this issue by simulating Vector Autoregressive (VAR) models

with and without spatial effects, based on which the size, power and robustness properties of

CSMC tests (likelihood ratio and χ2 test statistics) were examined and evaluated. It turns

out that all four test statistics (two for spatial dependence and two for spatial heterogeneity)

display good size properties and have good power in terms of picking up the spatial effect

they are designed for, though the robustness properties demonstrate mixed patterns.

This chapter extends Rey et al. (2016) in three aspects:

1. I investigate the performance of all tests in the presence of small sample size. Rey

et al. (2016) considered only one temporal span T = 100. Here, I am interested in

how a shortened temporal span impacts on the performance of the tests. Indeed, if

temporal heterogeneity is detected, subsamples of shorter temporal spans should thus

be considered, let alone that available regional income dataset itself might span a quite

short period. Under which circumstances can asymptotics be considered to hold is an

unsolved issue.

2. I evaluate the performance of JSMC test and compare it with CSMC test. Rey

et al. (2016) considers the CSMC tests for temporally lagged spatial dependence. I

differentiate them fromanother test that considers contemporaneous spatial dependence,

namely the JSMC test. I am interested in how these two testing frameworks differ in

terms of size, power and robustness properties. As the CSMC tests for temporally

lagged spatial dependence are not robust to process mean heterogeneity, I examine

whether the JSMC test can serve as a complement.

3. I examine implications of granularity of discretization of regional incomes. The

application of DMC to regional income time series is not straightforward - continuous

income data need to be discretized first. In most studies, global quintiles are used
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as the cutoff to discretize income data into five classes. Thus, a 5 × 5 transition

matrix is estimated to represent the rule for transitional dynamics. However, the

Markov property possessed by original time series might not be preserved after

inappropriate discretization (Rey, 2015; Guihenneuc-Jouyaux and Robert, 1998; Bulli,

2001; Magrini, 1999). Wolf and Rey (2015) finds that low-level granularity will

lead to the loss of Markov property for 48 contiguous US states per capita incomes

from 1920 to 2010. Specifically, if we discretize income series into a small number

of classes, say less than 5, the time series acquired from quantile discretization will

not be Markovian. On the other hand, though a better approximation to original

continuous series can be acquired by raising granularity, it might compromise the

estimator properties if the sample size is small, as it requires a larger set of parameters

to be estimated. As I will demonstrate later, all test statistics require a much larger set

of parameters to be estimated for the alternative. If sample size is not large enough,

estimation would be problematic. How the level of discretization granularity impacts

on the properties of tests is to be investigated.

The chapter is organized as follows. In Section 3.2, I introduce the CSMC and JSMC

test statistics as well as the formation of alternatives. I present the design of a series of

Monte Carlo experiments that are intended for examining and comparing properties of the

tests in Section 3.3. I report the results in Section 4.3. Section 3.5 concludes with some key

findings and directions for future research.

3.2 Tests for Spatial Effects in Discrete Markov Chain Models

All tests rely on the definition of a classic first-order time-homogeneous Discrete Markov

Chains model (DMC) with the core of a m × m stationary transition probability matrix PPP:
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PPP =



p11 p12 · · · p1m

p21 p22 · · · p2m

...
...

...
...

pm1 pm2 · · · pmm


, 0 ≤ pi j ≤ 1 and

m∑
j=1

pi j = 1, ∀ i, j ∈ S. (3.1)

Here, regional income time series are classified into m states according to some

discretization scheme, resulting in the state space S = {1, 2, · · · ,m}. pi j represents the

probability of a region transitioning to state j at the immediate subsequent period given that

it is currently in state i.

Two important assumptions are imposed onPPP. The first is the first-order Markov property,

which can be illustrated by Equation (3.2), that is, current state only impacts on its immediate

future.

PPP(xt = j |xt−1 = i, · · · , x0 = l) = PPP(xt = j |xt−1 = i). (3.2)

The second is time-homogeneous property, as shown in Equation (3.3), which implies

that the transition rule PPP holds throughout the entire study time span T .

PPP0 = PPP1 = PPP2 = · · · = PPPT−1 = PPP. (3.3)

Assuming that N regional time series are independently and identically distributed

- meaning that they share a common transitional dynamic rule, a maximum likelihood

estimator for each element of PPP could be conveniently derived by considering all rows of the

transition probability matrix as pairwise independent multinomial distributions:

p̂i j =
ni j∑m

j=1 ni j
. (3.4)
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Here, ni j is the total number of transitions from state i to state j across successive time

points over the entire study time span for N regions.

3.2.1 Conditional Spatial Markov Chains (CSMC) Test Statistics

The CSMC test statistics are formed by comparing the transition probability matrix

estimated from the whole sample with each of k matrices estimated from k exhaustive and

mutually exclusive subsamples. Each of these k matrices is said to govern the dynamics

of one subsample and can thus be estimated using the same estimator as Equation (3.4).

Subsamples are obtained by dividing the entire sample based on spatial effects impacting

the underlying transitional dynamics. Two CSMC test statistics are:

1. Likelihood ratio test statistic

LR(k) = 2
k∑

l=1

m∑
i=1

∑
j∈Ci | j

ni j |l ln
p̂i j |l

p̂i j
∼ asy χ2

(
m∑

i=1

(ci − 1)(di − 1)

)
, (3.5)

2. χ2 test statistic

Q(k) = 2
k∑

l=1

m∑
i=1

∑
j∈Ci | j

ni j |l
(p̂i j |l − p̂i j)

2

p̂i j
∼ asy χ2

(
m∑

i=1

(ci − 1)(di − 1)

)
, (3.6)

where p̂i j |l is the estimate of the probability transitioning from state i to state j across

successive time points in the lth subsample, Ci |l = { j : p̂i j |l > 0} is the set of nonzero

probability estimates for the lth subsample transitioning from state i, Ci = { j : p̂i j > 0} is the

set of nonzero probability estimates transitioning from state i for the whole sample, ci = #Ci

is the number of elements inCi and di = #Di is the number of elements in Di = {l : ni |l > 0}

which is the set of nonzero transitions for the lth subsample transitioning from state i. Clearly,

both tests attempt to deal with the potential sparsity of the estimated transition probabilities
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for the whole sample or the subsamples by ignoring the zero estimates and adjusting the

degrees of freedom accordingly. Both of these test statistics are asymptotically distributed

as χ2 under the null hypothesis (Bickenbach and Bode, 2003):

pi j = pi j |l ∀ l ∈ {1, 2, . . . , k}. (3.7)

As was mentioned earlier, CSMC tests can be used to detect spatial heterogeneity, as

well as temporally lagged spatial dependence. Specifically, when spatial heterogeneity is

present, that is, transitional dynamics are different across k spatial regimes, k subsamples

should be acquired, each of which contains time series of regions belonging to a spatial

regime. Similarly, when every region’s current income level is impacted by local context

at the immediate preceding time point, constituting the so-called temporally lagged spatial

dependence, subsamples should be acquired by classifying each region’s transition pairs

(t, t + 1) based on income level of local context at time point t. Here, the local context is

formalized by the spatial lag zt , which is the weighted average of neighbors’ income level.

The spatial lag of all regions at time point t can be calculated by:

ZZZ t =WWW tYYY t, (3.8)

whereYYY t is the regional income vector at time point t, andWWW t is a row-normalized spatial

weight matrix expressing the spatial interactions among regions at time point t.

Since the spatial lag is a continuous variable, we need to discretize it into k classes in

defining the k subsamples. Usually, we am prone to adopt the same discretization strategy

as regional time series, resulting in k = m. That is, m, m ×m transition probability matrices,

each of which is conditional on a specific income level of local context at the preceding time

point, will be estimated. 6

6For the rest of the chapter, I use CSMC Het LR and CSMC Het Q to represent CSMC likelihood ratio test
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3.2.2 Joint Spatial Markov Chains (JSMC) Test Statistic

The JSMC test statistic is designed for detecting contemporaneous spatial dependence,

that is, whether the transitional dynamics of each region and the transitional dynamics of its

simultaneous local context are dependent (Rey et al., 2012). Similar to CSMC tests, local

context is also formalized by spatial lag. In order to implement the test, I need to define two

classic DMCs: own-chain O and neighbor-chain N . The former is the DMC for discretized

regional time series while the latter is the DMC for discretized spatial lags of the regional

time series. Following the same notation as before, regional time series are discretized into

m classes and spatial lags are discretized into k classes. Thus, a k × k transition probability

matrix PPP(O) for the own-chain is estimated and similarly a m × m matrix PPP(N) is estimated

for the neighbor-chain .

The joint chainON is a DMC on the extended state space SON = {(1, 1), (1, 2), . . . , (k,m)}

where the first element in each tuple represents the state of a region and the second element

represents its contemporaneous spatial lag state. The estimator for joint transition probability

matrix PPP(ON) can be defined similar to equation (3.4).

Under the null hypothesis of independence between O and N , the following equation

should hold:

PPP(ON) = PPP(O) ⊗ PPP(N), (3.9)

where ⊗ is the Kronecker product operator.

JSMC χ2 test statistic for contemporaneous spatial dependence is defined as

statistic and CSMC Q test statistic for spatial heterogeneity. Similarly, I use CSMC Dep LR and CSMC Dep
Q to represent CSMC likelihood ratio test statistic and CSMC Q test statistic for temporally lagged spatial
dependence.
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χ2 =

m∑
i=1

k∑
j=1

m∑
s=1

k∑
q=1

n(io, jn)
(p̂(io, jn),(so,qn) − p̂o

is p̂n
jq)

2

p̂o
is p̂n

jq

∼ asy χ2 (k ∗ m ∗ (k ∗ m − 1) − k ∗ (k − 1) − m ∗ (m − 1)) ,

(3.10)

where superscript o and n index the region itself and its spatial lag respectively, p̂o
is is

the estimate of the probability of transitioning from class i to s for the own-chain, p̂n
jq is

the estimate of the probability of transitioning from class j to q for the neighbor-chain, and

p̂(io, jn),(so,qn) is the estimate of the joint probability of a region’s income level transitioning

from class i to s and its spatial lag from class j to q across the same successive time points.7

3.3 Design of the Experiments

The spatial layout for all the Monte Carlo simulation experiments consists of a regular

N1/2 × N1/2 spatial lattice. In this section, I introduce the experimental design: the Data

Generating Process (DGP) for the null and alternatives, and various factors which might

influence the size, power and robustness properties of the five test statistics introduced in

Section 3.2.

3.3.1 Data Generating Process (DGP)

A common scenario for the null hypothesis of all the five tests is one where N discretized

regional time series are i.i.d and possess the first-order Markov property. Since a finite

state Markov chain could well approximate both univariate and vector autoregressive (VAR)

7Similar to before, I use JSMC Dep to represent JSMC χ2 test statistic for contemporaneous spatial
dependence.
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models (Tauchen, 1986; Silos, 2006), I can simulate one univariate autoregressive model N

times to generate N independently and identically distributed regional time series which will

turn into N Markov Chains obeying the same transition rule after discretization. Equation

(3.11) is a univariate autoregressive process where region i’s current income level yi,t only

depends on its immediate preceding income level yi,t−1. A generalization of a univariate

autoregressive model to allow full interrelationship is a VAR model where every region’s

income level is determined by all the regions’ past incomes as shown in Equation (3.12)

whereYYY t is the n× 1 vector of regional incomes at time point t,YYY t−1 is the vector of regional

incomes at the immediate preceding time point t − 1, ννν is a vector of constant terms, MMM is

coefficient matrix and εεε t ∼ N(0, σ2I) is a temporally non-autocorrelated white noise error

vector E[εεε t, εεε s] = 0 ∀s , t (Lütkepohl, 2005).

yi,t = ν + byi,t−1 + εt . (3.11)

YYY t = ννν +MYMYMY t−1 + εεε t . (3.12)

A spatial extension of the VAR model is one where space is an important factor in

determining parameters of Equation (3.12), either the coefficient matrix MMM or the constant

terms ννν. The spatial VAR model is shown in Equation (3.13) where both of BBB and ΛΛΛ are

diagonal matrices, andWWW is the same row-normalized spatial weight matrix as is defined in

Equation (3.8) (I assume that it is constant over time) (LeSage and Krivelyova, 1999; LeSage

and Cashell, 2015).

YYY t = ννν + BYBYBY t−1 +ΛWΛWΛWYYY t−1 + εεε t . (3.13)

Equation (3.13) indicates that each region’s income at time point t is determined by its

income as well as its neighbors’ incomes at the preceding time point t − 1. The strength of
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the impact of the former is indicated by the diagonal elements of BBB. The diagonal elements

of ΛΛΛ represent the strength of the spatiotemporal diffusion, that is, the temporally lagged

spatial dependence.

Rewriting (3.13):

YYY t = ννν + AYAYAY t−1 + εεε t, (3.14)

where AAA = BBB +ΛWΛWΛW . The stability condition requires that all eigenvalues of AAA have modulus

less than 1. A stable first-order VAR has a long run process mean vector µµµ = (III − AAA)−1ννν.

By imposing restrictions on ΛΛΛ, BBB and µµµ, we can generate sets of times series with

and without spatial heterogeneity or spatial dependence at work. Since the properties of

these simulated times series are under complete control, I can evaluate the size, power and

robustness properties of the 5 test statistics in a rigorous way.

It should be noted that the DGP (spatial VAR model) is a special case of a more general

specification, the simultaneous dynamic space-time panel model (Elhorst, 2001; Debarsy

et al., 2012; Parent and LeSage, 2012), which further allows for contemporaneous spatial

dependence in addition to temporally lagged spatial dependence and spatial heterogeneity.

The specification is shown in Equation (3.15) where RRR is a diagonal matrix. As the spatial

VAR model is a natural extension of Tauchen’s VAR model and corresponds to the logic of

the CSMC dependence test, I restrict the attention to the spatial VAR model in this chapter.

Future research could be directed to using dynamic space-time panel model as DGP.

YYY t = ννν + RWYRWYRWY t + BYBYBY t−1 +ΛWΛWΛWYYY t−1 + εεε t . (3.15)
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3.3.1.1 The Null

As has been discussed before, the null scenario is a first-order stable VAR process exempt

from any spatial effect. To exclude spatial dependence,ΛΛΛ should be a zero matrix. To exclude

spatial heterogeneity, the DGP for every region should be the same. To be more specific,

BBBhh = β̄, µµµh = µ̄, ∀ h ∈ {1, 2, . . . , n}. In the experiments, I set β̄ = 0.5, µ̄ = 1, σ2
t = 0.5∀ t.

3.3.1.2 Spatial Heterogeneity

Departing from the null, two forms of spatial heterogeneity can be introduced in the VAR:

mean heterogeneity and lag heterogeneity. The former is reflected in k different long run

process means µµµh for regions belonging to corresponding k spatial regimes. The latter refers

to varied temporal own-lag coefficients BBBhh across k spatial regimes. In the experiments,

n regions were equally and randomly assigned to k regimes to avoid introducing global

spatial dependence. The spatial configuration might look like Figure 12 where 3 regimes are

present.

Because it is pointed out by Bickenbach and Bode (2003) that CSMC Het Q is sensitive

to the number of subsamples defined under the alternative, and over-rejecting the null

hypothesis tends to be more severe as the number of subsamples increases for a given sample

size, I designed three circumstances each having a different number of spatial regimes

k = 2, 3, 4 to investigate this issue. The assignment of k different values to process means for

mean heterogeneity and that to temporal own-lag coefficients for lag heterogeneity are given

in Table 2 and Table 3 respectively. Take the second column where number of regimes is 3

in Table 2 as an example. Regions belonging to the first regime have the long run process
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Figure 12. Spatial Configuration of 3 Regimes for N = 49.

Table 2. Process Means (µµµh) by Regime
Number of Regimes

Regime 2 3 4
1 0.50 0.25 0.25
2 1.50 1.00 1.00
3 3.00 2.00
4 3.00

Table 3. Temporal Own-Lag Coefficients (BBBhh) by Regime.
Number of Regimes

Regime 2 3 4
1 0.25 0.25 0.25
2 0.50 0.50 0.42
3 0.75 0.59
4 0.75

mean 0.25, that is, µµµh = 0.25 if h ∈ Regime1. Similarly, µµµh = 1.00 if h ∈ Regime2 and

µµµh = 3.00 if h ∈ Regime3.

For all the spatial heterogeneity simulations, spatial dependence was absentΛΛΛhh = 0∀ h.
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As for mean heterogeneity, temporal own-lag coefficients were set to BBBhh = β̄ = 0.50∀ h.

Similarly, for lag heterogeneity, long run process means were set to µµµh = µ̄ = 1∀ h. I

did so to examine the performance of the test statistics in the presence of either form of

heterogeneity.

3.3.1.3 Spatial Dependence

Temporally lagged spatial dependence can be conveniently introduced in the VAR model

by assigning nonzero value to the diagonal of ΛΛΛ. As is shown in Rey et al. (2016), its

introduction will create contemporaneous cross-regional correlation, which could be detected

by JSMC χ2 test. In addition, the fact thatΛΛΛ being nonzero matrix induces heteroscedasticity

creates the possibility for CSMC Het tests to pick up something though the spatial regimes

might not be properly defined.

In the spatial dependence simulations, I set BBBhh = β̄ = 0.5 and µµµ = µ̄ = 1 to exclude

both forms of spatial heterogeneity. The diagonal elements of ΛΛΛ were set to be the

same nonzero value ΛΛΛhh = λ̄ , 0∀ h. I also varied the level of spatial dependence

λ̄ = 0.125, 0.250, 0.375, 0.499 to investigate how it impacted the properties of the tests.

3.3.2 Monte Carlo Experiments

3.3.2.1 Sample Size

The experiments cover small sample sizes, as well as large sample sizes: spatial grids

N = 25, 49, 81, 121, 169, and temporal span T = 50, 100, 150, 200.
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3.3.2.2 Discretization Granularity

As mentioned before, the level of discretization granularity might impact the properties

of the tests. Here, I adopt the common discretization strategy, that is, global quantile

classification. I varied the number of classes m = 3, 5, 7 to look at how the higher level

of granularity differed from lower level regarding the properties of the tests. For all the 3

test statistics for spatial dependence, CSMC Dep LR, CSMC Dep LR and JSMC Dep, I

applied the same discretization strategy and granularity to spatial lags as that to regional

time series. In other words, if I use quintile cutoffs to discretize the simulated time series, 5,

5 × 5 conditional transition probability matrices will be estimated for CSMC Dep LR and

CSMC Dep LR, while a 52 × 52 joint matrix will be estimated for JSMC Dep.

3.3.2.3 Monte Carlo Experiments Design

Using various parameter values in equation (3.13) I simulated the null, the alternative

of mean heterogeneity, the alternative of lag heterogeneity and the alternative of spatial

dependence. For each DGP, I simulated 1000 realizations, with each realization generating

N time series of length T .

For each realization, I applied m global quintile classification. Then, I applied 5 test

statistics CSMC Het LR, CSMC Het Q, CSMC Dep LR, CSMC Dep Q and JSMC Dep

to each discretized realization. The decision of rejecting the null was based on a 5%

significance level. Thus, rejection frequency was calculated by dividing the number of

all the rejection cases by 1000 for each case. When the DPG is for the null, the rejection

frequency would provide insights into size properties. When the DPG is for the alternative

of mean heterogeneity or lag heterogeneity, it would provide insights into the power of
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CSMC Het LR and CSMC Het Q, as well as the robustness of CSMC Dep LR, CSMC Dep

Q and JSMC Dep to the corresponding spatial heterogeneity. Similarly, when the DPG is for

the alternative of spatial dependence, it would reveal the power of CSMC Dep LR, CSMC

Dep Q and JSMC Dep, as well as the robustness of CSMC Het LR and CSMC Het Q, to

spatial dependence.

3.4 Empirical Results

In this section, I present the results of theMonte Carlo experiments. Rejection frequencies

of 5 test statistics to the absence or presence of spatial effects are reported to shed light on

the size, power and robustness properties.

3.4.1 Size Properties

I find that when sample size is relatively large, two types of CSMC test statistics, LR(k)

and Q(k) have quite similar size properties, either used for testing spatial dependence or

spatial heterogeneity, which points to the argument that they are asymptotically equivalent

(Anderson and Goodman, 1957). Figure 13 displays the sampling distribution of all the 5

test statistics for the case of N = 169,T = 200 under the null. The level of discretization

granularity was low m = 3, which means that 3, 3 × 3 conditional transition probability

matrices were estimated for the construction of CSMC Dep LR and CSMC Dep Q, while

a 32 × 32 joint matrix was estimated to construct JSMC Dep. Simulated time series were

randomly divided into 3 spatial regimes for CSMC Het LR and CSMC Het Q, resulting

in estimating 3, 3 × 3 transition probability matrices. The red line is the theoretical χ2

distribution. The grey histogram is the empirical distribution of test statistics calculated
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Figure 13. Sampling Distribution of 5 Test Statistics Under the Null,
N = 169,T = 200,m = 3.

for 1000 simulated realizations under the null and blue line is the estimated nonparametric

kernel. It is quite obvious that empirical and theoretical sampling distributions under the

null are very similar.

When the sample size N ∗T is small, and the level of discretization granularity m is high,

CSMC Dep LR and CSMC Het LR are prone to upward bias while the other 3 still display
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Figure 14. Sampling Distribution of 5 Test Statistics Under the Null,
N = 25,T = 100,m = 7.

good size properties. Figure 14 displays the sampling distributions under the null for the

case of N = 25,T = 100,m = 7. Empirical distribution (blue line and grey histogram) shifts

to the right of the theoretical distribution (red line) for CSMC Dep LR and CSMC Het LR,

which will result in false rejections of the null.

In most cases, the empirical size falls within the 95% confidence interval (0.0365, 0.0635)
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as shown in Table 4. This is especially true for CSMC Dep Q which displays good size

property in almost all cases. However, CSMC Dep LR is very sensitive to the increased level

of discretization granularity, especially when sample size is relatively small. Its rejection

frequency could rise to as high as 0.315 when m = 7 and N = 25,T = 50. The rejection

frequencies for the other 3 test statistics, JSMC Dep, CSMC Het LR and Het Q don’t fall

within the confidence interval as often as CSMC Dep Q, but never exceed 0.1.

3.4.2 Presence of Spatial Heterogeneity

I now examine the power of all 5 test statistics in terms of picking up mean or lag spatial

heterogeneity when it is present.

I start with the presence of mean heterogeneity. In general, both of CSMC Het LR and

Het Q display good power as rejection frequencies reach 1 for all cases (see Table 5). As for

JSMC Dep, CSMC Dep LR and Q, they are not robust to mean heterogeneity since their

rejection frequencies easily exceed 0.05.

Figure 15 visualizes parallel coordinates of rejection frequencies for all sample sizes

using low level of discretization granularity m = 3. For all the 20 plots, temporal span

increases from left to right, and spatial coverage increases from top to bottom. For each plot,

5 vertical lines show rejection frequencies for CSMC Dep LR, CSMC Dep Q, JSMC Dep,

CSMC Het LR and CSMC Het Q from left to right. The blue, red and green lines represent

2, 3 and 4 regimes used for DGP respectively. Clearly, rejection frequencies for both of

CSMC Het LR and CSMC Het Q for all cases are 1, indicating high power in detecting mean

heterogeneity, the spatial effect they are designed for. For the 3 dependence test statistics,

they are also able to pick up this spatial effect to some extent, though they are not expected to.

The performance of CSMC Dep LR and CSMC Dep Q are quite similar. JSMC Dep always
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has a higher rejection frequency, indicating that it is more sensitive to the presence of mean

heterogeneity. There is a clear trend that as temporal span increases, rejection frequencies of

these 3 test statistics increase. However, this is not the case when spatial coverage increases

where the pattern is more mixed. The number of spatial regimes doesn’t impact the power of

CSMC Het LR and CSMC Het Q, but as it increases, all 3 dependence tests seem to become

more sensitive to mean heterogeneity.

Increasing the level of discretization granularity to m = 7 as is shown in Figure 16,

rejection frequencies for JSMC Dep drop down sharply. Since they are almost always smaller

than 0.1, except for when there are 2 regimes, I can consider it robust. The increase of

granularity level also lowers the rejection frequencies of CSMC Dep LR and CSMC Dep Q,

though not as much as that of JSMC Dep. Rejection frequencies for CSMC Het LR and

CSMC Het Q are still as high as 1.

Turning to the presence of lag heterogeneity, the two heterogeneity test statistics, CSMC

Het LR and Het Q, display good power except for small samples. CSMC Dep LR, CSMC

Dep Q, JSMC Dep are robust to presence of this form of spatial heterogeneity. More details

can be seen in Table 6.

Figure 17 shows parallel coordinates of rejection frequencies for all sample sizes using

low level of discretization granularity m = 3. Rejection frequencies for CSMC Het LR and

Het Q are always high except when N = 25,T = 50, while for CSMC Dep LR, CSMC Dep

Q and JSMC Dep, most of them fall within the 95% confidence interval (0.0365, 0.0635) .

Increasing the level of discretization granularity to m = 7 as is shown in Figure 18, CSMC

Dep Q and CSMC Dep LR become sensitive when sample size is small, for example, when

N = 25,T = 50 and N = 100,T = 50.
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3.4.3 Presence of Spatial Dependence

The final alternative examined is spatial dependence. As I mentioned before, two

forms of spatiotemporal dependence can be introduced, namely, temporally lagged spatial

dependence and contemporaneous spatial dependence. CSMC and JSMC test statistics can

be used to detect these two types respectively.

Figure 19 shows rejection frequencies of 5 test statistics for all sample sizes. Here,

the level of discretization granularity is low m = 3. The x axis indexes λ̄, the strength

of spatiotemporal spillover. For all 5 test statistics, rejection frequencies have a positive

relationship with λ̄. CSMC Dep LR and CSMC Dep Q are very similar in terms of detecting

spatial dependence, except for very small sample sizes and low levels of dependence.

Increasing the sample size, through either spatial coverage or temporal spans, will raise the

power. CSMC Het LR and CSMC Het Q can be considered robust to the presence of spatial

dependence except when the dependence is strong.

The impact of discretization granularity level can be discerned by comparing Figure 19

and Figure 20, where the granularity level is raised to m = 7. For 3 dependence test statistics,

the power of detecting spatial dependence is lower only when sample size is relatively small

and dependence strength is week (for example N = 81,T = 50, λ̄ = 0.25). As for CSMC Het

LR and CSMC Het Q, they become more sensitive only when dependence is very strong.

CSMC LR test statistics for either spatial dependence or spatial heterogeneity have a inferior

performance compared to CSMC Q test statistics. Full results are given in Table 7.
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Figure 19. Rejection Frequencies of 5 Test Statistics for All Sample Sizes. The Level of
Discretization Granularity is Low: m = 3. 2 Spatial Regimes are Constructed for the
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3.5 Discussion and Conclusion

Application of DMC models to the study of regional income distribution dynamics

and convergence are usually conducted through imposing some implicit assumptions,

including spatial independence, spatial homogeneity and Markov property preservation

after discretization. This chapter investigates the properties of 5 test statistics for spatial

effects including 2 CSMC tests statistics for spatial heterogeneity, 2 CSMC tests statistics

for temporally lagged spatial dependence and 1 JSMC tests statistic for contemporaneous

spatial dependence under a number of circumstances. A vector autoregressive model is

exploited to simulate time series under the null, as well as under 4 alternatives.

Results indicate that all of the 5 test statistics display good size properties. The exception

is CSMC likelihood ratio test statistics. When sample size is fairly small, it tends to be

biased upwards either it is used to test for temporally lagged spatial dependence or spatial

heterogeneity. Thus, although it is asymptotically equivalent to CSMC χ2 test statistic, its

behavior is less satisfactory in small sample setting. In light of this, CSMC χ2 test statistic

is recommended when the available sample size is small.

All test statistics display strong power, but some of them are sensitive to the alternative

form of spatial effect they are not designed for. Both CSMC Dep LR and CSMC Dep Q are

not robust to the presence of mean heterogeneity, while JSMC Dep is robust if adopting a

high level of discretization granularity. CSMC Het LR and CSMC Het Q are not robust to

the presence of strong spatial dependence. The lack of robustness poses challenges for the

application of the test statistics in empirical studies. Developing robust test (Anselin and

Rey, 1991; Anselin, 1990) to aid these 5 test statistics is a promising research direction.

In addition to the non-robustness issue, since a VAR will always introduce contempora-

neous spatial dependence if temporally lagged spatial dependence is specified, we could
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not discriminate one from the other in this setting, nor could we examine the sensitivity of

JSMC (CSMC) test to the other form of spatial dependence. Future work may be focused

on designing the data generating process which will only introduce one form of spatial

dependence based on which an thorough investigation of the robustness of the other test

could be conducted.

As increasing the level of discretization granularity lowers the sensitivity of almost all

test statistics (except for CSMC heterogeneity tests when dependence is very strong) without

compromising the power when sample size is large, it is recommended to adopt higher level

to prevent picking up the “wrong” spatial effect in large sample setting. Otherwise, a balance

should be made to preserve Markov property without impairing estimation precision. In

other words, a relatively low granularity strategy should be considered to facilitate estimation,

but caution should be taken in case the Markov property is lost due to discretization. Future

research could be conducted in this realm to develop some procedures to select the best

granularity level especially for the alternatives in small sample settings.
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3.6 Appendix: Rejection Frequencies

Table 4. Size Results.

β̄ λ̄ µ̄ N T
Het

Regime
CSMC
Het LR

CSMC
Het Q m

CSMC
Dep LR

CSMC
Dep Q

JSMC
Dep

0.50 0 1.00 25 50 2 0.070 0.070 3 0.051 0.048 0.064
0.50 0 1.00 25 50 3 0.065 0.065 3 0.051 0.048 0.064
0.50 0 1.00 25 50 4 0.065 0.062 3 0.051 0.048 0.064
0.50 0 1.00 25 100 2 0.068 0.068 3 0.061 0.059 0.067
0.50 0 1.00 25 100 3 0.071 0.070 3 0.061 0.059 0.067
0.50 0 1.00 25 100 4 0.075 0.075 3 0.061 0.059 0.067
0.50 0 1.00 25 150 2 0.055 0.056 3 0.050 0.051 0.079
0.50 0 1.00 25 150 3 0.066 0.069 3 0.050 0.051 0.079
0.50 0 1.00 25 150 4 0.064 0.067 3 0.050 0.051 0.079
0.50 0 1.00 25 200 2 0.053 0.053 3 0.051 0.053 0.053
0.50 0 1.00 25 200 3 0.067 0.068 3 0.051 0.053 0.053
0.50 0 1.00 25 200 4 0.070 0.070 3 0.051 0.053 0.053
0.50 0 1.00 49 50 2 0.074 0.073 3 0.053 0.051 0.054
0.50 0 1.00 49 50 3 0.064 0.064 3 0.053 0.051 0.054
0.50 0 1.00 49 50 4 0.076 0.075 3 0.053 0.051 0.054
0.50 0 1.00 49 100 2 0.049 0.049 3 0.053 0.056 0.066
0.50 0 1.00 49 100 3 0.053 0.054 3 0.053 0.056 0.066
0.50 0 1.00 49 100 4 0.068 0.066 3 0.053 0.056 0.066
0.50 0 1.00 49 150 2 0.065 0.065 3 0.055 0.053 0.062
0.50 0 1.00 49 150 3 0.056 0.059 3 0.055 0.053 0.062
0.50 0 1.00 49 150 4 0.066 0.065 3 0.055 0.053 0.062
0.50 0 1.00 49 200 2 0.068 0.068 3 0.062 0.063 0.097
0.50 0 1.00 49 200 3 0.070 0.071 3 0.062 0.063 0.097
0.50 0 1.00 49 200 4 0.073 0.073 3 0.062 0.063 0.097
0.50 0 1.00 81 50 2 0.055 0.055 3 0.051 0.052 0.062
0.50 0 1.00 81 50 3 0.080 0.079 3 0.051 0.052 0.062
0.50 0 1.00 81 50 4 0.080 0.079 3 0.051 0.052 0.062
0.50 0 1.00 81 100 2 0.050 0.050 3 0.058 0.058 0.060
0.50 0 1.00 81 100 3 0.058 0.057 3 0.058 0.058 0.060
0.50 0 1.00 81 100 4 0.063 0.063 3 0.058 0.058 0.060
0.50 0 1.00 81 150 2 0.070 0.069 3 0.045 0.044 0.061
0.50 0 1.00 81 150 3 0.066 0.067 3 0.045 0.044 0.061
0.50 0 1.00 81 150 4 0.064 0.062 3 0.045 0.044 0.061
0.50 0 1.00 81 200 2 0.052 0.052 3 0.054 0.053 0.068
0.50 0 1.00 81 200 3 0.074 0.075 3 0.054 0.053 0.068
0.50 0 1.00 81 200 4 0.081 0.079 3 0.054 0.053 0.068
0.50 0 1.00 121 50 2 0.078 0.078 3 0.044 0.045 0.056
0.50 0 1.00 121 50 3 0.077 0.074 3 0.044 0.045 0.056
0.50 0 1.00 121 50 4 0.076 0.078 3 0.044 0.045 0.056
0.50 0 1.00 121 100 2 0.062 0.062 3 0.061 0.059 0.073
0.50 0 1.00 121 100 3 0.048 0.049 3 0.061 0.059 0.073
0.50 0 1.00 121 100 4 0.064 0.066 3 0.061 0.059 0.073

Continued on next page
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Table 4 continued

β̄ λ̄ µ̄ N T
Het

Regime
CSMC
Het LR

CSMC
Het Q m

CSMC
Dep LR

CSMC
Dep Q

JSMC
Dep

0.50 0 1.00 121 150 2 0.065 0.065 3 0.056 0.056 0.067
0.50 0 1.00 121 150 3 0.074 0.073 3 0.056 0.056 0.067
0.50 0 1.00 121 150 4 0.070 0.069 3 0.056 0.056 0.067
0.50 0 1.00 121 200 2 0.063 0.063 3 0.071 0.070 0.073
0.50 0 1.00 121 200 3 0.066 0.067 3 0.071 0.070 0.073
0.50 0 1.00 121 200 4 0.065 0.064 3 0.071 0.070 0.073
0.50 0 1.00 169 50 2 0.065 0.065 3 0.052 0.052 0.077
0.50 0 1.00 169 50 3 0.059 0.060 3 0.052 0.052 0.077
0.50 0 1.00 169 50 4 0.075 0.075 3 0.052 0.052 0.077
0.50 0 1.00 169 100 2 0.075 0.075 3 0.060 0.059 0.067
0.50 0 1.00 169 100 3 0.064 0.066 3 0.060 0.059 0.067
0.50 0 1.00 169 100 4 0.070 0.070 3 0.060 0.059 0.067
0.50 0 1.00 169 150 2 0.052 0.052 3 0.040 0.040 0.062
0.50 0 1.00 169 150 3 0.065 0.065 3 0.040 0.040 0.062
0.50 0 1.00 169 150 4 0.054 0.054 3 0.040 0.040 0.062
0.50 0 1.00 169 200 2 0.058 0.058 3 0.040 0.040 0.052
0.50 0 1.00 169 200 3 0.065 0.064 3 0.040 0.040 0.052
0.50 0 1.00 169 200 4 0.065 0.066 3 0.040 0.040 0.052
0.50 0 1.00 25 50 2 0.077 0.069 5 0.074 0.039 0.052
0.50 0 1.00 25 50 3 0.082 0.054 5 0.074 0.039 0.052
0.50 0 1.00 25 50 4 0.096 0.067 5 0.074 0.039 0.052
0.50 0 1.00 25 100 2 0.067 0.062 5 0.067 0.047 0.046
0.50 0 1.00 25 100 3 0.065 0.062 5 0.067 0.047 0.046
0.50 0 1.00 25 100 4 0.076 0.063 5 0.067 0.047 0.046
0.50 0 1.00 25 150 2 0.065 0.063 5 0.057 0.051 0.061
0.50 0 1.00 25 150 3 0.059 0.056 5 0.057 0.051 0.061
0.50 0 1.00 25 150 4 0.066 0.059 5 0.057 0.051 0.061
0.50 0 1.00 25 200 2 0.065 0.061 5 0.059 0.048 0.061
0.50 0 1.00 25 200 3 0.064 0.061 5 0.059 0.048 0.061
0.50 0 1.00 25 200 4 0.065 0.062 5 0.059 0.048 0.061
0.50 0 1.00 49 50 2 0.061 0.059 5 0.065 0.050 0.057
0.50 0 1.00 49 50 3 0.060 0.054 5 0.065 0.050 0.057
0.50 0 1.00 49 50 4 0.062 0.054 5 0.065 0.050 0.057
0.50 0 1.00 49 100 2 0.059 0.054 5 0.051 0.041 0.052
0.50 0 1.00 49 100 3 0.061 0.054 5 0.051 0.041 0.052
0.50 0 1.00 49 100 4 0.065 0.058 5 0.051 0.041 0.052
0.50 0 1.00 49 150 2 0.057 0.057 5 0.051 0.042 0.048
0.50 0 1.00 49 150 3 0.063 0.062 5 0.051 0.042 0.048
0.50 0 1.00 49 150 4 0.047 0.042 5 0.051 0.042 0.048
0.50 0 1.00 49 200 2 0.047 0.046 5 0.044 0.042 0.047
0.50 0 1.00 49 200 3 0.057 0.056 5 0.044 0.042 0.047
0.50 0 1.00 49 200 4 0.059 0.056 5 0.044 0.042 0.047
0.50 0 1.00 81 50 2 0.050 0.050 5 0.069 0.055 0.046
0.50 0 1.00 81 50 3 0.065 0.063 5 0.069 0.055 0.046
0.50 0 1.00 81 50 4 0.072 0.066 5 0.069 0.055 0.046
0.50 0 1.00 81 100 2 0.046 0.044 5 0.049 0.045 0.057
0.50 0 1.00 81 100 3 0.048 0.046 5 0.049 0.045 0.057
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Table 4 continued

β̄ λ̄ µ̄ N T
Het

Regime
CSMC
Het LR

CSMC
Het Q m

CSMC
Dep LR

CSMC
Dep Q

JSMC
Dep

0.50 0 1.00 81 100 4 0.046 0.047 5 0.049 0.045 0.057
0.50 0 1.00 81 150 2 0.054 0.054 5 0.062 0.055 0.051
0.50 0 1.00 81 150 3 0.061 0.059 5 0.062 0.055 0.051
0.50 0 1.00 81 150 4 0.051 0.051 5 0.062 0.055 0.051
0.50 0 1.00 81 200 2 0.061 0.061 5 0.041 0.039 0.048
0.50 0 1.00 81 200 3 0.054 0.055 5 0.041 0.039 0.048
0.50 0 1.00 81 200 4 0.056 0.057 5 0.041 0.039 0.048
0.50 0 1.00 121 50 2 0.054 0.053 5 0.060 0.052 0.056
0.50 0 1.00 121 50 3 0.051 0.047 5 0.060 0.052 0.056
0.50 0 1.00 121 50 4 0.063 0.057 5 0.060 0.052 0.056
0.50 0 1.00 121 100 2 0.044 0.043 5 0.060 0.058 0.056
0.50 0 1.00 121 100 3 0.051 0.053 5 0.060 0.058 0.056
0.50 0 1.00 121 100 4 0.055 0.053 5 0.060 0.058 0.056
0.50 0 1.00 121 150 2 0.056 0.056 5 0.041 0.043 0.062
0.50 0 1.00 121 150 3 0.060 0.059 5 0.041 0.043 0.062
0.50 0 1.00 121 150 4 0.048 0.049 5 0.041 0.043 0.062
0.50 0 1.00 121 200 2 0.064 0.064 5 0.050 0.048 0.061
0.50 0 1.00 121 200 3 0.052 0.053 5 0.050 0.048 0.061
0.50 0 1.00 121 200 4 0.058 0.059 5 0.050 0.048 0.061
0.50 0 1.00 169 50 2 0.056 0.054 5 0.065 0.061 0.057
0.50 0 1.00 169 50 3 0.057 0.057 5 0.065 0.061 0.057
0.50 0 1.00 169 50 4 0.052 0.051 5 0.065 0.061 0.057
0.50 0 1.00 169 100 2 0.053 0.052 5 0.054 0.052 0.052
0.50 0 1.00 169 100 3 0.070 0.068 5 0.054 0.052 0.052
0.50 0 1.00 169 100 4 0.064 0.062 5 0.054 0.052 0.052
0.50 0 1.00 169 150 2 0.049 0.049 5 0.054 0.052 0.044
0.50 0 1.00 169 150 3 0.067 0.065 5 0.054 0.052 0.044
0.50 0 1.00 169 150 4 0.068 0.067 5 0.054 0.052 0.044
0.50 0 1.00 169 200 2 0.055 0.055 5 0.056 0.054 0.054
0.50 0 1.00 169 200 3 0.059 0.060 5 0.056 0.054 0.054
0.50 0 1.00 169 200 4 0.061 0.061 5 0.056 0.054 0.054
0.50 0 1.00 25 50 2 0.094 0.059 7 0.315 0.059 0.088
0.50 0 1.00 25 50 3 0.112 0.054 7 0.315 0.059 0.088
0.50 0 1.00 25 50 4 0.159 0.053 7 0.315 0.059 0.088
0.50 0 1.00 25 100 2 0.062 0.053 7 0.158 0.059 0.069
0.50 0 1.00 25 100 3 0.087 0.055 7 0.158 0.059 0.069
0.50 0 1.00 25 100 4 0.109 0.073 7 0.158 0.059 0.069
0.50 0 1.00 25 150 2 0.060 0.050 7 0.115 0.054 0.058
0.50 0 1.00 25 150 3 0.071 0.050 7 0.115 0.054 0.058
0.50 0 1.00 25 150 4 0.069 0.046 7 0.115 0.054 0.058
0.50 0 1.00 25 200 2 0.066 0.060 7 0.104 0.060 0.059
0.50 0 1.00 25 200 3 0.059 0.056 7 0.104 0.060 0.059
0.50 0 1.00 25 200 4 0.072 0.064 7 0.104 0.060 0.059
0.50 0 1.00 49 50 2 0.061 0.049 7 0.159 0.050 0.063
0.50 0 1.00 49 50 3 0.078 0.057 7 0.159 0.050 0.063
0.50 0 1.00 49 50 4 0.095 0.059 7 0.159 0.050 0.063
0.50 0 1.00 49 100 2 0.074 0.060 7 0.095 0.048 0.057
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Table 4 continued

β̄ λ̄ µ̄ N T
Het

Regime
CSMC
Het LR

CSMC
Het Q m

CSMC
Dep LR

CSMC
Dep Q

JSMC
Dep

0.50 0 1.00 49 100 3 0.064 0.056 7 0.095 0.048 0.057
0.50 0 1.00 49 100 4 0.077 0.059 7 0.095 0.048 0.057
0.50 0 1.00 49 150 2 0.052 0.048 7 0.084 0.053 0.064
0.50 0 1.00 49 150 3 0.061 0.054 7 0.084 0.053 0.064
0.50 0 1.00 49 150 4 0.052 0.045 7 0.084 0.053 0.064
0.50 0 1.00 49 200 2 0.046 0.041 7 0.075 0.055 0.066
0.50 0 1.00 49 200 3 0.070 0.066 7 0.075 0.055 0.066
0.50 0 1.00 49 200 4 0.050 0.048 7 0.075 0.055 0.066
0.50 0 1.00 81 50 2 0.050 0.047 7 0.108 0.047 0.063
0.50 0 1.00 81 50 3 0.071 0.057 7 0.108 0.047 0.063
0.50 0 1.00 81 50 4 0.082 0.055 7 0.108 0.047 0.063
0.50 0 1.00 81 100 2 0.061 0.055 7 0.066 0.040 0.044
0.50 0 1.00 81 100 3 0.071 0.066 7 0.066 0.040 0.044
0.50 0 1.00 81 100 4 0.071 0.063 7 0.066 0.040 0.044
0.50 0 1.00 81 150 2 0.056 0.055 7 0.073 0.052 0.049
0.50 0 1.00 81 150 3 0.056 0.055 7 0.073 0.052 0.049
0.50 0 1.00 81 150 4 0.063 0.057 7 0.073 0.052 0.049
0.50 0 1.00 81 200 2 0.051 0.050 7 0.055 0.041 0.042
0.50 0 1.00 81 200 3 0.054 0.053 7 0.055 0.041 0.042
0.50 0 1.00 81 200 4 0.072 0.070 7 0.055 0.041 0.042
0.50 0 1.00 121 50 2 0.065 0.062 7 0.091 0.055 0.064
0.50 0 1.00 121 50 3 0.066 0.055 7 0.091 0.055 0.064
0.50 0 1.00 121 50 4 0.076 0.059 7 0.091 0.055 0.064
0.50 0 1.00 121 100 2 0.052 0.048 7 0.052 0.042 0.052
0.50 0 1.00 121 100 3 0.055 0.052 7 0.052 0.042 0.052
0.50 0 1.00 121 100 4 0.062 0.057 7 0.052 0.042 0.052
0.50 0 1.00 121 150 2 0.056 0.055 7 0.049 0.043 0.055
0.50 0 1.00 121 150 3 0.056 0.055 7 0.049 0.043 0.055
0.50 0 1.00 121 150 4 0.055 0.051 7 0.049 0.043 0.055
0.50 0 1.00 121 200 2 0.059 0.059 7 0.063 0.056 0.046
0.50 0 1.00 121 200 3 0.069 0.065 7 0.063 0.056 0.046
0.50 0 1.00 121 200 4 0.054 0.052 7 0.063 0.056 0.046
0.50 0 1.00 169 50 2 0.050 0.044 7 0.077 0.044 0.063
0.50 0 1.00 169 50 3 0.059 0.059 7 0.077 0.044 0.063
0.50 0 1.00 169 50 4 0.060 0.054 7 0.077 0.044 0.063
0.50 0 1.00 169 100 2 0.048 0.045 7 0.049 0.040 0.042
0.50 0 1.00 169 100 3 0.065 0.061 7 0.049 0.040 0.042
0.50 0 1.00 169 100 4 0.051 0.045 7 0.049 0.040 0.042
0.50 0 1.00 169 150 2 0.052 0.052 7 0.074 0.060 0.055
0.50 0 1.00 169 150 3 0.062 0.061 7 0.074 0.060 0.055
0.50 0 1.00 169 150 4 0.056 0.054 7 0.074 0.060 0.055
0.50 0 1.00 169 200 2 0.049 0.047 7 0.064 0.060 0.044
0.50 0 1.00 169 200 3 0.045 0.044 7 0.064 0.060 0.044
0.50 0 1.00 169 200 4 0.039 0.041 7 0.064 0.060 0.044
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Table 5. Power & Robustness Results, Mean Heterogeneity.

β̄ λ̄ µh N T
Het

Regime
CSMC
Het LR

CSMC
Het Q m

CSMC
Dep LR

CSMC
Dep Q

JSMC
Dep

0.50 0 − 25 50 2 1.000 1.000 3 0.076 0.069 0.184
0.50 0 − 25 50 3 1.000 1.000 3 0.768 0.795 0.955
0.50 0 − 25 50 4 1.000 1.000 3 0.271 0.253 0.385
0.50 0 − 25 100 2 1.000 1.000 3 0.079 0.079 0.244
0.50 0 − 25 100 3 1.000 1.000 3 0.993 0.996 1.000
0.50 0 − 25 100 4 1.000 1.000 3 0.567 0.533 0.926
0.50 0 − 25 150 2 1.000 1.000 3 0.096 0.094 0.409
0.50 0 − 25 150 3 1.000 1.000 3 1.000 1.000 1.000
0.50 0 − 25 150 4 1.000 1.000 3 0.783 0.749 0.995
0.50 0 − 25 200 2 1.000 1.000 3 0.130 0.132 0.522
0.50 0 − 25 200 3 1.000 1.000 3 1.000 1.000 1.000
0.50 0 − 25 200 4 1.000 1.000 3 0.923 0.912 1.000
0.50 0 − 49 50 2 1.000 1.000 3 0.099 0.099 0.097
0.50 0 − 49 50 3 1.000 1.000 3 0.644 0.668 0.891
0.50 0 − 49 50 4 1.000 1.000 3 0.207 0.186 0.290
0.50 0 − 49 100 2 1.000 1.000 3 0.119 0.119 0.149
0.50 0 − 49 100 3 1.000 1.000 3 0.972 0.979 1.000
0.50 0 − 49 100 4 1.000 1.000 3 0.400 0.350 0.767
0.50 0 − 49 150 2 1.000 1.000 3 0.172 0.175 0.230
0.50 0 − 49 150 3 1.000 1.000 3 1.000 1.000 1.000
0.50 0 − 49 150 4 1.000 1.000 3 0.566 0.508 0.951
0.50 0 − 49 200 2 1.000 1.000 3 0.199 0.199 0.273
0.50 0 − 49 200 3 1.000 1.000 3 1.000 1.000 1.000
0.50 0 − 49 200 4 1.000 1.000 3 0.747 0.714 0.992
0.50 0 − 81 50 2 1.000 1.000 3 0.123 0.117 0.225
0.50 0 − 81 50 3 1.000 1.000 3 0.305 0.280 0.431
0.50 0 − 81 50 4 1.000 1.000 3 0.819 0.794 0.802
0.50 0 − 81 100 2 1.000 1.000 3 0.230 0.229 0.422
0.50 0 − 81 100 3 1.000 1.000 3 0.631 0.600 0.957
0.50 0 − 81 100 4 1.000 1.000 3 0.988 0.988 0.996
0.50 0 − 81 150 2 1.000 1.000 3 0.317 0.316 0.643
0.50 0 − 81 150 3 1.000 1.000 3 0.827 0.809 0.999
0.50 0 − 81 150 4 1.000 1.000 3 0.998 0.998 1.000
0.50 0 − 81 200 2 1.000 1.000 3 0.428 0.429 0.784
0.50 0 − 81 200 3 1.000 1.000 3 0.955 0.952 1.000
0.50 0 − 81 200 4 1.000 1.000 3 1.000 1.000 1.000
0.50 0 − 121 50 2 1.000 1.000 3 0.107 0.107 0.159
0.50 0 − 121 50 3 1.000 1.000 3 0.259 0.233 0.669
0.50 0 − 121 50 4 1.000 1.000 3 0.564 0.514 0.448
0.50 0 − 121 100 2 1.000 1.000 3 0.132 0.132 0.243
0.50 0 − 121 100 3 1.000 1.000 3 0.595 0.541 0.998
0.50 0 − 121 100 4 1.000 1.000 3 0.920 0.918 0.908
0.50 0 − 121 150 2 1.000 1.000 3 0.202 0.203 0.356
0.50 0 − 121 150 3 1.000 1.000 3 0.835 0.818 1.000
0.50 0 − 121 150 4 1.000 1.000 3 0.986 0.987 0.994
0.50 0 − 121 200 2 1.000 1.000 3 0.241 0.245 0.443
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Table 5 continued

β̄ λ̄ µh N T
Het

Regime
CSMC
Het LR

CSMC
Het Q m

CSMC
Dep LR

CSMC
Dep Q

JSMC
Dep

0.50 0 − 121 200 3 1.000 1.000 3 0.944 0.936 1.000
0.50 0 − 121 200 4 1.000 1.000 3 1.000 1.000 1.000
0.50 0 − 169 50 2 1.000 1.000 3 0.217 0.215 0.264
0.50 0 − 169 50 3 1.000 1.000 3 0.682 0.635 0.624
0.50 0 − 169 50 4 1.000 1.000 3 0.479 0.435 0.537
0.50 0 − 169 100 2 1.000 1.000 3 0.425 0.425 0.521
0.50 0 − 169 100 3 1.000 1.000 3 0.971 0.966 0.979
0.50 0 − 169 100 4 1.000 1.000 3 0.879 0.874 0.956
0.50 0 − 169 150 2 1.000 1.000 3 0.597 0.597 0.729
0.50 0 − 169 150 3 1.000 1.000 3 0.999 1.000 1.000
0.50 0 − 169 150 4 1.000 1.000 3 0.984 0.984 1.000
0.50 0 − 169 200 2 1.000 1.000 3 0.756 0.756 0.874
0.50 0 − 169 200 3 1.000 1.000 3 1.000 1.000 1.000
0.50 0 − 169 200 4 1.000 1.000 3 0.999 0.999 1.000
0.50 0 − 25 50 2 1.000 1.000 5 0.117 0.056 0.100
0.50 0 − 25 50 3 1.000 1.000 5 0.758 0.769 0.065
0.50 0 − 25 50 4 1.000 1.000 5 0.331 0.242 0.032
0.50 0 − 25 100 2 1.000 1.000 5 0.098 0.062 0.159
0.50 0 − 25 100 3 1.000 1.000 5 0.995 0.997 0.339
0.50 0 − 25 100 4 1.000 1.000 5 0.557 0.527 0.095
0.50 0 − 25 150 2 1.000 1.000 5 0.112 0.082 0.222
0.50 0 − 25 150 3 1.000 1.000 5 1.000 1.000 0.794
0.50 0 − 25 150 4 1.000 1.000 5 0.789 0.790 0.339
0.50 0 − 25 200 2 1.000 1.000 5 0.103 0.080 0.267
0.50 0 − 25 200 3 1.000 1.000 5 1.000 1.000 0.995
0.50 0 − 25 200 4 1.000 1.000 5 0.919 0.929 0.752
0.50 0 − 49 50 2 1.000 1.000 5 0.081 0.055 0.106
0.50 0 − 49 50 3 1.000 1.000 5 0.596 0.583 0.037
0.50 0 − 49 50 4 1.000 1.000 5 0.195 0.160 0.025
0.50 0 − 49 100 2 1.000 1.000 5 0.087 0.060 0.105
0.50 0 − 49 100 3 1.000 1.000 5 0.962 0.953 0.108
0.50 0 − 49 100 4 1.000 1.000 5 0.335 0.329 0.045
0.50 0 − 49 150 2 1.000 1.000 5 0.103 0.080 0.130
0.50 0 − 49 150 3 1.000 1.000 5 0.999 0.998 0.403
0.50 0 − 49 150 4 1.000 1.000 5 0.515 0.513 0.131
0.50 0 − 49 200 2 1.000 1.000 5 0.114 0.092 0.117
0.50 0 − 49 200 3 1.000 1.000 5 1.000 1.000 0.856
0.50 0 − 49 200 4 1.000 1.000 5 0.662 0.649 0.303
0.50 0 − 81 50 2 1.000 1.000 5 0.104 0.072 0.125
0.50 0 − 81 50 3 1.000 1.000 5 0.284 0.250 0.016
0.50 0 − 81 50 4 1.000 1.000 5 0.477 0.470 0.039
0.50 0 − 81 100 2 1.000 1.000 5 0.133 0.104 0.184
0.50 0 − 81 100 3 1.000 1.000 5 0.592 0.561 0.035
0.50 0 − 81 100 4 1.000 1.000 5 0.878 0.884 0.125
0.50 0 − 81 150 2 1.000 1.000 5 0.165 0.137 0.209
0.50 0 − 81 150 3 1.000 1.000 5 0.824 0.808 0.046
0.50 0 − 81 150 4 1.000 1.000 5 0.991 0.991 0.319
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Table 5 continued

β̄ λ̄ µh N T
Het

Regime
CSMC
Het LR

CSMC
Het Q m

CSMC
Dep LR

CSMC
Dep Q

JSMC
Dep

0.50 0 − 81 200 2 1.000 1.000 5 0.196 0.163 0.296
0.50 0 − 81 200 3 1.000 1.000 5 0.951 0.948 0.072
0.50 0 − 81 200 4 1.000 1.000 5 1.000 0.998 0.696
0.50 0 − 121 50 2 1.000 1.000 5 0.103 0.075 0.121
0.50 0 − 121 50 3 1.000 1.000 5 0.364 0.319 0.030
0.50 0 − 121 50 4 1.000 1.000 5 0.309 0.295 0.038
0.50 0 − 121 100 2 1.000 1.000 5 0.115 0.090 0.136
0.50 0 − 121 100 3 1.000 1.000 5 0.740 0.710 0.047
0.50 0 − 121 100 4 1.000 1.000 5 0.687 0.665 0.102
0.50 0 − 121 150 2 1.000 1.000 5 0.142 0.118 0.192
0.50 0 − 121 150 3 1.000 1.000 5 0.952 0.934 0.112
0.50 0 − 121 150 4 1.000 1.000 5 0.916 0.895 0.201
0.50 0 − 121 200 2 1.000 1.000 5 0.156 0.144 0.228
0.50 0 − 121 200 3 1.000 1.000 5 0.996 0.992 0.294
0.50 0 − 121 200 4 1.000 1.000 5 0.991 0.979 0.470
0.50 0 − 169 50 2 1.000 1.000 5 0.103 0.080 0.119
0.50 0 − 169 50 3 1.000 1.000 5 0.386 0.348 0.035
0.50 0 − 169 50 4 1.000 1.000 5 0.202 0.201 0.042
0.50 0 − 169 100 2 1.000 1.000 5 0.200 0.182 0.189
0.50 0 − 169 100 3 1.000 1.000 5 0.797 0.768 0.040
0.50 0 − 169 100 4 1.000 1.000 5 0.487 0.447 0.095
0.50 0 − 169 150 2 1.000 1.000 5 0.230 0.218 0.240
0.50 0 − 169 150 3 1.000 1.000 5 0.967 0.959 0.077
0.50 0 − 169 150 4 1.000 1.000 5 0.782 0.717 0.137
0.50 0 − 169 200 2 1.000 1.000 5 0.313 0.304 0.353
0.50 0 − 169 200 3 1.000 1.000 5 0.994 0.992 0.164
0.50 0 − 169 200 4 1.000 1.000 5 0.922 0.892 0.283
0.50 0 − 25 50 2 1.000 1.000 7 0.200 0.057 0.041
0.50 0 − 25 50 3 1.000 1.000 7 0.637 0.488 0.016
0.50 0 − 25 50 4 1.000 1.000 7 0.255 0.222 0.013
0.50 0 − 25 100 2 1.000 1.000 7 0.163 0.069 0.094
0.50 0 − 25 100 3 1.000 1.000 7 0.956 0.905 0.021
0.50 0 − 25 100 4 1.000 1.000 7 0.412 0.400 0.023
0.50 0 − 25 150 2 1.000 1.000 7 0.157 0.081 0.110
0.50 0 − 25 150 3 1.000 1.000 7 0.997 0.996 0.030
0.50 0 − 25 150 4 1.000 1.000 7 0.660 0.621 0.040
0.50 0 − 25 200 2 1.000 1.000 7 0.154 0.092 0.128
0.50 0 − 25 200 3 1.000 1.000 7 1.000 1.000 0.061
0.50 0 − 25 200 4 1.000 1.000 7 0.847 0.823 0.060
0.50 0 − 49 50 2 1.000 1.000 7 0.147 0.045 0.053
0.50 0 − 49 50 3 1.000 1.000 7 0.383 0.309 0.009
0.50 0 − 49 50 4 1.000 1.000 7 0.172 0.133 0.012
0.50 0 − 49 100 2 1.000 1.000 7 0.121 0.069 0.084
0.50 0 − 49 100 3 1.000 1.000 7 0.675 0.667 0.013
0.50 0 − 49 100 4 1.000 1.000 7 0.325 0.239 0.018
0.50 0 − 49 150 2 1.000 1.000 7 0.118 0.053 0.116
0.50 0 − 49 150 3 1.000 1.000 7 0.916 0.923 0.019
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Table 5 continued

β̄ λ̄ µh N T
Het

Regime
CSMC
Het LR

CSMC
Het Q m

CSMC
Dep LR

CSMC
Dep Q

JSMC
Dep

0.50 0 − 49 150 4 1.000 1.000 7 0.483 0.436 0.023
0.50 0 − 49 200 2 1.000 1.000 7 0.109 0.064 0.114
0.50 0 − 49 200 3 1.000 1.000 7 0.986 0.985 0.017
0.50 0 − 49 200 4 1.000 1.000 7 0.588 0.562 0.039
0.50 0 − 81 50 2 1.000 1.000 7 0.110 0.050 0.080
0.50 0 − 81 50 3 1.000 1.000 7 0.160 0.137 0.005
0.50 0 − 81 50 4 1.000 1.000 7 0.316 0.242 0.013
0.50 0 − 81 100 2 1.000 1.000 7 0.141 0.084 0.130
0.50 0 − 81 100 3 1.000 1.000 7 0.315 0.266 0.010
0.50 0 − 81 100 4 1.000 1.000 7 0.649 0.604 0.024
0.50 0 − 81 150 2 1.000 1.000 7 0.129 0.083 0.145
0.50 0 − 81 150 3 1.000 1.000 7 0.459 0.429 0.011
0.50 0 − 81 150 4 1.000 1.000 7 0.844 0.850 0.043
0.50 0 − 81 200 2 1.000 1.000 7 0.138 0.106 0.194
0.50 0 − 81 200 3 1.000 1.000 7 0.631 0.598 0.012
0.50 0 − 81 200 4 1.000 1.000 7 0.949 0.950 0.052
0.50 0 − 121 50 2 1.000 1.000 7 0.115 0.066 0.084
0.50 0 − 121 50 3 1.000 1.000 7 0.232 0.199 0.012
0.50 0 − 121 50 4 1.000 1.000 7 0.274 0.211 0.020
0.50 0 − 121 100 2 1.000 1.000 7 0.123 0.086 0.113
0.50 0 − 121 100 3 1.000 1.000 7 0.392 0.373 0.013
0.50 0 − 121 100 4 1.000 1.000 7 0.447 0.420 0.034
0.50 0 − 121 150 2 1.000 1.000 7 0.114 0.086 0.156
0.50 0 − 121 150 3 1.000 1.000 7 0.633 0.630 0.015
0.50 0 − 121 150 4 1.000 1.000 7 0.680 0.693 0.039
0.50 0 − 121 200 2 1.000 1.000 7 0.136 0.103 0.179
0.50 0 − 121 200 3 1.000 1.000 7 0.752 0.783 0.017
0.50 0 − 121 200 4 1.000 1.000 7 0.859 0.862 0.059
0.50 0 − 169 50 2 1.000 1.000 7 0.129 0.075 0.112
0.50 0 − 169 50 3 1.000 1.000 7 0.209 0.191 0.011
0.50 0 − 169 50 4 1.000 1.000 7 0.175 0.135 0.015
0.50 0 − 169 100 2 1.000 1.000 7 0.149 0.111 0.143
0.50 0 − 169 100 3 1.000 1.000 7 0.503 0.482 0.013
0.50 0 − 169 100 4 1.000 1.000 7 0.245 0.233 0.026
0.50 0 − 169 150 2 1.000 1.000 7 0.204 0.156 0.184
0.50 0 − 169 150 3 1.000 1.000 7 0.698 0.712 0.019
0.50 0 − 169 150 4 1.000 1.000 7 0.404 0.415 0.035
0.50 0 − 169 200 2 1.000 1.000 7 0.206 0.176 0.195
0.50 0 − 169 200 3 1.000 1.000 7 0.872 0.897 0.022
0.50 0 − 169 200 4 1.000 1.000 7 0.609 0.599 0.046

80



Table 6. Power & Robustness Results, Lag Heterogeneity.

BBBhh λ̄ µ̄ N T
Het

Regime
CSMC
Het LR

CSMC
Het Q m

CSMC
Dep LR

CSMC
Dep Q

JSMC
Dep

− 0 1.00 25 50 2 0.835 0.833 3 0.042 0.038 0.061
− 0 1.00 25 50 3 1.000 1.000 3 0.073 0.069 0.075
− 0 1.00 25 50 4 0.997 0.997 3 0.064 0.063 0.074
− 0 1.00 25 100 2 0.998 0.998 3 0.061 0.061 0.061
− 0 1.00 25 100 3 1.000 1.000 3 0.075 0.073 0.083
− 0 1.00 25 100 4 1.000 1.000 3 0.072 0.069 0.068
− 0 1.00 25 150 2 1.000 1.000 3 0.047 0.048 0.063
− 0 1.00 25 150 3 1.000 1.000 3 0.073 0.070 0.080
− 0 1.00 25 150 4 1.000 1.000 3 0.058 0.058 0.054
− 0 1.00 25 200 2 1.000 1.000 3 0.054 0.053 0.068
− 0 1.00 25 200 3 1.000 1.000 3 0.064 0.064 0.099
− 0 1.00 25 200 4 1.000 1.000 3 0.060 0.059 0.084
− 0 1.00 49 50 2 0.991 0.991 3 0.068 0.066 0.059
− 0 1.00 49 50 3 1.000 1.000 3 0.071 0.066 0.072
− 0 1.00 49 50 4 1.000 1.000 3 0.066 0.063 0.072
− 0 1.00 49 100 2 1.000 1.000 3 0.045 0.046 0.051
− 0 1.00 49 100 3 1.000 1.000 3 0.064 0.062 0.097
− 0 1.00 49 100 4 1.000 1.000 3 0.064 0.063 0.070
− 0 1.00 49 150 2 1.000 1.000 3 0.055 0.056 0.069
− 0 1.00 49 150 3 1.000 1.000 3 0.062 0.063 0.075
− 0 1.00 49 150 4 1.000 1.000 3 0.060 0.058 0.067
− 0 1.00 49 200 2 1.000 1.000 3 0.051 0.051 0.070
− 0 1.00 49 200 3 1.000 1.000 3 0.062 0.064 0.086
− 0 1.00 49 200 4 1.000 1.000 3 0.069 0.068 0.081
− 0 1.00 81 50 2 0.999 0.999 3 0.051 0.051 0.058
− 0 1.00 81 50 3 1.000 1.000 3 0.063 0.061 0.078
− 0 1.00 81 50 4 1.000 1.000 3 0.071 0.070 0.080
− 0 1.00 81 100 2 1.000 1.000 3 0.067 0.066 0.061
− 0 1.00 81 100 3 1.000 1.000 3 0.059 0.059 0.087
− 0 1.00 81 100 4 1.000 1.000 3 0.056 0.055 0.085
− 0 1.00 81 150 2 1.000 1.000 3 0.056 0.055 0.069
− 0 1.00 81 150 3 1.000 1.000 3 0.050 0.049 0.066
− 0 1.00 81 150 4 1.000 1.000 3 0.058 0.060 0.072
− 0 1.00 81 200 2 1.000 1.000 3 0.059 0.057 0.064
− 0 1.00 81 200 3 1.000 1.000 3 0.079 0.081 0.097
− 0 1.00 81 200 4 1.000 1.000 3 0.077 0.077 0.085
− 0 1.00 121 50 2 1.000 1.000 3 0.055 0.056 0.064
− 0 1.00 121 50 3 1.000 1.000 3 0.067 0.067 0.065
− 0 1.00 121 50 4 1.000 1.000 3 0.068 0.067 0.068
− 0 1.00 121 100 2 1.000 1.000 3 0.065 0.065 0.064
− 0 1.00 121 100 3 1.000 1.000 3 0.050 0.050 0.078
− 0 1.00 121 100 4 1.000 1.000 3 0.059 0.059 0.093
− 0 1.00 121 150 2 1.000 1.000 3 0.055 0.054 0.083
− 0 1.00 121 150 3 1.000 1.000 3 0.080 0.079 0.073
− 0 1.00 121 150 4 1.000 1.000 3 0.066 0.067 0.071
− 0 1.00 121 200 2 1.000 1.000 3 0.052 0.052 0.058

Continued on next page

81



Table 6 continued

BBBhh λ̄ µ̄ N T
Het

Regime
CSMC
Het LR

CSMC
Het Q m

CSMC
Dep LR

CSMC
Dep Q

JSMC
Dep

− 0 1.00 121 200 3 1.000 1.000 3 0.061 0.062 0.082
− 0 1.00 121 200 4 1.000 1.000 3 0.055 0.057 0.065
− 0 1.00 169 50 2 1.000 1.000 3 0.043 0.043 0.059
− 0 1.00 169 50 3 1.000 1.000 3 0.060 0.059 0.073
− 0 1.00 169 50 4 1.000 1.000 3 0.068 0.068 0.082
− 0 1.00 169 100 2 1.000 1.000 3 0.053 0.053 0.071
− 0 1.00 169 100 3 1.000 1.000 3 0.060 0.059 0.082
− 0 1.00 169 100 4 1.000 1.000 3 0.070 0.071 0.079
− 0 1.00 169 150 2 1.000 1.000 3 0.059 0.058 0.061
− 0 1.00 169 150 3 1.000 1.000 3 0.066 0.066 0.076
− 0 1.00 169 150 4 1.000 1.000 3 0.057 0.057 0.073
− 0 1.00 169 200 2 1.000 1.000 3 0.054 0.053 0.059
− 0 1.00 169 200 3 1.000 1.000 3 0.059 0.059 0.070
− 0 1.00 169 200 4 1.000 1.000 3 0.052 0.051 0.062
− 0 1.00 25 50 2 0.760 0.747 5 0.086 0.056 0.054
− 0 1.00 25 50 3 0.997 0.997 5 0.116 0.067 0.100
− 0 1.00 25 50 4 0.986 0.982 5 0.100 0.061 0.087
− 0 1.00 25 100 2 0.984 0.984 5 0.083 0.074 0.055
− 0 1.00 25 100 3 1.000 1.000 5 0.080 0.066 0.082
− 0 1.00 25 100 4 1.000 1.000 5 0.067 0.050 0.065
− 0 1.00 25 150 2 1.000 1.000 5 0.044 0.039 0.046
− 0 1.00 25 150 3 1.000 1.000 5 0.067 0.058 0.067
− 0 1.00 25 150 4 1.000 1.000 5 0.064 0.054 0.064
− 0 1.00 25 200 2 1.000 1.000 5 0.047 0.043 0.055
− 0 1.00 25 200 3 1.000 1.000 5 0.076 0.069 0.084
− 0 1.00 25 200 4 1.000 1.000 5 0.061 0.055 0.060
− 0 1.00 49 50 2 0.978 0.977 5 0.068 0.055 0.060
− 0 1.00 49 50 3 1.000 1.000 5 0.085 0.063 0.077
− 0 1.00 49 50 4 1.000 1.000 5 0.077 0.057 0.064
− 0 1.00 49 100 2 1.000 1.000 5 0.053 0.050 0.050
− 0 1.00 49 100 3 1.000 1.000 5 0.064 0.053 0.066
− 0 1.00 49 100 4 1.000 1.000 5 0.060 0.050 0.074
− 0 1.00 49 150 2 1.000 1.000 5 0.051 0.048 0.057
− 0 1.00 49 150 3 1.000 1.000 5 0.064 0.064 0.070
− 0 1.00 49 150 4 1.000 1.000 5 0.062 0.055 0.078
− 0 1.00 49 200 2 1.000 1.000 5 0.045 0.042 0.051
− 0 1.00 49 200 3 1.000 1.000 5 0.059 0.057 0.072
− 0 1.00 49 200 4 1.000 1.000 5 0.069 0.066 0.067
− 0 1.00 81 50 2 0.999 0.999 5 0.052 0.053 0.054
− 0 1.00 81 50 3 1.000 1.000 5 0.068 0.058 0.068
− 0 1.00 81 50 4 1.000 1.000 5 0.066 0.059 0.065
− 0 1.00 81 100 2 1.000 1.000 5 0.055 0.053 0.054
− 0 1.00 81 100 3 1.000 1.000 5 0.073 0.066 0.064
− 0 1.00 81 100 4 1.000 1.000 5 0.064 0.058 0.062
− 0 1.00 81 150 2 1.000 1.000 5 0.064 0.061 0.064
− 0 1.00 81 150 3 1.000 1.000 5 0.064 0.056 0.050
− 0 1.00 81 150 4 1.000 1.000 5 0.061 0.056 0.064
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Table 6 continued

BBBhh λ̄ µ̄ N T
Het

Regime
CSMC
Het LR

CSMC
Het Q m

CSMC
Dep LR

CSMC
Dep Q

JSMC
Dep

− 0 1.00 81 200 2 1.000 1.000 5 0.046 0.044 0.058
− 0 1.00 81 200 3 1.000 1.000 5 0.055 0.053 0.066
− 0 1.00 81 200 4 1.000 1.000 5 0.062 0.061 0.068
− 0 1.00 121 50 2 1.000 1.000 5 0.076 0.064 0.053
− 0 1.00 121 50 3 1.000 1.000 5 0.074 0.067 0.076
− 0 1.00 121 50 4 1.000 1.000 5 0.060 0.054 0.051
− 0 1.00 121 100 2 1.000 1.000 5 0.051 0.051 0.041
− 0 1.00 121 100 3 1.000 1.000 5 0.069 0.065 0.072
− 0 1.00 121 100 4 1.000 1.000 5 0.082 0.075 0.069
− 0 1.00 121 150 2 1.000 1.000 5 0.049 0.046 0.054
− 0 1.00 121 150 3 1.000 1.000 5 0.070 0.066 0.072
− 0 1.00 121 150 4 1.000 1.000 5 0.064 0.063 0.063
− 0 1.00 121 200 2 1.000 1.000 5 0.044 0.043 0.050
− 0 1.00 121 200 3 1.000 1.000 5 0.071 0.066 0.057
− 0 1.00 121 200 4 1.000 1.000 5 0.064 0.061 0.061
− 0 1.00 169 50 2 1.000 1.000 5 0.066 0.061 0.068
− 0 1.00 169 50 3 1.000 1.000 5 0.061 0.059 0.062
− 0 1.00 169 50 4 1.000 1.000 5 0.061 0.058 0.059
− 0 1.00 169 100 2 1.000 1.000 5 0.057 0.056 0.043
− 0 1.00 169 100 3 1.000 1.000 5 0.063 0.067 0.053
− 0 1.00 169 100 4 1.000 1.000 5 0.067 0.065 0.051
− 0 1.00 169 150 2 1.000 1.000 5 0.052 0.054 0.050
− 0 1.00 169 150 3 1.000 1.000 5 0.074 0.071 0.049
− 0 1.00 169 150 4 1.000 1.000 5 0.056 0.055 0.058
− 0 1.00 169 200 2 1.000 1.000 5 0.057 0.058 0.050
− 0 1.00 169 200 3 1.000 1.000 5 0.061 0.061 0.067
− 0 1.00 169 200 4 1.000 1.000 5 0.057 0.056 0.063
− 0 1.00 25 50 2 0.663 0.611 7 0.326 0.050 0.054
− 0 1.00 25 50 3 0.995 0.990 7 0.319 0.046 0.105
− 0 1.00 25 50 4 0.961 0.928 7 0.321 0.067 0.083
− 0 1.00 25 100 2 0.954 0.947 7 0.125 0.044 0.054
− 0 1.00 25 100 3 1.000 1.000 7 0.169 0.055 0.110
− 0 1.00 25 100 4 1.000 1.000 7 0.174 0.062 0.108
− 0 1.00 25 150 2 0.999 0.999 7 0.105 0.055 0.053
− 0 1.00 25 150 3 1.000 1.000 7 0.131 0.048 0.124
− 0 1.00 25 150 4 1.000 1.000 7 0.098 0.039 0.071
− 0 1.00 25 200 2 1.000 1.000 7 0.090 0.059 0.056
− 0 1.00 25 200 3 1.000 1.000 7 0.116 0.064 0.109
− 0 1.00 25 200 4 1.000 1.000 7 0.099 0.053 0.080
− 0 1.00 49 50 2 0.950 0.946 7 0.152 0.053 0.055
− 0 1.00 49 50 3 1.000 1.000 7 0.178 0.061 0.108
− 0 1.00 49 50 4 1.000 1.000 7 0.179 0.065 0.101
− 0 1.00 49 100 2 1.000 1.000 7 0.084 0.052 0.060
− 0 1.00 49 100 3 1.000 1.000 7 0.104 0.058 0.086
− 0 1.00 49 100 4 1.000 1.000 7 0.091 0.043 0.076
− 0 1.00 49 150 2 1.000 1.000 7 0.065 0.051 0.043
− 0 1.00 49 150 3 1.000 1.000 7 0.094 0.066 0.084
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Table 6 continued

BBBhh λ̄ µ̄ N T
Het

Regime
CSMC
Het LR

CSMC
Het Q m

CSMC
Dep LR

CSMC
Dep Q

JSMC
Dep

− 0 1.00 49 150 4 1.000 1.000 7 0.101 0.071 0.089
− 0 1.00 49 200 2 1.000 1.000 7 0.055 0.044 0.061
− 0 1.00 49 200 3 1.000 1.000 7 0.084 0.059 0.097
− 0 1.00 49 200 4 1.000 1.000 7 0.084 0.059 0.079
− 0 1.00 81 50 2 0.997 0.997 7 0.090 0.045 0.044
− 0 1.00 81 50 3 1.000 1.000 7 0.114 0.052 0.057
− 0 1.00 81 50 4 1.000 1.000 7 0.129 0.061 0.058
− 0 1.00 81 100 2 1.000 1.000 7 0.061 0.046 0.044
− 0 1.00 81 100 3 1.000 1.000 7 0.070 0.048 0.048
− 0 1.00 81 100 4 1.000 1.000 7 0.086 0.064 0.081
− 0 1.00 81 150 2 1.000 1.000 7 0.077 0.066 0.064
− 0 1.00 81 150 3 1.000 1.000 7 0.075 0.055 0.063
− 0 1.00 81 150 4 1.000 1.000 7 0.071 0.058 0.068
− 0 1.00 81 200 2 1.000 1.000 7 0.069 0.057 0.057
− 0 1.00 81 200 3 1.000 1.000 7 0.057 0.048 0.053
− 0 1.00 81 200 4 1.000 1.000 7 0.064 0.050 0.050
− 0 1.00 121 50 2 1.000 1.000 7 0.076 0.052 0.064
− 0 1.00 121 50 3 1.000 1.000 7 0.093 0.054 0.079
− 0 1.00 121 50 4 1.000 1.000 7 0.090 0.049 0.074
− 0 1.00 121 100 2 1.000 1.000 7 0.068 0.059 0.069
− 0 1.00 121 100 3 1.000 1.000 7 0.080 0.060 0.063
− 0 1.00 121 100 4 1.000 1.000 7 0.067 0.051 0.050
− 0 1.00 121 150 2 1.000 1.000 7 0.057 0.052 0.056
− 0 1.00 121 150 3 1.000 1.000 7 0.065 0.055 0.075
− 0 1.00 121 150 4 1.000 1.000 7 0.072 0.061 0.065
− 0 1.00 121 200 2 1.000 1.000 7 0.072 0.067 0.044
− 0 1.00 121 200 3 1.000 1.000 7 0.061 0.050 0.059
− 0 1.00 121 200 4 1.000 1.000 7 0.055 0.051 0.066
− 0 1.00 169 50 2 1.000 1.000 7 0.053 0.048 0.057
− 0 1.00 169 50 3 1.000 1.000 7 0.082 0.052 0.062
− 0 1.00 169 50 4 1.000 1.000 7 0.076 0.056 0.050
− 0 1.00 169 100 2 1.000 1.000 7 0.048 0.043 0.045
− 0 1.00 169 100 3 1.000 1.000 7 0.066 0.052 0.057
− 0 1.00 169 100 4 1.000 1.000 7 0.053 0.046 0.060
− 0 1.00 169 150 2 1.000 1.000 7 0.054 0.052 0.044
− 0 1.00 169 150 3 1.000 1.000 7 0.063 0.057 0.056
− 0 1.00 169 150 4 1.000 1.000 7 0.058 0.053 0.055
− 0 1.00 169 200 2 1.000 1.000 7 0.056 0.053 0.051
− 0 1.00 169 200 3 1.000 1.000 7 0.065 0.062 0.055
− 0 1.00 169 200 4 1.000 1.000 7 0.071 0.064 0.056
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Table 7. Power & Robustness Results, Spatial Dependence.

β̄ λ̄ µ̄ N T
Het

Regime
CSMC
Het LR

CSMC
Het Q m

CSMC
Dep LR

CSMC
Dep Q

JSMC
Dep

0.50 0.125 1.00 25 50 2 0.065 0.065 3 0.274 0.270 0.291
0.50 0.250 1.00 25 50 2 0.081 0.080 3 0.919 0.921 0.922
0.50 0.375 1.00 25 50 2 0.115 0.113 3 1.000 1.000 1.000
0.50 0.500 1.00 25 50 2 0.242 0.240 3 1.000 1.000 1.000
0.50 0.125 1.00 25 100 2 0.071 0.071 3 0.585 0.587 0.597
0.50 0.250 1.00 25 100 2 0.079 0.078 3 0.999 0.999 0.999
0.50 0.375 1.00 25 100 2 0.119 0.119 3 1.000 1.000 1.000
0.50 0.500 1.00 25 100 2 0.261 0.262 3 1.000 1.000 1.000
0.50 0.125 1.00 25 150 2 0.059 0.059 3 0.826 0.826 0.831
0.50 0.250 1.00 25 150 2 0.067 0.067 3 1.000 1.000 1.000
0.50 0.375 1.00 25 150 2 0.110 0.110 3 1.000 1.000 1.000
0.50 0.500 1.00 25 150 2 0.288 0.288 3 1.000 1.000 1.000
0.50 0.125 1.00 25 200 2 0.071 0.071 3 0.917 0.916 0.927
0.50 0.250 1.00 25 200 2 0.065 0.065 3 1.000 1.000 1.000
0.50 0.375 1.00 25 200 2 0.090 0.090 3 1.000 1.000 1.000
0.50 0.500 1.00 25 200 2 0.261 0.262 3 1.000 1.000 1.000
0.50 0.125 1.00 49 50 2 0.070 0.069 3 0.505 0.500 0.530
0.50 0.250 1.00 49 50 2 0.075 0.074 3 0.999 0.999 1.000
0.50 0.375 1.00 49 50 2 0.074 0.073 3 1.000 1.000 1.000
0.50 0.500 1.00 49 50 2 0.122 0.121 3 1.000 1.000 1.000
0.50 0.125 1.00 49 100 2 0.054 0.054 3 0.872 0.870 0.878
0.50 0.250 1.00 49 100 2 0.056 0.056 3 1.000 1.000 1.000
0.50 0.375 1.00 49 100 2 0.075 0.075 3 1.000 1.000 1.000
0.50 0.500 1.00 49 100 2 0.127 0.127 3 1.000 1.000 1.000
0.50 0.125 1.00 49 150 2 0.052 0.052 3 0.986 0.987 0.987
0.50 0.250 1.00 49 150 2 0.069 0.069 3 1.000 1.000 1.000
0.50 0.375 1.00 49 150 2 0.084 0.084 3 1.000 1.000 1.000
0.50 0.500 1.00 49 150 2 0.132 0.128 3 1.000 1.000 1.000
0.50 0.125 1.00 49 200 2 0.079 0.079 3 0.998 0.998 0.998
0.50 0.250 1.00 49 200 2 0.075 0.075 3 1.000 1.000 1.000
0.50 0.375 1.00 49 200 2 0.078 0.078 3 1.000 1.000 1.000
0.50 0.500 1.00 49 200 2 0.133 0.133 3 1.000 1.000 1.000
0.50 0.125 1.00 81 50 2 0.062 0.061 3 0.762 0.760 0.771
0.50 0.250 1.00 81 50 2 0.061 0.061 3 1.000 1.000 1.000
0.50 0.375 1.00 81 50 2 0.072 0.072 3 1.000 1.000 1.000
0.50 0.500 1.00 81 50 2 0.196 0.197 3 1.000 1.000 1.000
0.50 0.125 1.00 81 100 2 0.051 0.051 3 0.986 0.986 0.985
0.50 0.250 1.00 81 100 2 0.059 0.059 3 1.000 1.000 1.000
0.50 0.375 1.00 81 100 2 0.087 0.086 3 1.000 1.000 1.000
0.50 0.500 1.00 81 100 2 0.226 0.228 3 1.000 1.000 1.000
0.50 0.125 1.00 81 150 2 0.072 0.072 3 1.000 1.000 1.000
0.50 0.250 1.00 81 150 2 0.073 0.073 3 1.000 1.000 1.000
0.50 0.375 1.00 81 150 2 0.098 0.098 3 1.000 1.000 1.000
0.50 0.500 1.00 81 150 2 0.280 0.280 3 1.000 1.000 1.000
0.50 0.125 1.00 81 200 2 0.060 0.060 3 1.000 1.000 1.000
0.50 0.250 1.00 81 200 2 0.078 0.078 3 1.000 1.000 1.000
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Table 7 continued

β̄ λ̄ µ̄ N T
Het

Regime
CSMC
Het LR

CSMC
Het Q m

CSMC
Dep LR

CSMC
Dep Q

JSMC
Dep

0.50 0.375 1.00 81 200 2 0.088 0.088 3 1.000 1.000 1.000
0.50 0.500 1.00 81 200 2 0.288 0.288 3 1.000 1.000 1.000
0.50 0.125 1.00 121 50 2 0.076 0.076 3 0.932 0.933 0.937
0.50 0.250 1.00 121 50 2 0.080 0.080 3 1.000 1.000 1.000
0.50 0.375 1.00 121 50 2 0.114 0.114 3 1.000 1.000 1.000
0.50 0.500 1.00 121 50 2 0.340 0.340 3 1.000 1.000 1.000
0.50 0.125 1.00 121 100 2 0.065 0.065 3 1.000 1.000 1.000
0.50 0.250 1.00 121 100 2 0.071 0.071 3 1.000 1.000 1.000
0.50 0.375 1.00 121 100 2 0.107 0.107 3 1.000 1.000 1.000
0.50 0.500 1.00 121 100 2 0.405 0.405 3 1.000 1.000 1.000
0.50 0.125 1.00 121 150 2 0.073 0.073 3 1.000 1.000 1.000
0.50 0.250 1.00 121 150 2 0.082 0.082 3 1.000 1.000 1.000
0.50 0.375 1.00 121 150 2 0.114 0.113 3 1.000 1.000 1.000
0.50 0.500 1.00 121 150 2 0.486 0.487 3 1.000 1.000 1.000
0.50 0.125 1.00 121 200 2 0.065 0.065 3 1.000 1.000 1.000
0.50 0.250 1.00 121 200 2 0.069 0.069 3 1.000 1.000 1.000
0.50 0.375 1.00 121 200 2 0.094 0.094 3 1.000 1.000 1.000
0.50 0.500 1.00 121 200 2 0.484 0.483 3 1.000 1.000 1.000
0.50 0.125 1.00 169 50 2 0.058 0.058 3 0.990 0.990 0.993
0.50 0.250 1.00 169 50 2 0.061 0.061 3 1.000 1.000 1.000
0.50 0.375 1.00 169 50 2 0.087 0.087 3 1.000 1.000 1.000
0.50 0.500 1.00 169 50 2 0.202 0.202 3 1.000 1.000 1.000
0.50 0.125 1.00 169 100 2 0.068 0.068 3 1.000 1.000 1.000
0.50 0.250 1.00 169 100 2 0.074 0.074 3 1.000 1.000 1.000
0.50 0.375 1.00 169 100 2 0.094 0.094 3 1.000 1.000 1.000
0.50 0.500 1.00 169 100 2 0.291 0.291 3 1.000 1.000 1.000
0.50 0.125 1.00 169 150 2 0.042 0.042 3 1.000 1.000 1.000
0.50 0.250 1.00 169 150 2 0.052 0.052 3 1.000 1.000 1.000
0.50 0.375 1.00 169 150 2 0.074 0.074 3 1.000 1.000 1.000
0.50 0.500 1.00 169 150 2 0.370 0.370 3 1.000 1.000 1.000
0.50 0.125 1.00 169 200 2 0.056 0.056 3 1.000 1.000 1.000
0.50 0.250 1.00 169 200 2 0.072 0.072 3 1.000 1.000 1.000
0.50 0.375 1.00 169 200 2 0.098 0.098 3 1.000 1.000 1.000
0.50 0.500 1.00 169 200 2 0.391 0.390 3 1.000 1.000 1.000
0.50 0.125 1.00 25 50 2 0.067 0.056 5 0.184 0.125 0.144
0.50 0.250 1.00 25 50 2 0.081 0.071 5 0.738 0.681 0.659
0.50 0.375 1.00 25 50 2 0.122 0.097 5 0.996 0.993 0.994
0.50 0.500 1.00 25 50 2 0.164 0.147 5 1.000 1.000 1.000
0.50 0.125 1.00 25 100 2 0.060 0.059 5 0.322 0.288 0.271
0.50 0.250 1.00 25 100 2 0.078 0.075 5 0.981 0.980 0.953
0.50 0.375 1.00 25 100 2 0.106 0.101 5 1.000 1.000 1.000
0.50 0.500 1.00 25 100 2 0.198 0.182 5 1.000 1.000 1.000
0.50 0.125 1.00 25 150 2 0.063 0.058 5 0.535 0.522 0.414
0.50 0.250 1.00 25 150 2 0.065 0.063 5 1.000 1.000 0.998
0.50 0.375 1.00 25 150 2 0.084 0.082 5 1.000 1.000 1.000
0.50 0.500 1.00 25 150 2 0.218 0.201 5 1.000 1.000 1.000
0.50 0.125 1.00 25 200 2 0.049 0.048 5 0.670 0.662 0.586
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Table 7 continued

β̄ λ̄ µ̄ N T
Het

Regime
CSMC
Het LR

CSMC
Het Q m

CSMC
Dep LR

CSMC
Dep Q

JSMC
Dep

0.50 0.250 1.00 25 200 2 0.062 0.061 5 1.000 1.000 1.000
0.50 0.375 1.00 25 200 2 0.070 0.067 5 1.000 1.000 1.000
0.50 0.500 1.00 25 200 2 0.221 0.188 5 1.000 1.000 1.000
0.50 0.125 1.00 49 50 2 0.056 0.055 5 0.301 0.259 0.247
0.50 0.250 1.00 49 50 2 0.062 0.057 5 0.959 0.957 0.931
0.50 0.375 1.00 49 50 2 0.077 0.073 5 1.000 1.000 1.000
0.50 0.500 1.00 49 50 2 0.104 0.082 5 1.000 1.000 1.000
0.50 0.125 1.00 49 100 2 0.062 0.061 5 0.603 0.590 0.513
0.50 0.250 1.00 49 100 2 0.059 0.057 5 1.000 1.000 1.000
0.50 0.375 1.00 49 100 2 0.071 0.067 5 1.000 1.000 1.000
0.50 0.500 1.00 49 100 2 0.107 0.092 5 1.000 1.000 1.000
0.50 0.125 1.00 49 150 2 0.058 0.055 5 0.863 0.859 0.749
0.50 0.250 1.00 49 150 2 0.063 0.061 5 1.000 1.000 1.000
0.50 0.375 1.00 49 150 2 0.061 0.061 5 1.000 1.000 1.000
0.50 0.500 1.00 49 150 2 0.109 0.098 5 1.000 1.000 1.000
0.50 0.125 1.00 49 200 2 0.060 0.060 5 0.965 0.965 0.893
0.50 0.250 1.00 49 200 2 0.066 0.062 5 1.000 1.000 1.000
0.50 0.375 1.00 49 200 2 0.052 0.052 5 1.000 1.000 1.000
0.50 0.500 1.00 49 200 2 0.108 0.098 5 1.000 1.000 1.000
0.50 0.125 1.00 81 50 2 0.058 0.058 5 0.435 0.424 0.376
0.50 0.250 1.00 81 50 2 0.068 0.063 5 0.998 0.998 0.994
0.50 0.375 1.00 81 50 2 0.056 0.053 5 1.000 1.000 1.000
0.50 0.500 1.00 81 50 2 0.141 0.125 5 1.000 1.000 1.000
0.50 0.125 1.00 81 100 2 0.052 0.051 5 0.876 0.876 0.781
0.50 0.250 1.00 81 100 2 0.051 0.050 5 1.000 1.000 1.000
0.50 0.375 1.00 81 100 2 0.069 0.069 5 1.000 1.000 1.000
0.50 0.500 1.00 81 100 2 0.157 0.147 5 1.000 1.000 1.000
0.50 0.125 1.00 81 150 2 0.055 0.055 5 0.985 0.983 0.944
0.50 0.250 1.00 81 150 2 0.064 0.063 5 1.000 1.000 1.000
0.50 0.375 1.00 81 150 2 0.075 0.075 5 1.000 1.000 1.000
0.50 0.500 1.00 81 150 2 0.183 0.175 5 1.000 1.000 1.000
0.50 0.125 1.00 81 200 2 0.061 0.059 5 0.998 0.998 0.993
0.50 0.250 1.00 81 200 2 0.057 0.052 5 1.000 1.000 1.000
0.50 0.375 1.00 81 200 2 0.076 0.076 5 1.000 1.000 1.000
0.50 0.500 1.00 81 200 2 0.212 0.200 5 1.000 1.000 1.000
0.50 0.125 1.00 121 50 2 0.059 0.057 5 0.705 0.695 0.587
0.50 0.250 1.00 121 50 2 0.071 0.068 5 1.000 1.000 1.000
0.50 0.375 1.00 121 50 2 0.074 0.071 5 1.000 1.000 1.000
0.50 0.500 1.00 121 50 2 0.232 0.216 5 1.000 1.000 1.000
0.50 0.125 1.00 121 100 2 0.058 0.058 5 0.982 0.984 0.943
0.50 0.250 1.00 121 100 2 0.061 0.058 5 1.000 1.000 1.000
0.50 0.375 1.00 121 100 2 0.092 0.092 5 1.000 1.000 1.000
0.50 0.500 1.00 121 100 2 0.316 0.310 5 1.000 1.000 1.000
0.50 0.125 1.00 121 150 2 0.053 0.053 5 0.999 0.999 0.994
0.50 0.250 1.00 121 150 2 0.058 0.058 5 1.000 1.000 1.000
0.50 0.375 1.00 121 150 2 0.088 0.088 5 1.000 1.000 1.000
0.50 0.500 1.00 121 150 2 0.362 0.353 5 1.000 1.000 1.000
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0.50 0.125 1.00 121 200 2 0.064 0.064 5 1.000 1.000 1.000
0.50 0.250 1.00 121 200 2 0.065 0.065 5 1.000 1.000 1.000
0.50 0.375 1.00 121 200 2 0.090 0.089 5 1.000 1.000 1.000
0.50 0.500 1.00 121 200 2 0.367 0.360 5 1.000 1.000 1.000
0.50 0.125 1.00 169 50 2 0.061 0.060 5 0.864 0.855 0.746
0.50 0.250 1.00 169 50 2 0.055 0.053 5 1.000 1.000 1.000
0.50 0.375 1.00 169 50 2 0.063 0.063 5 1.000 1.000 1.000
0.50 0.500 1.00 169 50 2 0.143 0.130 5 1.000 1.000 1.000
0.50 0.125 1.00 169 100 2 0.045 0.045 5 0.999 0.999 0.995
0.50 0.250 1.00 169 100 2 0.063 0.061 5 1.000 1.000 1.000
0.50 0.375 1.00 169 100 2 0.062 0.062 5 1.000 1.000 1.000
0.50 0.500 1.00 169 100 2 0.207 0.199 5 1.000 1.000 1.000
0.50 0.125 1.00 169 150 2 0.055 0.054 5 1.000 1.000 1.000
0.50 0.250 1.00 169 150 2 0.073 0.073 5 1.000 1.000 1.000
0.50 0.375 1.00 169 150 2 0.070 0.069 5 1.000 1.000 1.000
0.50 0.500 1.00 169 150 2 0.238 0.233 5 1.000 1.000 1.000
0.50 0.125 1.00 169 200 2 0.049 0.049 5 1.000 1.000 1.000
0.50 0.250 1.00 169 200 2 0.055 0.055 5 1.000 1.000 1.000
0.50 0.375 1.00 169 200 2 0.075 0.074 5 1.000 1.000 1.000
0.50 0.500 1.00 169 200 2 0.263 0.259 5 1.000 1.000 1.000
0.50 0.125 1.00 25 50 2 0.083 0.053 7 0.402 0.108 0.160
0.50 0.250 1.00 25 50 2 0.097 0.054 7 0.775 0.435 0.570
0.50 0.375 1.00 25 50 2 0.130 0.091 7 0.990 0.964 0.952
0.50 0.500 1.00 25 50 2 0.178 0.100 7 1.000 1.000 0.986
0.50 0.125 1.00 25 100 2 0.068 0.052 7 0.322 0.163 0.222
0.50 0.250 1.00 25 100 2 0.069 0.054 7 0.935 0.874 0.867
0.50 0.375 1.00 25 100 2 0.096 0.073 7 1.000 1.000 1.000
0.50 0.500 1.00 25 100 2 0.179 0.131 7 1.000 1.000 1.000
0.50 0.125 1.00 25 150 2 0.056 0.049 7 0.410 0.283 0.281
0.50 0.250 1.00 25 150 2 0.080 0.065 7 0.993 0.985 0.963
0.50 0.375 1.00 25 150 2 0.081 0.067 7 1.000 1.000 1.000
0.50 0.500 1.00 25 150 2 0.190 0.149 7 1.000 1.000 1.000
0.50 0.125 1.00 25 200 2 0.070 0.065 7 0.488 0.389 0.356
0.50 0.250 1.00 25 200 2 0.071 0.065 7 1.000 1.000 0.994
0.50 0.375 1.00 25 200 2 0.075 0.068 7 1.000 1.000 1.000
0.50 0.500 1.00 25 200 2 0.181 0.140 7 1.000 1.000 1.000
0.50 0.125 1.00 49 50 2 0.066 0.048 7 0.351 0.176 0.210
0.50 0.250 1.00 49 50 2 0.078 0.067 7 0.887 0.770 0.825
0.50 0.375 1.00 49 50 2 0.092 0.072 7 1.000 0.999 1.000
0.50 0.500 1.00 49 50 2 0.115 0.077 7 1.000 1.000 1.000
0.50 0.125 1.00 49 100 2 0.050 0.046 7 0.425 0.324 0.306
0.50 0.250 1.00 49 100 2 0.055 0.046 7 0.996 0.995 0.988
0.50 0.375 1.00 49 100 2 0.067 0.054 7 1.000 1.000 1.000
0.50 0.500 1.00 49 100 2 0.107 0.073 7 1.000 1.000 1.000
0.50 0.125 1.00 49 150 2 0.068 0.060 7 0.642 0.567 0.472
0.50 0.250 1.00 49 150 2 0.053 0.050 7 1.000 1.000 1.000
0.50 0.375 1.00 49 150 2 0.070 0.067 7 1.000 1.000 1.000
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0.50 0.500 1.00 49 150 2 0.103 0.085 7 1.000 1.000 1.000
0.50 0.125 1.00 49 200 2 0.050 0.047 7 0.794 0.754 0.606
0.50 0.250 1.00 49 200 2 0.056 0.055 7 1.000 1.000 1.000
0.50 0.375 1.00 49 200 2 0.061 0.057 7 1.000 1.000 1.000
0.50 0.500 1.00 49 200 2 0.103 0.080 7 1.000 1.000 1.000
0.50 0.125 1.00 81 50 2 0.064 0.062 7 0.370 0.255 0.271
0.50 0.250 1.00 81 50 2 0.065 0.058 7 0.979 0.967 0.951
0.50 0.375 1.00 81 50 2 0.076 0.061 7 1.000 1.000 1.000
0.50 0.500 1.00 81 50 2 0.151 0.113 7 1.000 1.000 1.000
0.50 0.125 1.00 81 100 2 0.050 0.046 7 0.681 0.615 0.477
0.50 0.250 1.00 81 100 2 0.044 0.040 7 1.000 1.000 1.000
0.50 0.375 1.00 81 100 2 0.070 0.063 7 1.000 1.000 1.000
0.50 0.500 1.00 81 100 2 0.142 0.118 7 1.000 1.000 1.000
0.50 0.125 1.00 81 150 2 0.052 0.051 7 0.884 0.865 0.706
0.50 0.250 1.00 81 150 2 0.059 0.059 7 1.000 1.000 1.000
0.50 0.375 1.00 81 150 2 0.061 0.057 7 1.000 1.000 1.000
0.50 0.500 1.00 81 150 2 0.150 0.128 7 1.000 1.000 1.000
0.50 0.125 1.00 81 200 2 0.050 0.049 7 0.972 0.967 0.868
0.50 0.250 1.00 81 200 2 0.063 0.061 7 1.000 1.000 1.000
0.50 0.375 1.00 81 200 2 0.085 0.085 7 1.000 1.000 1.000
0.50 0.500 1.00 81 200 2 0.173 0.155 7 1.000 1.000 1.000
0.50 0.125 1.00 121 50 2 0.061 0.055 7 0.519 0.438 0.371
0.50 0.250 1.00 121 50 2 0.060 0.055 7 0.999 0.999 0.997
0.50 0.375 1.00 121 50 2 0.081 0.074 7 1.000 1.000 1.000
0.50 0.500 1.00 121 50 2 0.212 0.174 7 1.000 1.000 1.000
0.50 0.125 1.00 121 100 2 0.062 0.062 7 0.863 0.848 0.682
0.50 0.250 1.00 121 100 2 0.073 0.070 7 1.000 1.000 1.000
0.50 0.375 1.00 121 100 2 0.066 0.062 7 1.000 1.000 1.000
0.50 0.500 1.00 121 100 2 0.265 0.232 7 1.000 1.000 1.000
0.50 0.125 1.00 121 150 2 0.053 0.051 7 0.984 0.982 0.888
0.50 0.250 1.00 121 150 2 0.058 0.056 7 1.000 1.000 1.000
0.50 0.375 1.00 121 150 2 0.071 0.068 7 1.000 1.000 1.000
0.50 0.500 1.00 121 150 2 0.286 0.267 7 1.000 1.000 1.000
0.50 0.125 1.00 121 200 2 0.065 0.063 7 1.000 1.000 0.976
0.50 0.250 1.00 121 200 2 0.058 0.058 7 1.000 1.000 1.000
0.50 0.375 1.00 121 200 2 0.066 0.063 7 1.000 1.000 1.000
0.50 0.500 1.00 121 200 2 0.320 0.297 7 1.000 1.000 1.000
0.50 0.125 1.00 169 50 2 0.045 0.045 7 0.645 0.591 0.491
0.50 0.250 1.00 169 50 2 0.058 0.057 7 1.000 1.000 1.000
0.50 0.375 1.00 169 50 2 0.065 0.059 7 1.000 1.000 1.000
0.50 0.500 1.00 169 50 2 0.114 0.093 7 1.000 1.000 1.000
0.50 0.125 1.00 169 100 2 0.046 0.044 7 0.970 0.968 0.849
0.50 0.250 1.00 169 100 2 0.053 0.052 7 1.000 1.000 1.000
0.50 0.375 1.00 169 100 2 0.070 0.068 7 1.000 1.000 1.000
0.50 0.500 1.00 169 100 2 0.158 0.144 7 1.000 1.000 1.000
0.50 0.125 1.00 169 150 2 0.060 0.058 7 0.999 0.999 0.984
0.50 0.250 1.00 169 150 2 0.042 0.042 7 1.000 1.000 1.000
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0.50 0.375 1.00 169 150 2 0.073 0.072 7 1.000 1.000 1.000
0.50 0.500 1.00 169 150 2 0.206 0.183 7 1.000 1.000 1.000
0.50 0.125 1.00 169 200 2 0.042 0.040 7 1.000 1.000 0.999
0.50 0.250 1.00 169 200 2 0.060 0.060 7 1.000 1.000 1.000
0.50 0.375 1.00 169 200 2 0.059 0.056 7 1.000 1.000 1.000
0.50 0.500 1.00 169 200 2 0.220 0.201 7 1.000 1.000 1.000
0.50 0.125 1.00 25 50 3 0.067 0.069 3 0.274 0.270 0.291
0.50 0.250 1.00 25 50 3 0.089 0.090 3 0.919 0.921 0.922
0.50 0.375 1.00 25 50 3 0.141 0.142 3 1.000 1.000 1.000
0.50 0.500 1.00 25 50 3 0.343 0.344 3 1.000 1.000 1.000
0.50 0.125 1.00 25 100 3 0.073 0.071 3 0.585 0.587 0.597
0.50 0.250 1.00 25 100 3 0.100 0.099 3 0.999 0.999 0.999
0.50 0.375 1.00 25 100 3 0.144 0.145 3 1.000 1.000 1.000
0.50 0.500 1.00 25 100 3 0.393 0.395 3 1.000 1.000 1.000
0.50 0.125 1.00 25 150 3 0.072 0.074 3 0.826 0.826 0.831
0.50 0.250 1.00 25 150 3 0.092 0.094 3 1.000 1.000 1.000
0.50 0.375 1.00 25 150 3 0.175 0.174 3 1.000 1.000 1.000
0.50 0.500 1.00 25 150 3 0.421 0.416 3 1.000 1.000 1.000
0.50 0.125 1.00 25 200 3 0.072 0.071 3 0.917 0.916 0.927
0.50 0.250 1.00 25 200 3 0.088 0.089 3 1.000 1.000 1.000
0.50 0.375 1.00 25 200 3 0.134 0.135 3 1.000 1.000 1.000
0.50 0.500 1.00 25 200 3 0.399 0.400 3 1.000 1.000 1.000
0.50 0.125 1.00 49 50 3 0.074 0.075 3 0.505 0.500 0.530
0.50 0.250 1.00 49 50 3 0.085 0.083 3 0.999 0.999 1.000
0.50 0.375 1.00 49 50 3 0.136 0.139 3 1.000 1.000 1.000
0.50 0.500 1.00 49 50 3 0.465 0.463 3 1.000 1.000 1.000
0.50 0.125 1.00 49 100 3 0.075 0.072 3 0.872 0.870 0.878
0.50 0.250 1.00 49 100 3 0.088 0.088 3 1.000 1.000 1.000
0.50 0.375 1.00 49 100 3 0.128 0.127 3 1.000 1.000 1.000
0.50 0.500 1.00 49 100 3 0.520 0.518 3 1.000 1.000 1.000
0.50 0.125 1.00 49 150 3 0.058 0.059 3 0.986 0.987 0.987
0.50 0.250 1.00 49 150 3 0.097 0.096 3 1.000 1.000 1.000
0.50 0.375 1.00 49 150 3 0.174 0.175 3 1.000 1.000 1.000
0.50 0.500 1.00 49 150 3 0.564 0.566 3 1.000 1.000 1.000
0.50 0.125 1.00 49 200 3 0.085 0.081 3 0.998 0.998 0.998
0.50 0.250 1.00 49 200 3 0.100 0.101 3 1.000 1.000 1.000
0.50 0.375 1.00 49 200 3 0.144 0.143 3 1.000 1.000 1.000
0.50 0.500 1.00 49 200 3 0.577 0.580 3 1.000 1.000 1.000
0.50 0.125 1.00 81 50 3 0.070 0.070 3 0.762 0.760 0.771
0.50 0.250 1.00 81 50 3 0.080 0.082 3 1.000 1.000 1.000
0.50 0.375 1.00 81 50 3 0.144 0.144 3 1.000 1.000 1.000
0.50 0.500 1.00 81 50 3 0.596 0.603 3 1.000 1.000 1.000
0.50 0.125 1.00 81 100 3 0.049 0.050 3 0.986 0.986 0.985
0.50 0.250 1.00 81 100 3 0.077 0.075 3 1.000 1.000 1.000
0.50 0.375 1.00 81 100 3 0.145 0.144 3 1.000 1.000 1.000
0.50 0.500 1.00 81 100 3 0.687 0.692 3 1.000 1.000 1.000
0.50 0.125 1.00 81 150 3 0.074 0.075 3 1.000 1.000 1.000
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0.50 0.250 1.00 81 150 3 0.093 0.094 3 1.000 1.000 1.000
0.50 0.375 1.00 81 150 3 0.163 0.162 3 1.000 1.000 1.000
0.50 0.500 1.00 81 150 3 0.752 0.753 3 1.000 1.000 1.000
0.50 0.125 1.00 81 200 3 0.071 0.073 3 1.000 1.000 1.000
0.50 0.250 1.00 81 200 3 0.090 0.089 3 1.000 1.000 1.000
0.50 0.375 1.00 81 200 3 0.145 0.144 3 1.000 1.000 1.000
0.50 0.500 1.00 81 200 3 0.782 0.780 3 1.000 1.000 1.000
0.50 0.125 1.00 121 50 3 0.062 0.062 3 0.932 0.933 0.937
0.50 0.250 1.00 121 50 3 0.082 0.083 3 1.000 1.000 1.000
0.50 0.375 1.00 121 50 3 0.120 0.119 3 1.000 1.000 1.000
0.50 0.500 1.00 121 50 3 0.384 0.387 3 1.000 1.000 1.000
0.50 0.125 1.00 121 100 3 0.064 0.064 3 1.000 1.000 1.000
0.50 0.250 1.00 121 100 3 0.092 0.090 3 1.000 1.000 1.000
0.50 0.375 1.00 121 100 3 0.131 0.131 3 1.000 1.000 1.000
0.50 0.500 1.00 121 100 3 0.510 0.509 3 1.000 1.000 1.000
0.50 0.125 1.00 121 150 3 0.075 0.074 3 1.000 1.000 1.000
0.50 0.250 1.00 121 150 3 0.074 0.075 3 1.000 1.000 1.000
0.50 0.375 1.00 121 150 3 0.149 0.148 3 1.000 1.000 1.000
0.50 0.500 1.00 121 150 3 0.552 0.550 3 1.000 1.000 1.000
0.50 0.125 1.00 121 200 3 0.069 0.070 3 1.000 1.000 1.000
0.50 0.250 1.00 121 200 3 0.092 0.092 3 1.000 1.000 1.000
0.50 0.375 1.00 121 200 3 0.111 0.112 3 1.000 1.000 1.000
0.50 0.500 1.00 121 200 3 0.586 0.588 3 1.000 1.000 1.000
0.50 0.125 1.00 169 50 3 0.062 0.062 3 0.990 0.990 0.993
0.50 0.250 1.00 169 50 3 0.069 0.067 3 1.000 1.000 1.000
0.50 0.375 1.00 169 50 3 0.091 0.091 3 1.000 1.000 1.000
0.50 0.500 1.00 169 50 3 0.397 0.395 3 1.000 1.000 1.000
0.50 0.125 1.00 169 100 3 0.058 0.058 3 1.000 1.000 1.000
0.50 0.250 1.00 169 100 3 0.071 0.072 3 1.000 1.000 1.000
0.50 0.375 1.00 169 100 3 0.095 0.094 3 1.000 1.000 1.000
0.50 0.500 1.00 169 100 3 0.552 0.551 3 1.000 1.000 1.000
0.50 0.125 1.00 169 150 3 0.072 0.071 3 1.000 1.000 1.000
0.50 0.250 1.00 169 150 3 0.076 0.075 3 1.000 1.000 1.000
0.50 0.375 1.00 169 150 3 0.095 0.093 3 1.000 1.000 1.000
0.50 0.500 1.00 169 150 3 0.635 0.635 3 1.000 1.000 1.000
0.50 0.125 1.00 169 200 3 0.065 0.064 3 1.000 1.000 1.000
0.50 0.250 1.00 169 200 3 0.076 0.075 3 1.000 1.000 1.000
0.50 0.375 1.00 169 200 3 0.110 0.110 3 1.000 1.000 1.000
0.50 0.500 1.00 169 200 3 0.670 0.671 3 1.000 1.000 1.000
0.50 0.125 1.00 25 50 3 0.080 0.057 5 0.184 0.125 0.144
0.50 0.250 1.00 25 50 3 0.097 0.068 5 0.738 0.681 0.659
0.50 0.375 1.00 25 50 3 0.136 0.113 5 0.996 0.993 0.994
0.50 0.500 1.00 25 50 3 0.267 0.228 5 1.000 1.000 1.000
0.50 0.125 1.00 25 100 3 0.075 0.066 5 0.322 0.288 0.271
0.50 0.250 1.00 25 100 3 0.092 0.080 5 0.981 0.980 0.953
0.50 0.375 1.00 25 100 3 0.121 0.103 5 1.000 1.000 1.000
0.50 0.500 1.00 25 100 3 0.305 0.271 5 1.000 1.000 1.000
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0.50 0.125 1.00 25 150 3 0.071 0.067 5 0.535 0.522 0.414
0.50 0.250 1.00 25 150 3 0.069 0.065 5 1.000 1.000 0.998
0.50 0.375 1.00 25 150 3 0.113 0.108 5 1.000 1.000 1.000
0.50 0.500 1.00 25 150 3 0.298 0.270 5 1.000 1.000 1.000
0.50 0.125 1.00 25 200 3 0.061 0.060 5 0.670 0.662 0.586
0.50 0.250 1.00 25 200 3 0.063 0.057 5 1.000 1.000 1.000
0.50 0.375 1.00 25 200 3 0.117 0.113 5 1.000 1.000 1.000
0.50 0.500 1.00 25 200 3 0.301 0.280 5 1.000 1.000 1.000
0.50 0.125 1.00 49 50 3 0.071 0.069 5 0.301 0.259 0.247
0.50 0.250 1.00 49 50 3 0.071 0.066 5 0.959 0.957 0.931
0.50 0.375 1.00 49 50 3 0.090 0.085 5 1.000 1.000 1.000
0.50 0.500 1.00 49 50 3 0.334 0.307 5 1.000 1.000 1.000
0.50 0.125 1.00 49 100 3 0.063 0.060 5 0.603 0.590 0.513
0.50 0.250 1.00 49 100 3 0.070 0.063 5 1.000 1.000 1.000
0.50 0.375 1.00 49 100 3 0.090 0.086 5 1.000 1.000 1.000
0.50 0.500 1.00 49 100 3 0.413 0.380 5 1.000 1.000 1.000
0.50 0.125 1.00 49 150 3 0.059 0.061 5 0.863 0.859 0.749
0.50 0.250 1.00 49 150 3 0.078 0.074 5 1.000 1.000 1.000
0.50 0.375 1.00 49 150 3 0.109 0.106 5 1.000 1.000 1.000
0.50 0.500 1.00 49 150 3 0.426 0.410 5 1.000 1.000 1.000
0.50 0.125 1.00 49 200 3 0.067 0.065 5 0.965 0.965 0.893
0.50 0.250 1.00 49 200 3 0.072 0.068 5 1.000 1.000 1.000
0.50 0.375 1.00 49 200 3 0.099 0.097 5 1.000 1.000 1.000
0.50 0.500 1.00 49 200 3 0.447 0.438 5 1.000 1.000 1.000
0.50 0.125 1.00 81 50 3 0.059 0.053 5 0.435 0.424 0.376
0.50 0.250 1.00 81 50 3 0.076 0.074 5 0.998 0.998 0.994
0.50 0.375 1.00 81 50 3 0.094 0.091 5 1.000 1.000 1.000
0.50 0.500 1.00 81 50 3 0.420 0.401 5 1.000 1.000 1.000
0.50 0.125 1.00 81 100 3 0.058 0.058 5 0.876 0.876 0.781
0.50 0.250 1.00 81 100 3 0.066 0.065 5 1.000 1.000 1.000
0.50 0.375 1.00 81 100 3 0.100 0.099 5 1.000 1.000 1.000
0.50 0.500 1.00 81 100 3 0.537 0.532 5 1.000 1.000 1.000
0.50 0.125 1.00 81 150 3 0.056 0.055 5 0.985 0.983 0.944
0.50 0.250 1.00 81 150 3 0.063 0.058 5 1.000 1.000 1.000
0.50 0.375 1.00 81 150 3 0.094 0.095 5 1.000 1.000 1.000
0.50 0.500 1.00 81 150 3 0.600 0.592 5 1.000 1.000 1.000
0.50 0.125 1.00 81 200 3 0.054 0.055 5 0.998 0.998 0.993
0.50 0.250 1.00 81 200 3 0.065 0.062 5 1.000 1.000 1.000
0.50 0.375 1.00 81 200 3 0.085 0.083 5 1.000 1.000 1.000
0.50 0.500 1.00 81 200 3 0.651 0.643 5 1.000 1.000 1.000
0.50 0.125 1.00 121 50 3 0.058 0.053 5 0.705 0.695 0.587
0.50 0.250 1.00 121 50 3 0.066 0.062 5 1.000 1.000 1.000
0.50 0.375 1.00 121 50 3 0.090 0.083 5 1.000 1.000 1.000
0.50 0.500 1.00 121 50 3 0.269 0.250 5 1.000 1.000 1.000
0.50 0.125 1.00 121 100 3 0.054 0.055 5 0.982 0.984 0.943
0.50 0.250 1.00 121 100 3 0.054 0.055 5 1.000 1.000 1.000
0.50 0.375 1.00 121 100 3 0.088 0.087 5 1.000 1.000 1.000

Continued on next page

92



Table 7 continued

β̄ λ̄ µ̄ N T
Het

Regime
CSMC
Het LR

CSMC
Het Q m

CSMC
Dep LR

CSMC
Dep Q

JSMC
Dep

0.50 0.500 1.00 121 100 3 0.367 0.345 5 1.000 1.000 1.000
0.50 0.125 1.00 121 150 3 0.054 0.053 5 0.999 0.999 0.994
0.50 0.250 1.00 121 150 3 0.068 0.068 5 1.000 1.000 1.000
0.50 0.375 1.00 121 150 3 0.097 0.096 5 1.000 1.000 1.000
0.50 0.500 1.00 121 150 3 0.408 0.398 5 1.000 1.000 1.000
0.50 0.125 1.00 121 200 3 0.061 0.059 5 1.000 1.000 1.000
0.50 0.250 1.00 121 200 3 0.059 0.057 5 1.000 1.000 1.000
0.50 0.375 1.00 121 200 3 0.090 0.088 5 1.000 1.000 1.000
0.50 0.500 1.00 121 200 3 0.459 0.449 5 1.000 1.000 1.000
0.50 0.125 1.00 169 50 3 0.050 0.050 5 0.864 0.855 0.746
0.50 0.250 1.00 169 50 3 0.060 0.060 5 1.000 1.000 1.000
0.50 0.375 1.00 169 50 3 0.074 0.067 5 1.000 1.000 1.000
0.50 0.500 1.00 169 50 3 0.262 0.246 5 1.000 1.000 1.000
0.50 0.125 1.00 169 100 3 0.061 0.061 5 0.999 0.999 0.995
0.50 0.250 1.00 169 100 3 0.065 0.066 5 1.000 1.000 1.000
0.50 0.375 1.00 169 100 3 0.062 0.060 5 1.000 1.000 1.000
0.50 0.500 1.00 169 100 3 0.408 0.392 5 1.000 1.000 1.000
0.50 0.125 1.00 169 150 3 0.047 0.047 5 1.000 1.000 1.000
0.50 0.250 1.00 169 150 3 0.044 0.045 5 1.000 1.000 1.000
0.50 0.375 1.00 169 150 3 0.081 0.078 5 1.000 1.000 1.000
0.50 0.500 1.00 169 150 3 0.447 0.433 5 1.000 1.000 1.000
0.50 0.125 1.00 169 200 3 0.067 0.065 5 1.000 1.000 1.000
0.50 0.250 1.00 169 200 3 0.061 0.063 5 1.000 1.000 1.000
0.50 0.375 1.00 169 200 3 0.083 0.084 5 1.000 1.000 1.000
0.50 0.500 1.00 169 200 3 0.530 0.527 5 1.000 1.000 1.000
0.50 0.125 1.00 25 50 3 0.105 0.051 7 0.402 0.108 0.160
0.50 0.250 1.00 25 50 3 0.118 0.060 7 0.775 0.435 0.570
0.50 0.375 1.00 25 50 3 0.181 0.104 7 0.990 0.964 0.952
0.50 0.500 1.00 25 50 3 0.262 0.180 7 1.000 1.000 0.986
0.50 0.125 1.00 25 100 3 0.082 0.055 7 0.322 0.163 0.222
0.50 0.250 1.00 25 100 3 0.090 0.065 7 0.935 0.874 0.867
0.50 0.375 1.00 25 100 3 0.133 0.079 7 1.000 1.000 1.000
0.50 0.500 1.00 25 100 3 0.276 0.209 7 1.000 1.000 1.000
0.50 0.125 1.00 25 150 3 0.071 0.060 7 0.410 0.283 0.281
0.50 0.250 1.00 25 150 3 0.092 0.070 7 0.993 0.985 0.963
0.50 0.375 1.00 25 150 3 0.113 0.084 7 1.000 1.000 1.000
0.50 0.500 1.00 25 150 3 0.283 0.211 7 1.000 1.000 1.000
0.50 0.125 1.00 25 200 3 0.067 0.059 7 0.488 0.389 0.356
0.50 0.250 1.00 25 200 3 0.085 0.065 7 1.000 1.000 0.994
0.50 0.375 1.00 25 200 3 0.095 0.070 7 1.000 1.000 1.000
0.50 0.500 1.00 25 200 3 0.277 0.223 7 1.000 1.000 1.000
0.50 0.125 1.00 49 50 3 0.092 0.056 7 0.351 0.176 0.210
0.50 0.250 1.00 49 50 3 0.081 0.057 7 0.887 0.770 0.825
0.50 0.375 1.00 49 50 3 0.116 0.082 7 1.000 0.999 1.000
0.50 0.500 1.00 49 50 3 0.282 0.221 7 1.000 1.000 1.000
0.50 0.125 1.00 49 100 3 0.049 0.043 7 0.425 0.324 0.306
0.50 0.250 1.00 49 100 3 0.074 0.062 7 0.996 0.995 0.988
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0.50 0.375 1.00 49 100 3 0.101 0.085 7 1.000 1.000 1.000
0.50 0.500 1.00 49 100 3 0.318 0.273 7 1.000 1.000 1.000
0.50 0.125 1.00 49 150 3 0.073 0.061 7 0.642 0.567 0.472
0.50 0.250 1.00 49 150 3 0.079 0.069 7 1.000 1.000 1.000
0.50 0.375 1.00 49 150 3 0.087 0.070 7 1.000 1.000 1.000
0.50 0.500 1.00 49 150 3 0.335 0.295 7 1.000 1.000 1.000
0.50 0.125 1.00 49 200 3 0.059 0.048 7 0.794 0.754 0.606
0.50 0.250 1.00 49 200 3 0.079 0.069 7 1.000 1.000 1.000
0.50 0.375 1.00 49 200 3 0.084 0.077 7 1.000 1.000 1.000
0.50 0.500 1.00 49 200 3 0.374 0.337 7 1.000 1.000 1.000
0.50 0.125 1.00 81 50 3 0.076 0.065 7 0.370 0.255 0.271
0.50 0.250 1.00 81 50 3 0.078 0.057 7 0.979 0.967 0.951
0.50 0.375 1.00 81 50 3 0.094 0.075 7 1.000 1.000 1.000
0.50 0.500 1.00 81 50 3 0.354 0.302 7 1.000 1.000 1.000
0.50 0.125 1.00 81 100 3 0.060 0.053 7 0.681 0.615 0.477
0.50 0.250 1.00 81 100 3 0.079 0.075 7 1.000 1.000 1.000
0.50 0.375 1.00 81 100 3 0.103 0.092 7 1.000 1.000 1.000
0.50 0.500 1.00 81 100 3 0.438 0.395 7 1.000 1.000 1.000
0.50 0.125 1.00 81 150 3 0.048 0.043 7 0.884 0.865 0.706
0.50 0.250 1.00 81 150 3 0.047 0.040 7 1.000 1.000 1.000
0.50 0.375 1.00 81 150 3 0.082 0.079 7 1.000 1.000 1.000
0.50 0.500 1.00 81 150 3 0.488 0.454 7 1.000 1.000 1.000
0.50 0.125 1.00 81 200 3 0.052 0.050 7 0.972 0.967 0.868
0.50 0.250 1.00 81 200 3 0.057 0.055 7 1.000 1.000 1.000
0.50 0.375 1.00 81 200 3 0.093 0.086 7 1.000 1.000 1.000
0.50 0.500 1.00 81 200 3 0.531 0.507 7 1.000 1.000 1.000
0.50 0.125 1.00 121 50 3 0.074 0.064 7 0.519 0.438 0.371
0.50 0.250 1.00 121 50 3 0.069 0.061 7 0.999 0.999 0.997
0.50 0.375 1.00 121 50 3 0.081 0.069 7 1.000 1.000 1.000
0.50 0.500 1.00 121 50 3 0.225 0.183 7 1.000 1.000 1.000
0.50 0.125 1.00 121 100 3 0.055 0.053 7 0.863 0.848 0.682
0.50 0.250 1.00 121 100 3 0.065 0.060 7 1.000 1.000 1.000
0.50 0.375 1.00 121 100 3 0.065 0.059 7 1.000 1.000 1.000
0.50 0.500 1.00 121 100 3 0.280 0.236 7 1.000 1.000 1.000
0.50 0.125 1.00 121 150 3 0.064 0.063 7 0.984 0.982 0.888
0.50 0.250 1.00 121 150 3 0.064 0.061 7 1.000 1.000 1.000
0.50 0.375 1.00 121 150 3 0.085 0.079 7 1.000 1.000 1.000
0.50 0.500 1.00 121 150 3 0.321 0.294 7 1.000 1.000 1.000
0.50 0.125 1.00 121 200 3 0.065 0.059 7 1.000 1.000 0.976
0.50 0.250 1.00 121 200 3 0.052 0.052 7 1.000 1.000 1.000
0.50 0.375 1.00 121 200 3 0.067 0.063 7 1.000 1.000 1.000
0.50 0.500 1.00 121 200 3 0.354 0.319 7 1.000 1.000 1.000
0.50 0.125 1.00 169 50 3 0.069 0.062 7 0.645 0.591 0.491
0.50 0.250 1.00 169 50 3 0.051 0.044 7 1.000 1.000 1.000
0.50 0.375 1.00 169 50 3 0.077 0.068 7 1.000 1.000 1.000
0.50 0.500 1.00 169 50 3 0.192 0.150 7 1.000 1.000 1.000
0.50 0.125 1.00 169 100 3 0.056 0.051 7 0.970 0.968 0.849
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0.50 0.250 1.00 169 100 3 0.054 0.054 7 1.000 1.000 1.000
0.50 0.375 1.00 169 100 3 0.065 0.066 7 1.000 1.000 1.000
0.50 0.500 1.00 169 100 3 0.313 0.286 7 1.000 1.000 1.000
0.50 0.125 1.00 169 150 3 0.055 0.052 7 0.999 0.999 0.984
0.50 0.250 1.00 169 150 3 0.044 0.044 7 1.000 1.000 1.000
0.50 0.375 1.00 169 150 3 0.066 0.063 7 1.000 1.000 1.000
0.50 0.500 1.00 169 150 3 0.357 0.331 7 1.000 1.000 1.000
0.50 0.125 1.00 169 200 3 0.052 0.052 7 1.000 1.000 0.999
0.50 0.250 1.00 169 200 3 0.061 0.058 7 1.000 1.000 1.000
0.50 0.375 1.00 169 200 3 0.067 0.066 7 1.000 1.000 1.000
0.50 0.500 1.00 169 200 3 0.394 0.374 7 1.000 1.000 1.000
0.50 0.125 1.00 25 50 4 0.070 0.066 3 0.274 0.270 0.291
0.50 0.250 1.00 25 50 4 0.077 0.073 3 0.919 0.921 0.922
0.50 0.375 1.00 25 50 4 0.089 0.087 3 1.000 1.000 1.000
0.50 0.500 1.00 25 50 4 0.219 0.209 3 1.000 1.000 1.000
0.50 0.125 1.00 25 100 4 0.073 0.074 3 0.585 0.587 0.597
0.50 0.250 1.00 25 100 4 0.075 0.070 3 0.999 0.999 0.999
0.50 0.375 1.00 25 100 4 0.103 0.096 3 1.000 1.000 1.000
0.50 0.500 1.00 25 100 4 0.202 0.204 3 1.000 1.000 1.000
0.50 0.125 1.00 25 150 4 0.061 0.059 3 0.826 0.826 0.831
0.50 0.250 1.00 25 150 4 0.070 0.067 3 1.000 1.000 1.000
0.50 0.375 1.00 25 150 4 0.105 0.103 3 1.000 1.000 1.000
0.50 0.500 1.00 25 150 4 0.233 0.237 3 1.000 1.000 1.000
0.50 0.125 1.00 25 200 4 0.064 0.067 3 0.917 0.916 0.927
0.50 0.250 1.00 25 200 4 0.071 0.070 3 1.000 1.000 1.000
0.50 0.375 1.00 25 200 4 0.083 0.084 3 1.000 1.000 1.000
0.50 0.500 1.00 25 200 4 0.210 0.204 3 1.000 1.000 1.000
0.50 0.125 1.00 49 50 4 0.083 0.084 3 0.505 0.500 0.530
0.50 0.250 1.00 49 50 4 0.100 0.096 3 0.999 0.999 1.000
0.50 0.375 1.00 49 50 4 0.130 0.129 3 1.000 1.000 1.000
0.50 0.500 1.00 49 50 4 0.477 0.484 3 1.000 1.000 1.000
0.50 0.125 1.00 49 100 4 0.069 0.072 3 0.872 0.870 0.878
0.50 0.250 1.00 49 100 4 0.074 0.071 3 1.000 1.000 1.000
0.50 0.375 1.00 49 100 4 0.133 0.131 3 1.000 1.000 1.000
0.50 0.500 1.00 49 100 4 0.504 0.506 3 1.000 1.000 1.000
0.50 0.125 1.00 49 150 4 0.074 0.073 3 0.986 0.987 0.987
0.50 0.250 1.00 49 150 4 0.084 0.084 3 1.000 1.000 1.000
0.50 0.375 1.00 49 150 4 0.148 0.146 3 1.000 1.000 1.000
0.50 0.500 1.00 49 150 4 0.566 0.569 3 1.000 1.000 1.000
0.50 0.125 1.00 49 200 4 0.079 0.074 3 0.998 0.998 0.998
0.50 0.250 1.00 49 200 4 0.085 0.086 3 1.000 1.000 1.000
0.50 0.375 1.00 49 200 4 0.134 0.135 3 1.000 1.000 1.000
0.50 0.500 1.00 49 200 4 0.560 0.558 3 1.000 1.000 1.000
0.50 0.125 1.00 81 50 4 0.065 0.067 3 0.762 0.760 0.771
0.50 0.250 1.00 81 50 4 0.087 0.085 3 1.000 1.000 1.000
0.50 0.375 1.00 81 50 4 0.148 0.149 3 1.000 1.000 1.000
0.50 0.500 1.00 81 50 4 0.575 0.576 3 1.000 1.000 1.000
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0.50 0.125 1.00 81 100 4 0.075 0.072 3 0.986 0.986 0.985
0.50 0.250 1.00 81 100 4 0.092 0.092 3 1.000 1.000 1.000
0.50 0.375 1.00 81 100 4 0.164 0.163 3 1.000 1.000 1.000
0.50 0.500 1.00 81 100 4 0.658 0.660 3 1.000 1.000 1.000
0.50 0.125 1.00 81 150 4 0.085 0.085 3 1.000 1.000 1.000
0.50 0.250 1.00 81 150 4 0.091 0.091 3 1.000 1.000 1.000
0.50 0.375 1.00 81 150 4 0.159 0.159 3 1.000 1.000 1.000
0.50 0.500 1.00 81 150 4 0.735 0.733 3 1.000 1.000 1.000
0.50 0.125 1.00 81 200 4 0.069 0.073 3 1.000 1.000 1.000
0.50 0.250 1.00 81 200 4 0.090 0.090 3 1.000 1.000 1.000
0.50 0.375 1.00 81 200 4 0.153 0.154 3 1.000 1.000 1.000
0.50 0.500 1.00 81 200 4 0.750 0.749 3 1.000 1.000 1.000
0.50 0.125 1.00 121 50 4 0.088 0.087 3 0.932 0.933 0.937
0.50 0.250 1.00 121 50 4 0.087 0.085 3 1.000 1.000 1.000
0.50 0.375 1.00 121 50 4 0.131 0.130 3 1.000 1.000 1.000
0.50 0.500 1.00 121 50 4 0.623 0.623 3 1.000 1.000 1.000
0.50 0.125 1.00 121 100 4 0.077 0.077 3 1.000 1.000 1.000
0.50 0.250 1.00 121 100 4 0.090 0.089 3 1.000 1.000 1.000
0.50 0.375 1.00 121 100 4 0.144 0.145 3 1.000 1.000 1.000
0.50 0.500 1.00 121 100 4 0.748 0.749 3 1.000 1.000 1.000
0.50 0.125 1.00 121 150 4 0.070 0.068 3 1.000 1.000 1.000
0.50 0.250 1.00 121 150 4 0.083 0.083 3 1.000 1.000 1.000
0.50 0.375 1.00 121 150 4 0.167 0.167 3 1.000 1.000 1.000
0.50 0.500 1.00 121 150 4 0.793 0.795 3 1.000 1.000 1.000
0.50 0.125 1.00 121 200 4 0.069 0.068 3 1.000 1.000 1.000
0.50 0.250 1.00 121 200 4 0.070 0.069 3 1.000 1.000 1.000
0.50 0.375 1.00 121 200 4 0.129 0.131 3 1.000 1.000 1.000
0.50 0.500 1.00 121 200 4 0.823 0.820 3 1.000 1.000 1.000
0.50 0.125 1.00 169 50 4 0.070 0.071 3 0.990 0.990 0.993
0.50 0.250 1.00 169 50 4 0.088 0.087 3 1.000 1.000 1.000
0.50 0.375 1.00 169 50 4 0.123 0.122 3 1.000 1.000 1.000
0.50 0.500 1.00 169 50 4 0.443 0.444 3 1.000 1.000 1.000
0.50 0.125 1.00 169 100 4 0.065 0.065 3 1.000 1.000 1.000
0.50 0.250 1.00 169 100 4 0.080 0.080 3 1.000 1.000 1.000
0.50 0.375 1.00 169 100 4 0.114 0.116 3 1.000 1.000 1.000
0.50 0.500 1.00 169 100 4 0.605 0.605 3 1.000 1.000 1.000
0.50 0.125 1.00 169 150 4 0.058 0.057 3 1.000 1.000 1.000
0.50 0.250 1.00 169 150 4 0.060 0.060 3 1.000 1.000 1.000
0.50 0.375 1.00 169 150 4 0.109 0.111 3 1.000 1.000 1.000
0.50 0.500 1.00 169 150 4 0.694 0.694 3 1.000 1.000 1.000
0.50 0.125 1.00 169 200 4 0.076 0.076 3 1.000 1.000 1.000
0.50 0.250 1.00 169 200 4 0.107 0.107 3 1.000 1.000 1.000
0.50 0.375 1.00 169 200 4 0.128 0.129 3 1.000 1.000 1.000
0.50 0.500 1.00 169 200 4 0.716 0.717 3 1.000 1.000 1.000
0.50 0.125 1.00 25 50 4 0.084 0.067 5 0.184 0.125 0.144
0.50 0.250 1.00 25 50 4 0.091 0.065 5 0.738 0.681 0.659
0.50 0.375 1.00 25 50 4 0.112 0.082 5 0.996 0.993 0.994
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0.50 0.500 1.00 25 50 4 0.158 0.115 5 1.000 1.000 1.000
0.50 0.125 1.00 25 100 4 0.068 0.058 5 0.322 0.288 0.271
0.50 0.250 1.00 25 100 4 0.073 0.061 5 0.981 0.980 0.953
0.50 0.375 1.00 25 100 4 0.086 0.069 5 1.000 1.000 1.000
0.50 0.500 1.00 25 100 4 0.173 0.138 5 1.000 1.000 1.000
0.50 0.125 1.00 25 150 4 0.058 0.055 5 0.535 0.522 0.414
0.50 0.250 1.00 25 150 4 0.060 0.051 5 1.000 1.000 0.998
0.50 0.375 1.00 25 150 4 0.089 0.077 5 1.000 1.000 1.000
0.50 0.500 1.00 25 150 4 0.166 0.135 5 1.000 1.000 1.000
0.50 0.125 1.00 25 200 4 0.061 0.057 5 0.670 0.662 0.586
0.50 0.250 1.00 25 200 4 0.072 0.067 5 1.000 1.000 1.000
0.50 0.375 1.00 25 200 4 0.075 0.075 5 1.000 1.000 1.000
0.50 0.500 1.00 25 200 4 0.163 0.140 5 1.000 1.000 1.000
0.50 0.125 1.00 49 50 4 0.071 0.063 5 0.301 0.259 0.247
0.50 0.250 1.00 49 50 4 0.071 0.064 5 0.959 0.957 0.931
0.50 0.375 1.00 49 50 4 0.119 0.098 5 1.000 1.000 1.000
0.50 0.500 1.00 49 50 4 0.323 0.298 5 1.000 1.000 1.000
0.50 0.125 1.00 49 100 4 0.062 0.059 5 0.603 0.590 0.513
0.50 0.250 1.00 49 100 4 0.069 0.064 5 1.000 1.000 1.000
0.50 0.375 1.00 49 100 4 0.107 0.088 5 1.000 1.000 1.000
0.50 0.500 1.00 49 100 4 0.388 0.370 5 1.000 1.000 1.000
0.50 0.125 1.00 49 150 4 0.070 0.066 5 0.863 0.859 0.749
0.50 0.250 1.00 49 150 4 0.068 0.063 5 1.000 1.000 1.000
0.50 0.375 1.00 49 150 4 0.091 0.084 5 1.000 1.000 1.000
0.50 0.500 1.00 49 150 4 0.450 0.427 5 1.000 1.000 1.000
0.50 0.125 1.00 49 200 4 0.051 0.048 5 0.965 0.965 0.893
0.50 0.250 1.00 49 200 4 0.063 0.060 5 1.000 1.000 1.000
0.50 0.375 1.00 49 200 4 0.103 0.100 5 1.000 1.000 1.000
0.50 0.500 1.00 49 200 4 0.429 0.413 5 1.000 1.000 1.000
0.50 0.125 1.00 81 50 4 0.072 0.065 5 0.435 0.424 0.376
0.50 0.250 1.00 81 50 4 0.078 0.068 5 0.998 0.998 0.994
0.50 0.375 1.00 81 50 4 0.105 0.100 5 1.000 1.000 1.000
0.50 0.500 1.00 81 50 4 0.421 0.401 5 1.000 1.000 1.000
0.50 0.125 1.00 81 100 4 0.053 0.052 5 0.876 0.876 0.781
0.50 0.250 1.00 81 100 4 0.066 0.064 5 1.000 1.000 1.000
0.50 0.375 1.00 81 100 4 0.102 0.094 5 1.000 1.000 1.000
0.50 0.500 1.00 81 100 4 0.510 0.484 5 1.000 1.000 1.000
0.50 0.125 1.00 81 150 4 0.061 0.057 5 0.985 0.983 0.944
0.50 0.250 1.00 81 150 4 0.059 0.056 5 1.000 1.000 1.000
0.50 0.375 1.00 81 150 4 0.101 0.097 5 1.000 1.000 1.000
0.50 0.500 1.00 81 150 4 0.576 0.557 5 1.000 1.000 1.000
0.50 0.125 1.00 81 200 4 0.060 0.063 5 0.998 0.998 0.993
0.50 0.250 1.00 81 200 4 0.068 0.065 5 1.000 1.000 1.000
0.50 0.375 1.00 81 200 4 0.113 0.108 5 1.000 1.000 1.000
0.50 0.500 1.00 81 200 4 0.600 0.596 5 1.000 1.000 1.000
0.50 0.125 1.00 121 50 4 0.062 0.061 5 0.705 0.695 0.587
0.50 0.250 1.00 121 50 4 0.076 0.071 5 1.000 1.000 1.000
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Dep Q

JSMC
Dep

0.50 0.375 1.00 121 50 4 0.092 0.087 5 1.000 1.000 1.000
0.50 0.500 1.00 121 50 4 0.491 0.447 5 1.000 1.000 1.000
0.50 0.125 1.00 121 100 4 0.054 0.054 5 0.982 0.984 0.943
0.50 0.250 1.00 121 100 4 0.070 0.069 5 1.000 1.000 1.000
0.50 0.375 1.00 121 100 4 0.101 0.100 5 1.000 1.000 1.000
0.50 0.500 1.00 121 100 4 0.615 0.595 5 1.000 1.000 1.000
0.50 0.125 1.00 121 150 4 0.056 0.057 5 0.999 0.999 0.994
0.50 0.250 1.00 121 150 4 0.059 0.057 5 1.000 1.000 1.000
0.50 0.375 1.00 121 150 4 0.106 0.103 5 1.000 1.000 1.000
0.50 0.500 1.00 121 150 4 0.660 0.648 5 1.000 1.000 1.000
0.50 0.125 1.00 121 200 4 0.067 0.067 5 1.000 1.000 1.000
0.50 0.250 1.00 121 200 4 0.073 0.073 5 1.000 1.000 1.000
0.50 0.375 1.00 121 200 4 0.111 0.110 5 1.000 1.000 1.000
0.50 0.500 1.00 121 200 4 0.727 0.717 5 1.000 1.000 1.000
0.50 0.125 1.00 169 50 4 0.054 0.053 5 0.864 0.855 0.746
0.50 0.250 1.00 169 50 4 0.072 0.071 5 1.000 1.000 1.000
0.50 0.375 1.00 169 50 4 0.095 0.092 5 1.000 1.000 1.000
0.50 0.500 1.00 169 50 4 0.308 0.277 5 1.000 1.000 1.000
0.50 0.125 1.00 169 100 4 0.052 0.055 5 0.999 0.999 0.995
0.50 0.250 1.00 169 100 4 0.062 0.060 5 1.000 1.000 1.000
0.50 0.375 1.00 169 100 4 0.073 0.071 5 1.000 1.000 1.000
0.50 0.500 1.00 169 100 4 0.464 0.447 5 1.000 1.000 1.000
0.50 0.125 1.00 169 150 4 0.047 0.047 5 1.000 1.000 1.000
0.50 0.250 1.00 169 150 4 0.054 0.055 5 1.000 1.000 1.000
0.50 0.375 1.00 169 150 4 0.091 0.086 5 1.000 1.000 1.000
0.50 0.500 1.00 169 150 4 0.519 0.503 5 1.000 1.000 1.000
0.50 0.125 1.00 169 200 4 0.062 0.059 5 1.000 1.000 1.000
0.50 0.250 1.00 169 200 4 0.074 0.073 5 1.000 1.000 1.000
0.50 0.375 1.00 169 200 4 0.099 0.098 5 1.000 1.000 1.000
0.50 0.500 1.00 169 200 4 0.551 0.554 5 1.000 1.000 1.000
0.50 0.125 1.00 25 50 4 0.156 0.055 7 0.402 0.108 0.160
0.50 0.250 1.00 25 50 4 0.149 0.065 7 0.775 0.435 0.570
0.50 0.375 1.00 25 50 4 0.181 0.071 7 0.990 0.964 0.952
0.50 0.500 1.00 25 50 4 0.214 0.102 7 1.000 1.000 0.986
0.50 0.125 1.00 25 100 4 0.092 0.053 7 0.322 0.163 0.222
0.50 0.250 1.00 25 100 4 0.094 0.063 7 0.935 0.874 0.867
0.50 0.375 1.00 25 100 4 0.115 0.067 7 1.000 1.000 1.000
0.50 0.500 1.00 25 100 4 0.195 0.108 7 1.000 1.000 1.000
0.50 0.125 1.00 25 150 4 0.082 0.054 7 0.410 0.283 0.281
0.50 0.250 1.00 25 150 4 0.100 0.072 7 0.993 0.985 0.963
0.50 0.375 1.00 25 150 4 0.111 0.076 7 1.000 1.000 1.000
0.50 0.500 1.00 25 150 4 0.171 0.104 7 1.000 1.000 1.000
0.50 0.125 1.00 25 200 4 0.074 0.053 7 0.488 0.389 0.356
0.50 0.250 1.00 25 200 4 0.093 0.072 7 1.000 1.000 0.994
0.50 0.375 1.00 25 200 4 0.091 0.066 7 1.000 1.000 1.000
0.50 0.500 1.00 25 200 4 0.153 0.108 7 1.000 1.000 1.000
0.50 0.125 1.00 49 50 4 0.097 0.060 7 0.351 0.176 0.210
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Table 7 continued

β̄ λ̄ µ̄ N T
Het

Regime
CSMC
Het LR

CSMC
Het Q m

CSMC
Dep LR

CSMC
Dep Q

JSMC
Dep

0.50 0.250 1.00 49 50 4 0.101 0.067 7 0.887 0.770 0.825
0.50 0.375 1.00 49 50 4 0.135 0.078 7 1.000 0.999 1.000
0.50 0.500 1.00 49 50 4 0.308 0.224 7 1.000 1.000 1.000
0.50 0.125 1.00 49 100 4 0.067 0.052 7 0.425 0.324 0.306
0.50 0.250 1.00 49 100 4 0.076 0.054 7 0.996 0.995 0.988
0.50 0.375 1.00 49 100 4 0.112 0.095 7 1.000 1.000 1.000
0.50 0.500 1.00 49 100 4 0.318 0.272 7 1.000 1.000 1.000
0.50 0.125 1.00 49 150 4 0.082 0.069 7 0.642 0.567 0.472
0.50 0.250 1.00 49 150 4 0.070 0.061 7 1.000 1.000 1.000
0.50 0.375 1.00 49 150 4 0.106 0.077 7 1.000 1.000 1.000
0.50 0.500 1.00 49 150 4 0.357 0.308 7 1.000 1.000 1.000
0.50 0.125 1.00 49 200 4 0.061 0.048 7 0.794 0.754 0.606
0.50 0.250 1.00 49 200 4 0.068 0.060 7 1.000 1.000 1.000
0.50 0.375 1.00 49 200 4 0.102 0.093 7 1.000 1.000 1.000
0.50 0.500 1.00 49 200 4 0.392 0.323 7 1.000 1.000 1.000
0.50 0.125 1.00 81 50 4 0.088 0.065 7 0.370 0.255 0.271
0.50 0.250 1.00 81 50 4 0.086 0.071 7 0.979 0.967 0.951
0.50 0.375 1.00 81 50 4 0.112 0.074 7 1.000 1.000 1.000
0.50 0.500 1.00 81 50 4 0.363 0.313 7 1.000 1.000 1.000
0.50 0.125 1.00 81 100 4 0.074 0.065 7 0.681 0.615 0.477
0.50 0.250 1.00 81 100 4 0.071 0.057 7 1.000 1.000 1.000
0.50 0.375 1.00 81 100 4 0.104 0.086 7 1.000 1.000 1.000
0.50 0.500 1.00 81 100 4 0.415 0.374 7 1.000 1.000 1.000
0.50 0.125 1.00 81 150 4 0.062 0.056 7 0.884 0.865 0.706
0.50 0.250 1.00 81 150 4 0.061 0.054 7 1.000 1.000 1.000
0.50 0.375 1.00 81 150 4 0.091 0.071 7 1.000 1.000 1.000
0.50 0.500 1.00 81 150 4 0.475 0.445 7 1.000 1.000 1.000
0.50 0.125 1.00 81 200 4 0.062 0.062 7 0.972 0.967 0.868
0.50 0.250 1.00 81 200 4 0.063 0.058 7 1.000 1.000 1.000
0.50 0.375 1.00 81 200 4 0.101 0.091 7 1.000 1.000 1.000
0.50 0.500 1.00 81 200 4 0.481 0.447 7 1.000 1.000 1.000
0.50 0.125 1.00 121 50 4 0.078 0.070 7 0.519 0.438 0.371
0.50 0.250 1.00 121 50 4 0.061 0.051 7 0.999 0.999 0.997
0.50 0.375 1.00 121 50 4 0.098 0.078 7 1.000 1.000 1.000
0.50 0.500 1.00 121 50 4 0.402 0.343 7 1.000 1.000 1.000
0.50 0.125 1.00 121 100 4 0.059 0.056 7 0.863 0.848 0.682
0.50 0.250 1.00 121 100 4 0.065 0.054 7 1.000 1.000 1.000
0.50 0.375 1.00 121 100 4 0.084 0.063 7 1.000 1.000 1.000
0.50 0.500 1.00 121 100 4 0.482 0.449 7 1.000 1.000 1.000
0.50 0.125 1.00 121 150 4 0.053 0.044 7 0.984 0.982 0.888
0.50 0.250 1.00 121 150 4 0.079 0.078 7 1.000 1.000 1.000
0.50 0.375 1.00 121 150 4 0.083 0.083 7 1.000 1.000 1.000
0.50 0.500 1.00 121 150 4 0.560 0.527 7 1.000 1.000 1.000
0.50 0.125 1.00 121 200 4 0.056 0.052 7 1.000 1.000 0.976
0.50 0.250 1.00 121 200 4 0.057 0.053 7 1.000 1.000 1.000
0.50 0.375 1.00 121 200 4 0.084 0.084 7 1.000 1.000 1.000
0.50 0.500 1.00 121 200 4 0.609 0.576 7 1.000 1.000 1.000
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Table 7 continued

β̄ λ̄ µ̄ N T
Het

Regime
CSMC
Het LR

CSMC
Het Q m

CSMC
Dep LR

CSMC
Dep Q

JSMC
Dep

0.50 0.125 1.00 169 50 4 0.066 0.056 7 0.645 0.591 0.491
0.50 0.250 1.00 169 50 4 0.070 0.065 7 1.000 1.000 1.000
0.50 0.375 1.00 169 50 4 0.095 0.075 7 1.000 1.000 1.000
0.50 0.500 1.00 169 50 4 0.270 0.218 7 1.000 1.000 1.000
0.50 0.125 1.00 169 100 4 0.063 0.055 7 0.970 0.968 0.849
0.50 0.250 1.00 169 100 4 0.061 0.055 7 1.000 1.000 1.000
0.50 0.375 1.00 169 100 4 0.070 0.064 7 1.000 1.000 1.000
0.50 0.500 1.00 169 100 4 0.361 0.326 7 1.000 1.000 1.000
0.50 0.125 1.00 169 150 4 0.054 0.051 7 0.999 0.999 0.984
0.50 0.250 1.00 169 150 4 0.054 0.049 7 1.000 1.000 1.000
0.50 0.375 1.00 169 150 4 0.083 0.078 7 1.000 1.000 1.000
0.50 0.500 1.00 169 150 4 0.420 0.386 7 1.000 1.000 1.000
0.50 0.125 1.00 169 200 4 0.056 0.055 7 1.000 1.000 0.999
0.50 0.250 1.00 169 200 4 0.062 0.058 7 1.000 1.000 1.000
0.50 0.375 1.00 169 200 4 0.075 0.073 7 1.000 1.000 1.000
0.50 0.500 1.00 169 200 4 0.455 0.431 7 1.000 1.000 1.000
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Chapter 4

SMOOTHED ESTIMATORS FOR MARKOV CHAINS WITH SPARSE SPATIAL

OBSERVATIONS

Markov modeling has been applied to a wide array of domains including land use and

land cover change, crime patterns and economic convergence, to obtain insights in the

dynamics nature of the process under study and to investigate the equilibrium under the

current dynamics (McMillen and McDonald, 1991; Quah, 1993a; Rey et al., 2014). A

specific class of Markov models, discrete Markov chain, specify a k state classification of the

phenomena under consideration. The dynamics of the transitions across these k states are

summarized in a (k, k) transition probability matrix which is comprised of k2 probabilities

of transitioning from one state to another across two consecutive periods. Interest centers

not only on the individual probability estimates of transitioning between a pair of states,

but also a variety of parameters defined on these probabilities such as ergodic distributions,

mobility indice, and hitting time. Therefore, estimators with sound statistical properties for

the transition probabilities are desirable.

Maximum likelihood estimators (MLEs) are commonly used for estimating the transition

probabilities in discrete Markov chain models in the spatial sciences. Although they have

very nice asymptotic statistical properties, their usage in small sample settings could be

problematic. One prominent issue is that MLEs could easily lead to a sparse transition

probability matrix where 0 probability estimates are quite a few. On one hand, the

interpretation of 0 probability estimates claims that transitioning between two states across

consecutive periods is impossible, which is very different from that for nonzero ones, even

though they might be quite small. On the other hand, excessive 0 probability estimates
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constitute a sparse transition probability matrix whose properties are quite different from a

non-sparse one. This is especially true for some parameters derived from the matrix such as

the steady state distribution and hitting time. A sparse transition probability matrix also

raises issues for the bootstrap inference about Markov chains (Teodorescu, 2009; Polansky,

2009).

The sparsity issue becomes more relevant for extensions of the classic first-order

Markov chain model which requires estimating a larger number of parameters, including

the higher-order Markov chain model (Bickenbach and Bode, 2003), multivariate Markov

chain model (Ching et al., 2002), spatial Markov chain model (Rey, 2001) and LISA Markov

chain model. Focusing on the spatial Markov chain model which requires estimating

k3 transition probabilities, I find most empirical studies of regional income distribution

dynamics employing this model produced a large portion of 0 transition probabilities, such

as the U.S. (Rey, 2001), China (Pu et al., 2005) and Europe (Le Gallo, 2004; Maza et al.,

2012). The high sparsity of the transition probability matrix could easily lead to false

interpretation about the underlying dynamics, as well as the inference about the spatial

Markov. Specifically, when sample size is small, the spatial Markov test which tests for

spatial dependence in the Markov chain model would give rise to inflated Type I error rate

because of the high sparsity of k spatially dependent (k, k) transition probability matrices.

An ad-hoc approach to addressing the issue is to ignore the rows full of zero probability

estimates and reduce the degree of freedom accordingly (Bickenbach and Bode, 2003; Rey

et al., 2016; Kang and Rey, 2018). Though the issue seems to be alleviated, it is with the loss

of potentially important information hidden in the abandoned rows. Further, the tests could

still suffer from sparsity in the remaining rows. Therefore, seeking estimators which avoid

producing too many 0 probability estimates when the sample size is small is important.

Teodorescu (2009) and Polansky (2009) applied multinomial smoothing techniques to
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address the Markov chain model’s sparsity issue. Smoothing a multinomial distribution

could be accomplished by “borrowing" information from other cells (Simonoff, 1995, 1998),

which is similar to kernel density estimation for continuous data. The discrete kernel for

smoothing the multinomial distribution can take various forms, and can also incorporate the

ordinal structure of the categories if there is any. By considering each row of the transition

probability matrix as a multinomial distribution, these two papers applied the discrete kernel

estimator to each of them, thus producing a smoothed Markov transition probability matrix

which is exempt from zero estimates. Both of these two papers demonstrated the superiority

of the smoothed estimators to the conventional MLEs in small sample settings based on

Monte Carlo simulations.

One shortcoming of these papers is that they did not come upwith an effectiveway to select

the smoothing parameter or kernel bandwidth which controls the degree of smoothness of

the distribution. Similar to kernel density estimation for continuous data whose performance

hinges on the choice of a bandwidth (Sheather and Jones, 1991; Henderson and Parmeter,

2015), smoothing parameter/bandwidth selection is also crucial to discrete kernel estimation

and is data-dependent (Bowman et al., 1984; Ouyang et al., 2006; Chu et al., 2015). While

smoothing tends to lower the variance of the probability estimator, it introduces bias. To

balance the tradeoff between variance and bias, an appropriate smoothing parameter is vital.

The other shortcoming is that smoothing is applied along the rows only although smoothing

along the columns is just as feasible and could potentially improve the performance. I

attempt to overcome these two shortcomings in this chapter. I utilize the cross-validation

technique for smoothing parameter selection. I follow Kullback et al. (1962) and view the

(k, k) transition matrix for classic Markov chain and the (k, k, k) transition matrix for spatial

Markov chain as two-way and three-way conditional contingency tables in the sense that

all the cells are filled with conditional rather than joint probabilities. Then I modify the
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smoothing techniques for high-order contingency tables and the relevant cross-validation

technique for smoothing parameter selection to suit the conditional contingency tables for

Markov and spatial Markov chain models.

Based on a series of Monte Carlo experiments with classic Markov chains and spatial

Markov chains, I find that discrete kernel estimators with cross validation-based smoothing

parameters have nice small sample properties and converge to MLEs when more spatial

observations become available. They are quite effective in alleviating issues caused by the

sparsity of the MLE-based transition probability matrix estimate. What’s more, they seem

also to be superior to MLEs in terms of minimizing mean squared error for individual and

total transition probability as well as the irreducibility property, thus giving rise to a better

recovery of the true underlying dynamics.

For the rest of the chapter, I first introduce the kernel smoothing techniques for high-order

contingency tables and the least square cross validation technique for smoothing parameters

selection. Then I explain how I adjust these techniques and apply them to the transition

probability matrix for Markov and spatial Markov chain models. Next I introduce the Monte

Carlo experiments I conducted to evaluate the properties of the smoothed estimators which

were further compared to MLEs. I conclude the chapter with a summary of key findings and

a discussion of future research directions.

4.1 Smoothing Estimators for Discrete Data

Smoothing techniques serve as an important approach to dealing with the sparsity of

contingency tables when the number of categories is large compared with the sample size

(Burman, 1987, 2004). Various strategies of smoothing have been proposed, including

Bayes methods (Fienberg and Holland, 1973; Agresti and Hitchcock, 2005) and discrete
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kernels (Kokonendji and Kiessé, 2011). Take smoothing a multinomial distribution as an

example. The Bayes method requires the assumption of a prior distribution with specified

values of hyperparameters. Usually, a symmetric Dirichlet distribution is adopted, giving

rise to the so-called additive smoothing. Specifying the hyperparameter α as 1 is basically

increasing the sample size n to n + k by adding 1 to each cell and then use MLEs for

probability estimation. Other prior distributions such as logistic-normal and poisson-normal

distributions were suggested to incorporate ordinal structure of categories if there exists one

(Titterington and Bowman, 1985).

Compare to the Bayes smoothing methods, the logic of discrete kernels is similar to the

continuous kernels which are more intuitive and have been widely applied to continuous

density estimation. Moreover, its extension to joint probability estimation for several discrete

variables (high-order contingency tables) is more tractable and so is the smoothing parameter

selection algorithm. Therefore, I consider two discrete kernels for high-order contingency

tables in this chapter and develop the smoothing notion towards estimating the transition

probability matrix for Markov chains and spatial Markov chains.

4.1.1 Maximum Likelihood Estimators (MLEs)

Before introducing discrete kernels for smoothing, I first present theMLEs conventionally

used for estimating joint probabilities for high-order contingency tables. Suppose we have

n observations and each can be categorized based on d criteria of classification. Thus,

each observation consists of d parts and could be represented by a row vector of length d.

If we stack these vectors into a (n, d) matrix where n is the number of observations, then

each column represents a multinomial random variable taking values in a sample space,

e.g. Ss = {1, 2, . . . , k s} for the sth column. We name this matrix XXX and denote each unique
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category vector as xxx. For the sth dimension/column XXX s, the MLE for the marginal probability

of its jth category xs
j is shown in Equation (4.1):

p̂mle(xs
j ) =

1

n

n∑
i=1

1(X s
i = xs

j ), xs
j ∈ S

s = {1, 2, . . . , k s}, (4.1)

where 1(X s
i = xs

j ) is the indicator function which takes 1 if X s
i = xs

j and 0 otherwise. Clearly,

the marginal probability is the observed frequency of each category. Thus, the MLEs are

also called frequency estimators (Ouyang et al., 2006).

Similarly, the MLE for the joint probability for the category vector xxx j is the observed

frequency of xxx j which is shown in Equation (4.2):

p̂mle(xxx j) =
1

n

n∑
i=1

1(XXX i = xxx j), xxx j ∈ S
1 × S2 × · · · × Sd . (4.2)

4.1.2 Smoothing Joint Probabilities for High-Order Contingency Tables

4.1.2.1 Discrete Kernel Smoothers

I focus on two discrete kernels, one for pure categorical data (e.g. land use and land

cover types) and the other for discrete data with an inherent ordinal structure (e.g. income

levels). I start with utilizing them for smoothing one-way contingency tables (a multinomial

distribution), and then extend each for smoothing d-way contingency tables.

Following the notation above, I now define the discrete kernel estimators for the marginal

probabilities. I consider the sth dimension/column XXX s as before. The discrete kernel

estimator for falling in the xs
j category is defined as shown in Equation (4.3) where l is the

kernel function and λs is the smoothing parameter controlling for the smoothing level for

the sth dimension.
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p̃(xs
j ) =

1

n

n∑
i=1

l(X s
i , xs

j, λ
s). (4.3)

I consider the kernel function for pure categorical data proposed by Aitchison and Aitken

(1976) and label the resulted kernel estimator p̃c. The kernel function is shown in Equation

(4.4) where λs ∈ [0, ks−1
ks ]. When λs = 0, the kernel estimator reduces to the MLE estimator

in Equation (4.1) which does not borrow information from other cells. When λs = ks−1
ks , the

weights on all categories are identical, that is, 1
ks , giving rise to equal probabilities. As is

shown in Ouyang et al. (2006), it could be written in a similar fashion to a Bayes estimator

p̃c(xs
j ) =

λsks
ks−1

1
ks + (1 −

λsks
ks−1 )p̂

mle(xs
j ). Therefore, p̃c(xs) is a weighted average of equal

probabilities and observed frequencies. The larger λs is, the more smoothed the estimated

probabilities and the closer they are to the equal probability 1
ks .

lc(X s
i , xs

j, λ
s) =


1 − λs i f X s

i = xs
j,

λs

ks−1 i f X s
i , xs

j .

(4.4)

When the categories are ordered, it could be very beneficial to exploit the ordinal structure.

Intuitively, we would consider the ordering as implying that the true probabilities on nearby

categories in a multinomial distribution are more similar (Titterington and Bowman, 1985).

Here, the term nearby relates to attribute space and refers to the closeness of consecutive

classes which could be an artifact of discretizing continuous data (e.g. incomes in the study

of regional income distribution dynamics). Here, I consider the discrete kernel function lo as

defined in Equation (4.5) where λs ∈ [0, 1]. The interpretation of the smoothing parameter

λs is similar to that for lc: when λs = 0, the kernel estimators p̃o reduce to MLEs; when

λs = 1, all the estimated probabilities are identical. One problem with this kernel function is

that the kernel weights do not always sum to 1 and thus the smoothed estimators p̃o are not
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appropriate when λs , 0. To address this issue, I normalize them so that they always sum to

1.

lo(X s
i , xs

j, λ
s) =


1 if X s

i = xs
j

λs |Xs
i −xsj | if X s

i , xs
j

(4.5)

The smoothed estimator for a d-way contingency table could be constructed based on

a geometric combination of d smoothed estimators for multinomial data with d different

smoothing parameters (Dong and Simonoff, 1995). Here, I follow the product kernel

convention (Li andRacine, 2003; Ouyang et al., 2006; Li andRacine, 2007) which requires the

multiplication of d discrete kernels l as shown in Equation (4.6) where λλλ = (λ1, λ2, · · · , λd)

represents the varying smoothing parameters for different classifications.

L(XXX i, xxx j, λλλ) =

d∏
s=1

l(X s
i , xs

j, λ
s) (4.6)

More specifically, for the discrete kernel function lc for pure categorical data and the

kernel function lo taking account of the ordinal structure, the product kernel Lc and Lo are

defined in Equation (4.7).

Lc(XXX i, xxx j, λλλ) =

d∏
s=1

(1 − λs)
1(Xs

i =xsj )(
λs

k s − 1
)
1(Xs

i ,xsj ),

Lo(XXX i, xxx j, λλλ) =

d∏
s=1

11(X
s
i =xsj )(λs |Xs

i −xsj |)
1(Xs

i ,xsj ) =

d∏
s=1

λs |Xs
i −xsj |

(4.7)

For a given smoothing parameter vectorλλλ, the smoothed estimator for the joint probability

of xxx j is shown in Equation(4.8). I can acquire the specific formula for p̃c(xxx j) and p̃o(xxx j) by

plugging in product kernel functions in Equation (4.7).

p̃(xxx j) =
1

n

n∑
i=1

L(XXX i, xxx j, λλλ) (4.8)
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4.1.2.2 Smoothing Parameters Selection

Selecting an appropriate smoothing parameter(s) is of paramount importance to the

performance of the discrete kernel estimators. Approaches to doing so could be similar to

those for continuous kernel estimation which has received more attention, including the

plug-in method (Chu et al., 2015), the cross-validation method (Henderson and Parmeter,

2015), and the Bayesian method (Agresti and Hitchcock, 2005; Belaid et al., 2016). The

plug-in bandwidth for a one-way contingency table is derived by minimizing mean squared

error (MSE) summed over the sample space. It is analytically challenging and only has

a closed solution for the unordered kernel estimator lc (Chu et al., 2015). Both of the

cross-validation method and Bayesian method are data-driven and hence computationally

intensive. The former often refers to the least square cross-validation (LSCV) method

which involves the minimization of the LSCV function defined in Equation (4.9) where

p̃−i(XXX i) =
1

n−1
∑n−1

j, j,i L(XXX i, XXX j, λλλ) is the leave-one-out estimator for the joint probability of XXX i.

Ouyang et al. (2006) demonstrated that the discrete kernel estimators with the cross-validated

smoothing parameters perform better than MLEs in terms of the summed MSE based

on some Monte Carlo simulations. Belaid et al. (2016) proposed the Bayesian Markov

chain Monte Carlo (MCMC) method through the likelihood cross-validation criterion for

selecting the optimal smoothing parameters and compared it with LSCV. They did find better

performance of the Bayesian MCMCmethod, but obviously it is much more computationally

intensive. In this chapter, I focus on the LSCV method for selecting optimal smoothing

parameters.

LSCV(λλλ) =
∑
xxx j

p̃(xxx j)
2 −

2

n

n∑
i=1

p̃−i(XXX i) (4.9)
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4.1.3 Smoothing Transition Probabilities for (Spatial) Markov Chains

4.1.3.1 Classic Markov Chains

In this section, I demonstrate how the transition probability matrix, which is core of a

Markov chains model, could be viewed as a conditional contingency table (Kullback et al.,

1962) and how the discrete kernel estimators for contingency tables could be utilized to

address the sparsity issue commonly encountered in empirical studies.

PPP =



p(1, 1) p(1, 2) · · · p(1, k)

p(2, 1) p(2, 2) · · · p(2, k)
...

...
. . .

...

p(k, 1) p(k, 2) · · · p(k, k)


,

0 ≤ p(i, j) ≤ 1,
k∑

j=1

p(i, j) = 1 ∀ i, j ∈ S = {1, 2, · · · , k}.

(4.10)

Here, without loss of generality, let us consider a first-order time-homogenous Markov

chains which transitions across k states and whose state at t is solely determined by its

immediate preceding state (at t − 1). The dynamics could be organized in a (k, k) transition

probability matrix PPP shown in Equation (4.10). PPP is comprised of transition probabilities

between categories across two consecutive periods. For example, p(i, j) represents the

probability of transitioning from category i at t − 1 to category j at t. If there only exist

positive entries for some power of PPP, meaning that every two states could communicate,

the Markov chain is said to be irreducible. For those irreducible Markov chains, an unique

steady-state distribution πππ which is solely determined by PPP exists as shown in Equation

(4.11). However, for Markov chains with sparse transition probability matrix, it is highly

possible that not all states are able to communicate with each other. We call them reducible
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Markov chains and more than one steady-state distributions exist each for a communicating

class.

πππPPP = πππ (4.11)

By viewing transitions as the observed entities classified by two classification criteria

(1 and 2) which determine the categories at t − 1 and t, we could consider p(i, j) here as a

conditional probability, that is, the probability of falling in category j at t (classification

2) given that it fell in category i at t − 1 (classification 1). Formally, p(i, j) is equivalent to

Prob(x2 = j |x1 = i) = Prob((x2= j)∩(x1=i))
Prob(x1=i) . The nominator is a joint probability which is the

element constituting a two-way contingency table while the denominator is the marginal

probability based on the “classification criterion 1" - the category at t − 1.

The logic leads to the MLEs conventionally used for estimating transition probabilities

in empirical studies (shown as p̂mle(i, j) in Equation (4.12)). Similarly, since the discrete

kernel estimators for joint probabilities for a two-way contingency table have been given in

Equation (4.7) and the discrete kernel estimators for marginal probabilities were given in

Equation (4.3), we can easily obtain smoothed estimators of conditional probabilities for the

transition probability matrix (p̃(i, j) in Equation (4.12)).

One exception that deserves additional attention especially when faced with sparse

spatial observations is that there could be cases where there is no observation whose first

classification is i. As far as the transition probability matrix is concerned, this means that

there is no transitions from i over consecutive periods and the MLE estimates for all the

transition probabilities in row i will be 0, failing to suffice the condition that PPP is a stochastic

matrix. I deal with the exception by following the common practice which basically adds an

observation whose first and second classifications are both i to the original sample. The

resulted MLE estimate would be 1 for p(i, i) and 0 for the other entries in the ith row.
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p̂mle(i, j) =
p̂(xxx = (i, j))

p̂(x1 = i)

p̃(i, j) =
p̃(xxx = (i, j))

p̃(x1 = i)

(4.12)

The LSCV method for smoothing parameter selection follows Equation (4.9) and is

shown in Equation (4.13) where p̃−m(xxx = (X1
m, X2

m)) is the leave the mth observation out

estimator for the joint probability of (X1
m, X2

m).

LSCV(λ1, λ2) =
k∑

i=1

k∑
j=1

p̃(xxx = (i, j))2 −
2

n

n∑
m=1

p̃−m(xxx = (X1
m, X2

m)) (4.13)

4.1.3.2 Spatial Markov Chains

The spatial Markov chain model was proposed by Rey (2001) to interrogate space in

a classic Markov chain model for studying the evolution of regional income distributions.

It is formulated by decomposing the unique transition probability matrix into k transition

probability matrices, based on which k steady state distributions πππ1,πππ2,. . . , πππk could

potentially be derived. These matrices are estimated from mutually exclusive and exhaustive

subsamples of transitions based on MLEs in the same way as that for the classic Markov

chain model. Determining which subsample each transition falls into adds to the two-way

contingency table a third classification criterion. For the spatial Markov chain model,

the criterion would be spatial lag category h ∈ S = {1, 2, · · · , k} at t − 1. Spatial lag

refers to the average level of neighbors for continuous data (e.g. incomes) which needs

further discretization to acquire k categories, and can also refer to the most common

category among neighbors for discrete data (e.g. land use types). Thus, following

the logic of the two-way conditional contingency table for classic Markov chains, we

could derive a three-way conditional contingency table here. The extra classification

112



criterion h is that applied to the spatial lags. Given the entity itself fell into i and its

spatial lag was classified as h at period t − 1, the probability of transitioning to j at t is

Prob(x2 = j |(x1 = i ∩ x3 = h)) = Prob((x2= j)∩(x1=i)∩(x3=h))
Prob((x1=i)∩(x3=h)) . Both of the nominator and the

denominator are joint probabilities and can be estimated based on the MLEs or discrete

kernel estimators for contingency tables introduced in the preceding section (Equation (4.14)).

The LSCV method for simultaneously selecting three optimal parameters (λ1, λ2, λ3) for the

three-way conditional contingency table can be easily derived as shown in Equation (4.15).

p̂mle(i, j, h) =
p̂(xxx = (i, j, h))
p̂(xxx = (i, , h)

p̃(i, j, h) =
p̃(xxx = (i, j, h))
p̃(xxx = (i, , h))

(4.14)

LSCV(λ1, λ2, λ3) =
k∑

i=1

k∑
j=1

p̃(xxx = (i, j, h))2 −
2

n

n∑
m=1

p̃−m(xxx = (X1
m, X2

m, X3
m)) (4.15)

4.2 Monte Carlo Experiments

In this section, I introduce a series of Monte Carlo experiments which have been

conducted to evaluate the performance of two discrete kernel estimators for smoothing the

transition probability matrix for the classic Markov chain model and the spatial Markov

chain model.

4.2.1 Evaluation Criteria - Mean Squared Error (MSE)

As has been discussed before, the purpose of proposing smoothed estimators for the

Markov chain model or the spatial Markov chain model is to deal with the unsatisfactory

properties of MLEs in the presence of sparse spatial observations - the most prominent is the
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tendency of producing many zero transition probability estimates. This is done by evening

up the probabilities, which introduces bias but should lower the variance. The tradeoff

between bias and variance for the whole transition probability matrix could be balanced

via the LSCV method that selects the optimal global smoothing parameters. Therefore, we

expect a decrease of mean squared error (MSE) summed over all transition probabilities

compared to the nonsmoothed case. However, this might not be true for individual transition

probabilities as well as other parameters derived from the matrix such as the steady state

probabilities. By comparing MLEs and smoothed estimators in terms of the MSEs for these

parameters of interest, we could gain a comprehensive understanding of the performance of

the smoothed estimators.

Suppose we generate M samples for eachMonte Carlo experiment, for the (k, k) transition

probability matrix of a classic Markov chain model, and for the (k, k, k) transition probability

matrix of a spatial Markov chain model, the MSE summed over all transition probabilities

are defined as shown in Equation (4.16). Aside from the MSE for the whole transition matrix,

I also look at the MSEs for individual probabilities and steady-state probabilities. Suppose

the parameter of interest is y, we could calculate its MLE as defined in Equation (4.17).

MSE(P̂PP) =


1
M

∑M
r=1

∑k
i=1

∑k
j=1(p̂(i, j) − p(i, j))2 PPP is (k, k),

1
M

∑M
r=1

∑k
i=1

∑k
j=1

∑k
h=1(p̂(i, j, h) − p(i, j, h))2 PPP is (k, k, k).

(4.16)

MSE(ŷ) =
1

M

M∑
r=1

(ŷ − y)2. (4.17)
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4.2.2 Experiments for Smoothing Markov Chains

I followed the conventional approach to generate a classic Markov chain which requires

a True transition probability matrix, an initial state, and a time length. I experimented

with several different dimensions including three transition probability matrices of different

structures and varying time lengths which determines the number of transitions.

4.2.2.1 True Transition Probability Matrices

The point of departure of the Monte Carlo experiments is the 5 by 5 transition probability

matrix (Equation (4.18)) estimated from quintile discretized U.S. state relative per capita

income time series 1929-2010 based on the MLE. This transition probability matrix is

strongly diagonally dominant8 and irreducible, although it is rather sparse in that: 5 out of

25 cells are 0 meaning that it is impossible for transitioning between corresponding classes

over consecutive periods; 12 cells are smaller than 0.01 indicating very unlikely transitions.

The sparseness could be a result of small sample size or it is just reflecting the extremely

low possibility of transitioning between some categories. Either way, we treat it as the true

transition probability matrix used for simulating Markov chains of various lengths which

could then be used to investigate the performance of smoothed estimators.

8Diagonal domination of a matrix refers to the fact that the diagonal cells in a row is no smaller than the
sum of all the other cells in the same row.
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P5P5P5 =



1 2 3 4 5

1 0.915 0.075 0.009 0.001 0.000

2 0.066 0.827 0.105 0.001 0.001

3 0.005 0.103 0.794 0.095 0.003

4 0.000 0.009 0.094 0.849 0.048

5 0.000 0.000 0.000 0.062 0.938


. (4.18)

A type of perturbation called diagonalising shifting (Dardanoni, 1995) which shifts

probability mass away from the main diagonal was applied to P5P5P5. The amount of shifted

mass is controlled by a portion parameter β, meaning that β of the diagonal elements and

is equally assigned to the nondiagonal elements in each row. By setting β = β1 = 0.3 and

β = β2 = 0.7, I obtained two less sparse transition probability matrices, P5P5P5β1 and P5P5P5β2 .

Both are now exempt from the sparsity issue, while the former is still diagonally dominant

and the latter is not.

P5P5P5β1
=



1 2 3 4 5

1 0.640 0.144 0.078 0.070 0.068

2 0.128 0.579 0.167 0.063 0.063

3 0.064 0.162 0.556 0.155 0.063

4 0.064 0.073 0.157 0.594 0.112

5 0.070 0.071 0.070 0.132 0.657


, P5P5P5β2

=



1 2 3 4 5

1 0.275 0.235 0.169 0.161 0.160

2 0.211 0.248 0.250 0.146 0.145

3 0.144 0.242 0.238 0.234 0.142

4 0.149 0.157 0.243 0.255 0.196

5 0.164 0.164 0.164 0.226 0.282


(4.19)

4.2.2.2 Other Experimental Dimensions

Based on each of the true transition probability matricesP5P5P5, P5P5P5β1 , andP5P5P5β2 , I simulate a

time series of length T = 25, 49, 81 1000 times. Each time series gives rise to a total number
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of transitions n = 24, 48, 80. The initial state is randomly assigned for each simulation. It

should be noted that although the initial state does not impact the steady state distribution,

it could be a key influence in estimating the transition probability matrix when the time

length is short. This is because it is highly possible that the system will be stuck in its initial

state for a long time if the underlying transition probability matrix is strongly diagonally

dominant, e.g. P5P5P5 (β = 0). Therefore, simulating 2 time series of of length T = 13 which

also results in 24 transitions may not be equivalent to simulating 1 time series of T = 25.

Moreover, the former could contain much more information if the 2 initial states are different.

In other words, its effective sample size could be larger.

4.2.3 Experiments for Smoothing Spatial Markov Chains

4.2.3.1 Data Generating Process (DGP) for a Spatial Markov Chain Model

Simulating a spatial Markov chain model is done differently from the approach used for a

classic Markov chain model. The differences are not only in the transition probability matrix

which is (k, k, k) for the spatial case compared to (k, k) for the classic case, but also lie in the

fact that spatiotemporal interactions are incorporated in the former case. Therefore, a map

displaying the geographical locations of the N spatial units and a reasonable perspective

from which we conceptualize neighboring relationships are needed. For example, spatial

units sharing an edge/node can be defined neighbors and the neighboring relationships are

usually formalized in a (N, N) spatial weight matrix (Anselin, 1988).

Instead of simulating one time series as a sample for the classic Markov, here I

simultaneously simulate N time series each of which represents the evolution of the variable

of interest in a spatial unit (e.g. per capita income time series of US states or land use time
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series of US tracts). Given N initial states and the k (k, k) transition probability matrices,

I first obtain N categorical spatial lags which are the most common category among the

neighbors for each spatial unit9. The spatial lags at the initial period determine which

of the k transition probability matrices to use for generating each of the N categories at

period 2. After obtaining N categories at period 2, I calculate their categorical spatial lags,

determine which transition probability matrix should drive the dynamics and then generate

N categories at period 3. I repeat the procedures until N categories at period T are obtained.

4.2.3.2 True Transition Probability Matrices

Similar to the classic Markov case, I experimented with three true transition probability

matrices for the spatial Markov experiments. The point of departure is the 5 spatial

lag-conditional (5, 5) transition probability matrices estimated from an empirical dataset

based on MLEs. The dataset consists of 31 China provincial real per capita income series

from 1978 to 201610. I first obtained relative per capita incomes by dividing the real per

capita incomes by annual national averages for correcting for business cycle and trends

in the Chinese average income. Then these relative per capita incomes as well as their

contemporaneous continuous spatial lags were further discretized into 5 categories based on

the global quintiles. Afterwards, the 5 transition probability matrices were estimated for

each spatial lag-dependent subsamples based on MLEs. As shown in Equation (4.20), some

9I have also experimented with ordinal spatial lags which can be defined for categories with an inherent
ordinal structure. This type of spatial lag is defined as the category closest to the average of neighbors’ category
values. I do not report the results here because they are similar to what I have obtained for categorical spatial
lags.

10Nominal average per capita income series of 31 Chinese provinces 1978-2016 were downloaded from
China Data Center and they were converted to temporally comparable real incomes by using the deflator,
Consumer Price Index (CPI) which was collected from National Data National Bureau of Statistics of China.
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serious sparsity issues are encountered here. Take the fifth row of the first (5, 5) matrix as an

example. Since we did not observe any provinces with poor neighbors at t − 1 (spatial lag

was in category 1) in the rich (category 5) across period t − 1 and t, this row should be filled

with 0 probabilities based on MLEs. To satisfy the requirement of row sum equal to 1, I

followed the conventional ad-hoc way to fill the diagonal element with 1. All the four bold

numbers indicate such cases. For the three matrices (1, 2, 5) suffering from the zero row

issue, they are linked to reducible Markov chains even after such adjustments. Moreover,

these five matrices are still very sparse and strongly diagonally dominant.
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1



1 2 3 4 5

1 0.940 0.060 0.000 0.000 0.000

2 0.040 0.853 0.107 0.000 0.000

3 0.000 0.097 0.855 0.048 0.000

4 0.000 0.000 0.158 0.842 0.000

5 0.000 0.000 0.000 0.000 1.0001.0001.000



2



1 2 3 4 5

1 0.945 0.055 0.000 0.000 0.000

2 0.042 0.931 0.028 0.000 0.000

3 0.000 0.069 0.759 0.172 0.000

4 0.000 0.000 0.357 0.607 0.036

5 0.000 0.000 0.000 0.000 1.0001.0001.000



3



1 2 3 4 5

1 0.842 0.158 0.000 0.000 0.000

2 0.086 0.793 0.121 0.000 0.000

3 0.000 0.000 0.872 0.128 0.000

4 0.000 0.000 0.000 0.964 0.036

5 0.000 0.000 0.000 0.045 0.955



4



1 2 3 4 5

1 0.909 0.091 0.000 0.000 0.000

2 0.094 0.844 0.062 0.000 0.000

3 0.000 0.041 0.857 0.102 0.000

4 0.000 0.000 0.051 0.897 0.051

5 0.000 0.000 0.000 0.115 0.885



5



1 2 3 4 5

1 1.0001.0001.000 0.000 0.000 0.000 0.000

2 0.000 1.0001.0001.000 0.000 0.000 0.000

3 0.000 0.000 0.875 0.125 0.000

4 0.000 0.000 0.036 0.909 0.055

5 0.000 0.000 0.000 0.006 0.994



(4.20)
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I produced two non-sparse (k, k, k) transition probability matrices by applying the

diagonalising shifting technique to each (k, k) matrix. The proportion of shifted mass is

still β = β1 = 0.3 and β = β2 = 0.7.

4.2.3.3 Other Experimental Dimensions

As has been discussed in the last subsection, simulating 1 time series of length T could

be very different from simulating 2 time series of length T−1
2 + 1 though they seem to give

the same number of transition observations T − 1. The latter could give rise to a larger

effective sample size because of a larger number of initial states and possibly different values

of these initial states. Here, to control for the potential impacts of initial states in short-run

dynamics of the spatial Markov chains, I assigned the N = 31 per capita income classes of

Chinese provinces in 1978 to the initial states and keep them fixed across all simulations.

I adopted the queen contiguity matrix for formalizing the neighboring relationships of

31 Chinese provinces across all simulations. I also varied the time length T = 5, 20, 39

where T = 39 replicates the time length of the empirical dataset. For each combination

of experimental parameters, including the (k, k, k) true transition probability matrix and

the time length T , I simulated N time series of length T 1, 000 times, and estimated the

transition probability matrices based on MLEs, and the two discrete kernel estimators.
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Table 8. (Average) Optimal Smoothing Parameters via LSCV for 1, 000 Markov
Simulations.

p̃c p̃o

N T β λ1 λ2 λ1 λ2

0 0.045 0.046 0.030 0.031
1 25 0.3 0.205 0.206 0.171 0.170

0.7 0.653 0.648 0.733 0.732
0 0.027 0.027 0.017 0.017

1 49 0.3 0.113 0113 0.089 0.089
0.7 0.627 0.627 0.684 0.694
0 0.018 0.018 0.012 0.012

1 81 0.3 0.073 0.073 0.055 0.055
0.7 0.591 0.589 0.623 0.618

4.3 Results

4.3.1 Smoothing Markov Chains

The average LSCV-based optimal smoothing parameters of the two smoothed estimators

for each set of 1, 000 Monte Carlo simulations are shown in Table 8. The optimal parameters

λ1 and λ2 for both smoothed estimators are similar in magnitude indicating that the amount of

information borrowed from categories at period t is similar to that borrowed from categories

at period t − 1. For the same sample size, as the true probability matrix becomes less

diagonally dominant (increasing β), both of λ1 and λ2 increase, meaning that the conditional

probability estimates are increasingly smoothed. For the same true transition probability

matrix, both of λ1 and λ2 decrease as more observations become available.

The MSEs for the whole transition probability matrix with the LSCV-based optimal

smoothing parameters are displayed in Table 9. Bold numbers indicate the smallest MSE

among the MLE and the two smoothed estimators. The performance of both smoothed

estimators is superior to the MLEs almost under all circumstances. Focusing on cases
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Table 9. MSEs for the Whole Transition Probability Matrix for 1, 000 Markov Simulations.
N T β MSE(P̂PP)

p̂mle p̃c p̃o

0 0.493 0.523 0.4840.4840.484
1 25 0.3 1.245 0.774 0.7580.7580.758

0.7 1.078 0.0950.0950.095 0.101
0 0.4380.4380.438 0.458 0.442

1 49 0.3 0.591 0.481 0.4790.4790.479
0.7 0.479 0.072 0.0710.0710.071
0 0.3160.3160.316 0.339 0.328

1 81 0.3 0.278 0.270 0.2690.2690.269
0.7 0.273 0.062 0.0590.0590.059

when sample size is very small (N = 1,T = 25), all three estimators are similar in terms

of minimizing the MSE for the whole matrix when the true transition probability matrix

is strongly diagonally dominant. As β increases (the true transition probability matrix

becomes less diagonally dominant), both smoothed estimators produce much smaller MSEs

than the MLE. The superiority is more obvious as β gets larger. With β fixed, the MLE for

each estimator is smaller as the sample size increases, and still, both smoothed estimators

seem to be a better choice than the MLE.

I further decompose the MSE into MSEs for individual transition probability estimators.

They are visualized for three true transition probability matrices in three parallel coordinates

plots for cases where the length of the Markov chain is 2511 (Figure 21). The red curves

denote MSEs for MLEs (p̂mle), the blue curves denote MSEs for smoothed estimators (p̃c)

which do not consider potential ordinal structures of categories and the green curves denote

MSEs for smoothed estimators (p̃o) which account for ordinal structures of categories.

Looking at the top plot when β = 0, the MLEs for individual entries are quite similar across

11The MSEs for individual transition probability estimators for T = 49, 81 are similar to the case for T = 25
and are not displayed here for space saving, but are available upon request.
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Figure 21. MSEs for Individual Probability Estimators for a Short Markov Chain (T = 25).

three estimators. As we move to the second plot when β = 0.3, the MSEs for MLEs are

almost always larger than those for the two smoothed estimators. Moving to the bottom plot

when β = 0.7, we find that both smoothed estimators produce a much smaller MSE for every

individual transition probability than MLEs.

Moreover, if we look at other properties of the estimated transition probability matrix
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Table 10. Proportion of Estimated Transition Probability Matrices Giving Rise to
Irreducible Markov Chains in 1, 000 Markov Simulations.

Irreducible proportion
N T β p̂mle p̃c p̃o

0 0.001 1.000 1.000
1 25 0.3 0.513 1.000 1.000

0.7 0.949 1.000 1.000
0 0.041 1.000 1.000

1 49 0.3 0.937 1.000 1.000
0.7 0.999 1.000 1.000
0 0.167 1.000 1.000

1 81 0.3 0.994 1.000 1.000
0.7 1.000 1.000 1.000

such as the irreducibility, which is an essential property concerning whether any two states

are able to communicate with each other, as well as the steady state distribution, which is

usually considered as prediction into the future assuming the current dynamics last, we can

similarly find superior performance of the smoothed estimators than MLEs. Since we know

that all the experimental true transition probability matrices link to irreducible Markov

chains, we prefer the estimated matrices to have the same property. Table 10 displays

the proportion of estimated transition probability matrices linking to irreducible Markov

chains in the 1, 000 simulated Markov chain samples for each experiment. In all cases,

smoothed estimators ensure the irreducible property of the estimates while the performance

of MLE is not quite satisfactory. Particularly, for the sparse true transition probability

matrix (β = 0), the MLE only produces 1 transition probability matrix estimate owing the

irreducible property when sample size is very small (N = 1,T = 25). Its performance is

slightly better as the sample size becomes larger, but is still less than satisfactory.

Looking at the MSEs for individual entries in the steady state distribution πππ in Figure

22, we could find a more obvious superior performance of the smoothed estimators. This

is very true for cases where the true transition probability matrix is either moderately
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Figure 22. MSEs for Individual Steady-State Probability Estimators for a Short Markov
Chain (T = 25).

diagonally dominant (β = 0.3) or not diagonally dominant (β = 0.7). Even for the strongly

diagonally dominant PPP (β = 0), the MSEs of individual steady state probabilities for

smoothed estimators seem to be consistently lower.

4.3.2 Smoothing Spatial Markov Chains

In general, the performance of the two discrete kernel estimators for estimating the k

(k, k) transition probability matrices for spatial Markov chains is similar to that for classic

Markov chains.

The LSCV-based optimal smoothing parameters averaged for 1, 000 spatial Markov

simulations are displayed in Table 11. For cases which are driven by k diagonally dominant

transition probability matrices (β = 0, 0.3), the optimal smoothing parameter λ3 is larger

than λ1 and λ2 indicating that the estimates borrow more information from categories of

spatial lags than from categories at period t − 1 and t. In contrast, when true transition

probability matrices are not diagonally dominant (β = 0.5), the smoothing process borrow
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Table 11. (Average) Optimal Smoothing Parameters via LSCV for 1, 000 Spatial Markov
Simulations.

p̃c p̃o

N T β λ1 λ2 λ3 λ1 λ2 λ3

0 0.016 0.018 0.156 0.013 0.016 0.146
31 5 0.3 0.019 0.095 0.334 0.037 0.054 0.294

0.7 0.316 0.634 0.211 0.305 0.665 0.195
0 0.003 0.004 0.034 0.002 0.004 0.030

31 20 0.3 0.00004 0.032 0.152 0.001 0.023 0.095
0.7 0.014 0.497 0.144 0.037 0.480 0.071
0 0.001 0.002 0.017 0.001 0.002 0.013

31 39 0.3 0.00002 0.018 0.094 0.00001 0.013 0.053
0.7 0.00009 0.377 0.104 0.006 0.340 0.052

Table 12. MSEs for the Whole Transition Probability Matrix for 1, 000 Spatial Markov
Simulations.

MSE(P̂PP)
N T β p̂mle p̃c p̃o

0 1.767 0.946 0.9380.9380.938
1 25 0.3 4.994 1.3781.3781.378 1.523

0.7 6.545 0.4410.4410.441 0.448
0 0.678 0.4570.4570.457 0.499

1 49 0.3 0.839 0.5190.5190.519 0.562
0.7 1.031 0.2950.2950.295 0.302
0 1.000 0.2570.2570.257 0.294

1 81 0.3 0.381 0.2980.2980.298 0.312
0.7 0.496 0.2260.2260.226 0.229

more information from categories at period t than from the others. Similar to before, a

smaller value is selected for each smoothing parameter as more observations are available.

The MSEs of the whole (k, k, k) transition probability matrix for all the estimators are

shown in Table 12. Clearly, the MLEs are superior in terms of minimizing MSE even when

each of the (k, k) spatial lag-conditional transition probability matrix is strongly diagonally

dominant. When these matrices are not diagonally dominant, we observe a much better

performance of smoothed estimators.
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Figure 23. MSEs for Individual Probability Estimators for the Fourth (k, k)Matrix for Short
Spatial Markov Chains (N = 31,T = 5).
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Table 13. Proportion of Fourth (k, k) Conditional Transition Probability Matrix Estimates
Giving Rise to Irreducible Markov Chains in 1, 000 Spatial Markov Simulations.

Irreducible proportion
N T β p̂mle p̃c p̃o

0 0 1.000 0.999
1 25 0.3 0.062 1.000 1.000

0.7 0.515 1.000 1.000
0 0.06 1.000 1.000

1 49 0.3 0.99 1.000 1.000
0.7 1.000 1.000 1.000
0 0.426 1.000 1.000

1 81 0.3 1.000 1.000 1.000
0.7 1.000 1.000 1.000

Decomposing the MSE(P̂PP) into MSEs of individual probability estimators, we could

discern a similar pattern as we have observed for classic Markov case. In Figure 23, I

visualize the MSEs individual probability estimators for the fourth matrix for the smallest

sample case. Clearly, the performance of smoothed estimators is contingent on the structure

of the true transition probability matrix. The weaker diagonally dominant the matrix, the

more superior the smoothed estimators in reducing the individual MSEs.

Now we turn to the irreducibility and the steady state probabilities for estimators for each

of k conditional transition probability matrix. Since the fourth (k, k) transition probability

matrix in the true k matrices when β = 0 (Equation 4.20) links to irreducible Markov

chains, we expect the transition probability matrix estimate should render the same property.

As displayed in the first row of Table ??, smoothed estimators ensure the irreducibility

property while the MLE serves as a negative example which ensures the reducibility property.

Comparatively, the MLEs seem to better recover the reducibility property linked to the first

(k, k) transition probability matrix (β = 0) as shown in the first row of Table ??.

Further, let us focus on the spatially conditional steady state probabilities implied by the
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Figure 24. MSEs for Individual Steady-State Probability Estimators for Short Spatial
Markov Chains (N = 31,T = 5).
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Table 14. Proportion of First (k, k) Conditional Transition Probability Matrix Estimates
Giving Rise to Irreducible Markov Chains in 1, 000 Spatial Markov Simulations.

Irreducible proportion
N T β p̂mle p̃c p̃o

0 0 1.000 0.999
1 25 0.3 0.26 1.000 1.000

0.7 0.658 1.000 1.000
0 0.001 1.000 1.000

1 49 0.3 0.975 1.000 1.000
0.7 1.000 1.000 1.000
0 0.012 1.000 1.000

1 81 0.3 1.000 1.000 1.000
0.7 1.000 1.000 1.000

spatial Markov transition probability matrices. As discussed earlier, steady state probabilities

serve as important indicators of the long run distribution assuming the current dynamics

persist. The steady state probabilities conditional on spatial context here shed light on the

role of space in shaping the long run distribution. As shown in Figure 24, the smoothed

estimators are better at reducingMSEs in all cases except when the true conditional transition

probability matrix is linked to reducibility.

4.4 Discussion and Conclusion

Empirical applications of the Markov chain model and spatial Markov chain model

can suffer from issues induced by the sparse transition probability matrix which is usually

estimated by adopting maximum likelihood estimation (MLE) techniques. The sparsity

arises from the generally short length of time series employed in empirical work using

spatial data. I propose two discrete kernel estimators with cross validation-based smoothing

parameters selection, which are a modification of the smoothing techniques for high-order

contingency tables, to address the sparsity issue.
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Based on a series of Monte Carlo experiments, it is found that the performance of discrete

kernel estimators offers an improvement over traditional MLE approaches when the sample

size is small compared to the number of categories in the classic and spatial Markov chain

models. More specifically, the smoothed estimators produce nonzero transition probability

estimates with smaller MSEs and thus a smaller MSE summed over the whole matrix; they

are much better at recovering the irreducible property of a Markov chain if it is inherent in the

underlying dynamics; they are also more effective at predicting the steady state distribution

assuming the current dynamics last. In addition, I find that the smoothed estimators for

the transition probabilities converge to the MLE as the sample size gets larger, which is

similar to what have been found for smoothed estimators for contingency tables (Ouyang

et al., 2006; Li and Racine, 2007). Therefore, the application of the proposed smoothed

estimators would be quite straightforward in that we do not have to determine whether there

is a sample size threshold beyond which the MLE should be preferred. Rather, the smoothed

estimators could be adopted in both small and large sample settings.

Next steps could be directed to exploring ways to improve the performance of the

proposed smoothed estimators. Monte Carlo results indicate that the superiority of the

two discrete kernel estimators to MLEs is contingent on the structure of the true transition

probability matrix such as the number of communicating classes and the extent to which

the matrix is diagonally dominant. More specifically, as the true transition probability

matrix becomes less diagonally dominant, the two proposed smoothed estimators produce

probability estimates with much smaller MSEs, while when the true transition probability

matrix is strongly diagonally dominant, their performance is merely similar to (no better

than) the MLE. This is probably due to the independence assumption between the two

classifications (category at t − 1, category at t) for the (k, k) transition probability matrix,

which could be invalid in the context of Markov chains which are designed to model
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temporal dependence. This could also be an issue for the spatial Markov chains model.

Therefore, the dependence structure between d categorical variables needs to be incorporated

in the smoothing process. It could be achieved either by extending the current productive

multivariate discrete kernel smoothers or by expanding the d-dimensional smoothing vector

to a (d, d) smoothing matrix whose non-diagonal elements control the form of orientation

of the kernel (Belaid et al., 2016). For the classic Markov chain model, the dependence

structure refers to the temporal dependence between category at t − 1 and category at t,

while for the spatial Markov chain model, the temporal dependence, the cross-sectional

dependence (category at t − 1 and spatial lag category at t − 1) as well as the spatiotemporal

dependence (spatial lag category at t − 1 and category at t) need to be incorporated.
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Chapter 5

CONCLUSION

The dissertation attempts to address issues caused by spatial effects and small sample

settings to the distribution dynamics approach in studying regional economic growth and

convergence in three publishable papers (Chapter 2, 3 and 4). Specifically, I focused on the

discrete version of the distribution dynamics approach, the discrete Markov chain model,

which has been widely adopted in the empirical work.

5.1 Main Findings

Chapter 2 Inference of Income mobility measures in the presence of spatial depen-

dence looks at whether the conventional regional income mobility estimators are still suitable

if cross-sectional spatial dependence is present or if the sample size is small. The former

inflates the asymptotic variance while the latter biases the estimator. For the two-sample

test about the mobility difference between two regional economic system, the size tends

to become increasingly upward biased with stronger spatial dependence in either income

systems, which indicates that conclusions about differences in mobility between two different

regional systems need to drawn with caution as the presence of spatial dependence can lead

to false positives. In light of this, critical values are suggested to be adjusted for relevant

statistical tests.

Next, diagnostic tests for spatial effects in the discrete Markov chain framework are

investigated in various settings in Chapter 3 Conditional and joint tests for spatial effects

in discrete Markov chain models of regional income distribution dynamics. The classic
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question of differentiating spatial dependence from spatial heterogeneity is explored and

the result is not optimistic. Tests for spatial heterogeneity are not robust to that for spatial

dependence while the pattern is mixed for tests for spatial dependence to the presence of

spatial heterogeneity. When the spatial regimes are comprised of contiguous regions, tests

for spatial dependence are not robust as well. The small sample issue is intertwined with the

discretization granularity. That is, if the latter is large, meaning we need to estimate a large

number of parameters, the small sample issue is more relevant and pressing. Based on a set

of Monte Carlo experiments which simulate a spatially explicit vector autoregressive model,

we find that all of the test statistics under study display good size properties except for the

CSMC likelihood ratio test statistic in small sample settings - it tends to be biased upwards

when it is used to test for temporally lagged spatial dependence or spatial heterogeneity.

Thus, although it is asymptotically equivalent to the CSMC χ2 test statistic, its behavior is

less satisfactory in small sample settings. When the sample size is large, because increasing

the level of discretization granularity lowers the sensitivity of almost all test statistics (except

for CSMC heterogeneity tests when dependence is very strong) without compromising the

power, it is recommended to adopt a higher level to prevent picking up the “wrong” spatial

effect. Otherwise, a balance should be made to preserve the Markov property without

impairing estimation precision. In other words, a relatively low granularity strategy should

be considered to facilitate estimation, but caution should be taken in case the Markov

property is lost due to discretization.

Chapter 4 Smoothed estimators forMarkov Chains with sparse spatial observations

specifically deals with the small sample issue induced by the maximum likelihood estimator

(MLE) which is the standard method when it comes to estimating a Markov transition

probability matrix. In light of the poor behavior of MLE indicated in the former chapters, as

well as the sparsity of the estimated matrix in small sample settings especially for the spatial
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Markov chain model, I propose discrete kernel estimators with cross-validated bandwidths

as an alternative to MLEs in small sample settings. Based on a series of Monte Carlo

experiments, it is demonstrated that the performance of discrete kernel estimators offers

improvement over MLEs when sample size is small, giving rise to a better recovery of the

true underlying dynamics. These smoothed estimators also tend to converge to MLEs when

more spatial observations become available. Therefore, the application of the proposed

smoothed estimators would be quite straightforward in that we do not have to determine

whether there is a sample size threshold beyond which the MLE should be preferred. Rather,

the smoothed estimators could be adopted in both small and large sample settings.

5.2 Limitations and Future Directions

5.2.1 Correcting mobility estimators or test statistics to the presence of spatial dependence

Current correction to regional income mobility estimators focuses on the adjustments

of critical values based on the results from a limited number of Monte Carlo simulations.

Further research could be directed to the generalization of the adjustments of critical values

to incorporate a wider range of cases. Empirical applications of the adjusted one-sample

and two-sample tests are of great potential once a general formula is readily available.

Other approaches to accounting for spatial dependence could also be promising. Among

them, parametric and nonparametric spatial filtering methods (Anselin, 1988; Getis and

Griffith, 2002; Griffith and Chun, 2014) are tractable and commonly used. They treat the

spatial dependence as nuisance and attempt to filter out spatially correlated components

while leaving the independent components as the input for classic inference. We could also

resort to the spatial bootstrap technique (Nordman et al., 2007; Cavaliere et al., 2015) which
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extends the conventional bootstrap to take account of dependence structure in the resampling

process. Besides, we could also follow the Clifford and Richardson "effective sample size"

solution for bivariate correlation coefficient (Clifford et al., 1989; Haining, 1991) to seek the

effective sample size for a decrease in the inflated variance.

5.2.2 Robust Tests for Spatial Effects

As shown in Chapter 3, all test statistics display strong power, but most of them are

sensitive to the alternative form of spatial effect they are not designed for. Both CSMC

Dep LR and CSMC Dep Q are not robust to the presence of mean heterogeneity, while

JSMC Dep is robust if adopting a high level of discretization granularity. CSMC Het LR

and CSMC Het Q are not robust to the presence of strong spatial dependence. The lack

of robustness poses challenges for the application of the test statistics in empirical studies.

Developing robust test (Anselin and Rey, 1991; Anselin, 1990) to aid these 5 test statistics is

a promising research direction.

In addition to the non-robustness issue, since a VAR will always introduce contempora-

neous spatial dependence if temporally lagged spatial dependence is specified, we could

not discriminate one from the other in this setting, nor could we examine the sensitivity of

JSMC (CSMC) test to the other form of spatial dependence. Future work may be focused

on designing the data generating process which will only introduce one form of spatial

dependence based on which an thorough investigation of the robustness of the other test

could be conducted.
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5.2.3 Improving Smoothed Estimators for Diagonally Dominant Transition Probability

Matrix

We note that the superiority of the two discrete kernel estimators to MLEs could be

contingent on the structure of the true transition probability matrix, such as the number of

communicating classes and the extent to which the matrix is diagonally dominant. More

specifically, as the true transition probability matrix becomes less diagonally dominant,

the two proposed smoothed estimators produce probability estimates with much smaller

MSEs, while when the true transition probability matrix is strongly diagonally dominant,

their performance is merely similar to (no better than) the MLE. This is probably due to the

independence assumption between the two classifications (category at t − 1, category at t)

for the (k, k) transition probability matrix, which could be invalid in the context of Markov

chains which are designed to model temporal dependence. This could also be an issue for

the spatial Markov chains model. Therefore, the dependence structure between d categorical

variables needs to be incorporated in the smoothing process. It could be achieved either by

extending the current productive multivariate discrete kernel smoothers or by expanding the

d-dimensional smoothing vector to a (d, d) smoothing matrix whose non-diagonal elements

control the form of orientation of the kernel (Belaid et al., 2016). For the classic Markov

chain model, the dependence structure refers to the temporal dependence between category

at t −1 and category at t, while for the spatial Markov chain model, the temporal dependence,

the cross-sectional dependence (category at t − 1 and spatial lag category at t − 1) as well as

the spatiotemporal dependence (spatial lag category at t − 1 and category at t) need to be

incorporated. Further research could be conducted in this regard.
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5.2.4 Incorporating Continuous Spatial Heterogeneity

Exploring continuous spatial heterogeneity in the discrete Markov chain model could

be a promising research area. Currently, empirical studies either estimate one transition

probability matrix from the pooled regional income time series, or estimate several matrices

for specifically constructed subsamples to account for spatial dependence, discrete spatial

heterogeneity or temporal heterogeneity. For incorporating discrete spatial heterogeneity,

spatial regimes which are comprised of regions are predefined and assumed to be governed

by different transitional dynamics. It is quite possible that the transitional dynamics vary

across space giving rise to continuous spatial heterogeneity. Obviously, the small sample

issue would be more severe here as N transition probability matrices need to be estimated

for N individual regional time series. A promising solution would be to follow the spirit of

geographically weighted regression (GWR) (Fotheringham et al., 2002, 2017) and assume the

transitional dynamics are more similar for nearby regions, thus facilitating data-borrowing

from nearby regions. The discrete kernel smoothers with cross-validated bandwidths

proposed in Chapter 4 could be properly adjusted to fulfil the purpose.
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