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ABSTRACT  

   

Atmospheric particulate matter (PM) has a pronounced effect on our climate, and 

exposure to PM causes negative health outcomes and elevated mortality rates in urban 

populations. Reactions that occur in fog can form new secondary organic aerosol material 

from gas-phase species or primary organic aerosols. It is important to understand these 

reactions, as well as how organic material is scavenged and deposited, so that climate and 

health effects can be fully assessed. Stable carbon isotopes have been used widely in 

studying gas- and particle-phase atmospheric chemistry. However, the processing of 

organic matter by fog has not yet been studied, even though stable isotopes can be used to 

track all aspects of atmospheric processing, from particle formation, particle scavenging, 

reactions that form secondary organic aerosol material, and particle deposition. Here, 

carbon isotope analysis is used for the first time to assess the processing of carbonaceous 

particles by fog. 

This work first compares carbon isotope measurements (δ13C) of particulate 

matter and fog from locations across the globe to assess how different primary aerosol 

sources are reflected in the atmosphere. Three field campaigns are then discussed that 

highlight different aspects of PM formation, composition, and processing. In Tempe, AZ, 

seasonal and size-dependent differences in the δ13C of total carbon and n-alkanes in PM 

were studied. δ13C was influenced by seasonal trends, including inversion, transport, 

population density, and photochemical activity. Variations in δ13C among particle size 

fractions were caused by sources that generate particles in different size modes. 

An analysis of PM from urban and suburban sites in northeastern France shows 

how both fog and rain can cause measurable changes in the δ13C of PM. The δ13C of PM 
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was consistent over time when no weather events occurred, but particles were 

isotopically depleted by up to 1.1‰ in the presence of fog due to preferential scavenging 

of larger isotopically enriched particles. Finally, the δ13C of the dissolved organic carbon 

in fog collected on the coast of Southern California is discussed. Here, temporal depletion 

of the δ13C of fog by up to 1.2‰ demonstrates its use in observing the scavenging and 

deposition of organic PM. 
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CHAPTER 1 

INTRODUCTION AND BACKGROUND 

Aerosol Characterization and Sources 

Atmospheric particulate matter (PM) is defined as solid particles suspended in the 

atmosphere. PM falls under the classification of atmospheric aerosols, which include both 

solids and liquid droplets. PM is found in a wide array of sizes, from submicron particles 

primarily formed from chemical reactivity and nucleation, to super-micron particles 

formed through mechanical abrasion (Seinfeld & Pandis, 2016). PM can originate from a 

variety of biogenic and anthropogenic sources, including vegetation, resuspension of dust 

and soils, vehicle emissions, sea spray, and biomass burning. Depending on the particle 

source and formation mechanism, particles from different sources can be found in 

different particle size fractions. The composition of PM is dependent on its source, but 

common constituents include inorganic ions (such as sulfate, nitrate, ammonium, and 

chloride), trace metals, and carbonaceous matter (including organic carbon, elemental 

carbon, and carbonate) (Seinfeld & Pandis, 2016). 

Particulate matter has been shown to have negative effects on human health, 

causing respiratory stress and disease (Folinsbee, 1993; MacNee & Donaldson, 2003; 

Oberdörster, 2001; Tsai et al., 2013). The degree to which particles enter the human 

respiratory tract and affect health outcomes is dependent on particle size (Heyder et al., 

1986). Fine particles in the PM2.5 size mode (particles with dp ≤ 2.5 µm) are associated 

with increased mortality rates in urban populations (Happo et al., 2008), while PM10  

(particles with dp ≤ 10 µm), and more specifically, coarse particulate matter (particles in 

the size range 2.5 µm ≤ dp ≤ 10 µm) is associated with asthma and cardiac stress (Happo 
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et al., 2008; Lipsett et al., 2006; Mar et al., 2000). It can therefore be beneficial to 

characterize PM in different size fractions. In addition to the negative health effects of 

particles, PM also has a pronounced effect on our climate. Particles cause cooling at the 

Earth’s surface through the scattering of solar radiation as well as warming of the 

troposphere by absorbing radiation (Marley et al., 2009). Both organic and elemental 

carbon found in particulate matter have been shown to absorb solar radiation (Kirchstetter 

et al., 2004).  

Processing of Organic Matter in the Aqueous Phase 

 

Figure 1.1. A schematic outlining the scavenging of organic particles and VOCs to form 

SOA material. Arrows are color-coded based upon the type of isotope process that occurs 

(black = no /unknown fractionation; orange = kinetic fractionation; blue = equilibrium 

fractionation; green = size-dependent particle scavenging). 

 

As shown in Figure 1.1, primary sources of emissions release organic substances 

into the atmosphere. Gas-phase organics are referred to as primary volatile organic 

compounds (VOCs), and solid- and liquid-phase organics are referred to as primary 
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organic aerosols (POAs). In gas-phase reactions, primary VOCs can oxidize or photolyze 

into secondary VOCs, which are the products of atmospheric reactions. Based upon the 

properties of the VOCs and atmospheric conditions, primary and secondary VOCs may 

remain in the gas phase, nucleate to form new particles, or condense onto existing 

particles. 

In the presence of fog or clouds, organic substances can be scavenged into the 

aqueous phase via multiple routes (Figure 1.1). A water droplet first forms when water 

condenses on the surface of a particle known as a cloud condensation nucleus (CCN). A 

CCN must have a minimum diameter of approximately 100-200 nm for a droplet to form 

around it (Seinfeld & Pandis, 2016), and it can grow to this critical diameter through 

condensation of VOCs onto the surface or coagulation with other particles to form larger 

PM (Seinfeld & Pandis, 2016). Additional particulate matter can be incorporated into 

droplets through collisions, and VOCs that are water soluble can dissolve into aqueous 

droplets. Once organic compounds are scavenged by a water droplet, aqueous phase 

organic reactions occur, which might form secondary organic aerosol (SOA) material 

(Kaul et al., 2011). 

Stable Isotope Systems 

An important analytical tool used to study the dynamic composition of the 

atmosphere is the chemistry of stable isotopes. Stable isotopes are not produced by long-

lived radioactive decay, and do not decay themselves. The stable isotope composition of 

a substance is generally defined as R, the ratio of the abundance of the rare isotope to the 

abundance of the more common isotope. For stable carbon isotopes, this is defined using 

the abundances of 13C and 12C: 
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R =
C13

C12              (1.1) 

In order to standardize measurements, the R of a sample is compared to the R of a 

standard material. For carbon, the internationally accepted standard is Vienna Peedee 

Belemnite (VPDB), a scale based upon the R of calcium carbonate minerals found in the 

Peedee formation of South Carolina (Goldstein & Shaw, 2003). As differences in natural 

abundances of carbon isotopes are small, the differences between the R of a sample and R 

of a standard are expressed in units of permille (‰), using delta (δ) notation: 

δ C13
VPDB =  [

(
C13

C12 )
sample

(
C13

C12 )
VPDB

− 1]  × 1000          (1.2) 

Stable isotopes undergo isotope fractionation, in which the isotopes of an element 

separate into pools with different δ13C values in thermodynamic and kinetic processes 

due to differences in bond strength, where heavier isotopes form stronger and more stable 

bonds than lighter isotopes (Goldstein & Shaw, 2003). In atmospheric processes such as 

fog formation and particle/VOC scavenging, different types of fractionation might occur 

(Figure 1.1). In equilibrium processes, such as phase changes (blue arrows), heavy 

isotopes prefer the most stable binding environments. In the equilibrium of VOCs 

between the gas and particle phases, the particle phase will be enriched in δ13C relative to 

the gas phase. Similarly, in the equilibrium of VOCs between the gas and aqueous 

phases, the aqueous phase will be enriched in δ13C relative to the gas phase. In 

kinetically-driven reactions, such as in the formation of secondary VOCs in the gas phase 

or the formation of aqueous-phase SOA material (orange arrows), molecules containing 

lighter isotopes will react faster than those containing heavier isotopes, since lighter 
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isotopes form weaker bonds. In these cases, the δ13C of the reaction products will be 

depleted relative to the reactants, and the reactant pool will become increasingly 

isotopically enriched. In a closed system, if the reaction goes to completion, the δ13C of 

the reactants will equal the δ13C of the products. The atmosphere, however, is an open 

system, and factors such as Rayleigh effects need to be accounted for when studying 

kinetic reactions (Goldstein & Shaw, 2003). Measurements of these isotopic fractionation 

processes in sum can provide useful information on temporal changes, sources, 

partitioning, and reactivity in the atmosphere. As will be discussed in the following 

section, the use of stable isotopes is a widely accepted and established practice that has an 

enormous potential for investigating active atmospheric processes. 

Current Understanding of Stable Isotopes in the Atmosphere 

Studies of the isotopic composition of PM and VOCs are widely documented in 

literature, as are observations of the isotope effects that can occur in these phases. As this 

work focuses on carbon in the particle and aqueous phases, studies involving the δ13C of 

aerosols will be discussed here. Numerous biogenic and anthropogenic sources contribute 

to the composition of particles in the atmosphere, and many studies have demonstrated 

that different sources of aerosol particles have distinguishable carbon isotope 

compositions (Fisseha et al., 2009; Gleason & Kyser, 1984; Moura et al., 2008; 

Pichlmayer et al., 1998; Rudolph et al., 2003; Wang et al., 2005; Widory et al., 2006; 

Wozniak et al., 2012). For example, C3 and C4 plants, which undergo different 

photosynthetic processes, have very different carbon isotope signatures (Wozniak et al., 

2012), and various types of fuel, such as diesel and gasoline, can be distinguished by 

carbon isotopes (Fisseha et al., 2009). Studies have shown that POAs have similar 
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isotopic signatures to their sources (visualized as black arrows in Figure 1.1), but SOA 

material tends to be depleted in δ13C due to kinetic isotope effects (Fisseha et al., 2009). 

Since the 1970s (Cachier et al., 1986 and references therein), δ13C measurements 

of PM have been used primarily to determine sources of carbonaceous particulate matter. 

For example, the analysis of the δ13C of total carbon (referred to hereafter as δ13CTC) in 

PM2.5 and PM10 in Paris showed that emissions from diesel fuel were the dominant source 

of atmospheric carbon (Widory et al., 2004). Cao and coworkers (2011) found that the 

δ13CTC of PM2.5 collected in 14 cities across China was dominated by coal emissions and 

motor vehicle exhaust; the 1998 prohibition of biomass burning in urban areas was 

reflected in these results, as the δ13CTC of PM2.5 was dissimilar to the δ13C of both C3 and 

C4 plants. In Rio de Janeiro, Brazil, isotope compositions of organic and elemental 

carbon (δ13COC and δ13CEC, respectively) in total suspended particulates (TSP) suggested 

that biogenically-derived alcohol fuel contributed to the urban background, with no 

measurable diurnal or weekday/weekend patterns (Tanner & Miguel, 1989). In another 

study in Vancouver, Canada, Huang and coworkers (2006) measured the δ13COC and 

δ13CEC of PM2.5 in a provincial park (biogenic background), tunnel (motor vehicle 

emissions), and an urban background site; they found though comparison that the urban 

background site had a greater influence from motor vehicle exhaust than biogenic 

emissions. A study of PM10 in Wroclaw, Poland found seasonal differences in δ13CTC, 

with coal burning emissions dominating in the winter and emissions from transported 

vegetation dominating in the summer; this was manifested in enriched wintertime δ13CTC 

relative to the summer (Gorka et al., 2014). In Kathmandu, Nepal, the analysis of δ13CTC 

of bulk aerosols confirmed the dominance of anthropogenic emissions in the winter 
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(Shakya et al., 2010). PM2 sampled in two forested areas in Brazil showed distinct 

differences in the δ13C of water soluble organic carbon (δ13CWSOC) due to the dominance 

of C3 versus C4 plants in the two locations (Martinelli et al., 2002). All these studies show 

that δ13C measurements are useful in PM source identification and apportionment. 

While δ13C measurements of PM are mostly used for primary emissions sourcing 

(as described above), they can also be used to an extent to deduce reactivity and SOA 

formation. For example, López-Veneroni (2009) determined through source 

apportionment of δ13CTC that PM2.5 and PM10 in Mexico City, Mexico were mainly 

influenced by vehicle emissions and agricultural soils. However, the δ13CVPDB values 

were found to deviate from a simple mixing model, suggesting the formation of SOA 

material: 13C-enriched molecules were thought to partition into the particle phase, while 

13C-depleted molecules likely partitioned into the gas phase. Nguyen and coworkers 

(2016) found the δ13CTC of PM2.5 in Sonla, Vietnam to be influenced mainly by fossil fuel 

and biomass burning, but suggested that small changes in δ13CTC could be due to the 

formation of SOA through photochemical processing of individual compounds. The 

δ13CTC of PM10 in Mumbai was found to be consistent with urban particle sources 

(biofuel and biomass burning), but seasonal differences pointed to prolonged 

photochemical processing and SOA formation in the wintertime when aerosols had 

longer residence times: Winter δ13CTC averaged -25.9 ± 0.3‰, while summer δ13CTC 

averaged -26.5 ± 0.3‰ (Aggarwal et al., 2013). Similarly, measurements of the δ13CTC of 

TSP in Nainital, India, a remote location in the Himalayas (Hegde et al., 2016), showed 

wintertime δ13CTC measurements averaged -24.0‰, characterized mainly by biomass 

burning of C4 plants and long residence times caused by boundary layer dynamics. 
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Summer δ13CTC values averaged -26.0‰, which was attributed to high winds transporting 

fresh biogenic (C3) and fossil fuel combustion emissions. In the Sapporo forest in Japan, 

isotope measurements of water soluble organic carbon (δ13CWSOC) in TSP reflected the 

expected biogenic sources year-round, but δ13CWSOC was depleted in the summer 

compared to the winter; this was indicative of higher biological activity and SOA 

formation in the summer (Miyazaki et al., 2012). The δ13CWSOC of TSP collected in the 

Maldives was enriched by 3 – 4‰ relative to central India, consistent with the expected 

aging of WSOC that occurs during long-range transport of particles over the ocean from 

India to the Maldives (Kirillova et al., 2013). With knowledge of the location, particle 

sources, and weather patterns (i.e., long-range transport versus inversion and long 

residence times), observations of changes in δ13CTC could be valuable in explaining aging 

and SOA formation.  

Bulk δ13C measurements (total, organic or elemental carbon) are mainly 

interpreted for source apportionment, but reactivity is mostly studied through the analysis 

of the δ13C of individual compounds. Fisseha and coworkers (2009), for example, used 

the δ13CTC of aerosols in Zurich, Switzerland to determine the major sources of PM 

(wood combustion and vehicle exhaust), but also correlated changes in the δ13C of 

gaseous formic and acetic acids with ozone to show the prominence of SOA formation in 

the summer through kinetic isotope effects. The δ13C analysis of individual dicarboxylic 

acids collected in size-resolved PM fractions in urban Xi’an, China were used to show 

the isotope effects that occur due to kinetic reactions, as well as to demonstrate the 

condensation of VOCs onto coarse particles (Wang et al., 2012). Aggarwal and 

Kawamura (2008) measured the δ13C of individual dicarboxylic acids in TSP from the 
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city of Sapporo, Japan, and found decreasing δ13C values with increasing molecule size, 

attributed to the isotopic fractionation that occurs during photochemical degradation. 

Objectives 

As described above, the use of δ13C measurements in atmospheric studies is 

ubiquitous; in fact, two comprehensive reviews explain in detail the current state and 

future potential of isotope studies of organic atmospheric constituents (Gensch et al., 

2014; Goldstein & Shaw, 2003). However, one major component of the atmosphere is 

missing in all of these studies: δ13C of fog and cloud. The δ13C composition of fog and 

cloud, as well as interactions of other phases (VOC, PM) with fog and cloud studies 

through δ13C, have not yet been explored. 

While studies of the chemical composition of fog have been conducted since the 

mid-20th Century (Houghton, 1955), the analysis of the organic compounds present in fog 

is relatively new and only began to become a field of interest in the 1990s (e.g., Herckes 

et al., 2013 and references therein). Most aqueous phase SOA generation processes 

remain poorly understood, and this lack of knowledge is thought to be a reason for 

substantial errors in atmospheric models used in climate and air quality studies (Ervens, 

2015). It has been shown that the addition of aqueous phase SOA formation to models 

dramatically improves predictions of organic carbon concentrations (Carlton et al., 2008).  

This work will strive to provide a better understanding of the fate of organic 

matter in heterogeneous atmospheric systems through the use of stable carbon isotope 

analysis. The focus will be on the scavenging and deposition of particles by fog, as well 

as the effect of scavenging on both the composition of interstitial particulate matter and 

the dissolved organic carbon (DOC) present in fog. Chapter 2 will begin with an 
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overview of what is known about the δ13C of POA sources and how these sources are 

reflected in the δ13C measurements of PM and fog. Chapter 3 will discuss a new method 

to quantify carbonates in PM samples, which is necessary in understanding the δ13C of 

particles in locations affected by blown dust sources. One such location is Tempe, AZ, 

where the δ13C of total carbon and individual n-alkanes in size-resolved particulate matter 

was measured and will be discussed in Chapter 4. Chapter 5 will focus on urban and 

suburban PM collected in northeastern France, and how both fog and rain can cause 

measurable changes in the δ13C of PM. Finally, the δ13C of the DOC of fog collected on 

the coast of Southern California will be discussed in Chapter 6. Implications of the 

changes in δ13C of fog over time will be addressed, and other stable isotope systems (δ2H 

and δ18O) will be used to evaluate the evolution of a fog event. Chapters 5 and 6 will 

discuss the selective scavenging of particles by fog, which results in measurable changes 

in the δ13C of PM (visualized as green arrows in Figure 1.1). Primary aerosol sources 

form particles in different size fractions (Seinfeld & Pandis, 2016), and each primary 

source has a distinct δ13C; It is therefore hypothesized that changes in δ13C of both PM 

and fog are caused by size-selective scavenging of particles. 
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CHAPTER 2 

OVERVIEW OF CARBON ISOTOPES IN ATMOSPHERIC PARTICULATE 

MATTER AND FOG 

This chapter will provide an overview of what is known about the δ13C of POA 

source signatures in literature, and how both aerosol particles and fog can reflect the δ13C 

of these sources. Insight into the mechanism of how carbonaceous material is scavenged 

by fog will also be introduced.  

As discussed in Chapter 1, measurements of the δ13CTC of aerosol PM reflect the 

combined δ13C of the sources that contribute POA to a specific location. It is expected 

that the δ13CTC of aerosol presented in this chapter will reflect the δ13C signatures of 

major primary aerosol sources. It is additionally hypothesized that the δ13CDOC of fog will 

reflect POA sources, since POA is scavenged by fog. However, since the scavenging of 

particles and gases by fog is selective based upon the chemical composition of 

carbonaceous atmospheric constituents and the sizes of existing particles, it is 

hypothesized that the δ13CDOC of fog will differ from the δ13CTC of coexisting interstitial 

aerosol. Knowledge of the primary aerosol sources of different locations will allow a 

broad interpretation of how δ13C of fog and PM will reflect these sources.  

Materials and Methods 

Sample collection. 

Fog and particulate matter samples were collected in Davis, CA from January 6 – 

26, 2011 (Ervens et al., 2013). Particulate matter and cloud samples from Whistler, BC 

were collected during the “Whistler Aerosol and Cloud Study” (WACS2010) from June 

22 – July 28, 2010 (Ervens et al., 2013). Particulate matter samples were collected in 
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Bakersfield from January 17 – February 12, 2013, in a lot situated between a church and 

residential community, and approximately 100 yards from an oil field (Wang, 2014). 

From June 8 – 14. 2015, fog samples were collected in Casitas Pass along the Santa 

Barbara Channel, and particulate matter samples were collected at Serra Cross Park in 

Ventura, CA (Boris et al., 2018). These samples are discussed in greater detail in Chapter 

6. Particulate matter samples were collected in Tempe, AZ on January 6 – 13, March 31 – 

April 7, June 19 – 26, and September 30 – October 7, 2014, and are discussed in greater 

detail in Chapter 4. 

Particulate matter samples were collected in the Monterrey, MX metropolitan area 

in the spring and fall of 2011 and 2012 (Mancilla et al., 2015). Particulate matter and fog 

samples were collected in Strasbourg and Geispolsheim, France in the fall of 2016 and 

are discussed in detail in Chapter 5. Fog samples were also collected in Geispolsheim 

from October 26, 2015 through January 1, 2016, in Erstein, France (48.4213°, 7.6588°) 

from October 27 – December 15, 2016, and in Metz, France (49.1099°, 6.2224°) from 

November 13, 2015 – January 1, 2016. Fog samples from Baengnyeong Island, South 

Korea were collected from June 29 – July 21, 2014 (Boris et al., 2016). 

The following potential local source materials of particulate matter were collected 

and analyzed in Tempe, AZ: Plant material, tailpipe emissions, parking structure 

emissions, fireplace emissions, biomass burning emissions, and resuspended soil. Details 

of the sampling and analysis of these materials can be found in Appendix B. 

Sample analysis. 

Isotopic measurements for δ13CVPDB of TC in aerosol PM were performed using a 

Costech Elemental Analyzer coupled to a Thermo Delta Plus Advantage Isotope Ratio 
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Mass Spectrometer (EA-IRMS). The analytical uncertainty of samples analyzed using 

this method is 0.2‰. NIST 2710 (Montana soil) was used as a linearity standard. Three 

in-house glycine standards were used to perform and verify a two-point isotopic 

calibration. 

Fog samples were filtered through a prebaked quartz filter for isotopic analysis of 

dissolved organic carbon (DOC). Isotopic measurements for δ13CVPDB of DOC of fog 

samples were performed using an OI Analytical TOC Analyzer coupled to a Thermo 

Delta Plus Advantage Isotope Ratio Mass Spectrometer (TOC-IRMS). The analytical 

uncertainty of the samples analyzed using this method is 0.3‰. Potassium hydrogen 

phthalate (KHP, Sigma Aldrich, 99.995%) with a known isotopic composition was used 

as a linearity standard. Three in-house glycine standards were used to perform and verify 

a two-point isotopic calibration. 
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Results and Discussion 

The δ13C of primary aerosol sources. 

 

Figure 2.1. Examples of the δ13C values of primary aerosol sources. Literature values are 

shown in purple and are reported observations of coal (Gleason & Kyser, 1984; Widory, 

2006), motor vehicle exhaust (Widory, 2006), diesel and gasoline (Fisseha et al., 2009), 

natural gas and petroleum burning (Pichlmayer et al., 1998), C3 plants (Moura et al., 

2008), C4 plants (Wozniak et al., 2012), marine organic carbon (Wozniak et al., 2012), 

and soil carbonates (Wang et al., 2005). Samples collected in Tempe, AZ are shown in 

green, and are discussed in detail in Chapter 4.The shaded area represents the δ13C range 

for atmospheric samples measured in this study (Figure 2.2). 

 

Numerous biogenic and anthropogenic sources contribute to the composition of 

aerosols in the atmosphere, and several studies have been conducted that measure the 

δ13C of these primary aerosol sources. The reported δ13C values of select sources are 

summarized in Figure 2.1. These studies demonstrate that different sources of aerosol 

particles have distinguishable isotopic compositions. For example, C3 and C4 plants have 

been shown to have different isotopic signatures (C3: -33.7 – -27.3‰, (Moura et al., 

2008); C4: -14 – -12‰, (Wozniak et al., 2012)  due to differences in their photosynthetic 
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processes (Bender, 1971; O’Leary, 1981; Park & Epstein, 1960). Even within the 

common source class of vehicle emissions, it is possible to distinguish between diesel and 

gasoline fuel types (Fisseha et al., 2009), as they are sourced from different fractions of 

petroleum (Silverman, 1967). Emissions of natural gas burning are isotopically depleted 

relative to petroleum (-40‰ versus -30‰, respectively, Pichlmayer et al., 1998); as the 

molecular constituents in petroleum break down, isotope effects in chemical reactions 

cause smaller product molecules (methane) to be depleted in δ13C (Silverman, 1967). 

Coal has been observed to be enriched in δ13C relative to liquid or gaseous fossil fuels     

(-24.9 – -21‰, Gleason & Kyser, 1984; Widory, 2006). Soil carbonates are isotopically 

enriched relative to organic carbon ( -8.35 – +2.15‰, Wang et al., 2005) because of the 

formation of carbonate minerals from atmospheric CO2 dissolved in water (McCrea, 

1950). Marine OC falls within -22 – -18‰ (Wozniak et al., 2012) due to the role that CO2 

dissolved in the oceans plays in marine photosynthesis (Park & Epstein, 1960). 

Samples of emissions from a parking structure collected in Tempe, AZ were 

isotopically enriched (ranging from -24.5 – -24.2‰) compared to motor vehicle exhaust 

reported in Paris, France (-28 – -26‰, Widory, 2006), possibly due to regional 

differences in fuel source and use (France versus the United States). The δ13C of gasoline 

exhaust collected in Tempe (-26.4 – -25.8‰) are similar to literature values, but diesel 

emissions in Tempe were enriched in δ13C (-25.6 – -24.1‰) relative to reported literature 

values. These samples are discussed in more detail in Chapter 4. The δ13C of C3 (-30.1 –  

-23.9‰) and C4/CAM plants (-18.4 – -13.2‰) were similar to reported ranges in 

literature. The δ13C of resuspended soils (-16.7 – -4.0‰) were isotopically enriched 

relative to other collected sources, due to the presence of carbonates in the soils. They 
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are, however, depleted compared to isolated soil carbonates, as they contain 

anthropogenically and biogenically emitted particulates as well. 

Organic aerosol particles that are directly emitted by primary sources are known 

as primary organic aerosols (POAs). POAs have similar isotopic compositions to their 

sources (Fisseha et al., 2009; Martinelli et al., 2002; Rudolph et al., 2003; Sakugawa & 

Kaplan, 1995). Based on the differences in δ13C among POA sources, these 

measurements can be used as a tool to differentiate among sources that contribute to the 

carbon in atmospheric particulate matter. 
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δ13C of the total carbon of particulate matter samples. 

 
Figure 2.2. Measurements of the δ13C of aerosol samples. Samples in red are 

measurements from this study, and samples in orange are reported in literature. All 

samples from this study are measurements of δ13CTC. Literature particulate matter 

measurements are of δ13CTC of PM2.5 and PM10 in Mexico City, Mexico (López-

Veneroni, 2009), δ13COC and δ13CEC of PM2.5 in urban locations across China (Cao et al., 

2011), δ13CTC of PM2.5 in Sonla, Vietnam (Nguyen et al., 2016), δ13CTC of TSP in 

Nainital, India (Hegde et al., 2016), δ13CTC of PM2 in Piracicaba and Santarem, Brazil 

(Martinelli et al., 2002), δ13CTC of PM2.5 and PM10 in Paris, France (Widory et al., 2004), 

δ13CTC of aerosols in Zurich, Switzerland (Fisseha et al., 2009), and δ13CTC of PM10 in 

Wroclaw, Poland (Gorka et al., 2014). 

 

Figure 2.2 shows the measurements of the δ13CTC of aerosol samples in several 

locations measured in this study, as well as literature values. The range of δ13CTC of 

aerosol samples measured for this work (-27.6 – -22.5‰) is much narrower than POA 

sources overall (-40 – +2.15‰, Figure 2.1); the x-axis of Figure 2.2 is shown as a shaded 

region in Figure 2.1 for perspective. The δ13CTC of aerosols from Davis (-26.2 – -24.5‰), 

Bakersfield (-25.8 – -24.4‰), and Ventura, CA (-26.4 – -25.0‰) fell in similar ranges 

and likely had similar sources of POA. δ13CTC in Monterrey (-25.8 – -24.6‰) was similar 

to the three sites in California. Sources of fine particles in Monterrey are mainly 
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attributed to burning, with vehicle exhaust, meat cooking, and biomass and vegetative 

waste burning dominating (Mancilla et al., 2016). Similarly, the δ13CTC of  PM2.5 and 

PM10 in Mexico City averaged -25.4 ± 1.2‰, but vehicular emissions and agricultural 

soils were determined to be the dominant particle sources (López-Veneroni, 2009). The 

δ13COC and δ13CEC of PM2.5 from cities in China fell in a wide range that encompasses the 

δ13CTC of other urban aerosols and is attributed to emissions from coal and motor vehicle 

exhaust (Cao et al., 2011). The δ13CTC values of PM2.5 in Sonla, Vietnam were attributed 

to biomass burning and fossil fuel emissions (Nguyen et al., 2016). In Nainital, India, 

located in free troposphere in the Himalayas, TSP was found to have a high contribution 

of biomass burning sources in the winter, and transported fossil fuel sources in the 

summer, based upon the measured range of δ13CTC (Hegde et al., 2016). 

δ13CTC in Whistler (-26.9 – -26.2‰) was depleted compared to aerosol in the 

California sites and Monterrey. The Whistler site is rural and aerosol is dominated by the 

contribution of C3 biogenic emissions (Ervens et al., 2013), which overall has a lighter 

δ13C than vehicle exhaust (Figure 2.1). In Brazil, a study of the δ13CTC of fine aerosols 

(PM2) collected in two forested sites showed a clear differentiation between emissions 

from a C3 forest (Santarem) and land covered with C4 plants, sugarcane and pastures 

(Piracicaba) (Martinelli et al., 2002). 

Tempe particulate matter was enriched in δ13CTC relative to other urban sites            

(-25.0 – -22.5‰) due to the elevated presence of carbonate in desert aerosol; the 

measured isotopic composition of the carbonate fraction of aerosol in Tempe (δ13CCC) 

was in the range of -8 – -5‰. The measurement of carbonates in Tempe aerosol samples 

is further discussed in Chapter 4.  



  19 

Particles in both Strasbourg (-27.6 – -25.9‰) and Geispolsheim (-27.3 – -26.1‰) 

were depleted in δ13CTC relative to urban sites in North America, likely due to the greater 

use of diesel fuel than gasoline in France (Delhomme & Millet, 2012). The δ13CTC of 

particles collected in these two locations in France are further discussed in Chapter 5. 

Similarly, PM2.5 and PM10 in Paris, France were both found to be dominated by diesel 

emissions, based upon δ13CTC measurements (Widory et al., 2004). δ13CTC of aerosols in 

Zurich, Switzerland were found be influenced by wood combustion as well as vehicle 

exhaust (Fisseha et al., 2009), and the δ13CTC of PM10 in Wroclaw, Poland was found to 

have seasonal variations, with coal burning dominating in the winter and transported 

vegetative emissions dominating in the summer (Gorka et al., 2014). 

As seen in Figure 2.1, while many POA sources are isotopically distinguishable, 

some have similar or overlapping δ13C ranges. Notably, δ13C for C3 plants (-33.7 –           

-27.3‰, Moura et al., 2008) and motor vehicle exhaust (-28 – -26‰, Widory, 2006), 

which typically make up a bulk of directly emitted particles in urbanized environments, 

could be found in similar ranges. Additionally, the δ13C of a POA source can vary based 

upon the sampling site, as the types of plants, cars, and other emission sources can be 

different among sampling locations. As discussed above, atmospheric particulate matter 

represents a mixture of primary carbonaceous aerosol sources, and the significance of 

secondary aerosols can vary seasonally, diurnally, and geographically. Still, some 

assumptions about the major emission sources comprising a particulate matter sample can 

be made based on knowledge of the sampling location.  
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δ13C of the dissolved organic carbon of fog samples. 

 
Figure 2.3. Measurements of the δ13CDOC of fog and cloud samples. Samples are color-

coded based upon the region (orange = North American west coast; green = South Korea; 

blue = France). 

 

Currently, there are no published studies available that analyzed the δ13C of fog or 

cloud samples. Figure 2.3 shows the measurements of the δ13CDOC of fog and cloud 

samples collected in several locations for this work. Fog collected in Davis (-27.2 –          

-24.8‰) and Casitas Pass, CA (-26.8 – -24.4‰) fell within a similar range of δ13CDOC, 

and cloud in Whistler was depleted in δ13CDOC relative to these sites (-28.0 – -26.6‰) due 

to the dominant influence of biogenic aerosol relative to the urbanized sites in California 

(Ervens et al., 2013). Fog collected on Baengnyeong Island, South Korea was enriched in 

δ13CDOC relative to other sampling locations (-26.6 – -22.0‰) because of the enrichment 

of marine OC relative to anthropogenic emissions. Fog in this location was shown to 

have significant marine influence, and upwind trajectories of the air masses showed 

passage over either the Yellow Sea or the Sea of Japan (Boris et al., 2016). 
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Fog samples from four urban (Strasbourg, Metz) and suburban (Geispolsheim, 

Erstein) sites in Northeastern France were analyzed. Overall, fog collected in the cities of 

Strasbourg and Metz in 2016 was depleted in δ13CDOC relative to Davis and Casitas Pass  

(-28.5 – -26.2‰ and -27.5 – -26.2‰, respectively), as was observed in aerosol δ13CTC 

(Figure 2.2). However, fog samples collected in Erstein in 2016 were similar in δ13CDOC 

to those collected in California (-26.5 – -24.7‰), and fog collected in Geispolsheim had 

different ranges of δ13CDOC in 2016 (-26.9 – -25.4‰) and 2015 (-28.8 – -25.0‰). 

Geispolsheim and Erstein are both suburban towns south of Strasbourg, and are likely 

influenced by both urban and agricultural sources. Additionally, as is evident in 

Geispolsheim, atmospheric sources may be variable and are dependent on the weather 

conditions at the time of sampling. 

In a similar fashion of the δ13CTC of aerosol, the δ13CDOC of fog and cloud appears 

to reflect the local sources of carbonaceous material. The carbon contained in a fog 

droplet, however, is inherently different from the total carbon of aerosol: Fog droplets are 

more likely to contain water soluble organics than water insoluble organics from both the 

aerosol and gas phases. Fog and clouds may also size-selectively scavenge particles, 

which would result in an isotope fractionation between the particle phase and aqueous 

phase; this topic will be discussed further in Chapters 5 and 6. 
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Comparison of fog and interstitial aerosol δ13C. 

 
Figure 2.4. A comparison of the δ13C of the dissolved organic carbon of fog samples and 

the total carbon of interstitial PM samples. Left: An illustration of the collected samples, 

where the grey dots represent PM and blue dots represent fog water; note that the fog 

water can incorporate both VOCs and particles. Fog water and interstitial PM (particles 

not scavenged by fog droplets) were collected simultaneously. Right: A comparison of 

the results of isotopic analysis, with a 1:1 line drawn as a visual aid. 

 

During five of the field sampling campaigns discussed in this chapter, fog and PM 

were able to be collected simultaneously, and samples of fog and interstitial PM (i.e., PM 

that has not been scavenged by fog droplets) were analyzed for δ13CDOC and δ13CTC, 

respectively. Results are shown in Figure 2.4. During the campaigns in Davis, CA, 

Whistler, BC, and Ventura, CA, the δ13CTC of interstitial PM was enriched relative to the 

δ13CDOC of the fog. In Geispolsheim, both fog samples were enriched in δ13CDOC relative 

to the δ13CTC of interstitial PM. In Strasbourg, fog δ13CDOC was enriched relative to the 

δ13CTC of interstitial PM during three of the five fog events. 

Overall, the relationships between fog δ13CDOC and interstitial PM δ13CTC in 

France and in California/British Columbia are different, but the reasons for these 
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differences are not known. These observations do provide information that can aid in 

interpreting isotope results, but also point out the limitations in applying these 

observations. Figure 2.4 illustrates some of the complexities that must be accounted for 

when interpreting isotopic results. Fog droplets will form on cloud condensation nuclei, 

and over time the droplets will grow and scavenge both gas-phase organics (known as 

volatile organic compounds, or VOC) and particle-phase organics. Scavenging will 

depend on the composition of particles and VOCs at the location and time of the fog 

event. Higher concentrations of VOCs will cause more diffusion into droplets based on 

Henry’s Law constants; as the δ13C of bulk or individual VOCs was not measured, the 

relationship between fog δ13CDOC and aerosol δ13CTC cannot be directly quantified. 

Particles that are aged and/or are more hygroscopic will also be more readily scavenged 

by fog. Weather conditions will play a part as well, as the relative humidity and 

temperature will affect the liquid water content and the size of the droplets. 

Conclusions 

The δ13C of several primary aerosol sources have been extensively reported in 

literature. Based upon the δ13C of these sources, the δ13CTC of particles and δ13CDOC of 

fog were evaluated to determine the sources that would contribute to the carbonaceous 

particulates in each location. The PM in Tempe, AZ is enriched in δ13CTC compared to 

other sampling locations due to the presence of carbonate minerals; the composition of 

PM in Tempe will be further addressed in Chapter 4. Particles and fog in Whistler is 

depleted in δ13CTC compared to urban sampling sites in California due to the greater 

influence of C3 biogenic material to POA. Particles in Strasbourg and Geispolsheim, 

France were found to be depleted in δ13CTC relative to cities in North America because of 
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the greater use of diesel fuel versus gasoline. However, the δ13CDOC of fog in suburban 

sampling locations in France were variable, likely because of the influence of agricultural 

POA sources. Fog on Baengnyeong Island was found to be enriched in δ13CDOC relative 

to other locations due to the influence of marine OC. 

A comparison of the δ13CDOC of fog and in δ13CTC of interstitial PM showed that 

the two coexisting phases are isotopically distinct.  The scavenging of organics by fog is 

a complex process, and a multitude of physical and chemical processes, including the 

selective uptake of particles, the scavenging of VOCs, and the formation of SOA material 

in the aqueous phase, can impact the δ13CDOC of fog. Overall, the results of these analyses 

show that δ13C measurements have the potential to provide interesting insight into fog 

formation and the processing of organic material in the aqueous phase. Tandem 

measurements of gas-phase species along with the particle and aqueous phases could be 

useful in elucidating the δ13CDOC of fog. As will be discussed in Chapter 6, sample 

collection with higher temporal resolution can provide insight into the process that affect 

the composition of DOC over the lifetime of a fog. 
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CHAPTER 3 

A NEW TECHNIQUE FOR THE QUANTIFICATION OF CARBONATE IN 

AEROSOL PARTICULATE MATTER 

Carbonate is an important component of atmospheric particulate matter. Blown 

dust from sources such as soils, road dust, and construction materials is known to be a 

major source of particulate matter in the Phoenix area (Brown et al., 2007; Cahill, 2013; 

Lewis et al., 2003; Ramadan et al., 2000; Upadhyay et al., 2011) and elsewhere (Manoli 

et al., 2002), and is a contributor to mineral dust, including carbonates, to coarse 

atmospheric particulate matter (Garbaras et al., 2009; López-Veneroni, 2009; Masalaite 

et al., 2015). However, the measurement of carbonate carbon (CC) in atmospheric aerosol 

samples has been an ongoing challenge in the characterization of the carbonaceous 

components of particulate matter. Several methods of determining CC concentrations 

have been proposed and utilized, each with their own advantages and drawbacks. 

Carbonate carbon in atmospheric particulate matter is most commonly quantified 

using a thermal/optical carbon analyzer. The three most common quantification methods 

include the analysis of evolved CO2 from the acidification of carbonate in the instrument, 

the removal of CO2 before analysis by acidification, or the integration of a CC peak in the 

thermogram. The DRI Thermal/Optical Carbon Analyzer is fitted with an injection port 

to allow the addition of HCl directly to the filter under an inert atmosphere to evolve CO2 

(Chow & Watson, 2002; Chow et al., 2001). Similarly, Cao and coworkers (2005) have 

directly acidified PM2.5 sample filters with 25% v/v H3PO4 under helium inside of a DRI 

Model 2001 Thermal/Optical Carbon Analyzer, quantifying CC collected in Xi’an to 

determine the importance of various dust sources. Differences in CC concentrations using 
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this method were reported to be less than 5% between replicate 0.526 cm2 quartz filter 

punches. 

The Sunset Lab OCEC Aerosol Analyzer is not equipped with an injection port 

for in situ acidification of a sample for CC removal. A recommended method for CC 

quantification with this instrument is to analyze two aliquots of a filter separately, one 

after exposure to HCl fumes and another untreated with acid (Birch & Cary, 1996). In a 

similar approach used by other investigators, CC can be removed from aerosol samples 

before analysis through exposure to HCl vapor to quantify only organic or elemental 

carbon fractions (Cachier et al., 1989).  

The technique of comparing acid-treated and untreated filters, however, assumes 

that aerosol collection on a filter is homogenous and all analyzed filter samples (with a 

maximum area of 1.5 cm2) are uniform and comparable. This is not necessarily the case 

for all types of aerosol samples. For example, slotted filters used in cascade impactors 

(such as those used in Chapter 4) collect sample in narrow bands (1-2 mm wide) that 

make up only approximately 10% of the analyzed filter area, greatly decreasing the 

amount of sample that can be analyzed at once in a thermal/optical instrument. This, in 

addition to the coarse particle size modes collected in cascade impaction, decreases the 

likelihood of uniformly distributed aerosol over the filter area. 

The integration of the CC peak in a thermogram is another possibility for CC 

quantification (“Sunset Laboratory Inc.,” 2018). However, when CC is analyzed using a 

thermal-optical method without acidification, the evolution temperature of CC varies 

considerably, due to several factors including the mineral form of the carbonate (for 

example, calcite versus dolomite) and the presence of other materials in the sample 
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matrix (Webb & Kruger, 1970), as well as the particle size (Criado & Ortega, 1992). The 

analysis protocol also affects the evolution of CC: for example, dolomite would be 

expected to evolve in the OC4 fraction of the NIOSH protocol and in the OC3 fraction of 

the IMPROVE protocol (Chow et al., 2001). Additionally, the possibility of organic 

carbon coevolving with CC cannot be ruled out, since ambient particulate matter samples 

are unique to their sampling locations and PM composition cannot be generalized. 

Integration software for the Sunset Lab OCEC Aerosol Analyzer allows for the 

opportunity to integrate a specific peak known to be CC to either the thermogram 

baseline or to the base of the peak, but previous knowledge of the characteristics of CC 

and organic carbon of the sample is necessary to determine which integration method is 

most suitable (Cary, 2017). For these reasons, CC peak integration may not be an 

effective method of CC quantification for all aerosol samples. 

Alternative methods for CC measurements have been proposed. Carbonates in 

geological samples have traditionally been analyzed by acidification with concentrated 

phosphoric acid (McCrea, 1950), and has since been adapted to measure the amount and 

isotopic composition of carbonates in aerosol samples (Chen et al., 2015; Chen et al., 

2016). However, this method involves the reaction of samples in vacuo, followed by the 

cryogenic purification of CO2, which may not be available to laboratories that do not 

perform routine isotopic analysis. Another method using the IR absorption of CO2 

formed from acidification has been used for samples containing CC concentrations as low 

as 10 µg CO3
2- per filter (Clarke & Karani, 1992). In this setup, one half of a 37 mm filter 

was placed into an FTIR cell (100 cm3), which was evacuated, filled with vapor 
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containing HCl, and analyzed directly after 10 minutes (after which the IR absorbance 

was stable).  

This chapter presents an alternate method for quantifying CC in atmospheric 

particulate matter, through the acidification of aerosol filters at ambient pressure and 

temperature and the subsequent measurement of the CO2 released upon acidification. 

This method allows the customization of the filter area used for analysis (up to 24 cm2) so 

that enough CO2 can be detected when released, while also making the sample analyzed 

more representative of the whole filter. This method can provide a precise estimate of 

carbonate in PM regardless of sampling method, particle size, sample concentration per 

unit area of filter, or sample homogeneity. Additionally, since no heat is involved in this 

analysis, this method allows for the analysis of samples collected on filter media other 

than quartz, such as Teflon, cellulose, or glass fiber.  

Materials and Methods 

Experimental setup. 

The goal of these experiments was to measure the amount of gaseous CO2 

produced when an aerosol filter sample was acidified. The CO2 formed by acidification 

would be used to calculate the concentration of carbonate carbon in the sample. 

Experiments were conducted using Nalgene jars (approximately 125mL) with a rubber 

septum attached to the side (Figure 3.1).  This setup has been used to incubate soil crusts 

in determining nitrogen fixation activity (Noonan, 2012). Before performing any 

experiments, a glass petri dish was placed in each jar, and the volumes of the incubation 

jars with petri dishes were measured by massing each jar, filling them to capacity with 

ultrapure water (18.2 MΩ·cm), and massing again, assuming a water density of 1 g/mL. 
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All measurements of CO2 concentration were made using an EGM-4 CO2 monitor (PP 

Systems, Amesbury, MA), which determines CO2 concentration (ppmv) by infrared 

absorbance. The instrument was zeroed to ambient CO2 pressure before each 

measurement. 

 

Figure 3.1. Flow diagram depicting the acidification of atmospheric particulate matter 

samples and subsequent measurement of CO2. (a) A Nalgene jar with a septum attached 

to the side is used for the experiment. Filter punches, each with an area of 1.5 cm2, are 

placed in a glass petri dish. (b) The petri dish is placed in the jar, and the jar is sealed. (c) 

Acid is added to the jar via syringe. (d) A gas-tight syringe is used to sample the air 

inside of the jar. (e) The concentration of CO2 is measured with a PP Systems EGM-4 

CO2 monitor. 

 

To perform this CC quantification method, a bicarbonate standard or aerosol 

sample was placed onto the petri dish inside of an incubation jar, and the jar was closed 

firmly (Figure 3.1a, 3.1b). The concentration of CO2 inside of the jar was measured by 

removing 5 mL of air using a gas-tight syringe and injecting the air into the CO2 monitor. 

The maximum stable CO2 concentration after injection was recorded. 1M hydrochloric 

acid was then added dropwise to the samples via syringe (Figure 3.1c), and when the 

reaction was complete, the air inside of the jar was sampled again for CO2 concentration 

(a) (b) (c) 

(d) (e) 
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(Figure 3.1d). The difference in concentration before and after the reaction was used to 

calculate the concentration of carbonate carbon associated with the sample, taking into 

account the changes in volume and pressure that occur inside of the jar throughout the 

experiment. Ambient temperature and pressure were recorded at the start of each 

experiment. At the conclusion of each experiment, the pH of the liquid inside of the 

container was measured to ensure that an excess of acid was used.  

Overview of calculations. 

In calculating the amount of carbonate present in a sample, the concentration of 

CO2 released during acidification of a sample must be determined, taking into account 

changes in the volume and pressure inside of the jar throughout the experiment. At the 

start of each experiment, the ambient pressure and temperature were measured and 

monitored throughout the course of the experiment to ensure that no large fluctuations 

occurred. The ambient pressure and temperature were assumed to be the same as the 

initial pressure and temperature inside of the incubation jar. 

The ideal gas law was first used to determine the moles of gas initially present in 

the container: 

𝑛 =
𝑝×𝑉

𝑅×𝑇
            (3.1a) 

where n = moles of gas, p = pressure, V = volume of the container, R = 0.082058 L atm 

mol-1 K-1 (ideal gas constant), and T = temperature. To provide an example, the 

calculations for jar C in the experiments performed in Table 3.1 are detailed below. The 

jar has a volume of 177.05 mL and contained 0.07622 mg (9.073×10-7 mol) of solid 

NaHCO3 at an ambient pressure of 0.9891 atm and temperature of 294.4 K. The moles of 

gas initially present in the container are: 
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𝑛 =
0.9891 𝑎𝑡𝑚×0.17705 𝐿

0.082058 𝐿 𝑎𝑡𝑚 𝑚𝑜𝑙−1𝐾−1×294.4 𝐾
= 0.007249 𝑚𝑜𝑙          (3.1b) 

5 mL of air were then removed from the container using a gas-tight syringe to 

measure the background CO2 concentration, resulting in a change in volume of the 

system: 

𝑉1 = 𝑉 + 0.005 𝐿          (3.2a) 

where V1 is the sum of the volume of the container and the volume of the syringe. For 

this particular jar, 

𝑉1 = 0.17705 𝐿 + 0.005 𝐿 = 0.18205 𝐿        (3.2b) 

A new pressure of the system was calculated based on the change in volume: 

𝑝1 =
𝑛×𝑅×𝑇

𝑉1
            (3.3a) 

Where p1 is the new system pressure. For the above example, 

𝑝1 =
0.007249 𝑚𝑜𝑙×0.082058 𝐿 𝑎𝑡𝑚 𝑚𝑜𝑙−1𝐾−1×294.4 𝐾

0.18205 𝐿
= 0.9619 𝑎𝑡𝑚    (3.3b) 

This pressure was then used to calculate the moles of air removed from the 

container via the 5mL syringe: 

𝑛1 =
𝑝1×0.005 𝐿

𝑅×𝑇
           (3.4a) 

where n1 = the moles of air in the 5mL syringe. For this example, 

𝑛1 =
0.9619 𝑎𝑡𝑚×0.005 𝐿

0.082058 𝐿 𝑎𝑡𝑚 𝑚𝑜𝑙−1𝐾−1×294.4 𝐾
= 1.991 × 10−4 𝑚𝑜𝑙      (3.4b) 

The new moles of air in the incubation jar, n2, was calculated via subtraction: 

𝑛2 = 𝑛 − 𝑛1             (3.5a) 

In this system: 

𝑛2 = 0.007249 𝑚𝑜𝑙 − 1.991 × 10−4 𝑚𝑜𝑙 = 0.007050 𝑚𝑜𝑙    (3.5b) 
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A new pressure inside of the jar, p2, was then calculated: 

𝑝2 =
𝑛2×𝑅×𝑇

𝑉
            (3.6a) 

𝑝2 =
0.007050 𝑚𝑜𝑙×0.082058 𝐿 𝑎𝑡𝑚 𝑚𝑜𝑙−1𝐾−1×294.4 𝐾

0.17705 𝐿
= 0.9619 𝑎𝑡𝑚     (3.6b) 

The background CO2 concentration, [CO2]b, was measured in this jar to be 500 

ppmv. 2.2 mL of 1M HCl was then added to the jar, resulting in a new container volume, 

V3: 

𝑉3 = 𝑉 − 𝑉𝐻𝐶𝑙           (3.7a) 

𝑉3 = 0.17705 𝐿 − 0.0022 𝐿 = 0.17485 𝐿       (3.7b) 

After sufficient time was provided for the acid to react with the carbonate sample, 

5 mL of air were again removed for CO2 measurements, resulting in V4, the volume of 

the container containing acid and with the 5 mL syringe in place: 

𝑉4 = 𝑉3 + 0.005 𝐿          (3.8a) 

𝑉4 = 0.17485 𝐿 + 0.005 𝐿 = 0.17985 𝐿       (3.8b) 

A new pressure inside of the jar, p3, was calculated: 

𝑝3 =
𝑛2×𝑅×𝑇

𝑉4
              (3.9a) 

𝑝3 =
0.007050 𝑚𝑜𝑙×0.082058 𝐿 𝑎𝑡𝑚 𝑚𝑜𝑙−1𝐾−1×294.4 𝐾

0.17985 𝐿
= 0.9470 𝑎𝑡𝑚     (3.9b) 

The moles of air removed by the 5 mL syringe during sampling, n3, were 

calculated, 

𝑛3 =
𝑝3×0.005 𝐿

𝑅×𝑇
          (3.10a) 

𝑛3 =
0.9470 𝑎𝑡𝑚 ×0.005 𝐿

0.082058 𝐿 𝑎𝑡𝑚 𝑚𝑜𝑙−1𝐾−1×294.4 𝐾
= 1.960 × 10−4 𝑚𝑜𝑙    (3.10b) 
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followed by the moles of air remining in the jar, n4, 

𝑛4 = 𝑛2 − 𝑛3           (3.11a) 

𝑛4 = 0.007050 𝑚𝑜𝑙 − 1.960 × 10−4 𝑚𝑜𝑙 = 0.006854 𝑚𝑜𝑙  (3.11b) 

assuming that the moles of CO2 gas formed would have a minimal contribution to the 

total moles n2 or n4. The new pressure in the container, p4, was then determined: 

𝑝4 =
𝑛4×𝑅×𝑇

𝑉3
          (3.12a) 

𝑝4 =
0.006854 𝑚𝑜𝑙×0.082058 𝐿 𝑎𝑡𝑚 𝑚𝑜𝑙−1𝐾−1×294.4 𝐾

0.17485 𝐿
= 0.9470 𝑎𝑡𝑚   (3.12b) 

The concentration of CO2 gas in the system, [CO2]1, was measured as 596 ppmv. 

The concentration of CO2 that formed in the reaction [CO2]f, was calculated, 

[𝐶𝑂2]𝑓 = [𝐶𝑂2]1 − [𝐶𝑂2]𝑏       (3.13a) 

[𝐶𝑂2]𝑓 = 596 𝑝𝑝𝑚𝑣 − 500 𝑝𝑝𝑚𝑣 = 96 𝑝𝑝𝑚𝑣    (3.13b) 

and the moles of CO2 formed were determined: 

𝑛𝐶𝑂2
=

[𝐶𝑂2]𝑓×10−6×𝑝3×𝑉4

𝑅×𝑇
        (3.14a) 

𝑛𝐶𝑂2
=

96 𝑝𝑝𝑚𝑣 ×10−6×0.9470 𝑎𝑡𝑚×0.17985 𝐿

0.082058 𝐿 𝑎𝑡𝑚 𝑚𝑜𝑙−1𝐾−1×294.4 𝐾
= 6.769 × 10−7 𝑚𝑜𝑙   (3.14b) 

If subsequent measurements of [CO2]f were made, the moles of formed CO2 that 

were removed by the syringe were calculated, and this value was added to the next 

calculation of nCO2 to account for sampling loss: 

𝑛𝐶𝑂2
𝑠𝑎𝑚𝑝𝑙𝑒𝑑 =

0.005 𝐿

𝑉4
× 𝑛𝐶𝑂2

       (3.15a) 

𝑛𝐶𝑂2
𝑠𝑎𝑚𝑝𝑙𝑒𝑑 =

0.005 𝐿

0.17985 𝐿
× 6.768 × 10−7 𝑚𝑜𝑙 = 1.882 × 10−8 𝑚𝑜𝑙 (3.15b) 
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Optimization of experimental parameters. 

Before performing measurements of the carbonate concentration on atmospheric 

particulate matter samples, several components of the setup needed to be tested to ensure 

the integrity of the method. First, each jar was tested to ensure that the seals around the 

lid and septa were adequate. Then, the optimal time for the carbonate to react with 1M 

hydrochloric acid (referred to hereafter as the incubation time) was developed. The 

volume of acid to be used in each experiment was then determined. 

For all method development tests, a mixture of sodium chloride (crystal, 99%, 

Mallinckrodt Chemicals) and sodium bicarbonate (ACS Reagent, 99.7-100.3%, Sigma 

Aldrich) was prepared by homogenizing 5.2655g of NaCl and 0.0391g of NaHCO3 using 

a mortar and pestle, resulting in a powder of 0.51 mol %/0.74 mass % of NaHCO3. This 

sodium bicarbonate mixture was used in all tests to optimize the experimental conditions. 

Incubation jar seal tests. 

It was critical to select incubation jars that were adequately sealed from ambient 

conditions. Among the most likely causes of a poor seal would be an ill-fitting lid; since 

lids were not specifically assigned to incubation jars, eleven jars and lids were randomly 

selected and paired. Once the volumes of the jars were determined, approximately 4-15 

mg of the 0.74 mass % NaHCO3 standard mixture was added to the petri dish placed 

inside of each jar. The background CO2 concentration was measured, and 1M HCl was 

added to each jar. The jars were gently swirled to ensure that all of the solid came into 

contact with the acid and that any bubbles of CO2 gas were released from within the 

aqueous phase. Three measurements of CO2 were made in 5-minute increments, and a 

fourth was made after 2 hours (Table 3.1).  
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Table 3.1 

Experiments performed on eleven containers to determine those that were most suitable 

for CO2 pressure measurements. 

 In
cu

b
at

io
n 

Ja
r 

N
u
m

b
er

A
m

b
ie

nt
 

P
re

ss
u
re

 

(a
tm

)

A
m

b
ie

nt
 

T
em

p
er

at
u
re

 

(K
)

A
m

o
u
nt

 o
f 

N
aH

C
O

3
 

(×
1
0

-7
 m

o
l)

V
o
lu

m
e 

o
f 

C
o
nt

ai
ne

r 
(L

)

B
ac

k
gr

o
u
nd

 

C
O

2
 

C
o
nc

en
tr

at
io

n 

(p
p
m

v
)

V
o
lu

m
e 

1
M

 H
C

l 

ad
d
ed

 

(L
)

C
O

2
 

P
re

ss
u
re

 

(p
p
m

v
)

M
o
le

s 
C

O
2
 

F
o
rm

ed
 

(×
1
0

-7
 m

o
l)

R
el

at
iv

e 

E
rr

o
r 

(%
)

A
0
.9

8
9
1

2
9
4
.4

1
2
.5

1
0
.1

7
9
8

5
2
4

0
.0

0
2
8

6
4
5

8
.6

6
6

-3
0
.7

2

B
0
.9

8
9
1

2
9
4
.4

3
.7

0
0

0
.1

7
5
4

4
7
4

0
.0

0
2
6

5
1
5

2
.8

6
4

-2
2
.5

9

C
0
.9

8
9
1

2
9
4
.4

9
.0

7
3

0
.1

7
7
1

5
0
0

0
.0

0
2
2

5
9
6

6
.7

6
9

-2
5
.3

9

D
0
.9

8
9
1

2
9
4
.4

6
.3

4
2

0
.1

7
8
3

4
7
1

0
.0

0
2
6

5
2
8

4
.0

4
9

-3
6
.1

6

E
0
.9

8
9
1

2
9
4
.4

6
.5

1
8

0
.1

7
5
9

5
0
5

0
.0

0
2
8

5
6
6

4
.2

7
2

-3
4
.4

6

F
0
.9

8
9
1

2
9
4
.4

3
.4

3
5

0
.1

7
9
5

4
8
0

0
.0

0
2
8

5
1
4

2
.4

3
1

-2
9
.2

3

G
0
.9

8
9
1

2
9
4
.4

9
.6

8
9

0
.1

7
8
7

5
0
0

0
.0

0
2
8

5
9
1

6
.4

7
9

-3
3
.1

3

H
0
.9

8
9
1

2
9
4
.4

5
.9

9
0

0
.1

7
9
0

4
8
5

0
.0

0
2
8

5
3
4

3
.4

9
3

-4
1
.6

8

I
0
.9

8
9
1

2
9
4
.4

8
.6

3
2

0
.1

7
7
8

4
8
3

0
.0

0
2
8

5
6
7

5
.9

4
8

-3
1
.1

0

J
0
.9

8
9
1

2
9
4
.4

5
.1

0
9

0
.1

7
7
6

4
7
5

0
.0

0
2
8

5
3
2

4
.0

3
3

-2
1
.0

7

K
0
.9

8
9
1

2
9
4
.4

8
.9

8
5

0
.1

7
7
3

4
7
4

0
.0

0
2
8

5
6
8

6
.6

3
9

-2
6
.1

1

5
 M

in
u
te

 I
nc

u
b
at

io
n



  36 

Table 3.1 (continued) 

Experiments performed on eleven containers to determine those that were most suitable 

for CO2 pressure measurements. 
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Determination of incubation time. 

Three separate trials using three incubation jars selected for best performance 

were done to determine a suitable incubation time. Enough time should be allowed for 

the carbonate to fully react with the acid, but the jars should be sampled soon enough to 

limit any possibility of equilibration of CO2 with ambient conditions. For each trial, 

approximately 4-5 mg of the 0.74 mass % NaHCO3 mixture was spread onto each of 

three prebaked (600°C overnight) 25 mm round quartz fiber filters. Each filter was placed 

onto a petri dish and sealed in an incubation jar. The background CO2 concentration was 

measured, and 3 mL of 1M HCl was added to each jar, making sure to saturate the filter. 

The jar was gently swirled every few minutes to ensure complete release of CO2 bubbles 

from the aqueous phase. Measurements of CO2 were made at different time intervals, 

detailed in Figure 3.2 and Tables A1-A3 in the Appendix. 

Volume of hydrochloric acid. 

Hydrochloric acid was chosen to acidify the samples, since this acid is commonly 

used to fume atmospheric particulate matter samples to remove CC for thermal/optical 

analysis, as well as to measure the carbonate present in soils and sediments (Chow & 

Watson, 2002; Clarke & Karani, 1992; Salomons, 1975). 1M HCl was chosen over 

concentrated HCl to ensure safer solvent transfer.  Enough acid to saturate the filters was 

needed, while still keeping the volume low enough to minimize the equilibration of CO2 

with the aqueous phase. It was observed that 0.5 mL of 1M HCl was enough to saturate 

one round 25 mm quartz filter (with an area of 4.9 cm2). However, since it was 

anticipated that aerosol samples may require a sample with a larger area to be used for 

analysis, 3 mL of 1M HCl was used.  
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The Henry’s law constant for CO2 with water as a solvent has been reported to be 

between 3.1 – 4.5 x 10-4 mol m-3 Pa-1 at 298.15 K (Sander, 2015). Using these values and 

the established experimental parameters, it was calculated that less than 2% of the CO2 

formed would partition into the aqueous phase in all trials; since HCl is used as the 

solvent here (confirmed to be in excess by a litmus paper test at the end of each 

experiment), the actual solubility of CO2 would be expected to be even smaller. 

Therefore, the partitioning of CO2 into the aqueous phase was not accounted for in these 

experiments. 

Atmospheric particulate matter sample collection. 

A particulate matter sample collected on the Tempe campus of Arizona State 

University was analyzed. The sample was collected over four days (March 27-30, 2014) 

using a Tisch high-volume aerosol sampler (1.13 m3/min) equipped with a size-

fractionating stage to collect PM2.5 (particulate matter with an aerodynamic diameter of 

2.5 µm and below) and PM>2.5 (particulate matter with an aerodynamic diameter greater 

than 2.5 µm) onto quartz fiber filters. 

Atmospheric particulate matter sample analysis. 

Large atmospheric particles are expected to contain a higher concentration of 

carbonate than small particles, since carbonate mineral dust is mechanically generated 

and is found in the coarse size mode (Garbaras et al., 2009; López-Veneroni, 2009; 

Masalaite et al., 2015). Therefore, the PM>2.5 filters were used to test the reproducibility 

of this method. For the first trial, three 1.5 cm2 punches were taken from three different 

locations on the filter and were placed into a petri dish. The petri dish was placed into a 

jar, the jar was closed, the background CO2 concentration was measured, and 3 mL of 1M 
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HCl was added. The jar was gently swirled every few minutes to ensure complete release 

of CO2 gas from the aqueous phase. The CO2 concentration was measured after 20 

minutes. This procedure was repeated with two other jars, using two 1.5 cm2 filter 

punches instead of three since the amount of CO2 formed in the first jar was high (235 

ppmv). This procedure was repeated in additional trials using two 1.5 cm2 punches in 

each of the three incubation jars. 

Atmospheric particulate matter samples collected in six size fractions were also 

analyzed using this method. Sampling details for these filters are discussed in Chapter 4. 

The area of filter used to analyze these samples varied from 3 – 6 cm2, which was 

estimated based upon the known concentration of total carbon on the filters (Table 3.3). 

The amount of CO2 formed from acidification of these filters was measured using the 

same technique used for the PM>2.5 filter. 

Results and Discussion 

Incubation jar seal tests. 

Before any tests for accuracy could be performed, a set of incubation jars needed 

to be chosen. The major concern in using these containers for gas measurements would 

be a leak resulting from a poor-fitting lid, a septum that is not properly sealed into the 

side of a jar, or an over-pierced septum. Eleven containers were initially tested using a 

known mass of sodium bicarbonate to react with acid. Each jar was sampled four times 

over 2 hours to determine which jars would result in the lowest percent relative error 

from the expected amount of CO2 to be formed, which jars would maintain the internal 

CO2 pressure after multiple samplings, and which jars would result in the most consistent 

results. As seen in Table 3.1, the results varied widely among the jars: The relative error 
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after 5 minutes of incubation ranged from 21 – 42% below the actual amount of 

bicarbonate present in the jar. Two jars did not maintain internal pressure over 2 hours, 

while five jars showed an increase of 4 – 10 ppmv of CO2. The [CO2] in the remaining 

four jars remained consistent within 2 ppmv over 2 hours. Because of these irregularities, 

it was decided that two hours of incubation is likely too long for this type of experiment. 

In all jars aside from jar G, the measured amount of CO2 formed was consistent over 15 

minutes of incubation. The three jars to be used in subsequent trials (jars C, J, and K) 

were chosen among those that exhibited lower relative errors and the most consistent 

results for the first three measurements. 

Determination of incubation time. 

After choosing the jars to perform acidification experiments, an incubation time 

was determined. Enough time for the acid to react with carbonate was necessary to ensure 

that the method would be both accurate and reproducible. Additionally, since the 

bicarbonate standard was spread onto quartz sampling filters instead of being added 

directly to the petri dish, enough time was needed to ensure that the carbonate embedded 

in the filter could still react efficiently with the acid. 

Three separate trials were performed using all three jars so that a variety of 

incubation times could be explored (Figure 3.2). In the first trial, three sample 

measurements were taken from each jar 5, 15, and 25 minutes after acid addition, and the 

fourth after four hours (Figure 3.2a). Between the first and third measurements, the 

concentration of CO2 decreased by up to 10 ppmv. It is apparent in these trials that jars C 

and J performed poorly, with respective errors of -41% and -38% after 5 minutes of 

incubation, which became worse over time. Jar K had a low relative error in comparison 
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to the other jars (-5%), but it still lost CO2 over time. These issues may be attributed to a 

high CO2 concentration inside the jar (Table A1) before addition of acid relative to the 

ambient concentration, which ranged from approximately 420-480 ppmv depending on 

the activity in the room. The elevated CO2 pressures in the jars were likely caused by the 

experimenter’s breath entering the jars just before they were closed, causing a gradient in 

CO2 partial pressures between the jar and atmosphere and accelerating the equilibration 

of CO2 with the ambient pressure. It was therefore important to ensure that the 

background CO2 pressure inside of the jars was not elevated relative to the ambient CO2 

pressure.  
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Figure 3.2. Plots of the three trials performed to determine the incubation time needed for 

the carbonate present on the quartz filters to react with 1M HCl and form CO2. In all 

three trials, the first measurement taken had the highest concentration of measured CO2.  
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It was also noted during this trial that gas bubbles were still evolving from the 

filters about 10 minutes after acidification. It is possible that the bicarbonate standard 

becomes engrained in the filter and is slower to react with the acid than when it is loose 

in the petri dish. Therefore, an incubation time greater than 10 minutes should be used to 

ensure complete reaction of bicarbonate with acid and release of CO2 from the filter. 

The second trial was used to test changes in CO2 measurements over short 

increments and to again see how the jars faired when sitting for several hours after 

bicarbonate acidification. Sodium bicarbonate standard was again spread onto a quartz 

filter and acidified in the jars, ensuring that the initial CO2 pressures inside of the jars 

were not excessively elevated relative to the ambient pressure. CO2 measurements were 

made 15, 20, and 25 minutes after acid addition, and again after 3.5 hours. Results are 

shown in Figure 3.2b. Between the first and third measurements of CO2 (at 15 and 25 

minutes after HCl addition), the concentration of CO2 decreased by up to 6 ppmv. 

However, the relative error in the measurement of CO2 formed remained under 30% for 

all trials. Since the highest CO2 pressure was recorded at 15 minutes, it can be assumed 

that the reaction is complete at this time point. After 3.5 hours, an additional 10 ppmv of 

CO2 was lost from jars C and K, further emphasizing that incubation over several hours is 

not ideal for this system. 

In the final trial, incubation times from 20-170 minutes in 30-minute increments 

were tested to determine if there were notable changes in measured CO2 within the first 

hour of acid addition, and to again assess if the jars could stay pressurized over several 

hours. As shown in Figure 3.2c, the highest CO2 pressure in each jar was measured 20 

minutes after acid addition, with all relative errors of CO2 concentration within 15% of 
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the expected concentration of CO2. Between each subsequent measurement, 1 – 5 ppmv 

of CO2 was lost, and relative errors for jars C, J, and K increased by the end of the trial to 

39.6%, 28.1%, and 33.2%, respectively, below the expected concentration of CO2. These 

results indicate that it would be reasonable to sample CO2 from the reaction of sodium 

bicarbonate and HCl 20 minutes after the addition of HCl, since the reaction should be 

complete at this point and later sampling times indicate that CO2 is escaping the jars over 

time. 

Based upon these optimization tests, jars C, J, and K were deemed adequate for 

use with atmospheric particulate matter samples. 3 mL of 1M HCl will be added to each 

jar, and the sample will react with the acid for 20 minutes, at which point the measured 

concentration of CO2 is expected to be within 15% of the actual value. 

Application to atmospheric particulate matter samples. 

A sample of atmospheric particulate matter collected on the Arizona State 

University Tempe Campus from March 27-30, 2014 was analyzed. The high-volume 

sampler was equipped with a size-fractionating stage to collect PM2.5 and PM>2.5; the 

coarse PM sample (PM>2.5) was analyzed, since common sources of carbonate are 

expected to be found in the coarse mode (Garbaras et al., 2009; López-Veneroni, 2009; 

Masalaite et al., 2015). In the first trial, 4.5 cm2 of the filter was used, and the CO2 

concentration measured 20 minutes after acid addition was 687 ppmv. Since the 

reproducibility tests using sodium bicarbonate results in measured CO2 concentrations 

near 500 ppmv, the amount of filter was reduced in successive trials to 3 cm2. Results are 

shown in Table 3.2. 
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Table 3.2 

Experiments performed on aerosol particulate matter samples (PM>2.5) to assess 

reproducibility on real samples. 
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The average concentration of CC on this aerosol sample was found to be            

4.4 µgC/cm2, with a standard deviation of 0.3 µgC/cm2 and a range of 3.9 – 4.7 µgC/cm2 

(Table 3.2). This is equivalent to 86 ± 6 ngC/m3 in PM>2.5 collected over the four-day 

sampling period. Other studies have found ranges of carbonate carbon in PM2.5 from less 

than 100 ngC/m3 to 420 ngC/m3 among 58 sites in the IMPROVE network (Chow & 

Watson, 2002). PM1.5 was found to contain 100 – 300 ngC/m3 in a remote background 

location in central Sweden and 300 – 3000 ngC/m3 in the Po Valley; CC was not detected 

in PM1.5 collected in a third rural site on the Great Hungarian Plateau (Zappoli et al., 

1999). Overall, there is good precision and reproducibility among the replicate PM>2.5  

samples, showing that this method could be promising as a way to measure CC on 

aerosol filters with low or inhomogeneous sample loads. 

Once this method was successfully tested on an atmospheric particulate matter 

sample, twelve size-segregated filters collected at the same site were also analyzed for 

[CC]. These samples were collected during the size-segregated particle study described in 

detail in Chapter 4. Table 3.3 summarizes the results of these analyses. The amount of 

carbonate collected on each filter varied from 0.65 ± 0.02 µg/cm2 to 3.8 ± 0.3 µg/cm2, 

and the percent of total carbon that was carbonate ranged from 1.1 ± 0.2% to 10 ± 1%. 

The amount of carbonate mainly varied based upon the size fraction, with particles in the 

size range 3 µm < dp < 7.2 µm containing the highest percent of carbonate relative to total 

carbon. These values are similar to a previous study which determined that coarse PM 

(PM10-2.5) in Phoenix contains an average of 9% CC by thermal optical analysis of 

acidified filters (Turner et al., 2014). The standard deviation of replicate measurements 

ranged from 2 – 22% of the average carbonate concentration, with a median of 8%, 



  47 

showing again that this method of quantifying CC is reproducible and results in good 

measurement precision. 

 

Table 3.3 

Experiments performed on aerosol particulate matter samples to assess reproducibility 

on real samples. * = 4.5 cm2 were used in one replicate, and 3 cm2 were used in five 

replicates. ** = Total carbon was not measured. 

 

 

Considerations for application to particulate matter sample collection. 

In order to apply this carbonate quantification method to other particulate matter 

samples, several considerations must be made in terms of sample collection, including the 

filter size, sampler type, and sampling time. The smallest amount of CO2 liberated from a 

Sample 

Description

Amount of 

Sample 

Used (cm
2
)

Carbonate 

Carbon 

Concentration 

(µgC/cm
2
)

Standard 

Deviation 

(µgC/cm
2
)

Number of 

Replicates

Carbonate : 

Total Carbon 

(%)

Uncertainty 

(%)

PM>2.5 * 4.4 0.3 6 ** **

January PM>7.2 3 3.8 0.3 3 4.4 0.4

January PM3-7.2 3 3.4 0.2 3 7.4 0.7

January PM1.5-3 3 1.7 0.3 4 5.2 0.9

January PM0.95-1.5 3 1.0 0.2 4 2.2 0.4

January PM0.49-0.95 4.5 0.65 0.02 3 2.3 0.1

January PM<0.49 6 1.2 0.3 3 1.1 0.2

April PM3-7.2 4.5 2.9 0.3 3 10 1

April PM<0.49 6 3.7 0.2 3 5.5 0.4

June PM<0.49 6 3.6 0.5 3 5.1 0.8

October PM>7.2 4.5 3.01 0.06 3 5.7 0.3

October PM3-7.2 4.5 3.0 0.1 3 7.1 0.5

October PM<0.49 6 1.90 0.09 3 2.6 0.2
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particulate matter sample will be used as a lower limit of detection: the particle size 

fraction 0.49 µm < dp < 0.95 µm collected in January yielded an average of 34 ppmv of 

CO2 upon acidification. A petri dish placed into an incubation jar has an area of 24 cm2; 

this is the maximum area of filter that can be tested at a time. Using equations 1 – 14 and 

the experimental parameters for this sample, a filter of size 24 cm2 that liberates 34 ppmv 

of CO2 upon acidification would contain 0.12 µgC/cm2 of carbonate. Assuming that 

sample collection is taking place in Tempe, it is reasonable to presume that TC in Tempe 

will contain somewhere between 1 – 10% CC; therefore, the TC collected on this filter 

would range from 1.2 – 12 µgC/cm2. The average concentration of TC in PM2.5 in Tempe 

is 4.313 µgC/m3 (Upadhyay et al., 2011). Using this information, if a high-volume 

sampler with sampling velocity of 1.13 m3/min is used for collection, then enough 

particulate matter will be collected for carbonate analysis between 6 minutes (if CC is 

10% of TC) and 60 minutes (if CC is 1% of TC) of sampling time. Carbonate can 

therefore be measured even when the sampling time is relatively short, provided that 

enough filter area is available for triplicate measurements. 

The sampling time needed to measure CC concentration does, however, increase 

if a low-volume particulate matter sampler is used. As an example, in Chapter 5, PM2.5 is 

collected using a low-volume sampler with a sampling velocity of 2.3 m3/h and a filter 

deposition area of 12.6 cm2. If the entire filter is used to quantify CC, and 34 ppmv of 

CO2 is again liberated from the filter upon acidification, the filter will need to contain 

0.23 µgC/cm2 of carbonate. Again assuming that 1 – 10% of TC in Tempe is carbonate, 

the TC loaded onto the filter would range from 2.3 – 23 µgC/cm2. Using this low-volume 

sampler, enough particulate matter will be collected for carbonate analysis between 3 



  49 

hours (if CC is 10% of TC) and 30 hours (if CC is 1% of TC) of sampling time. This, 

again, assumes that the entire sample will be used in analysis. Ideally, triplicate 

measurements will be made, increasing the required sampling time threefold. 

Implications of carbonates on the δ13C of aerosol particulate matter. 

As seen in the aerosol particulate matter data presented in this chapter, the TC 

mass in Tempe could be comprised of up to 10% carbonate. In non-desert environments, 

the concentration of carbonate would be less than 10%; low concentrations of carbonate 

would deem its presence negligible in most studies (Chow & Watson, 2002). However, 

when measuring carbon isotopes, even a small percent of carbonate could make a 

significant difference in the isotopic composition of total carbon (δ13CTC). As discussed 

in Chapter 2, carbonate is enriched in δ13C relative to other biogenic and anthropogenic 

primary emission sources. As an example, the TC of the PM3-7.2 sample collected in 

January in Tempe is 7.4% carbonate, and the presence of carbonate causes this sample to 

be enriched in δ13CTC by 1.4‰. This is not unique to Tempe: The contribution of Saharan 

dust to PM10 in Granada, Spain has been attributed to higher δ13CTC values due to its 

carbonate content (Mladenov et al., 2011).The ability to quantify carbonate in all types of 

aerosol samples is therefore necessary for isotopic analyses. 

A mass-balance approach may be used to determine whether carbonate could 

affect the δ13CTC of a particulate matter sample. The δ13CTC may be expressed as 

δ13CTC = δ13CCC × fCC + δ13COCEC × fOCEC,       (3.16) 

where δ13CCC is the isotopic composition of carbonate, fCC is the fraction of TC that is 

carbonate, δ13COCEC is the combined isotopic composition of organic and elemental 
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carbon, and fOCEC is the fraction of TC that is organic and elemental carbon. Solving for 

fCC, this can be rearranged as 

fCC = (δ13CTC – δ13COCEC) ÷ (δ13CCC – δ13COCEC),      (3.17) 

where fOCEC = 1 – fCC. The difference in δ13CTC – δ13COCEC is dependent on the 

uncertainty in the measurement of each sample, which is at best 0.2‰; a difference 

between these measurement would only be significant if the difference is greater than 

0.4‰. The difference between δ13CCC and δ13COCEC, or Δ13CCC-OCEC, is dependent on the 

carbon sources, which will vary by location. A curve can therefore be drawn to determine 

the critical fraction of carbonate that would need to be present in the sample for it to have 

a significant effect on δ13CTC (Figure 3.3), using the equation 

fCC = (0.4‰) ÷ (Δ13CCC-OCEC).         (3.18) 

 

Figure 3.3. A model predicting the percent of carbonate carbon that must make up total 

carbon for the carbonate to affect the δ13CTC of a particulate matter sample. 
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Based on this model, as little as 1.1% of carbonate in TC can have a significant 

effect on the δ13CTC of a particulate matter sample, if the Δ13CCC-OCEC is very large (i.e., if 

the δ13CCC is 0‰ and the δ13COCEC is -35‰). In most instances, the δ13CCC will be in the 

range of 0 – -10‰, and the δ13COCEC will be in the range of -20 – -30‰; within these 

ranges, it is possible that 1.3 – 4% of carbonate could have an effect on δ13CTC. The 

ability to measure small fractions of carbonate on all types of particulate matter samples 

is therefore crucial to fully understand and apportion the sources that contribute to 

aerosol particulate matter. 

Conclusions 

A new technique to quantify the carbonate carbon (CC) in atmospheric particulate 

matter samples has been investigated. In this technique, the amount of CO2 formed when 

a sample in a sealed jar is acidified is measured via infrared absorbance, and the moles of 

CO2 formed are equated to the moles of carbonate present in the sample. The analysis of 

a known amount of sodium bicarbonate applied to a filter resulted in a relative error 

within 15% of the known mass of bicarbonate when measured 20 minutes after 

acidification. A PM>2.5 aerosol filter collected via cascade impaction on a high-volume 

aerosol sampler yielded good precision, with a CC concentration of 4.4 ± 0.3 µgC/cm2 

for six replicates. Twelve filters containing PM in various size fractions collected in 

Tempe, AZ were also analyzed in triplicate, with standard deviations ranging from 2 – 

22% of the average carbonate concentration. The high precision, accuracy, and 

reproducibility of this method of CC measurement makes it a good alternative to existing 

quantification methods. 
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The concentration of CC loaded onto a filter has been measured as low as 0.65 ± 

0.02 µgC/cm2. By extrapolating this measurement to different particulate matter samplers 

and filter sizes, it was shown that enough sample to perform carbonate measurements 

could be collected on a high-volume sampler in 6 – 60 minutes, and on a low-volume 

sampler in 3 – 30 hours. The short sampling times that could yield results on a high-

volume sampler make this method ideal for measuring carbonates during short weather 

events, such as fogs or dust storms. 

This technique allows for the customization of the amount of sample to be 

analyzed based upon the expected sample load, which is not possible when using a 

thermal/optical aerosol carbon analyzer (fixed at 1.5 cm2 or less). It is also possible to 

obtain better CC measurements on filters that have an irregular or inhomogeneous sample 

load, and to use filter media other than quartz, such as Teflon, cellulose, or glass, to make 

CC measurements, addressing limitations of traditional thermal techniques of CC 

quantification. 

While the carbonate in a particulate matter sample is generally found at negligible 

concentrations and does not interfere with other measurements, low concentrations of 

carbonate (less than 5% of TC) can affect the δ13CTC of a particulate matter sample. By 

using the measured δ13CTC of a sample and the concentration of CC determined by this 

method, it can be estimated whether the carbonate causes significant enrichment of 

δ13CTC and whether δ13CCC should be measured and subtracted out of the δ13CTC through 

mass balance. Isotopic determinations of both δ13CCC and δ13COCEC will be further 

discussed in Chapter 4. 
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CHAPTER 4 

SEASONAL VARIATIONS IN THE CARBONACEOUS COMPOSITION OF SIZE-

RESOLVED PARTICLES COLLECTED IN TEMPE, ARIZONA 

A number of factors can cause variations in the composition of atmospheric 

particulate matter among size fractions. Coarser particles are formed through mechanical 

processes, fine particles are formed by nucleation, and aging results in particles in the 

accumulation range (Seinfeld & Pandis, 2016; Willeke & Whitby, 1975). Since different 

sources of aerosol particles have distinguishable stable carbon isotopic compositions 

(δ13C) (Fisseha et al., 2009; Gleason & Kyser, 1984; Moura et al., 2008; Pichlmayer et 

al., 1998; Rudolph et al., 2003; Widory, 2006; Wozniak et al., 2012, and Chapter 2 of this 

work), size-segregated PM samples can exhibit different δ13C values among the size 

fractions. A source’s individual organic components could also have different δ13C from 

the bulk source material; for example, the δ13C of n-alkanes from plant leaf waxes are 

depleted in 13C relative to the bulk sample (Collister et al., 1994). Physical and chemical 

atmospheric processing can affect a sample’s carbon isotopic composition as well, either 

through equilibrium partitioning among phases or through kinetic processes, both causing 

isotopic fractionation (Gensch et al., 2014; Goldstein & Shaw, 2003). 

Phoenix is an urban desert city that is affected by a multitude of particle sources. 

The population of Phoenix is estimated to exceed 4.6 million as of 2016, an 11% increase 

from the 2010 Census (“Annual Estimates of the Resident Population: April 1, 2010 to 

July 1, 2016,” 2018). Anthropogenic particle sources, including vehicle exhaust and 

residential wood-burning, are elevated in the winter, when the population rises due to 

part-time residents, and cold overnight temperatures and stagnant wind conditions cause 
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intense inversion, trapping emissions in the valley (Brown et al., 2007; Ramadan et al., 

2000; Solomon & Moyers, 1986). The occurrence of “no-burn days” is common 

(“Maricopa County Air Quality Department,” 2018), especially around holidays in which 

residential burning and the use of fireworks are prevalent (Upadhyay et al., 2011).  

Blown dust is known to be a major source of coarse PM (particles larger than     

2.5 µm) in Phoenix, originating from agricultural soil, native desert soil, paved and 

unpaved road dust, and construction materials (Brown et al., 2007; Cahill, 2013; Lewis et 

al., 2003; Ramadan et al., 2000; Upadhyay et al., 2011). In addition to resuspended 

biogenic and anthropogenic emissions, blown dust contributes carbonates to coarse PM 

(Garbaras et al., 2009; López-Veneroni, 2009; Masalaite et al., 2015). Coarse PM loads 

can increase in the summer, when dust storms are common occurrences (Raman et al., 

2014; Raman et al., 2016).   

Considering the variety of sources that can contribute to PM in Phoenix, 

differences are expected in concentrations of carbonaceous material as well as δ13C 

among both seasons and size fractions. However, few studies exist that characterize size-

resolved samples using isotopic analysis (Cachier et al., 1989; Masalaite et al., 2015; 

Sang et al., 2012; Wang et al., 2012). There are some challenges of size-resolved 

sampling, including the need for long sampling durations which prohibit temporal 

resolution and the multiplicity of samples to be analyzed with each added size fraction 

(Cahill, 2013). The characterization of size-resolved particles can be beneficial in 

understanding the sources and effects of local pollutants, since the degree to which 

particles enter the human respiratory tract and affect health outcomes is dependent on 

particle size (Heyder et al., 1986).  
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In this study, size-resolved PM samples were collected in January, April, June, 

and October of 2014 in Tempe, Arizona, a city in the East Valley of metropolitan 

Phoenix. The objective of this study is to determine the seasonal differences in particle 

composition among six particle size fractions through measurements of the concentration 

and δ13C of total carbon (TC), carbonate carbon (CC), and n-alkanes. These 

measurements will be used to evaluate changes in the composition and sources of 

carbonaceous PM. 

Materials and Methods 

Sample collection. 

 Aerosol sampling. 

Samples of aerosol PM were collected on the Tempe campus of Arizona State 

University in January, April, June, and October of 2014. (Table 4.1). The sampling site 

(hereafter referred to as LSA) is located on the roof of the Life Sciences complex on the 

main campus of Arizona State University (33.4196, -111.9329, 357 m a.s.l.). This 

location is surrounded by four major highways (Interstate 10, 3.7 km southwest; U.S. 

Route 60, 3.8 km to the south; Arizona State Route 101, 3.9 km to the east; and Arizona 

State Route 202, 1.8 km to the north) (Figure 4.1). LSA is also approximately 6 km 

southeast of Phoenix Sky Harbor International Airport and 1.3 km south of Tempe Town 

Lake, a reservoir in the riverbed of the Salt River. Along with the ASU campus, Tempe 

consists of residential and industrial areas. It is bordered by the cities of Phoenix to the 

west and Scottsdale to the north, and suburban areas to the east and south. As part of the 

Sonoran Desert, a significant contribution of mineral dust, including carbonate minerals, 

is expected in the local aerosol. Collection was performed for one week using a Tisch 
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high-volume aerosol sampler (1.13 m3/min), which was equipped with five cascade 

impactor stages to collect particle size fractions with cutoff diameters of 7.2, 3, 1.5, 0.95, 

and 0.49 µm, and a backup filter to collect particles of dp ≤ 0.49 µm (Herckes et al., 

2006). Samples were collected onto prebaked (600°C for a minimum 12 h) quartz fiber 

filters and were stored in aluminum foil at -20°C. Two field blank filters were collected at 

the start of each sampling period, using the stage of the backup filter and the filter stage 

collecting particles in the size range of 0.49 – 0.95 µm, and running the collector for one 

minute. Field blank filters were analyzed alongside all sample filters. The weather was 

fair, clear, and consistent over each week-long sampling period, and no significant 

meteorological events occurred. 
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Table 4.1 

Aerosol sampling details and total carbon analysis results. The uncertainty in the last 

digit of the TC concentration is shown in parentheses. The uncertainty in all δ13CTC 

results is 0.2‰. 
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Figure 4.1. Map of sampling site (denoted by red circle with a black dot in the center). 

 

Local source material sampling. 

The following potential local source materials of particulate matter were collected 

and analyzed: Plant material, tailpipe emissions, parking structure emissions, fireplace 

emissions, biomass burning emissions, and resuspended soil. Details of the sampling and 

analysis of these materials can be found in Appendix B. 

Sample analysis. 

Total carbon quantification. 

All aerosol samples and field blanks were analyzed by thermal optical 

transmittance (TOT) for TC concentration using a Sunset Lab OC-EC Aerosol Analyzer 

(Birch & Cary, 1996). Because slotted filters were used to collect samples on the cascade 

impactor, the width of the collected sample area on each slot was less than 1 cm. 

Therefore, due to the absence of samples with uniform particle distribution over 1 cm by 
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1.5 cm areas, the optics were not used to determine the split between organic/carbonate 

and elemental carbon.  

Aerosol samples and field blanks were analyzed using Sunset’s “Quartz” TOT 

method, with temperature plateaus during OC evolution at 310°C (80 seconds), 475°C 

(60 seconds), 615°C (60 seconds), and 870°C (90 seconds). During EC evolution, the 

temperature was held at 550°C, 625°C, 700°C, 775°C, and 850°C  for 45 seconds each, 

with a final hold at 870°C for 120 seconds. Quality control included the analysis of lab 

blanks, field blanks, replicate samples, and a sucrose standard, which was routinely 

within 10% of the known concentration. 

Alkane quantification. 

A portion of each aerosol sample and field blank was cut into pieces of less than  

1 cm2 in size, spiked with equal volumes of deuterated n-alkane standards (n-C16D34, n-

C20D42, n-C24D50, n-C30D62, n-C36D74), extracted thrice in dichloromethane (Optima, 

Fisher Chemical) using ultrasonic agitation, and concentrated to 250 µl under a stream of 

UHP nitrogen gas (Brown et al., 2002). Samples were analyzed by gas 

chromatography/mass spectrometry (GC/MS) using an Agilent Technologies 6890 GC 

System coupled to an Agilent Technologies 5973 inert Mass Selective Detector in EI 

mode. n-Alkanes were identified and quantified using an n-alkane standard mixture 

consisting of a series of authentic n-alkane standards ranging from n-C12H26 to n-C40H82 

and the five aforementioned deuterated n-alkanes. Quantification was performed by 

manual peak integration on three characteristic n-alkane mass peaks of m/z 71, 85, and 

99, and m/z 66, 82, and 98 for the deuterated standards. 
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Carbonate quantification. 

Carbonate carbon (CC) concentration was measured via acidification and 

subsequent measurement of CO2 released (detailed in Chapter 3 of this work). Quartz 

filter punches (3-6 cm2) were first placed into a petri dish that was then placed inside of a 

polycarbonate Nalgene jar (125 mL) with a rubber septa. The jar was closed, and the 

background CO2 pressure in ppm was measured by removing 5 mL of headspace from 

the jar with a gas-tight syringe and injecting it into a PP Systems EGM-4 CO2 Monitor.   

3 mL of 1M hydrochloric acid (EMD) were added to the jar, and the resulting CO2 

pressure inside of the jar was measured after 20 minutes of incubation. The amount of 

CO2 formed via acidification, and hence the concentration of CC on the filters, was 

calculated, taking into account the changes in pressure and volume inside of the chamber 

during the experiment, as well as ambient pressure and temperature. Litmus paper was 

used to estimate the pH of the aqueous solution in the petri dish after the experiment, to 

ensure that the acid was added in excess. Reported results and uncertainties are the 

average and standard deviation of triplicate measurements. Due to sample availability, 

measurements of [CC] were not made for all particle size fractions in April, June, and 

October; only results for samples collected in January are discussed below. 

Total carbon isotope measurements. 

The stable carbon isotopic composition of a material is determined by its 13C/12C 

ratio and is expressed in δ13C (‰) relative to the international standard Vienna Pee Dee 

Belemnite: 

δ CVPDB

13
= (

( C
13

/ C)
12

sample

( C
13

/ C)
12

VPDB

-1) ×1000          (4.1) 
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Isotopic measurements for δ13CVPDB of TC in aerosol PM were performed using a 

Costech Elemental Analyzer coupled to a Thermo Delta Plus Advantage Isotope Ratio 

Mass Spectrometer (EA-IRMS). The analytical uncertainty of sample analyzed on this 

method is reported at 0.2‰, unless the standard deviation of replicate standards is greater 

than 0.2‰. NIST 2710 (Montana soil) was used as a linearity standard. Three in-house 

glycine standards were used to perform and verify a two-point calibration from -39.6‰ to 

15.7‰. 

Compound specific isotope analysis. 

Before isotopic analysis of n-alkanes, the dichloromethane extracts of the samples 

were purified by two-dimensional thin layer chromatography (9:1 hexanes (Optima, 

Fisher Chemical): diethyl ether (ChromaSolv, Sigma-Aldrich), followed by 

dichloromethane (Optima, Fisher Chemical) using 20 cm x 20 cm x 500 µm silica gel 

plates (Uniplate, silica gel GF, preparative layer with UV 254, Analtech, Inc.)). The 

alkanes were visualized using iodine and were scraped from the plate, extracted thrice in 

hexanes (Optima, Fisher Chemical) using ultrasonic agitation, concentrated to 250 µl 

under a stream of UHP nitrogen gas, and analyzed by gas chromatography/mass 

spectrometry (GC/MS) to ensure that n-alkanes were present. Compound-specific 

isotopic analysis of n-alkanes was performed on a Thermo GC-C-IRMS system 

composed of a Trace GC Ultra coupled to a MAT 253 Isotope Ratio Mass Spectrometer 

through a GC/C III interface. The TLC plates were not precleaned, and contamination 

was observed that caused coelution with n-alkanes smaller than n-C24H50; isotopic data 

was therefore only used for n-alkanes C24H50 and larger. The n-alkane standard mixture 

used in identification and quantitation on GC/MS was also analyzed. The uncertainty in 
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δ13C for each n-alkane was calculated as the root sum square of the standard deviation of 

the n-alkane in the GC/MS standard calibration series and the n-alkane in replicates of an 

n-alkane isotope standard mix supplied by Arndt Schimmelmann of Indiana University. 

A two-point isotopic calibration was performed and verified using three n-hexadecane 

standards with isotopic compositions of -34.55 ± 0.02‰, -0.60 ± 0.02‰, -10.55 ± 

0.03‰, also purchased from Indiana University; the same two-point calibration was used 

for all n-alkane chain lengths. 

Carbonate isotope analysis. 

Measurements of δ13CVPDB of CC were performed on a Thermo GasBench 

coupled to a MAT 253 Isotope Ratio Mass Spectrometer (GasBench-IRMS). Samples 

and standards (sodium carbonate and sodium bicarbonate) were acidified with of 85% 

H3PO4 (Aldrich) (100 µl for standards, 400 µl for samples to ensure filters were 

saturated) to release CO2 from carbonate species for analysis. The analytical uncertainty 

is reported as the standard deviation of the triplicate analysis of one aerosol sample 

during this sample sequence. Analysis was performed on available samples whose 

concentration of CC was such that 10µg of CC was present on less than 4.5cm2 of filter, 

so that the samples could fit into the analysis vials and CC could be detected. 

HYSPLIT. 

Back trajectories were generated using the NOAA HYSPLIT model (online 

version) (Rolph, Stein, & Stunder, 2017; Stein et al., 2015). The model was initiated at 

the LSA sampling site at a height of 500m a.g.l., generating 24h trajectories every 24h for 

each day of sample collection and using NARR (32km) archived meteorological data. 

Model vertical velocity was used to track vertical motion. 
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Results and Discussion 

Total carbon. 

Total carbon concentrations. 

The total TC concentration among all size fractions was measured to be 6.3 µg/m3 

in January; 3.5 µg/m3 in April; 3.7 µg/m3 in June; and 4.2 µg/m3 in October. These 

values are similar to previous TC measurements in Tempe in the winter (4.3 µg/m3 in 

PM2.5, 5.6 µg/m3 in PM10, Upadhyay et al., 2011) and at the Phoenix IMPROVE 

Supersite from April 2001 – October 2003 (average 4.06 µg/m3 in PM2.5, Brown et al., 

2007).  

 
Figure 4.2. Size distributions of total carbon during the four sampling periods. TC 

concentrations were measured in units of µg/m3. 

 

Figure 4.2 shows the concentration of TC during all four sampling periods in the 

six size modes collected. In all sampling periods, at least 60% of the TC mass was found 

in particles less than 0.49 µm in diameter. A similar study in Tempe (Upadhyay et al., 

2011) found 77% of PM10 to lie in the PM2.5 fraction. The majority of TC was also 
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observed in particle size fraction dp < 0.49 µm in Yosemite National Park, with 75% of 

TC in the submicron range (Herckes et al., 2006). Aerosols resulting from combustion 

have been observed in fine and ultrafine particles; the gasoline marker molecule coronene 

has been observed in aerosols smaller than 0.3µm in Phoenix (Cahill, 2013). 

Several sources have been found to make up the coarse PM in Phoenix, including 

a prominent contribution of crustal soil, agricultural soil, and resuspended road and 

construction dusts. Previous studies in Pinal County, AZ, which lies southeast of 

Phoenix, show that PM10 is dominated in the summer by the coarse fraction (PM10-2.5), 

which originated primarily from crustal material; PM2.5 accounted for only 10-40% of 

PM10 (Clements et al., 2013). Additionally, increased crustal components in PM10 in the 

spring and fall are attributed to agricultural activity in these seasons (Clements et al., 

2014). Crustal material can also contribute to PM2.5, as it was found to dominate 

resuspended soils, comprising 63-100% of PM2.5 and 44-91% of PM10 (Upadhyay et al., 

2015).  

Biological materials have been found in coarse PM in Phoenix, with the highest 

fractions present in the summer (Cahill, 2013). Additionally, both PM2.5 and PM10 

collected in an east Phoenix suburb show significant contributions from the direct 

injection of primary biological aerosol particles into the atmosphere (Jia & Fraser, 2011). 

Higher TC concentrations were observed in all size fractions in January than in 

other sampling periods. Many factors have been previously observed to affect the 

concentration of PM in the greater Phoenix area. Brown and coworkers (2007) observed 

elevated PM2.5 concentrations in the winter (December to February) compared to the 

summer months (March to May) as well as higher than average wintertime organic matter 
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concentrations. Cooler winter temperatures create a strong, low inversion layer nearly 

every morning, trapping local emissions in the valley. Additionally, winter emissions are 

exacerbated by higher populations of tourists and winter residents, contributing to 

increased carbon- and nitrogen-based emissions associated with motor vehicles and 

residential wood burning, and resulting in a visible urban haze (Brown et al., 2007; 

Ramadan et al., 2000; Solomon & Moyers, 1986). Increased gas-to-particle conversion 

can also elevate PM2.5 concentrations (Brown et al., 2007). Cahill (2013) has also 

observed a seasonal pattern of combustion signatures, dominating in the winter months.  

 

Figure 4.3. 24h HYSPLIT back trajectory analysis. For trajectories in each sampling 

period, red = day 1; orange = day 2; yellow = day 3; green = day 4; blue = day 5; purple 

= day 6; pink = day 7. 
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Analysis of back trajectories during the four sampling periods provides further 

insight into possible sources of PM (Figure 4.3). There is a dominance of local air mass 

influence during the sampling week in January, which corresponds to an increase in local 

anthropogenic emissions at that time. Long-range wind patterns originate mainly from the 

west in April and from the south in June, as the summer monsoon season begins. Air 

mass trajectories in October are more variable in both trajectory length and direction, and 

could imply a mixture of local anthropogenic influences and transported mineral dust and 

secondary PM. 

Stable isotopic composition of total carbon. 

 
Figure 4.4. Stable carbon isotopic composition of total carbon during the four sampling 

periods. 

 

The stable carbon isotopic composition of TC (δ13CTC) in all samples is shown in 

Figure 4.4. Over the course of the campaign, δ13CTC ranged from -25.0‰ to -22.5‰. This 

is similar to ranges of δ13CTC values for PM2.5 collected in cities in China (-26.84‰ to     

-23.13‰, Cao et al., 2011), PM1 collected in Mexico City, Mexico (-30‰ to -22‰, 



  67 

Marley et al., 2009), and PM10 collected in Grenada, Spain (-24.90‰ to -20.49‰, 

Mladenov et al., 2011), but slightly enriched in 13C compared to bulk aerosol collected in 

Kathmandu, Nepal (-26.05‰ to -25.51‰, Shakya et al., 2010) and PM2.5 collected in 

Paris, France (-26.5‰ ± 0.06‰, Widory et al., 2004). Since particle sources and the 

degree of secondary aerosol production are not uniform in all cities, some variation in 

δ13CTC is expected (Fisseha et al., 2009; Gensch et al., 2014; Gleason & Kyser, 1984; 

Goldstein & Shaw, 2003; Moura et al., 2008; Pichlmayer et al., 1998; Rudolph et al., 

2003; Widory, 2006; Wozniak et al., 2012). 

 
Figure 4.5. Total carbon isotopic composition of size-segregated aerosol samples and 

common local aerosol sources. 

 

In order to compare the carbon isotopic composition of potential source materials 

to that of the aerosol samples collected in this study, local source materials were collected 

and analyzed. Figure 4.5 shows the results of δ13CTC analysis of these samples compared 

to the range of δ13CTC values for all aerosol samples collected in this study. The average 

δ13CTC of C3 plant material was -27.3‰, and that of C4 and CAM plants was 14.6‰, 

consistent with previous studies (Wozniak et al., 2012). The average δ13CTC of diesel and 
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gasoline tailpipe scrapings was -25.1‰ and -26.2‰, respectively; this result is contrary 

to other studies, which found diesel fuel to be depleted relative to gasoline (Fisseha et al., 

2009; Widory et al., 2004). PM2.5 emissions from a campus parking structure averaged     

-24.4‰, which is enriched relative to the gasoline tailpipe emissions. It is expected that 

most vehicles in the parking structure would use gasoline; the three tailpipe scrapings 

collected here may not have been a representative sample of vehicle emissions near 

campus. 

Fireplace emissions were collected in the burning of three different fireplace 

materials: a firewood bundle, a Clean Flame compressed recycled paper log, and two 

Duraflame logs. The firewood and Clean Flame log were sampled under both flaming 

and smoldering conditions; results are indistinguishable within the instrumental 

uncertainty of 0.2‰. The average δ13CTC of emissions from firewood, the Clean Flame 

log, and the two Duraflame logs were, respectively, -21.6‰, -29.6‰, and -27.5‰. The 

emissions collected in biomass burning in northern Arizona and northern Colorado 

averaged -24.2‰ in δ13CTC, indistinguishable from the parking structure emissions. The 

firewood emissions were the most enriched in 13C of the materials sampled, while the 

Clean Flame and Duraflame logs were comparable to C3 plants in δ13CTC; however, the 

number of households that use natural firewood versus Clean Flame, Duraflame, or other 

types of fireplace material is not known. Additionally, inconsistencies in the profiles of 

both residential fires and wildfires have been observed and can be caused by variations in 

fuel, burn conditions, and the type of appliance used in burning (Lewis et al., 2003). It is 

expected that vehicle emissions and residential biomass burning would be major 

contributors to aerosol PM in the winter, while particles in the spring, summer, and fall 
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would be influenced to a greater degree by direct injection of biogenic material.  Overall, 

the range in δ13CTC values of the samples collected are closest in range to vehicle 

emissions and C3 plants, and also fall within the range of fireplace emissions (Figure 4.5).  

 The δ13CTC values of samples collected in January are 0.5 – 1.7‰ less than those 

in other sampling periods, indicating that total carbon is depleted in 13C in the winter 

relative to other seasons. This could be caused in part by the long-range transport of aged 

carbonaceous particles from west and southwest of Phoenix. Increased photochemical 

activity has been observed by the presence of elevated secondary sulfate in fine PM in 

these warmer months (Brown et al., 2007; Lewis et al., 2003; Ramadan et al., 2000). 

When SOA-forming reactions that form CO2 occur, the gaseous CO2 released will be 

depleted in 13C, causing the δ13C of the total PM to increase (Aggarwal et al., 2013; 

Wang et al., 2012). This effect is observed in Figure 4.4, as all samples collected in April, 

June, and October are enriched in δ13C relative to those collected in January.  

Seasonal variations in δ13C of carbonaceous particles could also be caused by 

changes in local particle sources in winter versus spring, summer, and fall. As stated 

earlier, the population of Phoenix is smaller in the spring, summer, and fall than in the 

winter, and warmer temperatures in the spring, summer, and fall eliminate the strong 

inversion that traps local emissions in the valley. Therefore, along with causing the 

seasonal changes in the concentration of carbonaceous PM observed in Figure 4.2, 

anthropogenic sources attributed to these factors will also have a smaller effect on δ13CTC 

in the spring, summer, and fall than in the winter. Changes in photosynthetic activity can 

also affect the δ13C of PM, as many plants bloom in mild early spring weather. 
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Carbonate carbon. 

A prominent distinction of Figure 4.4 is the increase in the δ13CTC of the samples 

with increasing particle size in all seasons, which reaches a maximum for particles in the 

3 – 7.2 µm size range. 13C-enriched coarse PM fractions have been observed in other 

studies as well (Cachier et al., 1985; Garbaras et al., 2009; Masalaite et al., 2015). Blown 

dust, including agricultural soil, native desert soil, paved and unpaved road dust, and 

construction materials, is known to be a major source of PM in the Phoenix area (Brown 

et al., 2007; Cahill, 2013; Lewis et al., 2003; Ramadan et al., 2000; Upadhyay et al., 

2011) and in other locations (Manoli et al., 2002), and is a contributor to mineral dust, 

including carbonates, to coarse PM (Garbaras et al., 2009; López-Veneroni, 2009; 

Masalaite et al., 2015). The contribution of soil to PM2.5 composition in Phoenix was 

found to be 25% by Brown and coworkers (2007) and 22 ± 2% by Lewis and coworkers 

(2003).  

 
Figure 4.6. The percent of total carbon that is composed of carbonate carbon in samples 

collected in January. 
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 The percent of TC that was measured to be carbonate carbon (CC) in samples 

collected in January is shown in Figure 4.6. During this sampling week, the TC of 

particles greater than 1.5 µm contains as much as 7.4% CC. The CC:TC ratio is as high 

as 10% for particle sizes 3 µm < dp < 7.2 µm collected in April (Table 4.2). These values 

are less than a previous study which determined that coarse PM (PM10-2.5) in Phoenix 

contains an average of 9% CC by thermal optical analysis of acidified filters (Turner et 

al., 2014). In comparing the profiles of Figure 4.4 and Figure 4.6, δ13CTC in January 

appears to increase as the ratio of CC:TC increases. The contribution of Saharan dust to 

PM10 in Granada, Spain has been attributed to higher δ13CTC values due to its carbonate 

content (Mladenov et al., 2011). It is therefore likely that the presence of CC has a 

significant effect on the δ13CTC of particles greater than 1.5 µm in diameter. 
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Table 4.2 

Percent and carbon isotopic composition of carbonate in aerosol samples. Samples not 

shown were consumed prior to analysis. nss = available amount of sample not sufficient 

for analysis. The uncertainty in the last digit of the CC:TC percent ratio is shown in 

parentheses. The uncertainty in all δ13CCC results is 0.3‰. 

 

 

In order to test this, the carbon isotopic composition of CC (δ13CCC) was 

measured and is shown in Table 4.2. δ13CCC values are highly enriched relative to δ13CTC, 

ranging from -8.2‰ to -5.0‰ for all analyzed samples. These values are similar to 

airborne dust and soil samples analyzed elsewhere: PM2.5 in the city of Xi’an in 

northwest China was found to have δ13CCC values of -8.3 ± 1.9‰ under normal ambient 

conditions (Cao et al., 2004; Cao et al., 2005). Other surveys of dust in various arid 

regions and plateaus in China range from -5.31‰ to 1.36‰ for aerosol collected in dust 

storms (Wang et al., 2005), -7.80‰ to -3.34‰ in resuspended dust and bulk soil        

Sampling Period Particle Size Range CC:TC (%)
δ

13
CCC 

(‰)

January <0.49 µm 1.1(2) nss

January 0.49µm - 0.95µm 2.3(1) nss

January 0.95µm - 1.5µm 2.2(4) nss

January 1.5µm - 3µm 5.2(9) -8.2

January 3µm - 7.2µm 7.4(7) -6.6

January >7.2µm 4.4(4) -7.5

April <0.49 µm 5.5(4) -5.2

April 3µm - 7.2µm 10(1) -5.0

June <0.49 µm 5.1(8) -6.6

October <0.49 µm 2.6(2) nss

October 3µm - 7.2µm 7.1(5) -6.3

October >7.2µm 5.7(3) -7.1
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(Cao et al., 2008), and -8.2‰ to 0.5‰ in steppes and drylands in the Taklimakan Desert 

(Chen et al., 2016). 

As seen in Figure 4.5, the average total carbon isotopic compositions of 

resuspended (PM10) native soil, agricultural soil, and agricultural soil off of a dirt road 

were -16.2‰, -14.7‰, and -4.6‰, respectively. Due to the isotopic enrichment of these 

resuspended soils in 13C as compared to other source materials, it is likely that soil is the 

major source of carbonates in the aerosol samples, particularly in size fractions with dp 

greater than 1.5 µm.  

 In order to estimate the effects that biogenic and anthropogenic sources have on 

the δ13C of collected samples (which would contribute OC and EC to aerosol), the 

combined carbon isotopic compositions of OC and EC (δ13COCEC) in samples collected in 

January were calculated using the relationship 

δ CTC

13
= 𝑓𝑂𝐶𝐸𝐶 × δ COCEC 

13
+ 𝑓𝐶𝐶  × δ CCC 

13
         (4.2) 

and solving for δ13COCEC, where fCC is the fraction of CC relative to TC and fOCEC is the 

combined fraction of OC and EC relative to TC (1 – fCC). The average δ13CCC of the three 

most coarse filters collected in January that were analyzed was used in this calculation, 

since the three finest particle size fractions (1.5 µm and below) did not contain sufficient 

amounts of carbonate for analysis.  
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Figure 4.7. Carbon isotopic compositions of total carbon (blue) and combined organic 

and elemental carbon (green) in January. 

 

 Figure 4.7 compares the δ13C of TC to that of only OC and EC in aerosol samples 

collected in January. Even though CC makes up less than 10% of the TC of each sample, 

its enrichment relative to bulk δ13CTC causes a significant shift in the δ13COCEC of the 

three most coarse size fractions by up to 1.4‰. This data suggests that the δ13COCEC of 

coarse PM may be depleted in 13C relative to smaller particle size fractions. However, 

further analysis would be required to obtain δ13CCC values for all size modes before 

making this determination.   

n-Alkanes. 

Concentrations and carbon preference indices. 

Table 4.3 contains the concentrations of identified n-alkanes (C14H30 to C37H76) in 

the size-segregated aerosol samples (limits of detection for each compound can be found 

in Appendix B, Table B7). The sum of the concentrations of all n-alkanes in each size 

fraction in all sampling periods is shown in Figure 4.8. Over 55% of total n-alkane mass 
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is found in particles less than 0.49 µm in diameter in all seasons, reaching as high as 69% 

in January. In contrast, 60% of TC in January was found in the size mode dp < 0.49 µm, 

while the TC concentrations in dp < 0.49 µm in April, June, and October were higher 

(68%, 69%, and 62%, respectively). The high concentration of n-alkanes in small 

particles could be due to their origination from chemical process such as vehicle exhaust, 

and may be intensified by high anthropogenic wintertime activity. 
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Table 4.3 

n-Alkane concentrations. <LOD = below limit of detection; see Table B7 for limits of 

detection of each species. * = A coeluting peak prohibited the integration of n-C19H40 in 

some samples. 
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Table 4.3 (continued) 

n-Alkane concentrations. <LOD = below limit of detection; see Table B7 for limits of 

detection of each species. * = A coeluting peak prohibited the integration of n-C19H40 in 

some samples. 
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Figure 4.8. Size distributions of total detected n-alkanes during the four sampling 

periods. 

 

 The total concentration of n-alkanes over all size fractions in January is at least 

twice as high as in other sampling periods, which may be due to exacerbated wintertime 

anthropogenic emissions caused by strong inversion and a higher population in the winter 

compared to other seasons. This effect is stronger than what was seen for TC (Figure 

4.2), where the total TC concentration in January over all size fractions was up to 80% 

larger than in other sampling periods. Accordingly, the percent of n-alkanes that are 

found in TC is highest in January (0.34%, compared to 0.32%, 0.27%, and 0.20% in 

April, June, and October, respectively).  

In order to further evaluate the relative influence of biogenic and anthropogenic 

emissions in these samples, the carbon preference indices (CPI) were calculated as the 

ratio of the sum of the concentrations of odd-chain-length n-alkanes to the sum of the 

concentrations of even-chain-length n-alkanes, 
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𝐶𝑃𝐼 =  
∑[𝐶𝑜𝑑𝑑]

∑[𝐶𝑒𝑣𝑒𝑛]
             (4.3) 

using n-alkanes ranging from C26H54 to C35H72, which are characteristic of higher plant 

wax (Simoneit, 1989). A CPI near unity would be indicative of anthropogenic emissions, 

and CPI values greater than one indicate an increasing influence of biogenic emissions.  

 
Figure 4.9. n-Alkane carbon preference indices. 

 

Results of CPI calculations are shown in Figure 4.9. In January, CPI values in all 

size fractions are less than 2, indicative of the known dominance of anthropogenic 

emissions at this time. All CPI values in April, June, and October are greater than 2, 

which is typical in an urban environment experiencing a mix of biogenic and 

anthropogenic emissions (Simoneit, 1989). The CPI value exceeds 4 in April for particles 

in the size range of 1.5 – 3 µm. Many plants begin to bloom in early spring, and this 

could correspond to high pollen counts in this season. Previous work in Phoenix’s east 

valley has found a significant contribution of primary biological aerosol particles in both 

PM2.5 and PM10 (Jia & Fraser, 2011). Clements and coworkers (2014) has also found high 
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PM2.5 concentrations in Pinal County in the spring associated with agricultural activity. 

PM2.5 was mainly comprised of organic matter (37%); long-range transport of these 

aerosols to Phoenix could contribute to high CPI for fine particles. 

In June and October, the CPI values across all size fractions remain elevated 

compared to January. The Sonoran and Chihuahuan desert regions in the southwest 

United States typically experience two rainy seasons, one in the autumn to early winter, 

and another in mid- to late-summer. Summer rains can promote the growth of plants in 

the summer and fall, which could be reflected in CPI measurements. Indeed, Whitford 

(2002) explains that autumn rains cause the germination of autumn ephemeral plants, 

which are mainly C3, that bloom in the late winter to early spring. This is consistent with 

the high biogenic signal in the CPI of autumn. Summer ephemeral plants will germinate 

after the first intense rain storm of the summer and grow from late summer to the autumn. 

These plants mainly follow the C4 photosynthetic pathway. 

Compound-specific isotope analysis of n-alkanes. 

The carbon isotopic composition of n-alkanes in all samples was determined 

(Table 4.4). Over all measurements, the δ13C of n-alkanes ranges from -37.0‰ to             

-27.2‰, which is a depletion relative to δ13CTC of 4 – 14‰. n-Alkanes extracted from 

plants have been shown to be depleted in 13C relative to total surface lipid extracts by an 

average of 3.6‰; n-alkane δ13C values ranged from -38.8‰ to -30.7‰ for C3 plants,         

-25.8‰ to -18.0‰ for C4 plants, and -29.2‰ to -23.0‰ for CAM plants (Collister et al., 

1994). 
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Table 4.4 

n-Alkane carbon isotopic compositions. nd = not detected. 
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Table 4.4 (continued) 

n-Alkane carbon isotopic compositions. nd = not detected. 
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Figure 4.10. Carbon isotopic composition of individual n-alkanes collected in (a) 

January, (b) April, (c) June, and (d) October. 
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Figure 4.10 shows the δ13C values of the n-alkanes collected in each size fraction 

in January, April June, and October. In the samples analyzed in this study, there is 

generally little difference in the δ13C of C24 – C26 n-alkanes in individual samples. In 

January, depletion of odd n-alkanes C27, C29, and C31 (by up to 4.6‰) and enrichment of 

even n-alkanes C28 and C30 (by up to 4.4‰) is apparent in coarser samples (> 1.5 µm), 

but this sawtooth pattern is weaker for samples < 1.5 µm (Figure 4.10a). In April and 

June, depletion of C29 and C31 is apparent in most samples (by up to 5.6‰ in April and 

5.8‰ in June), while C28 is enriched in all samples collected in June (by up to 7.6‰) and 

two of the samples collected in April (1.6‰ in the < 0.49 µm fraction, 1.7‰ in the 3 µm 

– 7.2 µm fraction) (Figures 4.10b and 4.10c). C30 was not detected in April and June 

samples. In September, δ13C values are scattered and exhibit a weak sawtooth pattern, 

with C28 enrichment only in samples >3µm and depletion of C29 and C31 in all size 

fractions except dp < 0.49 µm (Figure 4.10d). 

The sawtooth pattern in the δ13C of n-alkanes C27 and above has been observed in 

other studies (Schefuß et al., 2003; Yamamoto & Kawamura, 2010), which attribute the 

isotopic depletion of odd-chain n-alkanes C27 and above to leaf wax sources, while non-

leaf wax sources had an insignificant impact on δ13C of these odd-chain n-alkanes. 

Notably, n-alkanes C29 and C31 were found to be the most depleted, and a moderate 

inverse correlation between δ13C of these n-alkanes and the CPI of the sample was 

observed (Yamamoto & Kawamura, 2010). More scatter was observed in the δ13C of long 

even chain n-alkanes, attributed to their low concentrations in plants making them 

susceptible to contamination (Schefuß et al., 2003). Interestingly, the δ13C enrichment of 

even long-chain n-alkanes is not discussed in literature, though it is obvious in this study 
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that C28 is enriched relative to C24 – C26 in some samples in this study. The cause of this 

enrichment is not clear, but may be interesting to investigate in future studies. 

Based upon the range of δ13C of n-alkanes analyzed in this study, it is likely that 

C3 plants and fossil fuel emissions are dominant n-alkane sources, while C4 and CAM 

plants would be minor sources of n-alkanes. No correlation was found between the CPI 

and δ13C values of C29 or C31, possibly due to the presence of known anthropogenic 

influences in the sampling location, which can include both fossil (vehicle) and non-fossil 

(residential wood-burning) emissions. There is a small seasonal shift apparent in June, in 

which the δ13C range of C24 – C26 n-alkanes is lower than in January, April, and October 

(-34.7‰ – -30.3‰, -32.0‰ – -30.2‰, and -33.8‰ – -30.1‰, respectively, compared to  

-36.2‰ – -30.6‰ in June). Also, the δ13C range of C27 – C31 n-alkanes in June is wider 

than in January, April, and October (-35.7‰ – -29.8‰, -36.0‰ – -29.7‰, and -34.8‰ – 

-28.0‰, respectively, compared to -37.0‰ – -27.2‰ in June). These observations could 

indicate that June samples are exhibiting the greatest dominance of C3 emissions over 

fossil fuel emissions; however, an analysis of n-alkanes in local fossil emission sources 

and C3 plant waxes would be necessary to make this distinction definitively. 
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Figure 4.11. Average δ13C of each n-alkane in total suspended particulates for each 

month. 

 

Figure 4.11 shows the average δ13C of n-alkanes during each sampling period, 

weighted by the n-alkane concentrations in each size fraction. Again, the average δ13C of 

n-alkanes C24 – C26 in June are depleted (-32.5‰, -32.4‰, and -33.9‰ for C24, C25, and 

C26) compared to January (-31.6‰, -31.9‰, and -31.2‰), April (-30.7‰, -30.9‰, and    

-31.3‰), and October (-31.5‰, -31.8‰, and -31.9‰). The average δ13C of C28 in June   

(-29.6‰) is notably enriched relative to C24 – C26, but enrichment is less apparent in 

other months. In October, the average δ13C of C31 (-32.9‰) is greater than in January, 

April, or June (-34.9‰, -35.6‰, and -35.1‰, respectively). The average δ13C of C29 is 

minimally enriched in October compared to other months. It is possible that the δ13C 

enrichment in C31 in October is due to the growth of C4 plants in the autumn caused by 

the summer rainy season (Whitford, 2002), as the δ13C of total leaf wax and n-alkanes of 

C4 plants is enriched relative to that of C3 plants (Figure 4.5; Collister et al., 1994). 
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Previous studies have used the isotopic differences of n-alkanes in C3 and C4 

plants to determine the relative contributions of these plant types in aerosols (Bendle      

et al., 2007; Huang et al., 2000; Simoneit, 1997). However, since the δ13C ranges of n-

alkanes from C3 plants and fossil fuels are not distinguishable (Simoneit, 1997), sources 

apportionment using δ13C of n-alkanes was not deemed suitable in an urban environment. 

Other studies have applied hydrogen isotope analysis (δ2H) of n-alkanes to distinguish 

fossil and C3 plant contributions to aerosol (Li et al., 2001; Yamamoto & Kawamura, 

2010), since δ2H of n-alkanes of fossil fuels and C3 plants can be distinguished and δ2H 

of n-alkanes in fossil fuels spans a wide range (up to 130‰ for different oils, Li et al., 

2001). Still, the shift in the δ13C of C31 observed in October shows some promise that the 

sources apportionment of plant material may be possible even in an urban environment. 

Conclusions 

The seasonal variations in the concentrations and isotopic compositions of total 

carbon, carbonate carbon, and n-alkanes in size-resolved atmospheric particulate matter 

collected in Phoenix, Arizona were studied. The carbon content of PM is heavily 

influenced by seasonal trends, including inversion, transport, population density, and 

photochemical activity, with samples collected in January exhibiting a dominant 

influence of anthropogenic emissions, especially in particles <0.49 µm, that are amplified 

by a low mixing layer. Biogenic emissions and photochemical activity have a greater 

influence in April, June, and October, as seen by the higher n-alkane CPI values and 

δ13CTC values compared to those in January in all size fractions. Variations in δ13CTC 

within a sampling period are caused by sources that generate PM in different size modes: 

soil and dust are more prevalent in particles greater than 1.5 µm, while anthropogenic 
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emissions would account for most particles smaller than 1.5 µm. CC has a significant 

enrichment effect on the δ13CTC of coarse particles, highlighting their importance in 

regions impacted by blown mineral dust.  

n-Alkanes are isotopically depleted compared to TC, consistent with observations 

in other locations. The δ13C values of n-alkanes likely exhibit a mixture of C3 plant 

emissions and fossil fuel emissions, with C4 plants contributing as well in October. Due 

to seasonal changes in dominant plants (C3 in the late winter to early summer, C4 in 

autumn), this location may be an interesting location for further studies of the δ13C of 

urban n-alkanes; using both δ13C and δ2H measurements, source apportionment of fossil 

fuels, C3 plants, and C4 plants may be possible. 
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CHAPTER 5 

AEROSOL INTERACTIONS WITH FOG IN URBAN AND SUBURBAN SITES IN 

NORTHEASTERN FRANCE 

The Alsace region of France experiences autumnal radiation fog that can play an 

important role in local atmospheric chemistry and impacts air quality. Fog water studies 

were previously conducted in Strasbourg, the largest city and capital of the region, 

throughout the 1990’s (Herckes et al., 2002; Millet et al., 1995; Millet et al., 1996; Millet 

et al., 1997). Comparisons of two droplet size fractions (2 – 6 µm and 6 – 8 µm) have 

found lower pH and higher concentrations of major ions in the smaller size fraction 

(Millet et al., 1996), as well as higher solubility of trace metals in the smaller droplet 

sizes (Millet et al., 1995). Both size fractions were found to have high concentrations of 

formate and acetate, attributed to automobile exhaust (Millet et al., 1997). A study of the 

change in composition of 5 – 8 µm droplets from 1990 – 1999 showed increasing pH and 

decreasing concentrations of major ions and trace metals, but could not attribute these 

changes to specific causes due to a lack of data for ambient particle and gas composition 

and concentration (Herckes et al., 2002). 

Since temporal tends in the concentration of fog water were observed in the 

aforementioned studies, it would be interesting to see how the composition of fog water 

has continued to evolve. However, collection and analysis of fog water in Strasbourg 

ceased after 1999. Additionally, the tandem sampling of fog and particulate matter could 

provide additional information about the scavenging of aerosols by fog droplets and the 

effect of fog on the concentration and composition of particulate matter. 



  91 

Previous studies of the components of atmospheric particles in Strasbourg have 

found strong seasonal and diurnal patterns in particulate matter concentrations and a 

prevalence of vehicular emissions as a major PM source. Abou Chakra and coworkers 

(2007) have found elevated genotoxic effects of PM2.5 relative to PM10, as well as higher 

genotoxic effects in the winter. A spatial heterogeneity was also observed, where 

genotoxic effects were elevated for those living near heavily trafficked areas compared to 

more industrial or residential areas. Another study concluded that most ultrafine particles 

in the center of Strasbourg were induced by traffic (Roth et al., 2008). Gas and particle 

phase concentrations of phenols and nitrophenols were found to exhibit seasonal trends, 

with the lowest concentrations in the spring. Additionally, diurnal variations 

corresponding to vehicular circulation were apparent year-round (Delhomme et al., 

2010). Another study of PAH concentrations in PM10 also found seasonal trends, with the 

highest PAH concentrations in the winter, as well as diurnal variations dictated by vehicle 

emissions (Delhomme & Millet, 2012). Domestic heating was also found to contribute to 

particulate matter in the colder months (Delhomme et al., 2010; Delhomme & Millet, 

2012). 

In this field study, samples of particulate matter and fog were collected in the city 

of Strasbourg and a nearby suburb, Geispolsheim, in the fall of 2016. This chapter will 

focus on the analysis on PM2.5 in Strasbourg and PM10 in Geispolsheim. OC and EC were 

quantified in these samples, and the stable carbon isotopic composition of total carbon 

(δ13CTC) was measured. These measurements will provide insight on the fate of 

carbonaceous particles in multiphase systems, or systems in which fog, rain, or drizzle 

occur, through observations of the changes in particle concentration and isotopic 
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composition caused by aqueous phase scavenging. Results will also be compared to 

measurements from field campaigns performed in other heavily urbanized valleys, 

including the Po Valley of Italy and Central Valley of California. These inland valley 

locations experience high air pollution events in the autumn and winter due to strong 

inversions that trap emissions in the valleys, and they experience autumnal and winter 

radiation fog events, similar to Strasbourg. Additionally, the δ13CTC of particles collected 

in Strasbourg and Geispolsheim will be compared to δ13CTC measurements of PM2.5 

collected on the North American west coast to assess how differences in local particle 

sources affect the overall isotopic composition of atmospheric carbon. This work 

represents the first campaign studying the δ13C of particles in Strasbourg and 

Geispolsheim, as well as the first campaign observing the effect of fog and rain events on 

the δ13C of particulate matter. 

Materials and Methods 

Sample collection. 

 Samples were collected in the fall of 2016 in Strasbourg and Geispolsheim, 

located in the Alsace region of northeastern France (Figure 5.1). Both Strasbourg and 

Geispolsheim are located in the Rhine Valley, with the Vosges Mountains to the west and 

the Black Forest to the east. Strasbourg is an urban city containing shops, restaurants, 

residential areas, and the University of Strasbourg. Sampling was conducted on the 

balcony surrounding the University’s Botanic Institute (48.5840°, 7.7663°, 30 m a.g.l.), 

which was situated approximately 3 km from major highways and industrial areas, 11 km 

from the regional airport, and 3.5 km from agricultural areas. Samples of PM2.5 were 

collected using two Low Volume Samplers (2.3 m3/h, Sven Leckel, Berlin, Germany) 
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equipped with prebaked (600°C overnight) 47 mm quartz fiber filters (Whatman QM-A, 

GE Healthcare Bio-Sciences, Marlborough, MA). Sampling was performed continuously 

from October 27, 2016 through December 15, 2016, with filters replaced 1 – 2 times 

daily when no fog events occurred. Five fog events occurred during this period; quartz 

filters were replaced at the beginning and end of each event.  

 

  

Figure 5.1. Maps featuring the location of the sampling sites. (a) Geispolsheim and 

Strasbourg are located in northeast France in the Rhine Valley. (b) The Geispolsheim 

sampling site (orange) is approximately 9 km southwest of the Strasbourg site (blue). 

(a) 

(b) 
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Fog water was collected using small stainless steel Caltech Active Strand 

Cloudwater Collectors (ss-CASCC2, Demoz et al., 1996). Only one ss-CASCC2 was 

available for the first three events, while two collectors were used simultaneously during 

the last two events. The start and end points of each event were determined when the 

visibility was estimated to be less than 500 m, using the belfry of the cathedral of 

Strasbourg as a visual reference. After collection, quartz filters were stored in prebaked 

aluminum foil at -20°C until analysis. Fog samples were filtered using prebaked quartz 

filters and frozen (-20°C) until analysis. 

Geispolsheim is a suburban town located approximately 9 km southwest of 

Strasbourg with residential areas and two agricultural areas in the municipality. Sampling 

was conducted in a residential garden (48.5248°, 7.6806°, 4 m a.g.l.), which is 300 m 

from a highway, 800 m from two state roads, 300 m from a small commercial area,      

4.5 km from the regional airport, and 6 km from industrial areas. Samples of PM10 were 

collected using a Sven Leckel Low Volume Sampler (2.3 m3/h) equipped with prebaked 

(600°C overnight) 47 mm quartz fiber filters. Sampling was performed continuously 

from October 28, 2016 through November 2, 2016, with filters replaced 1-2 times daily 

when no fog events occurred. Two fog events occurred during this period; quartz filters 

were replaced at the beginning and end of each event. Fog water was collected using a ss-

CASCC2. After collection, quartz filters were stored in prebaked aluminum foil at -20°C 

until analysis. Fog samples were filtered using prebaked quartz filters and frozen (-20°C) 

until analysis. 
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Sample analysis. 

 All aerosol samples were analyzed by thermal optical transmittance for organic 

carbon (OC), elemental carbon (EC), and total carbon (TC) concentrations using a Sunset 

Lab OC-EC Aerosol Analyzer (Birch & Cary, 1996). A variation of Sunset’s “Quartz” 

TOT method was utilized. Variable time steps of 60 – 200 seconds were used during OC 

evolution, with temperature plateaus at 310°C, 475°C, 615°C, and 870°C. During EC 

evolution, the temperature was held at 550°C, 625°C, 700°C, 775°C, and 850°C for 45 

seconds each, with a final hold at 870°C for 120 seconds. Quality control included the 

analysis of lab blanks, field blanks, replicate samples, and a sucrose standard, which was 

routinely within 10% of the known concentration. 

A selection of samples were also fumed with concentrated hydrochloric acid (HCl) 

and analyzed using the above TOT method parameters in order to measure the amount of 

carbonate present in the samples (Cachier et al., 1989; Karanasiou et al., 2011). HCl 

fuming was performed by placing a 1.5 cm2 filter punch into a clean glass petri dish and 

carefully placing 8 – 10 small drops (approximately 0.5 mm in diameter) around the filter 

without allowing the filter to come into contact with the acid. The petri dish was covered 

and the sample was fumed for 30 minutes. The sample was then removed from the petri 

dish and placed in a fume hood to allow residual HCl fumes to volatilize before analysis. 

Isotopic measurements for δ13CVPDB of TC in PM samples were performed using a 

Costech Elemental Analyzer coupled to a Thermo Delta Plus Advantage Isotope Ratio 

Mass Spectrometer (EA-IRMS). The analytical uncertainty of samples analyzed on this 

method is reported at 0.2‰. NIST 2710 (Montana soil) was used as a linearity standard. 
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Three in-house glycine standards were used to perform and verify a two-point calibration 

from -39.6‰ to 15.7‰.  

Isotopic measurements for δ13CVPDB of DOC fog samples were performed using an OI 

Analytical TOC Analyzer coupled to a Thermo Delta Plus Advantage Isotope Ratio Mass 

Spectrometer (TOC-IRMS). The analytical uncertainty of samples analyzed on this 

method is reported at 0.3‰. Potassium hydrogen phthalate (KHP, Sigma Aldrich, 

99.95%) with a known isotopic composition was used as a linearity standard. Three in-

house glycine standards were used to perform and verify a two-point calibration from       

-45.9‰ to 8.9‰. 

Additionally, PM2.5 samples collected in Bakersfield, CA in January and February 

2013 were analyzed. OC and EC were quantified using the TOT method described above, 

and the δ13CVPDB of TC was measured. 

Results and Discussion 

Fog events in Strasbourg and Geispolsheim. 

In total, fifteen fog events (five in Strasbourg, ten in Geispolsheim) were collected 

and analyzed. Table 5.1 reports the sampling times, pH, DOC, conductivity, δ13CDOC, and 

major ions analyzed in each sample. The volume-weighted average DOC of fog was 23.3 

ppmC (ranging from 7.8 – 37.7 ppmC) in Strasbourg and 21.8 ppmC (ranging from 8.6 – 

43.1 ppmC) in Geispolsheim. The average pH of fog in Strasbourg was 6.8, which was 

less acidic than fog in Geispolsheim with an average pH of 6.0. Strasbourg fog in 2016 

was much less acidic than in the early 1990’s: the pH of fog ranged from 2.80 – 5.80 in 

1991, 2.27 – 6.16 in 1992, 5.08 – 6.30 in 1993, and 2.40 – 5.50 in 1994 (Millet et al., 

1997). From 1991 – 1999, the overall pH of fog was found to increase by approximately 
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1 pH unit, which was consistent with a decrease in SO4
2- over the same time period 

(Herckes et al., 2002). In 1991, the average concentration of SO4
2- in Strasbourg fog was 

2,150 µeq/L (103 mg/L) in 5 – 8 µm droplets and 5,020 µeq/L (241 mg/L) in 2 – 6 µm 

droplets (Millet et al., 1996). In this study, the volume-weighted average concentration of 

SO4
2- in Strasbourg fog was 18 mg/L. 
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Table 5.1 

Analysis results for fog collected in Strasbourg and Geispolsheim in 2016. Uncertainty in 

δ13C measurements is 0.3‰. n.d. = not detected. * = not analyzed. 
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Table 5.1 (continued) 

Analysis results for fog collected in Strasbourg and Geispolsheim in 2016. Uncertainty in 

δ13C measurements is 0.3‰. n.d. = not detected. * = not analyzed. 
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Particulate matter in Strasbourg and Geispolsheim. 

PM2.5 samples were collected in Strasbourg from October 27, 2016 through 

December 15, 2016. PM10 samples were collected in Geispolsheim from October 28, 

2016 through November 2, 2016. Sampling times and analysis results for all samples 

(OC, EC, and TC concentrations, and δ13CTC) are detailed in Tables C1 and C2, 

respectively, of Appendix C. Using PM2.5 data obtained from an air quality station in 

central Strasbourg monitored by ATMO Grand Est (http://www.atmo-grandest.eu/), 

organic matter (OM, calculated from the air concentration of OC and applying the 

multiplier of 1.4 for urban areas, Mancilla et al., 2015) was averaged to make up 34% of 

PM2.5
 in Strasbourg. The amount of OM falls within similar percentages of other 

locations. PM1.5 collected in Aspvreten, a forest park in central Sweden, contained 43% 

OM; PM1.5 from K-Puszta, a rural location in Hungary, contained 27% OM; and PM1.5 

from San Pietro Capofiume (in eastern Po Valley, a populous industrial and agricultural 

area) contained 21% OM (Zappoli et al., 1999). PM2.5 collected in Yosemite National 

Park, however, contained an average of 70.6% OM (Malm et al., 2005), due to the high 

contribution of biomass burning and SOA sources (Bench, 2004; Engling et al., 2006).  
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Figure 5.2. Box plots of OC and EC air mass concentrations in Strasbourg, 

Geispolsheim, and Bakersfield. The median, first and third quartiles, and minimum and 

maximum data points are visualized. 

 

In Strasbourg, rain, fog, and frozen fog events occurred over the entire sampling 

period, while two fog events occurred during PM10 sampling in Geispolsheim. Figure 5.2 

summarizes the concentrations of OC and EC when no multiphase events occurred. In 

Strasbourg, the median concentration of OC was 6 µg/m3, ranging from 3 – 18 µg/m3, 

and the median concentration of EC was 1.2 µg/m3, ranging from 0.3 – 3.7 µg/m3. In 

Geispolsheim, the median concentration of OC was 7 µg/m3, ranging from 5 – 10 µg/m3, 

and the median concentration of EC was 1.3 µg/m3, ranging from 0.8 – 2.0 µg/m3.  These 

results are similar to other urbanized valley locations; in PM2.5 collected in Bakersfield, 

CA, the median concentration of OC was 8 µg/m3, ranging from 2 – 17 µg/m3, and the 

median concentration of EC was 0.9 µg/m3, ranging from 0.3 – 2.8 µg/m3. 
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Figure 5.3. Plot of average OC and EC concentrations measured in urban and rural 

locations. Standard deviations are shown when available. Samples were collected in 

Strasbourg and Geispolsheim, France, and Bakersfield, CA (this study), the Po Valley, 

Italy (Decesari et al., 2001), Puy de Dôme, France, Schauinsland, Germany, Sonnblick, 

Austria, Aveiro, Portugal, and K-Puszta, Hungary (Gelencsér et al., 2007), Thessaloniki, 

Greece (Samara et al., 2014), and Birmingham, England (Yin et al., 2010). 

 

Figure 5.3 shows the average concentrations of OC and EC in Strasbourg and 

Geispolsheim, as well as in other urban and rural locations. In PM1.5 collected in the Po 

Valley, an urbanized area comparable to Strasbourg and Geispolsheim, the concentration 

of OC averaged 8 ± 4 µg/m3, and the concentration of EC averaged 0.7 ± 0.4 µg/m3 

(Decesari et al., 2001). By contrast, PM2.5 collected in the remote locations of Puy de 

Dôme, France, Schauinsland, Germany, and Sonnblick, Austria were found to have lower 

wintertime concentrations of OC and EC (respectively, 0.65 µg/m3 OC, 0.21 µg/m3 EC; 

1.38 µg/m3 OC, 0.28 µg/m3 EC; 0.19 µg/m3 OC, 0.02 µg/m3 EC, Gelencsér et al., 2007), 

while PM2.5 in the rural locations of Aveiro, Portugal and K-Puszta, Hungary contained 

comparable OC and EC concentrations in the winter (respectively, 12.3 µg/m3 OC,        
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1.8 µg/m3 EC; 8.91 µg/m3 OC, 1.74 µg/m3 EC, Gelencsér et al., 2007). Elevated OC and 

EC concentrations in Aveiro and K-Puszta were attributed to high incidences of biomass 

burning. PM2.5 in Thessaloniki, Greece was found to contain an average of 5.72 µg/m3 

OC and 0.69 µg/m3 EC (Samara et al., 2014). Wintertime urban background OC 

concentrations in PM2.5 in Birmingham, England averaged 2.52 ± 0.13 µg/m3 (Yin et al., 

2010). Ambient OC and EC concentrations in Strasbourg and Geispolsheim are similar 

overall to other urbanized sampling locations, and are, as expected, higher than in remote 

locations.  
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Scavenging of carbonaceous particulate matter by fog. 

 

 
 

Figure 5.4. Scavenging efficiencies of (a) OC and (b) EC during fog events in Strasbourg 

and Geispolsheim, compared to OC and EC scavenging efficiencies in other urbanized 

and remote locations. Dots report the median or average value, and the error bars report 

the minimum and maximum observations, with the exception of Mt. Rax, where the error 

bars represent the standard deviations. Reported observations are from the Po Valley, 

Italy (Facchini et al., 1999; Hallberg et al., 1992), Angiola and Fresno, CA (Collett et al., 

2008), Mt. Tai, China (Wang et al., 2011), Puy de Dôme, France (Sellegri et al., 2003), 

Great Dunn Fell, England (Gieray et al., 1997), Jungfraujoch, Switzerland (Cozic et al., 

2007), Mt. Rax, Austria (Hitzenberger et al., 2001), and Mt. Sonnblick, Austria 

(Hitzenberger et al., 2000). 
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The scavenging efficiencies, defined as the fraction of PM incorporated into a fog 

droplet (Herckes et al., 2013), of OC and EC were calculated based upon the 

concentrations of particle phase OC and EC measured before and during the fog events. 

Figure 5.4 compares the OC and EC scavenging efficiencies of fog events in Strasbourg 

and Geispolsheim to measurements in other urbanized and remote locations. The 

scavenging efficiency of OC in Strasbourg averaged 15%, and ranged from negligible 

scavenging of OC to 26% of OC scavenged by fog. 2 – 32% of OC was scavenged during 

the two fog events in Geispolsheim. The OC scavenging efficiencies were more similar to 

those calculated in remote locations (Mt. Tai, Puy de Dôme) than in more urbanized 

locations (Po Valley, Fresno, Angiola). Scavenging of OC by fog is dependent on the 

polarity and water solubility of the organic species (Facchini et al., 1999) as well as the 

particle source (i.e., wood smoke vs. vehicle exhaust, Collett et al., 2008). 

Overall, the scavenging of EC by fog in Strasbourg was negligible. However, the 

scavenging of EC in Geispolsheim ranged from 34 – 51%. The scavenging of EC in 

urbanized locations is generally low, due to the hydrophobic properties and small particle 

size of freshly emitted aerosols containing EC. All four studies in urbanized valley 

locations referenced in Figure 5.4b (Po Valley, Fresno, and Angiola) averaged 8% or 

lower scavenged EC. However, the average percent of EC scavenged by fog in rural and 

remote locations ranged from 48% at Great Dunn Fell (Gieray et al., 1997) to 74% at Mt. 

Sonnblick (Hitzenberger et al., 2000). In Geispolsheim, the wind originated primarily 

from the north during the 72 hours preceding each fog event (Figure 5.5), meaning that 

the air masses in Geispolsheim could contain aged particles originating in Strasbourg. 
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Aging of particles during transport could cause EC to become associated with oxidized 

material and larger particles that are more readily scavenged by the aqueous phase. 

 

Figure 5.5. Wind roses depicting the wind direction 72h prior to two fog events in 

Geispolsheim, on (a) October 30 and (b) November 1. The wind primarily originated 

from the north before both fog events. 
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When a fog forms, it will scavenge carbonaceous material from both the gas and 

particle phases. Table 5.2 shows the change in concentration of particle phase OC when a 

fog forms, and the air equivalent concentration of the DOC of fog. During the fog event 

of October 28 (Sample 16S-1), the concentration of OC in PM2.5 does not decrease as 

would be expected, but instead increases by 28%. Similarly, the concentration of EC 

during this event increases by 140%. It is possible that these high values were calculated 

due to the short sampling time of the fog (3 hours). In evaluating the scavenging 

efficiencies of fog, these data points were considered outliers and were not included in 

the discussion. During four of the fog events (16S-2, 16S-4, 16S-5, and G16-6), the [OC] 

of PM decreased by a greater value than the fog [DOC]. During event G16-5, the [DOC] 

of the fog was greater than the [OC] scavenged from the particle phase. Finally, during 

event 16S-3, the change in [OC] in PM2.5 was negligible, but DOC was still present in the 

fog. Several factors could account for the variations in these observations. For fog events 

in which the [OC] scavenged from PM was higher than the [DOC] of fog, it is possible 

that water insoluble organic carbon was scavenged by the droplets. In the examples 

where the [DOC] of fog is higher than the [OC] scavenged from PM, gas-phase organic 

compounds may have been scavenged by the fog. A study and modeling of 

anthropogenically impacted fog (Davis, CA) compared to biogenically impacted fog 

(Whistler, BC) showed that aged (oxidized) air masses cause DOC to increase and cause 

the Henry’s Law for DOC to increase such that more organic gases partition into the 

aqueous phase (Ervens et al., 2013). Concentrations of dissolved gases in fog in Angiola, 

CA were also found to be dependent on the size and lifetime of the droplets, and 

supersaturation of dissolved organic species caused by evaporation was observed (Ervens 
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et al., 2003). Additionally, droplet size can affect equilibrium of droplets with the gas 

phase due to variations in pH with droplet size, as was observed at Great Dunn Fell in 

England (Laj et al., 1997). Without measurements of gas-phase species in Strasbourg, 

elucidations of the mass balance of fog DOC is not possible. 

 

Table 5.2 

Comparison of OC concentrations in PM before and during fog, and the air equivalent 

DOC concentration in fog. 

 

 

 

 

 

 

 

 

 

 

Sample 

ID

Sampling 

Location

OC, Pre-Fog 

PM (µg/m
3
)

OC, Interstitial 

PM (µg/m
3
)

OC Change, 

Pre-Fog - 

Interstitial PM 

(µg/m
3
)

Fog DOC 

(µg/m
3
)

16S-1 Strasbourg 4.82 6.15 -1.33 0.13

16S-2 Strasbourg 4.96 4.26 0.70 0.15

16S-3 Strasbourg 4.18 4.26 -0.08 0.13

16S-4 Strasbourg 7.14 5.60 1.54 0.42

16S-5 Strasbourg 11.18 8.33 2.85 0.30

G16-5 Geispolsheim 6.57 6.40 0.16 1.48

G16-6 Geispolsheim 6.31 4.32 1.99 0.28
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δ13C of particulate matter, no multiphase events. 

 
 

Figure 5.6. Box plots of the δ13CTC of atmospheric PM collected in Strasbourg, 

Geispolsheim, and Bakersfield. 

 

Even though concentrations of OC and EC varied among sampling days, δ13CTC 

remained fairly consistent when no multiphase events occurred (Figure 5.6). The median 

δ13CTC in Strasbourg was -26.6‰, ranging from -27.2 – -25.9‰. In Geispolsheim, the 

median δ13CTC was -26.4‰, ranging from -27.3 – -26.1‰. In both locations, the 

difference between the first and third quartiles was 0.3‰.  These results are consistent 

with the expectation that the formation of secondary organic aerosol is low in the autumn 

and winter. Photochemical reactions would cause a net decrease in δ13CTC due to the 

kinetic isotope effect in the formation of secondary organic aerosols (Fisseha et al., 

2009), which would in turn cause greater variations in daily δ13CTC observations. 

The average δ13CTC in both Strasbourg and Geispolsheim is depleted relative to 

that of Bakersfield, which is located in California’s San Joaquin Valley. The median 



  110 

δ13CTC of PM2.5 in Bakersfield was -24.8‰, with a range of -25.8 – -24.4‰ and a 

difference of 0.3‰ between quartiles 1 and 3. Chapter 2 provides a comparison of 

atmospheric particulate matter δ13CTC of Strasbourg and Geispolsheim to other sampling 

locations in the western United States, Canada, and Mexico as well (Figure 2.2). The 

particulate matter collected in Strasbourg and Geispolsheim was found to be depleted in 

δ13CTC compared to these other urban locations, and similar to a biogenically influenced 

site (Whistler, BC). Studies of the δ13C of primary aerosol sources have shown that diesel 

fuel is depleted in δ13C relative to gasoline: In Paris, particles emitted by unleaded 

gasoline had an average δ13CTC of -24.2 ± 0.6‰, while those emitted by diesel had an 

average δ13CTC of -26.5 ± 0.5‰. (Widory et al., 2004). The greater use of diesel fuel in 

France could explain the depletion in δ13C of the collected particles relative to 

Bakersfield. New diesel vehicles comprised 77% of new car sales in France in 2008, as 

opposed to 47% in 1995 (Schipper, 2011). Additionally, measurements of the ratios of 

select PAHs demonstrate that diesel fuel emissions are more prominent in PM10 in 

Strasbourg than gasoline (Delhomme & Millet, 2012). Conversely, diesel fuel accounts 

for 28% of fuel use in the United States (Gentner et al., 2012). 
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δ13C of particulate matter in fog. 

 

 
 

 
Figure 5.7. [OC], [EC], and δ13CTC results of (a) PM2.5 in Strasbourg and (b) PM10 in 

Geispolsheim, immediately before a fog event (pre-fog PM) and during a fog event 

(interstitial PM). 

 

Over the course of particle sampling, five fog events in Strasbourg and two fog 

events in Geispolsheim occurred. Figure 5.7 illustrates the effect of fog on δ13CTC and 

concentrations of OC and EC. In Strasbourg, δ13CTC of PM2.5 was depleted by 0.3 – 0.7‰ 

during a fog event, relative to the particles collected in the time period immediately 

before the start of the event. In Geispolsheim, δ13CTC of PM10 during one fog event was 

depleted by 1.1‰. No depletion of δ13CTC was observed during the October 30th event in 
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Geispolsheim; however, this filter included aerosol collected for 4.5 hours before the 7-

hour fog event, so an isotopic depletion effect may be diluted. This sample will therefore 

not be included in the discussion.  

These results suggest that preferential particle scavenging by the fog might be 

occurring, which would result in carbon enriched in δ13CTC being incorporated into 

droplets and carbon depleted in δ13CTC remaining in the particle phase. Additionally, if 

preferential scavenging by fog is occurring in Strasbourg, it is likely size-dependent, with 

large particles enriched in δ13CTC relative to small particles: if larger particles are 

scavenged more readily than small particles, the remaining interstitial particles would 

display an overall depletion in δ13CTC. 

Previous studies have shown that the δ13CTC of particles in larger size modes 

tends to be heavier than smaller particles. As discussed in Chapter 4, the δ13CTC of 

particles > 1.5 µm in Tempe, AZ was higher than the δ13CTC of particles < 1.5 µm, due to 

the presence of carbonate in the coarser size fractions. Masalaite and coworkers (2015) 

collected particles in eleven size-segregated fractions from 0.056 – 18 µm in Vilnius, 

Lithuania and found the coarse fractions (> 1 µm) to be enriched relative to the fine 

fractions (< 1 µm), on average (-26 ± 1‰, versus -28.0 ± 0.9‰, respectively). The 

enrichment in δ13C of coarse particles was attributed to a combination of carbonates in 

the coarse fraction, variations in particle source among size fractions (with fossil 

contributions in fine particles and non-fossil contributions in coarse particles), and the 

enrichment in δ13C that results when fine particles aggregate into coarse particles in 

aqueous-phase chemical processing.  
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The size-dependent scavenging of particulate matter by fog has long been a 

subject of study. Bator & Collett (1997) found that there was a difference in chemical 

composition of small (4 – 23 µm) and large (> 23 µm) cloud droplets, which could be 

attributed to differences in the composition of large primary aerosols and small 

accumulation-mode aerosols. Herckes and coworkers (2002) found that TOC 

concentrations in small fog droplets (in the range of 6 – 17 µm) were higher than in large 

droplets (> 17 µm) collected in Angiola, CA, on average by a factor of 2.8, possibly due 

to the formation of small droplets on smaller particles that contain more carbonaceous 

material than large particles. Collett and coworkers (2008) also observed that wood 

smoke particles were more efficiently scavenged by fog in Angiola and Fresno than those 

of vehicle exhaust, which suggests that the lifetime of wood smoke particles is limited 

relative to motor vehicle exhaust particles. This study also suggests that differences in 

OC and EC scavenging could result from differences in size distributions of these 

species. In measuring the hygroscopic growth of particles at Great Dunn Fell, 

Svenningsson and coworkers (1997) measured higher growth factors and a greater 

soluble fraction for larger particles (265 nm) than smaller particles (50 nm). 

Strasbourg is situated along the Rhine River, whose banks are composed of loess 

(Salomons, 1975; Swineford & Frye, 1955; Taylor et al., 1983). The loess along the 

Rhine consists of particles in a wide size range, from greater than 44 µm to less than        

2 µm, and particles in the size fraction below 2 µm can to contain up to 40% calcium 

carbonate (Swineford & Frye, 1955). Carbonate therefore has the potential to be 

incorporated into PM2.5. Additionally, carbonate minerals are highly enriched in δ13C 

relative to organic and elemental carbon; specifically, carbonate analyzed at the Rhine-
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Meuse estuary in the Netherlands ranged in δ13C from -3.6 – -0.6‰ (Salomons, 1975). 

Therefore, as discussed in Chapter 3, carbonate carbon content as low as 2% of the total 

carbon could potentially impact the δ13CTC of a sample. A selection of PM2.5 samples 

were consequently selected for carbonate analysis by acidification by HCl fuming to 

remove carbonate and subsequent TOT analysis; results are shown in Table 5.3. In some 

samples, a decrease of up to 1 µg/cm2 in the measured load of TC on a filter is observed, 

which is equivalent to a loss of 1 – 5% of carbon with acid fuming. This, however, is not 

the case for all samples, and for those samples that do decrease in TC when acid treated, 

the change in mass is not significant when the uncertainty in the measurements is 

considered. Because small filters (47 mm) were used in sample collection, there is 

insufficient sample to perform the carbonate quantification method outlined in Chapter 3. 

There is also insufficient sample to perform acid treatment of the PM10 samples collected 

in Geispolsheim, but because the coarse mode was collected here, there is a greater 

potential for loess carbonate to impact these samples. While the presence of carbonate in 

these samples cannot be confirmed, it cannot be ruled out as a constituent of PM2.5 in 

Strasbourg. 
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Table 5.3 

Results of acid treatment of select PM2.5 filters collected in Strasbourg for the 

determination of carbonate concentration. Results are shown as micrograms of carbon 

per square centimeter of filter. 

 

 

 In sum, the preferential scavenging of particles enriched in δ13CTC could be due to 

a number of factors. Size-dependent scavenging could play a role, as particles in different 

size fractions have different compositions and originate from different primary aerosol 

sources. As discussed in Chapter 2, different source materials could potentially have 

different δ13C values, but this factor is location-dependent; a study of the isotopic 

compositions of local source materials in Strasbourg and Geispolsheim and a source 

apportionment of local aerosols would be necessary to make these determinations. The 

presence of carbonate, which is enriched in δ13C relative to OC and EC, could cause the 

δ13CTC of interstitial particles to become depleted if particles containing carbonate are 

scavenged. 

 

 

Total Carbon

Total Carbon 

Uncertainty

Total Carbon, 

HCl Fumed

Total Carbon, 

HCl Fumed 

Uncertainty

(µg/cm
2
) (µg/cm

2
) (µg/cm

2
) (µg/cm

2
)

SA04 21.6 1.3 21.3 1.3

SA13 22.7 1.3 21.6 1.3

SA41 20.8 1.2 20.7 1.2

SA55 23.2 1.4 23.0 1.4

SA72 21.7 1.3 21.0 1.3

SA78 22.4 1.3 22.4 1.3

SA84 33.9 1.9 35.1 2.0

Sample ID
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δ13C of particulate matter in rain and frozen fog. 

 
 

Figure 5.8. [OC], [EC], and δ13CTC results of three periods of rain on November 3 – 

November 11, November 15 – November 19, and November 26 – November 27, and a 

period of frozen fog on December 4 – December 8.  

 

Three periods of rain occurred over the course of PM2.5 sampling in Strasbourg. 

Figure 5.8 depicts a time series of these events. Significant scavenging of both OC and 

EC occurred during each event. During the period of rain from November 3 – November 

11, [OC] decreased from 5.6 µg/m3 to 1.5 µg/m3, and [EC] decreased from 1.4 µg/m3 to 

0.3 µg/m3. From November 15 – November 19, [OC] decreased from 5.2 µg/m3 to 1.7 

µg/m3, and [EC] decreased from 0.8 µg/m3 to 0.5 µg/m3. From November 26 – 

November 27, [OC] decreased from 5.4 µg/m3 to 4.5 µg/m3, and [EC] decreased from 1.0 

µg/m3 to 0.6 µg/m3. During each of these periods, a depletion in δ13CTC of PM2.5 was also 

observed: δ13CTC decreased from -26.8‰ to -27.2‰ from November 3 – November 11,    

-26.4‰ to -26.9‰ from November 15 – November 19, and -26.3‰ to -26.5‰ from 

November 26 – November 27. During wet deposition, large particles would be scavenged 

more readily than small particles as rain droplets fall (Lim et al.,1991). As previously 

discussed with reference to the scavenging of particles by fog, isotopic differences with 



  117 

particle size caused by differences in primary source material would result in an isotopic 

depletion of interstitial aerosol when large, isotopically enriched particles are scavenged. 

The removal of 13C-enriched large particles through wet deposition could therefore 

explain the depletion in δ13CTC during these events. 

Among all rain events, there is a significant correlation between the δ13CTC and 

the concentrations of OC and TC. These relationships are shown in Figure 5.9. There is a 

correlation between [OC] and δ13CTC of 0.64 (p < 0.01), and a correlation between [TC] 

and δ13CTC of 0.61 (p < 0.01). These results indicate that, as particles are scavenged by 

wet deposition and air mass concentrations decrease, the δ13C of the particles also 

decreases. This data provides further evidence of the selective scavenging of particles 

enriched in 13C. No significant correlation was observed between [EC] and δ13CTC (r = 

0.40, p > 0.1). The majority of primary aerosols from vehicle emissions would be found 

in the submicron size range (Morawska et al., 1998), and since freshly emitted EC from 

would be found in small hydrophobic particles (Herckes et al., 2013), it would not be 

readily or consistently scavenged by wet deposition. 
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Figure 5.9. Correlation between air mass concentrations of OC and TC, and δ13CTC 

during periods of rain in Strasbourg. 

 

A period of frozen fog occurred from December 4 – December 8 and is also 

depicted in Figure 5.8. While no consistent changes in OC or EC concentrations were 

apparent, the δ13CTC of PM2.5 decreased significantly, from -26.2‰ to -26.8‰. It is 

possible that during this period, isotopically enriched particles were scavenged as 

condensation nuclei into particles greater than 2.5 µm in size. Meanwhile, anthropogenic 

particles from vehicle exhaust and wood burning would continue to be emitted as PM2.5 

into the atmosphere (Delhomme et al., 2010; Delhomme & Millet, 2012). This could 

account for a change in δ13CTC while no changes in particle concentration were apparent. 

Conclusions 

Samples of particulate matter and fog were collected in Strasbourg and 

Geispolsheim, France in the fall of 2016. Particulate matter samples were analyzed for 

[OC], [EC], and δ13CTC, and fog samples were analyzed for pH, DOC, conductivity, 

δ13CDOC, and major ions. The composition of fog in Strasbourg has changed over time, 
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with higher pH values and lower concentrations of SO4
2- than in the 1990s. [OC] and 

[EC] concentrations of particulate matter fell in similar ranges to other urbanized valley 

locations, including Bakersfield, CA and the Po Valley in Italy. The scavenging of 

elemental carbon was negligible in Strasbourg but high in Geispolsheim, possibly due to 

the transport of aged aerosol from Strasbourg to Geispolsheim. Scavenging of organic 

carbon was moderate in both locations. 

The δ13CTC of particulate matter was found to be consistent over time in both 

locations when no weather events occurred, but particles were isotopically depleted in the 

presence of fog due to preferential scavenging of larger isotopically enriched particles. 

Rain events also appeared to selectively scavenge isotopically enriched carbon, possibly 

due to isotopic differences with particle size. The δ13CTC of particulate matter in 

Strasbourg and Geispolsheim was also found to be depleted relative to the δ13CTC of 

particles collected in urban locations in the western United States, possibly due to 

differences in the use of diesel and gasoline fuel. 

While the results of this study indicate that preferential particle scavenging is 

occurring by both fog and rain, further work is necessary to determine the exact cause of 

the observed isotopic depletion of interstitial particles. Since it is possible that fine           

(< 2 µm) loess particles that contain calcium carbonate could be present in PM2.5, future 

studies should attempt to measure the fraction of TC that is carbonate. The carbonate 

measurement method introduced in Chapter 3 could be utilized if samples were collected 

for longer periods of time (greater than 24 h) to increase sample load, or a high-volume 

sampler that collects PM samples on large filter sheets (8 x 10 inches) could be deployed 

in place of a low-volume sampler. The use of a high-volume sampler could also make it 
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possible to perform δ13C analysis of the carbonate carbon in the samples. Additionally, 

particle sources, transport, and atmospheric lifetimes can affect the size of particles and 

their hygroscopic properties, affecting particle scavenging efficiencies by fog. Source 

apportionment studies could aid in elucidating the most prominent sources of OC and EC 

in Strasbourg and Geispolsheim, and isotopic analysis of primary sources could help 

identify the types of particles that would most likely be scavenged by fog. 
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CHAPTER 6 

ANALYSIS OF TIME-RESOLVED FOG EVENTS ON THE SOUTHERN 

CALIFORNIA COAST 

The study of the organic composition of fog is relatively new and only became a 

field of interest in the 1990s (Herckes et al., 2013 and references therein). Measurements 

of the total organic carbon (TOC) or dissolved organic carbon (DOC) present in fog are 

now common (Capel et al., 1990; Collett et al., 2008; Erel et al., 1993; Ervens et al., 

2013; Herckes et al., 2002; Reyes-Rodríguez et al., 2009), as are measurements of 

individual organic species (Boris et al., 2016; Boris et al., 2018; Löflund et al., 2002; 

Raja et al., 2008). However, there are currently no published studies on the carbon 

isotopic composition (δ13CDOC) of the organics in fog water. 

Conversely, water isotopes have been used extensively in literature to determine 

the relative contributions of rain and fog waters to local ecosystem hydrology (Corbin et 

al., 2005; Dawson, 1998; Fischer & Still, 2007; Ingraham & Matthews, 1988; Ingraham 

& Matthews, 1990; Schmid et al., 2011; Scholl et al., 2007; Scholl et al., 2011). For 

example, using δ18O and δ2H data, fog drip was shown to contribute to the recharge of 

shallow groundwater in northern Kenya (Ingraham & Matthews, 1988). In northern 

California, Ingraham & Matthews (1990) also found the relative isotopic compositions of 

fog, rain, and groundwater to be dependent upon their respective sources and atmospheric 

processing. Fog water was isotopically depleted relative to its source due to the isotopic 

fractionation during evaporation, which causes vapor to be depleted in δ18O and δ2H 

relative to liquid. Rain was isotopically depleted compared to fog due to Rayleigh 

distillation that occurs when clouds rain-out as they travel over the oceans. The isotope 
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composition of groundwater fell between fog and rain; since the δ18O and δ2H values of 

groundwater did not appear to model the evaporation of rain water, an input of fog drip 

was presumed. 

Rundel and coworkers (1991) extensively described the importance of fog as a 

source of water to plants in the Atacama and Peruvian Deserts. Several subsequent 

studies have focused on studying the isotope signatures of fog and cloud water with the 

aim of distinguishing and quantifying the deposition of each water source. Using isotope 

data, Dawson (1998) showed that fog water is an important source of water for plants in 

California’s redwood forests, especially during seasons with less rain. Similar results 

were obtained by Corbin and coworkers (2005) through the use of a mixing model to 

determine the use of fog water during drought in coastal prairie grasses in northern 

California. Scholl and coworkers (2007) found cloud water to contribute up to 46% of 

precipitation at sites on Maui, HI by utilizing a mixing model of cloud water and rain 

water. 

Some recent studies have focused on using fog stable isotope information to 

analyze δ18O and δ2H in relation to droplet size, temporal evolution, temperature and 

altitude changes, and fog origin. The stable isotopes of clouds collected at Schmücke are 

detailed by Spiegel and coworkers (2012a, 2012b). This campaign showed that collection 

of fog water with a CASCC does not cause artificial isotope fractionation, and there is no 

variation in δ18O and δ2H among different droplet sizes (Spiegel et al., 2012a). 

Additionally, droplets were found to equilibrate quickly with the surrounding vapor, 

anywhere from less than 1/10 of one second to under one minute, with smaller droplets 

equilibrating more quickly. The temporal evolution of δ18O and δ2H during 13 cloud 
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events was also discussed (Spiegel et al., 2012b). Each fog event was found to evolve 

uniquely, with either increasing, decreasing, or increasing then decreasing δ18O and δ2H. 

Changes in δ18O and δ2H were found to be caused either by temperature changes, which 

affect the isotopic equilibrium of condensation, or changes in the air mass that feeds the 

cloud. Another study of fog collected in the Swiss Alps (Michna et al., 2015) found fog 

to form a meteoric water line steeper than the global meteoric water line (GMWL), 

indicating that condensation processes were relevant: Stratus clouds formed by re-

condensation during frontal passages are often observed at the site. Seasonal changes in 

the deuterium excess were also observed, with lower deuterium excess in the more humid 

spring than in the drier autumn months. A campaign sampling fog water throughout the 

Namib Desert in Africa (Kaseke et al., 2017; Kaseke et al., 2018) found that fog across 

the region was isotopically distinct, based upon the type of fog and the water source (for 

example, advective fog from air masses originating over the ocean versus radiation fog 

forming from local rivers, aquifers, and rainfall). 

In this work, the temporal evolution of stable isotopes of fog water (δ18O and δ2H) 

and the stable isotopes of dissolved organic carbon (δ13CDOC) during four fog events will 

be discussed. Isotopic data will be compared to other common measurements of fog 

composition (such as TOC, LWC, and trace organics) to determine how isotopic 

information can complement these measurements when evaluating the evolution of a fog 

event. δ13CDOC measurements are expected to provide information about compositional 

changes to fog constituents, while δ18O and δ2H are expected to provide information 

about the meteorological factors that affect fog formation. At the time of writing, no 

articles discussing the δ13CDOC of fog samples have been published. 
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Materials and Methods 

Sample collection. 

 
 

Figure 6.1. Map of fog and particulate matter sampling sites. The sites of fog events 1 – 4 

along Highway 150 (Casitas Pass) are labeled in light blue. Serra Cross, the site of PM 

sampling, is labeled in green. 

 

Fog samples were collected at Casitas Pass, north of Ventura, CA and inland of 

the Santa Barbara Channel, from June 8 – 14, 2015 (Figure 6.1). Four fog events 

occurred on the mornings of June 11 – 14 that offered sufficient sample for chemical 

analysis (hereafter referred to as events one through four). Fog events one and three were 

captured at the summit of Casitas Pass (34.3863, -119.3809, 350 m a.s.l.), event two from 

below the summit along Highway 150 near an avocado grove (34.3896, -119.4158,       

290 m a.s.l.), and event four from a location along Highway 150 near an orange grove 

(34.3904, -119.4197, 250 m a.s.l.). All sampling sites were on gravel pull-offs along 

Event 4 Event 2 

Events 1, 3 

Serra Cross 
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Highway 150, 2 – 10 m from the road. Motor vehicle traffic was infrequent from 10:00 

pm – 4:00 am (during most sampling periods) and increased somewhat through the final 

morning hours of each fog sampling period. 

Two Caltech Active Strand Cloudwater Collectors (CASCCs, Demoz et al., 1996) 

were used to collect fog water. One stainless steel CASCC (ss-CASCC, Herckes et al., 

2002) was used to collect samples for organic analyses, and one smaller Teflon collector 

(CASCC2) was used to collect samples for analyses of ions and trace metals. The 

samplers were run in tandem during each event, with collection bottles replaced every 1 – 

2 hours to obtain time resolution. A total of 19 samples from four fog events were 

collected; sampling dates and times are reported in Table 6.1. Samples were massed and 

pH was measured on-site immediately after collection. Measurements of pH, TOC, 

inorganic ions, and organic species have been previously reported (Boris et al., 2018).  
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Table 6.1 

Isotopic measurements performed on fog water samples. 

 

 

Atmospheric particulate matter samples were collected at Serra Cross Park in 

Ventura, CA (34.2846, -119.2962) (Figure 6.1). Collection was performed using a Tisch 

high-volume aerosol sampler (1.13 m3/min), which was equipped with a PM2.5 impaction 

stage. Both PM2.5 and PM>2.5 were collected onto prebaked (600°C for a minimum 12 h) 

quartz fiber filters and were stored in aluminum foil at -20°C. Two field blanks were 

collected over the sampling period. Sampling dates and times are reported in Table 6.2. 

 

 

 

 

δ
13

CVPDB δ
13

CVPDB δ
2
HVSMOW δ

2
HVSMOW δ

18
OVSMOW δ

18
OVSMOW

(‰) unc (‰) (‰) unc (‰) (‰) unc (‰)

10-Jun 22:05 0:05 -25.3 0.3 -24.6 0.2 -3.67 0.03

11-Jun 0:05 2:05 -26.5 0.3 -24.8 0.2 -3.74 0.05

11-Jun 2:05 4:05 -26.2 0.3 -26.2 0.2 -3.84 0.04

11-Jun 4:05 6:05 -26.6 0.3 -28.2 0.5 -4.32 0.06

11-Jun 6:05 8:05 -26.5 0.3 -29.2 0.6 -4.69 0.07

12-Jun 2:00 3:00 -25.2 0.3 -11.3 0.2 -2.36 0.07

12-Jun 3:00 4:00 -26.0 0.3 -11.5 0.5 -2.13 0.05

12-Jun 4:00 6:00 -26.2 0.3 -11.6 0.2 -1.97 0.05

12-Jun 6:00 8:00 -26.1 0.3 -11.5 0.1 -1.78 0.06

12-Jun 21:30 23:30 -24.4 0.3 -13.4 0.1 -2.06 0.04

12-Jun 23:30 1:30 -12.6 0.3 -1.93 0.07

13-Jun 1:30 3:30 -24.6 0.3 -12.2 0.3 -1.77 0.07

13-Jun 3:30 5:30

13-Jun 5:30 7:30 -25.4 0.3 -13.0 0.3 -1.76 0.03

14-Jun 0:50 1:50 -25.6 0.3 -5.4 0.3 -0.87 0.08

14-Jun 1:50 2:50 -24.6 0.3 -6.9 0.2 -1.55 0.05

14-Jun 2:50 3:50 -24.8 0.3 -7.5 0.5 -1.7 0.1

14-Jun 3:50 4:50 -25.6 0.3 -9.2 0.1 -1.94 0.04

14-Jun 4:50 6:50 -25.6 0.3 -10.2 0.5 -2.02 0.06

Event 4

Start 

Date

Start 

Time

End 

Time

Event 1

Event 2

Event 3
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Table 6.2 

Isotopic measurements performed on PM samples. The uncertainty in all δ13C 

measurements is 0.2‰. 

 

 

Sample analysis. 

Fog samples were filtered through a prebaked quartz filter for isotopic analysis of 

dissolved organic carbon (DOC). Isotopic measurements for δ13CVPDB of DOC of fog 

samples were performed using an OI Analytical TOC Analyzer coupled to a Thermo 

Delta Plus Advantage Isotope Ratio Mass Spectrometer (TOC-IRMS). The analytical 

uncertainty of samples analyzed on this method is reported at 0.3‰. Potassium hydrogen 

phthalate (KHP) with a known isotopic composition was used as a linearity standard. 

Three in-house glycine standards were used to perform and verify a two-point calibration 

from -39.6‰ to 15.7‰. 

Isotopes of δ2HVSMOW and δ18OVSMOW of fog water were measured using a Los 

Gatos Research DLT-100 Liquid Water Isotope Analyzer (LWIA). Results are reported 

as the average and standard deviation of five replicate injections of each sample. 

δ
13

CVPDB δ
13

CVPDB

PM2.5 (‰) PM>2.5 (‰)

7-Jun 0:00 7-Jun 7:01 -25.8 -24.9

7-Jun 8:00 7-Jun 16:00 -25.0 -24.8

7-Jun 20:00 8-Jun 7:00 -25.6 -24.8

8-Jun 20:33 9-Jun 7:00 -25.5 -25.6

9-Jun 8:28 9-Jun 20:15 -25.6 -25.7

9-Jun 21:01 10-Jun 6:58 -26.4 -24.6

10-Jun 7:16 10-Jun 20:30 -25.1 -26.4

10-Jun 20:50 11-Jun 6:50 -25.0 -24.6

11-Jun 9:30 11-Jun 19:30 -25.1 -25.0

11-Jun 21:00 12-Jun 7:00 -25.0 -24.6

13-Jun 9:00 13-Jun 19:00 -25.6 -24.7

Start Date Start Time End TimeEnd Date
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Measurements were calibrated to the Vienna Standard Mean Ocean Water (VSMOW) 

scale using five water standards with known isotopic compositions ranging from              

-154.3‰ to 108.7‰ for δ2HVSMOW and -19.5‰ to 12.34‰ for δ18OVSMOW. 

All particulate matter samples were analyzed by thermal optical transmittance for 

total carbon (TC) concentrations using a Sunset Lab OC-EC Aerosol Analyzer (Birch & 

Cary, 1996). A variation of Sunset’s “Quartz” TOT method was used. Variable time steps 

of 60-200 seconds were used during OC evolution, with temperature plateaus at 310°C, 

475°C, 615°C, and 870°C. During EC evolution, the temperature was held at 550°C, 

625°C, 700°C, 775°C, and 850°C  for 45 seconds each, with a final hold at 870°C for 120 

seconds. Quality control included the analysis of lab blanks, field blanks, replicate 

samples, and a sucrose standard, which was routinely within 10% of the known 

concentration. 

Isotopic measurements for δ13CVPDB of TC in particulate matter were performed 

using a Costech Elemental Analyzer coupled to a Thermo Delta Plus Advantage Isotope 

Ratio Mass Spectrometer (EA-IRMS). The analytical uncertainty of samples analyzed on 

this method is reported at 0.2‰. NIST 2710 (Montana soil) was used as a linearity 

standard. Three in-house glycine standards were used to perform and verify a two-point 

calibration from -39.6‰ to 15.7‰. 

Results and Discussion  

δ13CVPDB of DOC in fog water samples. 

The  δ13C of DOC (δ13CDOC) was measured in 17 of 19 fog water samples (Table 

6.1). Event 3 had a particularly low liquid water content, and two of the five samples 

collected during this event did not yield enough water for carbon isotope analysis. The 
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volume weighted average δ13CDOC of Events 1 – 4, respectively, were -26.2‰, -26.0‰,    

-24.8‰, and -25.2‰. As discussed in Chapter 2, the δ13CDOC of fog collected in Casitas 

Pass is similar to that of fog collected Davis, another urban sampling site in California. 

 
 

Figure 6.2. Changes in δ13CDOC of each fog event over time. Points represent the 

midpoint of the collection time for each sample. Lines connecting the points are for 

visual aid. Of the five samples collected during Event 3, only the first, third, and fifth 

yielded enough sample for δ13CDOC analysis. See Table 6.1 for sampling details. 

 

With the exception of the first sample collected in Event 4, over the course of 

each fog event, the δ13CDOC decreased over time (Figure 6.2). The magnitude of this 

depletion in δ13C was 1.2‰ for Event 1, and 1.0‰ for Events 2 – 4. Changes in δ13CDOC 

are caused by isotope fractionation processes, which, as discussed in Chapter 2, could 

either be physical or chemical. Chemical processes would include reactions occurring 

within droplets to form aqueous SOA material, while physical processes include the 

scavenging and deposition of organic matter. In the next sections, these possibilities will 
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be explored through comparisons with the organic and inorganic composition of fog 

water. 

Total organic carbon and liquid water content. 

 
 

 
 

Figure 6.3. TOC or DOC measured in fog water as a function of liquid water content. (a) 

Studies were conducted in Dübendorf, Switzerland (Capel et al., 1990), East Peak, Puerto 

Rico (Reyes-Rodríguez et al., 2009), San Pedro, CA (Erel et al., 1993), Davis, CA 

(Ervens et al., 2013), Angiola, CA (Herckes et al., 2002), Whistler, British Columbia 

(Ervens et al., 2013), Fresno, CA (Collett et al., 2008), and Casitas Pass, CA (this study). 

(b) TOC vs. LWC in Casitas Pass (this study), classified by event.  

(a) 

(b) 
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Measurements of DOC and LWC are commonly made and compared in fog water 

studies. Figure 6.3a shows measured DOC or TOC versus LWC at various sites, 

including this study. An inverse relationship was observed between TOC and LWC in 

Casitas Pass fog (r = -0.655, p < 0.01) that appears to be nonlinear. Figure 6.3b shows 

this relationship between TOC and LWC in Casitas Pass fog, classified by event. The fog 

events appear to be clustered, showing that preexisting atmospheric conditions (for 

example, relative humidity and concentration of particles) may have an impact on the 

composition of a fog. An inverse relationship was also observed between TOC and LWC 

for samples collected in Angiola, CA (Herckes et al. 2002), and was also nonlinear, likely 

due to the effect of soluble gases and the variability in atmospheric particle 

concentrations before each event. 

 In general, there are no clear relationships between organics and LWC among all 

sites shown in Figure 6.3a. Some sites do exhibit characteristics that reflective of the 

sampling location. In remote locations, such as East Peak, Puerto Rico (Reyes-Rodríguez 

et al., 2009) and Whistler, British Columbia (Ervens et al., 2013), the organic carbon 

concentrations are lower than in urban locations; The DOC of all samples at East Peak 

are less than 3 mgC/L, and the TOC of all samples collected in Whistler are less than 6 

mgC/L. The TOC of fog in urban locations in California (San Pedro, Erel et al., 1993; 

Davis, Ervens et al., 2013; and Fresno, Collett et al., 2008) are higher than in East Peak 

or Whistler, with a minimum TOC among the three locations of 6 mgC/L and maximum 

of 41 mgC/L. None of these individual sites, however, exhibit significant correlations 

between TOC and LWC. Additionally, no generalizations on the relationship between 

TOC and LWC can be made among all locations. 
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Figure 6.4. Changes in [TOC] of each fog event over time. Points represent the midpoint 

of the collection time for each sample. Lines connecting the points are for visual aid. See 

Table 6.1 for sampling details. 

 

Figure 6.4 shows the evolution of [TOC] over time during each fog event. In 

general, the [TOC] first decreases over time, then increases. This trend would explain the 

negative correlation observed between [TOC] and LWC: As a fog forms, the LWC 

increases, then decreases as the fog dissipates. The inverse trend in [TOC] would 

therefore be explained by a dilution effect. 

Previous studies have made comparisons among the concentrations of inorganic 

fog constituents and LWC (Aleksic & Dukett, 2010; Elbert et al., 2000, 2002; Kasper-

Giebl, 2002; Straub et al., 2012). In general, a tenuous inverse relationship between 

inorganics and LWC exists due to dilution effects that decrease solute concentrations 

with droplet growth, but the relationship is not linear and is complicated by the uptake of 

soluble gases and particle scavenging efficiency, both of which are dependent on droplet 

size and LWC.  
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In this study, no correlation between δ13CDOC and TOC was observed. While the 

TOC concentration decreases then increases over time, the δ13CDOC only decreases. 

Therefore, δ13CDOC is not impacted by dilution effects. 

Organic species. 

In terms of the presence of individual organic species of these fog samples, many 

similarities to other studies exist. Several organic acids (notably, lactic, acetic, propionic, 

formic, pyruvic, valeric, glutaric, succinic, malonic, maleic, oxalic, and methanesulfonic 

acids) were quantified; the breadth and concentrations of these acids indicate a notable 

presence of oxidized organic matter that could originate from aqueous- or gas-phase 

chemistry. Among the identified carboxylic acids, formic acid, acetic acid, and oxalic 

acid dominate in concentration, making up 3.40%, 3.74%, and 3.54%, respectively, of 

TOC (Boris et al., 2018). These small acids were also found in fog collected on 

Baengnyeong Island, South Korea (Boris et al., 2016), Mt. Rax, Austria (Löflund et al., 

2002), and Gulf Coast sites in Baton Rouge, LA and Houston, TX (Raja et al., 2008). 

There is a correlation between δ13CDOC and pyruvate (r = 0.563, p < 0.02) and 

δ13CDOC and malonate (r = 0.564, p < 0.02), but not with any other measured organic 

species. Pyruvate and malonate, along with methanesulfonate and glutarate, correlate 

with oxalate, suggesting that these acids are formed through similar oxidation processes 

(Boris et al., 2018). The lack of correlation of δ13CDOC with organic species implies that 

carbon isotope information cannot provide a generalization of overall fog composition, 

origin, or reactivity, and changes in δ13CDOC are not reflected in aqueous SOA material 

formation. 
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Inorganic species. 

As the Casitas Pass sampling sites were located within 6 km of the Pacific Ocean, 

sea spray was expected to be a significant source of PM. The mean value of the Cl-/Na+ 

ratio was 1.1 (Boris et al., 2018), confirming the influence of sea spray aerosols; the 

expected ratio of sea spray is 1.16 (Keene et al., 1986). Consistent correlations of sea 

spray ions with δ13CDOC were found: Na+ (r = 0.486, p < 0.05), Mg2+ (r = 0.516,                

p < 0.05), Ca2+ (r = 0.494, p < 0.05), and Cl- (r = 0.501, p < 0.05). Sea spray elements are 

generally associated with larger particle size modes (Ault et al., 2013; Junge, 1972), 

which would be scavenged more readily and would deposit quicker than particles in the 

accumulation mode. δ13CDOC might therefore be used as a parameter to evaluate the 

scavenging and deposition of particles. Figure 6.5 outlines the process by which δ13CDOC 

could change based on particle scavenging and deposition. As described in Chapter 4 and 

in other studies (Chalbot et al., 2014; Masalaite et al., 2015), δ13C of particles varies 

among particle sizes due to differences in sources that contribute to PM in different size 

modes, and larger particles tend to be enriched in δ13C relative to small particles. As a fog 

forms, larger particles are scavenged more readily than small particles, which would 

result in 13C-enriched particles becoming incorporated in the aqueous phase. Droplets 

formed on large condensation nuclei are larger than droplets formed around smaller 

condensation nuclei (Svenningsson et al., 1997), and larger (δ13C-enriched) droplets 

would then be deposited either gravitationally or by turbulent deposition faster than small 

droplets (Collett et al., 2008; Collett et al., 2001). The remaining fog would become 

increasingly depleted in δ13CDOC. Over time, the particles available to act as condensation 

nuclei would become lighter in δ13C, further driving the δ13CDOC of the fog to become 



  135 

depleted. This depletion of interstitial particles during a fog event was observed in PM2.5 

collected in Strasbourg in Chapter 5. 

 

Figure 6.5. A simplified schematic illustrating the temporal scavenging and deposition of 

particles over the course of a fog event. (a) Large (orange) and small (yellow) particles 

are present before a fog. (b) As a fog forms (blue), larger particles are preferentially 

scavenged as cloud condensation nuclei. (c) As LWC increases, large droplets formed 

around large particles deposit, and particle scavenging continues. (d) Growing droplets 

continue to deposit, and small particles are scavenged more frequently as large particles 

are removed from the atmosphere. 

 

PM2.5 and PM>2.5 were collected in Ventura, CA at Serra Cross during this 

campaign. As shown in Figure 6.6, PM>2.5 is enriched in δ13CTC relative to PM2.5 in eight 

of 11 samples, though some of the differences between coarse and fine particles are 

small. The number of samples collected in this location thus far is limited, and more 

sampling and isotopic analysis of size-segregated particles would be needed to determine 

the rate of occurrence of δ13CTC-enriched large particles, and under what conditions (i.e., 

temporal, meteorological) enriched large particles occur. 
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Figure 6.6. A comparison of the δ13CTC of coarse (PM>2.5) and fine (PM2.5) particle size 

fractions collected in Ventura, CA in June 2015. a 1:1 line is included for visual aid. 

 

 δ2H and δ18O of fog water. 

Studies of the composition of fog are generally quite difficult, as fog is a dynamic 

system. Along with the continuous formation and evaporation of droplets and the 

scavenging of PM and VOCs, changes in meteorological conditions, such as temperature, 

relative humidity, and the movement of air masses, can affect fog composition. Isotope 

analysis of water droplets will be used to evaluate these effects. 
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Figure 6.7. δ2H versus δ18O of fog water samples. The line for orthogonal regression 

analysis, as well as the LMWL (Fischer & Still, 2007) and GMWL, are included for 

reference. The fog samples fall below both the GMWL and LMWL. 

 

The δ2H and δ18O of fog water samples are plotted in Figure 6.7. δ2H is plotted as 

a function of δ18O in order to compare these samples to other meteoric water lines. The 

samples collected at Casita’s Pass form a Cloud Water Line (CWL) with the equation 

δ2H = 7.3 × δ18O + 3.0 × 10-3, calculated by orthogonal regression. The slope of this line 

is greater than that of a reported local meteoric water line (LMWL) of mixed rain and fog 

samples collected on the nearby Channel Islands (δ2H = 6.7 × δ18O + 6.6 × 10-3, Fischer 

& Still, 2007), but less than the global meteoric water line (GMWL, δ2H = 8 × δ18O + 10 

× 10-3). Both of these lines are plotted in Figure 6.7 for reference. The fog data falls 

below the GMWL, as it does in other studies of coastal fog (Ingraham & Matthews, 

1990; Kaseke et al., 2018; M. Scholl et al., 2011). Inland and mountain fogs have been 

found to fall above the GMWL, due to water recycling and precipitation during transport 

(Ingraham & Matthews, 1988; Spiegel et al., 2012b). The deuterium excess for the fog 
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collected in Casitas Pass (3‰) is lower than that for the Channel Island study (6.6‰) and 

the GMWL (10‰). Spiegel and coworkers (2012b) observed that a low deuterium excess 

could represent early-stage condensation. The low deuterium excess in Casitas Pass fog 

could be indicative of minimal transport of the air masses feeding the fog. 

The isotope effects observed throughout the hydrologic cycle are effected by 

myriad processes, including evaporation, condensation, temperature, relative humidity, 

the distance traveled by an air mass, and changes in the water vapor feeding a cloud (Gat, 

1996; Spiegel et al., 2012b). Evaporation that occurs as rain falls causes the rain droplets 

to become isotopically enriched relative to the cloud; these samples generally display a 

slope less than 8 and a smaller deuterium excess, (Gat, 1996), as is evident in the 

Meteoric Water Line observed in the Channel Islands relative to the GMWL. However, 

since the resulting vapor is isotopically depleted, subsequent rains become isotopically 

depleted and would have a greater deuterium excess (Dansgaard, 1964).  
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Figure 6.8. Changes in (a) δ2H and (b)  δ18O of each fog event over time. Points represent 

the midpoint of the collection time for each sample. Lines connecting the points are for 

visual aid. The fourth of five samples collected during Event 3 was not aliquoted for δ2H 

and δ18O analysis. See Table 1 for sampling details. 

 

Figure 6.8 shows the temporal evolution of δ2H and δ18O for each fog event. δ2H 

and δ18O are well correlated among all events (r = 0.975, p < 0.001). The volume-

(a) 

(b) 
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weighted average of δ2H for events 1 – 4, respectively, is -26.6 ± 0.3‰, -11.5 ± 0.2‰,      

-12.7 ± 0.3‰, and -7.7 ± 0.3‰, with a range in values of -29.2‰ – -5.4‰. The volume-

weighted average of δ18O for events 1 – 4, respectively, is -4.0 ± 0.1‰, -2.0 ± 0.1‰,        

-1.8 ± 0.1‰, and -1.6 ± 0.1‰, with a range in values of -4.7‰ – -0.9‰. These values 

fall well within range of other published studies of fog globally, which range from -71 – 

+13‰ for δ2H and -10.4 – +2.7‰ for δ18O (Scholl et al., 2011). δ2H and δ18O are notably 

depleted in event 1 relative to events 2 – 4. This is likely due to the occurrence of rain in 

the days before event 1; rain-out of air masses prior to a fog event causes isotopic 

depletion due to depleted rain water, modeled by Rayleigh distillation (Gat, 1996; Spiegel 

et al., 2012b). 

 

Figure 6.9. Temperatures measured in Oxnard, CA during each fog event. 

 

During each of the fog events at Casitas Pass, the δ2H and δ18O behave differently 

over time. From the start to end of fog collection in Event 1, δ2H decreased by 4.6‰, and 

δ18O decreased by 1.0‰. During Event 2, δ2H increased by 0.2‰, and δ18O increased by 
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0.6‰. During Event 3, δ2H increased by 0.5‰, and δ18O increased by 0.3‰. During 

Event 4, δ2H decreased by 4.8‰ and δ18O decreased by 1.1‰. Figure 6.9 plots the 

temperature during each fog event, recorded at a nearby weather station in Oxnard, CA 

(https://www.wunderground.com/history/daily/us/ca/oxnard/KOXR). Over the course of 

Event 1, the temperature drops approximately 1.5 degrees, which may have caused the 

observed depletion in δ2H and δ18O. The temperature during Event 2 was fairly stable 

until 6:00 AM, when the temperature increased by one degree. Over the course of Event 

3, the temperature first decreased from 18°C to 17°C from 9:00 PM to midnight, then 

increased again to 18°C starting at 5:00AM. The enrichment in δ2H and δ18O during 

Events 2 and 3 are somewhat mirrored towards the end of each of these events by the 

change in temperature at the end of sample collection. Similarly, the temperature during 

Event 4 is steady at 17°C until 6:00 AM, and then decreases by 0.5°C; however, the δ2H 

and δ18O become depleted throughout Event 4. It is possible that changes in the air mass 

feeding the fog could cause the observed changes in δ2H and δ18O during Events 2 – 4. 

Figure 6.10 shows the back trajectories of the air masses calculated using HYSPLIT. 

Over the course of Event 2, the origin of the air masses shifted from west to east. During 

Event 3, there is a shift from west to east between midnight and 2:00 AM. During Event 

4, the air mass trajectories shift from long-range to local transport. 
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Figure 6.10. HYSPLIT back trajectory analysis. From Boris et al., 2018. 

 

There is a positive correlation between δ13C and each of the water isotopes (δ2H:   

r = 0.594, p < 0.02; δ18O: r = 0.588, p < 0.02). As the condensed phase is generally 

enriched in δ2H and δ18O relative to vapor due to equilibrium isotope effects, it would be 

interesting to observe if isotopically enriched water condenses and deposits sooner than 

depleted water, similarly to the way that δ13C-enriched fog is scavenged and deposited 

faster than δ13C-depleted fog (Figure 6.5). This may be a phenomenon akin to Rayleigh 

distillation, as isotopically enriched water condenses and is rained out of a cloud before 

isotopically depleted water. If so, it may be possible for δ2H and δ18O to be used as 

tracers in analyzing the scavenging and deposition of organic PM by fog in conjunction 

with δ13C.  

Only one field study currently exists that evaluates the temporal evolution of fog 

or cloud events (Spiegel et al., 2012a, 2012b). This study, conducted at the summit of 
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Schmüke in Germany, modeled thirteen cloud vents and found two major causes of 

temporal changes in isotopic composition during an event: changes in meteorological 

conditions (such as temperature or relative humidity), or changes in the composition of 

the air mass feeding the cloud. In the cases where temperature affected δ2H and δ18O, 

increases in temperature caused isotopic enrichment, and decreases in temperature caused 

isotopic depletion. However, no overarching consistent trends in the temporal evolution 

of fog were concluded from this study. 

Cloud events at Schmüke and Casitas Pass, however, may not be directly 

comparable, since the environmental conditions and transport time of the clouds/fog are 

different. Additionally, air masses that travel longer distances are more subject to isotopic 

depletion through Rayleigh distillation (Spiegel et al., 2012b); fog and cloud is generally 

more enriched in coastal areas or lower latitudes (Scholl et al., 2011). 

Conclusions 

Compositional changes in time-resolved fog events collected in Casitas Pass, CA 

were studied. TOC and LWC were inversely correlated, and the relationship was not 

linear. Comparisons of TOC vs. LWC during each event showed that the events were 

clustered, indicating that dilution plays a role in TOC concentration. The fog samples 

also contained organic species found in other locations, and correlations among oxidized 

species imply similarities in their oxidation pathways. 

δ13CDOC of the fog samples decreased over time during each event, but did not 

correlate consistently with organic species. There was, however, a correlation δ13CDOC 

with ions associated with sea spray. This observation shows that δ13CDOC may be useful 

in observing fog scavenging and deposition, as aerosols associated with sea spray are 
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generally coarse and are scavenged and deposited more readily than fine, 

anthropogenically-derived particles. 

The isotopes of fog water (δ2H and δ18O) form a CWL  (δ2H = 7.3 × δ18O + 3.0 × 

10-3) that falls below the GMWL and a LMWL calculated from mixed fog and rain on the 

Channel Islands (Fischer & Still, 2007). Both the slope and deuterium excess of the CWL 

are consistent with fog that has not undergone synoptic scale transport. The changes in 

δ2H and δ18O during each event may exhibit influence from both changes in temperature 

and changes in the air masses feeding the fog. Based upon the correlation of δ2H and 

δ18O with δ13CDOC, there is a possibility that water isotopes could be indicators of droplet 

deposition, similar to Rayleigh distillation observed in rainout. It may be interesting in 

future studies to focus on this possible relationship between water isotopes and δ13CDOC. 

Overall, these multiphase atmospheric systems are dynamic and highly complex. 

Measurements of stable isotopes add a breadth of new information that can lead to a 

better understanding of fog scavenging, evolution, and deposition. 
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CHAPTER 7 

SUMMARY AND FUTURE WORK 

The major goal of this work is to understand the processing of organic particulate 

matter by fog and clouds. Particulate matter has a pronounced effect on our climate and 

causes negative health outcomes. Reactions that occur in atmospheric waters can form 

new secondary aerosol material from gas-phase species or primary organic aerosols; it is 

therefore important to understand these reactions, as well as how organic material is 

scavenged and deposited, so that climate and health effects can be assessed. Stable 

isotope systems are used to study these processes because primary sources of aerosols 

and gas-phase species have distinguishable isotopic compositions, and isotope 

fractionation occurs in both physical and chemical processes. Measurements of stable 

isotopes can be used to track all aspects of atmospheric processing, from particle 

scavenging, reactions that form secondary organic aerosol material, and particle 

deposition. Stable isotopes of carbonaceous material (δ13C) have been used widely in 

studying volatile and particle phase atmospheric chemistry, but studies on how organic 

matter is processed by fog have not been previously conducted. Here, field studies are 

used to determine the isotopic composition of carbonaceous particles in several locations, 

and assess how the particles are effected by fog through changes in δ13C. 

Chapter 2 provided an overview of carbon isotope signatures of primary organic 

aerosol sources collected and analyzed for this study as well as several examples from 

literature. The δ13C of particulate matter, the δ13C of the DOC of fog, and the comparison 

of the δ13C of coexisting fog and interstitial particles were also discussed. It was 

hypothesized that both the δ13CTC of particulate matter and the δ13CDOC of fog would 
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reflect the δ13C signatures of primary aerosol sources, but that the δ13CDOC of fog would 

differ from the δ13CTC of coexisting interstitial particles since the scavenging of particles 

and gases by fog is selective based upon the chemical composition of carbonaceous 

atmospheric constituents. The δ13CTC of particulate matter was found to reflect the δ13C 

of primary aerosol sources expected for each sampling site; the δ13CTC of particles 

collected in the cities of Davis, Bakersfield, and Ventura, CA, and Monterrey, MX, all 

fall within similar ranges, while the δ13CTC of particulate matter in Whistler, BC was 

depleted in comparison due to the dominance of primary biogenic emissions in this rural 

location. δ13CTC of particulate matter collected in Tempe, AZ was enriched compared to 

other urban locations due to the presence of carbonates in blown dust prevalent in the 

desert, while the δ13CTC of particles collected in the cities of Strasbourg and 

Geispolsheim were depleted relative to cities in North America due to the greater 

influence of diesel fuel emissions relative to gasoline emissions. The δ13CDOC of fog also 

mirrored these results, as fog from Davis and Casitas Pass, CA contained DOC with 

similar isotopic composition, and the δ13CDOC of fog from Whistler was depleted in 

comparison. Fog collected on Baengnyeong Island, South Korea was enriched in δ13CDOC 

due to the influence of marine organic carbon. The δ13CDOC of fog collected in the cities 

of Strasbourg and Metz, France were again depleted relative to fog in California, but the 

δ13CDOC of fog from suburban towns of Geispolsheim and Erstein was variable, possibly 

due to the influence of both urban and agricultural transported particles in these locations. 

The comparison of the δ13CDOC of fog and δ13CTC of interstitial particles does show that 

the two are indeed dissimilar, but the isotopic changes that occur in scavenging are not 

the same in French sites versus those in the United States and Canada. Future work 
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should focus on measuring the isotopic fractionation that occurs in the particle and 

aqueous phases, as well as the gas phase, as a fog forms so that all of the processes that 

affect the δ13CDOC of fog can be understood. 

In Chapter 3, a new method to quantify carbonate in particulate matter samples 

was developed and tested for accuracy, precision, and reproducibility. Due to restrictions 

on filter size, sample homogeneity, and filter material, existing methods of carbonate 

quantification are not suitable for all particulate matter samples. Here, the CO2 released 

from a filter upon acidification in a sealed jar is measured at ambient pressure. The 

amount of filter analyzed can be customized to up to 24 cm2 depending on the particle 

load to decrease detection limits. The amount of sodium bicarbonate added to a clean 

quartz filter was measured within 15% of the known mass, and triplicate analyses of 

particulate matter samples resulted in a median standard deviation within 8% of the 

measured carbonate concentration. For particulate matter samples collected in locations 

with high concentrations of carbonate (such as Tempe, AZ, discussed in Chapter 4), this 

method can be used to determine whether carbonate is a significant contributor to δ13CTC. 

Chapter 4 discussed the quantification and measurement of δ13C of the total 

carbon and n-alkanes present in particulate matter in Tempe, AZ. It was hypothesized 

that seasonal differences in the concentration and δ13C of total carbon and n-alkanes 

would be observed based on changes in weather conditions and particle sources. It was 

found that the δ13CTC was heavily influenced by seasonal trends, including inversion, 

transport, population density, and photochemical activity. January exhibited dominant 

anthropogenic influences, while April, June, and October had a more prominent influence 

of biogenic emissions, based on differences in δ13CTC and n-alkane CPI values. Within a 
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sampling period, variations in δ13CTC were caused by sources that generate particles in 

different size modes (soil and dust in particles greater than 1.5 µm, and anthropogenic 

emissions in particles smaller than 1.5 µm). Carbonate in coarse particles was shown to 

have the most significant impact on the observed differences in δ13CTC of coarse and fine 

particles. The δ13C values of n-alkanes exhibited a mixture of C3 plant emissions and 

fossil fuel emissions, and C4 plants may also have contributed in October due to the 

seasonal changes in dominant plant types in the American southwestern deserts. Future 

studies should focus on seasonal measurements of both δ13C and δ2H of n-alkanes in 

particulate matter and major n-alkane sources (such as vehicle exhaust, C3 plants, and C4 

plants) to work toward a more complete source apportionment of urban n-alkane 

emissions. 

Chapter 5 discussed the first study of interactions between fog (and other 

multiphase systems, including rain) and particulate matter using δ13C in two sites in 

northeastern France, Strasbourg and Geispolsheim. It was hypothesized that fog and rain 

would affect the δ13CTC of particles, due to their selective scavenging of coarse particles. 

Concentrations of organic and elemental carbon were found to be consistent with other 

urbanized valley locations (Bakersfield, CA and the Po Valley, Italy). Scavenging of 

organic carbon was similar to other urban locations. The scavenging of elemental carbon 

was negligible in Strasbourg but high in Geispolsheim, possibly due to the transport of 

aged aerosol from Strasbourg to Geispolsheim. The δ13CTC of particulate matter was 

found to be consistent over time in both Strasbourg and Geispolsheim when no weather 

events occurred, but particles were isotopically depleted in the presence of fog and rain 

due to preferential scavenging of larger, isotopically enriched particles. While the results 
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of this study indicate that preferential particle scavenging by both fog and rain occurred, 

further work is necessary to determine the exact cause of the observed isotopic depletion 

of interstitial particles. Since it is possible that fine (< 2 µm) loess particles that contain 

calcium carbonate could be present in PM2.5, future studies should attempt to quantify the 

carbonate in particulate matter. A longer sample collection time using a low-volume 

sampler could make it possible to quantify carbonate using the method developed in 

Chapter 3, but the use of a high-volume sampler (as was used to collect particulate matter 

in Chapter 4) could provide enough sample to both quantify CC and analyze the δ13C of 

carbonate. 

Chapter 6 discussed the temporal evolution of fog collected in Casitas Pass, on the 

southern California coast. This is the first study performed on the δ13CDOC of time-

resolved fog samples. The stable isotopes of fog water (δ18O and δ2H) and dissolved 

organic carbon (δ13CDOC) during four fog events were measured and compared to other 

common measurements of fog composition to determine how isotopic information can 

complement these measurements when evaluating the evolution of a fog event. It was 

hypothesized that δ13CDOC measurements would provide information about compositional 

changes to fog constituents, while δ18O and δ2H would provide information about the 

meteorological factors that affect fog formation. The δ13CDOC of the fog samples were 

found to decrease over time during each event. There was no correlation between δ13CDOC 

and TOC; TOC of fog and the liquid water content were, however, found to have a 

nonlinear inverse relationship, likely caused by the dilution of fog droplets over the 

duration of a fog. Therefore, dilution did not impact δ13CDOC. Additionally, correlations 

among oxidized organic species measured in the fog imply similarities in their oxidation 
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pathways; however, there was no consistent correlation between these species and 

δ13CDOC, indicating that δ13CDOC is not a metric of aqueous SOA material formation. A 

correlation was observed between δ13CDOC and ions associated with sea spray, indicating 

that δ13CDOC may be useful in observing fog scavenging and deposition; aerosols 

associated with sea spray are generally coarse and are scavenged and deposited more 

readily than fine particles. The isotopes of fog water (δ2H and δ18O) form a cloud water 

line with the equation δ2H = 7.3 × δ18O + 3.0 × 10-3. This line falls below the global 

meteoric water line and is consistent with fog that has not undergone synoptic scale 

transport. The changes in δ2H and δ18O during each event may exhibit influence from 

both changes in temperature and changes in the air masses feeding the fog. Based upon 

the correlation of δ2H and δ18O with δ13CDOC, there is a possibility that principles of 

Rayleigh distillation may be used as indicators of fog evolution and droplet deposition.  
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Table A1 

Experiments performed on three containers at 5, 15, and 25 minutes, and 4 hours after 

HCl addition, to determine a suitable incubation time. 
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Table A1 (continued) 

Experiments performed on three containers at 5, 15, and 25 minutes, and 4 hours after 

HCl addition, to determine a suitable incubation time. 
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Table A2 

Experiments performed on three containers at 15, 20, and 25 minutes, and 3.5 hours after 

HCl addition, to determine a suitable incubation time. 
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Table A2 (continued) 

Experiments performed on three containers at 15, 20, and 25 minutes, and 3.5 hours after 

HCl addition, to determine a suitable incubation time. 
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Table A3 

Experiments performed on three containers to determine a suitable incubation time. The 

first measurement was taken 20 minutes after HCl addition, and subsequent 

measurements were taken every 30 minutes. 
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Table A3 (continued) 

Experiments performed on three containers to determine a suitable incubation time. The 

first measurement was taken 20 minutes after HCl addition, and subsequent 

measurements were taken every 30 minutes. 
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Table A3 (continued) 

Experiments performed on three containers to determine a suitable incubation time. The 

first measurement was taken 20 minutes after HCl addition, and subsequent 

measurements were taken every 30 minutes. 
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APPENDIX B 

SAMPLING OF SOURCE MATERIALS IN TEMPE, AZ AND N-ALKANE LIMITS 

OF DETECTION 



  179 

Sampling and Analysis of Local Source Materials 

Potential local source materials of particulate matter were collected and analyzed. 

Since primary biogenic particles are known to directly comprise a portion of coarse 

particulate matter in Phoenix (Jia & Fraser, 2011), plant material was collected from the 

Arizona State University Tempe campus within 0.5 miles of the sampling site on April 1, 

2016 (Table B1). Samples were dried at 100°C for 1 hour and homogenized to a fine 

powder with a mortar and pestle for analysis. Four additional plant material samples were 

collected in 2008 from the Herbarium at Arizona State University and were previously 

homogenized (Jia & Fraser, 2011). 
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Table B1 

Plant material sampled on the ASU campus in Tempe, AZ and from the Herbarium at 

Arizona State University and results of isotopic analysis. The uncertainty in all δ13CTC 

results is 0.2‰. 

 

 

Tailpipe emissions were scraped from vehicles parked on the ASU campus in 

Tempe in the spring and summer of 2016 (Table B2). 

 

 

 

Common Name Scientific name
Photosynthetic 

Pathway
Sample Type δ

13
CTC (‰)

Date Palm Phoenix dactylifera C3 leaf -26.2

leaf -28.2

flower -24.6

leaf -27.3

flower -26.1

Whitebark Acacia Acacia willardiana C3 leaf -23.9

Mexican Bird of Paradise Caesalpinia pulcherrima C3 leaf -26.3

Palo Brea Parkinsonia praecox C3 leaf -27.4

leaf -27.8

flower -27.2

Grass family Poaceae fam. C4 leaf -13.6

leaf -13.8

flower -14.1

leaf -18.4

flower -15.8

leaf -25.8

flower -25.6

cactus -13.2

flower -13.3

Fern-of-the-Desert Lysiloma thornberi C3 leaf -29.2

Seville Sour Orange Citrus aurantium C3 leaf -29.1

Alkalai Goldenbush Isocoma Acradenia C3 homogenized powder -28.8

Hummingbird Bush Justicia Californica C3 homogenized powder -29.2

Mesquite Prosopis Juliflora C3 homogenized powder -27.2

Desertbroom Baccharis Sarothroides C3 homogenized powder -30.9

Bottlebrush Tree Melaleuca viminalis C3

Trumpetbush Tecoma stans C3

Blue Palo Verde Parkinsonia florida C3

Candelilla Euphorbia antisyphilitica C4

Prickly Pear Opuntia sp. (hybrid cultivar) CAM

Red Yucca Hesperaloe parviflora CAM

Texas Ranger Leucophyllum sp. C3
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 Table B2 

Tailpipe scrapings from vehicles parked on the ASU campus in Tempe, AZ. The 

uncertainty in all δ13CTC results is 0.2‰. 

 

 

Aerosol sampling of emissions in a parking structure (Tyler Street Garage, 

Arizona State University, Tempe, AZ) was performed in May 2010 using a Tisch high-

volume aerosol sampler (1.13 m3/min) equipped with a PM2.5 impaction stage using 

prebaked quartz fiber filters (Table B3). The sampler location and structure details are 

identical to previous studies (Benn et al., 2012; Majestic et al., 2009). 

 

Table B3 

Parking structure emissions sampled at the Tyler Street Garage on the ASU campus in 

Tempe, AZ. The uncertainty in all δ13CTC results is 0.2‰. 

 

Sample 

Date

Fuel 

Type

δ
13

CTC 

(‰)

4/19/2016 diesel -25.6

6/21/2016 diesel -25.5

6/21/2016 diesel -24.0

7/10/2016 gasoline -26.4

7/10/2016 gasoline -26.3

7/10/2016 gasoline -25.8

Sampling 

Start Date

Sampling 

End Date

Sampling 

Start Time

Sampling 

End Time

δ
13

CTC 

(‰)

5/4/2010 5/6/2010 9:15 AM 9:09 AM -24.3

5/6/2010 5/10/2010 9:17 AM 8:47 AM -24.2

5/10/2010 5/12/2010 8:51 AM 8:58 AM -24.5

5/12/2010 5/14/2010 9:04 AM 3:18 PM -24.4

5/14/2010 5/17/2010 3:25 PM 9:30 AM -24.4

5/17/2010 5/18/2010 9:35 AM 2:45 PM -24.5



  182 

Fireplace emissions were collected by performing a controlled burn in June 2016 

of several common fireplace materials. A firewood bundle, two Duraflame logs (standard 

and Earth Fire), and a Clean Flame compressed recycled paper log were purchased from 

a local supermarket. A controlled burn site was set up in an empty lot north of the 

Arizona State University Tempe campus.  A ceramic tile was placed on the ground and 

surrounded by cinderblocks. A ventilation duct placed on top of the cinderblocks was 

attached on the opposite side to a Tisch high-volume aerosol sampler (1.13 m3/min). 

Each material was ignited, and total suspended particulate (TSP) emissions were 

collected onto prebaked quartz fiber filters in both flaming and smoldering conditions 

(Table B4). Samples were stored in aluminum foil at -20°C. 

 

Table B4 

Fireplace emissions collection details and carbon isotope analysis results. The 

uncertainty in all δ13CTC results is 0.2‰. 

 

 

Aerosol samples collected during campaigns studying the health and 

environmental effects of biomass burning were analyzed. PM2.5 of prescribed pile burns 

Sample 

Name
Sample Type Burn Type δ

13
CTC (‰)

A1 Firewood Flame -21.4

A2 Firewood Smolder -21.7

B1
Clean Flame compressed 

recycled paper log
Flame -29.7

B2
Clean Flame compressed 

recycled paper log
Smolder -29.5

C1 Duraflame Hearth Fire log Flame -27.5

D1 Duraflame log Flame -27.4
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was sampled in 2006 on the White Mountain Apache Tribe reservation in eastern Arizona 

(Robinson et al., 2008). PM2.5 of prescribed pile burns and broadcast burns was sampled 

between 2001 and 2007 in the Coconino and Apache – Sitgreaves National Forests in 

northern Arizona (Robinson et al., 2011). PM2.5 and TSP ambient air samples from a 

forest fire in Ft. Collins, CO were provided by Colorado State University (Table B5). 

 

Table B5 

Biomass burning sample details and carbon isotope analysis results. The uncertainty in 

all δ13CTC results is 0.2‰. 

 

 

Soil samples collected in 2009 and 2010 as part of the Desert Southwest Coarse 

Particulate Matter Study in Pinal County, AZ (Clements et al., 2014; Upadhyay et al., 

2015) were analyzed. Agricultural soil, native soil, and unpaved dirt road dust from an 

Sample Name Sample Details
Reference

δ
13

CTC 

(‰)

2007QSm1B Slash-Pile Prescribed Burn Robinson et al.,  2011 -25.4

2007Qlg1A Slash-Pile Prescribed Burn Robinson et al.,  2011 -24.6

FC PM2.5 062502 GE Slash-Pile Prescribed Burn This Study -23.9

FC TSP 062502 GE Slash-Pile Prescribed Burn This Study -23.3

A31S2Q5 Broadcast Prescribed Burn Robinson et al.,  2011 -24.3

A32S1Q4 Broadcast Prescribed Burn Robinson et al.,  2011 -24.6

A33S1Q4 Broadcast Prescribed Burn Robinson et al.,  2011 -24.3

QS 1.2 Broadcast Prescribed Burn Robinson et al.,  2011 -24.4

QS 1.3 Broadcast Prescribed Burn Robinson et al.,  2011 -24.0

QS 1.4 110205 Broadcast Prescribed Burn Robinson et al.,  2011 -24.1

QS1A 042006 Pinyon Pine Wood Mock Burn Robinson et al.,  2011 -22.7

QS1B 042006 Ponderosa Pine Wood Mock Burn Robinson et al.,  2011 -24.9

QS1 102005 Kiwanis Pine Needles Mock Burn Robinson et al.,  2011 -25.8

Q402 Slash-Pile Prescribed Burn Robinson et al., 2008 -24.3

Q301 Slash-Pile Prescribed Burn Robinson et al., 2008 -24.3

Q202 Slash-Pile Prescribed Burn Robinson et al., 2008 -23.0

Q101 Slash-Pile Prescribed Burn Robinson et al., 2008 -24.2
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agricultural area collected in the spring, fall and winter were selected for analysis (Table 

B6); see references for further details on sample collection. The samples, which had been 

stored at -20°C, were heated at 100°C for 24h and were then gently compressed to break 

up large soil aggregates, taking care to avoid mechanical abrasion of small particles. The 

samples were added to a clean 1L vacuum flask, and HEPA-filtered air was blown over 

the sample to resuspend small particles. The particles passed through a size-selective 

cyclone (URG Corporation) at 28L/min (the operating flow rate for PM10 sampling) and 

collected onto three parallel prebaked 47mm quartz fiber filters (Upadhyay et al., 2015). 

Filters were stored in aluminum foil at -20°C.  

 

Table B6 

Resuspended soil (PM10) sample details and carbon isotope analysis results. nss = 

available amount of sample not sufficient for analysis. The uncertainty in all δ13CTC 

results is 0.2‰.The uncertainty in all δ13CCC results is 0.3‰. 

 

 

All source materials collected onto quartz fiber filters were analyzed by thermal 

optical transmittance (TOT) for TC concentration using a Sunset Lab OC-EC Aerosol 

Sample Category Season δ
13

CTC (‰) δ
13

CCC (‰)

Spring -15.8 -0.9

Fall -15.9 -1.7

Winter -16.7 -1.6

Spring -13.4 -3.3

Fall -15.9 nss

Winter -14.7 nss

Spring -5.0 -1.6

Fall -4.0 -0.6

Winter -4.7 0.0

Native

Agricultural

Unpaved Dirt Road 

Dust from an 

Agricultural Area
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Analyzer (Birch & Cary, 1996) using a variation of Sunset’s “Quartz” TOT method. 

Variable time steps of 60-200 seconds were used during OC evolution, with temperature 

plateaus at 310°C, 475°C, 615°C, and 870°C. During EC evolution, the temperature was 

held at 550°C, 625°C, 700°C, 775°C, and 850°C  for 45 seconds each, with a final hold at 

870°C for 120 seconds. Quality control included the analysis of lab blanks, field blanks, 

replicate samples, and a sucrose standard, which was routinely within 10% of the known 

concentration. 

Isotopic measurements for δ13CVPDB of TC in all source materials were performed 

using a Costech Elemental Analyzer coupled to a Thermo Delta Plus Advantage Isotope 

Ratio Mass Spectrometer (EA-IRMS). The analytical uncertainty of samples analyzed on 

this method is reported at 0.2‰, unless the standard deviation of replicate standards is 

greater than 0.2‰. NIST 2710 (Montana soil) was used as a linearity standard for burn 

samples and soil samples. NIST 1573a (tomato leaves) was used as a linearity standard 

for biogenic samples. Three in-house glycine standards were used to perform and verify a 

two-point calibration from -39.6‰ to 15.7‰. 
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Limits of Detection of n-Alkanes Analyzed by GC/MS 

Table B7 

Limits of detection of n-alkanes.  
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Table B7 (continued) 

Limits of detection of n-alkanes. 
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APPENDIX C 

SAMPLING INFORMATION AND ANALYSIS RESULTS FOR PARTICULATE 

MATTER SAMPLES COLLECTED IN STRASBOURG AND GEISPOLSHEIM 
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Table C1 

Sampling details and analysis results for PM2.5 samples collected in Strasbourg. δ13CVPDB 

results are for total carbon; the uncertainty for all values is 0.2‰. * = [TC] below the 

calibration curve and could not be isotopically characterized. 

 

 

 

 

Sample 

ID
Start Date/Time End Date/Time

Sampling 

Time (h)

Air 

Volume 

(m
3
)

OC 

(µg/m
3
)

OC unc 

(µg/m
3
)

EC 

(µg/m
3
)

EC unc 

(µg/m
3
)

TC 

(µg/m
3
)

TC unc 

(µg/m
3
)

δ
13

CVPDB (‰)

Field Blanks:

SA01 10/27/16 12:43 PM 10/27/16 12:44 PM 0.02 0.04 178.7 41.7 0.09 32.79 178.74 74.50 *

SA73 12/8/16 9:56 AM 12/8/16 9:57 AM 0.02 0.04 546.7 60.1 -0.06 32.78 546.67 92.90 *

SA87 12/15/16 12:07 PM 12/15/16 12:08 PM 0.02 0.04 160.1 40.8 0.79 32.82 160.84 73.61 *

Samples:

SA02 10/27/16 12:56 PM 10/28/16 7:38 AM 18.7 43.0 4.8 0.3 0.87 0.07 5.7 0.3 -27.1

SA03 10/28/16 7:51 AM 10/28/16 10:51 AM 3.0 6.9 6.2 0.5 2.1 0.3 8.2 0.8 -27.6

SA04 10/28/16 11:08 AM 10/29/16 9:05 AM 21.9 50.5 4.9 0.3 0.86 0.07 5.7 0.3 -26.7

SA05 10/29/16 9:14 AM 10/30/16 4:30 AM 20.3 46.6 5.0 0.3 0.95 0.07 5.9 0.3 -26.8

SA06 10/30/16 4:46 AM 10/30/16 11:42 AM 6.9 15.9 4.3 0.3 1.1 0.1 5.3 0.4 -27.6

SA07 10/30/16 11:51 AM 10/31/16 7:43 AM 19.9 45.7 3.5 0.2 0.86 0.07 4.3 0.3 -26.6

SA08 10/31/16 7:53 AM 10/31/16 11:19 PM 15.4 35.5 4.2 0.2 0.86 0.08 5.0 0.3 -26.7

SA09 10/31/16 11:27 PM 11/1/16 7:33 AM 8.1 18.6 4.3 0.3 0.9 0.1 5.2 0.4 -27.1

SA10 11/1/16 8:43 AM 11/1/16 9:48 AM 1.1 2.5 7.9 0.9 0.00 0.50 8 1 *

SA11 11/1/16 9:58 AM 11/2/16 10:17 AM 24.3 55.9 5.4 0.3 0.82 0.06 6.3 0.4 -26.4

SA12 11/2/16 10:31 AM 11/3/16 8:52 AM 22.3 51.4 3.1 0.2 0.87 0.07 3.9 0.2 -27.0

SA13 11/3/16 9:02 AM 11/4/16 3:34 AM 18.5 42.6 5.6 0.3 1.3 0.1 6.9 0.4 -26.8

SA14 11/4/16 7:32 AM 11/5/16 9:34 AM 26.0 59.9 6.4 0.3 1.15 0.08 7.5 0.4 -26.6

SA15 11/5/16 9:47 AM 11/6/16 9:30 AM 23.7 54.5 3.0 0.2 0.55 0.05 3.5 0.2 -26.8

SA16 11/6/16 9:38 AM 11/7/16 12:01 PM 26.4 60.7 2.8 0.2 0.53 0.05 3.3 0.2 -26.5

SA17 11/7/16 12:12 PM 11/8/16 7:32 AM 19.3 44.5 3.6 0.2 0.73 0.06 4.4 0.3 -26.3

SA18 11/8/16 7:42 AM 11/9/16 11:49 AM 28.1 64.7 3.5 0.2 0.70 0.05 4.2 0.3 -26.6

SA19 11/9/16 11:58 AM 11/10/16 9:46 AM 21.8 50.1 1.3 0.1 0.34 0.04 1.6 0.1 -27.3

SA20 11/10/16 9:58 AM 11/11/16 7:21 AM 21.4 49.2 1.4 0.1 0.44 0.05 1.9 0.1 -27.2

SA21 11/11/16 7:33 AM 11/11/16 5:26 PM 9.9 22.7 1.5 0.1 0.32 0.07 1.8 0.2 -27.2

SA22 11/11/16 5:36 PM 11/12/16 7:32 AM 13.9 32.0 3.3 0.2 0.43 0.06 3.7 0.3 -26.5

SA23 11/12/16 7:43 AM 11/12/16 5:29 PM 9.8 22.5 4.9 0.3 0.77 0.09 5.7 0.4 -26.4

SA24 11/12/16 5:37 PM 11/13/16 7:06 AM 13.5 31.0 5.9 0.3 1.1 0.1 7.0 0.4 -26.2

SA25 11/13/16 7:18 AM 11/13/16 5:17 PM 10.0 23.0 6.0 0.4 0.78 0.09 6.8 0.5 -26.5

SA26 11/13/16 5:25 PM 11/14/16 7:04 AM 13.6 31.4 4.6 0.3 0.90 0.08 5.5 0.4 -25.9

SA27 11/14/16 7:12 AM 11/14/16 5:11 PM 10.0 23.0 4.6 0.3 0.75 0.09 5.4 0.4 -26.1

SA28 11/14/16 5:19 PM 11/15/16 7:10 AM 13.8 31.9 4.7 0.3 0.71 0.07 5.4 0.3 -26.2

SA29 11/15/16 7:20 AM 11/15/16 5:07 PM 9.8 22.5 5.2 0.3 0.77 0.09 6.0 0.4 -26.4

SA30 11/15/16 5:19 PM 11/16/16 7:14 AM 13.9 32.0 3.3 0.2 0.63 0.07 3.9 0.3 -26.4

SA31 11/16/16 7:31 AM 11/17/16 8:39 AM 25.1 57.8 1.7 0.1 0.47 0.04 2.2 0.1 -26.8

SA32 11/17/16 8:52 AM 11/18/16 9:12 AM 24.3 56.0 1.6 0.1 0.31 0.04 1.9 0.1 -26.6

SA33 11/18/16 9:24 AM 11/19/16 10:30 AM 25.1 57.7 1.3 0.1 0.28 0.03 1.6 0.1 -27.0

SA34 11/19/16 10:46 AM 11/19/16 8:14 PM 9.5 21.8 1.7 0.1 0.47 0.08 2.1 0.2 -26.9

SA35 11/19/16 8:25 PM 11/20/16 10:16 AM 13.8 31.9 3.0 0.2 0.49 0.06 3.5 0.2 -26.5

SA36 11/20/16 10:24 AM 11/20/16 8:23 PM 10.0 23.0 2.9 0.2 0.31 0.07 3.2 0.3 -26.6

SA37 11/20/16 8:31 PM 11/21/16 10:09 AM 13.6 31.4 4.5 0.3 0.84 0.08 5.3 0.3 -26.7

SA38 11/21/16 10:19 AM 11/21/16 8:24 PM 10.1 23.2 7.6 0.4 2.0 0.2 9.6 0.6 -26.6

SA39 11/21/16 8:33 PM 11/22/16 10:10 AM 13.6 31.3 7.2 0.4 2.2 0.1 9.5 0.5 -26.7

Air Mass Concentrations
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Table C1 (continued) 

Sampling details and analysis results for PM2.5 samples collected in Strasbourg. δ13CVPDB 

results are for total carbon; the uncertainty for all values is 0.2‰. * = [TC] below the 

calibration curve and could not be isotopically characterized. 

 

 

 

Sample 

ID
Start Date/Time End Date/Time

Sampling 

Time (h)

Air 

Volume 

(m
3
)

OC 

(µg/m
3
)

OC unc 

(µg/m
3
)

EC 

(µg/m
3
)

EC unc 

(µg/m
3
)

TC 

(µg/m
3
)

TC unc 

(µg/m
3
)

δ
13

CVPDB (‰)

SA40 11/22/16 10:20 AM 11/22/16 8:17 PM 9.9 22.9 9.0 0.5 2.3 0.2 11.3 0.7 -26.7

SA41 11/22/16 8:27 PM 11/23/16 10:09 AM 13.7 31.5 6.5 0.4 1.8 0.1 8.2 0.5 -26.9

SA42 11/23/16 10:17 AM 11/23/16 8:15 PM 10.0 22.9 7.8 0.4 2.7 0.2 10.5 0.6 -26.9

SA43 11/23/16 8:24 PM 11/24/16 10:15 AM 13.9 31.9 6.5 0.4 1.7 0.1 8.2 0.5 -26.6

SA44 11/24/16 10:26 AM 11/24/16 8:17 PM 9.8 22.7 4.7 0.3 1.2 0.1 5.8 0.4 -26.8

SA45 11/24/16 8:26 PM 11/25/16 10:06 AM 13.7 31.4 3.7 0.2 0.60 0.07 4.3 0.3 -26.4

SA46 11/25/16 10:16 AM 11/25/16 8:16 PM 10.0 23.0 4.3 0.3 0.61 0.09 4.9 0.4 -26.6

SA47 11/25/16 8:24 PM 11/26/16 10:10 AM 13.8 31.7 5.1 0.3 0.91 0.09 6.0 0.4 -26.3

SA48 11/26/16 10:18 AM 11/26/16 8:18 PM 10.0 23.0 6.0 0.4 1.5 0.1 7.5 0.5 -26.6

SA49 11/26/16 8:25 PM 11/27/16 10:09 AM 13.7 31.6 5.4 0.3 0.97 0.09 6.4 0.4 -26.3

SA50 11/27/16 10:19 AM 11/27/16 8:16 PM 10.0 22.9 4.5 0.3 0.58 0.08 5.1 0.4 -26.5

SA51 11/27/16 8:26 PM 11/28/16 10:00 AM 13.6 31.2 2.7 0.2 0.36 0.06 3.1 0.2 -26.9

SA52 11/28/16 10:09 AM 11/28/16 8:23 PM 10.2 23.5 2.7 0.2 0.35 0.07 3.1 0.3 -27.2

SA53 11/28/16 8:32 PM 11/29/16 10:07 AM 13.6 31.2 2.5 0.2 0.47 0.06 3.0 0.2 -26.8

SA54 11/29/16 10:14 AM 11/29/16 8:20 PM 10.1 23.2 4.1 0.3 0.9 0.1 5.0 0.4 -26.6

SA55 11/29/16 8:28 PM 11/30/16 10:02 AM 13.6 31.2 8.1 0.4 1.5 0.1 9.6 0.6 -26.5

SA56 11/30/16 10:10 AM 11/30/16 8:19 PM 10.2 23.3 9.4 0.5 2.1 0.2 11.5 0.7 -26.7

SA57 11/30/16 8:26 PM 12/1/16 10:03 AM 13.6 31.3 18 1 2.6 0.2 21 1 -26.5

SA58 12/1/16 10:11 AM 12/1/16 8:19 PM 10.1 23.3 8.8 0.5 1.5 0.1 10.3 0.6 -26.5

SA59 12/1/16 8:26 PM 12/2/16 10:04 AM 13.6 31.4 8.4 0.5 1.3 0.1 9.7 0.6 -26.6

SA60 12/2/16 10:12 AM 12/2/16 8:19 PM 10.1 23.3 10.3 0.6 2.1 0.2 12.4 0.7 -26.7

SA61 12/2/16 8:26 PM 12/3/16 7:54 AM 11.5 26.4 6.2 0.4 1.0 0.1 7.2 0.5 -26.7

SA62 12/3/16 8:02 AM 12/3/16 10:08 AM 2.1 4.8 3.5 0.4 1.0 0.3 4.5 0.7 *

SA63 12/3/16 10:15 AM 12/3/16 8:14 PM 10.0 23.0 4.0 0.3 0.56 0.08 4.6 0.3 -26.8

SA64 12/3/16 8:21 PM 12/4/16 9:31 AM 13.2 30.3 5.0 0.3 0.83 0.08 5.9 0.4 -26.4

SA65 12/4/16 9:38 AM 12/4/16 8:06 PM 10.5 24.1 5.8 0.3 0.84 0.09 6.7 0.4 -26.3

SA66 12/4/16 8:14 PM 12/5/16 4:45 AM 8.5 19.6 7.2 0.4 1.4 0.1 8.6 0.6 -26.2

SA67 12/5/16 4:52 AM 12/5/16 10:38 AM 5.8 13.3 10.3 0.6 1.9 0.2 12.2 0.8 -26.5

SA68 12/5/16 10:45 AM 12/6/16 10:13 AM 23.5 54.0 7.5 0.4 0.96 0.07 8.4 0.5 -26.7

SA69 12/6/16 10:27 AM 12/6/16 6:36 PM 8.2 18.7 7.2 0.4 1.2 0.1 8.4 0.6 -26.8

SA70 12/6/16 6:43 PM 12/7/16 10:37 AM 15.9 36.6 5.3 0.3 0.95 0.08 6.2 0.4 -26.7

SA71 12/7/16 10:45 AM 12/7/16 5:06 PM 6.4 14.6 7.7 0.5 1.2 0.1 9.0 0.6 -27.0

SA72 12/7/16 5:14 PM 12/8/16 9:47 AM 16.5 38.1 6.3 0.3 1.06 0.09 7.4 0.4 -26.8

SA74 12/8/16 10:03 AM 12/8/16 5:27 PM 7.4 17.0 11.4 0.6 2.2 0.2 13.6 0.8 -26.8

SA75 12/8/16 5:35 PM 12/9/16 9:41 AM 16.1 37.0 12.9 0.7 2.0 0.1 14.9 0.8 -26.7

SA76 12/9/16 9:50 AM 12/9/16 5:23 PM 7.6 17.4 10.0 0.6 2.6 0.2 12.7 0.8 -26.8

SA77 12/9/16 5:31 PM 12/10/16 9:40 AM 16.2 37.1 18.0 0.9 3.7 0.2 22 1 -26.7

SA78 12/10/16 9:49 AM 12/10/16 7:37 PM 9.8 22.5 10.7 0.6 2.2 0.2 12.9 0.8 -26.7

SA79 12/10/16 7:46 PM 12/11/16 9:55 AM 14.2 32.5 11.9 0.6 1.6 0.1 13.5 0.7 -26.4

SA80 12/11/16 10:08 AM 12/11/16 8:31 PM 10.4 23.9 5.9 0.3 1.1 0.1 7.1 0.5 -26.5

SA81 12/11/16 8:40 PM 12/12/16 9:27 AM 12.8 29.4 8.6 0.5 1.2 0.1 9.7 0.6 -26.3

SA82 12/12/16 9:36 AM 12/13/16 2:24 AM 16.8 38.6 7.1 0.4 1.5 0.1 8.7 0.5 -26.5

SA83 12/13/16 2:33 AM 12/13/16 10:19 AM 7.8 17.9 5.6 0.4 1.5 0.1 7.1 0.5 -26.8

SA84 12/13/16 10:25 AM 12/14/16 10:02 AM 23.6 54.3 7.5 0.4 1.20 0.08 8.7 0.5 -26.7

SA85 12/14/16 10:11 AM 12/15/16 1:29 AM 15.3 35.2 11.2 0.6 1.7 0.1 12.9 0.7 -26.6

SA86 12/15/16 1:36 AM 12/15/16 12:00 PM 10.4 23.9 8.3 0.5 2.0 0.2 10.4 0.6 -26.9

Air Mass Concentrations



  191 

Table C2 

Sampling details and analysis results for PM10 samples collected in Geispolsheim. 

δ13CVPDB results are for total carbon; the uncertainty for all values is 0.2‰. 
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