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ABSTRACT

The most advanced social insects, the eusocial insects, form often large societies in

which there is reproductive division of labor, queens and workers, have overlapping

generations, and cooperative brood care where daughter workers remain in the nest

with their queen mother and care for their siblings. The eusocial insects are composed

of representative species of bees and wasps, and all species of ants and termites. Much

is known about their organizational structure, but remains to be discovered.

The success of social insects is dependent upon cooperative behavior and adaptive

strategies shaped by natural selection that respond to internal or external conditions.

The objective of my research was to investigate specific mechanisms that have helped

shaped the structure of division of labor observed in social insect colonies, includ-

ing age polyethism and nutrition, and phenomena known to increase colony survival

such as egg cannibalism. I developed various Ordinary Differential Equation (ODE)

models in which I applied dynamical, bifurcation, and sensitivity analysis to carefully

study and visualize biological outcomes in social organisms to answer questions re-

garding the conditions under which a colony can survive. First, I investigated how

the population and evolutionary dynamics of egg cannibalism and division of labor

can promote colony survival. I then introduced a model of social conflict behavior to

study the inclusion of different response functions that explore the benefits of can-

nibalistic behavior and how it contributes to age polyethism, the change in behavior

of workers as they age, and its biological relevance. Finally, I introduced a model to

investigate the importance of pollen nutritional status in a honeybee colony, how it

affects population growth and influences division of labor within the worker caste. My

results first reveal that both cannibalism and division of labor are adaptive strategies

that increase the size of the worker population, and therefore, the persistence of the

colony. I show the importance of food collection, consumption, and processing rates
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to promote good colony nutrition leading to the coexistence of brood and adult work-

ers. Lastly, I show how taking into account seasonality for pollen collection improves

the prediction of long term consequences.
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Chapter 1

INTRODUCTION

Social insects, including ants, bees, wasps, and termites, which are classified as

eusocial, represent some of the most advanced social systems and are among the

most diverse and ecologically important organisms on Earth [Koenig and Dickinson,

2017]. These societies are characterized by their social behavior composed of complex

interactions of groups of organisms. Eusocial colonies display the highest levels of

organization found in the Animal Kingdom, and are distinguished by their cooperative

division of labor, reproductive division of labor, and overlap of at least two generations

in the same colony [Hölldobler and Wilson, 2010, Koenig and Dickinson, 2017]. In

addition, they frequently display a division of labor among members of the non-

reproductive caste (workers) where different workers specialize on performing different

tasks. Often task specialization is age-dependent (temporal polyethism) [Beshers and

Fewell, 2001].

The study of social insect behavior, its adaptive value and underlying mechanisms

are of great interest to animal behavior and the social sciences and has advanced

our understanding of behavioral ecology and human social behavior [Koenig and

Dickinson, 2017]. For instance, the collective behavior of social insects can influence

novel and effective solutions to human design challenges [Holbrook et al., 2010] such as

robot coordination [Krieger et al., 2000] and flow shop scheduling [Cicirello and Smith,

2004], which application have derived from models studying the task distribution

among groups of insects responding to a specific stimuli based individual thresholds

[Holbrook et al., 2010]. Therefore, social insects have provided the best models for

studying the evolution and maintenance of cooperative behavior. Despite the impact
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that social insect cooperation theories have made on our understanding of cooperation

at large, mechanisms influencing their colony success such as cannibalism, nutritional

demands of the colony, and multi-species interactions has mostly been overlooked.

Social interactions represent not only a benefit to the success of the colony but also

a cost. For instance, due to close contact with conspecifics, there is an increased risk

of parasitism, disease, and cannibalism. Although parasitism and disease can cause

a decrease of the colony’s fitness, cannibalistic interactions have been demonstrated

across several field and laboratory studies as well as in model analysis to be an

important mechanism that can benefit the colony fitness by improving growth rate,

survivorship, vigor, longevity, and fecundity [Richardson et al., 2010].

Cannibalistic interactions between different developmental stages in a population

are prevalent among many groups of animals and social insects [Elgar and Crespi,

1992, Polis, 1981, Stenseth, 1985, Richardson et al., 2010]. It has been regularly ob-

served in social insect colonies, including leafcutter ants and honeybees [Schmickl and

Crailsheim, 2001, Monnin and Peeters, 1997], and is suggested to be a selfish behavior

influenced by environmental factors such as shortage of food resources [Matthews and

Matthews, 2009, Richardson et al., 2010], and individual traits such as sex [Schultner,

2014], but are also often part of typical intraspecies interactions [Fox, 1975]. A com-

mon form of cannibalism among social insects is the consumption of conspecific eggs

by larvae or higher developmental stages. Egg cannibalism is a recycling process of

energetic investments in social insects known to increase growth and developmental

rates [Osawa, 1992, Roy et al., 2007, Schultner et al., 2013] and adult body size [Os-

awa, 2002, Schultner et al., 2013], decrease competition of resources [Roy et al., 2007,

Schultner et al., 2013, Wise, 2006], and improve survival [Roy et al., 2007, Schultner

et al., 2013].

Cooperative behavior of social insects increases colony’s fitness at the cost of
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decreasing the fitness of individual colony members. Many social insects exhibit a

complex system of division of labor by which task allocation depends on the age of the

individual or on distinct anatomical features, or both [Hölldobler and Wilson, 2010].

Division of labor is an important factor for the evolutionary success of social insects

because different activities are performed simultaneously by groups of specialized

individuals [Robinson, 1992]. It facilitates the optimization of energy investment

by the group workforce by 1) allocating optimal numbers of individuals, or work

group effort, to different sets of tasks associated with nest construction, defense,

food collection, colony growth, and reproduction, 2) decreasing the chances of social

system failure by having tasks performed in parallel, and 3) increasing individual task

performance efficiency through experience gained by repeated activity.

Mechanisms of division of labor include size polymorphism, age polyethism, varia-

tion in response thresholds, and learning [Beshers and Fewell, 2001]. For instance, age

polyethism is a phenomenon observed in many social insects in which individuals per-

form different tasks as they grow older. [Oster and Wilson, 1978, Wilson et al., 1971].

In leafcutter ants, including Atta and Acromyrmex, workers in the smallest physical

class take care of brood and the fungus inside the nest when they are young [Camargo

et al., 2007, Van Bael et al., 2011], while older workers from all size classes are more

likely to participate in dangerous activities such as defending the nest [Hölldobler and

Wilson, 2010].

Another mechanism regulating worker age-based division of labor involves the nu-

tritional status of the colony and nutritional variation of the individual [Ament et al.,

2010, Avni et al., 2014]. Colonies of social insects require protein, carbohydrates,

minerals, and water. However, protein and carbohydrates are critical nutrients that

influence growth, development, and foraging behavior. At the individual level, brood

require more protein to aid in their development, while older workers require more
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carbohydrates for energy to carry out tasks showing variation in nutritional needs.

Worker fat and protein content are different from the queen’s due to its reproduc-

tive task. Queens demand large quantities of protein and fat for making eggs while

workers show gradual depletion of stored fat and protein associated with switching

tasks from nest work to foraging [Smith et al., 2011, Toth and Robinson, 2005]. Nu-

tritional needs affect worker behavior. Pollen provides protein for vitellogenin, an

important lipoprotein necessary for queen egg laying, food for larvae, youth and ma-

turing adult workers, as well as resistance to diseases and environmental toxins [Alaux

et al., 2011, Page et al., 2012]. Shortage of protein could affect brood production,

the quality or the number of larvae reared to adulthood, worker longevity, and colony

survival [Brodschneider and Crailsheim, 2010].

Although several models have addressed the dynamics of cannibalistic behavior

in age-structure models (see Kang et al. [2015], Cushing [1991]), the dynamics of

both egg cannibalism and division of labor together has not yet been studied. There-

fore, the work in Chapter 2 aims to provide a study of both of these mechanisms

through mathematical modeling. Specifically, I present a compartmental two-stage

ODE model to study the ecological and evolutionary effects of both cannibalism and

the invested energy on cooperative brood care and foraging that measure the efficacy

of division of labor. The corresponding evolutionary model follows the evolutionary

game theory framework used by [Cushing, 1991, Cushing and Hudson, 2012, Kang

et al., 2015, Kang and Udiani, 2014, Vincent and Brown, 2005]. Hence, the main

purpose of this project is to investigate how egg cannibalism and division of labor

can promote colony survival in both the ecological and evolutionary context.

In Chapter 3, using two sets of ODE models, I explore how division of labor

(DOL), age polyethism, and egg cannibalism behavior interact to affect the colony

population dynamics of leafcutter ants and their fungus garden in a two-fold manner.
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First, to address how age polyethism affects the worker population dynamics when the

leafcutter ants and fungus garden interaction model incorporates other mechanisms

of DOL, I compare the dynamical outcomes of an interacting species model with and

without age polyethism. The second part explores the effects of egg cannibalism in

the population dynamics of a colony. In order to understand how to model such social

conflict behavior realistically, I propose and study a leafcutter ant and fungus garden

interaction model that uses different functional responses to incorporate benefits of

egg cannibalism behavior.

In Chapter 4, I introduce a model to investigate the importance of pollen nutri-

tional status in a honeybee colony affecting population growth and having impacts

on division of labor among individuals. As for modeling techniques, I explore the

inclusion of seasonal pollen collection improving forecasting. The proposed model

serves as a starting point of modeling techniques that can allow us to study present

factors leading to colony collapse, such as nutritional stress [Naug, 2009], scarcity of

food sources [Naug, 2009], and climate change.
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Chapter 2

COLONY AND EVOLUTIONARY DYNAMICS OF A TWO-STAGE MODEL

WITH BROOD CANNIBALISM AND DIVISION OF LABOR IN SOCIAL

INSECTS

Abstract

Division of labor (DOL) is a major factor for the great success of social insects

because it increases the efficiency of a social group where different individuals perform

different tasks repeatedly and presumably with increased performance. Cannibalism

plays an important role in regulating colony growth and development by regulating

the number of individuals in a colony and increasing survival by providing access to

essential nutrients and minimizing competition among colony mates. To understand

the synergy effects of DOL and cannibalistic behavior on colony dynamic outcomes,

we propose and study a compartmental two-stage model using ecological and evolu-

tionary game theory settings. Our analytical results of the ecological and evolutionary

models suggest that: (1) A noncannibalistic colony can survive if the efficiency of en-

ergy investment reflecting the DOL is greater than the relative death rate of the older

population. (2) A cannibalistic colony can die out if both the efficiency of energy

investment and the relative cannibalism rate (where each is also reflecting the DOL)

are too large; or if the relative cannibalism rate alone is too small. (3) From our

numerical analysis, cannibalism can increase or reduce the colony?s total population

size, which greatly depends on the benefit of egg cannibalism increasing or decreasing

of adult?s lifespan. (4) A cannibalistic and noncannibalistic colony can experience

bistability due to cooperative behavior. (5) In the evolutionary settings, DOL can pre-
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vent colony death and natural selection can preserve strong Allee effects by selecting

the traits with the largest investment on brood care and the lowest cannibalism rate.

(6) Evolutionary dynamics may increase the fitness of the colony, i.e., the successful

production of workforce which results in the increase of total worker population size,

colony survival, and reproduction. Our results suggest both cannibalism and DOL

are adaptive strategies that increase the size of the worker population, and therefore,

persistence of the colony.

Introduction

Division of labor (DOL) is an important factor for the evolutionary success of

social insects [Robinson, 1992]. It facilitates the optimization of energy investment

by the group workforce by allocating optimal numbers of individuals, or work group

effort, to different sets of tasks associated with nest construction, defense, food collec-

tion, colony growth, and reproduction. Individuals in a nest perform tasks in parallel,

rather than serially, and DOL allows the optimization of the total effort of the worker

population within the nest [Jeanne, 1986]. The structure of division of labor in

colonies is, therefore, optimized by natural selection to produce a worker population

that is demographically adapted to its environment. The honey bee is an exemplar

of social evolution with both a distinct reproductive division of labor with a single

reproductive female, the queen, and thousands of workers that are facultatively sterile

[Wilson et al., 1971]. Workers demonstrate a further division of labor that is age re-

lated where individuals change the sets of tasks they perform as they age. These tasks

are associated with the construction and maintenance of the nest, honey processing,

colony defense, brood rearing, and foraging for food resources [Winston, 1991]. Other

social insects such as ants [Bonabeau et al., 1998], termites [Korb et al., 2012], and

wasps [Arathi and Gadagkar, 1998] perform similar tasks such as cooperative brood
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care, construction and maintenance of the nest, and foraging for food resources which

have an energetic cost. We can therefore think of natural selection working to opti-

mize the ergonomic efficiency of a colony by adapting its social structure associated

with division of labor. Moreover, egg cannibalism, a recycling process of energetic

investments in social insects is known to increase growth and developmental rates

[Osawa, 1992, Roy et al., 2007, Schultner et al., 2013], and adult body size [Osawa,

2002, Schultner et al., 2013], decrease competition for resources [Roy et al., 2007,

Schultner et al., 2013, Wise, 2006] and improve survival [Roy et al., 2007, Schultner

et al., 2013]. For example, the wood ant Formica aquilonia is known to compete by

eating eggs and therefore increase their survival [Schultner et al., 2013]. Other social

insects presenting cannibalistic behaviors with these benefits are termites, wasps, and

social bees [Polis, 1981]. In honeybees, foraging behavior is known to be driven by to-

tal number of brood in the colony [Al-Tikrity et al., 1972, Filmer, 1932, Winston and

Fergusson, 1986], and as described by Schmickl and Crailsheim [2001], when harsh

environmental conditions prevent honeybees from collecting pollen, workers then use

brood cannibalism to reduce larval protein demand. Both of these social behaviors,

egg cannibalism and division of labor, illustrate individual and colony level selection

in a social environment, respectively. Studies have shown that egg cannibalism is

particularly a general way in social Hymenoptera to increase individual fitness (see

Schultner [2014]). On the other hand, caring for the queen, foraging for food, tending

the larvae, and other tasks related with the success of a colony are known as altruistic

behaviors which are believed to be advantageous at the group level [Okasha, 2008,

Schultner, 2014]. Although this behavior could represent a selective disadvantage at

the individual level, the fitness of the colony as a whole will be intensified [Okasha,

2008].

Mathematical models help us understand the ecological as well as the evolutionary
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effects of egg cannibalism and division of labor. Since both cannibalism and division

of labor are observed at different developmental stages, age-structured population

models have been used to study these behaviors. In 2015, Kang et al. [2015] proposed a

compartmental two-stage model with egg cannibalism providing important analytical

results such as forward transcritical bifurcation due to a large egg cannibalism rate,

while a small egg cannibalism rate could lead to a backward subcritical bifurcation

generating strong Allee effects meaning that a population, in this case worker force,

could stabilize at the carrying capacity of population growth, or at the extinction level

[Courchamp et al., 2008]. The ecological model suggested that in fact cannibalistic

behavior can regulate the worker population size and promote colony survival, while

the worker population within a nest can die out without cannibalistic behavior. In

1998, Wakano et al. [1998] proposed an age-structured population model with division

of labor between tasks inside and outside the nest and foraging mortality effects that

can determine the most favorable task allocation demography that maximizes worker

production. Tofilski [2006] used a model of integral equations with two sets of tasks

and associated mortality rates suggesting that in most cases, caste polyethism reduces

the expected life span of workers. Although, Tofilski’s model lacks age-structure, his

results explain the evolution of division of labor in social insects by showing that

different ways of division of labor can prolong worker’s longevity.

The evolutionary dynamic effects on worker population have not been well studied.

Few mathematical models have addressed the evolutionary outcomes of age-structure

models with cannibalism or division of labor (see the work of Dercole and Rinaldi

[2002], Nishimura and Hoshino [1999], Nishimura and Isoda [2004], Rudolf [2007],

Stenseth [1985], Wakano et al. [2002]). In some of these studies, we can encounter

results such as evolutionary scenarios with evolutionary stable strategies [Dercole

and Rinaldi, 2002, Stenseth, 1985], evolutionary dynamics of cannibalism using a
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predator-prey interaction among conspecifics [Nishimura and Isoda, 2004], and effects

of stage-structured cannibalism and behavioral avoidance of cannibalism that result in

an indirect positive link between the prey and predator stages [Rudolf, 2007]. Kang

et al. [2015] developed an evolutionary model using an evolutionary game theory

framework showing that by choosing the trait with a small cannibalism rate, natural

selection preserves strong Allee effects. Also, fitness of a colony may decrease or

increase by decreasing or increasing the total worker population size, and the choice

of the trait function can affect the permanence of the system, i.e. the long-term

survival of the colony.

Although several models have addressed the dynamics of cannibalistic behavior

in age-structure models, the dynamics of both egg cannibalism and division of labor

together has not yet been studied. Therefore, we present a compartmental two-stage

model to study the ecological and evolutionary effects of both cannibalism and the

invested energy on cooperative brood care and foraging that measure the efficacy of

division of labor. This model consists of eggs and mature stages, in which the popu-

lation of eggs is cannibalized by mature stages and individuals in the mature stages

invest energy to rear the brood. The corresponding evolutionary version presented

model follows the evolutionary game theory framework used by others [Cushing, 1991,

Cushing and Hudson, 2012, Kang et al., 2015, Kang and Udiani, 2014, Vincent and

Brown, 2005]. Therefore, the main purpose of this paper is to investigate how egg

cannibalism and division of labor can promote colony survival in both the ecological

and evolutionary settings.
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A Mathematical Model with Division of Labor and Cannibalism

Model Derivation

We develop a two compartmental model of a social insect population consisting

of stage-structure cannibalism and division of labor implicitly where each worker is

performing a specific task such as brood care or foraging that contributes to the colony

growth. The model’s state variables are defined as follows: Let x(t) + y(t) denote

the total population of a focal colony at time t, where x(t) denotes egg population

that can be cannibalized by others (larvae, queens and adult workers) at time t, and

y(t) denotes the population of the older ones that may have cannibalistic behavior

at time t. We propose the following set of nonlinear equations describing a two-

stage population model of social insects with division of labor implicitly and egg

cannibalism:

x′ =
ry

1 + ax+ ĉy
− α̂xy − βx,

y′ = βx · ĉy

1 + ax+ ĉy
− 1

1 + caα̂x
,

(2.1)

The ecological assumptions of the colony’s population dynamics (2.1) above are

summarized as follows:

1. Egg population x(t): The egg population x(t) that can be cannibalized by

others at time t is determined by one inflow rate and two outflow rates:

(i) The inflow rate is modeled by ry
1+ax+ĉy

which gives the net egg produc-

tion rate by queen(s). The term ry
1+ax+ĉy

is modified from the recent work

of Kang et al. [2015] where r could be considered as a baseline egg pro-

duction from the work effort by workers; a is a coefficient measuring the

combination effects of crowding effects and the resource allocation to egg

population; and ĉ is the brood care effort from the workers. The detailed
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biological assumptions of ry
1+ax+ĉy

are stated as follow. We assume that

there is a p proportion of the adult workers performing the foraging task

which provides food resource for the whole colony, and the rest 1−p propor-

tion of workers performing brood care. Let the parameter γ̂ be the average

work effort of a worker that could either obtain food resource to contribute

to egg production or perform brood care. Thus, the foraging task group

can obtain food resource γ̂py = ry with a ratio of 1
1+ax+γ̂(1−p)y = 1

1+ax+ĉy

devoted for reproduction since the colony invests ax energy to the egg class

and ĉy = γ̂(1− p)y energy for the brood care including the effort of taking

care of larvae, queens, and themselves. As a consequence, the ratio 1
1+ax+ĉy

also implies that the colony decreases its investment into egg production

when many eggs are present. Therefore, the larger egg population present

in the colony and the larger investment in the brood care can have negative

effects on the net egg production x; and r = γ̂p, ĉ = γ̂(1 − p) reflect the

division of labor in workers of the colony.

(ii) Outflow rate 1: The egg cannibalism rate by worker population is modeled

α̂xy which follows the traditional Holling Type I functional response. In

social insect colonies, such as ants, eggs are close to queen(s) and larvae,

in general, there is no need for queens or larvae to search for eggs. In

addition, workers also know the location of eggs.

(iii) Outflow rate 2: The maturation rate of egg population is βx. We assume

that an egg leaves the egg stage at a per-capita rate β, and dies only by

cannibalism, thus we do not incorporate an additional death rate of eggs

in our current model. One explanation for no additional egg mortality is

that even if egg dies naturally, it will be eaten and the nutrient will be

recycled back to the colony.
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2. The worker population y(t): The population of workers that may have

cannibalistic behavior y(t) at time t is determined by two flow rates:

(i) Inflow rate is modeled by βx· ĉy
1+ax+ĉy

which is the product of the rate of egg

leaving the egg stage, βx, and the probability of the survival rate ĉy
1+ax+ĉy

measured by the brood care effort of the worker population. After eggs

leave the egg stage, they enter into larvae, pupae stage, respectively, before

becoming adult workers where the survival ability of larvae depends on the

investment of the brood care effort from workers. Our current model does

not have the explicit stage structure of larvae, pupae stage, instead, we

use ĉy
1+ax+ĉy

to model the survival rate during these stages which implies

that the larger investment in brood care can have positive effects on the

net population growth of adult worker population y.

(ii) Outflow rate: The death rate of the older population in the absence of

cannibalism (i.e. α̂ = 0) can be determined by dy. However, in the pres-

ence of cannibalism (i.e. α̂ > 0), dy can be decreased with the functional

response 1
1+caα̂x

which represents the benefit obtained from cannibalism.

The parameter d is the death rate in the absence of cannibalism and ca is a

coefficient describing the functional response of survivability to an increas-

ing presence of eggs (and therefore increasing the number of individuals

cannibalized).

Given the above ecological assumptions, for further analysis, we rescale system

(2.1) using the transformation τ = βt, E = ax, and A = ĉy, where E ′ = dE
dτ

, and
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A′ = dA
dτ

, then the above model (2.1) reduces to

E ′ =
γA

1 + E + A
− αAE − E,

A′ =
cEA

1 + E + A
− δA

1 + bE
,

(2.2)

whose biological meanings of the rescaled parameters have been listed in Table 2.1.

We can see that the efficiency of energy investment c, the relative egg production

rate γ, and the relative cannibalism rate α reflect the DOL in some degree as they

all contain the p which is the ratio of workers engaging in foraging while 1− p is the

ratio of workers engaging in brood care.

Parameter Definition

c = ĉ
a

= γ̂(1−p)
a

The efficiency of energy investment (reflecting the DOL)

γ = ar
ĉβ

= r
βc

= ap
β(1−p) The relative egg production rate (reflecting the DOL)

α = α̂
βĉ

= α̂
βγ̂(1−p) The relative cannibalism rate (reflecting the DOL)

δ = d
β

Relative death rate.

b = b̂
a

= caα̂
a

Relative benefit rate from cannibalism.

Table 2.1: Description of Parameters in Model (2.2)

Mathematical Analysis

Dynamics of Ecological Model

The rescaled ecological Model (2.2) state space is R2
+ and we assume that all parame-

ters α, b, c, δ, γ are strictly positive. We show that Model (2.2) is positive invariant

and bounded in R2
+ in the following theorem:

Theorem 1 (Positive Invariance and Boundedness). System (2.2) is positive invari-

ant in R2
+ and every trajectory is attracted to a compact set D =

[
0, γ

α

]
×
[
0,

γ( bγα +1)
δα

]
.
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Moreover, Model (2.2) can have only equilibrium dynamics.

Notes: Theorem 1 suggests our model (2.2) is biologically well-defined and has

no limit cycles according to Dulac-Bendixson Criterion.

Equilibria and Stability

Model (2.2) has always the extinction equilibrium: E0 = (0, 0), and can have two

interior equilibria: Ei = (E∗i , A
∗
i ), i = 1, 2. An interior equilibrium of the form

(E∗, A∗) must satisfy the following equations:

Let E ′ = 0, ⇒ 1 + E∗ + A∗ =
γA∗

E∗(αA∗ + 1)
, (2.3)

and A′ = 0, ⇒ 1 + E∗ + A∗ =
cE∗(1 + bE∗)

δ
(2.4)

Solving for A∗ in equation (2.4) we obtain A∗ = f(E∗) = bcE∗2+(c−δ)E∗−δ
δ

. Also, setting

(2.3) = (2.4) yields (more details on obtaining this equation can be found in A):

1− 1

αA+ 1
=
αcE2(1 + bE)

δγ
(2.5)

From equation (2.5), we define nf1(E) = αcE2(1+bE)
δγ

and nf2(E) = 1− 1
αA+1

= 1−
1

αf(E)+1
≤ 1, such that nf1(E) and nf2(E) are subject to E ≥ Ec =

δ−c+
√

(δ−c)2+4bcδ

2bc
.

Depending on the values of γ, α, b, c, δ, the element E∗i of an equilibrium of the form

(E∗i , A
∗
i ) = (E∗i , f(E∗i )), for i = 1, 2 is determined by the positive root(s) of the

equation nf1(E) = nf2(E) which can have none or at least two positive roots.

The stability of the equilibria is determined using the following Jacobian matrix

evaluated at each of the equilibria Ei, i = 1, 2.

J =

 −Aα− Aγ
(1+E+A)2 − 1 γ

A+E+1
− Aγ

(1+E+A)2 − αE
cA

1+E+A
− AEc

(1+E+A)2 + Abδ
(1+bE)2 − δ

1+bE
+ cE

1+E+A
− cAE

(1+E+A)2

 (2.6)

15



Proposition 1. Model (2.2) can have the following dynamics depending on the values

of its strictly positive parameters α, d, c, δ, γ defined in Table 2.1.

1. Extinction: There is no interior equilibria if

α(δ − c+K)2(c+ δ +K) > 8b2c2γδ or α[δ − c+K][c+ 3(δ +K)] > 4bcγK,

where K =
√

(δ − c)2 + 4bcδ.

2. Colony survival: Model (2.2) can have at least two interior equilibria Ei,

i = 1, 2 if for ` = 2
√
bcδ
bc

, we have nf2(`)− nf1(`) < 1, i.e.,

4α

c2
(c+ 2

√
bcδ)(2α

√
bcδ(δ − c)− bcδ(1 + 3α)) > b2γδ

3. Stability: The extinction equilibrium is always locally asymptotically stable,

while an interior equilibrium Ei = (E∗i , A
∗
i ) for i = 1 or 2 is locally asymptoti-

cally stable whenever α(bcE∗2i + (c− δ)E∗i − δ)2 > δ2(1 + E∗i ) for E∗i > 0.

(a) c > δ; b = 1, c = 1, δ = 0.5 (b) c < δ; b = 5, c = .7, δ = 1.12

Figure 2.1: Nullclines nf1(E) and nf2(E) for Model (2.2) showing the existence of

two interior equilibria when ` = L = 2
√
bcδ
bc

> Ec and nf2(`) − nf1(`) < 1; (α =
0.3, γ = 4.56); Stability is shown by •: stable and ◦:unstable.

Note: The detailed proof of Theorem 1 can be found in Appendix A. The num-

ber of interior equilibria of Model (2.2) is determined by the positive intercepts of
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functions nf1(E) = αcE2(1+bE)
δγ

and nf2(E) = 1 − 1
αf(E)+1

. Figure 2.1 exemplify

colony survival and stability conditions given in Proposition 1. If Ec < 1 and

nf2(1)−nf1(1) = 1− δ
δ+α(c+bc−2δ)

− αc(1+b)
δγ

< 1, we can have two interior equilibria. In

Figure 2.1(a) with c = 1 > δ = 0.5, we have two interior equilibria E1 = (0.58, 0.25)

and E2 = (1.32, 3.82) with fixed parameters b = 1, c = 1, δ = 0.5, α = 0.3, γ = 4.56,

where E∗2 > E∗1 . According to Proposition 1 part (3), E2 is locally asymptotically

stable satisfying the condition 0.3(E∗22 + 0.5E∗2 − 0.5)2 > 0.25(E∗2 + 1) for E∗2 = 1.32,

while E1 is saddle since 0.3(E∗21 +0.5E∗1−0.5)2 < 0.25(E∗1 +1) for E∗1 = 0.58. We can

see similar behavior in Figure 2.1(b) with c < δ. Figure 2.1 suggests that Model (2.2)

has bistability of the extinction equilibrium E0 and one of the interior equilibria, in

this case E2, which is generated by the choice of functional response in our model, a

mechanism producing Allee effects. Depending on the initial conditions, Model (2.2)

converges to E0 when these conditions are under some threshold, while it converges

to E2 if the initial conditions are above that threshold. Moreover, Proposition 1 sug-

gests that large α (i.e., the relative cannibalism rate), or too small c (i.e. efficiency of

energy investment on DOL) is unsuitable for the colony since Model (2.2) goes to the

extinction equilibrium E0, i.e. the colony dies out. If α = α̂
βγ̂(1−p) is large or c = γ̂(1−p)

a

is too small, this could imply that the brood care effort by workers is significantly

smaller than the portion of workers foraging, and more individuals in the adult class

may be engaging in cannibalism, which therefore this could suggest that the colony

may die out due to low effort for brood care and excess of cannibalism.

For further insights of Model (2.2) on the synergistic effects of cannibalism, the

benefit from cannibalizing, efficiency of energy invested in DOL, and relative death

rate, we perform some numerical simulations by looking at one- and two-dimensional

bifurcation diagrams.

In Figure 2.2, we study the effects of b v.s. α, i.e., the relative benefit rate
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from cannibalism v.s. relative cannibalism rate. Figure 2.2a shows that large

α can lead to colony extinction, while small α combined with small to large b leads

to colony survival. Furthermore, looking at the effects of the population as α varies

and fixing b = 2, Figure 2.2b shows that as the relative cannibalism rate α increases

the total worker population size decreases. In Figure 2.2c, as b ranges from small

to large, the total worker population size increases with α = 0.2. Therefore, these

results suggest that even though cannibalism may significantly reduce the colony’s

total population size, the colony can still survive due to the increase of adult’s lifespan

acquired through cannibalism. In general, an ideal scenario would consist of small

α = α̂
βγ̂(1−p) and large b = caα̂

a
, i.e. if the brood care effort by workers is large enough

with egg cannibalism rate being small or large, and a small enough such that b is

large, then the colony can survive.
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Figure 2.2: Two and one parameter bifurcation for Model (2.2). Figure (a) describes
how the number of interior equilibria changes for different cannibalism rates and the
benefit from cannibalism, α and b, respectively. White region has no interior equilibria
while black region shows the existence of two interior equilibria. Figures (b) and (c)
show the stability of the interior equilibria as we vary α or b, respectively. (stable;
unstable)
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In Figure 2.3a, we study the effects c v.s. α, i.e., the effects of the efficiency

of energy invested on DOL and the relative cannibalism rate. In this case

we see that for small c and any value of α the colony dies out and for larger values

of c and any α, the colony can survive. We can conclude from Figure 2.3a that in

order for the colony to survive in the presence of cannibalism, the brood care effort

from workers should be large enough and a (i.e. quantity of the combination effects

of crowding and resource allocation to egg production) is small.
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Figure 2.3: Two parameter bifurcation for Model (2.2) describing how the number
of interior equilibria changes according to the variation of the respective parame-
ters. Black region determines existence of two equilibria and white region determines
extinction.

Figure 2.3b shows that for any α and small δ the population of young and adult

workers survives, while for larger δ and any α the colony dies out. Figure 2.3c shows

that for any b and small δ the worker population survives, while large δ leads to

colony’s death. In both of these cases, a decrease in maturation rate would induce

an increase of δ = d
β

leading to worker’s population death. Biologically, both of

these figures suggest that a colony can survive if there is high maturation rate from

young to adult workers, the brood care effort by adults is large, and the adult workers

within the colony engage in egg cannibalism as a strategy of survival which is reflected

through the parameter b (i.e. relative benefit form cannibalism).
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Colony dynamics outcomes of cannibalistic behavior.

Now, we consider the case when there is no egg and larval cannibalism (i.e. α = b = 0).

This case is represented in the following two-stage model:

E ′ =
γA

1 + E + A
− E,

A′ =
cEA

1 + E + A
− δA,

(2.7)

The dynamics of Model (2.7) can be summarized in the following theorem:

Theorem 2 (No cannibalism). Model (2.7) is positive invariant in R2
+. It can have

one or two interior equilibria depending on the values of its parameters c, δ, and γ.

The necessary and sufficient conditions on their existence and stability are listed in

Table 2.2. The global dynamics of Model (2.7) can be classified into the following

scenarios:

1. Extinction: If c < δ or γ < 4cδ
(c−δ)2 , then Model (2.7) has only the extinc-

tion equilibrium E0 which is globally stable. Under this conditions, the worker

population is unable to survive and the colony dies out.

2. Bistability of population: If c > δ and γ > 4cδ
(c−δ)2 , then Model (2.7) has

the extinction equilibrium E0 and two interior equilibria Ei, i = 1, 2 where

both E0 and E2 are locally asymptotically stable while E1 is saddle. Under this

condition, colony exhibits strong Allee effects.

Notes: The detailed proof of Theorem 2 can be found in Appendix A. The num-

ber of equilibria of Model (2.7) is determined by the positive intercepts of functions

g1(E) = (c−δ)E−δ
δ

and g2(E) = cE2

δγ
. Moreover, the local stability of the equilibria

of (2.7) is determined by the eigenvalues λi(E
∗, A∗), i = 1, 2 (refer to (A.5)) of its
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Equilibria Existence Condition Stability Condition

E0 Always exists for α ≥ 0 Locally asymptotically stable

Ei, i = 1, 2 c > δ and γ > 4cδ
(c−δ)2

E1 is saddle, while E2 is locally

asymptotically stable.

Table 2.2: Equilibria And Stability Of Model (2.7) When α = 0 and b = 0.

associated Jacobian matrix (A.29). Theorem 2 implies that: (i) Model (2.7) has

only equilibrium dynamics, i.e., no limit cycles by Dulac-Bendixson criterion; (ii)

The colony dies out if the relative death rate of the older population (e.g., workers) is

greater than the efficiency of energy invested on division of labor (δ = d
β
> c = γ̂(1−p)

a
);

(iii) Model (2.7) can have two interior equilibria whenever ad
βĉ

+ 2
√

d
r
< 1 (⇔ c > δ

and γ > 4cδ
(c−δ)2 for c = ĉ

a
and δ = d

β
); (iv) Similarly as in Model (2.2), Model (2.7) can

result in bistability when both the extinction equilibrium E0 and the interior equilib-

rium E2 are locally asymptotically stable (see Figure 2.5b); (v) Model (2.7) has one

stable degenerate interior equilibrium which occurs when c > δ and γ = 4cδ
(c−δ)2 (see

Figure 2.4).

Figure 2.4: Phase Plane Showing the Stability of the Only Interior Equilibrium E1

when c > δ and γ = 4cδ
(c−δ)2 . (c = 1, δ = 0.5, γ = 8).
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(a) No interior equilibria.(δ = 0.5, γ = 6) (b) Two interior equilibria.(δ = 0.5, γ = 10)

Figure 2.5: Nullclines for Model (2.2) without brood cannibalism such that when
(a) c > δ and γ < 4cδ

(c−δ)2 there is no interior equilibria, and (b) if c > δ and γ > 4cδ
(c−δ)2

there are two interior equilibria. (c = 1)

In the following simulations, we compare the dynamics of Model (2.2) and Model

(2.7) by looking at the synergistic effects of the efficiency of energy investment in

DOL, the relative egg production rate, and the relative death rate.

Figures 2.6(a-b) show the synergistic effects of c, δ, γ when egg and larval can-

nibalism is present, i.e., α, b > 0, while Figures 2.6(d-f) show the effects of these

parameters when α = b = 0. In both cases, when α, b > 0 and α = b = 0, we have the

following scenarios: (a) For small values of both c = γ̂(1−p)
a

and γ = ap
β(1−p) the colony

dies out, while for large values of both c and γ the colony survives. Comparing Figure

2.6a and 2.6d, we can notice that the area where colony survives (both populations

E and A are present) is larger when cannibalism is present (i.e. α, b > 0). (b) For

large values of c the colony can survive, while for large δ the colony goes extinct (see

Figure 2.6b and 2.6e). Again, in this case, α, b > 0 provide a larger area of colony

survivability. (c) For large γ and small δ the worker populations can survive in both

cases when α = b = 0 and α, b > 0, while for large δ the colony dies out (see Figure

2.6c and 2.6f). Once again, the presence of cannibalism provides a larger area where

the colony is able to survive.
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With egg and larval cannibalism, i.e., α = 0.2, b = 2.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

γ

c

(a) δ = 0.4

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

3.5

4

δ

c

(b) γ = 3

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

4

δ

γ

(c) c = 2
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Figure 2.6: Two parameter bifurcation diagrams describing how the number of inte-
rior equilibria changes as c, δ, γ vary respectively. Figures (a-c) present cannibalistic
behavior (α, b > 0) and figures (d-f) α = b = 0. Black region determines existence of
two equilibria and white region determines extinction.

In general, these scenarios suggest that a higher brood care effort from workers

and low maturation rate from egg stage to adult such that γ is large, are important

for colony survival. However, we were also able to capture the importance of canni-

balism in the worker population dynamics outcomes. Notice that for all the scenarios,

cannibalism and the benefit from cannibalizing (i.e., when α, b > 0) provide a larger

area of colony survivability needing smaller values of c and γ than when the colony is

non-cannibalistic, i.e., α = b = 0. Also, a cannibalistic colony is able to survive with
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smaller δ = d
β
, i.e., a low maturation rate and low death rate of adult workers is more

beneficial for the colony.

In Figure 2.7 we can capture the individual effects of c, δ, γ in the total population

size. Figures 2.7(a,b,d,e) show that c and γ have a positive effect on the the total

worker population size as each of these parameters increase. We chose specific points

to compare the effects of the relative cannibalism rate and its benefit (α and b). We

can notice that when α, b > 0 the worker population grows slower and reaches a

smaller size at the end of the variation of c and γ than when α = b = 0. Also a

cannibalistic colony can survive and be stable with a smaller value of c and γ than

a non-cannibalistic colony. Figures 2.7c and 2.7f show that δ has a negative effect in

the total worker population with or without cannibalism. However, in a cannibalistic

colony, the total worker population size decreases much slower as δ increases. This

could mean that the colony is being benefited from cannibalizing on the young by

slowing down the decrease of the population size and allowing a higher relative death

rate before it dies out.

Biological Implications: Theorem 2 suggests that a non-cannibalistic colony

can survive if the efficiency of energy invested in division of labor is greater than the

relative death rate of the adult worker population (i.e. c > δ = ad
β

). Proposition

1 indicates that a cannibalistic colony, i.e., α, b > 0, can survive if c > δ or c <

δ. However the colony can die out if α is too large, or if c is too small, i.e., if

the brood care effort by workers is significantly smaller than the portion of workers

foraging, and more individuals in the adult class engaging in cannibalism, then the

colony may die out due to low effort for brood care and excess of cannibalism. In

comparison, the dynamics of Model (2.2) and Model (2.7) suggest that higher brood

care effort from workers and low maturation rate from the egg stage to adult class are

important for the survival of a cannibalistic and non-cannibalistic colony. In general,

24



from our numerical simulations, cannibalism can increase or reduce the colony’s total

population size. This increase or decrease of colony size depends on the increase of

adult’s lifespan acquired through cannibalism. Furthermore both models (2.2) and

(2.7) (with and without cannibalistic interactions) can experience strong Allee effects

due to our choice of functional response describing division of labor.

With egg cannibalism, i.e., α = 0.2, b = 2.

0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

14

16

γ

E
+

A

(0.65,1.3)

(a) c = 2.5, δ = 0.4

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

14

16

c

E
+

A

(1.2,2.5)

(b) γ = 3, δ = 0.4

0 0.5 1 1.5 2 2.5
0

5

10

15

20

25

30

35

40

45

50

δ

E
+

A

(1,7)

(c) γ = 3, c = 2.5
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(d) c = 2.5, δ = 0.4.
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(f) γ = 3, c = 2.5.

Figure 2.7: One parameter bifurcation showing the effects of the stability of the
total population with respect to γ, c and δ in Model (2.2), (stable; unstable).

Evolutionary Model Derivation

In order to obtain further insights on how natural selection works on the life history

parameter values and lead to different dynamic outcomes, we study an extended
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evolutionary version of Model (2.2) by using the framework described by Vincent and

Brown [2005]. We consider a colony of social insects, in a given environment, that

have the same strategy set (i.e. a set of evolutionarily feasible phenotypes), and the

same fitness consequences of possessing a particular strategy (pg. 75 on [Vincent and

Brown, 2005]). Therefore, we apply a single fitness generating function to describe

the fitness of all individuals within the colony [Vincent and Brown, 1984, 1988, 2005].

Let u = u(t) denote the mean strategy (or trait) for the phenotypes of the population

in a colony and v is the trait of a typical or focal individual which determines the

fitness that would increase to a focal individual using any strategy of u. The related

life history parameters considered, i.e γ(u), α(u), b(u), δ(u), and c(u) are smooth

and strictly positive functions of trait u. For a given trait value u, these parameters

determine the ecological dynamics of Model (2.2). Let N = E + A be the total

population of the colony, then the fitness of a colony with the mean trait u is defined

as follows:

N ′

N
=
E ′ + A′

N
=

1

N

(
γ(u)A

1 + E + A
− α(u)AE − E +

c(u)EA

1 + E + A
− δ(u)A

1 + b(u)E

)
.

Let G(v, u, E,A) be the fitness generating function of a focal individual that chooses

a strategy v when the population in a colony has a mean trait u and population sizes

E and A, which is defined as follows:

G(v, u, E,A) =
1

E + A

(
γ(v)A

1 + E + A
− α(v)EA− E +

c(v)EA

1 + E + A
− δ(v)A

1 + b(v)E

)
Here we would like to point out that a general fitness generating functionG(v, u, E,A)

should depend on the mean trait of a colony u, e.g., there is a intraspecific competition

between population with trait u and trait v. However, for mathematical tractability,

we assume that the fitness of a focal individual G(v, u, E,A) that chooses strategy v

is independent of the mean trait u. This simplified assumption is an initial point for
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a general case when the formulation of G(v, u, E,A) also depends on the mean trait

u.

According to Vincent and Brown [2005], G(v, u, x) is a fitness generating function;

and the dynamics of trait u is determined by the fitness function H which is the

partial derivative of the fitness generating function G(v, u, x) with respect to v and

the trait value v takes the mean trait value u, i.e., H(u,E,A) = ∂G(v,u,E,A)
∂v

∣∣
v=u

.

Notice that either A = 0 or E = 0 leads to A = E = 0. Since G(v, u, E,A) =

1
E+A

(
γ(v)A

1+E+A
− α(v)EA− E + c(v)EA

1+E+A
− δ(v)A

1+b(v)E

)
will have singularity at A = 0 or

E = 0 mathematically, thus we define the fitness function H(u,E,A) in two parts:

AE = 0 and AE > 0 as follows:

H(u,E,A)|AE>0 =
∂G(v, u,E,A)

∂v

∣∣∣
v=u

=
1

E +A

∂
(

γ(v)A
1+E+A − α(v)EA− E + c(v)EA

1+E+A −
δ(v)A

1+b(v)E

)
∂v

=
1

E +A

(
γ′(u)A+ c′(u)EA

1 + E +A
− α′(u)EA− δ′(u)A

1 + b(u)E
+
δ(u)b′(u)EA

(1 + b(u)E)2

)
,

H(u,E,A)|AE=0 =
∂
(

γ(v)A
1+E+A − α(v)EA− E + c(v)EA

1+E+A −
δ(v)A

1+b(v)E

)
∂v

=
γ′(u)A+ c′(u)EA

1 + E +A
− α′(u)EA− δ′(u)A

1 + b(u)E
+
δ(u)b′(u)EA

(1 + b(u)E)2
.

(2.8)

Hence, we derive an evolutionary model from the ecological model (2.2) as follows

by using the modeling methodology for Evolutionary Game Theory presented in Vin-

cent and Brown [2005] (also see Cushing and Hudson [2012], Kang and Udiani [2014],

Rael et al. [2011]):
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E ′ =
γ(u)A

1 + E + A
− α(u)AE − E,

A′ =
c(u)AE

1 + E + A
− δ(u)A

1 + b(u)E

u′|AE>0 = σ2∂G(v, u, E,A)

∂v

∣∣∣
v=u,AE>0

= σ2H(u,E,A)|AE>0

=
σ2A

E + A

(
γ′(u) + c′(u)E

1 + E + A
− α′(u)E − δ′(u)

1 + b(u)E
+

δ(u)b′(u)E

(1 + b(u)E)2

)

u′|AE=0 = σ2

(
γ′(u) + c′(u)E

1 + E + A
− α′(u)E − δ′(u)

1 + b(u)E
+

δ(u)b′(u)E

(1 + b(u)E)2

)
.

(2.9)

The colony’s mean strategy u changes in the direction of the upward slope of the

adaptive landscape and the heritable variation within the colony [Vincent and Brown,

2005]. The adaptive landscape gives a visualization of the strategy dynamics, and

its slope at any point represents the change in fitness for a given change in strategy

[Vincent and Brown, 2005]. Therefore, the speed at which each population will evolve

toward equilibrium depends on the increase of both the genetic variance and the

change in fitness. Hence, σ2 is the variance in traits present in the colony around the

mean strategy u.

Mathematical Analysis

From the evolutionary model (2.9), if (E,A, u) is an equilibrium, then it satisfies

the following equations:

0 =
γ(u)A

1 + E + A
− α(u)AE − E,

0 =
c(u)AE

1 + E + A
− δ(u)A

1 + b(u)E

0 =
γ′(u) + c′(u)E

1 + E + A
− α′(u)E − δ′(u)

1 + b(u)E
+

δ(u)b′(u)E

(1 + b(u)E)2
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These equations imply that (0, 0, u) is an equilibrium if γ′(u) = δ′(u). The exis-

tence and stability of this equilibrium is stated in the following theorem:

Theorem 3 (Extinction equilibrium). Assume that γ(u), α(u), b(u), δ(u), and c(u)

are smooth and strictly positive functions of trait u. Then (0, 0, u) is an extinction

equilibrium of the evolutionary model (2.9) if there is a u such that γ′(u) = δ′(u).

Also, (0, 0, u) is locally asymptotically stable if γ(u) < δ(u), γ′(u) = δ′(u) and γ′′(u) <

δ′′(u). However, if γ′′(u) > δ′′(u), then (0, 0, u) is saddle.

Notes: Theorem 3 suggests that the existence and stability condition of the

extinction equilibrium is determined by the trait function of γ(u) and δ(u) only and

the relative egg cannibalism rate α(u) has no effect on its stability.

In nature, it is possible that γ(u), α(u), b(u), δ(u), c(u) may have different func-

tional forms in u. However, mathematical analysis quickly loses its tractability. In

order to continue studying the evolutionary model (9), we follow the approach of

Cushing [2015] and Kang et al. [2015] and simplify the forms of these trait functions

as a starting point. For further mathematical analysis, we assume that parameters

γ, α, b, δ, c have the same form of the trait function, i.e.

γ(u) = γ0φ(u), α(u) = α0φ(u), b(u) = b0φ(u), , δ(u) = δ0φ(u), c(u) = c0φ(u)

where φ(u) be our trait function that is a strictly positive smooth function, i.e.

φ : R → R+\{0}, and the parameters γ0, α0, δ0, b0, c0 are strictly positive. More-

over, φ(u) is bounded in its defined space. This assumption suggests that the life

history parameters are proportional to each other and model the trade-off of growth,

cannibalism and survivorship. For instance, increasing φ(u) with respect to u, in-

creases the investment in reproduction, γ(u), which is beneficial for the colony, while

there will be an adverse effect as cannibalism rate will also increase but at the same
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time the benefit from cannibalizing increases resulting another positive trade-off for

the colony.

The evolutionary model (2.9) can be simplified as

E′ =
γ(u)A

1 + E +A
− α(u)AE − E = φ(u)

(
γ0A

1 + E +A
− α0EA−

E

φ(u)

)
,

A′ =
c(u)AE

1 + E +A
− δ(u)A

1 + b(u)E
= φ(u)A

(
c0E

1 + E +A
− δ0

1 + bφ(u)E

)

u′ =
σ2A

E +A

(
γ′(u) + c′(u)E

1 + E +A
− α′(u)E − δ′(u)

1 + b(u)E
+

δ(u)b′(u)E

(1 + b(u)E)2

)

=
σ2Aφ′(u)

E +A

([
c0E

1 + E +A
− δ0

1 + b0φ(u)E

]

+

[
γ0

1 + E +A
− α0E +

δ0φ(u)b0E

(1 + b0φ(u)E)2

])
(2.10)

which set space is X = {(E,A, u) : E ≥ 0, A ≥ 0, u ∈ R}.

Let φ∗ = φ(u∗) and (E∗, A∗, u∗) be an interior equilibrium (i.e. E∗, A∗ > 0), then

the following equations satisfy Model (2.10):

γ0A
∗

1 + E∗ + A∗
− α0E

∗A∗ − E∗

φ∗
= 0

c0E
∗

1 + E∗ + A∗
− δ0

1 + bφ∗E∗
= 0

γ0

1 + E∗ + A∗
− α0E

∗ +
δ0φ
∗b∗0E

∗

(1 + b∗0φ
∗E∗)2

= 0 or φ′(u∗) = 0

(2.11)

From equations (2.11) we obtain A∗ = b0c0E∗2φ(u∗)+E∗(c0−δ0)−δ0
δ0

≥ 0.

Let x = φ(u)E. We define the following equations as the nullclines of Model (2.11):

ng1(1, x) =
α0c0x

2(1 + b0x)

γ0δ0

, ng2 (φ(u), x) = φ2(u)

(
1− 1

1 + α0F (φ(u), x)

)
and

F (φ(u), x) = φ(u)A =
b0c0x

2 + (c0 − δ0)x− δ0φ(u)

δ0

.
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Equations (2.11) indicate that if there exists a u∗ such that φ′(u∗) = 0, then accord-

ing to Theorem 1, there exists at least two interior equilibria (E∗, A∗, u∗). Evaluat-

ing the eigenvalues of the Jacobian matrix of model (2.10) at the interior equilibria

(E∗, A∗, u∗), we can determine the local stability of these by having α0φ
∗A∗2 > E∗+1

and the sign of φ′′(u).

Theorem 4. The evolutionary model (2.10) always has the extinction equilibrium

(0, 0, u∗) if and only if there is some u∗ such that φ′(u∗) = 0. Stability conditions

for this equilibrium are as follows: the boundary equilibrium is locally asymptotically

stable if (i) γ0 < δ0 and φ′′(u∗) > 0 or (ii) γ0 > δ0 and φ′′(u∗) < 0, and saddle

otherwise.

Notes: Lemma 4.2 from Kang et al. [2015] can be similarly applied to show

positive invariance and boundedness of model (2.10). Moreover, assume the trait

function φ(u) is a strictly positive smooth function defined on a closed interval [ul, ur]

with the characteristic that φ′(ul) = φ′(um) = φ′(ur) = 0, i.e., φ’s only critical points

are ul, um, and ur. The function φ(u) could be an increasing or decreasing function

in [ul, ur]. Hence, without loss of generality, we assume that φ(u) is increasing in

(ul, um) and decreasing in (um, ur), i.e., φ(u) > 0, φ′(u) > 0 in (ul, um), φ′(u) < 0

in (um, ur), φ(ul) = φ(um) = φ(ur) = 0 and φ′′(ul) > 0, φ′′(um) < 0, φ′′(ur) > 0.

This condition is similar to recent work by Cushing [2015] and Kang et al. [2015].

Moreover, note that lim
x→∞

ng2(φ(u), x) = φ2(u) and hence ng2(φ(u), x) is an increasing

function of u ∈ (ul, um) and decreasing for u ∈ (um, ur).

Theorem 5. Assume that φ(u) is a function with characteristics: φ(u) > 0, φ′(u) >

0 in (ul, um), φ′(u) < 0 in (um, ur), φ(ul) = φ(um) = φ(ur) = 0 and φ′′(ul) >

0, φ′′(um) < 0, φ′′(ur) > 0. The evolutionary model (2.10) always has at most three

boundary equilibria (0, 0, uj), j = l,m, r with the following stability scenarios:
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1. If γ0 < δ0, then (0, 0, ul) and (0, 0, ur) is locally asymptotically stable, while

(0, 0, um) is saddle.

2. If γ0 > δ0, then (0, 0, ul) and (0, 0, ur) is saddle, while (0, 0, um) is locally asymp-

totically stable.

Additionally, the following statements hold regarding the number of interior equi-

libria of the form (Ej
i , A

j
i , u

j
i ), i = 1, 2, j = l,m, r for the evolutionary model (2.10):

1. If ng1(1, x) > ng2(φ(ui), x), i = l,m, r, there is no interior equilibrium.

2. If ng2(φ(um), x) > ng2(ul,r) > ng1(1, x) > ng2(φ(ur,l), x), there are at most four

interior equilibria.

3. If ng2(φ(um), x) > ng2(φ(ul,r), x) > ng2(φ(ur,l), x) > ng1(1, x), there are at

most six interior equilibria.

The sufficient conditions on the existence and stability of these equilibria are listed in

Table 2.3.

Notes: The precise mathematical definitions/criterions of evolutionary stability

haven’t been given in literature but see some recent work of [Cushing, 2015, Kang

et al., 2015] where they define an equilibrium of the evolutionary model being evolu-

tionary stability if it is locally asymptotically stable and satisfies ESS maximum prin-

ciple [Vincent and Brown, 1988], i.e., maxv∈R{G(v, u∗, E∗, A∗)} = G(u∗, u∗, E∗, A∗) =

0. In this paper, we do not deal with evolutionary stability of an equilibrium, instead,

we only focus on its locally stability.

For instance, define φ(u) = e
− u2

2σ2
φ , u ∈ R. Notice that this is a decreasing function

in (ul, ur). Then according to Theorem 4, (0, 0, u∗) is an equilibrium of Model (2.10)

if u∗ = 0. Since φ′′1(u∗) = − 1
σ2 < 0, (0, 0, 0) is locally asymptotically stable if γ0 > δ0
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and saddle if γ0 < δ0. Figure 2.8 shows that using this trait function restricted in

some interval [ul, ur], Model (2.10) can have two extinction equilibria and up to four

interior equilibria.

Another example is the trait function φ(u) = σ2u2(1− u)2 defined on [0, 1]. The

polynomial φ(u) is an increasing function in (0, 1
2
) and decreasing in (1

2
, 1). Ac-

cording to Theorem 4, Model (2.10) has the following three extinction equilibria

(0, 0, 0), (0, 0, 1
2
), (0, 0, 1) and up to six interior equilibria depending on the value of

u ∈ [0, 1]. The stability of the extinction equilibria is as follows: (0, 0, 0) and (0, 0, 1)

are LAS whenever γ0 < δ0 and φ′′(0) = φ′′(1) = 2σ2 > 0, while (0, 0, 1
2
) is saddle

since φ′′(1
2
) = −σ2 < 0. If γ0 > δ0, then (0, 0, 1

2
) is LAS, while (0, 0, 0 and (0, 0, 1) are

saddle. Figure 2.9 shows that choosing this trait function, Model (2.10) can have a

total of nine equilibria, in which three are extinction equilibria and can have up to

six interior equilibria.

(a) Two attractors: (0, 0, ul) and (El
2, A

l
2, u

l);

two interior equilibria (El
i, A

l
i, u

l); i = 1, 2.

(b) One attractor: (El
2, A

l
2, u

l), with four in-

terior equilibria (Ej
i , A

j
i , u

j), i = 1, 2; j = l, r.

Figure 2.8: Let x = φ(u)E with φ(u) = e
− u2

2σ2
φ . The solid line is ng1(1, x) =

α0c0x2(1+b0x)
γ0δ0

and the dotted lines are ng2 (φ(u), x) = φ2(u)
(

1− 1
1+α0F (φ(u),x)

)
. On the

left we have the case where γ0 > δ0 and ng2(φ(ul), x) > ng2(φ(ur), x) > ng1(1, x) and
on the right γ0 < δ0 and ng2(φ(ul), x) > ng1(1, x) > ng2(φ(ur), x). The dark solid
dot is (ul, xl) = (ul, φ(ul)El

2).
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(a) (γ0 > δ0) Two attractors: (0, 0, um) and

(Em
2 , A

m
2 , u

m), with four interior equilibria

(Ei
j , A

i
j , u

j), i = 1, 2, j = l,m.

(b) (γ0 < δ0) One attractor: (Em
2 , A

m
2 , u

m),

with six int. equilibria (Ej
i , A

j
i , u

j), i = 1, 2,

j = l,m, r.

Figure 2.9: Let x = φ(u)E with φ1(u) = σ2u2(1− u)2. The solid line is ng1(1, x) =
α0c0x2(1+b0x)

γ0δ0
and the dotted lines are ng2 (φ(u), x) = φ2(u)

(
1− 1

1+α0F (φ(u),x)

)
. The

dark solid dot is (um, xm) = (um, φ(um)Em
2 ).

Evolutionary dynamics restricts the slope of the nullcline function

ng2 (φ(u), x) = φ2(u)

(
1− 1

1 + α0F (φ(u), x)

)
,

ranging from φ(ur) to φ(ul) with x = φ(u)E due to the assumption made about φ(u),

where φ(u) > 0, φ′(u) > 0 in (ul, um), φ′(u) < 0 in (um, ur), φ(ul) = φ(um) = φ(ur) =

0 and φ′′(ul) > 0, φ′′(um) < 0, φ′′(ur) > 0 as we can see in Figures 2.8 and 2.9.

The potential impacts of the evolutionary settings for this model suggest that

evolutionary dynamics may prevent colony’s death when ng2(φ(um), x) > ng1(1, x) >

ng2(φ(ur,l), x). This occurs when the nullcline ng2

(
φ(ur,l), x

)
has no positive intercept

with ng1(1, x) while ng2 (φ(um), x) intercepts twice with ng1(1, x). In the presence of

evolution (i.e. with population and strategy dynamics), the population converges to

the interior equilibrium (El
2, A

l
2, u

l) by choosing the trait ul (see Figure ). However,

without evolution and with certain values of γ, α, b, c, δ, the ecological dynamics of

model (2.2) may converge to the extinction equilibrium (0, 0). Also, the inclusion
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Equilibria Existence Condition Stability Condition

(0, 0, uj),

j = l,m, r

Always exists but has only?

these three boundary equilibria

if ng1(1, x) > ng2(φ(uj), x),

j = l,m, r

if γ0 > δ0 and φ′′(uj) < 0, or

γ0 < δ0 and φ′′(uj) > 0, then

(0, 0, uj), j = l,m, or r is locally

asymptotically stable while for

φ′′(uj) > 0 or φ′′(uj) < 0, (0, 0, uj)

is saddle. ?Moreover, (0, 0, uj) is

globally stable for each case.

(Emi , A
m
i , u

m
i ),

i = 1, 2

ng2(φ(um), x) > ng1(1, x) >

ng2(φ(uj), x), j = l, r

For Em2 > Em1 , (Em2 , A
m
2 , u

m) is

locally asymptotically stable since

α0φ(um)(Am2 )2 > Em2 + 1, while

(Em1 , A
m
1 , u

m) is saddle since

α0φ(um)(Am1 )2 < Em1 + 1

(Eji , A
j
i , u

j),

i = 1, 2,

j = l,m, r

ng2(φ(um), x) >

ng2(φ(ul,r), x) >

ng2(φ(ur,l), x) > ng1(1, x)

For Ej2 > Ej1, (Eji , A
j
i , u

j) can be

locally asymptotically stable

whenever α0φ(uj)(Aji )
2 > Eji + 1

and φ′′(uj) < 0, while it can be

saddle if φ′′(uj) > 0.

Table 2.3: General Conditions for Existence of Equilibria and Respective Stability

for Aj = b0c0(Ej)2φ(u∗)+Ej(c0−δ0)−δ0
δ0

≥ 0.

of evolutionary dynamics may produce an increase of colony’s fitness. In this case,

the nullcline function ng2 (φ(u), x) has up to six intercepts with ng1(1, x) for all u ∈

[ul, ur] (see Figure 2.9). Five of these intercepts (i.e., (Ej
i , A

j
i , u

j), i = 1, 2, j =

l, r, and (Em
1 , A

m
1 , u

m)) are less than the stable equilibrium (Em
2 , A

m
2 , u

m). Since

φ(u) is an increasing function in (ul, um), then x = φ(u)E is also increasing, i.e.

φ(um)Em > φ(ul)El, while of φ(u) is decreasing function in (um, ur), then x = φ(u)E
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is also decreasing i.e., φ(um)Em > φ(ur)Er. For a chosen u ∈ (ul, ur), when there

is evolution, the population converge to the interior equilibrium (Em
2 , A

m
2 , u

m) by

choosing the trait value um. However, in the situation in which no strategy changes

are allowed, the ecological dynamics of model (2.2) may converge to the interior

equilibrium (E∗, A∗) where Em
2 > E∗ and A∗ = bcE∗2+(c−δ)E∗−δ

δ
. We say that (E∗, A∗)

is ecologically stable.

Further, the choice of trait function for these settings is relevant. For example,

choosing the trait function φ1(u) = σ2u2(1−u)2 defined for all u ∈ [0, 1], can produce

up to nine equilibria in which three can be extinction equilibria depending on the value

of u and there can be up to six interior equilibria. On the other hand, the function

φ2(u) = e
− u2

2σ2
φ , u ∈ R can produce up to six equilibria in which two are extinction

equilibria and four are interior equilibria. With respect to stability, using φ1(u) as

the trait function can produce up to two stable extinction equilibria and one stable

interior equilibrium, while using φ2(u) can produce only one stable extinction and

one interior equilibrium. Also, both trait functions can make the system permanent

when γ0 < δ0 (see Figure 2.9).

Discussion

Here we proposed and studied a compartmental two-stage model for social insects

in two different frameworks: ecological and evolutionary. Our model follows the

assumptions: (1) Adult workers can cannibalize the brood (e.g., eggs or larvae or

both); (2) Older population provide brood care to young ones and food resource to

the colony through foraging which is in competition with brood care. We provide

boundedness and positivity of the proposed model in Theorem 1. Analytical results

are summarized in Proposition 1, Theorem 2, and Table 2.3 along with numerical

simulations that give us insight and answer questions regarding the dynamics of these
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models.

Our findings suggest that a non-cannibalistic colony can survive if the efficiency

of energy invested in division of labor, c, is larger than the relative death rate, δ, of

the older population. Otherwise, the colony dies out. In this case, a non-cannibalistic

colony could experience an increase of mortality rate in adult workers in harsh envi-

ronmental conditions when availability of food resources is poor or weather conditions

are bad. In order to survive, the colony must invest more energy in brood care. Ana-

lytical results for a non-cannibalistic colony represented in Model 2.7, show bistability

when the efficiency of energy invested in DOL is greater than the relative death rate

(c > δ) and we have the quantity γ > 4cδ
(c−δ)2 . For this case, the extinction equilib-

rium and the interior equilibrium E2 > E1 are locally asymptotically stable meaning

that for some initial conditions under some threshold, the colony can die out but if

those initial conditions are above a certain threshold the colony survives (see Figure

2.6)e. Furthermore, in a colony presenting cannibalistic behavior, higher investment

on brood care effort by workers and low maturation rate from egg stage to adult

class, are factors that play an important role on the survivability and growth of the

colony. Also, cannibalism and the benefit from it can increase the colony’s population

size (see Figure 2.7) allowing the colony to put less effort on brood care (compare

Figure 2.7b with 2.7e) and providing a larger range for mortality rate in the adult

class (compare Figure 2.7c with 2.7f).

In our evolutionary model, we assume there is a trait function φ(u) related to

the life history parameters of social insects with a phenotypic trait u. This function

determines the ecological dynamics for a given trait value. Our theoretical results

for this model (see Theorem 5 and Table 2.3) indicate that evolutionary dynamics

may prevent the colony from dying out by choosing the trait with large efficiency of

energy invested in task allocation and with small cannibalism rate (see Figure 2.8a
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and 2.9c). Our findings suggest that evolutionary dynamics may increase the colony’s

fitness as seen in Figure 2.8b and 2.9d where the total worker population within a

colony converges to a higher equilibrium point, and the choice of the trait function is

relevant as it produces different results in terms of number of equilibria and stability,

but also can make the system permanent.

Studies on the evolution of cannibalism and how it affects population suggest

that the most impactful factor of this behavior is the energetic benefit through the

consumption of conspecific individuals representing a high-quality resource for the

consumer [Nishimura and Isoda, 2004, Rudolf et al., 2010]. However, if individuals

fail to adopt cannibalism, they may be more likely to die due to crowding or low

availability of alternate food resources, or both [Nishimura and Isoda, 2004]. On

the other hand, ecological success of a colony has also been attributed to its social

organization to perform particular tasks in response to varying conditions and colony

needs [Bonabeau et al., 1997, Gordon, 2015]. Some studies have shown that the

colony regulates its activities depending on food availability, colony size and age

etcetera [Gordon, 2015]. Our theoretical results suggest similar findings with respect

to advantages of a cannibalistic colony and the feature that characterize social insects,

division of labor. In addition, we would like to point out that social insects like

honeybees have other methods of population control, such as swarming with a large

fraction of the colony, that are more evolutionarily beneficial to the colony than

cannibalizing the brood [Schmickl and Crailsheim, 2001].

Concluding Remarks

The use of dynamical systems to study complex biological systems has become a

popular tool to describe the mechanistic and behavior of organisms, complex societies

of social animals, and different phenomena affecting the population dynamics within
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colonies. The consideration of many characteristics affecting the population dynamics

of social insects has not been completely analyzed due to the complexity exhibited by

such organisms in their natural habitat. The research presented in Chapter 2 analyzes

from a general perspective two of the fundamental aspects in social insects that have

an impact on species survival, i.e. brood cannibalism and division of labor. Given

that the decision making of social insects in a colony is often shaped by the change

in their natural surrounding, I investigate the population and evolutionary dynamic

consequences of brood cannibalism and division of labor. In summary, the findings in

this research suggest that both brood cannibalism and division of labor are adaptive

strategies that increase the size of the worker population. However, one limitation

of this work is that it does not include specific characteristics to a certain species.

Therefore, in the next chapter, I propose a set models focusing on the population

dynamics of multi-species interactions such as leafcutter ants, including Atta and

Acromyrmex, to study the different ways brood cannibalism can benefit the colony

for survival and the impacts of division of labor explicitly by including age-dependent

task specialization.
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Chapter 3

INTERACTIONS BETWEEN LEAFCUTTER ANTS AND FUNGUS GARDEN:

EFFECTS OF DIVISION OF LABOR, AGE POLYETHISM, AND EGG

CANNIBALISM

Abstract

Division of Labor (DOL), age polyethism, and egg cannibalism all play roles in

shaping colony-level population dynamics in social insect colonies. However, the ways

in which these factors interact with one another to shape population dynamics is not

currently understood. In this study we examine how these factors influence pop-

ulation dynamics in colonies of fungus-gardening leafcutter ants by developing and

studying two sets of models: (1) We study age polyethism contribution to the dynam-

ics of a leafcutter ants and their fungus garden interaction model which incorporates

other mechanisms of DOL; (2) We explore effects of egg cannibalism in colony dy-

namics and understand how to model such social conflict behavior realistically using

different functional responses to incorporate benefits of egg cannibalism behavior.

Our models and the related analytical and numerical analysis suggest that: (a) Age

polyethism should be incorporated in the leafcutter ants and their fungus garden in-

teraction model, otherwise, their population dynamics would be unstable. (b) If the

maturation rate is too large, then the colony may die out. (c) If the mortality rate of

the inside workers is greater than the outside’s workers, then the colony is prone to

extinction. (d) Small enough egg cannibalism rate benefits adult worker ant’s growth

and (or) development, large proportion of ants performing a given task can promote

colony survival, and too large egg cannibalism rate can lead to colony’s death. (f)
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A non-linear functional response of egg cannibalism benefit can save the colony from

extinction, while a linear fashion cannot provide survival. In addition, increasing

energy invested on brood care and (or) the conversion rate between fungus and ants

could induce oscillatory dynamics in models with cannibalism.

Introduction

Eusocial insects represent some of the most advanced social systems and are char-

acterized by having cooperative brood care, an overlap of at least two generations

in the same colony, and coexistence of reproductive and non-reproductive members

[Hölldobler and Wilson, 2010]. Leafcutter ants are considered by many to represent

one of the pinnacles of social evolution. They live in colonies that can reach pop-

ulation sizes in the millions, have a number of morphologically distinct subclasses,

build nests over 30m wide, and are the greatest agricultural pest of the neotropics,

with mature colonies devouring hundreds of pounds of leaves every year. The huge

size of the colonies and success of the species is facilitated by their symbiosis with a

fungus that they grow as their primary food source. The ants do not eat the pieces of

fresh vegetation that they collect from the plants surrounding the colony, but instead

provide them to their fungal symbiont which they consume in turn. They exhibit

a complex system of division of labor by which task allocation depends on the age

of the individual or on physical features, or on both [Hölldobler and Wilson, 2010].

Division of labor (DOL) in social insects, as defined by Gordon [2015], “describes a

process in which one individual repeatedly performs a task while another individual

repeatedly performs another”.

Mechanisms of DOL include size polymorphism, age polyethism, variation in re-

sponse thresholds, and learning [Beshers and Fewell, 2001]. Some of the tasks per-

formed by non-reproductive individuals include caring for the queen and brood, nest
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construction, foraging for resources, and cleaning and defending the nest, which have

the overall purpose of increasing the colony’s success [Hölldobler and Wilson, 2010,

Yan et al., 2014]. Age polyethism plays an important role in shaping division of labor

in leafcutter ant colonies [Camargo et al., 2007, Wilson, 1980]. This phenomenon is

observed in many social insects in which individuals perform different tasks as they

grow older [Oster and Wilson, 1978, Wilson et al., 1971]. For example, workers in

the smallest physical class take care of brood and the fungus inside the nest when

they are young [Camargo et al., 2007, Van Bael et al., 2011], and can be seen riding

on pieces of leaves being carried back to the nest by foragers when they are older,

where they both protect the forager carrying the leaf from parasitic phorid flies and

begin cleaning and processing the leaf fragment [Feener Jr and Moss, 1990, Vieira-

Neto et al., 2006, Camargo et al., 2007, Hart et al., 2002, Van Bael et al., 2011,

Linksvayer et al., 2002]. Older workers from all size classes are also more likely to

participate in the dangerous behavior of defending the nest [Hölldobler and Wilson,

2010]. Therefore, for social insect colonies with age polyethism, the tasks performed

by individuals within a colony changes as they mature [Capinera, 2008]. One of the

interesting questions is how age polyethism in a social insect colony contributes to

population dynamic’s including the distribution of workers performing different tasks.

Egg cannibalism behavior has been regularly observed in social insect colonies,

including leafcutter ants and honeybees [Schmickl and Crailsheim, 2001, Monnin and

Peeters, 1997, Woyke, 1977], and is suggested to be a selfish behavior influenced by

environmental factors such as shortage of food resources [Matthews and Matthews,

2009, Richardson et al., 2010, Schmickl and Crailsheim, 2001], and individual traits

such as sex [Schultner, 2014]. Recent studies have shown that egg cannibalism is an

adaptive life strategy that can increase growth and developmental rates [Kang et al.,

2015, Osawa, 1992, Roy et al., 2007, Schultner et al., 2013], adult body size [Osawa,
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2002, Schultner et al., 2013], improve colony survival [Kang et al., 2015, Roy et al.,

2007, Schultner et al., 2013], and reduce competition within the colony [Roy et al.,

2007, Schultner et al., 2013, Wise, 2006]. There is a fair amount of literature devoted

to the study of cannibalism behavior in both ecological and evolutionary settings (see

[Cushing, 1991, 1992, Cushing and Li, 1995, Kang et al., 2015]).

In leafcutter ants, egg cannibalism behavior plays an important role during the

incipient stage of the leafcutter colony life cycle. When the first workers eclose in the

new colony started by a recently-mated queen, the queen produces large malformed

trophic eggs, formed by fusing multiple eggs in the ovariole, and the workers feed

them to developing larvae to reduce consumption of the still-small fungus garden.

The production of these trophic eggs is crucial to the survival of the colony until it

reaches the size required for stable colony growth [Kang et al., 2011]. One interesting

question is whether the benefit of cannibalism behavior is reflected in a linear energy

transfer from victim to consumer or in a nonlinear fashion.

A number of experimental studies have examined the respective roles of egg can-

nibalism [Kang et al., 2015, Osawa, 1992, 2002, Roy et al., 2007, Schultner et al.,

2013, Wise, 2006], division of labor [Beshers and Fewell, 2001], and age polyethism

[Camargo et al., 2007, Oster and Wilson, 1978, Wilson, 1980, Wilson et al., 1971] in

shaping population dynamics of social insects. However, it has been difficult to study

how these factors interact with one another to shape overall colony-level population

dynamics. Increasing our understanding of how these factors individually shape pop-

ulation dynamics, how the effects of the factors modulate the influence of one another,

and their cumulative effects will be of great value to social insect scientists. In this

paper we will use a mathematical modeling approach to facilitate study of the effects

of these potentially interacting variables on colony-level population dynamics.

Mathematical models have been used to understand population dynamics observed
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in natural environments. For instance, Karsai et al. [1996] developed a simple model

to describe the colony dynamics from regulatory effects of feedback mechanisms such

as brood production in eusocial paper wasps. Other models [Karsai and Schmickl,

2011, Schmickl and Karsai, 2014, 2016] have studied different mechanisms of division

of labor. In Schmickl and Karsai [2014] and Karsai and Schmickl [2011], they focused

on studying the regulation of task partitioning of hunting behavior in a Ponerine

ant colony and in construction behavior in social wasps, respectively. Both Schmickl

and Karsai [2014] and Karsai and Schmickl [2011] used a Stock and Flow modeling

framework to develop a system of first-order ODEs explaining that task partitioning

of hunting behavior and nest construction, can be done by regulation. In Schmickl

and Karsai [2016], an ODE model approach was used to study the task regulation

of collective behavior in honeybees predicting an adaptive strategy for both bees

and plants. Also, Schmickl and Crailsheim [2007] proposed a model to study the

population and resource dynamics of a honeybee colony emphasizing pollen supply

and brood cannibalism. However, few models that could be applied to the interactions

between leafcutter ants and their fungus garden have been produced (but see Kang

et al. [2011]).

The model proposed in Kang et al. [2011] describes the mutualism interactions

of leafcutter ants and their fungus with an implicit division of labor, which provides

global dynamics suggesting that division of labor among worker ants is an important

factor which determines survival and growth, or death of leafcutter ants colonies

and their fungus garden. We adopt the modeling approach of Kang et al. [2011] to

investigate the effects of age polyethism and egg cannibalism on colony population

dynamics. More specifically, the main purpose of this paper is to learn the possible

colony dynamic outcomes by studying the effects of the explicit division of labor

through the subdivision of the worker ants into two task groups that perform tasks
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according to their age such as tending the fungus garden and collecting leaves. We

also explore how the colony may benefit from egg cannibalism behavior in linear or

nonlinear fashions.

Model Derivation

Kang et al. [2011] proposed the following model (3.1) to study an incipient colony

growth model for leafcutter ants and their fungus garden based on simple density-

dependent growth and death rates coupled with a fungus growth model which can

be described by a generalized Michaelis-Menten equation of enzyme kinetics [Kang

et al., 2011]:

F ′(t) =
rfaA

2

b+ aA2
F − dfF 2 − rcAF

A′(t) = raAF − daA2

(3.1)

where rf is the maximum growth rate of the fungus; ra = crf with c being the

conversion rate between fungus and ants; b is the half-saturation constant; and da, df

is the mortality rate of ants and the fungus, respectively. The parameter a = p2q(1−q)

measures implicit division of labor with p being the portion of the worker biomass of

A(t) performing an inside colony task such as brood care, and q being the portion

of energy of each worker performing an outside colony task such as foraging. The

ecological assumptions of (3.1) are listed as follows:

1. The numerical response function for ants is the Holling Type I function, i.e.,

fungus biomass F multiplied by a constant number ra. In addition, we assume

that ants suffer from density-dependent mortality due to energy consumed by

foraging for leaves and taking care of the larvae and fungus garden, which will

modify population growth through density-dependent self-limitation [Holland

and DeAngelis, 2010].
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2. The numerical response of fungus to ants is a Holling Type III function aA2

b+aA2 by

applying the concept of the kinetics of functional response [Real, 1977]. More-

over, the fungus suffers from density-dependent mortality due to self-limiting

[Holland and DeAngelis, 2010].

In the following subsections, we provide detailed model derivations and assump-

tions of the following two sets of models based on the modeling approach of (3.1)

[Kang et al., 2011]:

1. We derive two models with division of labor: leafcutter ants and their fungus

garden interaction models with versus without age polyethism.

2. We derive two models with egg cannibalism behavior in the interactions of

leafcutter ants and their fungus garden: (1) Consumption of eggs leads to the

energy increasing linearly for consumer; and (2) Consumption of eggs decreases

the mortality of the consumer in a nonlinear fashion.

Model with Division of Labor in leafcutter Ants with Fungus Garden

Let F (t) represent the biomass of fungus, and A(t) = Ai(t) + Ao(t) be the total

biomass of workers in a colony where Ai(t) is the biomass of ants working inside

the colony, and Ao(t) is the biomass of ants working outside the colony at any time

t, respectively. We propose the following system of nonlinear differential equations

describing the biomass rate of change of two task groups of leafcutter ants and their

fungus with their related age polyethism effect as model (3.2). We assume that ants

working inside the colony Ai will age into Ao to perform more risky tasks outside of

the colony with maturation rate β.
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F ′(t) =

[
rfAiAo
b+ AiAo

− dfF − riAi − roAo
]
F

A′i(t) = ciriAiF − βAi − diAi(Ai + Ao)

A′o(t) = coroAoF + βAi − doAo(Ai + Ao)

(3.2)

The ecological assumptions of the leafcutter ants colony’s dynamics of (3.2) are

listed as follow:

1. Biomass of fungus F (t):

• F (t) can only increase if there are ants tending the garden inside the colony

and ants collecting leaves outside the colony, hence its growth will be a

product thereof, taking into account the maximum growth rate of the

fungus, rf . By the kinetics of functional response, we can describe the

response of the fungus as a Holling type III functional response,
rfAiAo
b+AiAo

where b is the half saturation constant.

• F (t) decreases due to natural mortality and consumption by ants, with df

as the death rate of fungus, and ri and ro as the rate of consumption by

ants working inside and outside, respectively.

Thus, the dynamics of the fungus biomass F (t) is described by the following

equation:

F ′(t) =

[
rfAiAo
b+ AiAo

− dfF − riAi − roAo
]
F.

2. Biomass of ants working inside and outside the colony, Ai(t) and Ao(t):

• Ai(t) and Ao(t) increase in proportion to the biomass of fungus and their

own biomass according to the rate of consumption (ri, ro respectively) and

the rate at which they can convert the biomass of consumed fungus to

their own biomass (ci, co respectively).
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• Ai(t) and Ao(t) decreases due to density dependent mortality, i.e. the

death rate of each of the task groups increases when the total population

is too large and individuals are competing for space or resources.

• We consider a maturation rate of ants working inside the colony βAi. We

assume that ants working inside the colony leave this task group at a per-

capita rate β.

In summary, model (3.2) has explicit division of labor that is measured by the pop-

ulation of inside colony workers Ai and outside colony workers Ao. In our model we

assume that age polyethism is an additional DOL mechanism which includes the fact

that younger workers Ai performing inside colony task will age into older workers Ao

performing outside colony task at a rate of β. We aim to compare the dynamical

outcomes of model (3.2) for β = 0 and β > 0 in order to explore the impacts of age

polyethism described by the term βAi. We also compare dynamics of the original

model (3.1) to model (3.2) to study the effects of explicit DOL.

Model with Egg Cannibalism in leafcutter Ants with Fungus Garden

Let F (t) be the total biomass of fungus as time t, and E(t)+A(t) denote the total

biomass of a focal colony of leafcutter ants at time t, where E(t) represents the egg

population biomass that can be cannibalized by A(t) at time t, and A(t) represents the

population biomass of larvae and adult workers that may have cannibalistic behavior

at time t. We propose the following sets of nonlinear equations describing a two-stage

population model of leafcutter ants with egg cannibalism behavior and implicit DOL:

Model (3.3) describes the utilization of egg cannibalism leading to the growth

benefit of A due to the linear energy transformation,
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F ′(t) = F

[
rfaA

2

b+ aA2
− dfF − rcA

]
E ′(t) = p1raAF − αAE − βE

A′(t) = (1− p1)raAF + βE + c1αAE − daA2

(3.3)

Model (3.4) describes the utilization of egg cannibalism resulting in reduced mor-

tality rate of A, and thus increase the lifespan of A. The benefits of egg cannibalism

are modeled as nonlinear effects in the model (3.4). The detailed ecological assump-

tions for these models are described below.

F ′(t) = F

[
rfaA

2

b+ aA2
− dfF − rcA

]
E ′(t) = p1raAF − αAE − βE

A′(t) = (1− p1)raAF + βE − daA
2

1 + c2αE

(3.4)

First, the derivations of the biomass fungus F in both model (3.3) and (3.4) follow

the same assumptions in the original model (3.1) studied in Kang et al. [2011]. We

also assume that the reproductive division of labor results in the ratio of energy gained

through consuming fungus being p1 ∈ [0, 1] for the colony reproduction investment,

i.e., the colony invests p1raAF in reproduction and (1 − p1)raAF in the growth of

A-class. We also assume that egg population E(t) has no natural death but can only

die through cannibalism by the A-class or mature into A-class. Egg cannibalism is

modeled with the Holling Type I functional response αAE, where α is the cannibalism

rate; E(t) matures into the A-class at the rate of βE. Thus, the population dynamics

of E is described with the following equation:

E ′(t) = p1raAF − αAE − βE.

Regarding the population of A-class, this increases through the energy gained by

consuming fungus (1− p1)raAF and the maturation from E-class βE.
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• In model (3.3), A(t) can increase linearly its population/biomass by cannibal-

izing the egg population at a rate c1αAE, where c1 ∈ (0, 1) is the conversion

efficiency between ants and eggs.

• In model (3.4), consuming eggs at a rate αAE, A(t) mortality rate daA
2 is

decreased with the functional response 1
1+c2αE

, which represents the benefit ob-

tained from cannibalism. The parameter c2 is a coefficient describing the func-

tional response of survivability to an increasing presence of eggs which increases

the number of individuals cannibalized.

The assumptions above imply that, if there is no egg cannibalism (i.e. α = 0), model

(3.3) and (3.4) are reduced to the following system:

F ′(t) = F

[
rfaA

2

b+ aA2
− dfF − rcA

]
E ′(t) = p1raAF − βE

A′(t) = (1− p1)raAF + βE − daA2

. (3.5)

A description to each of the parameters used in these models and intervals obtained

from the approximations according to empirical work [Brown et al., 2006, Clark and

Fewell, 2014, Kang et al., 2011], are shown below:
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Parameter Intervals Reference

ra: Maximum growth rate of ants (0.05,0.3) Kang et al. [2011]

rf : Maximum growth rate of fungus (0.01,1) Kang et al. [2011]

rc, ci, co: Conversion rate between fungus and ants (0.001,10) Kang et al. [2011]

da, di, do: Death rate of adult workers (0.001,1) Kang et al. [2011]

df : Deterioration rate of fungus (0.001,1) Kang et al. [2011]

ri, ro: Consumption rate of fungus variable

b: Half-saturation constant (0.001,10) Kang et al. [2011]

a: Measurement of the division of labor (0.0.25) Kang et al. [2011]

p1: Energy invested on brood care (0,1) variable

α: Cannibalism rate variable

β: Maturation rate (0.015, 0.25)

Boulogne et al.

[2014],Camargo et al.

[2007]

c1: Conversion efficiency between ants and eggs (0,1) variable

c2: Regulation effect of an increase of cannibalism arbitrary variable

Table 3.1: Parameter Description and Interval Values Used in Models (3.2) and
(3.3).

We aim to compare the dynamical outcomes of model (3.5) without egg cannibal-

ism to model (3.3) with cannibalism to explore how may cannibalism behavior alter

the colony dynamics; and compare equilibria dynamics of model (3.3) exploring both

funtions Φ1,2(E,A) to investigate how different modeling approaches of cannibalism’s

benefits could result in different outcomes.

Mathematical Analysis

First, we provide the following theorem regarding the basic dynamic properties of

our proposed four models (3.2), (3.3) and (3.4) as follows:
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Theorem 6 (Positive Invariance and Boundedness). The systems (3.2), (3.3) and

(3.4) are all positive invariant in R3
+. More specifically, every trajectory of model

(3.2)is attracted to a compact set C =
[
0,

rf
df

]
×
[
0,

c rf
d df

]
; and every trajectory of

models (3.3) and (3.4) is attracted to a compact set D =
[
0,

rf
df

]
× [0,M3].

Models (2.2 - 2.4) are biologically well-defined, i.e. the populations’ biomass is

always positive and bounded. In addition, the extinction equilibrium E0 = (0, 0, 0)

always exists for all models.

Effects of Age Polyethism

To determine the effects of age polyethism, we identify the conditions by which

the colony of leaf-cutter ants can survive or perish. We do this by analyzing interior

equilibria for the system (3.2) when β = 0 and β > 0. We define an interior equilibria

in our model as a fix-point of the form (F ∗, E∗, A∗) where F ∗, E∗, A∗ > 0. Let

κ =
coro
ciri

be the relative growth rate of workers performing inside colony tasks to workers

performing inside colony tasks.

Let

A∗i = A∗o

[
(do − diκ)A∗o − βκ
β − (do − diκ)A∗o

]
,

which depends on the positive solutions of the following nullcline equation:

g2(Ao) = a4A
4
o + a3A

3
o + a2A

2
o + a1Ao + a0. (3.6)

The complete expression for the constants ai, for i = 0, ..., 4 are in the appendix.

The following theorem provides conditions for existence of interior equilibria for

both considered cases of (3.2) (i.e., β = 0 and β > 0).
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Theorem 7 (Existence of equilibria). Model (3.2) always have the extinction equilib-

rium E0 = (0, 0, 0) which is always locally asymptotically stable. In addition, model

(3.2) with β = 0 has interior equilibria if and only if κ = do
di

. On the other hand,

model (3.2) with β > 0 has an interior equilibrium if do
di
> κ and does not have an

interior equilibria if do
di
< κ.

Numerical simulations

According to Theorem 7 and numerical simulations displayed in Figure 3.1, when

κ = do
di

, Model (2.2) without age polyethism (i.e. β = 0) has an attractor that consists

of a line of equilibria where initial condition plays an important role in determining

which equilibrium converges to. When the condition does not satisfy, Model (2.2)

with β = 0 has only the extinction equilibrium.
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Figure 3.1: Time series solution for model (3.2) with parameters rf = 0.7, b =

0.002, df = 0.2, di = 0.01, do = 0.0095, ci = co = 0.7, ro = 0.06 with ri = dicoro
doci

,
choosing different initial conditions.

The inclusion of age polyethism (i.e. β > 0) in model (3.2), gives us unique

solutions as opposed to when β = 0 with either infinitely many solutions or non-

existent positive solutions. Figure 3.2, shows the possible number of interior equilibria

that model (3.2) with β > 0 can have and their stability. Fixing parameters rf =

0.7; b = 0.002; ci = 0.5; co = 0.3; df = 0.2; di = 0.1; do = 0.2; ri = 0.15; ro = 0.2

and varying β, which denotes the transition and maturation rate from inside worker
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to outside worker, we can see the effect of this parameter in the biomass of fungus,

inside the colony workers, and outside the colony workers. Figure 3.2a shows that as

β increases, the total biomass of fungus is benefited by its increase. This could imply

that as more inside worker ants transition into outside workers (i.e. workers which

cut, collect, and bring back leaves to the colony), the biomass of fungus increases

and benefits from Ao effort. Also, as β increases, the biomass of the population of

ants working inside the colony decreases (see Figure 3.2b), while the biomass of the

population of ants working outside increases (see Figure 3.2c). However, too high of a

maturation rate could affect the whole colony and both species (fungus and ants) by

inducing colony’s death. An explanation of this effect is that when inside the colony

workers transition very quickly to outside workers, they are now exposed to greater

risks outside the nest, resulting in increased mortality. At the same time, inside the

nest, the production of new workers may not be fast enough to maintain a satisfactory

number of inside workers need to contribute to the efforts to keep their fungus cultivar

alive.
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Figure 3.2: Bifurcation diagrams for model (3.2) studying the effect of β on biomass
of fungus and worker ants where rf = 0.7; b = 0.002; ci = 0.5; co = 0.3; df = 0.2; di =
0.1; do = 0.2; ri = 0.15; ro = 0.2. (Blue: stable and green: unstable interior equilibria)

Figure 3.3 is a one-dimensional bifurcation of the death rate of outside workers to

inside workers ratio showing coexistence and stability when do
di
> κ. We also notice
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that as do
di

increases, the biomass of fungus and the task group of ants working outside

the colony decreases, while the biomass of the task group of ants working inside the

colony increases.
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Figure 3.3: One-dimensional bifurcation of the ratio do
di

with parameters rf =
0.7, b = 0.002, df = 0.2, ci = co = 0.4, ro = 0.25, ri = 0.2.

Figure 3.4 is a two-dimensional bifurcation diagram of do ∈ (0, 1) and di ∈ (0, 1)

with different levels of maturation rate β by setting ci = co = 0.4; ri = ro = 0.2, i.e.

both task groups have the same consumption rate of fungus and conversion rate of

fungus into their own biomass. When the maturation rate is small, too large di can

make the colony extinct. If the maturation rate is larger (e.g. β = 0.1), then the

colony can go extinct if di is not large enough. In general if di > do the colony of

leafcutter ants can go extinct, otherwise it persists.

Figure 3.5 shows the effects of the conversion rate of fungus into the biomass of

worker ants. Here, we have co ∈ (0, 1) versus ci ∈ (0, 1) by setting β = 0.02, ri =

0.2, ro = 0.25 and varying the death rate of each of the task groups of worker ants.

Consider di < do, when di is really small (see Figure 3.5a), then when the conversion

rate ci of the worker ants belonging to the task group Ai is really small and for any

value of co (white area in Fig. 3.5a), the colony cannot survive. Now, if di increases

but still less than do, the colony cannot survive for large co and small to medium ci

(see Figure 3.5b). However, small co and large ci can promote coexistence of the two
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Figure 3.4: Two parameter bifurcation to study the effect of di and do on the
existence of interior equilibria for model (3.2). ci = co = 0.4; ri = 0.2; ro = 0.2. (Area
in black denotes coexistence and white extinction)

task groups and fungus.
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Figure 3.5: Two parameter bifurcation to study the effect of ci and co on the
existence of interior equilibria for model (3.2). do = 0.5; β = 0.02; ri = 0.2; ro = 0.25.
(Area in black denotes coexistence and white extinction)

Effects of Egg Cannibalism

Next we investigate the effects of egg cannibalism α in both models (3.3) and (3.4).

If there is no egg cannibalism (i.e. α = 0), system (3.3) and (3.4) reduces to system

(3.5).

Theorem 8 (No egg cannibalism). Let γ =
4b(dadf+rarc)

(rarf )2 . System (3.5) always have
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the extinction equilibrium and has the following equilibria scenarios:

1. No interior equilibria: when a < γ.

2. One interior equilibria: when a = γ.

3. Two interior equilibria: when a > γ.

The equilibrium dynamics of model (3.5) when the colony does not have egg canni-

balism are similar to those in the model of Kang et al. [2011], i.e. (0, 0, 0) is globally

stable when it is the only equilibrium and (F ∗2 , E
∗
2 , A

∗
2) can be locally asymptotically

stable when it exists.

Biological implications: Theorem 8 and equilibrium dynamics shown in Kang

et al. [2011] for a similar case implies that division of labor plays an important role

in determining whether a colony of leaf cutter ants can survive in the absence of egg

cannibalism. When a is too small, the proportion of adult ants performing certain

tasks is too small, therefore they are not investing enough energy to a given task.

This leads to the extinction of the colony. However, if the proportion of adult ants

performing given tasks is large enough, then the colony can survive.

Theorem 9. If model (3.5) without cannibalism has no interior equilibria, then model

(3.3) with cannibalism cannot have interior equilibria, i.e., the colony cannot survive.

Moreover, model (3.4) with cannibalism can have the following dynamics:

1. Model (3.4) always have the extinction equilibrium and can have maximum two

interior equilibria: Ei = (F ∗i , E
∗
i , A

∗
i ), i = 1, 2.

2. If fmax =
rf
√
ab−2brc
2bdf

< 0, then model (3.4) has no interior equilibrium.

3. If fmax >
da
ra

1−p1
> da

ra
, then model (3.4) definitely has interior equilibria.
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Figure 3.6: Nullclines of System (3.5) With No Egg Cannibalism and System (3.3)
With Egg Cannibalism.

Biological implications: Theorem 9 supported by Figure 3.6 suggests that sys-

tems such as (3.5) and (3.3), i.e. without cannibalism and with cannibalism used for

growth benefit of A biomass, respectively, cannot fully describe the positive mech-

anism that egg cannibalism represents in a colony of social insects. Under critical

conditions when division of labor implicitly described by a is too small, both systems

only have the extinction equilibrium. However, model (3.4) with cannibalism used to

increase A lifespan improves the outcomes of model (3.3) and model (3.5) by provid-

ing two existent interior equilibrium where one of them can be stable (see Theorem

10). This suggests that the dynamics of model (3.4) provide survival of the colony

when model (3.5) and (3.3) cannot.

Further analytical and graphical implications regarding the existence of interior

equilibria of model (3.4) can be found in Appendix A.

The following theorem summarizes the conditions for existence of interior equilib-

ria (F ∗, E∗, A∗) for models (3.3) and (3.4), i.e. coexistence of fungus, eggs, and adult

workers in a colony where egg cannibalism contributes to the growth of adult workers

and increases adult worker lifespan, respectively.
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Theorem 10 (Extinction and survival conditions). Let a, b, c1, da, df , p1, ra, rc be pos-

itive parameters. We define

K1 =
aβrarf

b(dadf + rarc(1− p1(1− c1)))
and K2 =

αb(dadf + rarc(1− p1(1− c1))

βrarf
.

Model (3.3) and model (3.4) always have the extinction equilibrium which is always

asymptotically stable. In addition, given the following conditions, both models can

have maximum two interior equilibria: Ei = (F ∗i , E
∗
i , A

∗
i ), i = 1, 2, such that all the

components of E2 are larger than the components of E1 (i.e. E2 > E1). For model

(3.3):

1. Colony dies out (zero and one interior equilibrium): If α > K1 or a < K2, then

the equilibrium (0, 0, 0) is the only equilibrium of the system and it is global

stable. On the other hand, when α = K1 or a = K2, there is only one interior

equilibrium which is saddle.

2. Colony survives (two interior equilibria): if α < K1 or a > K2, E2 is locally

asymptotically stable when

ra(1− p1)F ∗2 + c1αE
∗
2 < 2daA

∗
2.

Similarly, for model (3.4), when (0, 0, 0) is the only equilibrium, it is globally stable,

while if two interior equilibria exists under condition 3 in Theorem 9, then E2 is

locally asymptotically stable when

ra(1− p1)F ∗2 <
2daA

∗
2

1 + c2αE∗2
.

Biological implication: Theorem 10 suggests that both egg cannibalism and

division of labor are important factors for the survival of a colony of leaf cutter

ants. For instance, if egg cannibalism rate is too large and the proportion of ants
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performing a given task is too small, then the colony will die out. However, for a

small egg cannibalism rate and large proportion of ants performing a given task, i.e.,

there are more ants investing energy on different tasks while using egg cannibalism

as a way to regulate their growth, then the colony of leaf-cutter ants with fungus can

survive. (See supplementary material in Appendix B).

The following numerical simulations will aid to understand the different dynamics

of models (3.3) and (3.4). We investigate the effects of egg cannibalism rate α, the

parameter measuring the division of labor among the workers a, and the energy spent

on brood care p1 on the biomass of eggs E, adult workers A, and fungus F . We

compare the dynamics of model (3.3) and model (3.4) with egg cannibalism used as

energy for growth of the adult population described with the Holling Type I functional

response c1αAE and for energy to decrease death rate (increase lifespan) of adult

workers daA2

1+c2αE
.

Numerical simulations

The time series solutions for model 3.3 and model 3.4 when testing the increase of p1

and rc, respectively, are shown in Figure 3.7 and Figure 3.8. Supplementary bifurca-

tion diagrams in Appendix B show the destabilizing effects produced by the increase

of parameters describing the energy gained through the consumption of fungus by

the adult worker invested on brood care, p1, and the conversion rate between fungus

and ants, rc.

For high energy invested on brood care p1 by adult workers, and (or) high con-

version rate between fungus and ants rc, both model 3.3 and model 3.4 can have

oscillatory solutions. Both of these systems models egg cannibalism and its benefits

in two different fashions as previously described in our model derivation. Comparing

the model 3.5 with no egg cannibalism, we observe that these fluctuation in popula-
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tions dynamics emerge with the presence of egg cannibalism and other mechanisms

related to brood care and nutrient consumption. Also, we want to point out that when

rc is too large, e.g. close to or greater than 2, the system goes through catastrophic

event such that all solutions go to the extinction state.

Solution to model (3.3) with c1 = 0.85 Solution to model (3.4) with c2 = 85.

Figure 3.7: p1 = 0.85;α = 0.08; rc = 0.7; rf = 2; b = 0.002; df = 0.2; a = 0.3; ra =
0.15; da = 0.02; β = 0.15

Solution to model (3.3) with c1 = 0.8 Solution to model (3.4) with c2 = 10.

Figure 3.8: rc = 1.5;α = 0.08; p1 = 0.8; rf = 2; b = 0.002; df = 0.2; a = 0.3; ra =
0.15; da = 0.02; β = 0.15

Next, we present 2-dimensional bifurcation diagrams in Figure 3.9, which shows

the effects of egg cannibalism rate α with the parameter measuring the division of

labor among the workers a in both models. In Figure 3.9a, we choose c1 = 0.1 for
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model (3.3) showing that with no egg cannibalism and with small or no division of

labor, the colony can die out, while large egg cannibalism rate together with a higher

response of division labor the colony can survive. Similarly, in Figure 3.9b, we choose

c2 = 10 for model (3.4) showing that for very small a the colony can die out, but

larger a and any value of α the colony can survive. In this case, both of the models

present similar results to those of model (3.1) and in Kang et al. [2011], in which

division of labor plays a role on the survival of the colony.

(a) Linear model. c1 = 0.1 (b) Non-linear model. c2 = 10

Figure 3.9: rf = 1; b = 0.5; ra = 0.07; df = 0.1; rc = .007; da = 0.1; β = 0.5; p1 = 0.5

In Figure 3.10 we can see the effects that energy spent on brood care p1 and the

egg cannibalism rate α have on the existence of interior equilibria for models (3.3)

and (3.4). For model (3.3), we can see in Figure 3.10a that the colony can survive

with low energy spent on brood care p1 or low egg cannibalism rate α. For model

(3.4), we can see in Figure 3.10b that the colony can survive almost under any value

of p1 and α. However, with a high egg cannibalism rate and the majority of energy

being spent on brood care and not on adult’s growth, the colony will not survive.
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Figure 3.10: a = 0.05; rf = 1; b = 0.5; ra = 0.07; df = 0.1; rc = .007; da = 0.1; β =
0.5

Next, we provide 1-dimensional bifurcation diagrams in Figures 3.11-3.14, which

show that both models can have two interior equilibria where one of them is stable and

the other one is unstable. In Figures 3.11 and 3.12, we vary the parameter describing

the egg cannibalism rate α with different c1. In both figures, we notice that as α

increases, the biomass of fungus, eggs, and adult workers decreases and eventually

disappears. However, increasing c1 the conversion rate between ants and eggs, allows

a higher cannibalism rate between adult workers and eggs. This suggests that if egg

cannibalism is utilized to maximize adult growth, then the colony can survive under

difficult conditions.

Figure 3.11: Linear model (3.3) c1 = 0.1; a = 0.05; rf = 1; b = 0.5; ra = 0.07; df =
0.1; rc = .007; da = 0.1; β = 0.5; p1 = 0.5 (Blue: stable and green: unstable interior
equilibria).
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Figure 3.12: Linear model (3.3) c1 = 0.85; a = 0.05; rf = 1; b = 0.5; ra = 0.07; df =
0.1; rc = .007; da = 0.1; β = 0.5; p1 = 0.5 (Blue: stable and green: unstable interior
equilibria).

Figures 3.13 and 3.14 show the effects of egg cannibalism α and survival rate

of adult workers due to cannibalism c2 in model (3.4). The results in Figure 3.13

suggest that for small cannibalism rate the biomass in the colony can increase, but

if the egg cannibalism is too large the colony dies out. However, for large c2, the

colony can survive even with very high egg cannibalism rate (see Figure 3.14). In this

case, because the energy obtained from the eggs cannibalized is been used to decrease

mortality rate of adult workers, these have the highest biomass in the colony.

Figure 3.13: Nonlinear model (3.4) c2 = 4; a = 0.05; rf = 1; b = 0.5; ra = 0.07; df =
0.1; rc = .007; da = 0.1; β = 0.5; p1 = 0.5 (Blue: stable and green: unstable interior
equilibria).
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Figure 3.14: Nonlinear model (3.4) c2 = 10; a = 0.05; rf = 1; b = 0.5; ra = 0.07; df =
0.1; rc = .007; da = 0.1; β = 0.5; p1 = 0.5 (Blue: stable and green: unstable interior
equilibria).

Discussion

Modeling social insect biology has helped study the complex phenomena simple

mechanisms can produce. Models proposed in Karsai et al. [1996], for instance, pro-

vide some advances on understanding the dynamics of brood production and colony

development of paper wasps by considering oophagy in the models. In the work of

Schmickl and Crailsheim [2001], through empirical study, they were able to deter-

mine that shortage of pollen can induce cannibalism of young honeybee larvae, and

that cannibalism serves to recycle nutrients, mainly protein, to convert back into

worker jelly. In Schmickl and Karsai [2014], showed that task partitioning can lead

to self-regulation mechanisms.

In this work, we presented three different models to study the effects of age

polyethism and egg cannibalism on the population dynamics of a leafcutter ant colony.

System (3.2) models the explicit division of labor of (adult) worker ants in a leafcut-

ter ant colony where we subdivided the total worker population A(t) in two groups:

worker ants in charge of processing and cultivating the fungus garden (inside work-

ers) Ai(t) and worker ants in charge of collecting leaves to grow the fungus garden

(outside/forager workers) Ao(t). This system models the work done by each of these
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groups of ants, the consumption rate of fungus for growth/development of workers,

and respective natural death rates. We considered the case when β = 0 in model

(3.2) to study the effects of their age-based division of labor (i.e. age-polyethism)

within the colony dynamics.

Our analytical and numerical results show that without age-polyethism (i.e. β =

0), the system (3.2) can have infinitely many solutions (i.e. infinitely many interior

equilibria) under the condition di
ciri

= do
coro

, which represents the ratio of mortality to

growth in both task groups Ai and Ao. Including age-polyethism (i.e., β > 0), model

(3.2) has a maximum of two interior equilibria. The effects of β (i.e. maturation rate)

on the biomass of fungus, inside and outside workers are considered to be beneficial

for certain ranges, i.e., a very high maturation rate could terminate the colony. An

explanation of this situation could be that when inside workers begin to mature faster

and switch to performing riskier tasks, this leads to an increase of mortality. Also, the

production of new workers to perform inside tasks is not fast enough. Therefore, the

colony experiences negative effects causing its collapse. Also, with the subdivision of

workers into two task groups, we were able to capture in model (3.2) and Figure 3.2

that if one of the task groups decreases (in this case, Ai decreases as β increases) while

the other task group Ao increases, then the fungus receives a greater contribution from

the ants working outside the colony. Model (3.2) with β > 0 suggests that increasing

the outside worker population has greater benefits for colony growth and development

than increasing the inside worker population, as long as a certain necessary number

of inside colony workers exist to care for the fungus and the brood. The evolutionary

implications of this finding, and the role it plays in the life history of leafcutter ants,

should be investigated in future studies.

Comparing the two different cases considered in model (3.2), i.e. β = 0 and

β > 0, we conclude that age polyethism has clear benefits for the stability of a colony,
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which is logically consistent with the important role it plays in the life of leafcutter

ants [Hölldobler and Wilson, 2010]. However, it is interesting that the model also

shows that the benefits of age polyethism are constrained by β, the maturation rate.

Whether the maturation rate of leafcutter ants has been shaped by this restriction

imposed by age polyethism should be investigated in future studies.

On the other hand, systems (3.3) and (3.4) model an implicit division of labor

and egg cannibalism by including two developmental stages, i.e. eggs and adults, in

which adults perform necessary tasks to maintain their fungus cultivar, and interact

with eggs by providing brood care or cannibalizing them. Model (3.3) differs with

model (3.4) by the choice of Holling Type functional response that models different

ways egg cannibalism can contribute to the colony dynamics. In model (3.3), we

use the Holling Type I functional response c1αAE to describe the positive input

that egg cannibalism can provide to the adult class as a nutrient source for growth

purposes, whereas model (3.4) has the Holling Type II functional response daA
1+c2αAE

that describes the contribution of egg cannibalism as nutrient source to decrease death

rate of the adult class, thus providing an increase of worker lifespan (see Figures 3.11-

3.14). This opens an opportunity to perform manipulative experimental work to

determine whether egg cannibalism increase lifespan of adult workers, or if it has

alternative benefits.

In the absence of egg cannibalism, i.e., when α = 0, both model (3.3) and model

(3.4) reduce to model (3.5) and have simple dynamics. The dynamics of model (3.5)

with no egg cannibalism suggest that division of labor plays an important factor

determining whether a colony of leaf cutter ants can survive or not in the absence of

egg cannibalism. In such a case, if a is too small, i.e., the proportion of adult ants

performing certain tasks is too small, then the energy invested to a given task is not

enough to maintain a colony. This leads to colony collapse. However, if the proportion
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of adult ants performing given tasks is large enough, then the colony can survive.

This suggests that there may be an evolutionary relationship between division of

labor and egg cannibalism, which it would be interesting to explore in future work.

Moreover, the dynamics of model (3.3) suggest that in addition to division of labor,

egg cannibalism could also play a role in the survival of the colony. This model can

show the survival of a colony when egg cannibalism is not too large and the proportion

of of adult ants performing necessary tasks is large enough. Even though model (3.3)

has the addition of egg cannibalism as a mechanism of survival, it is not the best

model to show the positive mechanisms that egg cannibalism represent in a colony.

Therefore, the functional response introduced in model (3.4) improves this model by

providing survival of the colony when model (3.5) with no egg cannibalism and model

(3.3) with cannibalism described in the form of Holling Type I functional response

cannot.

Another interesting result of model (3.3) is the possibility of destabilizing effects of

population dynamics, i.e., fluctuations in populations size. Comparing the dynamics

obtained in Kang et al. [2011] of a model with no egg cannibalism considered and our

models with egg cannibalism, we conclude that this fluctuations arise due to the egg

cannibalism behavior in the colony. These fluctuations, as seen in Figures 3.7-3.8, are

also developed by the increase of energy invested in brood care and the conversion

rate of between fungus and ants. Karsai et al. [1996] made similar findings with

respect to the fluctuations in brood dynamics in paper wasps due to egg cannibalism.

Their models assumed that adults prefer to feed the larvae with the younger eggs.

This will produce a huge and fast decrease of eggs, but at the same time, there is

a positive feedback mechanism due to an increase of egg-laying rate, which produce

the fluctuations. From Karsai et al. [1996], we can consider the adults feeding the

larvae with eggs as the brood care through egg cannibalism, and therefore, our model
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produce similar results through this mechanisms.

Concluding Remarks

The findings of this chapter illustrate the role played by age polyethism in the

population dynamics of leafcutter ants population. A colony undergoing certain en-

vironmental conditions may try to increase their likelihood of survival that could

harm or benefit the colony in the long term. For instance, a fast transition to tasks

outside the colony (e.g. foraging) may induce a higher mortality rate in a colony. In

such scenario, it is possible that the colony collapses. However, an adequate matura-

tion rate where the worker population performing task such as foraging can benefit

the colony by increasing colony population size. While the proposed models neglects

some of the environmental features that may produce different outcomes on the pop-

ulation dynamics of a colony (e.g. nutritional demands), I clearly illustrate the role

played by egg cannibalism by implicitly incorporating the nutritional demands of the

colony (including the fungus), which can regulate the foraging activity, into the life

history parameters of leafcutter ants. My findings suggest that egg cannibalism bene-

fiting the adult working class as a nutrient source for growth purposes, i.e. increasing

the worker?s lifespan, provides colony survival. It will be interesting to investigate

the population dynamics driven by the nutritional status of a colony influencing the

age-based division of labor. I provide such study in the next chapter by investigating

how nutritional status can promote division of labor of adult workers in honeybees

(Apis mellifera).
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Chapter 4

A MATHEMATICAL MODELING APPROACH ON THE IMPORTANCE OF

NUTRITIONAL STATUS IN A HONEYBEE COLONY

Abstract

The complexity of honeybees provides systems to study mechanisms affecting their

population dynamics. An essential environmental variable influencing the age-based

division of labor of worker honeybees is their nutritional status. We present basic

but important assumptions that can help us understand the complexity of honeybee

population dynamics given their nutritional status. We propose a non-linear differ-

ential equation system that models the population dynamics of brood and worker

bees (nurses and foragers) within a colony. The dynamics of these populations are

influenced by the available stored pollen in cells and the current levels of vitellogenin

(VG), a major storage protein, in the fat body of nurse bees. Our model shows: (a)

the importance of pollen collection and consumption rates, adequate feeding rates to

the queen, and the impact of good nutrition during the larvae stage for future forag-

ing activity; (b) the size of both the brood and worker populations at equilibrium are

directly dependent upon the increase of levels of VG titers in nurse bees; (c) division

of labor regulatory effects determined by the VG titers in nurse bees are important

for balancing nurse bee and forager populations; (d) coexistence of both brood and

worker populations is dependent upon available food for the brood (i.e. pollen col-

lected and converted to VG and available foragers); (e) taking into account seasonal

changes in pollen collection improves the prediction of long term consequences.
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Introduction

Honeybees (Apis mellifera) are social and have a high structured division of labor.

A typical colony of honeybees is composed of 10-20 thousand eggs, larvae, and pupae,

up to 30,000 adult workers (all females), zero to several hundred drones (males), and

a single female queen. In general, the queen bee is the only egg-laying member,

while worker bees perform a number of tasks including feeding the queen, colony

maintenance, colony defense against honey robbers, but most importantly, rearing

the brood and maintaining the required nutritional demands of the colony such as

pollen, nectar, propolis and water [Robinson, 1992, Seeley, 2009, Calderone, 1998,

Johnson, 2010]. Behavioral task distribution of bees can be influenced by aging,

genes, and environment [Wright et al., 2018]. For instance, in the spring and summer,

division of labor is shaped to maximize the accumulation of resources (e.g. honey)

and growth rate, while in the winter, worker bees become less differentiated in task

performance because the primary goal is to maintain worker survivorship through

this season [Johnson, 2010].

The growth, development, productivity, and health of a honeybee colony is de-

pendent upon fulfilling the nutritional demands of larvae and adult workers [Brod-

schneider and Crailsheim, 2010]. Survival and quality of larvae and adult workers are

of prime importance for the productivity and health of a colony. In general, a honey-

bee colony requires of macronutrients (i.e. proteins, carbohydrates, and fats) and of

micronutrients (i.e. vitamins and minerals) for growth and development of healthy

larvae and adults [Brodschneider and Crailsheim, 2010, Winston, 1992, Crailsheim

et al., 1992]. The colony, having specific needs, monitors foraging efforts to collect

nectar, pollen, water and tree resin [Wright et al., 2018]. However, the nutritional

needs at the individual bee level are mostly determined by somatic demands arising
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with age and behavioral role in the colony [Paoli et al., 2014]. For instance, findings

in [Paoli et al., 2014], show that young bees require higher protein intake than older

adult workers prioritizing their dietary intake of carbohydrates over protein as they

age.

For honeybees, the main source of carbohydrates is floral nectar, while pollen

satisfies the nutritional requirements for protein, lipids, sterols, and micronutrients

[Winston, 1992, Wright et al., 2018, Vaudo et al., 2015]. Several studies have shown

that honeybees regulate the intake of macronutrients around specific proportions

[Wright et al., 2018, Schmickl and Crailsheim, 2004]. Nectar is collected in excess

according to floral nectar availability [Wright et al., 2018, Schmickl and Crailsheim,

2004, Vaudo et al., 2015], transformed gradually to honey during the returning flight

and within the nest [Nicolson and Human, 2008], stored in sealed cells as honey

[Brodschneider and Crailsheim, 2010], and reserved for overwintering needs [Khoury

et al., 2013]. Honey, stored in tens of kilograms [Seeley, 2009], is used as fuel for

energy-intensive flights, colony thermoregulation and wax production [Wheeler and

Robinson, 2014, Wright et al., 2018]. On the other hand, pollen is collected as a

reserve for only a few days depending on the ratio of pollen supply to pollen demand

[Dreller et al., 1999, Camazine, 1993], maintaining in storage about 1 kg on average

[Wright et al., 2018]. Pollen foragers make decisions based on the pollen available in

cells acting as a negative stimulus (i.e. decreasing pollen-foraging), and on chemical

pheromones from the existing larvae acting as a positive stimulus (i.e. increasing

pollen-foraging) [Dreller et al., 1999, Schmickl and Crailsheim, 2004, Pankiw and

Page, 2001, Fewell and Winston, 1992, Page Jr, 2013].

Bees hoard food in the form of honey (nectar) and bee bread (pollen) [Wright

et al., 2018]. The pollen stored and processed by young hive bees (bee bread) differs

in its nutritional value from floral pollen [Wright et al., 2018]. The protein and lipid
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content in bee bread is found to be in smaller ranges than floral pollen [Wright et al.,

2018, Herbert Jr and Shimanuki, 1978]. However, the quantity of protein in pollen

is of less significance than the amount of essential amino acids proportional to bee

requirements [Wright et al., 2018, Groot, 1953]. Pollen is the only source of the ten

essential amino acids (i.e. protein) required by honeybees [Bitondi and Simoes, 1996,

Brodschneider and Crailsheim, 2010, Huang et al., 2010]. Consumption of pollen is

evidence of high protein levels in the haemolymph, which is usually accompanied by

high levels of storage proteins, such as vitellogenin [Frias et al., 2016].

In this study, we want to focus our attention to a glycolipoprotein, vitellogenin.

Vitellogenin (VG) is an egg yolk protein which is the primary source of amino acids

[Hughes, 2015], and it appears to be one of the most important regulators of immunity

and longevity of honeybees [Amdam et al., 2009, Amdam and Omholt, 2002, Glavinic

et al., 2017]. Worker bees begin the synthesis of vitellogenin 2-3 days later after

emerging as an adult [Amdam et al., 2010, 2003]. VG is synthesized primarily in

the fat body cells of the abdomen, released into the haemolymph, and incorporated

into the hypopharyngeal glands (HPGs) where it is used to make royal jelly proteins

[Amdam and Omholt, 2002, Hölldobler and Wilson, 2009]. These glands provide

secretions rich in protein, which are fed by nurse bees to larvae and adults of all three

castes [Ahn et al., 2012, Crailsheim et al., 1992, Paoli et al., 2014]. A wide range

of proteins are stored in the fat body and haemolymph, but vitellogenin is the most

dominant in both queens and workers [Amdam and Omholt, 2002, Brodschneider

and Crailsheim, 2010]. Studies have shown that vitellogenin is dependent on the

availability and quality of pollen [Amdam et al., 2010]. It has several functions in

worker bees such as adult bee physiological development, immune responses such

as reducing susceptibility to parasites and pathogens [Amdam et al., 2004, 2009,

Alaux et al., 2011, Page et al., 2012], and oxidative stress resistance [Seehuus et al.,
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2006, Amdam and Omholt, 2002]. Also, vitellogenin is utilized for various metabolic

purposes in addition to brood food production [Amdam and Omholt, 2002, Oliver,

2007, Guidugli et al., 2005], such as acting as an antioxidant to prolong queen bee and

forager lifespans as well as acting as a hormone that affects future foraging behavior

[Amdam et al., 2010, Oliver, 2007, Page et al., 2012, Ihle et al., 2010].

Vitellogenin levels are important during the nest stage and thus influence honeybee

worker division of labor. The relationship between vitellogenin and their pronounced

division of labor can be seen by comparing the levels of vitellogenin in the fat body or

by comparing the size of the HPG. For instance, in nurse bees, vitellogenin titer levels

in the fat body are high allowing them to transfer protein to larvae and other colony

members [Amdam and Omholt, 2003, Tsuruda and Page, 2009], while in foragers are

low [Ahn et al., 2012, Crailsheim, 1992]. On the other hand, the size of HPG is an

indicator of protein nutrition prior to becoming a nurse and affects their ability to

care for larvae [Ahn et al., 2012, Huang and Otis, 1989, Hrassnigg and Crailsheim,

1998]. Two to three weeks after emergence as an adult, vitellogenin synthesis declines

in workers, inducing a transition from nursing to foraging behavior [Amdam and

Omholt, 2002, Tsuruda and Page, 2009, Amdam et al., 2010, Guidugli et al., 2005].

Individual foragers may concentrate more on collecting either pollen or nectar due to

variation in the life history, anatomy, physiology, and genotypes of individuals that

are linked to the titers of vitellogenin and juvenile hormone [Amdam et al., 2010,

Tsuruda and Page, 2009].

The consequences of protein shortage could be tremendous. It could affect brood

production, the quality or the number of larvae reared to adulthood, and colony

nutritional state towards future brood rearing [Brodschneider and Crailsheim, 2010].

This does not only have an effect on the size of the population but also on the age

demography which then affects the division of labor [Schmickl and Crailsheim, 2007].
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Also, when pollen is unavailable due to bad weather or other adverse environmental

conditions, bees will engage in brood cannibalism to obtain the protein necessary to

feed other larvae [Brodschneider and Crailsheim, 2010, Carroll et al., 2017, Haydak,

1970, Schmickl and Crailsheim, 2004, Khoury et al., 2013]. Several studies show that

poor pollen nutrition can have an impact on different causes leading to colony collapse

disorder, such causes include resistance to infections and viruses such as Nosema and

Varroa in addition to sensitivity to pesticides [DeGrandi-Hoffman et al., 2010, Huang,

2012, Wahl and Ulm, 1983].

Change of season, weather, and temperature have huge impacts on the population

dynamics of a honeybee colony, but also on social regulation [Johnson, 2003]. They

can affect the amount of proteins in the fat body of a worker bee [Amdam and Omholt,

2002, Brodschneider and Crailsheim, 2010]. For instance, wintering workers have, in

general, a high haemolymph vitellogenin titer (higher in late autumn than at the end

of winter). However, the titer of brood-less worker bees in the summer may be higher

than in the winter bees probably due to the absence of food transmission to brood

[Amdam and Omholt, 2002]. Climate variability has an effect on nutritional factors

related to the quality and the quantity of nectar and pollen resources [Switanek et al.,

2017]. Intensity of temperature, rain or solar radiation have been connected with the

foraging activity of honeybees [Switanek et al., 2017, Vicens and Bosch, 2000, Szabo,

1980, Abou-Shaara, 2014], which induces an effect on the egg-laying rate of the queen

bee [Torres et al., 2015]. There are studies showing that rainy periods can cease

foraging activities [Switanek et al., 2017, Riessberger and Crailsheim, 1997, Schmickl

and Crailsheim, 2007, Amdam et al., 2010]. Availability of nectar and pollen in the

field affected by environmental factors that change seasonally also influence foraging

activity [Amdam et al., 2009]. Therefore, summer time is when bees foraging rate

is the highest along with mortality rate [Amdam and Omholt, 2002], and during fall
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foraging is almost ceased.

Mathematical models have been developed to study honeybee colony population

dynamics [Schmickl and Crailsheim, 2007, Becher et al., 2014, Perry et al., 2015, Kang

et al., 2016, Messan et al., 2017, Khoury et al., 2011, 2013, Schmickl and Karsai,

2017]. The most relevant studies to our work are those of Schmickl and Crailsheim

[2007], Khoury et al. [2013], Becher et al. [2014], Perry et al. [2015], and Schmickl and

Karsai [2017], which all modeled the population dynamics of honeybees and nutrient

stores. The approach of these studies differs from each other but have primarily

focused on specific factors affecting the dynamics of brood and worker population.

For instance, Schmickl and Crailsheim [2007] created a difference equation model to

study the population and resource dynamics of a honeybee colony by focusing on

the importance of pollen supply and of brood cannibalism. They also provided an

extensive review about other mathematical models and their purpose. Several of

these models have focused on behavioral aspects of foraging, food processing, spatial

organization, and processes associated with division of labor. In [Khoury et al., 2013],

they presented a theoretical framework to explore how the dynamics of food flow

through a colony might interact with population dynamics to determine colony growth

and development. More recently, Becher et al. [2014] developed BEEHAVE, which

integrates honeybee colony dynamics and population dynamics of the varroa mite and

transmitted viruses with and explicit foraging model. Perry et al. [2015] developed

a model to explore possible impacts of age-dependent foraging performance on a

colony affected by different stressors including nutritional. Schmickl and Karsai [2017]

developed a mathematical model that links age polyethism by predicting the dynamics

of brood population and it links colony-level fitness by predicting the dynamics of

adult forager populations and nutrient stores. Another relevant study to our work

is that of Amdam and Omholt [2002] developing a nonlinear differential equation
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model to predict the vitellogenin dynamics in the fat body, the haemolymph, and

the HPGs of an individual bee that is exposed to various task scenarios in different

seasons. The results of this model show consistency with empirical data and serve as

a starting point to the assumptions of our model.

We investigate the implications of the information stated above by developing a

honeybee population model using nonlinear differential equations. This model will

allow us to investigate how the dynamics of vitellogenin titers might interact with

population dynamics to influence colony growth. We will be looking at the vitellogenin

dynamics of the adult worker population influencing the distribution of adult worker

bees to tasks such as brood nursing and food collection. Specifically, we focus on the

importance of pollen-derived proteins and the impacts on the division of labor. Our

goal is to propose a starting point of modeling techniques that can allow us to study

present problems leading to colony collapses, such as nutritional stress [Naug, 2009],

scarcity of food sources [Naug, 2009], and climate change.

Model Derivation

The proposed model is nonlinear ordinary differential equations model with the

following state variables: B(t): represents the brood population size consisting of eggs

and larvae, and N(t)+F (t) represent the worker population size of the two main task

groups in a colony, i.e. nurses and foragers, respectively, at time t. In addition, I

consider the current pollen storage in the colony P (t), and the available vitellogenin

titers in nurse bees V (t), at time t, respectively.

Our five compartment model is derived following facts found in literature and

assumptions from empirical findings:

1. The rate of change of brood population, B′(t) = dB
dt

is determined by:
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Input: The egg laying rate by the queen is related to the amount of royal jelly fed

by nurse bees and each egg contains certain amount of VG to start developing

[Allen, 1960, Moore et al., 2015, Amdam and Omholt, 2002], i.e.,

cqαqV

eg︸ ︷︷ ︸
queen’s egg-laying rate

,

where eg is the average content of VG in one egg, and cq ∈ (0, 1) is the conversion

efficiency of queen transfer of VG into egg-laying production, i.e, (1 − cq)αqV

can be considered as the metabolic cost of queen for egg-laying production.

Output: transition rate from brood to nurse bee: βbh = 1
τbf

where τbf is the

developmental time from brood to nurse. Here, I assume that there is no addi-

tional brood death. Thus, the dynamics of the brood can be described by the

following equation:

B′ =
cqαqV

eg︸ ︷︷ ︸
queen’s egg-laying rate

− βbf︸︷︷︸
transition rate to nurse

B.
(4.1)

2. Nurse bees are a temporal worker sub-caste that specializes in brood rearing

[Dreller et al., 1999, Münch and Amdam, 2010]. The rate of change of the

nursing worker population, N ′(t) = dN
dt

, is determined by:

Input: transition rate from brood βbhB.

Outputs:

- Transition rate to forager, i.e., βhf = 1
τhf

where τhf is the developmental

time from nurse to forager bee. After nursing, bees transition to foraging

tasks outside the colony due at least in part to low levels of vitellogenin

titers [Amdam et al., 2010, Amdam and Omholt, 2003, Huang et al., 1994,

Goblirsch et al., 2013]. The transition rate to forager increases when nurse
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bees have low levels of vitellogenin at time t. This implies that the tran-

sition rate βhf

((
V
N

)−1
)

from nurse to forager is a decreasing function of

the average of VG per nurse bee. An example of this transition rate can

be βhf =
βmhfN

1+αv( VN )
−1 where βmhf is the maximum transition rate from nurse

bee to forager when the average of VG per nurse bee V
N

is very low, and αv

regulates the effects of the VG per nurse bee on the transitional rate from

nurse bee to forager when V
N

is high, i.e. if V
N

is high, then the transition

rate from nurse to forager bee will be very small.

- Mortality rate dh is a nonlinear function of V G contained in nurse bees

and its population size N [Seehuus et al., 2006]. We assume that dh is

decreasing with respect to the average VG per nurse bee V
N

, and increasing

with respect to N , i.e., dh
(
V
N
, N
)
. For simplification, we can just take dh

as a constant that is much smaller than the death rate of forager.

Thus, the dynamics of the hive can be described by the following equation:

N ′ = βbh︸︷︷︸
transition from brood

B − βhf

((
V

N

)−1
)

︸ ︷︷ ︸
transition to forager
decreasing with V

N − dh

(
V

N
,N

)
︸ ︷︷ ︸

nurse mortality rate
depending on VG and N

N
(4.2)

3. The rate of change of foraging worker population, F ′(t) = dF
dt

is determined by:

Input: transition rate from nurse βhf

((
V
N

)−1
)
N .

Output: mortality rate dfF should be a nonlinear function of VG contained in

forager bees and its population size F . For simplicity, we assume that df > dh

is constant [Münch and Amdam, 2010]. Thus, the dynamics of the foragers can

be described by the following equation:

F ′ = βhf

((
V

N

)−1
)
N︸ ︷︷ ︸

transition from nurse bee
to forager, decreasing with V

− dfF︸︷︷︸
forager mortality rate

(4.3)
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4. The rate of change of pollen storage P ′(t) = dP
dt

is determined by:

Input: The parameter r is the maximum pollen collection rate by foragers. The

pollen collection rate is regulated by the foraging worker population F and brood

population B, and the available pollen stored P in the colony [Tsuruda and

Page, 2009, Fewell and Page, 1993, Pankiw and Page Jr, 1999, 2001], described

by

rB

1 + aB + bP︸ ︷︷ ︸
Regulated pollen collecting rate

F

which implies: (a) more larvae results in more brood pheromone that stimulates

pollen foraging behavior; and (b) more stored pollen reduces pollen foraging ac-

tivity [Traynor et al., 2014, Camazine, 1993]. The parameters a and b represent

the regulation effects of brood and pollen storage, respectively.

Output: On average, each nurse bee removes pollen at the rate of αP , i.e., more

pollen, faster removing rate. The total removing rate of pollen by all nurse bees

is αPN . In addition, we assume that the pollen has a deterioration rate of dp

due to the lack of attending or consumption. It is known that nurse bees prefer

to consume pollen stored less than 72 h [Anderson et al., 2014].

Thus, the dynamics of the pollen storage can be described by the following

equation:

P ′ =
rB

1 + aB + bP︸ ︷︷ ︸
regulated pollen collection rate

F − αNP︸ ︷︷ ︸
removing rate of pollen

by nurse bee for VG production

− dpP︸︷︷︸
deterioration
rate of pollen

(4.4)

5. The rate of change of VG in nurse bees, V ′(t) = dV
dt

, is determined by:

Inputs: production rate of VG from pollen by nurses and the total VG contained

in newly emerged adult bees.
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- Nurse bees deplete pollen reserves for the synthesis of vitellogenin [Dreller

et al., 1999, Münch and Amdam, 2010]. The conversion rate of pollen per

gram to VG is represented by c. Thus the consumed pollen αPH would

be converted to VG with the amount of cαPH.

- There are βbhB(t) = 1
τbf
B(t) newly emerged adult bees whose content of

VG could be estimated as follows:

βbh

[
cqαqV (t− τbf ) +

cqαqV (t− τbf )
eg

∫ t

t−τbf
V (τ)dτ

]
.

Outputs: nurse bee’s distribution rate of VG, removal rate of VG due to death

of nurse bee, and transition rate to foraging.

- The nurse bees administer VG to the queen to regulate egg-laying produc-

tion and longevity [Haydak, 1970, Wang et al., 2014], and to the brood to

regulate growth and development [Traynor et al., 2014, Crailsheim et al.,

1992]. The portion of VG distributed to brood is measured by the product

of the brood population B and the average brood’s consumption rate αbV .

Similarly, feeding rate to queen is measured by αqV .

- The nurse bees use VG for their own metabolism, which is described by

αhNV .

- The nurse bees dying during the nursing stage is described by dhV .

- The nurse bees surviving and transitioning into foragers can be described

by βhf

((
V
N

)−1
)
V .

Thus, the dynamics of the VG in nurses can be described by the following

equation:
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V ′ = cαNP︸ ︷︷ ︸
VG production by nurse
bee with available pollen

− αbBV︸ ︷︷ ︸
brood consumption

rate of VG

− αqV︸︷︷︸
VG allocation to queen

− αhNV︸ ︷︷ ︸
metabolic use of
VG by nurse bee

−βhf

((
V

N

)−1
)

︸ ︷︷ ︸
transition to forager

V − dh

(
V

N
,N

)
︸ ︷︷ ︸

removal rate due to
nurse bee death

V

+βbh

[
cqαqV (t− τbf ) +

cqαqV (t− τbf )

eg

∫ t

t−τbf
V (τ)dτ

]
︸ ︷︷ ︸

VG of newly emerged adult bees

(4.5)

A simplified version of (4.5) can be described as follows:

V ′ = cαNP︸ ︷︷ ︸
VG production by nurse
bee with available pollen

− αbBV︸ ︷︷ ︸
brood consumption

rate of VG

− (1− cq)αqV︸ ︷︷ ︸
Metabolic costs of queen

− αhNV︸ ︷︷ ︸
metabolic use of
VG by nurse bee

− βhf

((
V

N

)−1
)

︸ ︷︷ ︸
transition to forager

V − dh

(
V

N
,N

)
︸ ︷︷ ︸

removal rate due to
nurse bee death

V

(4.6)

Figure 4.1: State Diagram of Model (4.7)
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Parameter description Value Reference

r: Maximum collecting rate of pollen avg. of [1,2] g/day/bee Percival [1950]

a: regulation effect of brood for pollen coll. (0,10) estimated

b: reg. effect of stored pollen for pollen coll. (0,10) estimated

eg: average content of VG in one egg
[0.0000025-0.0000075]

g/egg

Amdam and

Omholt [2002]?

cq: efficiency of converting VG for egg

production by queen
(0, 1)/g assumption

c: conversion rate of pollen per gram to VG

[0,0.003]/g of pollen

(summer & autumn),

[0,0.00012]/g in winter

F

α: consumption rate of pollen by nurses 0.055 g/day
Camazine

et al. [1990]

αb: average consumption of VG by brood [0.00005,0.0002] g/day F

αh: metabolic use of VG by nurse ≤ 0.0001 g/day F

αq: feeding rate to queen [0.00025,0.0007] g/day estimated

αv: reg. of VG/nurse in developmental time

from nurse to forager
(0,1) g/unit estimated

βbh = 1
τbh

: transition rate from brood to nurse 1
24/day Winston [1992]

βmhf = 1
τhf

: max. transition rate from nurse to

forager
(1

3 ,
1
21) per day Winston [1992]

dh : mortality rate of nurse bees (0,0.17)/day
Rueppell et al.

[2007]♣

df : mortality rate of forager (0,0.8)/day ♣

dp: deterioration rate of pollen/day (0.125, 1)/day Winston [1992]

Table 4.1: Parameters description and values for VG model
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The assumptions with detailed derivations above give us the following nonlinear

model:

B′ = cqαq
eg
V − βbhB

N ′ = βbhB −
βmhfN

1+αv
N
V

− dhN

F ′ =
βmhfN

1+αv
N
V

− dfF

P ′ = rBF
1+aB+bP

− αNP − dpP

V ′ = cαNP − (1− cq)αqV − αhNV − αbBV − dhV −
βmhfV

1+αv
N
V

(4.7)

where we take βmhf
(
N
V

)
=

βmhf
1+αv

N
V

, dh
(
V
N
, N
)

= dh, and the simplified version of V in

equation (4.6). We define
βmhf

1+αv
N
V

∣∣∣∣∣
V=0

= 0.

Variable Description

B Population size of brood (eggs and larvae) unit

N Population size of nurse bees unit

F Population size of forager bees unit

P Stored pollen in the hive grams

V Total vitellogenin titers in nurse bees grams

Table 4.2: Variables description and units

Mathematical Analysis and Numerical Simulations

In this section, I explore the dynamics of Model (4.7) analytically and provide bi-

ological implications. Note that an interior equilibria of Model (4.7) can be expressed

in the following form:

(P ∗, V ∗, B∗, N∗, F ∗) =(
Φ(ξ) +

N∗

cαξ

(
αh +

cqαbαq
egβbhξ

)
,
N∗

ξ
,
cqαq
egβbhξ

N∗, N∗,
βmhfN

∗

df (1 + αvξ)

)
, (4.8)
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where

Φ(ξ) =
1

cαξ

(
βhf

1 + αvξ
+ dh + αq(1− cq)

)
=

1

cαξ

(
cqαq
egξ

+ αq(1− cq)
)

=
αq
cαξ

[
1− cq

(
1− 1

egξ

)]
and N∗ is a positive solution of the polynomial:

f(N) = c3N
3 + c2N

2 + c1N + c0, (4.9)

where ci, i = 0, 1, 2, 3 are polynomials of ξ (see details in A.33).

The parameter ξ measures nurse bees’ nutritional status and can be expressed as

follows:

ξ =
cqαqαv−dheg−βmhf eg+

√
(cqαqαv−egdh−egβmhf )2+4cqαqαvdheg

2αvdheg
(4.10)

Note that ξ−1 = V
N

is the VG content per nurse bee. From simple analysis (see B),

we can conclude that the level of VG per nurse bee decreases when the feeding rate

to queen and the efficiency of converting VG for egg-laying production (αq and cq,

respectively) increases. Also, since αv is a parameter that regulates the effects of the

levels of VG per nurse bee that have on the transition rate from nurse to forager,

if αv is too small this can void this regulation effect, but ’too large’ can enhance it

and possibly lose tractability of this effect. Moreover, the levels of VG per nurse bee

show an increase when there is an increase of the average content of VG per egg,

the mortality rate of bees during the nursing stage, and the maximum transition rate

from nurse to forager, i.e. eg, dh, and βmhf .

Let a, b, c, cq, df , dh, dp, eg, α, αb, αq, αv, β
m
hf , βbh be positive parameters. More de-

tails regarding the derivation of (4.8) can be found in B and the number of interior

equilibria the model (4.7) have is determined with the following theorem.

85



Theorem 11 (Existence of interior equilibria). System (4.7) is positive invariant in

R5
+. Model (4.7) always has the extinction equilibrium E0 which is always asymptot-

ically stable, and can have none or two interior equilibria under the following condi-

tions:

1. No interior equilibria if αb > crξ
βmhf

df (1+αvξ)
.

2. Two interior equilibria if αb < crξ
βmhf

df (1+αvξ)

Biological implication: Our model can have up to two interior equilibria, i.e.,

two possible points of the form (P ∗, V ∗, B∗, N∗, F ∗), where all the components are

greater than zero and have the potential to become stable. If an interior equilibrium

point becomes stable, it means that depending on parameter values and initial con-

ditions, both the brood and worker populations, and quantities of stored pollen and

vitellogenin in nurse bees will reach a specific size determined by (4.8) and stay stable

at that point in the long term. Note that , αb < crξ
βmhf

df (1+αvξ)
= crN

V

βmhf
df (1+αvξ)

= cr
V
F ,

which can be simplified as cr
αb
> V

F
. This is interpreted as follows: if the colony’s nutri-

tional status is good, i.e., pollen collection, processing and consumption are suitable

for colony’s needs then both brood and worker populations are able to coexist, i.e.,

both populations can reach one of the two interior equilibria, otherwise, the colony

may die out. Also, from (4.8), we can conclude that the components P ∗, V ∗, B∗, F ∗

increase when ξ decreases or levels of vitellogenin per nurse bee (i.e., 1
ξ
) increases.

Next, I analyze the synergetic effects in a numerical fashion over the population

size of brood and worker bees given by parameters affecting the levels of vitellogenin

per nurse bee.

The levels of vitellogenin per nurse bee (i.e., 1
ξ
) increase as the transition rate from

nurse to forager βmhf increases (see B). In Figure 4.2, we can see that as V/N increases

the brood population and forager task group’s size increase in a similar fashion until
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they both reach a maximum while the nurse task group’s size decreases when βmhf ≈ 1
7
.

Both brood and foragers follow a similar shape because in our model brood population

is mostly dependent by the amount of pollen collected by foragers which then will be

converted to nutritious jelly. Another explanation to this observation in our model

is that recruiting more pollen foragers increases the inflow of proteinaceous pollen,

prompting to lower larval mortality and less starvation [Schmickl and Karsai, 2016].

Also, forager task group’s size display a maximum when V/N = 0.0058 g which

corresponds to 7 days old after emerging from cell. This level of VG at 7 days old may

represent a minimum time for nurse bees to initiate foraging activity at a faster rate.

Also, we can see that the left end to mid-range of the V/N -axis corresponding to the

low-mid levels of VG per nurse bee coincide with the transition rate of βmhf = ( 1
21
, 1

7
).

This range is consistent with empirical findings in [Tsuruda and Page, 2009] where

the bees start foraging 2-3 weeks after emerging.
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Figure 4.2: (1/ξ varying with respect to βmhf ) Effects of the levels of VG per nurse
bee with respect to the maximum transition rate from nurse bee to forager βmhf across

all populations. r = 1; a = 0.3; b = 2; eg = 3.82∗10−6;αq = 0.0007;αb = 5∗10−5; cq =
0.124; dh = .00001; df = 0.032; dp = 1; c = 0.003;α = 0.00688;αh = 0.0001;αv =
.0005; βbh = 1/24. (Stability of equilibria: Stable and Unstable)

Figure 4.3 help us understand the impact of αv on the dynamics of V/N in our

model. For instance, if αv is too large, then the levels of V/N become very small
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having no impact on the transition rate from nurse to forager. However, if αv is too

small, it can diminish the tractability of the effects of the levels of VG towards the

task switching from nurse to forager. In this figure we can see that as the levels of

V/N increase, the task group’s size of nurses decreases while foragers’ one increases.

This is not true from our assumptions where transition rate from nurses to foragers

increases if the VG levels per nurse bee decreases. This is an example where αv is

too large and overemphasize the regulation effects of levels of VG. However, medium

ranges for αv could be most optimal. Hence, αv seems to be a sensitive parameter

that strongly determines the effects of the levels of V/N on task switching rates and

should be chosen very carefully in order to capture realistic effects.

Figure 4.3: (1/ξ varying with respect to αv) Effects of the levels of VG per nurse
bee with respect to the effect it has on the developmental rate of transitioning
from nurse bee to forager over all populations. .r = 1; a = 0.3; b = 2; eg =
0.00000382; ab = 0.00005; cq = 0.124; dh = 0.001; df = 0.032; dp = 0.008; c =
0.003; α = 0.00688; ah = 0.0001; αq = 0.0007;αv = 0.0005; βbh = 1/24; βhf = 1/21;
(Stability of equilibria: Stable and Unstable)
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Figure 4.4: (1/ξ varying with respect to αq) Effects of the levels of VG per nurse
bee over all populations with respect to the feeding rate to queen. r = 1; a = 0.3; b =
2; eg = 0.00000382; ab = 0.00005; cq = 0.124; dh = 0.001; df = 0.032; dp = 0.008; c =
0.003; α = 0.00688; ah = 0.0001; αv = 0.0005; βbh = 1/24; βhf = 1/21; (Stability of
equilibria: Stable and Unstable)

In Figure 4.4 we observe the importance of the rate at which the queen is fed by

the nurses given that it can determine the future of the colony as it affects the colony

as a whole in the same way. For instance, the highest values of V/N displayed in

these figures are given by a small αq. This means that if very low amount of VG is

fed to the queen, the nurse bees will have more VG stored in their body fats. Also,

we observe that a decreasing feeding rate to the queen negatively affects the colony

no matter if other mechanisms such as feeding the brood, collection rate of pollen, or

synthesis of VG are in place.

In Figure 4.5 we observe the effects of the average amount of VG that a laid egg

by the queen can contain. In our model, increasing eg increases levels of VG per nurse

bee (1/ξ), thus, if the queen deposits large amounts of VG into an egg, then VG is

recycled back into the available VG in the colony. However, it seems that depositing

’large’ amounts of VG into eggs can have a negative effect on both the brood and

worker populations size since as eg increases these population sizes decrease.
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Figure 4.5: (1/ξ varying with respect to eg) Effects of the levels of VG per nurse
bee over all populations with respect to the average levels of VG in one egg. r =
1; a = 0.3; b = 2; ab = 0.00005; cq = 0.124; dh = 0.001; df = 0.032; dp = 0.008; c =
0.003; α = 0.00688; ah = 0.0001; αq = 0.0007; αv = 0.0005; βbh = 1/24; βhf = 1/21;
(Stability of equilibria: Stable and Unstable)

Decreasing parameters such as αv, αq and cq can increase the VG content per

nurse bee, i.e., decreasing the regulation effects of the amount of VG per nurse on

the transition rate from nurse bee to forager, feeding rate to the queen, and efficiency

of converting the nutrient of VG for egg-laying by the queen, respectively. A low

conversion rate of VG from pollen can cause colony collapse (see white region in Figure

4.6(a-c)). Note that these three parameters act in a synergistic manner creating a

chain of events starting from the fact that if αv is reasonably small, then there is

an increase amount of foragers more likely bringing back pollen. However if the

conversion rate from pollen to VG by nurse bees is low, there is not enough VG per

nurse bee produced to feed the queen, i.e., small αq (lower right-end white region in

Fig. 4.6b) and therefore the queen cannot use stored VG for egg-laying production

(lower right-end white region in Fig. 4.6c). All these synergistic effects can cause

colony’s death.
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(a) V/N(αv). (b) V/N(αq). (c) V/N(cq).

(d) V/N(eg).
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Figure 4.6: Area of coexistence (black) and extinction (white) of populations (brood,
nurse bees and foragers) in a colony. r = 2; a = 0.6; b = 4.5; eg = 0.0000075; aq =
0.00025; ab = 0.00008; cq = 0.1; dh = 0.001; df = 0.006; dp = 0.008; c = 0.0025;α =
0.008; ah = 0.00007; αv = 0.01; βbh = 1/24; βmhf = .25;

Moreover, increasing parameters such as eg, β
m
hf , and dh can increase VG content

per nurse bee, i.e., increasing the average amount of VG per egg laid, the maximum

transition rate from nurse bee to forager, and mortality rate of nurse bee, respectively.

Large parameter values of eg and βmhf and low to medium conversion rate of VG from

pollen, c, can cause death of populations within the colony (see Figures 4.6d and

4.6e). However, if the mortality rate of nurse bees increases or is too large, then our

results show that the conversion rate of VG to pollen must be high in order to keep

the colony alive (see Figure 4.6f).

From the simple analysis in B, we can tell that the content of VG per nurse

increases with the decrease of cq which measures the efficiency of using VG for egg-
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laying production by the queen. Results in Figures 4.7a and 4.7b suggest that low

collection rate of pollen r and low consumption rate of pollen by nurses α, together

with low cq can produce colony’s death. Similarly, medium to low cq and low to high

values of average feeding rate of VG to brood can cause colony’s death (see Fig. 4.7c).

It is clear that the efficiency of converting VG for egg-laying production by the queen

plays an important role in the colony survivability. In addition, a rapid depletion of

food stores for brood feeding can cause the colony die of starvation [Le Conte and

Navajas, 2008].

(a) V/N(cq). (b) V/N(cq). (c) V/N(cq).

Figure 4.7: Area of coexistence (black) and extinction (white) of populations (brood,
nurse bees and foragers) in a colony. r = 2; a = 0.6; b = 4.5; eg = 0.0000075; aq =
0.00025; ab = 0.00008; cq = 0.1; dh = 0.001; df = 0.006; dp = 0.008; c = 0.0025;α =
0.008; ah = 0.00007; αv = 0.01; βbh = 1/24; βmhf = .25;

High feeding rate to queen, αq, prompts a decrease of VG per nurse bee since the

queen is usually fed with larger quantities than brood. If this is the case, the nurses

won’t have enough to feed brood and for their own metabolic use. Therefore, this

extreme situation can cause colony’s death (see Figure 4.8a). Moreover, if αq is low,

then the regulation effects of current brood in the colony a and the regulation effects

of stored pollen b are high (see white region on right-end of Figures 4.8b,c) it will

prompt a smaller overall pollen collection rate. A smaller overall pollen collection

rate will cause a decrease and limited available pollen to be consumed by nurse bees

and fed to brood and queen. This scenario will be critical on the survivability of the
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colony and according to our numerical results in Figure 4.8b,c, respectively, shows

that nurse bees will invest in the queen by feeding it at higher rates (reducing available

VG per nurse bee) in order to produce more eggs and maintain the colony alive. Also,

an increase or decrease of αq has no influence with respect to the maximum pollen

collection rate r on determining coexistence of populations within the colony.

(a) V/N(αq). (b) V/N(αq). (c) V/N(αq).

Figure 4.8: Area of coexistence (black) and extinction (white) of populations (brood,
nurse bees and foragers) in a colony. r = 2; a = 0.6; b = 4.5; eg = 0.0000075; aq =
0.00025; ab = 0.00008; cq = 0.1; dh = 0.001; df = 0.006; dp = 0.008; c = 0.0025;α =
0.008; ah = 0.00007; αv = 0.01; βbh = 1/24; βmhf = .25;

In Figures 4.9(a-c), I varied the parameter av which regulates the effects of the

levels of VG per nurse that have over the transition rate from nurse to forager. In

order to have a clear understanding of these simulations, it is necessary to have in

mind that when αv is very small (close to zero), the effects of the level of VG per

nurse on task switching rates from nurse to bee are almost null. Also, ’too large’ αv

may have a negative impact in the assumptions made for our model. With this in

mind, I proceed to the explanations of each scenario. In Figure 4.9(a,b), we can see

that low collection rate of pollen, r, and low consumption rate of pollen, α, can cause

the colony to die when the levels of VG per nurse bee have no effect on task switching

rates. Further implications can be made about these results. For instance, for our

choice of βmhf = 0.25 (fast transition rate from nurse to forager) in these simulations

given that r is relatively low (white region in Fig. 4.9a), it could suggest that foragers
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are collecting other nutrients such as nectar instead of pollen. Hence, remaining nurse

bees may not be able to rear brood due to lack of pollen which may also influence low

consumption rate of pollen α for VG synthesis (white region in Fig. 4.9b). Moreover,

if the brood’s feeding rate of VG, αb, is high (see white region in Fig. 4.9c), but there

is no significant effect of the level of VG per nurse on task switching rates due to

αv been very small (as mentioned previously), then the colony may not survive. In

general, for any of these cases, we can conclude that regulating the transition rate

from nurse to forager by considering levels of VG per nurse bee is of great importance

and significant in our modeling.

(a) V/N(αv). (b) V/N(αv). (c) V/N(αv).

Figure 4.9: Area of coexistence and extinction of populations (brood, nurse bees
and foragers) in a colony. r = 2; a = 0.6; b = 4.5; eg = 0.0000075; aq = 0.00025; ab =
0.00008; cq = 0.1; dh = 0.001; df = 0.006; dp = 0.008; c = 0.0025;α = 0.008; ah =
0.00007; αv = 0.01; βbh = 1/24; βmhf = .25;

In the following 2D bifurcation we can see the synergistic effects of different pa-

rameters. For instance, if the transition rate from nurse bee to forager βmhf is large

(inducing less nurse bees rearing brood) and the conversion rate from pollen to VG

by nurse bees c is very small (i.e. levels of VG per nurse bee decreases and it is

limited), this will cause the collapse of the colony (see white region of Figure 4.10a).

In addition, if the consumption and conversion rate of pollen, α and c, respectively,

the colony cannot survive due to insufficient levels of VG necessary for the different

mechanisms in the colony (see white region of Figure 4.10b). Moreover, notice that
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if we do not consider the regulation effects of available brood and stored pollen in

the colony, i.e., a = b = 0, our model has a unique interior equilibrium (red point in

Figure 4.10c). However, if we consider large values of a and b, which produces a very

low overall collection rate of pollen, then the colony cannot survive due to insufficient

pollen in the colony.

(a) (b) (c)

Figure 4.10: Area of coexistence (black) and extinction (white) of populations
(brood, nurse bees and foragers) in a colony. r = 1; a = 0.3; b = 2; eg =
3.82 ∗ 10−6;αq = 0.0007;αb = 5 ∗ 10−5; cq = 0.124; dh = .00001; df = 0.032; dp =
1; c = 0.003;α = 0.00688;αh = 0.0001;αv = .0005; βbh = 1/24; βmhf = 1/21.

Lastly, I found that variation of V/N (or 1
ξ
) with respect to αv, cq, eg, β

m
hf have no

effect on the metabolic use of VG in nurse bees, αh, on determining the survival of

the colony, i.e., decreasing or increasing these parameters with respect to αh do not

cause the colony to die out. Similarly, the variation of V/N with respect to αq, eg, β
m
hf

have no effect on the consumption rate of pollen to VG, α.

Seasonality Effects

First I perform a validity check by including the influence of environmental factors

such as change of season affecting pollen collection, which has effects on variation

of population sizes within a honeybee colony. The numerical simulations compare

results with empirical data from Harŕıs [1980]. In order to include seasonality in the

model, I will assume that the pollen collection rate has annual periodicity and can
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be approximated by the first order harmonic:

s(t) = r

(
1 + cos

(
3π(t− φ)

365

))
where r is the baseline collection rate and φ is the day of the year when the collection

rate is maximal.

● ●

●

●
●

●

●

●

s(t)

● Jeffree & Allen, 1957

50 100 150 200 250

0

10

20

30

40

50

Days

C
o
ll
e
c
te
d
P
o
ll
e
n
p
e
r
D
a
y
(g
)

Figure 4.11: Data from Allen and Jeffree [1956] was normalized using the infor-
mation provided in [Camazine et al., 1990] where one full cell can contain 0.27 g of
pollen (see also Schmickl and Crailsheim [2007]).

The regulated pollen collection rate in equation (4.4) is then modified as follows:

s(t)B

1 + aB + bP

The values of r and φ were chosen to fit best to our choice of empirical data. The

rest of the parameters from model (4.7) were chosen by following the ranges in Table

4.1.

Figure 4.12 shows the population dynamics of brood and workers (nurses and

foragers) for approximately one year. In order to perform this fitting and estimate

parameters, I performed a numerical simulation using the command ’Manipulate’ in

Mathematica, Inc. [2018]. This commands allows to numerically evaluate the system

of differential equations with an interactive object containing multiple controls to
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vary the value of the parameters and initial conditions in model (4.7). This command

allowed me to approximate the best fit for the given data.
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Figure 4.12: Empirical data from Harŕıs [1980]; φ = 135; r = 1.3; a = 0.3; b = 5; eg =
7.32 ∗ 10−6;αq = 0.000688;αb = 5.48 ∗ 10−5; cq = 0.125; dh = .0008; df = 0.036; dp =
1; c = 0.003;α = 0.06;αh = 0.000046;αv = .00055; βbh = 1/24; βmhf = 1/21; Initial
conditions at t = 125 days: P (t) = 17;V (t) = 2;B(t) = 3539;H(t) = 1487;F (t) =
3875.
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Exploring the long term dynamics of both models considered with and without

seasonality we can obtain the following case when the original model without sea-

sonality produces coexistence, meaning both brood and worker populations reach a

stable equilibrium, while the model with seasonality produces an output such that the

colony die out. Both cases were obtained by lowering simultaneously the parameter

value cq which determines the efficiency of using vitellogenin for egg-laying production

by the queen. In this case, the model with seasonality could give us a more realistic

intuition of what could happen in the long term, since reducing the efficiency of using

the nutrient vitellogenin for egg-laying by the queen could cause a decrease of new

brood produced and therefore a decrease of future adult workers until the colony dies

out (see Figure 4.13).
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(a) No seasonality showing colony survival.
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(b) Seasonality showing colony collapse.

Figure 4.13: Time series of original model and model with seasonality showing
different long term dynamics using parameter values: r = 1; a = 0.95; b = 4; eg =
4.88 ∗ 10−6;αq = 0.0007;αb = 5 ∗ 10−5; cq = 0.4; dh = .02; df = 0.1; dp = 1; c =
0.003;α = 0.006;αh = 0.0001;αv = 5 ∗ 10−5; βbh = 1/24; βmhf = 1/21; φ = 165; Initial
conditions at t = 0 days: P (t) = 20;V (t) = 2;B(t) = 100;H(t) = 5000;F (t) = 4000.

Sensitivity Analysis

Up until this point, our model simulations, including bifurcations and time series,

rely on parameter values (see Table 4.1) that have been collected from numerous em-
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pirical studies, while some are yet unknown. In many of these studies, the precision

at which this values were measured is uncertain. However, these parameters can be

considered a good baseline to study our model and make predictions. Nevertheless,

we consider sensitivity analysis techniques such as Partial Rank Correlation Coeffi-

cient (PRCC) by using an appropriate sampling technique such as Latin Hypercube

Sampling (LHS) in order to determine which parameters are important in contribut-

ing to the variability of outcomes. In this case, we the outcomes of interest are the

population size of brood B, and workers of both task groups, i.e., nurse bees N , and

foragers F , but also the nutritional content of VG per nurse given by NV −1 = 1
ξ
.

This sensitivity analysis method can quantify the impact of model outcomes given

the uncertainty of parameters and initial conditions (input) [Marino et al., 2008]. In

this case, our model outcomes will be the size of each of the populations considered

in our model and the nutritional content of VG per nurse at a given time-point. The

LHS method assumes a uniform distribution to create ranges of parameters with their

respective baseline values [Marino et al., 2008]. We perform multiple runs (N = 500)

of the sampled values for the response output. Here, we use the best-fit parameter

values as the baseline values to compute LHS PRCC values with ±15% to create the

ranges.

In order to quantify the impact of seasonality in our model, we asses the sensitivity

on the size of populations considered in our model (i.e. brood and adult worker bees)

and the vitellogenin content per nurse bee to each of the parameters at a given time

point. We explore the sensitivity of parameters on these population sizes for our

model (4.7) with and without seasonality. The results for each model, respectively,

are depicted in blue (no seasonality) and purple (with seasonality). The time-points

considered at each outcome are the highest and lowest point for each population in

Figure 4.14b.
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(a) Model with no seasonality
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(b) Model with seasonality

Figure 4.14: Time series of original model and model with seasonality showing
different long term dynamics using parameter values: r = 1; a = 0.95; b = 4; eg =
4.88 ∗ 10−6;αq = 0.0007;αb = 5 ∗ 10−5; cq = 0.4; dh = .02; df = 0.1; dp = 1; c =
0.003;α = 0.006;αh = 0.0001;αv = 5 ∗ 10−5; βbh = 1/24; βmhf = 1/21; φ = 150; Initial
conditions at t = 0 days: P (t) = 20;V (t) = 2;B(t) = 100;H(t) = 5000;F (t) = 4000.

In Figures 4.15-4.18, we observe that the sensitivity of parameters in the model

without seasonality (in blue) at t = 185, 360, and 380 have no difference, but also in

the model with seasonality (in purple) at time t = 185 (when both brood and worker

populations are at the highest). However, we can determine that the parameters

having a positive impact on these population sizes for these cases are the collection

rate of pollen, conversion rate of pollen to VG, the queen’s feeding rate, the efficiency

of converting VG for egg production by the queen, and the maximum transition rate

from nurse bee to forager (r, c, αq, cq, and βmhf , respectively). The parameters having

a negative impact on the brood population size are the brood’s regulation effects on

pollen collection, the brood’s feeding rate, the average content of VG in one egg, the

metabolic use of VG by nurse bee, forager’s mortality rate, and the transition rate

from brood to nurse bee (a, αb, eg, αh, df , and βbh, respectively).

Furthermore, in Figure 4.15, sensitivity analysis of parameters at time t = 360,

when population size is the lowest (Fig. ) in the model with seasonality (in purple),

shows a different outcome than at t = 185 (in purple). Here we observe that, when
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(a) t = 185 days
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(b) t = 360 days

Figure 4.15: PRCC Values for the Parameters of Model (4.7) Using the Population
Size of Brood as the Output of Interest.

population is at the lowest, the parameters having a positive impact on the population

size are r, c, βmhf , and φ; and the parameters having a negative impact are a, df , αh,

and βbh. In comparison, at the time-point when brood population is at the highest,

parameters such as αq and cq had a positive impact on the population size but not

at the lowest point. In terms of seasonality, when the brood population is at the

highest, it represents the period of time when queen’s nutritional status is of utmost

important for egg-laying production.

In Figure 4.16, we observe that the parameters having a positive impact on the

nurse task group size (outcome) at the time-point t = 185 and at t = 360 (both

in purple) are r, αq, cq, and c. In addition to the previous parameters listed, at the

time-point when the size of the nurse task group is the highest, βbh shows a positive

impact on the population size. This makes sense since transition rate from brood
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to adult bee as a nurse determines nurse task group size. Also, at time t = 360 (in

purple), when the size of the nurse task group is the lowest, we observe that instead

βbh has a significant negative impact on this task group size and αv, which regulates

the transition rate from nurse bee to forager given levels of VG titers in their body

fat, has a positive impact on the outcome. This suggests that regulation effects on

task switching has an important impact on maintaining nurse bees in colony’s low

season.
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r a b e
g q b

c
q

d
h

d
f

d
p

c
h v bh hf

-1

-0.5

0

0.5

1

P
R

C
C

 (
N

u
rs

e
 B

e
e

 P
o

p
. 

S
iz

e
)

(b) t = 380 days

Figure 4.16: PRCC Values for the Parameters of Model (4.7) Using the Population
Size of Nurse Bees as the Output of Interest.

In general, the parameters having a positive impact on brood population and nurse

task group sizes across all times (higher and lowest points) are the collection rate of

pollen, the conversion rate of pollen to VG, and the maximum transition rate from

nurse to forager (r, c, βmhf ). Notice that these parameters are linked to each other
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representing the availability of food source for the brood (available pollen foragers

bringing back pollen to the hive for VG production).

In Figure 4.17, the sensitivity of parameters at time t = 370, when population

size is the lowest in the model with seasonality (in purple), shows a different outcome

than at t = 200 (in purple). Here we observe that when forager task group size is

at the lowest, the parameters having a positive impact on the size of this task group

are eg and βmhf ; and the parameters having a negative impact are αq, cq, df , and

αv. In comparison, at the two different time-points, we conclude that the parameter

describing the maximum transition rate from nurse to forager βmhf has a positive

impact on the forager task group size across all time and not seasonal-sensitive. Also,

we observe that parameters such as eg, αq, and cq have opposite impact at the highest

point versus at the lowest point, changing from positive to negative, respectively. This

suggest that if more VG is spent towards queen’s feeding for egg-laying production

during low season (i.e. winter, cold temperatures, rainy), the forager task group size

can be negatively affected due to an increase of foraging behavior to satisfy colony

needs. In reality, this is unlikely to occur since bees have the ability to determine

when to forage under good weather conditions. However, it is known that the colony

prepares for overwintering season and a decrease number of foragers is needed which

it is reflected in these results. Also, another result implying this, is that the parameter

αv describing the regulation effects of amount of VG per nurse bee on the transition

time from nurse to forager has a higher and more significant negative impact on the

forager task group size. This implies that the parameter αv strongly regulate the

transition time from nurse to forager given that more VG titers are in the fat body

of nurse bees since less is used towards brood and queen feeding.

In Figure 4.18, we observe that parameters in the model with seasonality (in pur-

ple) at time t = 185 having a positive impact on the outcome: amount of vitellogein
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(a) t = 200 days
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(b) t = 370 days

Figure 4.17: PRCC Values for the Parameters of Model (4.7) Using the Population
Size of Forager Bees as the Output of Interest.

per nurse bee, are eg, β
m
hf , and φ, and similarly for the time-point t = 360, except for φ

which is having a negative impact on the outcome. This is explained by the fact that

at t = 185 corresponds to the high foraging and brood production season, whereas at

t = 360 corresponds when pollen collection and brood production is low, thus show-

ing a negative impact on the outcome. Moreover, parameters having a significantly

negative impact on the amount of VG per nurse bee are αq, and cq at t = 185 (when

brood population size is at the highest), and, in addition, df at t = 360 (when brood

population size is at the lowest). This suggests that efficiency of feeding the queen for

brood production has a significant negative impact on the amount of VG per nurse

bee, and in any case, it shows the importance to the colony. On the other hand, at

time-point t = 360, forager death rate df is negatively affecting the amount of VG
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per nurse bee and this can be explained by the fact that this time-point corresponds

to colony’s low season when weather is not optimal for foraging and pollen collection

rate r is minimal (see positive to negative impact switch in Fig. 4.18(a) and 4.18(b)

in purple).
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(b) t = 360 days

Figure 4.18: PRCC Values for the Parameters of Model (4.7) Using the level of
Vitellogenin per Nurse Bee as the Output of Interest.

Discussion

The population dynamics of honeybees has been studied for decades now [Hölldobler

and Wilson, 2009, Ament et al., 2010] by looking at different aspects and mechanisms

that regulate and influence sudden or gradual changes of the brood and worker popu-

lations within a colony. The study of the mechanisms that enable or restrict changes

in behavior of honeybees in response to changes in the environment is an active area of
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research [Ament et al., 2010, Schulz et al., 1998, Toth et al., 2005, Toth and Robinson,

2005, Robinson, 1992].

The intention of the model presented here is not an attempt to simulate reality

but to provide a modeling framework that considers factors influencing colony dy-

namics (i.e., growth or decrease of population). In this work, we explore the effects

of an essential environmental variable influencing the age-based division of labor of

worker honeybees is their nutritional status [Ament et al., 2010, Avni et al., 2014].

Specifically, we focused on the effects of vitellogenin content per nurse bee and how

it interacts with the essential demographic and allocation processes within the colony

to influence colony growth.

We presented a non-linear differential equation system that models the population

dynamics of a honeybee colony. This model considers the population of brood and

adult workers divided in two task groups (nurses and foragers), stored pollen in the

hive and vitellogenin content in nurse bees. Analytical results of model (4.7) provide

the existence of up to two interior equilibria, i.e., two possible points where all the

components of our model B,N, F, P, V are greater than zero and have the potential

to become stable. The size of both the brood and worker populations within the

colony at a stable point are directly dependent upon the increase of VG levels per

nurse bee, i.e., increase of 1
ξ
. Also, coexistence of both brood and worker populations

is dependent upon enough food to feed the brood (pollen collected and converted

to VG and available foragers). For example, among African races of A. mellifera,

starvation is more frequent because they store low honey reserves [Toth et al., 2005,

Winston, 1991].

From the numerical simulations, we learned that the parameter αv, which describes

the regulation effects that the levels of VG per nurse bee have on the transition rate

from nurse to forager, seems to be very sensitive. For instance, too small αv can
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neutralize the regulation effects of task switching, but too large can overemphasize

these effects. Therefore, a good value choice for αv in our model is critical to capture

true regulation effects of levels of VG per nurse bee on the transition rate form nurse

to forager. In addition, the regulation effects of current brood in the colony and stored

pollen, a and b, respectively, are very important in our model. These parameters give

a certain sensitivity that respond to brood pheromone and current levels of stored

pollen in cells. In our model, when these parameters are ’too large’, it means that

there is enough pollen to feed current brood and foragers must decrease foraging for

pollen. Under this scenario, low pollen collection rate and low queen feeding rate

can cause colony’s death. The only way a colony can survive is if feeding rate of the

queen is high enough, since it will prompt production of new brood to preserve the

colony. In Figure 4.4 we can see that a decreasing rate of αq decreases both brood

and worker population sizes.

Several scenarios in our numerical simulations provide conditions at which the

colony is prone to die. For instance, low collection rate of pollen by foragers leads

to low pollen consumption rate by nurse bees, which promotes colony’s death (see

white region in Figure 4.7). This implication has been explored in the work of Naug

[2009] stating that scarce food resources lead to low pollen consumption rates, which

then affects the ability to improve worker longevity [Huang, 2012]. Our results also

confirmed that survival of the colony is dependent on worker longevity. For instance,

as the mortality rate of nurse bees increases, it is necessary to maintain a high con-

version rate of pollen to VG in order to provide enough food for new brood (see

Figure 4.6f). However, rapid depletion of food stores for brood feeding can cause the

colony die of starvation [Le Conte and Navajas, 2008]. Also, our results indicate that

medium to large conversion rate of pollen to VG by nurse bees is necessary for colony

survival providing enough VG available to feed the queen for egg-laying production
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(see Figure 4.6a-4.6c). In general, the rates of food collection and consumption are

essential elements of food storage inside the hive [Anderson et al., 2014].

Further results indicate that fast transition rate from nurse bee to forager can

cause the colony to die out (see Figures 4.6d and 4.6e). In the long run, if the

transition rate from nurse to forager is high it may not be sustainable for the colony

because there will be fewer available nurse bees synthesizing VG and rearing brood

while foragers have higher mortality rates during high foraging season. Gordon [1996]

states that rapid changes in tasks are caused as a result of a response to environmental

stimuli. Other results show that when the efficiency of using vitellogenin for egg-laying

production by the queen is decreased (or low), the levels of vitellogenin per nurse bee

increases. An explanation of this could be that the queen is not been fed enough

and therefore not able to produce eggs. For instance, depending on food conditions,

some species of ants control the composition of eggs and nutritional quality [Wheeler,

1986].

The sensitivity analysis performed in this study helped us quantify the impact

of model outcomes given the uncertainty of parameters and initial conditions. We

used PRCC sensitivity analysis with LHS as the sampling technique in order to de-

termine which parameters are more influential on the different outcomes of interest.

We found that the parameters having a positive impact on brood population and

nurse task group sizes across all time are the pollen collection rate, pollen conversion

rate to vitellogenin, and the maximum transition rate from nurse to forager. These

parameters show that the availability of food resources, specifically pollen [Huang,

2012], mainly for brood survival and brood production, are of vital importance for

the success of the colony, which has been confirmed in the work of Naug [2009]. Also,

results showed that the amount of VG titers per nurse bee is significantly positively

influenced by the amount of VG deposited in an egg and the period of time corre-
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sponding to the colony’s high season, but also the transition rate from nurse bee to

foraging. However, the amount of VG titers per nurse bee is significantly negatively

influenced by queen’s feeding rate and the efficiency of converting VG for egg produc-

tion. Overall, the sensitivity analysis provided further confirmation that food source

for queen, egg production, and developing brood are of vital importance for colony’s

success.

Lastly, we considered seasonality for the collection rate of pollen since, in reality,

pollen collection rate is not constant due to changes in weather conditions [Synge,

1947, Thorp, 1979]. In order to perform a validity check of our model with seasonality,

we compared time series simulations generated by our model with empirical data

from Harŕıs [1980]. Comparing the effects of seasonality model (4.7), we learned that

seasonality can provide a more realistic intuition of long term consequences. For

instance, when the efficiency of converting VG for egg-laying production is decreased,

the model without seasonality does not show catastrophic events such as colony’s

death, however, the model with seasonality showed a periodic decrease of population

size until the colony collapsed (see Figure 4.13).

Several studies with mathematical models for honeybee colonies are existent

[Schmickl and Crailsheim, 2007, Khoury et al., 2013, Becher et al., 2014, Perry et al.,

2015, Schmickl and Karsai, 2017]. Most of these have modeled the population dy-

namics of honeybees and nutrient stores. For example, Schmickl and Crailsheim

[2007] created a model to study the population and resource dynamics of a honey-

bee colony and including the effect of division of labor in the hive. However, the

modeling approach is complicated and since it is well known that bees have a strong

age-based division of labor, the theory used to model task allocation is more relevant

in ants. The model presented in [Khoury et al., 2013] has similar assumptions to

ours. However, one of the main differences from our model is the assumption of the
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transition from nurse bee to forager. In our model, we assume that the transition

from nurse bee to foragers increases by a transition rate that depends on the levels of

vitellogenin in the nurse bee and not only by the absence of stored food and reduced

social inhibition. Also, we enhanced their simple assumption of food collection rate

by including the regulation effects of brood pheromone and stored pollen. In BEE-

HAVE by Becher et al. [2014], although they take into considerations many aspects

affecting colony dynamics, they assume that the level of pollen and nectar stores in

the colony affects the age at which workers initiate foraging activities. They do not

take into account other mechanisms changing at the molecular [Guidugli et al., 2005,

Amdam et al., 2010, Amdam and Omholt, 2002, 2003] and physiological level [John-

son, 2005, Amdam and Omholt, 2002]. In our model, we attempt to incorporate in a

general manner those mechanisms within a bee that affect the initiation of foraging.

The model of Perry et al. [2015] proposes an ODE model that captures the impacts

of precocious foraging induced by different stressors. The model suggests that food

limitation set by inefficiency of a young foraging force would hasten colony terminal

decline. Results from our model also suggest that high transition rate to foraging

(i.e. precocious bees) can cause a decline of brood and forager population. These im-

plications have also been reviewed by [Klein et al., 2017, Scofield and Mattila, 2015]

stating that early foraging and for a short period is due to shortage of pollen, and

thus vitellogenin, during development. In any case, these models are useful in their

own way and have been designed to address specific questions.

The analytical and numerical results presented here are unique and simple in the

sense that we incorporate mechanisms that affect the age-based division of labor and

implications that can have on the change of brood and worker population sizes over

time. We presented basic but important assumptions that can help us understand

and have greater insight in the complexity of honeybee population dynamics given
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their nutritional status and(or) needs. This model can be extended by including

other scenarios such as limiting the pollen influx in the late summer and study how

it can affect the lifespan of bees and possibly lead to colony collapse, or when bees

opt to engage in brood cannibalism as a natural strategy to recycle protein. Other

mechanism to be included is the transition back from forager to nurse bee under

certain environmental conditions [Oettler et al., 2015], and the interplay of diseases

or infections, such as Nosema ceranae which is known to alter vitellogenin levels, and

therefore alter normal age polyethism causing colony imbalance [BenVau and Nieh,

2017, Goblirsch et al., 2013].
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Chapter 5

FINAL REMARKS AND FUTURE WORK

Social insects have provided the best models for studying the evolution and main-

tenance of cooperative behavior. However, the study of mechanisms believed to have

shaped the observed division of labor structure in social insects such as nutrition and

age polyethism, and phenomena known to increase colony survival such as cannibal-

ism, has not yet been fully understood. In this dissertation, I illustrate the role played

by these mechanisms and phenomenon in the population dynamics of social insects

through a mathematical modeling approach.

Several models have addressed the dynamics of cannibalistic behavior in age-

structure models (see Kang et al. [2015], Cushing [1991]) and division of labor. How-

ever, the dynamics of both egg cannibalism and division of labor together have not

yet been studied. In this dissertation, I put together two of the most relevant mecha-

nisms in social insects that have an impact in colony survival, in both population and

evolutionary dynamics. Moreover, I illustrate the outcomes of explicit division of la-

bor through the inclusion of age-polyethism in a model describing the interactions of

leafcutter ants with their fungus garden, and the different ways the colony can benefit

from cannibalizing eggs. The results from this study open an opportunity to perform

manipulative experimental work to determine whether egg cannibalism increase lifes-

pan of adult workers, or if it has alternative benefits. Further results suggest that

division of labor plays an important factor determining whether a colony of leafcut-

ter ants can survive or not in the absence of egg cannibalism. For instance, if the

proportion of adult ants performing given tasks is large enough, then the colony can

survive. This suggests that there may be an evolutionary relationship between divi-
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sion of labor and egg cannibalism, which it would be interesting to explore in future

work.

Another interesting area to explore within leafcutter ants is the nutritional impact

on colony growth to understand how different nutrients influence the physiology and

behavior of ants. It is known that many herbivores such as leafcutter ants based their

choices on leaf nutritional content [Clark, 2011]. Foragers collect macronutrients

in a ratio to feed the fungus which the ants then eat. The switching of activities

inside the nest depends on the colony feedback and individual decisions made by the

foragers [Clark, 2011], who can switch between carbohydrate and protein foraging as

the colony’s necessities change and the level of starvation of the workers and larvae.

The major drive for collected protein is growing larvae, whereas worker ants mainly

require carbohydrate for energy [Cassill and Tschinkel, 1999, Dussutour and Simpson,

2012]. In this case, experimental work together with a mathematical model could

bring important insights to answer questions such as: what is the optimal worker ratio

collecting protein to carbohydrate material to increase or maintain colony survival?

There are genetic and physiological mechanism underlying the division of labor in

social insects that are still poorly understood [Ikemoto et al., 2009, Schmid-Hempel,

1992, Traniello and Rosengaus, 1997]. The role played by the nutritional status of

a colony influencing the age-based division of labor in honeybees has been of great

interest to biologist. Honeybees represent one of the most interesting social systems

due to their complex division of labor structure and the organization within the colony.

The model proposed in this dissertation captures the population dynamics over one

season, i.e. spring and summer, where brood is available and foraging activity is

necessary. This model helps us have a further understanding on the importance of

pollen collection and consumption rates, adequate feeding rates to the queen, and

the impact of good nutrition during the larvae stage for future foraging activity. The
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results obtained in this study opens the opportunity to further explore scenarios where

nutrients are not available due to short summers in which bees opt to engage in brood

cannibalism as a natural strategy to recycle protein. Other mechanism that can be

included to the proposed model is the transition back from foraging to nursing under

certain environmental conditions [Oettler et al., 2015].

Currently, there are different known drivers of honeybee colony declines and losses

which are causing serious environmental implications. Some of the most important

indicators of colony losses are overall management issues, the role of pests such as

Varroa destructor, and introduced pathogens such as deformed wing virus, acute bee

paralysis virus, Kashmir bee virus, among others [Smith et al., 2013]. An interesting

extension to this model is the study of the population dynamics given the interplay

of diseases or infections, such as Nosema ceranae which is known to alter vitellogenin

levels, and therefore alter normal age polyethism causing colony imbalance [BenVau

and Nieh, 2017, Goblirsch et al., 2013]. Also, the use of pesticides has become part of

colony losses [Smith et al., 2013] and it is suspected, by some scientists and beekeepers,

to be one of the main causes of colony-weakening processes [Henry et al., 2012]. Some

issues emerging from the use of pesticides according to some studies [Wu et al., 2011]

are delayed adult emergence leading to higher fecundity of Varroa mites, increased

number of unhatched eggs leading to reduced egg-laying efficiency by the queen, and

lower survivorship of worker bees leading to precocious foraging, which was shown

in Chapter 4 and other studies (see Thompson et al. [2007]), to have an impact on

colony size.

I am aware and acknowledge that the mathematical models presented in this dis-

sertation have some limitations. However, I believe this work represents the first step

to understand, mathematically, the underlying mechanisms of the emerging behaviors

in social insects that ultimately influence the success of a colony.
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Proof of Theorem 1

Proof. Note that

x′|x=0 =
ry

1 + cy
≥ 0

y′|y=0 = 0,

hence according to Theorem A.4 (p.423) in Thieme (2003) Thieme [2003], we can con-
clude that the system (2.1) is positively invariant in R2

+. Now, to show boundedness,
by the property of positive invariance we have that

x′ =
ry

1 + ax+ cy
− α̂xy − βx ≤ ry − α̂xy = y(r − α̂x)

which implies that

lim sup
t→∞

x(t) ≤ r

α̂
.

This indicates that for any ε > 0, there exist T large enough such that

x(t) <
r

α̂
+ ε for all t > T.

Note that βcxy
1+ax+cy

≤ βcxy
cy

= βx. Therefore, we have

y′ =
βcxy

1 + ax+ cy
− dy

1 + b̂x
≤ βx− dy

1 + b̂x
≤ β

( r
α̂

+ ε
)
− dy

1 + b̂
(
r
α̂

+ ε
) .

Since ε can be arbitrarily small, thus

lim sup
t→∞

y(t) ≤
βr
(
b̂r
α̂

+ 1
)

dα̂
.

Therefore, the system is positively invariant and bounded in R2
+. More specifi-

cally, every trajectory starting from R2
+ converges to the compact set C =

[
0, r

α̂

]
×[

0,
βr
(
b̂r
α

+1
)

dα̂

]
.

Moreover, the rescaled model (2.2) is also positive invariant and bounded in R2
+.

Thus we can restrict the dynamics of system (2.2) in the rescaled compact set D =[
0, γ

α

]
×
[
0,

γ( bγα +1)
δα

]
.
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Define φ(E,A) = 1
EA

which is positive in R2
+, then we have

∇ · (φ(E ′, A′)) =
∂

∂E
(φE ′) +

∂

∂A
(φA′)

=
∂
(

γ
E(1+E+A)

− α− 1
A

)
∂E

+
∂
(

c
1+E+A

− δ
E(1+bE)

)
∂A

=
∂
(

γ
E(1+E+A)

)
∂E

+
∂
(

c
1+E+A

)
∂A

= −γ(1 + 2E + A) + c

(1 + E + A)2
< 0.

This shows that system (2.2) has no limit cycle (i.e. only equilibrium dynamics)
according to Dulac-Bendixson Criterion (Theorem A.12 on Thieme [2003]).

Details on derivation of equation (2.5)

Set E ′ = 0, ⇒ 1 + E∗ + A∗ =
γA∗

E∗(αA∗ + 1)
, (A.1)

and A′ = 0, ⇒ 1 + E∗ + A∗ =
cE∗(1 + bE∗)

δ
(A.2)

Setting (A.1) = (A.2) we obtain:

γA∗

E∗(αA∗ + 1)
=
cE∗(1 + bE∗)

δ

A∗

αA∗ + 1
=
cE∗2(1 + bE∗)

δγ

αA∗

αA∗ + 1
=
αcE∗2(1 + bE∗)

δγ

αA∗ + 1− 1

αA∗ + 1
=
αcE∗2(1 + bE∗)

δγ

αA∗ + 1

αA∗ + 1
− 1

αA∗ + 1
=
αcE∗2(1 + bE∗)

δγ

1− 1

αA+ 1
=
αcE2(1 + bE)

δγ

Proof for Proposition 1

Proof. Let A∗, E∗ be equilibrium of Model (2.2). Then it satisfies the following two
equations:

A∗ = f(E∗) =
bcE∗2 + (c− δ)E∗ − δ

δ
> 0,
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which is subject to

E∗ ≥
δ − c+

√
(δ − c)2 + 4bcδ

2bc
.

γA∗

E∗(αA∗ + 1)
=
cE∗(1 + bE∗)

δ
⇒ αA∗

αA∗ + 1
= 1− 1

αA∗ + 1
=
αcE∗2(1 + bE∗)

δγ

Hence, we can define the following two nullclines:

nf1(E) =
αcE2(1 + bE)

δγ
and nf2(E) = 1− 1

αA+ 1
= 1− 1

αf(E) + 1
≤ 1,

which are subject to E ≥ δ−c+
√

(δ−c)2+4bcδ

2bc
.

Notice that f(E) is increasing when E ≥ Ec =
δ−c+
√

(δ−c)2+4bcδ

2bc
, thus both nf1(E)

and nf2(E) are increasing functions of E. Therefore, we can conclude that nf1(E)
and nf2(E) have no positive intercept if nf1(Ec) > 1 holds or

nf1(E)′ =
αcE(2 + 3bE)

δγ
≥ f ′(E) > nf2(E)′ =

αf ′(E)

(αf(E) + 1)2

where f ′(E) = 2bcE+(c−δ)
δ

. Define h(E) = αcE(2+3bE)
δγ

− 2bcE+(c−δ)
δ

, then we can conclude

that Model (2.2) has no interior equilibrium if nf1(Ec) > 1 or h(Ec) > 0, i.e.

α(δ − c+K)2(c+ δ +K) > 8b2c2δγ or α[δ − c+K][c+ 3(δ +K)] > 4bcγK,

where K =
√

(δ − c)2 + 4bcδ.

Note that as c→ 0, both conditions are satisfied.

Interior equilibria for Model (2.2) are determined by the positive roots of nf1(E) =
nf2(E). For Ec > 0, we claim that if nf1(E) is convex and nf2(E) is concave then
nf1(`) < nf2(`) for some ` > Ec and Model (2.2) can have at least two interior equi-
libria (see Fig 2.1).

Notice that nf1(E) is always convex since nf ′′1 (E) = 2αc(3bE+1)
δγ

> 0. Moreover, for

E > 0, nf2(E) is an increasing function and limE→∞ nf2(E) = 1. Therefore, this
implies that nf1(E) and nf2(E) must intercept twice in R2

+.

Consider ` = 2
√
bcδ
bc
∈ R+ such that Ec < `, then nf1(Ec) < nf1(`) and nf2(Ec) <

nf2(`) since both nf1(E) and nf2(E) are increasing functions. First, notice that
nf2(Ec) = 0, then

nf1(Ec) > 0

nf1(Ec) > nf2(Ec)

nf1(Ec)− nf2(Ec) > 0.
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Now, suppose nf1(`) > nf2(`), i.e.,

4α(c+ 2
√
bcδ)

bcγ
+

bcδ

(1 + 3α)bcδ + 2α(c− δ)
√
bcδ

> 1.

However, since nf2(E)→ 1 as E →∞, the interception of nf1 and nf2 must be less
than 1. Therefore for ` > Ec,

4α(c+ 2
√
bcδ)

bcγ
+

bcδ

(1 + 3α)bcδ + 2α(c− δ)
√
bcδ

< 1

4α(c+ 2
√
bcδ)

bcγ
< 1− bcδ

(1 + 3α)bcδ + 2α(c− δ)
√
bcδ

nf1(`) < nf2(`).

The above shows that the function

F (E) = nf2(E)− nf1(E)

= αb2c2E5 + αbc(2c− δ)E4 + c(αc− αδ + bδ − αbδ)E3 + cδ(1− α− bγ)E2

+ γδ(δ − c)E + γδ2,

can intercept at least twice in the positive quadrant and that nf2(E)− nf1(E) ≤ 1.
This implies that Model (2.2) can have at least two positive interior equilibria Ei =
(E∗i , A

∗
i ), i = 1, 2 if nf1(`) < nf2(`) for ` > Ec.

Now to study the stability of the existent equilibria when α, b > 0 we consider the
Jacobian matrix (A.30).
1. The stability of the extinction equilibrium E0 = (0, 0) is similarly determined by
the eigenvalues λi(0, 0), i = 1, 2 of the Jacobian matrix (A.30) evaluated at E0. Thus,
we obtain the matrix (A.4) giving us the same result as before, i.e. the extinction
equilibrium E0 = (0, 0) is always asymptotically stable for α ≥ 0.

Let (E∗, A∗) be an interior equilibrium of Model (2.2) with α > 0. Then its
stability can be determined by the eigenvalues λi(E

∗, A∗), i = 1, 2 of its associated
Jacobian matrix (A.30).

Hence

J(E∗,A∗) =

(
−A∗α− γA∗

(1+E∗+A∗)2 − 1 γ
1+E∗+A∗

− γA∗

(1+E∗+A∗)2 − αE∗
A∗c

1+E∗+A∗
− cA∗E∗

(1+E∗+A∗)2 + A∗bδ
(1+bE∗)2 − δ

1+bE∗
+ cE∗

1+E∗+A∗
− cA∗E∗

(1+E∗+A∗)2

)

=

(
− (αA∗+1)(A+2E∗+1)

1+E∗+A∗
E∗(1+E∗−αA∗2)
A∗(1+E∗+A∗)

cA∗(1+A∗)
(1+E∗+A∗)2 + δbA∗

(1+bE∗)2 − cA∗E∗

(1+E∗+A∗)2

)

since

cE∗

1 + E∗ + A∗
=

δ

1 + bE∗
, and

γA∗

(1 + E∗ + A∗)2
=
αA∗E∗ + E∗

1 + E∗ + A∗
,
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which gives

λ1(E∗, A∗) + λ2(E∗, A∗) = −(αA∗ + 1)(A+ 2E∗ + 1)

1 + E∗ + A∗
− cA∗E∗

(1 + E∗ + A∗)2
< 0

and

λ1(E∗, A∗)λ2(E∗, A∗) =

(
(αA∗ + 1)(A+ 2E∗ + 1)

1 + E∗ +A∗

)(
cA∗E∗

(1 + E∗ +A∗)2

)

−
(

cA∗(1 +A∗)

(1 + E∗ +A∗)2
+

δbA∗

(1 + bE∗)2

)(
E∗(1 + E∗ − αA∗2)

A∗(1 + E∗ +A∗)

)

=

(
(αA∗ + 1)(A∗ + 2E∗ + 1)cA∗E∗

(1 + E∗ +A∗)3

)
+
E∗(αA∗2 − E∗ − 1)

A∗(1 + E∗ +A∗)

(
cA∗(1 +A∗)

(1 + E∗ +A∗)2
+

δbA∗

(1 + bE∗)2

)
=

(
(αA∗ + 1)(A∗ + 2E∗ + 1)cA∗E∗

(1 + E∗ +A∗)3

)
+ (αA∗2 − E∗ − 1)

(
cE∗(1 +A∗)

(1 + E∗ +A∗)3
+

δbE∗

(1 + bE∗)2(1 + E∗ +A∗)

)

with A∗ = f(E∗) = bcE∗2+(c−δ)E∗−δ
δ

> 0.

Hence, one of the interior equilibrium Ei = (E∗i , A
∗
i ) i = 1 or 2, is locally asymptoti-

cally stable if 0 < α(bcE∗2+(c−δ)E∗−δ)2

δ2 − E∗ > 1, while the other one is saddle.

Proof of Theorem 2

Proof. The positive invariance of Model (2.7) in its state space R2
+ can be easily

established by applying Theorem A.4 in Thieme [2003]. Let f(E,A) = γA
1+E+A

− E
and g(E,A) = cAE

1+E+A
− δA and define φ(E,A) = 1

EA
, then we have

∂f(E,A)φ(E,A)

∂E
=

∂
[

γ
E(1+E+A)

− 1
A

]
∂E

=
∂
[

γ
E(1+E+A)

]
∂E

< 0

∂g(E,A)φ(E,A)

∂A
=

∂
[

c
1+E+A

− δ
E

]
∂A

=
∂
[

c
1+E+A

]
∂A

< 0

Hence, this indicates that Model (2.7) has no limit cycle according to Dulac-Bendixson
theorem Thieme [2003], which implies that this model has only equilibrium dynamics.

134



The equilibrium of Model (2.7) satisfies the following two equations:

γA

1 + E + A
− E = 0 ⇒ A =

cE2

δγ

cAE

1 + E + A
− δA = 0 ⇒ A =

(c− δ)E − δ
δ

Define

g1(E) =
(c− δ)E∗ − δ

δ
and g2(E) =

cE∗2

δγ
,

then E∗ is determined by the positive root(s) of g1(E) = g2(E). According to the
values of c, δ, γ, the equation g1(E) = g2(E) can have none, one, or two positive roots.
Note that g1 − g2 gives

G(E) = − c

δγ
E2 +

(c− δ)
δ

E − 1,

which can have two roots, i.e.

E1 =
γ(c− δ)−

√
γ2(c− δ)2 − 4cδγ

2c
and E2 =

γ(c− δ) +
√
γ2(c− δ)2 − 4cδγ

2c
.

Hence Ei > 0, i = 1, 2 if and only if c > δ and γ > 4cδ
(c−δ)2 . Also, G(E) can have a

repeated root if c > δ and γ = 4cδ
(c−δ)2 , i.e. E1,2 = γ(c−δ)

2c
= 2δ

c−δ . Thus Model (2.2) can

have, one or two interior equilibria.

Moreover, G(E) has derivative

G′(E) = − 2c

δγ
E +

c− δ
δ

Then G(E) can have one positive critical point Ec = γ(c−δ)
2c

if and only if c > δ.

Note that G(0) = −1 < 0. Now, if G(Ec) > 0, then G(E) can have a global
maximum at Ec for E > 0 which is positive. Therefore, G(0) < G(Ec) which implies
that G is increasing on the interval [0, Ec) and decreasing on (Ec,∞). Hence, G(E)
has two positive roots if and only if c > δ and γ > 4cδ

(c−δ)2 , and G(Ec) > 0 where

G(Ec) =
γ(c− δ)2

4cδ
− 1.

1. The stability of the extinction equilibrium E0 = (0, 0) is determined by the
eigenvalues λi(0, 0), i = 1, 2 of the following Jacobian matrix (A.29) evaluated
at E0.

J =

(
− Aγ

(1+E+A)2 − 1 γ
1+E+A

− Aγ
(1+E+A)2

Ac
1+E+A

− cEA
(1+E+A)2 −δ + cE

1+E+A
− cEA

(1+E+A)2

)
(A.3)
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J(0,0) =

(
−1 γ
0 −δ

)
, (A.4)

which gives

λ1(0, 0) + λ2(0, 0) = −1− δ < 0 and λ1(0, 0)λ2(0, 0) = δ > 0

Hence, the extinction equilibrium E0 is asymptotically stable.

2. Let (E∗, A∗) be an interior equilibrium of Model (2.2) with α = 0. Then its sta-
bility can be determined by the eigenvalues λi(E

∗, A∗), i = 1, 2 of its associated
Jacobian matrix (A.29).

Hence

J(E∗,A∗) =

(
− A∗γ

(1+E∗+A∗)2 − 1 γ
1+E∗+A∗

− A∗γ
(1+E∗+A∗)2

A∗c
1+E∗+A∗

− cE∗A∗

(1+E∗+A∗)2 −δ + cE∗

1+E∗+A∗
− cE∗A∗

(1+E∗+A∗)2

)

=

(
− E∗

1+E∗+A∗
− 1 γ−E∗

1+E∗+A∗
cA∗−δA∗
1+E∗+A∗

− δA∗

1+E∗+A∗

)

=

(
−
(
1 + E∗

1+E∗+A∗

)
γ−E∗

1+E∗+A∗
(c−δ)A∗

1+E∗+A∗
− δA∗

1+E∗+A∗

)
,

(A.5)

since
γA∗

1 + E∗ + A∗
= E∗ and

cE∗A∗

1 + E∗ + A∗
= δA∗.

Therefore, J(E∗,A∗) give us

λ1(E∗, A∗) + λ2(E∗, A∗) = −
(

1 +
E∗

1 + E∗ + A∗

)
− δA∗

1 + E∗ + A∗
< 0

and

λ1(E∗, A∗)λ2(E∗, A∗)

=
1

(1 + E∗ + A∗)2
[−(1 + 2E∗ + A∗)(−δA∗)− (c− δ)A∗(γ − A∗)]

=
A∗

(1 + E∗ + A∗)2
[δ(1 + 2E∗ + A∗)− (c− δ)(γ − E∗)]

=
A∗

1 + E∗ + A∗
[2cE∗ − γ(c− δ)] , since A∗ = (c−δ)E∗−δ

δ
.
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Now, we consider two cases:
Case 1: If γ = 4cδ

(c−δ)2 , then we have one positive interior equilibria E1 = (E∗1 , A
∗
1) =(

γ(c−δ)
2c

,
(c−δ)E∗1−δ

δ

)
. Hence λ1(E∗1 , A

∗
1)λ2(E∗1 , A

∗
1) = 0.

This implies E1 is a stable degenerate equilibrium (see Figure 2.4).

Case 2: If γ > 4cδ
(c−δ)2 we have two interior equilibria Ei, i = 1, 2 where

E∗1 =
γ(c− δ)−

√
γ2(δ − c)2 − 4cδγ

2c
and E∗2 =

γ(c− δ) +
√
γ2(δ − c)2 − 4cδγ

2c
,

then

λ1(E∗1 , A
∗
1)λ2(E∗1 , A

∗
1) = −

δ
√
γ(c− δ)2 − 4cδ

cγ
< 0

and

λ1(E∗2 , A
∗
2)λ2(E∗2 , A

∗
2) =

δ
√
γ(c− δ)2 − 4cδ

cγ
> 0.

This implies E1 = (E∗1 ,
(c−δ)E∗1−δ

δ
) is saddle, while E2 = (E∗2 ,

(c−δ)E∗2−δ
δ

) is asymp-
totically stable.

Proof for Theorem 3

Proof. It is easy to check that (0, 0, u∗) is an equilibrium of Model (2.9) if γ′(u∗) =
δ′(u∗). The stability of (0, 0, u∗) is determined by the eigenvalue of the following
Jacobian matrix evaluated at (0, 0, u∗)

J(0,0,u∗) =

(
−1 γ(u∗) 0
0 −δ(u∗) 0

σ2[c′(u∗)− γ′(u∗)− α′(u∗) + δ′(u∗)b(u∗) + δ(u∗)b′(u∗)] −σ2γ′(u∗) σ2[γ′′(u∗)− δ′′(u∗)]

)
,

which eigenvalues are

λ1(E∗, A∗, u∗) = −1, λ2(E∗, A∗, u∗) = −δ(u∗),

and
λ3(E∗, A∗, u∗) = σ2[γ′′(u∗)− δ′′(u∗)].

Hence, the extinction equilibrium (0, 0, u∗) exists if γ′(u∗) = δ′(u∗) and it is stable if
λ3(E∗, A∗, u∗) < 0, i.e., γ′′(u∗) < δ′′(u∗).

Proof for Theorem 4

Proof. Let (E∗, A∗, u∗) be an interior equilibrium (i.e. E∗, A∗ > 0), then the following
equations satisfy model (2.10)
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γ0A
∗

1 + E∗ + A∗
− α0E

∗A∗ − E∗

φ∗
= 0 (A.6)

c0E
∗

1 + E∗ + A∗
− δ0

1 + bφ∗E∗
= 0 (A.7)

γ0

1 + E∗ + A∗
− α0E

∗ +
δ0φ
∗b0E

∗

(1 + b0φ∗E∗)2
= 0 or φ′(u∗) = 0 (A.8)

From equation (A.7) we obtain A∗ = b0c0E∗2φ∗+E∗(c0−δ0)−δ0
δ0

> 0. Now, using equa-

tion (A.6), we can equivalently express equation (A.8) as follows

γ0

1 + E∗ + A∗
− α0E

∗ +
δ0φ
∗b∗0E

∗

(1 + b∗0φ
∗E∗)2

=
E

A∗φ∗
+

δ0φ
∗b0E

∗

(1 + b0φ∗E∗)2
= 0,

then solving for A∗, we obtain A∗ = − (1+b0φ∗E∗)2

b0δ0φ∗2
< 0. Hence we only consider

φ′(u∗) = 0 form equation (A.8). This implies that the equilibrium (0, 0, u∗) exists if
there is some u∗ such φ′(u∗) = 0.

Now, to study the stability of (0, 0, u∗) we use the Jacobian matrix of the evo-
lutionary model (2.10) evaluated at the boundary equilibrium can be represented as
follows:

J(0,0,u∗) =

( −1 γ0φ
∗ 0

0 −δ0φ
∗ 0

0 0 σ2φ′′(u∗)(γ0 − δ0)

)
The above Jacobian matrix gives three eigenvalues, which stability conditions must
satisfy as follows:

λ1(0, 0, u∗) + λ2(0, 0, u∗) = −(1 + δ0φ
∗) < 0, λ1(0, 0, u∗)λ2(0, 0, u∗) = δ0φ

∗ > 0

and
λ3(0, 0, u∗) = σ2φ′′(u∗)(γ0 − δ0).

By Theorem 3, we have that the equilibrium (0, 0, u∗) is locally asymptotically
stable if (i) γ0

δ0
< 1 and φ′′(u∗) > 0 or (ii) γ0

δ0
> 1 and φ′′(u∗) < 0, and saddle if any of

these conditions fail and make λ3(0, 0, u∗) > 0.

Proof for Theorem 5

Proof. Since φ(u) is a function with the following characteristics: φ(u) > 0, φ′(u) >
0 in (ul, um), φ′(u) < 0 in (um, ur), φ(ul) = φ(um) = φ(ur) = 0 and φ′′(ul) >
0, φ′′(um) < 0, φ′′(ur) > 0, Proposition 1 suggests that the evolutionary model (2.10)
can have the following interior equilibria:

1. If ng1(1, x) > ng2(φ(ui), x), i = l,m, r, there is no positive solution in x.
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2. If ng2(φ(um), x) > ng2(ul,r) > ng1(1, x) > ng2(φ(ur,l), x), there are at most
three positive solutions in x.

3. If ng2(φ(um), x) > ng2(φ(ul,r), x) > ng2(φ(ur,l), x) > ng1(1, x), there are at
most six positive solutions in x.

Moreover, we study the stability of the interior equilibria by evaluating the re-
spective Jacobian matrix of the evolutionary model (2.10) with (E∗, A∗, u∗):

J(E∗,A∗,u∗) =
−φ∗

(
α0A

∗ + γ0A∗

(1+E∗+A∗)2 + A∗

φ∗

)
φ∗A∗

(
E∗

φ∗A∗2 −
γ0

(1+E∗+A∗)2

)
0

φ∗A∗
(

c0
1+E∗+A∗ + b0δ0φ∗

(1+b0φ∗E)∗2 −
c0E∗

(1+E∗+A∗)2

)
− c0φ∗A∗E∗

(1+E∗+A∗)2 0

0 0 σ2φ′′(u∗)K



=

 − (1+α0φ∗A∗)(1+2E∗+A∗)
1+E∗+A∗

E∗(1+E∗−α0φ∗A∗2)
A∗(1+E∗+A∗)

0

φ∗A∗
(

c0(1+A∗)
(1+E∗+A∗)2 + b0δ0φ∗

(1+b0φ∗E)∗2

)
− c0φ∗A∗E∗

(1+E∗+A∗)2 0

0 0 σ2φ′′(u∗)K

 (A.9)

where K =
(

E∗

φ∗A∗
+ δ0φ∗b0E∗

(1+b0φ∗E∗)2

)
. According to Theorem 1, we can conclude that

the three eigenvalues of (A.9) satisfy the following conditions:

λ1(E∗, A∗, u∗) + λ2(E∗, A∗, u∗) = −(1 + α0φ
∗A∗)(1 + 2E∗ + A∗)

1 + E∗ + A∗
− c0φ

∗A∗E∗

(1 + E∗ + A∗)2
< 0

λ1(E∗, A∗, u∗)λ2(E∗, A∗, u∗) =

(
(1 + α0φ

∗A∗)(1 + 2E∗ + A∗)(c0φ
∗A∗E∗)

(1 + E∗ + A∗)3

)
+

(
φ∗E∗(α0φ

∗A∗2 − E∗ − 1)

1 + E∗ + A∗

)
(

c(1 + A∗)

(1 + E∗ + A∗)2
+

b0δ0φ
∗

(1 + b0φ∗E∗)2

)
λ3(E∗, A∗, u∗) = σ2φ′′(u∗)

(
E∗

φ∗A∗
+

δ0φ
∗b0E

∗

(1 + b0φ∗E∗)2

)
.

Since φ′(u∗) = 0, then the interior equilibrium (E∗, A∗, u∗) is ecologically stable
(i.e, given u∗, the interior equilibrium (E∗, A∗) is locally stable for the ecological
model (2.2)), then (E∗, A∗, u∗) is locally stable if λ1(E∗, A∗, u∗)λ2(E∗, A∗, u∗) > 0 and

φ′′(u∗)
(

E∗

φ∗A∗
+ δ0φ∗b0E∗

(1+b0φ∗E∗)2

)
< 0 while it is saddle if λ1(E∗, A∗, u∗)λ2(E∗, A∗, u∗) < 0

or λ3(E∗, A∗, u∗) > 0. More precisely, local stability is obtained if α0φ
∗A∗2 > E∗ + 1

and φ′′(u∗) < 0.
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Proof for Theorem 6

Proof. For any F ≥ 0, Ai ≥ 0, and Ao ≥ 0 we have for system (3.2)

dF

dt
|F=0 = 0,

dAi
dt
|Ai=0 = 0,

dAo
dt
|Ao=0 = 0

and for system (3.2)

dF

dt

∣∣∣
F=0

= 0,
dAi
dt

∣∣∣
Ai=0

= 0,
dAo
dt

∣∣∣
Ao=0

= βAi ≥ 0

thus according to the Theorem A.24 in Thieme [2003], we can conclude that for model
(3.2) are positive invariant in R3

+. Now we show boundedness of the system. First,
we have the following inequalities due to the property of positive invariance:

dF

dt
=

[
rfAiAo
b+ AiA0

− dfF − riAi − roAo
]
F ≤ (rf − dfF )F

which implies that

lim sup
t→∞

F (t) ≤ rf
df

= M. (A.10)

This indicates that for any ε1 > 0, there exists T1 large enough, such that

F (t) ≤M + ε1 for all t > T1.

Now let N = Ai + Ao, then

N ′ = A′i + A′o = F (ciriAi + coroAo)−N(diAi + doAo)

≤ cFN − dN2)

≤ N(c(M + ε1)− dN) for all t > T1

which indicates
lim sup
t→∞

N(t) ≤ crf
ddf

,

where c = max{ciri, coro} and d = min{di, do}. Then every trajectory starting from

R3
+ converges to the compact set C =

[
0,

rf
df

]
×
[
0,

c rf
d df

]
.

In system (3.3) and (3.4), for any F ≥ 0, E ≥ 0, and A ≥ 0 we have that

dF

dt

∣∣∣
F=0

= 0,
dE

dt

∣∣∣
E=0

= p1raAF ≥ 0,
dA

dt

∣∣∣
A=0

= βE ≥ 0.

Therefore, we conclude that model (3.3) is positive invariant in R3
+.
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For the system (3.3)-Φ2, let A(t), E(t), F (t) > 0 for t ∈ R+. From A.10 we have
that

lim sup
t→∞

F (t) ≤ rf
df
.

This indicates that for any ε > 0, there exists T1 large enough, such that

F (t) ≤M1 + ε1 for all t > T1.

Similarly, from the second equation of (3.3)–Φ2 we get

dE

dt
= p1raAF − αAE − βE ≤ A(p1raF − αE) ≤ A

(
p1ra

(
rf
df

+ ε1

)
− αE

)
,

for all t ≥ T1, which indicates

lim sup
t→∞

E(t) ≤ p1rarf
αdf

.

Therefore for any ε2 > 0, there exists T2 large enough, such that

E(t) ≤ p1rarf
αdf

+ ε2 for all t ≥ T1.

Let N(t) = A(t) + E(t), then

N ′ = A
(
raF −

daA

1 + c2αE
− αE

)
≤ A

(
raM1 +

daM2

1 + c2αM2

− da
1 + c2αM2

N
)

which implies

lim sup
t→∞

N(t) ≤ daM2 + (raM1 − αM2)(1 + αc2M2)

da
= M3

Then every trajectory starting from R3
+ converges to the compact setD =

[
0,

rf
bdf

]
×

[0,M3]. This implies that all three populations are bounded and this also holds for
the linear system (3.3).

Proof of Theorem 7

Proof. The interior equilibria (F ∗, A∗i , A
∗
o) of model (3.2) when β = 0 is determined

with dF
dt

= dAi
dt

= dAo
dt

= 0 as follows:

rfA
∗
iA
∗
o

b+ A∗iA
∗
0

− dfF ∗ − riA∗i − roA∗o = 0 ⇒ F ∗ =
A∗iA

∗
orf − (A∗iA

∗
o + b)(riA

∗
i + roA

∗
o)

(b+ A∗iA
∗
o)df

(A.11)

ciriA
∗
iF
∗ − diA∗i (A∗i + A∗o) = 0 ⇒ F ∗ =

(A∗i + A∗o)di
ciri

(A.12)

coroA
∗
oF
∗ − doA∗o(A∗i + A∗o) = 0 ⇒ F ∗ =

(A∗i + A∗o)do
coro

(A.13)

141



(A.12) = (A.13)⇒ (A∗i + A∗o)

(
di
ciri
− do
coro

)
= 0 ⇒ di

ciri
=

do
coro

,

which implies A∗i + A∗o > 0.
From the equation above, we can conclude that the system has infinitely many

positive solutions if and only if do
di

= coro
ciri

.

We substitute (A.12) into (A.11) and we obtain

Ai =
−cido(dfdo + cor

2
o)A

2
o + cicodorfroAo − b(cidfd2

o + c2
odir

2
o)

(cidfd2
o + c2

odir
2
o)Ao

0.00 0.05 0.10 0.15 0.20

6.15

6.20

6.25

6.30

6.35

Ao

A
i

Figure A.1: Relation of Ai with Ao in model (3.2) when β = 0; Ai =
−cido(dfdo+cor2

o)A2
o+cicodorf roAo−b(cidfd2

o+c
2
odir

2
o)

(cidfd2
o+c

2
odir

2
o)Ao

with parameters rf = 0.7, b = 0.002, df =

0.2, di = 0.01, do = 0.0095, ci = co = 0.7, ro = 0.06 with ri = dicoro
doci

.

The interior equilibria (F ∗, A∗i , A
∗
o) of model (3.2) is determined as follows:

From A′i(t) = 0, yields

F ∗ =
(A∗i + A∗o)di + β

ciri
, (A.14)

and from A′o(t) = 0, yields

A∗i =
A∗o(doA

∗
o − coroF ∗)

β − doA∗o
(A.15)

Substituting eq. (A.14) into (A.15) and solving for Ai, results in

A∗i = A∗o

[
(do − diκ)A∗o − βκ
β − (do − diκ)A∗o

]
(A.16)
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where κ = coro
ciri

.

Condition A1: Consider ci, co ∈ (0, 1), A∗i is positive for κ = coro
ciri

< 1 whenever
βκ

do−diκ < A∗o <
β

do−diκ , but also if κ = coro
ciri

> 1, then β
do−diκ < A∗o <

βκ
do−diκ , both cases

satisfying do
di
> κ = coro

ciri
.

Now substituting (A.16) into (A.11) we obtain the following nullcline:

g2(Ao) = a4A
4
o + a3A

3
o + a2A

2
o + a1Ao + a0 = 0 (A.17)

a4 = −ciri(ri − ro)(do − diκ)2

a3 = −(do − diκ)(dorf + roβ)− κ(β(ro − 2ri)− dirf )
a2 = bciri(ri − ro)(do − diκ)2 + βciri[dorf − κ2(dirf + riβ) + κ(dorf + roβ − didf )]
a1 = −βri(b(ci(ri − 2ro) + coro)(do − diκ) + ciβκ)

a0 = −briroβ2(ci − co)

The nullcline (A.17) always have at least two positive roots. However, if a root Ao
from (A.17) does not satisfy Condition A1, then model (3.2) has no interior equilibria.
Additional conditions for no interior equilibria are:

do
di
< κ, ri < ro ci < co, β <

dirf
ro − 2ri

, dorf (1+κ)+κroβ < κ2ri(di+β)+κdidf

Proof for Theorem 8

Proof. The interior equilibria (F ∗, E∗, A∗) of model (3.5) are determined by setting
F ′ = E ′ = A′ = 0.

From the first equation of (3.5) we obtain

F ∗ =
rfaA

∗2

df (b+ aA∗2)
− rc
df
A∗ =

A∗

df

[
rfaA

∗

b+ aA∗2
− rc

]
= A∗f(A∗) (A.18)

By setting E ′ + A′ = 0 yields

raF
∗ − daA∗ = 0 ⇒ F ∗ =

da
ra
A∗ ⇒ f(A∗) =

da
ra

⇒ rfaA
∗

df (b+ aA∗2)
− rc
df
− da
ra

= 0

Hence, by solving f(A) = da
ra

for A, which is equivalent to g(A) = −a(dadf +

rarc)A
2 + ararfA− b(dadf + rarc), we obtain the following cases:
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1. If a > 4b(dadf + rarc)/(rarf )
2, then by simple algebraic calculations, we can

have the following two positive solutions of g(A):

A∗1 =
rarf

2(dadf + rarc)
−

√(
rarf

2(dadf + rarc)

)2

− b

a(dadf + rarc)

A∗2 =
rarf

2(dadf + rarc)
+

√(
rarf

2(dadf + rarc)

)2

− b

a(dadf + rarc)
.

Thus, when there is no egg cannibalism, the two interior equilibria of model
(3.5) are:

(F ∗1 , E
∗
1 , A

∗
1) =

(
da
ra
A∗1,

dap1A
∗
1

2

β
,A∗1

)
, (F ∗2 , E

∗
2 , A

∗
2) =

(
da
ra
A∗2,

dap1A
∗
2

2

β
,A∗2

)
.

2. If a = 4b(dadf + rarc)/(rarf )
2, then the system (3.5) has only one positive

equilibria:

(F ∗1 , E
∗
1 , A

∗
1) =

(
darf

2(dadf + rarc)
,

dap1(rarf )
2

4β(dadf + rarc)2
,

rarf
2(dadf + rarc)

)

3. If a < 4b(dadf + rarc)/(rarf )
2, then there is only one trivial equilibrium: F =

0, E = 0, and A = 0.

Proof for Theorem 9

Proof. The interior equilibria (F ∗, E∗, A∗) of model (3.3)-Φ1 can be determined as
follows:
From the first equation of (3.3)-Φ1 we obtain

F ∗ =
rfaA

∗2

df (b+ aA∗2)
− rc
df
A∗ =

A∗

df

[
rfaA

∗

b+ aA∗2
− rc

]
= A∗f(A∗) (A.19)

From the second equation of (3.3) we get

E∗ =
p1raA

∗F ∗

β + αA∗
=

p1raA
∗2

df (β + αA∗)

[
rfaA

∗

b+ aA∗2
− rc

]
=
p1raA

∗2f(A∗)

β + αA∗
(A.20)

Let E ′ + A′ = 0, then we get

raF
∗−daA∗−α(1−c1)E∗ = 0 ⇒ raA

∗f(A∗)−daA∗−α(1−c1)
p1raA

∗2f(A∗)

β + αA∗
= 0
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⇒ f(A∗) =
da
ra

[
β + αA∗

β + αA∗[1− p1(1− c1)]

]
(A.21)

⇒ 1

df

[
rfaA

∗

b+ aA∗2
− rc

]
=
da
ra

[
β + αA∗

β + αA∗[1− p1(1− c1)]

]
[from (A.19)]

From the above, we obtain the nullcline

g(A) = A3 + q2A
2 + q1A+ q0 (A.22)

where

q2 =
β(dadf + rarc)− rarfα[1− p1(1− c1)]

α(dadf + rarc[1− p1(1− c1)])

q1 =
αb[dadf + rarc(1− p1(1− c1))]− ararfβ

aα(dadf + rarc[1− p1(1− c1)])

q0 =
bβ(dadf + rarc)

aα(dadf + rarc[1− p1(1− c1)])
> 0

Let g(A) = A3 + q2A
2 + q1A+ q0 and g′(A) = 3A2 + 2q2A+ q1.

Then g(A) has the following critical points:

Ac1 =
−q2 −

√
∆

3
, Ac2 =

−q2 +
√

∆

3

where ∆ = q2
2 − 3q1.

Since q0 > 0, the sufficient condition for g(A) to have positive real solutions is q2
2 −

3q1 ≥ 0, i.e.,

α ≤ aβrarf
b(dadf + rarc(1− p1(1− c1))

,

otherwise, g(A) has no positive real solutions.

When q2 < 0, i.e. α >
β(dadf+rarc)

rarf [1−p1(1−c1)]
, and ∆ > 0 then g(A) has two positive critical

points 0 < Ac1 < Ac2.

Notice that g′′(Ac1) = −2
√

∆ < 0 and g′′(Ac2) = 2
√

∆ > 0, this implies that g(A)
has a local maximum at Ac1 and local minimum at Ac2 for A > 0, then g(A) has two
positive solutions if and only if g(Ac2) < 0, otherwise it has no positive solutions,
where

g(Ac2) =
27q0 + 6q1

√
∆− q2(9q1 + 2q2

√
∆− 2q2

2)

27

Therefore, g(Ac2) < 0, if q2(9q1 + 2q2

√
∆− 2q2

2) > 27q0 + 6q1

√
∆.

Now, we will show that when model (3.5) has no interior equilibria, model (3.3)-
Φ1 cannot have interior equilibria. From Proposition 8 and (A), we have that

f(A) := 1
df

[
rfaA

b+aA2 − rc
]

and has the following properties: f(0) = − rc
df

< 0, f(A)
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is an increasing function on (0,
√
b/a) and decreasing on (

√
b/a,∞). Therefore, f(A)

has a maximum fmax = maxA>0{f(A)} = f(Ac =
√
b/a) =

rf
√
ab−2brc
2bdf

. Hence, model

(3.5) with α = 0 can have interior equilibria if f(A) = da
ra

and fmax ≥ da
ra
> 0. There-

fore, if f(A) < da
ra

, then system (3.5) has no solutions in A, i.e., when fmax <
da
ra

, but

also if fmax < 0 < da
ra

, i.e.,
rf
√
ab

2b
< rc, then model (3.5) can definitely not have interior

equilibria, i.e., colony cannot survive. Similarly, from (A.21), model (3.3) can have

interior equilibria if f(A) = da
ra

[
β+αA

β+αA[1−p1(1−c1)]

]
. Hence, since

da
ra
<
da
ra

[
β + αA

β + αA[1− p1(1− c1)]

]
⇒ fmax <

da
ra
<
da
ra

[
β + αA

β + αA[1− p1(1− c1)]

]
,

this implies that when model (3.5) (model representing a colony with no cannibalism)
does not have interior equilibria, then model (3.3)-Φ1 can definitely have no interior
interior equilibria.

Next, we show the dynamics of interior equilibria for model (3.3)-Φ2.
An interior equilibrium (F ∗, E∗, A∗) of model (3.3)-Φ2 must satisfy the following three
equations

0 =
rfaA

2

b+ aA2
− dfF − rcA

0 = p1raAF − αAE − βE

0 = (1− p1)raAF −
daA

2

1 + c2αE
+ βE

(A.23)

From the first and second equation of (A.23) we get (A.19) and (A.20), respectively.
If there is no egg cannibalism, then the interior solutions satisfy the equation

f(A) = da
ra

. Complete dynamics of this case has been provided in Proposition 8.

Now, if there is egg cannibalism, then the interior solutions satisfy the following
equation:

From (A.23), let E ′ + A′ = 0, then we get

raF − αE −
daA

1 + c2αE
= 0 ⇒ f(A) =

da
ra

[
1

1 + c2αE

]
+
αE

raA
.

Therefore, using (A.20)

f(A) =
da
ra

[
1

1 + c2raAf(A) αp1A
β+αA

]
+
αp1Af(A)

β + αA

⇒ f(A)

[
1− αp1A

β + αA

]
=
da
ra

[
1

1 + c2raAf(A) αp1A
β+αA

]
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⇒ f(A) =
da
ra[

1− αp1A
β+αA

] [
1 + c2raAf(A) αp1A

β+αA

]
=

da
ra

1− αp1A
β+αA

[
1− c2raAf(A)

(
1− αp1A

β+αA

)] .
Let h(A) = αp1A

β+αA

[
1− c2raAf(A)

(
1− αp1A

β+αA

)]
. Thus

f(A) =
da
ra

1− h(A)
(A.24)

From h(A), we have

αp1A

β + αA
(1− c2raAf(A)) ≤ h(A) ≤ p1.

Now, let A∗ be the positive roots of the equation (A.24) subject to the condition
f(A∗) > 0, so that the system (3.3)-Φ2 have interior attractors.

Therefore, we can have the following conclusions about model (3.3)-Φ2:

1. If fmax < 0, i.e., 1
df

(
rf
√
ab

2b

)
< rc, then our model has no interior equilibrium.

2. If fmax >
da
ra

1−p1
> da

ra
, then our model definitely has interior equilibria. This

follows from the conclusion that model (3.5) can have interior equilibria when
fmax >

da
ra

.

Supplementary material for Theorem 9.
Note that an interior equilibrium (F ∗, E∗, A∗) of model (3.3)-Φ2 satisfies the equation

f(A) =
da

ra[1− h(A)]
,

where

f(A) :=
1

df

[
rfaA

b+ aA2
− rc

]
and h(A) :=

p1αA

β + αA

[
1− c2raAf(A)

(
1− αp1A

β + αA

)]
.

Additionally to the proof and implications of Theorem 9, we have the following claims:
If f(A) = da/ra has no positive solutions, then f(A) = da

ra[1−h(A)]
definitely has no

solutions in A if h(A) > 0. In general, if fmax <
da
ra

1−hmin
(see Figure A.2a), where hmin

is the minimum of h(A) over [0, Ac], this implies that it is possible for f(A) = da
ra

to

have positive solutions but f(A) =
da
ra

1−h(A)
does not have.
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(a) fmax <
da
ra

1−hmin
(b) fmax <

da
ra

Figure A.2: Claims: fmax <
da
ra

1−hmin
versus fmax <

da
ra

If fmax <
da
ra

(see Figure A.2b), then f(A) =
da
ra

1−h(A)
can still have positive solutions

in A if h(A) < 0 for a certain interval (Aa, Ab), where Aa and Ab are the smallest Aa =(
(rf/rc)−

√
(rf/rc)2 − 4b/a

)
/2 and largest Ab =

(
(rf/rc) +

√
(rf/rc)2 − 4b/a

)
/2

roots of f(A) = 0.

Proof for Theorem 7

Proof. The stability of the equilibrium Ei, i = 1, 2, 3 of model (3.2) is determined
by the eigenvalues of the following Jacobian matrix J evaluated at the extinction
equilibrium:

Jacobian Matrix for model (3.2):

J =

(
−2dfF +

rfAiAo
b+AiAo

− riAi − roAo

(
brfAo

(b+AiAo)2
− ri

)
F

(
brfAi

(b+AiAo)2
− ro

)
F

ciriAi ciriF − (2Ai +Ao)di − β −diAi

coroAo β − doAo coroF − (Ai + 2Ao)do

)
(A.25)

The stability of the equilibrium Ei, i = 1, 2, 3 of model (3.2) when β = 0 is de-
termined by the eigenvalues λi(0, 0, 0), i = 1, 2, 3 of the Jacobian matrix (A.25), i.e.,
J1(0,0,0) = 03×3.

Hence, we will use Center Manifold Theory to determine the stability condition
of system (3.2) when β = 0 at equilibrium E0. First, we simplify the system using
Taylor series expansion (consider only up to the second order):

F ′(t) = −dfF 2 − riAi − roAoF
A′i(t) = ciriAiF − diAi(Ai + Ao)

A′o(t) = coroAoF − doAo(Ai + Ao)
(A.26)
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We replace A0 in term of a function of F and Ao. For that, consider,

h(F,Ao) = a1F
2 + a2FA+ a3A

2
o +O(F 3, A3

o)

By some simple calculation, we get h(F,Ao) ≡ 0. Thus, the flow on the center
manifold is given by

F ′(t) = −dfF 2 − riAi
A′i(t) = ciriAiF − diA2

i

(A.27)

Again, both eigenvalues are zero for the system (A.27) at the trivial equilibrium
(0, 0). Using center manifold theory for the stability at its extinction equilibrium.
This system is already in the desired form to use center manifold theory. Replacing
Ai in terms of a function of F , i.e., g(F ) = b1F

2 + b2F
3 + O(F 4), and by simple

calculation, it can be proved that g(F ) ≡ 0. Therefore, the flow on the center
manifold is given by

F ′ = −dfF 2, (A.28)

i.e., model (3.2) is always locally asymptotically stable at the extinction equilibrium
E0.

Similarly, the stability of the extinction equilibrium for system (3.2) when β > 0
can be stablished by using Center Manifold Theory. It can be concluded that the flow
on the center manifold for system (3.2) is given by (A.28), i.e., model (3.2) is always
locally asymptotically stable at the extinction equilibrium E0.

Proof for Theorem 10

Proof. The stability of the equilibrium Ei, i = 1, 2, 3 of model (3.3) is determined by
the eigenvalues of the following Jacobian matrix J associated to each model, respec-
tively, evaluated at each equilibrium:

Jacobian for model (3.3)-Φ1:

J =

 −2dfF
∗ + A∗

(
arfA

∗

b+aA∗2
− rc

)
0 F ∗

(
2abrfA

∗

(b+aA∗2)2 − rc
)

p1raA
∗ −(β + αA∗) p1raF

∗ − αE∗
ra(1− p1)A∗ β + αc1A

∗ ra(1− p1)F ∗ − 2daA
∗ + αc1E


(A.29)

Jacobian for model (3.3)-Φ2:

J =

 −2dfF
∗ + A∗

(
arfA

∗

b+aA∗2
− rc

)
0 F ∗

(
2abrfA

∗

(b+aA∗2)2 − rc
)

p1raA
∗ −(β + αA∗) p1raF

∗ − αE∗
ra(1− p1)A∗ β + αc2daA∗

2

(1+c2αE∗)2 ra(1− p1)F ∗ − 2daA∗

1+c2αE∗


(A.30)
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1. Stability of extinction equilibrium for model (3.3)
The stability of the extinction equilibrium E0 = (0, 0, 0) for model (3.3) is determined
by the eigenvalues λi(0, 0, 0), i = 1, 2, 3 of the Jacobian matrix (A.29) and (A.30),
respectively, evaluated at E0. i.e.

J(0,0,0) =

(
0 0 0
0 −β 0
0 β 0

)

which gives λ1 = λ2 = 0, λ3 = −β.

Now we will use Center Manifold Theory to determine the stability condition of
systems (3.3) at equilibrium E0 = (0, 0, 0). First, we simplify system (3.3) by using
Taylor series expansion (consider only up to the second order). System (3.3) simplify
as follows:

F ′(t) = −(dfF
2 + rcAF )

A′(t) = (1− p1)raAF + βE − daA2

E ′(t) = −βE + (p1raF − αE)A

(A.31)

System (A.31) is already in the desired form with C = 02×2, P = −β, x = [F,A],
H(x,E) = p1raFA− αEA and

G(x,E) =

[
−dfF 2 − rcAF

(1− p1)raAF − daA2 + βE

]
.

Let

h(x) = a1F
2 + a2FA+ a3A

2 +O(F 3, A3)

Dh(x) = [2a1F + a2A+ · · · , a2F + 2a3A+ · · · ]
Dh(x)[Cx+G(x, h(x))] = [2a1F + a2A+ · · · , a2F + 2a3A+ · · · ][

−dfF 2 − rcAF
(1− p1)raAF − daA2 + β(a1F

2 + a2FA+ a3A
2 + · · · )

]
Ph(x) +H(x, h(x)) = −β(a1F

2 + a2FA+ a3A
2 + · · · ) + p1raFA

− αA(a1F
2 + a2FA+ a3A

2 + · · · )

Setting Dh(x)[Cx + G(x, h(x))] = Ph(x) + H(x, h(x)) and collecting terms, we
obtain

F 2 : 0 = a1β ⇒ a1 = 0

FA : 0 = a2β + p1ra ⇒ a2 = −p1ra
β

A2 : 0 = 0
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Hence, h(F,A) = −p1ra
β
FA+O(F 3, A3). Thus, the flow of the center manifold is

given by
F ′(t) = −(dfF + rcA)F

A′(t) = (1− p1)raAF + β(−p1ra
β

FA+O(F 3, A3))− daA2

= (1− 2p1)raAF − daA2 +O(F 3, A3)

(A.32)

Again, both eigenvalues are zero for system (A.32) at the trivial equilibrium (0, 0).
Therefore, we use center manifold theory for the stability at its extinction equilibrium.
The system (A.32) is already in the desired form to use center manifold theory.
Consider the function g(F ) = b1F

2 + b2F
3 +O(F 4), then

Dg(F ) = 2b1F + 3b2F
2 + · · ·

Dg(F )G(F, h(F ))] = [2b1F + 3b2F
2 + · · · ][−dfF 2 − rcF (2b1F + 3b2F

2 + · · · )]
H(x, h(x)) = 0

Similarly as before, by simple calculation and collecting terms we obtain g(F ) ≡ 0.
Therefore, the flow on the center manifold is given by the equation

F ′ = −dfF 2,

this implies system (3.3) is always asymptotically stable at the extinction equilibrium
E0.

2. Stability of interior equilibria for model (3.3)-Φ1

Let (F ∗, E∗, A∗) be an interior equilibrium of model (3.3)-Φ1. Then its stability is
determined by the eigenvalues λi(F

∗, E∗, A∗), i = 1, 2, 3 of its Jacobian matrix (A.29)
at the interior equilibrium (F ∗, E∗, A∗), where its characteristic equation is as follows:

λ3 −

[
3∑
i=1

λi

]
λ2 +

[
3∑

i,j=1,i 6=j

λiλj

]
λ−

3∏
i=1

λi

with λi(F
∗, E∗, A∗), i = 1, 2, 3 being the roots of the above characteristic equation:

3∑
i=1

λi = − [dfF + 2daA+ αA+ β − (ra(1− p1)F − c1αE)] < 0

3∑
i,j=1,i 6=j

λiλj = −
[
F

(
2abrfA

(b+ aA2)2
− rc

)
(1− p1)raA+ (p1raF − αE)(β + αc1A)

−(β + αA)(dfF )]− (ra(1− p1)F + αc1E − 2daA)(β + αA+ dfF ) > 0

3∏
i=1

λi = F

(
2abrfA

(b+ aA2)2
− rc

)
[p1raA(β + c1αA) + (β + αA)(1− p1)raA]

+ dfF [(β + αA)(ra(1− p1)F + αc1E − 2daA)− (p1raF − αE)(β + α+ αc1A)] < 0
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According to the Routh-Hurwitz stability criterion for third-degree polynomial, the
sufficient conditions for the above inequalities to be true, which provide the stability
of interior equilibria are given by

ra(1− p1)F + c1αE < 2daA,
2abrfA

(b+ aA2)2
< rc, p1raF > αE (⇒ β > 0).

3. Stability of interior equilibria for (3.3)-Φ2

Let (F ∗, E∗, A∗) be an interior equilibrium of model (3.3)-Φ2. Then its stability is
determined by the eigenvalues λi(F

∗, E∗, A∗), i = 1, 2, 3 of its Jacobian matrix (A.30)
at the interior equilibrium (F ∗, E∗, A∗), where its characteristic equation is as follows:

λ3 −

[
3∑
i=1

λi

]
λ2 +

[
3∑

i,j=1,i 6=j

λiλj

]
λ−

3∏
i=1

λi

with λi(F
∗, E∗, A∗), i = 1, 2, 3 being the roots of the above characteristic equation:

3∑
i=1

λi = −
[
dfF + β + αA+

2daA

1 + c2αE
− ra(1− p1)F

]
< 0

3∑
i,j=1,i 6=j

λiλj = −
[
F

(
2abrfA

(b+ aA2)2
− rc

)
ra(1− p1)A+ (p1raF − αE)

(
β +

αc2daA
2

(1 + c2αE)2

)

+ (β + αA)

(
ra(1− p1)F − 2daA

1 + c2αE

)
+dfF

(
ra(1− p1)F − (β + αA)− 2daA

1 + c2αE

)]
> 0

3∏
i=1

λi = F

(
2abrfA

(b+ aA2)2
− rc

)[
p1raA

(
β +

αc2daA
2

(1 + c2αE)2

)
+ (β + αA)ra(1− p1)A

]
+ dfF

[(
β2E

A
+

αc2daβEA

(1 + c2αE)2

)
+ (β + αA)

(
ra(1− p1)F − 2daA

1 + c2αE

)]
< 0

According to the Routh-Hurwitz stability criterion for third-degree polynomial, the
sufficient conditions for the above inequalities to be true, which provide the stability
of interior equilibria are given by

ra(1− p1)F <
2daA

1 + c2αE
,

2abrfA

(b+ aA2)2
< rc, p1raF > αE (⇒ β > 0).

The sufficient condition of the interior equilibrium is given by
rfaA

b+aA2 > rc for
model (3.3). Using this argument, it follows that the sufficient condition of the

stability for interior equilibria is A2 > b
a

or A >
√

b
ab

. It can be easily verified that
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A∗2 > Ac >
√

b
a
, thus, it can be conclude that the interior equilibrium E2 is always

locally asymptotically stable when it exists.

Proof of Theorem 11

Proof. We start by showing positivity of Model 4.7 as follows:
Note that

P ′|P=0 =
rBF

1 + aB
≥ 0, V ′|V=0 = cαNP

B′|B=0 =
cqαq
eg

V ≥ 0, N ′|N=0 = βbhB ≥ 0, F ′|F=0 =
βmhfN

1 + αv
N
V

≥ 0

hence according to Theorem A.4 (p.423) in Thieme [2003], we can conclude that the
system (4.7) is positively invariant in R5

+.

To show existence of equilibria, notice that from equation (B.2), we can obtain
the following polynomial, which is the nullcline of our model:

f(N) = c3N
3 + c2N

2 + c1N + c0, (A.33)

where ci, i = 0, 1, 2, 3 are polynomial of ξ:

c3 = dfα(1 + αvξ)(cqαbαq + egαhβbhξ)(cqαq(bαb + acαξ) + begαhβbhξ) > 0

c2 = bdf (1 + αvξ)(cqαbαq + egαhβbhξ)(cqdpαbαq + egβbhξ(dpαh + 2cα2ξΦ(ξ)))

+ cαξ(egαβbhξ(dfegαhβbhξ(1 + αvξ) + cqαq(dfαb(1 + αvξ)− crβmhfξ))
+ acqdfαq(1 + αvξ)(cqdpαbαq + egβbhξ(dpαh + cα2ξΦ(ξ))))

c1 = cdfegαβbhξ
2(1 + αvξ)

(cqdpαq(αb + 2bαbΦ(ξ) + acαξΦ(ξ))

+ egβbhξ(cα
2ξΦ(ξ)(1 + bΦ(ξ)) + dp(αh(1 + 2bΦ(ξ))))) > 0

c0 = c2dfdpe
2
gα

2β2
bhξ

4Φ(ξ)(1 + αvξ)(1 + bΦ(ξ)) > 0

Let f ′(N) = 3N2 + 3d1N + d0, where d1 = c2
c3

and d0 = c1
c3
> 0. Note that

f(0) = c0 > 0, this implies that f(N) has either no positive roots or it has two

positive roots. If αb > crξ
βhf

df (1+αvξ)
, i.e. d1 > 0, then f(N) > 0 and has two critical

points N c
1 < 0 < N c

2 , where

N c
1 =
−d1 −

√
d2

1 − 2d0

3
< 0 and N c

2 =
−d1 +

√
d2

1 − 2d0

3
> 0
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This indicates f(N) has no positive roots. If αb < crξ
βhf

df (1+αvξ)
, i.e. d1 < 0, then

f(N) has two critical points such that 0 < N c
1 < N c

2 . Hence since f ′(0) = d0 > 0,
f(N) has a local maximum at N c

1 since

f(N c
1) =

27c2
3(c0 + c2)− 9c1c3X1 + 3c3X

2
1 −X3

1

27c3
3

> 0,

where X1 =

(
c2
c3

+

√(
c2
c3

)2

− 2 c0
c23

)
< 0. Also, f(N) has a local minimum at N c

2 .

since

f(N c
2) =

27c2
3(c0 + c2) + 9c1c3X2 + 3c3X

2
2 −X3

2

27c3
3

< 0,

where X2 =

(
− c2
c3

+

√(
c2
c3

)2

− 2 c0
c23

)
> 0, given that c2

c3
= d1 < 0. This implies that

f(N) has two positive roots, i.e Model (4.7) has two interior equilibria.

Next, we show the stability conditions for the extinction equilibrium:
The Jacobian matrix (B.4) evaluated at the extinction equilibrium is as follows:

J(0, 0, 0, 0, 0) =


−dp 0 0 0 0

0 −dh − (1− cq)αq 0 0 0
0 αqcq

eg
−βbh 0 0

0 0 βbh −dh 0
0 0 0 0 −df

 ,

which eigenvalues are:

λ1 = −df , λ2 = −dh, λ3 = −dp, λ4 = −dh − αq(1− cq), λ5 = −βbh.

Hence, the extinction equilibrium is always locally asymptotically stable as long as
cq < 1.
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Supplementary bifurcation diagrams comparing dynamics of egg cannibalism in
model 3.3

The following bifurcation diagrams compares the dynamics of egg cannibalism in
model 3.3 explained in Theorem 10. The figures display dashed blue and green lines
representing the stable and unstable interior equilibria, respectively, for model 3.3-Φ2.
The solid blue and green lines represent the stable and unstable interior equilibria,
respectively, for model 3.3-Φ1. Figure B.1 helps us understand better that model 3.4
provides colony survival for a larger range of α (egg cannibalism rate).
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Figure B.1: Models comparison of egg cannibalism dynamics. c1 = 0.85; c2 = 4;a =
0.05; rf = 1; b = 0.5; ra = 0.07; df = 0.1; rc = .007; da = 0.1; β = 0.5; p1 = 0.5 (Blue:
stable and green: unstable interior equilibria).

Supplementary bifurcation diagrams for time series Figure 3.7 and Figure 3.8

In Figures B.2-B.4 we compare the effects of p1: the energy gained through the
consumption of fungus by the adult workers which is then distributed (or invested) on
brood care. In Figure B.2, which represents the case when there is no egg cannibalism,
the biomass of fungus, eggs, and adult workers can have oscillatory solutions if the
energy invested on brood care is medium to high. In Figures B.3, we introduce
cannibalism (α > 0) as represented in model (3.3)-Φ1. In this case, the range in
which oscillatory solutions can happen is decreased while the range of stable biomass
is increased. This effect is produced by the way worker ants are using the converted
energy from cannibalized eggs for their own growth. In Figure B.4, the energy from
egg cannibalism is used to increase adult lifespan, therefore, higher levels of energy is
available to invest on brood care keeping the biomasses stable. Moreover, model (3.3)-
Φ2 shows an increase of biomass of fungus, eggs, and adult workers as p1 increases
compared to that in model (3.3)-Φ1, when there is no egg cannibalism. As a note,
it seems that egg cannibalism can stabilize the dynamics with the nonlinear model
(3.3)-Φ2 having better stabilizing ability. In Figure B.5, we noticed that increasing
rc, i.e. the conversion rate between fungus and ants, can produce oscillatory solutions
as p1 increases. This suggests that rc can potentially destablize the dynamics in the
nonlinear model (3.3)-Φ2.

s
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Figure B.2: Model (3.5) with no cannibalism. α = 0, rc = 0.7, rf = 2, b = 0.002, df = 0.2, a =
0.3, ra = 0.15, da = 0.02, β = 0.15, c1 = 0.8 (Blue: stable and green: unstable interior equilibria).

Figure B.3: Model (3.3)-Φ1. α = 0.08, rc = 0.7, c1 = 0.8, rf = 2, b = 0.002, df = 0.2, a =
0.3, ra = 0.15, da = 0.02, β = 0.15 (Blue: stable and green: unstable interior equilibria).

Figure B.4: Model (3.3)-Φ2. α = 0.08, rc = 0.7, c2 = 10, rf = 2, b = 0.002, df = 0.2, a = 0.3, ra =
0.15, da = 0.02, β = 0.15 (Blue: stable and green: unstable interior equilibria).

Figure B.5: Model (3.3)-Φ2. α = 0.08, rc = 1.5, c2 = 10, rf = 2, b = 0.002, df = 0.2, a = 0.3, ra =
0.15, da = 0.02, β = 0.15 (Blue: stable and green: unstable interior equilibria).

157



Equilibria derivation and Jacobian Matrix of Model (4.7)

Assume that (P ∗, V ∗, B∗, N∗, F ∗) is an interior equilibrium of Model (4.7), then
it satisfies the following five equations:

From B′ = 0,
cqαq
eg

V − βbhB = 0 ⇔ B∗ =
cqαq
egβbh

V ∗

From N ′ = 0,

βbhB −
βmhfN

1 + αh
N
V

− dhN = 0 ⇔ cqαq
eg

V −
βmhfN

1 + αv
N
V

− dhN = 0 ⇔ N∗ = ξV ∗

⇔ N

ξ

(
cqαq
eg

)
= N

(
dh +

βmhf
1 + αvξ

)
⇔ cqαq

ξeg
= dh +

βmhf
1 + αvξ

From F ′ = 0,

βmhfN

1 + αv
N
V

− dfF = 0 ⇔ F ∗ =
βmhfN

∗

df
(
1 + αv

N∗

V ∗

) =
βmhfN

∗

df (1 + αvξ)
(B.1)

From V ′ = 0,

cαNP − (1− cq)αqV − αhNV − αbBV = dhV +
βmhfV

1 + αv
N
V

cαNP −
(

(1− cq)αq + αhN + αb
cqαq
egβbh

V

)
V =

(
dh +

βmhf

1 + αv
N
V

)
V

cαNP =

(
(1− cq)αq + αhN + αb

cqαq
egβbh

V

)
V +

cqαq
ξeg

V

⇔ P ∗ =
(1− cq)αq + cqαq

ξeg

cα

V ∗

N∗
+
αhV

∗

cα
+
cqαbαqV

∗

cαegβbh

V ∗

N∗
=

(1− cq)αq + cqαq
ξeg

cαξ
+
αhV

∗

cα
+
cqαbαqV

∗

cαegβbhξ

⇔
(1− cq)αq + cqαq

ξeg

cαξ
+
αhN

∗

cαξ
+
cqαbαqN

∗

cαξegβbhξ
=

αq
cαξ

(
(1− cq) +

cq
ξeg

)
+
N∗

cαξ

(
αh +

cqαbαq
egβbhξ

)
P ∗ = Φ(ξ) +

N∗

cαξ

(
αh +

cqαbαq
egβbhξ

)
From P ′ = 0 and substituting B∗, F ∗, P ∗,

rB∗F ∗

1 + aB∗ + bP ∗
− αN∗P ∗ − dpP ∗ = 0 ⇔

r cqαq
egβbhξ

N∗
βmhfN

∗

df (1+αvξ)

1 + a cqαq
egβbhξ

N∗ + bP ∗
= P ∗(αN∗ + dp)

r
cqαqN∗

2

ξegβbhdf

(
cqαq

egξ
− dh

)
=

(
Φ(ξ) +

N∗

cαξ

(
αh +

cqαbαq

egβbhξ

))
(1+a

cqαq

egβbhξ
N∗+bΦ(ξ)+

bN∗

cαξ

(
αh +

cqαbαq

egβbhξ

)
)(αN∗+dp)

(B.2)

158



where

ξ =
cqαqαv−dheg−βhf eg+

√
(cqαqαv−egdh−egβhf )2+4cqαqαvdheg

2αvdheg

=

cqαqαv−βhf eg
dheg

−1+

√
(
cqαqαv−βhf eg

dheg
−1)2+

4cqαqαv
dheg

2αv

Φ(ξ) = [(1−cq)αq+dh]

cαξ
+

βmhf
cαξ(1+αvξ)

= (1−cq)αq
cαξ

+ cqαq
cαegξ2 = αq

cαξ

[
1− cq

(
1− 1

egξ

)]
.

(B.3)

Jacobian

The stability of the equilibria of Model (4.7) is determined using the following
Jacobian matrix evaluated at each of the Ei.

J =



−dp − brBF
(1+aB+bP )2

− αN 0 Fr
1+aB+bP

(
1− aB

1+aB+bP

)
−αP rB

1+aB+bP

αcN −dh − αhN − (1− cq)αq −
βmhf

1+αv
N
V

Ψ2 0 αcP − αhV −
αvβ

m
hf(

1+αv
N
V

)2 0

0
αqcq
eg

−βbh 0 0

0
N2αvβ

m
hf

V 2
(
1+αv

N
V

)2 βbh −dh −
βmhf

1+αv
N
V

Ψ1 0

0 −
N2αvβ

m
hf

V 2
(
1+αv

N
V

)2 0
βmhf

1+αv
N
V

Ψ1 −df



=



−dp − brBF
(1+aB+bP )2

− αN 0 Fr
1+aB+bP

(
1− aB

1+aB+bP

)
−αP rB

1+aB+bP

αcN −dh − αhN − (1− cq)αq −
βmhf

1+αvξ
Ψ2 0 αcP − αhV −

αvβ
m
hf

(1+αvξ)2
0

0
αqcq
eg

−βbh 0 0

0
ξ2αvβ

m
hf

(1+αvξ)2
βbh −dh −

βmhf
1+αvξ

Ψ1 0

0 −
ξ2αvβ

m
hf

(1+αvξ)2
0

βmhf
1+αvξ

Ψ1 −df


(B.4)

where Ψ1 = 1− αvN

V (1+αv
N
V )

= 1− αvξ
(1+αvξ)

and Ψ2 = 1 + αvN

V (1+αv
N
V )

= 1 + αvξ
(1+αvξ)

.

Effects of parameters on ξ which measures nurse bees’ nutritional status

1. ξ is always increasing with αq:

∂ξ

∂αq
=

cq
2dheg

1 +
eg(dh − βmhf ) + cqαqαv√

4cqdhegαqαv + (cqαqαv − eg(dh + βmhf ))
2

 > 0

2. ξ is always increasing with cq:

∂ξ

∂cq
=

αq
2dheg

1 +
eg(dh − βmhf ) + cqαqαv√

4cqdhegαqαv + (cqαqαv − eg(dh + βmhf ))
2

 > 0
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3. ξ increases with αv as long as the maximum transition rate from nurse to forager
is greater than the nurse bee death rate:

∂ξ

∂αv
=
−cqαqαv(dh − βm

hf )− eg(dh + βm
hf )2 + (dh + βm

hf )
√

4cqdhegαqαv + (cqαqαv − eg(dh + βm
hf ))2

2dhα2
v

√
4cqdhegαqαv + (cqαqαv − eg(dh + βm

hf ))2
> 0

if cqαqαv(β
m
hf − dh) > eg(dh + βmhf )

2 when βmhf > dh.

4. ξ always decreases with eg:

∂ξ

∂eg
= −

cqαq

(
dheg + cqαqαv − egβm

hf +
√

4cqdhegαqαv + (cqαqαv − eg(dh + βm
hf ))2

)
2dhe2g

√
4cqdhegαqαv + (cqαqαv − eg(dh + βm

hf ))2
< 0,

because simplifying this inequality we obtain the following true inequality:

dhe
2
gβ

m
hf > 0

5. ξ always decreases with βmhf :

∂ξ

∂βmhf
=

−cqαqαv+eg(dh+βmhf )√
4cqdhegαqαv+(cqαqαv−eg(dh+βmhf ))2

− 1

2dhαv
< 0,

because simplifying this inequality we obtain the following true inequality:

4cqdhegαqαv > 0

6. ξ always decreases with dh:

∂ξ

∂dh
= cqαqαv+egβhf+

dheg(dheg + cqαqαv + egβhf√
4cqdhegαqαv + (cqαqαv − eg(dh + βmhf ))2

−
√

4cqdhegαqαv + (cqαqαv − eg(dh + βmhf ))2 < 0,

because simplifying this inequality we obtain the following inequality:

(cqαqαv−egβmhf )2+(cqαqαv+egβ
m
hf )
(
dheg +

√
4cqdhegαqαv + (cqαqαv − eg(dh + βmhf ))2

)
> 0

Figure B.6: Effects on ξ as dh increases
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The project “Colony And Evolutionary Dynamics Of A Two-Stage Model With
Brood Cannibalism And Division Of Labor In Social Insects” (where I am the first
author) published in the Journal of Natural Resource Modeling (Rodriguez-Rodriguez
and Kang (2016)) is elaborated in Chapter 2 of the dissertation per request of the
co-author Dr. Yun Kang.

The project “Interactions between leaf-cutter ants and fungus garden: Effects
of division of labor, age polyethism, and egg cannibalism.” (where I am the first
author), which was recently accepted in the Journal of Mathematical Modeling of
Natural Phenomena (Rodriguez-Rodriguez et al. (2018)) is elaborated in Chapter 3
of the dissertation per request of the co-authors Nathan Smith and Dr. Yun Kang.
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