
Performance Analysis of a Double Crane with Finite Interoperational Buffer Capacity with Multiple
Fidelity Simulations

by

Sundaravaradhan Rengarajan

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved June 2018 by the
Graduate Supervisory Committee:

Giulia Pedrielli, Chair

Feng Ju
Teresa Wu

ARIZONA STATE UNIVERSITY

August 2018

 i

ABSTRACT

With trends of globalization on rise, predominant of the trades happen by sea, and

experts have predicted an increase in trade volumes over the next few years. With

increasing trade volumes, container ships’ upsizing is being carried out to meet the

demand. But the problem with container ships’ upsizing is that the sea port terminals must

be equipped adequately to improve the turnaround time otherwise the container ships’

upsizing would not yield the anticipated benefits. This thesis focus on a special type of a

double automated crane set-up, with a finite interoperational buffer capacity. The buffer

is placed in between the cranes, and the idea behind this research is to analyze the

performance of the crane operations when this technology is adopted. This thesis proposes

the approximation of this complex system, thereby addressing the computational time

issue and allowing to efficiently analyze the performance of the system. The approach to

model this system has been carried out in two phases. The first phase consists of the

development of discrete event simulation model to make the system evolve over time. The

challenges of this model are its high processing time which consists of performing large

number of experimental runs, thus laying the foundation for the development of the

analytical model of the system, and with respect to analytical modeling, a continuous time

markov process approach has been adopted. Further, to improve the efficiency of the

analytical model, a state aggregation approach is proposed. Thus, this thesis would give

an insight on the outcomes of the two approaches and the behavior of the error space, and

the performance of the models for the varying buffer capacities would reflect the scope of

improvement in these kinds of operational set up.

 ii

ACKNOWLEDGMENTS

I am thankful to my advisor Dr. Giulia Pedrielli for giving me a wonderful opportunity to

solve this interesting problem. I am equally thankful to Dr. Feng Ju for providing me

valuable feedbacks during the meeting sessions on improving the research. I am thankful

to Dr. Teresa Wu for being the committee member of this thesis. I would like to thank Mr.

Brint Macmillan for assisting me with the software installations. I am thankful to Mr.

Logan Mathesan, Mr. Cong Liu, Mr. Gokul Chandrasekaran, Mrs. Carly Metcalfe for their

valuable suggestions. Additionally, I would like to thank my parents, Mr. S.P Rengarajan

and Mrs. Revathi Rengarajan for their constant love and support. I would also like to thank

my friends, well-wishing relatives, and other well-wishers.

 iii

TABLE OF CONTENTS

 Page

LIST OF TABLES ... iv

LIST OF FIGURES .. v

CHAPTER

1 INTRODUCTION .. 1

2 LITERATURE REVIEW .. 3

3 METHODOLOGY .. 6

3.1 Discrete Event Simulation Modeling .. 7

3.2 Analytical Modeling ... 12

4 EMPIRICAL ANALYSIS ………………………………………………………………………... . 25

 4.1 Experimental Settings…………………………………………………………………………25

4.2 Statistical Analysis…..………………………………………………………………………… 26

5 CONCLUSION ... 41

REFERENCES ... 43

APPENDIX

A EVENT GRAPH NOTATION DETAILS .. 46

B STATESET OF SYSTEM WITH BUFFER OF SIZE ONE 48

C STATESET OF SYSTEM WITH BUFFER OF SIZE TWO 50

D EXPERIMENT DETAILS OF SYSTEM WITH BUFFER OF SIZE ONE 53

E EXPERIMENT DETAILS OF SYSTEM WITH BUFFER OF SIZE TWO 56

F DISCRETE EVENT SIMULATION MODEL CODE ... 59

G ANALYTICAL MODEL CODE FOR SYSTEM WITH BUFFER OF SIZE ONE 78

H ANALYTICAL MODEL CODE FOR SYSTEM WITH BUFFER OF SIZE TWO 88

 iv

LIST OF TABLES

Table Page

1. State space for three loading and three unloading containers 20

2. Configuration details of the experiments ... 25

3. Parameter levels of yard crane time and quay crane time 28

4. Parameter levels of number of loading jobs and number of unloading jobs 29

 v

LIST OF FIGURES

Figure Page

1. Methodology overview .. 6

2. Schematic representation of the processes ... 7

3. Event Graph of the simulation models ..8

4. Process based approach flow diagram of the simulation models 10

5. Illustration of container processing ... 16

6. Transition diagram of system with buffer of size one ... 18

7. Transition diagram of system with buffer of size two ... 19

8. Makespan distribution of simulation model for platform of size one system 27

9. Makespan distribution of simulation model for platform of size two system 32

10. Distribution of error space of system with platform of size one 35

11. Distribution of error space of system with platform of size two 38

 1

CHAPTER 1

INTRODUCTION

Maritime trade constitutes an important part of world economy. As of 2017, over 80% of

global trade by volume occurs through maritime and it is estimated that the volumes

would grow at a compound annual growth rate of 3.2 percent between 2017 and 2022 [33].

With the growing trade volume, it is important to ensure that the seaports handle the

demand with ease. In the last few years, the vessels deployed in the transpacific trade lanes

nearly doubled their capacity while the terminals- which were sized for much smaller

ships- have relatively remained unchanged [14]. This mismatch between the capacities

and the demand could cause ripples in the supply chain and prior to any changes made in

the seaports, it is very important to carefully analyze the proposed new systems owing to

the huge amount of costs involved. In this thesis, a special type of crane operation called

automated double crane with interoperational finite buffer capacity have been considered

to assess the productivity. The objective of this study is to analyze the performance of this

complex system by addressing the computational issue to run the simulations leading to

efficient analysis.

The approach to analyze the system has been done in two phases. The first phase consists

of the development of discrete event simulation models and the second phase consists of

the development of analytical models. The idea of developing a discrete event simulation

model is to model the system that is close to reality as certain complex operations are

better modeled through this approach [34]. But it turned out that the discrete event

simulation model resulted in higher computation times leading to the development of

analytical modeling. And with respect to analytical modeling, a continuous time markov

approach has been used to model the system. The reason for using continuous time

markov process was that the system being modeled had current set of events depending

 2

on their corresponding immediate previous set of events, and not on the events beyond

that. So this makes us realize that the system is memoryless, hence continuous time

markov process modeling approach is used. Further, the two models have been compared

to observe the error space distribution to gain useful insights about the gap between the

two models. The distribution of error space, and the factors influencing the process are

discussed as well.

 3

CHAPTER 2

LITERATURE REVIEW

The objective of the literature review is to understand the researches with respect to sea

port terminals. Thus far, the research for the terminal operations can be classified into two

categories, assessment of the productivity of the terminal operations, and optimization of

the terminal operations. And the latter classification could be further classified into two-

Quay Crane Scheduling Problem and a Quay Crane Assignment problem.

To the best of my knowledge, there are numerous studies deploying discrete event

simulation modeling for the analysis of sea port terminals. Discrete event simulation

concerns the modeling of a system as it evolves over time by a representation in which the

state variables change instantaneously at separate points in time which are classified as

events[34]. [15] considers double trolley quay cranes and supertainer quay cranes for their

analysis and have generalized the picking times as normally distributed with a specific

mean and standard distribution and developed a statistical model out of that. [18]

discusses advanced quay cranes that include multi lift spreaders, double trolley Q/C’s,

double sided operating systems. [3] modeled the seaport terminal at Gioia Tauro in

Southern Italy using discrete event simulation. This research considered the discharge

process of vessel considering the straddle carriers, cranes as some of the operational

components but the location of containers on vessels have not been considered explicitly.

Moreover, the operational set up was entirely different from our case where we consider

platform(s) as additional component(s). Numerous other studies have simulated a specific

sea port terminal considering the various factors associated with it but to my utmost

knowledge, model of double crane with platform(s) where one crane serving the vessel and

the other serving the yard has not been analyzed so far. [32] discusses the development

of a queuing model for the seaport terminal, and considers the ships’ arrival and the

 4

servicing of the ships as M/M/1 queuing system. [10] minimizes the processing time of the

vessel using asymmetric travelling salesman problem and Johnson’s algorithm. [12]

developed a queueing model to analyze the congestion of the system. Queuing models were

used by [13] as well but the objective of this study was to assess the impacts of tug services

on harbor congestion. [8] captures the system through continuous time markov process

and focusses on the performance of two quay crane operations. This research generalizes

the service and arrival rates which in reality would be a state dependent parameter. By

state dependent parameter, it is intended that the rates depend on the respective states of

the system which include the location of containers as well. [20] discusses a two phase

integrated approach that consists of optimizing the container processing, and the output

of the optimization algorithm which consists of the optimal schedule and other decision

variables would be the input for the simulation model. The objective of this study was to

optimize the container processing whereas in our case, the objective is to analyze the

container processing for various parameters. [5] discusses the throughput analysis of

passing dual yard cranes by a continuous time markov chain approach. One of the

assumptions made in evaluating the service times was that the picking of containers from

the stack buffer lanes would follow a uniform distribution. This assumption is not realistic

because, in reality while a picking strategy is used, the probability of picking containers

from certain buffer lanes would be close to zero.

Based on the literature review, it is understood that with respect to analysis of the sea port

terminals, much of the researches have been carried out considering a specific set of

terminal setups as majority of the researchers studied a particular sea port terminal and

have reported out their analysis. So, the analysis of the sea port terminals should not be

generalized as there are multiple terminals with different layout design. Also, researches

 5

considering crane systems with interoperational buffer capacity are few to the best of my

knowledge.

 6

CHAPTER 3

METHODOLOGY

This work looks into the efficient analysis of the productivity of an automated double crane

system with finite decoupling buffer capacity. The system constitutes of quay crane on the

vessel side and yard crane on the yard side, and platform of either size one or size two is

placed at the middle of these cranes which acts as temporary buffer. As a vessel arrives,

unloading and loading operations occur, and the process evolves over time until

completion. And the containers being processed are homogeneous which implies that they

could be twenty foot equivalent unit containers or forty foot equivalent unit containers.

Below is the overview of the approach taken to analyze the system.

Figure 1: Methodology overview

So, the approach consists of the development of the discrete event simulation model, and

to improve the efficiency further, an analytical model is developed. Further, the error

space of the analytical model is explored to identify its performance with respect to

simulation model.

Description of the system

This problem simulates the process of double crane operation which loads and unloads

containers off vessel. Below is the schematic representation of the process. In this type of

 7

operation, there are two cranes, one that processes the vessel, and the other that processes

the yard, and these cranes have crane spreaders that hold the containers, and these

spreaders traverse in three directions(x, y and z) for the pick and drop operation of the

containers. The platform which bisects the entire operation acts as a temporary buffer and

relays the entire operation.

1- Vessel, 2- Crane Spreader, 3- Platform, 4- Yard

Figure 2: Schematic representation of the processes

The objective of the simulation study is to assess the performance of this system for a

platform of size one and platform of size two separately. The performance measure of

this process is the makespan. Makespan is the time required to complete all jobs [25].

3.1 Discrete event simulation modeling

The simulation model simulates the above system with various level of values and user

inputs. These are the location of the containers and empty spaces on vessel and on yard,

time taken by the yard crane and quay crane to process, number of loading and number of

unloading jobs, loading and unloading strategy, and number of platform.

 8

3.1.1 Model logic

Event based approach

To give an intuitive understanding of the system, an event graph is constructed.

An event graph consists of nodes and directed arcs which depict how the events are

scheduled from other events and from themselves [34].

Appendix A contains the notation for event graph.

In the event graph, 𝑄𝐶𝑗and 𝑌𝐶𝑗 take values of either zero, one, or two which represent no

jobs, loading job, and unloading job respectively.

𝑄𝐶𝑝 and 𝑌𝐶𝑝 take values of either one or zero. Zero implies that the quay crane spreader is

at the vessel point, and yard crane spreader is at the yard point. A value of one implies

that the quay crane spreader or yard crane spreader is at the location of platform.

The event graph of the system is displayed below,

Figure 3: Event Graph of the simulation models

 9

To help you understand the event graph, occurrences of events E1 and E3 are explained

below, and rest of the events work based on similar logic.

Initializing event1 corresponds to the beginning of unloading process. Initially, before the

event begins the position of quay crane would be zero, and this could be inferred that the

quay crane spreader is located at the vessel point. This event would schedule the picking

of unloading job from the vessel (E3) on the condition that at least one platform is

available, and there is at least one unloading job on the vessel. Based on the satisfaction of

the above condition, the picking of unloading job from the vessel occurs after 𝜏𝑞𝑐𝑝 time

units.

As E3 begins to occur, number of platform gets decremented by one as one platform has

been reserved for this unloading operation, quay crane’s job status gets changed to two

which infers that quay crane has been occupied with an unloading job, and number of

unloading jobs on vessel is decremented by one as an unloading job is being picked by the

occurrence of E3.

For the occurrences of certain events, no time unit has been explicitly mentioned near the

arrows in the event graph which implies that the events occur instantly based on the

condition getting satisfied.

The event graph shows the way the events are triggered leading to the process evolution

in time. But the simulation has been performed using a process based approach, and let’s

get into the detail of this modeling by understanding each set of operation separately.

 10

Process based approach

Figure 4 represents the system from the perspective of a process based approach.

Figure 4: Process based approach flow diagram of the simulation models

The input node in Figure 4 initializes the simulation. Either of the process could begin,

and arbitrarily the unloading process is chosen to start with.

The possible set of tasks that are involved in the entire process are capture of the quay

crane with an unloading or loading container, capture of the yard crane with an unloading

or loading container, empty movements of quay crane, and empty movements of yard

crane. These tasks are performed depending on the conditions that are set in the decide1

node.

The decide1 node in Figure 4 comprises various conditions which check for the availability

of platforms, time taken by the quay crane to reach the vessel, time taken by the quay crane

to reach the platform, time taken by the yard crane to reach the yard, time taken by the

yard crane to reach the platform, number of unloading jobs to be performed, number of

loading jobs to be performed. Based on the conditions that are getting satisfied, the

decide1 node dictates the flow of the process, and one of the important things that it

 11

performs is the aid in avoiding deadlock situation. For instance, when only one platform

exists, and both the loading and unloading processes are equally likely to occur, there are

chances that both the processes could simultaneously occur resulting in making both the

cranes carry their respective containers and reach the platform, and that would be an

unfortunate incident as the platform could handle only one container. To prevent such

kind of events, the decide1 node would be very helpful.

The times the entire operation is concerned with are time to reach the start position of

quay crane, time to reach the end position of quay crane, time to reach the start position

of yard crane, and time to reach the end position of yard crane. The start position for the

quay crane and yard crane has been set to be the vessel side point and yard side point

respectively. The end position of the quay crane and yard crane are set to be the platform

side. Apart from these, the times to pick and drop containers are incorporated in the

modeling as well. As we are analyzing an automated crane system, the movement of the

crane times are deterministic, and the elements of variability are included in the location

of containers on vessel and on yard, and location of empty space on yard and on vessel.

Further, the simulation clock takes the most recent time and gets updated as the process

evolves.

Platform

The platform has two possible states, an available state and a busy state. Whenever the

platform is seized, it gets changed to busy state, and whenever it is released, the state

becomes available. The capacity of the platform is finite and can take smaller positive

integer values starting from one. But as part of our analysis, we have considered platform

of buffer sizes one and two only.

 12

Dynamic creation of empty spaces

The location of containers as well as the empty slots either on the yard or on the vessel are

defined by the user in the simulation model, so the location is not deterministic. And the

system is modeled in such a way that the generation of empty slots also evolves over time.

For instance, if a vessel contains non-empty slots with “to be” unloaded containers, then

as the unloading process happens, empty slots would be generated on the vessel. This

applies to the yard side as well.

Container’s pick-up and drop-off policy

The configuration of the containers on the vessel and on the yard are balanced. The

containers are stacked one over the other and are arranged along rows and bays. There are

four different strategies for picking and dropping the containers. Firstly, the containers

could be picked or dropped across the bay and then across the stack. Secondly, the

containers could be picked or dropped across the bay and then across the row. Thirdly, the

containers could be picked or dropped across the row and then across the stack. Finally,

the containers could be picked or dropped across the row and then across the bay. These

strategies are same for the vessel and yard.

Using the approach stated above, the simulation model has been programmed and run but

it turned out that the simulation modeling took more time to run leading to the

development of an alternative model.

3.2 Analytical Modeling

It is generally believed that complex processes are not analytically tractable. But by

considering the right set of assumptions, the development of analytical model is possible.

 13

And the reason to consider analytical modeling is because of the computational

inefficiency of the simulation model. So, this section discusses the analytical framework of

the system.

The system which includes the one with buffer of size one, and with buffer of size two are

modeled using continuous time markov process approach. This section discusses the

creation of state space for the two models, and the implication of the state space created

with respect to computational tractability is mentioned. Further, an aggregated state space

approach has been proposed culminating in the stochastic modeling of the system under

consideration.

3.2.1 Definition of the stochastic process

Before getting into the computation method, let’s define the stochastic process that we are

modeling.

The continuous time stochastic process {𝑋(𝑡), 𝑡 ≥ 0} that we are modeling is markovian as

it satisfies the property [27],

 𝑃(𝑋(𝑡𝑛) = 𝑠𝑛 | 𝑋(𝑡𝑛−1) = 𝑠𝑛−1, 𝑋(𝑡𝑛−2) = 𝑠𝑛−2, … , 𝑋(𝑡0) = 𝑠0) = 𝑃(𝑋(𝑡𝑛) = 𝑠𝑛 | 𝑋(𝑡𝑛−1) =

𝑠𝑛−1), where 𝑠𝑛, 𝑠𝑛−1, … , 𝑠0 are the states indexed by the order of occurrences n, and 𝑡𝑛 >

𝑡𝑛−1 > 𝑡𝑛−2 >,… > 𝑡0

3.2.2 State set definition

System with buffer of size one

The states of the system with a buffer of size one are represented in the fashion -

{(𝑁𝑢, 𝑁𝑙 , 𝑆𝑞 , 𝑆𝑏 , 𝑆𝑦), (𝑁𝑢 − 1,𝑁𝑙 , 𝑆𝑞 , 𝑆𝑏, 𝑆𝑦), (𝑁𝑢, 𝑁𝑙 − 1, 𝑆𝑞 , 𝑆𝑏 , 𝑆𝑦), … , (0,0,0,0,0)} where 𝑁𝑢,

𝑁𝑙 represent the number of containers to be unloaded and the number of containers to be

loaded respectively.

 14

 𝑆𝑞, 𝑆𝑏 , 𝑆𝑦 represent the state of the quay crane, state of the buffer, and state of the yard

crane respectively, and they could take values of {0,1,2} where 0 means that the system is

idle, 1 means that the system is occupied by a loading job, and 2 means that the system is

occupied by an unloading job.

As we know the possible set of values that each sub state takes, it may seem that the total

number of states are (𝑁𝑢 + 1) ∗ (𝑁𝑙 + 1) ∗ 3 ∗ 3 ∗ 3, but that’s not the case. For instance, a

state of {𝑁𝑢, 𝑁𝑙 , 2, 𝑆𝑏 , 1} is not possible as quay crane has an unloaded container on it and

yard crane has a loaded container on it, and this would result in a deadlock situation that

we had discussed earlier in Chapter 3.1.1.

Example

To make you understand the intuition of the stateset created, consider a statestet of {𝑁𝑢 −

3,𝑁𝑙 , 2,2,2}. The sub states of this set 𝑆𝑞 , 𝑆𝑏 , 𝑆𝑦 are filled by 2, and this means that quay

crane, buffer, and yard crane are processing unloading jobs. We are not certain about the

total number of unloading jobs that have been completed but we are certain that three

unloading jobs are already in process as indicated by the sub states 𝑆𝑞 , 𝑆𝑏 , 𝑆𝑦 , so the sub

state 𝑁𝑢 could only take values starting from 𝑁𝑢 − 3 and can go down till zero. If 𝑁𝑢 takes

a value of zero, it means that there are no unloading jobs on the vessel, but unloading jobs

are under process. With respect to 𝑁𝑙 , this stateset does not provide any information about

the loading jobs, so 𝑁𝑙 could take any values starting from 𝑁𝑙 and could go down till zero.

System with buffer of size two

Now let’s look into the system with buffer of size two. The states of this system are

represented in the fashion,

 15

 {(𝑁𝑢, 𝑁𝑙 , 𝑆𝑞 , 𝑆𝑏1, 𝑆𝑏2, 𝑆𝑦), (𝑁𝑢 − 1,𝑁𝑙 , 𝑆𝑞 , 𝑆𝑏1, 𝑆𝑏2, 𝑆𝑦), (𝑁𝑢, 𝑁𝑙 −

1, 𝑆𝑞 , 𝑆𝑏1, 𝑆𝑏2, 𝑆𝑦), . . , (0,0,0,0,0,0)} . The only change is that we have two buffers, and their

respective states are represented by 𝑆𝑏1 and 𝑆𝑏2, and just like the earlier case, each of these

sub states could take values of {0,1,2}

The possible set of states in this case are mentioned in Appendix C.

Now having created the state sets and based on the number of containers to be loaded and

unloaded, the required statespace of the system could be generated.

This is a terminating reducible markov process with absorbing states of (0,0,0,0,0) and

(0,0,0,0,0,0) for the case of buffer size of one and for the case of buffer of size two

respectively. The rest of the states are transient.

3.2.3 Creation of state dependent transition rate matrix

We need to compute the makespan of the process, and in terms of a markov process, we

need to compute the total duration of the process to get absorbed. The parameters in our

process are the times taken by the quay crane, yard crane, platform, pick and drop times

in the vessel, pick and drop times in the yard. So, the parameters for quay crane, yard

crane, and platform remain fixed throughout the process whereas the pick and drop times

alone vary. It would be intuitive to corroborate this with an example.

 16

Example

Figure 5: Illustration of container processing

From the Figure 5, we could see that the spreader would take less amount of time to pick

the topmost container and would take more amount of time to pick the bottommost

container. A pick operation involves both to and from movement of spreader, and same is

the case with drop operation. The vertical black arrow represents the times to pick

containers either from their respective vessel point or yard point. The horizontal black

arrow represents the transfer of containers from platform to vessel point, or from vessel

point to platform, and the time taken to perform these movements is same for the quay

crane for a given set of process. The same applies to yard side as well.

From the above example, the movement illustrated by the horizontal black arrow

comprises the fixed parameters, and the movement illustrated by the vertical black arrow

comprises the variable parameters. The idea of vertical arrow movement was for

illustration purpose but the pick and drop operation involves both horizontal and vertical

movements as well. Using this information, the transition rate matrix is defined. So, the

transition rate matrix consists of variable and fixed parameters. As illustrated by figure-5,

each of the containers have different variable parameters defined by their location on

vessel or on yard.

 17

In the state-set {𝑁𝑢, 𝑁𝑙 , 𝑆𝑞 , 𝑆𝑏 , 𝑆𝑦} of the system with buffer of size one, a change of state of

𝑆𝑏 occurs at a fixed transition rate as this rate is defined by the parameter of platform time

which is fixed. A change of state of 𝑁𝑢 occurs at a variable transition rate as the change of

this state implies that an unloading job has been picked from the vessel. As said earlier,

the picking times differ based on the location of containers, so the transition rate is

variable. Similarly, a change of state of 𝑁𝑙 occurs at a variable transition rate. In the case

of 𝑆𝑞 and 𝑆𝑦, their transition rates depend on the type of operation. If the state of 𝑆𝑞

represents an unloading job, the transition rate is fixed as it is the movement of container

to the platform. On the other hand, if the state of 𝑆𝑞 represents a loading job, the transition

rate comprises of fixed parameter which is the movement of container to the platform and

the variable parameter which is the movement of container to the empty location on vessel

for dropping the container. Same applies to the case of 𝑆𝑦. So, the transition rate matrix

comprises the rates that are fixed and variable. In other words, the transition rate matrix

is state dependent. This case is extended to the system of buffer size two.

3.2.4 Analytical model simplification

With the information of the states, the transition matrix has been computed. But the

implication of the state sets that we have created is that the statespace gets bigger and

bigger as the number of loading and unloading jobs increase. For instance, a total of

around 370 million states are created to process 5000 containers for the system with

buffer of size two. And the transition rate matrix’ size would be the square of 370 million.

Such a high number of states would require an intense computational procedure and time,

and the model would be inefficient.

This problem could be tackled by aggregating the statespace. The system consists of fixed

and variable parameters. If we look at the state-set, the change of states of 𝑆𝑞 , 𝑆𝑏 , 𝑆𝑦 occur

 18

at a fixed rate except for the dropping operation. So, it is not a bad idea to eliminate these

states and reduce our state-set to {(𝑁𝑢, 𝑁𝑙), (𝑁𝑢 − 1,𝑁𝑙), (𝑁𝑢, 𝑁𝑙 − 1), . . , (0,0)}. With this

aggregated statespace, the total number of states for processing 5000 containers is close

to 6.2 million and the transition rate is state dependent. But this number is still too high

to be efficient.

Another approach to solve this problem is to model the states in the fashion

{(𝑁𝑢), (𝑁𝑙), (𝑁𝑢 − 1), (𝑁𝑙 − 1), . . , (0 𝑢𝑛𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑗𝑜𝑏𝑠), (0 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑗𝑜𝑏𝑠), (𝑏𝑙),(𝑏𝑢)} where 𝑏𝑙

indicates that the buffer location is occupied by a loading job and 𝑏𝑢indicates that the

buffer location is occupied by an unloading job, and the rest of the states represent the

number of loading and unloading jobs to be processed. This is the case for system with

buffer size one. For system with buffer of size two, the states would be in the fashion,

{(𝑁𝑢), (𝑁𝑙), (𝑁𝑢 − 1), (𝑁𝑙 −

1), . . , (0 𝑢𝑛𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑗𝑜𝑏𝑠), (0 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑗𝑜𝑏𝑠), (𝑏1𝑙),(𝑏1𝑢), (𝑏2𝑙),(𝑏2𝑢)}. Here b1 and b2

represent the two buffer locations and rest of the state logic is the same as the system with

buffer of size one.

In this case, for a total of 5000 containers, the total number of states are 5006 for the

system with buffer of size two and 5004 for the system with buffer of size one. Although

the number of states is in thousands, this is a significant reduction. The transition

diagrams using the aggregated state space are given below,

Figure 6: Transition diagram of system with buffer of size one

 19

Figure 7: Transition diagram of system with buffer of size two

Building on this idea of state space, considering the fact that there are fixed and variable

parameters, further state space reduction could be done by averaging the variable

parameters. Therefore, the idea is to compute the average total dropping and picking times

and include the averaged value in measuring transition rate. The reason for averaging the

dropping and picking times is to convert the state dependent transition rate matrix into a

matrix consisting of fixed set of rates throughout.

Then we consider the states ,

{(1 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑗𝑜𝑏), (1 𝑢𝑛𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑗𝑜𝑏), (0 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑗𝑜𝑏 & 0 𝑢𝑛𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑗𝑜𝑏), (𝑏𝑙),(𝑏𝑢)} for the

system with buffer of size one and,

{(1 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑗𝑜𝑏), (1 𝑢𝑛𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑗𝑜𝑏), (0 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑗𝑜𝑏 /

 0 𝑢𝑛𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑗𝑜𝑏), (𝑏1𝑙),(𝑏1𝑢), (𝑏2𝑙),(𝑏2𝑢)} for the system with buffer of size two, and

compute the time to load and unload a container for each of the two models. By this

method, the number of states is reduced to 5 for the system with buffer of size one, and 7

for the system with buffer of size two. With the calculation of loading time and unloading

time for a single container, the processing times for the total number of containers could

be computed.

 20

Example

You might wonder the idea of using the above states for computing the loading and

unloading times, and to give an intuition to this, look into Table 1 , which consists of the

unloading and loading jobs as represented by (𝑁𝑢 , 𝑁𝑙). Starting from the cell with value

(3,3), a transition is made to the next immediate cell situated either to its right or to its

bottom. In this fashion the cell with value (0,0) is reached. The arrows represent the

possible set of transitions and the transitions have constant rates throughout for any

number of loading and unloading jobs. So, if we consider the cell with value (1,1), the

transition rate to (1,0) is the same as the transition rate to (0,1), and so is the case for any

other state transitions that you could possibly imagine.

Thus, by computing the time taken for reaching the next immediate cell, the total time to

process the entire set of jobs could be determined. This idea is mathematically easier to

compute but significant amount of information is lost by averaging the variable

parameters which in our case were the dropping and picking times. But fortunately, the

simulation models that have been developed earlier would help us know the information

that have been lost through error space. And I defer further discussion on this to next

chapter.

Table 1: State space for 3 loading and 3 unloading containers

 21

3.2.5 Modeling the process:

To give a mathematical idea for the aggregated state space models with one loading and

one unloading job, let’s consider,

𝜆𝑞 =
1

(2 ∗ 𝑞𝑢𝑎𝑦𝑐𝑟𝑎𝑛𝑒 𝑡𝑖𝑚𝑒) + 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑖𝑐𝑘𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑜𝑛𝑒 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑓𝑟𝑜𝑚 𝑣𝑒𝑠𝑠𝑒𝑙

𝜆𝑦 =
1

(2 ∗ 𝑦𝑎𝑟𝑑𝑐𝑟𝑎𝑛𝑒 𝑡𝑖𝑚𝑒) + 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑖𝑐𝑘𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑜𝑛𝑒 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑓𝑟𝑜𝑚 𝑦𝑎𝑟𝑑

𝜇𝑞 =
1

(2 ∗ 𝑞𝑢𝑎𝑦𝑐𝑟𝑎𝑛𝑒 𝑡𝑖𝑚𝑒) + 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑟𝑜𝑝𝑝𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑜𝑛𝑒 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑜𝑛 𝑣𝑒𝑠𝑠𝑒𝑙

𝜇𝑦 =
1

(2 ∗ 𝑦𝑎𝑟𝑑𝑐𝑟𝑎𝑛𝑒 𝑡𝑖𝑚𝑒) + 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑟𝑜𝑝𝑝𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑜𝑛𝑒 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑜𝑛 𝑦𝑎𝑟𝑑

Where,

𝑞𝑢𝑎𝑦𝑐𝑟𝑎𝑛𝑒_𝑡𝑖𝑚𝑒 is the time taken by quay crane to move from platform to vessel or from

vessel to platform and does not take the pickup and drop times into account.

𝑦𝑎𝑟𝑑𝑐𝑟𝑎𝑛𝑒_𝑡𝑖𝑚𝑒 is the time taken by quay crane to move from platform to yard or from

yard to platform and does not take the pickup and drop times into account.

𝑞𝑢𝑎𝑦𝑐𝑟𝑎𝑛𝑒_𝑡𝑖𝑚𝑒 and 𝑦𝑎𝑟𝑑𝑐𝑟𝑎𝑛𝑒_𝑡𝑖𝑚𝑒 are constant throughout the entire set of operations.

The notations for the states of the system with buffer of size one are,

1- 1 𝑢𝑛𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑗𝑜𝑏

2- 1 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑗𝑜𝑏

3- 𝑏𝑙

4- 𝑏𝑢

5- Absorption state (0 loading job/0 unloading job)

Similarly, the notations for the states of system with buffer of size two are,

1- 1 𝑢𝑛𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑗𝑜𝑏

2- 1 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑗𝑜𝑏

 22

3- 𝑏𝑙1

4- 𝑏𝑙2

5- 𝑏𝑢1

6- 𝑏𝑢2

7- Absorption state (0 loading job/0 unloading job)

For the system with buffer of size one, the aggregated transition rate matrix would be,

 States 1 2 3 4 5

Λ𝑏𝑢𝑓𝑓𝑒𝑟1=

1
2
3
4
5 [

−𝜆𝑞 0 0 𝜆𝑞 0

0 −𝜆𝑦 𝜆𝑦 0 0

0 0 −𝜇𝑞 0 𝜇𝑞

0 0 0 −𝜇𝑦 𝜇𝑦

0 0 0 0 0]

The mean time to get absorbed into the state 5 could be solved by the following linear

equations [27],

0= 𝑎1,5 + 𝜆1,1𝑎1,5𝑚1,5 + 𝜆1,2𝑎2,5𝑚2,5 + 𝜆1,3𝑎3,5𝑚3,5 + 𝜆1,4𝑎4,5𝑚4,5

0= 𝑎2,5 + 𝜆2,1𝑎1,5𝑚1,5 + 𝜆2,2𝑎2,5𝑚2,5 + 𝜆2,3𝑎3,5𝑚3,5 + 𝜆2,4𝑎4,5𝑚4,5

0= 𝑎3,5 + 𝜆3,1𝑎1,5𝑚1,5 + 𝜆3,2𝑎2,5𝑚2,5 + 𝜆3,3𝑎3,5𝑚3,5 + 𝜆3,4𝑎4,5𝑚4,5

0= 𝑎4,5 + 𝜆4,1𝑎1,5𝑚1,5 + 𝜆4,2𝑎2,5𝑚2,5 + 𝜆4,3𝑎3,5𝑚3,5 + 𝜆4,4𝑎4,5𝑚4,5

𝑎𝑖,𝑗 is the absorption probability from transient state i to absorbing state j

𝜆𝑖,𝑗 is the rate of reaching state i from state j

𝑚𝑖,𝑗 is the mean time to reach absorbing state j from transient state i

Further substituting the rates would lead into,

0= 1 − 𝜆𝑞𝑚1,5 + 𝜆𝑞𝑚4,5

0= 1 − 𝜆𝑦𝑚2,5 + 𝜆𝑦𝑚3,5

 23

0= 1 − 𝜇𝑞𝑚3,5

0= 1 − 𝜇𝑦𝑚45

For the system with buffer size of size two, the aggregated transition rate matrix would

be,

States 1 2 3 4 5 6 7

Λ𝑏𝑢𝑓𝑓𝑒𝑟2 =

1
2
3
4
5
6
7 [

−2𝜆𝑞 0 0 0 𝜆𝑞 𝜆𝑞 0

0 −2𝜆𝑦 𝜆𝑦 𝜆𝑦 0 0 0

0 0 −𝜇𝑞 0 0 0 𝜇𝑞

0 0 0 −𝜇𝑞 0 0 𝜇𝑞

0 0 0 0 −𝜇𝑦 0 𝜇𝑦

0 0 0 0 0 −𝜇𝑦 𝜇𝑦

0 0 0 0 0 0 0]

Similarly, the mean time to get absorbed could be calculated as,

0= 𝑎1,7 + 𝜆1,1𝑎1,7𝑚1,7 + 𝜆1,2𝑎2,7𝑚2,7 + 𝜆1,3𝑎3,7𝑚3,7 + 𝜆1,4𝑎4,7𝑚4,7 + 𝜆1,5𝑎5,7𝑚5,7 +

𝜆1,6𝑎6,7𝑚6,7

0= 𝑎2,7 + 𝜆2,1𝑎1,7𝑚1,7 + 𝜆2,2𝑎2,7𝑚2,7 + 𝜆2,3𝑎3,7𝑚3,7 + 𝜆2,4𝑎4,7𝑚4,7 + 𝜆2,5𝑎5,7𝑚5,7 +

𝜆2,6𝑎6,7𝑚6,7

0= 𝑎3,7 + 𝜆3,1𝑎1,7𝑚1,7 + 𝜆3,2𝑎2,7𝑚2,7 + 𝜆3,3𝑎3,7𝑚3,7 + 𝜆3,4𝑎4,7𝑚4,7 + 𝜆3,5𝑎5,7𝑚5,7 +

𝜆3,6𝑎6,7𝑚6,7

0= 𝑎4,7 + 𝜆4,1𝑎1,7𝑚1,7 + 𝜆4,2𝑎2,7𝑚2,7 + 𝜆4,3𝑎3,7𝑚3,7 + 𝜆4,4𝑎4,7𝑚4,7 + 𝜆4,5𝑎5,7𝑚5,7 +

𝜆4,6𝑎6,7𝑚6,7

0= 𝑎5,7 + 𝜆5,1𝑎1,7𝑚1,7 + 𝜆5,2𝑎2,7𝑚2,7 + 𝜆5,3𝑎3,7𝑚3,7 + 𝜆5,4𝑎4,7𝑚4,7 + 𝜆5,5𝑎5,7𝑚5,7 +

𝜆5,6𝑎6,7𝑚6,7

0= 𝑎6,7 + 𝜆6,1𝑎1,7𝑚1,7 + 𝜆6,2𝑎2,7𝑚2,7 + 𝜆6,3𝑎3,7𝑚3,7 + 𝜆6,4𝑎4,7𝑚4,7 + 𝜆6,5𝑎5,7𝑚5,7 +

𝜆6,6𝑎6,7𝑚6,7

𝑎𝑖,𝑗 is the absorption probability from transient state i to absorbing state j

 24

𝜆𝑖,𝑗 is the rate of reaching state i from state j

𝑚𝑖,𝑗 is the mean time to reach absorbing state j from transient state i

Substituting the rate values into these equations would yield,

0= 1 − 2𝜆𝑞𝑚1,7 + 𝜆𝑞𝑚5,7 + 𝜆𝑞𝑚6,7

0= 1 − 2𝜆𝑦𝑚2,7 + 𝜆𝑦𝑚3,7 + 𝜆𝑦𝑚4,7

0= 1 − 𝜇𝑞𝑚3,7

0= 1 − 𝜇𝑞𝑚4,7

0= 1 − 𝜇𝑦𝑚5,7

0= 1 − 𝜇𝑦𝑚6,7

From the above set of equations,

𝑚1,5- Mean time to unload a job in the system with buffer of size one

𝑚2,5- Mean time to load a job in the system with buffer of size one

𝑚1,7- Mean time to unload a job in the system with buffer of size two

𝑚2,7- Mean time to load a job in the system with buffer of size two

The average time to load or unload a job is,

𝜏 =
𝑚1,5+𝑚2,5

2
, for system with buffer size one

𝜏 =
𝑚1,7+𝑚2,7

2
, for system with buffer size two

Thus, the total processing time would be,

𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 = 𝜏 ∗ (𝑁𝑢 + 𝑁𝑙)

This method of aggregating the statespace with one loading and one unloading job has

improved the computational efficiency.

 25

CHAPTER 4

EMPIRICAL ANALYSIS

4.1 Experimental settings

The experiments have been carried out for the simulation and analytical model for the

system with platform of size one and for the system with platform of size two in Python

using PyCharm environment. The objective of the experiments was to identify the

parameters that contribute significantly to the makespan and analyze the behavior of error

space thereby gaining insights on the performance of the analytical models with

aggregated statespace. As described earlier, makespan is the time required to complete all

jobs [25]. The parameters of interest in this study are the number of unloading jobs,

number of loading jobs, the quay crane time, yard crane time, the location of containers

on vessel, and the location of containers on yard. The experiments were conducted using

the following factor levels,

S.No Parameters Parameter levels Description

1 Number of unloading jobs 2500, 6000

2 Number of loading jobs 2500, 6000

3 Quay Crane Time[time units] 150, 300

4 Yard Crane Time[time units] 150, 300

5
Location of containers on

vessel[Nominal factor]
1, 2

1 represents 10 containers

across the bays and 10

containers across the stacks

2 represents 10 containers

across the rows and 10

containers across the stacks

6
Location of containers on

yard[Nominal factor]
1, 2

Table 2: Configuration details of the experiments

 26

A total of 64 runs were performed for each set of experiments under a constant strategy of

picking and dropping containers represented by 1 for simulation model and 0 for analytical

model in the program.

The experimental details for each of the models are mentioned in Appendix D and E.

4.2 Statistical Analysis

The results constitute the makespan from the simulation models and the error space due

to the differences in simulation and analytical models. The analysis which was done in

JMP software shows the distribution of the makespan and error space across different

parameter settings, and the graphs depict the behavior of the makespan and error space

in different parameter regions. Based on the behavior exhibited by the results, inferences

are drawn reflecting the parameter regions taken into consideration.

4.2.1 Simulation model analysis

 27

Figure 8(a)

Figure 8(b)

Figure 8(c)

Figure 8: Makespan distribution of simulation model of platform of size one system

 28

Figure 8(a) shows that as the total number of containers which constitute the number of

loading jobs and number of unloading jobs increase, the makespan increases and

whenever they decrease, the makespan decreases. And for a particular set of parameter

settings, the figure shows darker and lighter regions which indicate that the distribution

of makespan is bimodal. The darker regions are the ones in which more number of

makespan observations fall into compared to that of the lighter regions. This behavior can

be attributed to the contribution of other parameter values which affect the makespan

values. So, when at a particular parameter level of number of unloading jobs and number

of loading jobs, the other parameters of our experiments vary.

Table 3: Parameter levels of yard crane time and quay crane time

Table 3 indicates the different parameter levels of yard crane time and quay crane time

that vary at a particular parameter level of number of loading jobs and number of

unloading jobs. As the weaker link sets the pace of the process, either of the cranes sets

the pace of the process depending on their times. From table 3, whenever quay crane time

and yard crane time are equal resulting from both of them taking values of either 150 time

units or 300 time units, both the cranes equally set the pace of the operations. But in the

case of unequal times which result in the quay crane time being 150 time units and yard

S.No Parameter levels of yard crane

time and quay crane time

1 150,150

2 150,300

3 300,150

4 300,300

 29

crane time being 300 units, or quay crane time being 300 time units and yard crane time

being 150 time units, the weaker link sets the pace. We can see from table 3 that there are

three set of parameters settings in which atleast one of the time is 300 time units. These

three parameter settings have contributed to the darker region, and only one parameter

setting has contributed to the lighter region. Hence, the distribution of the makespan in

Figure 8(a) has resulted in bimodalities across the different parameter settings of the

number of loading jobs and number of unloading jobs resulting in darker and lighter

regions.

 Figure 8(b) shows that as either of the yard crane time or quay crane time takes 300 time

units, the makespan increases, or else it decreases. An observation into the figure 8(b)

reveals that the distribution is trimodal. A deeper exploration into the makespan values

for a particular set of yard crane time and quay crane time reveals that the number of

loading and number of unloading jobs influence the makespan values.

Table 4: Parameter levels of number of loading jobs and number of unloading jobs

Table 4 indicates the total number of containers which vary at a particular parameter level

of yard crane time and quay crane time. From table 4, one of the parameter settings of the

S.No Parameter levels of

number of loading jobs and

number of unloading jobs

Total Number of

containers to be

processed

1 2500,2500 5000

2 2500,6000 8500

3 6000,2500 8500

4 6000,6000 12000

 30

number of loading and number of unloading jobs has a total of 5000 containers, two other

parameter settings of the number of loading and number of unloading jobs have a total of

8500 containers, and the remaining one parameter setting of number of loading jobs and

number of unloading jobs has a total of 12000 containers. As more number of containers

take a higher makespan compared to less number of containers, the distribution in figure

8(b) has resulted in a trimodal one, where the darker regions are because of the

contribution of the two parameter settings resulting in a total of 8500 containers, and the

lighter ones are due to the parameter settings that result in a total of either 5000

containers or 12000 containers. Also, in figure 8(b), as the quay crane time and yard crane

time each take 150 time units, the distribution is not a trimodal but a unimodal with a

higher variability, and the reason for this variability is due to the number of containers

that we have discussed.

Figure 8(c) shows the spread of the makespan at a particular parameter setting of location

of containers on vessel and on yard which indicate the contribution of the other

parameters that we have discussed earlier. Apart from this, figure 8(c) does not give any

meaningful insights, hence the parameters of location of containers on vessel and on yard

were not considered in our earlier inferences of figure 8(a) and figure 8(b).

 31

Figure 9(a)

Figure 9(b)

 32

Figure 9(c)

Figure 9: Makespan distribution of simulation model of platform of size two system

Figure 9(a) shows that the distribution of the makespan of the simulation model with

platform of size two is multi modal as well. The distribution has resulted in darker and

lighter regions, and this is again attributed to the yard crane time and quay crane time

which gets varied throughout resulting in this kind of distribution. But as the number of

unloading jobs and number of loading jobs take 2500 each, the distribution is unimodal

whereas the variability is high. The higher variability is due to the yard crane time and

quay crane time which gets varied throughout resulting in higher makespan values when

atleast either of the crane time is 300 units, and resulting in lower makespan values for

rest of the parameter levels.

Figure 9(b) shows the distribution of makespan of the simulation model with platform of

size two which is multi modal as well. In the earlier case, for simulation model with

platform of size one, the distribution was tri modal owing to different set of total number

 33

of containers. But in this case, the distribution is bi modal. On a closer look into the figure

9(b) reveals that the variability around the higher mode value is higher than the variability

around the lower mode value, and this higher variability is attributed to the different set

of total number of containers, which in our case are 5000, 8500, and 12000 containers.

So, the lower mode value occurs when the total number of containers are equal to 5000,

and from table 4, there is only one parameter setting resulting in a total number of

containers of 5000, thereby leading to a lighter region with a comparatively lesser

variability. On the other hand, the higher variability is due to the rest of the parameter

settings of table 4 which takes into account the total number of containers of 8500 and

12000. So, for total number of containers of 12000, the lower region of makespan values

overlap with the higher region of makespan values for total number of containers of 8500.

This overlap has resulted in a higher variability region rather than getting distributed

around two different modes distinctly. The reason for this overlap can be attributed to the

location of containers on vessel and on yard. When the parameter level of location of

containers on vessel and on yard is 1, the makespan increases and decreases when the

parameter level of containers on vessel and on yard is 2. So, this variability in the

makespan for different parameter levels of containers on vessel and on yard could have

resulted in the higher variability of darker region. And adding to this, the makespan in this

system is lower than that of the system with buffer of size one, and this is due to the

contribution of increased platform size.

Figure 9(c) shows the distribution of the makespan across different levels of the number

of containers on vessel and on yard, and the spread signifies the variability of the

makespan for different levels of other parameter settings that we have considered.

 34

4.2.2 Error space analysis

Figure 10(a)

Figure 10(b)

 35

Figure 10(c)

Figure 10: Distribution of error space of system with platform of size one

Figure 10(a) shows the error space for the system with buffer of size one across different

levels of number of unloading jobs and number of loading jobs. The distribution is

bimodal in this case, and we could see that the distribution is even around the two set of

mode values. This reflects that the analytical model does produce results in consistent with

the simulation model for all the parameter levels.

Figure 10(b) reveals an interesting observation which makes us realize that whenever the

factor levels of yard crane time and quay crane time were both 150 time units or 300 time

units, the analytical model overestimated the makespan of its corresponding simulation

model, and whenever one of the crane’s time is 150 time units and the other crane’s time

is 300 units, the analytical model underestimated the makespan of its corresponding

simulation model.

 36

Figure 10(c) is similar to the earlier distribution of the simulation model, and the

variability is throughout, reflecting the error space for different regions of yard crane time

and quay crane time, and for different regions of number of loading jobs and number of

unloading jobs.

The type of distributions from figure 10(a) and figure 10(b) could be attributed to the way

the analytical modeling works. If you recollect the discussion in previous chapter, the

analytical model has been aggregated to a single loading job and a single unloading job.

The makespan is the average completion time of both the jobs for the two different starting

states multiplied by the total number of containers to be processed. And these starting

states are the commencement of the process by picking a loading job first or the

commencement of the process by picking an unloading job first. Whenever both the crane

times are either 150 time units or 300 time units, the completion times to process single

loading job and single unloading job irrespective of the starting states are same for equal

number of actual loading and unloading jobs to be processed, and different for different

number of actual loading and unloading jobs to be processed. The actual loading and

unloading jobs in our case are 2500 and 6000, which are the parameter levels. Whenever

one of the crane’s time is 150 time units and the other crane’s time is 300 units, the

completion time to process single loading job and single unloading job from one starting

state is different from the other, and the possible causes to this could be the aggregated

state space where the number of states have been reduced to 5, or to the exponential

distribution of service times which the continuous time markov process uses.

 37

Figure 11(a)

Figure 11(b)

 38

Figure 11(c)

Figure 11: Distribution of error space of system with platform of size two

Figure 11(a) shows the distribution of the error space of the system with platform of size

two across different parameter levels of number of loading jobs and number of unloading

jobs. The distribution is multimodal for two set of parameter level regions, bimodal for

one parameter region and unimodal for other parameter level region. With respect to

multimodality, one region is comparatively darker than the other reflecting the earlier

inference that we had drawn for the simulation model related to the contribution of the

yard crane time and quay crane time. Also, the behavior of the analytical model influences

the error space which we will discuss shortly.

Figure 11(b) shows the distribution of the error space of the system with platform of size

across different parameter levels of yard crane time and quay crane time. And this

distribution is trimodal in two parameter level regions, and bimodal with high variability

in the other parameter level regions. With respect to trimodality, the same explanation

 39

that we gave for simulation model considering the total number of containers is applicable

here too. An additional consideration is the behavior of the analytical model which

influences the distribution of error space. And for bimodality, the overlapping explanation

of makespan given earlier for the simulation model is applicable apart from the

consideration of the influence of analytical model.

In the case of system with platform of size two, the analytical model underestimated the

makespan of its corresponding simulation model for all factor levels. This is evident from

the region of error which is greater than zero for all factor levels. The reasons for such kind

of behavior could be attributed to the aggregated state space where the number of states

have been reduced to 7, or to the distribution of the service times which are exponential.

Remarks

• As the makespan depends on the crane time that takes higher amount of time, a

reduction in this time would lead to a reduction in the makespan. And with respect

to the location of containers on yard and on vessel, significant inferences could not

be drawn based on the factor levels taken into consideration.

• The error space comprises random error component and model error component.

The model error component is evident from the underestimation and

overestimation of the results of the simulation model by the analytical model. For

the case of the system with buffer of size one, whenever the factor levels of yard

crane time and quay crane time were both 150 time units or 300 time units, the

analytical model overestimated the makespan of its corresponding simulation

model, and whenever one of the crane’s time is 150 time units and the other crane’s

time is 300 units, the analytical model underestimated the makespan of its

corresponding simulation model. On the other hand, for the system with buffer of

 40

size two, the analytical model underestimated the makespan of its corresponding

simulation model for all factor levels, and the reasons for the analytical model to

exhibit such behavior could be attributed to the aggregated state space method or

to the exponential distribution of service times which the markov process uses.

• With respect to error space prediction, as the simulation model is computationally

slower than the analytical model, the error space is necessary for us to predict the

makespan of the simulation model using the analytical model. And the way the

distribution has turned out for different factor levels of the simulation and

analytical models, it is important to consider the same set of factor levels for the

both the models to predict an error space that would be more accurate rather than

a generalized error space. Hence, predicting the error space distinctly for separate

parameters would bridge the gap between the simulation model and the analytical

model.

 41

CHAPTER 5

CONCLUSION

This research gave deeper insights to the problem that we had considered. Based on the

results, we could identify the importance of the number of containers and speed of the

cranes in determining the makespan. This signifies the importance of these parameters

which cannot be overlooked as the direction of change of these parameters impact the

makespan. Also, the makespan depends on the crane that is slower, and in this regard, any

improvement to be done on the cranes with respect to their speed has to be on both of

them in such a way that they operate at the same levels of speed, otherwise the

improvement will not yield any significant benefits with respect to makespan.

With respect to the model, the analytical model is inaccurate compared to the simulation

model but computationally faster. For the system with buffer of size one, as the factor

levels of yard crane time and quay crane time are both 150 time units or 300 time units,

the analytical model overestimates the makespan of its corresponding simulation model,

and as one of the crane’s time is 150 time units and the other crane’s time is 300 units, the

analytical model underestimates the makespan of its corresponding simulation model. On

the other hand, for the system with buffer of size two, the analytical model underestimates

the makespan of its corresponding simulation model for all factor levels, and the reasons

for the analytical model to exhibit such behavior could be attributed to the aggregated state

space method or to the exponential distribution of service times which the markov process

uses. On the other hand, the simulation model is highly accurate but computationally

inefficient. Owing to these attributes, the simulation could be used as a surrogate model

to aid in the prediction of error space. And this error space coupled with the analytical

model could yield results that are faster and accurate.

 42

Going forward, the research can be explored into two phases. One is the estimation of the

error space distribution of the simulation and analytical models for all parameter levels

distinctly. The parameter levels to be considered should be a multiple combination of

containers to be processed, crane times, and the platform sizes. So, given a certain set of

input parameters, this error space distribution would aid in the prediction of the accurate

makespan coupled with the results of the analytical models. The second phase is the

identification of optimal parameters through simulation optimization methods. Based on

the prediction of error space for the parameter levels, the parameter region that yields

lower makespan for certain fixed levels of parameters can be obtained, and this can be

coupled into the simulation optimization methods to identify the optimal running of the

system which should involve additional parameters like pick policy, drop policy as well

into the modeling.

 43

REFERENCES

[1]

F. Contu, A. Di Febrraro, and N. Sacco, “A model for performance evaluation and

sensitivity analysis of seaport container terminals,” in Proceedings of the 18th World

Congress, Milano, Italy.

[2]

A. Krishnamurthy, R. Suri, and M. Vernon, “A New Approach for Analyzing Queuing

Models of Material Control Strategies in Manufacturing Systems.”

[3]

P. Canonaco, P. Legato, R. M. Mazza, and R. Musmanno, “A queuing network model for

the management of berth crane operations.”

[4]

W. Young Yun and Y. Seok Choi, “A simulation model for container-terminal operation

analysis using an object-oriented approach.”

[5]

S. Saini, D. Roy, and R. de Koster, “A stochastic model for the throughput analysis of

passing dual yard cranes.”

[6]

K. Ronald Studer, “A study of ship size and turnaround time in the port of vancouver,”

The University of British Columbia, Vancouver, Canada.

[7]

C. Bierwirth and F. Meisel, “A survey of berth allocation and quay crane scheduling

problems in container terminals.”

[8]

D. Roy, V. Dhingra, and R. de Koster, “A Two-level Stochastic Model to Estimate

Vessel Throughput Time.”

[9]

S.-K. Kang, H. Jung, I. H. Im, K.-Y. Chung, and J.-H. Lee, “Active Discrete Event

Simulation using Probability Distribution of Shipbuilding Process.”

[10]

A. S and T. K, “An Analysis on the Modeling of Container Terminal Operations.”

[11]

G. Assadipour, G. Y. Ke, and M. Verma, “An analytical framework for integrated

maritime terminal scheduling problems with time windows.”

[12]

N. Saeed and O. I. Larsen, “Application of queuing methodology to analyze congestion:

A case study of the Manila International Container Terminal, Philippines.”

[13]

S. M. Easa, “APPROXIMATE QUEUEING MODELS FOR ANALYZING HARBOR

TERMINAL OPERATIONS.”

[14]

N. Hacegaba, “Bold solutions: how seaports can conquer congestion.”

 44

[15]

M.-H. Phan-Thi, K. Ryu, and K. Hwan Kim, “Comparing Cycle Times of Advanced

Quay Cranes in Container Terminals,” vol. Industrial Engineering & Management

Systems Vol 12, No 4, December 2013, pp.359–367.

[16]

I. Borovits and P. Ein-Dor, “COMPUTER SIMULATION OF A SEAPORT

CONTAINER TERMINAL.”

[17]

D. C. Montgomery, Design and analysis of experiments. John Wiley & Sons, Inc.

[18]

S.-L. Chao and Y.-J. Lin, “Evaluating advanced quay cranes in container terminals.”

[19]

A. M. Law and Averill M. Law & Associates, Inc., “HOW TO BUILD VALID AND

CREDIBLE SIMULATION MODELS,” in Proceedings of the 2009 Winter Simulation

Conference M. D. Rossetti, R. R. Hill, B. Johansson, A. Dunkin and R. G. Ingalls, eds.

[20]

Q. Zeng and Z. Yang, “Integrating simulation and optimization to schedule loading

operations in container terminals.”

[21]

D. C. Montgomery, E. A. Peck, and G. G. Vining, Introduction to Linear Regression

Analysis. Hoboken: John Wiley & SonsIncorporated, 2012. Accessed May 3, 2018.

ProQuest Ebook Central.

[22]

S. Ross, Introduction to Probability models, Eleventh. Elsevier.

[23]

S. Du, R. Xu, D. Huang, and X. Yao, “Markov modeling and analysis of multi-stage

manufacturing systems with remote quality information feedback.”

[24]

V. Bhaskar and P. Lallement, “Modeling a supply chain using a network of queues.”

[25]

R. G. Askin and C. R. Standdridge, Modeling and analysis of manufacturing systems.

John Wiley & Sons, Inc.

[26]

R. Mohamed, “Modeling and Optimization of Decision-Making Process During Loading

and Unloading Operations at Container Port,” Springerlink.com.

[27]

J. J. Solberg, Modeling random processes for engineers and managers. John Wiley &

Sons, Inc.

[28]

Q. Zeng, Z. Yang, and L. Lai, “Models and algorithms for multi-crane oriented

scheduling method in container terminals.”

[29]

S. Kang, J. C. Medina, and Y. Ouyang, “Optimal operations of transportation fleet for

unloading activities at container ports.”

 45

[30]

K. Wu, L. F. McGinnis, and B. Zwart, “QUEUEING MODELS FOR SINGLE

MACHINE MANUFACTURING SYSTEMS WITH INTERRUPTIONS,” presented at

the Proceedings of the 2008 Winter Simulation Conference.

[31]

M. Manitz, “Queueing-model based analysis of assembly lines with finite buffers and

general service times.”

[32]

M. Hess, S. Kos, and S. Hess, “QUEUING SYSTEM IN OPTIMIZATION FUNCTION

OF THE PORT’S BULK UNLOADING TERMINAL.”

[33]

“Review of Maritime Transport, 2017,” presented at the United Nations Conference on

Trade and Development.

[34]

A. M. Law, Simulation modeling and analysis, Fourth. McGrawHill.

 46

APPENDIX A

EVENT GRAPH NOTATION DETAILS

 47

S.no Description Notation
1 Event of quay crane to begin moving from vessel point to pick

an unloading job (Initializing event1)
𝐸1

2 Event of yard crane to begin moving from yard point to pick a
loading job (Initializing event2)

𝐸2

3 Event of quay crane to pick an unloading job from vessel after
reaching the location of that unloading job

𝐸3

4 Event of yard crane to pick a loading job from yard after
reaching the location of that loading job

𝐸4

5 Event of quay crane to reach the vessel point from platform 𝐸5
6 Event of quay crane to reach the vessel point after dropping a

loading job on vessel
𝐸6

7 Event of quay crane to reach the platform from vessel point 𝐸7
8 Event of yard crane to reach the yard point from platform 𝐸8
9 Event of yard crane to reach the yard point after dropping an

unloading job on yard
𝐸9

10 Event of yard crane to reach the platform from yard point 𝐸10
11 Event to drop an unloading job on platform by quay crane 𝐸11
12 Event to drop a loading job on platform by yard crane 𝐸12
13 Event to pick an unloading job from platform by yard crane 𝐸13
14 Event to pick a loading job from platform by quay crane 𝐸14
15 State of quay crane with respect to the job being processed 𝑄𝐶𝑗

16 State of yard crane with respect to the job being processed 𝑌𝐶𝑗

17 State of quay crane with respect to its position 𝑄𝐶𝑝

18 State of yard crane with respect to its position 𝑌𝐶𝑝

19 The number of unloading jobs on vessel 𝑁𝑢𝑣
20 The number of loading jobs on yard 𝑁𝑙𝑦

21 The number of platforms that are available 𝑝
22 The number of loading jobs on platform 𝑁𝑢𝑝

23 The number of unloading jobs on platform 𝑁𝑙𝑝

24 Time taken by quay crane to move from vessel point to
platform, or from platform to vessel point

𝜏𝑞𝑐

25 Time taken by yard crane to move from yard point to platform,
or from platform to yard point

𝜏𝑦𝑐

26 Time taken by quay crane to move from vessel point to
unloading job’s location for picking, or from unloading job’s
location to vessel point

𝜏𝑞𝑐𝑝

27 Time taken by quay crane to move from yard point to loading
job’s location for picking, or from loading job’s location to yard
point

𝜏𝑦𝑐𝑝

28 Time taken by quay crane to move from vessel point to
loading job’s location for dropping, or from loading job’s
location to vessel point

𝜏𝑞𝑐𝑑

29 Time taken by quay crane to move from yard point to
unloading job’s location for dropping, or from unloading
job’s location to yard point

𝜏𝑦𝑐𝑑

30 Total number of platforms 𝑇

 48

APPENDIX B

STATESET OF SYSTEM WITH BUFFER OF SIZE ONE

 49

Stateset
Number

𝑵𝒖 𝑵𝒍 𝑺𝒒 𝑺𝒃 𝑺𝒚

1 𝑁𝑢 , 𝑁𝑢 − 1 , . . , 0 𝑁𝑙 , 𝑁𝑙 − 1, . . , 0 0 0 0
2 𝑁𝑢 , 𝑁𝑢 − 1 , . . , 0 𝑁𝑙 − 1 , 𝑁𝑙 − 2 , . . , 0 0 0 1

3 𝑁𝑢 , 𝑁𝑢 − 1 , . . , 0 𝑁𝑙 − 1 , 𝑁𝑙 − 2 , . . , 0 0 1 0

4 𝑁𝑢 , 𝑁𝑢 − 1 , . . , 0 𝑁𝑙 − 1 , 𝑁𝑙 − 2 , . . , 0 1 0 0
5 𝑁𝑢 , 𝑁𝑢 − 1 , . . , 0 𝑁𝑙 − 2 , 𝑁𝑙 − 3 , . . , 0 0 1 1

6 𝑁𝑢 , 𝑁𝑢 − 1 , . . , 0 𝑁𝑙 − 2 , 𝑁𝑙 − 3 , . . , 0 1 0 1
7 𝑁𝑢 , 𝑁𝑢 − 1 , . . , 0 𝑁𝑙 − 2 , 𝑁𝑙 − 3 , . . , 0 1 1 0

8 𝑁𝑢 , 𝑁𝑢 − 1 , . . , 0 𝑁𝑙 − 3 , 𝑁𝑙 − 4 , . . , 0 1 1 1

9 𝑁𝑢 − 1 , 𝑁𝑢 − 2 , . . , 0 𝑁𝑙 , 𝑁𝑙 − 1 , . . , 0 2 0 0
10 𝑁𝑢 − 1 , 𝑁𝑢 − 2 , . . , 0 𝑁𝑙 , 𝑁𝑙 − 1 , . . , 0 0 2 0

11 𝑁𝑢 − 1 , 𝑁𝑢 − 2 , . . , 0 𝑁𝑙 , 𝑁𝑙 − 1 , . . , 0 0 0 2

12 𝑁𝑢 − 2 , 𝑁𝑢 − 3 , . . , 0 𝑁𝑙 , 𝑁𝑙 − 1 , . . , 0 2 2 0
13 𝑁𝑢 − 2 , 𝑁𝑢 − 3 , . . , 0 𝑁𝑙 , 𝑁𝑙 − 1 , . . , 0 2 0 2

14 𝑁𝑢 − 2 , 𝑁𝑢 − 3 , . . , 0 𝑁𝑙 , 𝑁𝑙 − 1 , . . , 0 0 2 2

15 𝑁𝑢 − 3 , 𝑁𝑢 − 4 , . . , 0 𝑁𝑙 , 𝑁𝑙 − 1 , . . , 0 2 2 2

 50

APPENDIX C

STATESET OF SYSTEM WITH BUFFER SIZE TWO

 51

Stateset
Number

𝑵𝒖 𝑵𝒍 𝑺𝒒 𝑺𝒃𝟏 𝑺𝒃𝟐 𝑺𝒚

1 𝑁𝑢 , 𝑁𝑢 − 1 , . . , 0 𝑁𝑙 , 𝑁𝑙 − 1, . . , 0 0 0 0 0

2 𝑁𝑢 , 𝑁𝑢 − 1 , . . , 0 𝑁𝑙 − 1 , 𝑁𝑙 − 2 , . . , 0 0 0 0 1
3 𝑁𝑢 − 1,𝑁𝑢 − 2 , . . , 0 𝑁𝑙 − 1 , 𝑁𝑙 − 2 , . . , 0 2 0 0 1

4 𝑁𝑢 − 1,𝑁𝑢 − 2 , . . , 0 𝑁𝑙 − 1 , 𝑁𝑙 − 2 , . . , 0 2 0 1 0

5 𝑁𝑢 − 1,𝑁𝑢 − 2 , . . , 0 𝑁𝑙 − 1 , 𝑁𝑙 − 2 , . . , 0 2 1 0 0
6 𝑁𝑢 − 1,𝑁𝑢 − 2 , . . , 0 𝑁𝑙 − 1 , 𝑁𝑙 − 2 , . . , 0 0 2 0 1

7 𝑁𝑢 − 1,𝑁𝑢 − 2 , . . , 0 𝑁𝑙 − 1 , 𝑁𝑙 − 2 , . . , 0 0 0 2 1
8 𝑁𝑢 − 1,𝑁𝑢 − 2 , . . , 0 𝑁𝑙 − 1 , 𝑁𝑙 − 2 , . . , 0 0 1 2 0

9 𝑁𝑢 − 1,𝑁𝑢 − 2 , . . , 0 𝑁𝑙 − 1 , 𝑁𝑙 − 2 , . . , 0 0 2 1 0

10 𝑁𝑢 − 1,𝑁𝑢 − 2 , . . , 0 𝑁𝑙 − 1 , 𝑁𝑙 − 2 , . . , 0 1 2 0 0
11 𝑁𝑢 − 1,𝑁𝑢 − 2 , . . , 0 𝑁𝑙 − 1 , 𝑁𝑙 − 2 , . . , 0 1 0 2 0

12 𝑁𝑢 − 1,𝑁𝑢 − 2 , . . , 0 𝑁𝑙 − 1 , 𝑁𝑙 − 2 , . . , 0 0 1 0 2

13 𝑁𝑢 − 1,𝑁𝑢 − 2 , . . , 0 𝑁𝑙 − 1 , 𝑁𝑙 − 2 , . . , 0 0 0 1 2
14 𝑁𝑢 − 1,𝑁𝑢 − 2 , . . , 0 𝑁𝑙 − 1 , 𝑁𝑙 − 2 , . . , 0 1 0 0 2

15 𝑁𝑢 − 1,𝑁𝑢 − 2 , . . , 0 𝑁𝑙 , 𝑁𝑙 − 1 , . . , 0 0 0 0 2

16 𝑁𝑢, 𝑁𝑢 − 2 , . . , 0 𝑁𝑙 − 1,𝑁𝑙 − 2 , . . , 0 1 0 0 0
17 𝑁𝑢, 𝑁𝑢 − 2 , . . , 0 𝑁𝑙 − 1,𝑁𝑙 − 2 , . . , 0 0 1 0 0

18 𝑁𝑢, 𝑁𝑢 − 2 , . . , 0 𝑁𝑙 − 1,𝑁𝑙 − 2 , . . , 0 0 0 1 0
19 𝑁𝑢, 𝑁𝑢 − 2 , . . , 0 𝑁𝑙 − 1,𝑁𝑙 − 2 , . . , 0 0 0 0 1

20 𝑁𝑢 − 1,𝑁𝑢 − 2 , . . , 0 𝑁𝑙 , 𝑁𝑙 − 1 , . . , 0 2 0 0 0

21 𝑁𝑢 − 1,𝑁𝑢 − 2 , . . , 0 𝑁𝑙 , 𝑁𝑙 − 1 , . . , 0 0 2 0 0
22 𝑁𝑢 − 1,𝑁𝑢 − 2 , . . , 0 𝑁𝑙 , 𝑁𝑙 − 1 , . . , 0 0 0 2 0

23 𝑁𝑢 − 2,𝑁𝑢 − 3 , . . , 0 𝑁𝑙 − 1,𝑁𝑙 , . . , 0 2 2 0 1

24 𝑁𝑢 − 2,𝑁𝑢 − 3 , . . , 0 𝑁𝑙 − 1,𝑁𝑙 , . . , 0 2 0 2 1
25 𝑁𝑢, 𝑁𝑢 − 1 , . . , 0 𝑁𝑙 − 2,𝑁𝑙 − 3 , . . , 0 0 0 1 1

26 𝑁𝑢, 𝑁𝑢 − 1 , . . , 0 𝑁𝑙 − 2,𝑁𝑙 − 3 , . . , 0 0 1 0 1
27 𝑁𝑢, 𝑁𝑢 − 1 , . . , 0 𝑁𝑙 − 2,𝑁𝑙 − 3 , . . , 0 0 1 1 0

28 𝑁𝑢, 𝑁𝑢 − 1 , . . , 0 𝑁𝑙 − 2,𝑁𝑙 − 3 , . . , 0 1 0 1 0

29 𝑁𝑢, 𝑁𝑢 − 1 , . . , 0 𝑁𝑙 − 2,𝑁𝑙 − 3 , . . , 0 1 1 0 0
30 𝑁𝑢, 𝑁𝑢 − 1 , . . , 0 𝑁𝑙 − 3,𝑁𝑙 − 4 , . . , 0 1 1 0 1

31 𝑁𝑢, 𝑁𝑢 − 1 , . . , 0 𝑁𝑙 − 3,𝑁𝑙 − 4 , . . , 0 1 1 1 0

32 𝑁𝑢 − 2,𝑁𝑢 − 3 , . . , 0 𝑁𝑙 , 𝑁𝑙 − 1 , . . , 0 2 0 2 0
33 𝑁𝑢 − 2,𝑁𝑢 − 3 , . . , 0 𝑁𝑙 , 𝑁𝑙 − 1 , . . , 0 0 2 2 0

34 𝑁𝑢 − 2,𝑁𝑢 − 3 , . . , 0 𝑁𝑙 , 𝑁𝑙 − 1 , . . , 0 0 2 0 2

35 𝑁𝑢 − 2,𝑁𝑢 − 3 , . . , 0 𝑁𝑙 , 𝑁𝑙 − 1 , . . , 0 0 0 2 2
36 𝑁𝑢 − 3,𝑁𝑢 − 3 , . . , 0 𝑁𝑙 , 𝑁𝑙 − 1 , . . , 0 2 0 2 2

37 𝑁𝑢 − 3,𝑁𝑢 − 3 , . . , 0 𝑁𝑙 , 𝑁𝑙 − 1 , . . , 0 0 2 2 2
38 𝑁𝑢 − 3,𝑁𝑢 − 3 , . . , 0 𝑁𝑙 , 𝑁𝑙 − 1 , . . , 0 2 2 0 2

39 𝑁𝑢, 𝑁𝑢 − 1 , . . , 0 𝑁𝑙 − 2,𝑁𝑙 − 3 , . . , 0 1 0 0 1

40 𝑁𝑢 − 2,𝑁𝑢 − 1 , . . , 0 𝑁𝑙 , 𝑁𝑙 − 1 , . . , 0 2 0 0 2
41 𝑁𝑢, 𝑁𝑢 − 1 , . . , 0 𝑁𝑙 − 3,𝑁𝑙 − 4 , . . , 0 1 0 1 1

42 𝑁𝑢 − 2,𝑁𝑢 − 3 , . . , 0 𝑁𝑙 − 1,𝑁𝑙 − 2 , . . , 0 2 1 0 2

43 𝑁𝑢 − 2,𝑁𝑢 − 3 , . . , 0 𝑁𝑙 − 1,𝑁𝑙 − 2 , . . , 0 2 0 1 2
44 𝑁𝑢 − 1,𝑁𝑢 − 2 , . . , 0 𝑁𝑙 − 2,𝑁𝑙 − 3 , . . , 0 1 2 0 1

45 𝑁𝑢 − 1,𝑁𝑢 − 2 , . . , 0 𝑁𝑙 − 2,𝑁𝑙 − 3 , . . , 0 1 0 2 1

 52

Stateset
Number

𝑵𝒖 𝑵𝒍 𝑺𝒒 𝑺𝒃𝟏 𝑺𝒃𝟐 𝑺𝒚

46 𝑁𝑢 − 1,𝑁𝑢 − 2 , . . , 0 𝑁𝑙 − 2,𝑁𝑙 − 3 , . . , 0 2 1 0 1
47 𝑁𝑢 − 1,𝑁𝑢 − 2 , . . , 0 𝑁𝑙 − 2,𝑁𝑙 − 3 , . . , 0 2 0 1 1

48 𝑁𝑢 − 1,𝑁𝑢 − 2 , . . , 0 𝑁𝑙 − 2,𝑁𝑙 − 3 , . . , 0 1 1 0 2

49 𝑁𝑢 − 1,𝑁𝑢 − 2 , . . , 0 𝑁𝑙 − 2,𝑁𝑙 − 3 , . . , 0 1 0 1 2
50 𝑁𝑢 − 2,𝑁𝑢 − 1 , . . , 0 𝑁𝑙 − 1,𝑁𝑙 − 2 , . . , 0 1 2 0 2

51 𝑁𝑢 − 2,𝑁𝑢 − 1 , . . , 0 𝑁𝑙 − 1,𝑁𝑙 − 2 , . . , 0 1 0 2 2
52 𝑁𝑢 − 1,𝑁𝑢 − 2 , . . , 0 𝑁𝑙 − 2,𝑁𝑙 − 3 , . . , 0 0 1 1 2

53 𝑁𝑢 − 2,𝑁𝑢 − 1 , . . , 0 𝑁𝑙 − 1,𝑁𝑙 − 2 , . . , 0 1 2 2 0

54 𝑁𝑢 − 2,𝑁𝑢 − 1 , . . , 0 𝑁𝑙 − 1,𝑁𝑙 − 2 , . . , 0 0 2 1 2
55 𝑁𝑢 − 2,𝑁𝑢 − 1 , . . , 0 𝑁𝑙 − 1,𝑁𝑙 − 2 , . . , 0 0 1 2 2

56 𝑁𝑢 − 1,𝑁𝑢 − 2 , . . , 0 𝑁𝑙 − 2,𝑁𝑙 − 3 , . . , 0 1 1 2 0

57 𝑁𝑢 − 1,𝑁𝑢 − 2 , . . , 0 𝑁𝑙 − 2,𝑁𝑙 − 3 , . . , 0 1 2 1 0

 53

APPENDIX D

EXPERIMENT DETAILS OF SYSTEM WITH BUFFER OF SIZE ONE

 54

Total runs

Number
of

unloading
jobs

Number
of

loading
jobs

Yard
Crane
time
[time
units]

Quay
Crane
time
[time
units]

Location
of

containers
on Vessel
[nominal

factor]

Location
of

containers
on Yard

[nominal
factor]

Simulation
result
[time
units]

Analytical
result
[time
units]

Error
[time
units]

1 2500 2500 150 150 1 1 1865088 2100034.2 -234946.2

2 2500 2500 150 150 1 2 1791484 2100038.7 -308554.7

3 2500 2500 150 150 2 1 1865088 2100038.7 -234950.7

4 2500 2500 150 150 2 2 1790088 2100043.1 -309955.1

5 2500 2500 150 300 1 1 3364938 2850034.2 514903.8

6 2500 2500 150 300 1 2 3364938 2850038.7 514899.3

7 2500 2500 150 300 2 1 3289938 2850038.7 439899.3

8 2500 2500 150 300 2 2 3289938 2850043.1 439894.9

9 2500 2500 300 150 1 1 3364940 2850034.2 514905.8

10 2500 2500 300 150 1 2 3289940 2850038.7 439901.3

11 2500 2500 300 150 2 1 3364940 2850038.7 514901.3

12 2500 2500 300 150 2 2 3289940 2850043.1 439896.9

13 2500 2500 300 300 1 1 3365088 3600034.2 -234946.2

14 2500 2500 300 300 1 2 3290956 3600038.7 -309082.7

15 2500 2500 300 300 2 1 3365088 3600038.7 -234950.7

16 2500 2500 300 300 2 2 3290088 3600043.1 -309955.1

17 2500 6000 150 150 1 1 3475088 4016300.9 -541212.9

18 2500 6000 150 150 1 2 3295802 4016298.4 -720496.4

19 2500 6000 150 150 2 1 3370088 4016304.9 -646216.9

20 2500 6000 150 150 2 2 3191178 4016302.4 -825124.4

21 2500 6000 150 300 1 1 5954938 5291300.9 663637.1

22 2500 6000 150 300 1 2 5954898 5291298.4 663599.6

23 2500 6000 150 300 2 1 5774938 5291304.9 483633.1

24 2500 6000 150 300 2 2 5774898 5291302.4 483595.6

25 2500 6000 300 150 1 1 6017990 5291300.9 726689.1

26 2500 6000 300 150 1 2 5835990 5291298.4 544691.6

27 2500 6000 300 150 2 1 6017960 5291304.9 726655.1

28 2500 6000 300 150 2 2 5835960 5291302.4 544657.6

29 2500 6000 300 300 1 1 6025088 6566300.9 -541212.9

30 2500 6000 300 300 1 2 5845502 6566298.4 -720796.4

31 2500 6000 300 300 2 1 5920088 6566304.9 -646216.9

32 2500 6000 300 300 2 2 5740728 6566302.4 -825574.4

33 6000 2500 150 150 1 1 3405412 4016288.6 -610876.6

34 6000 2500 150 150 1 2 3253808 4016293.7 -762485.7

35 6000 2500 150 150 2 1 3486870 4016293.9 -529423.9

36 6000 2500 150 150 2 2 3362422 4016299 -653877

37 6000 2500 150 300 1 1 6017990 5291288.6 726701.4

38 6000 2500 150 300 1 2 6017960 5291293.7 726666.3

 55

Total runs

Number
of

unloading
jobs

Number
of

loading
jobs

Yard
Crane
time
[time
units]

Quay
Crane
time
[time
units]

Location
of

containers
on Vessel
[nominal

factor]

Location
of

containers
on Yard

[nominal
factor]

Simulation
result
[time
units]

Analytical
result
[time
units]

Error
[time
units]

39 6000 2500 150 300 2 1 5835990 5291293.9 544696.1

40 6000 2500 150 300 2 2 5835960 5291299 544661

41 6000 2500 300 150 1 1 5954940 5291288.6 663651.4

42 6000 2500 300 150 1 2 5774940 5291293.7 483646.3

43 6000 2500 300 150 2 1 5954900 5291293.9 663606.1

44 6000 2500 300 150 2 2 5774900 5291299 483601

45 6000 2500 300 300 1 1 5955238 6566288.6 -611050.6

46 6000 2500 300 300 1 2 5803106 6566293.7 -763187.7

47 6000 2500 300 300 2 1 6036008 6566293.9 -530285.9

48 6000 2500 300 300 2 2 5910922 6566299 -655377

49 6000 6000 150 150 1 1 5316088 6300042 -983954

50 6000 6000 150 150 1 2 4769274 6300053.2 -1530779.2

51 6000 6000 150 150 2 1 5316088 6300053.2 -983965.2

52 6000 6000 150 150 2 2 4716088 6300064.5 -1583976.5

53 6000 6000 150 300 1 1 8916008 8100042 815966

54 6000 6000 150 300 1 2 8916008 8100053.2 815954.8

55 6000 6000 150 300 2 1 8316008 8100053.2 215954.8

56 6000 6000 150 300 2 2 8316008 8100064.5 215943.5

57 6000 6000 300 150 1 1 8916010 8100042 815968

58 6000 6000 300 150 1 2 8316010 8100053.2 215956.8

59 6000 6000 300 150 2 1 8916010 8100053.2 815956.8

60 6000 6000 300 150 2 2 8316010 8100064.5 215945.5

61 6000 6000 300 300 1 1 8916088 9900042 -983954

62 6000 6000 300 300 1 2 8368224 9900053.2 -1531829.2

63 6000 6000 300 300 2 1 8916088 9900053.2 -983965.2

64 6000 6000 300 300 2 2 8316088 9900064.5 -1583976.5

 56

APPENDIX E

EXPERIMENT DETAILS OF SYSTEM WITH BUFFER OF SIZE TWO

 57

Total runs

Number
of

unloading
jobs

Number
of

loading
jobs

Yard
Crane
time
[time
units]

Quay
Crane
time
[time
units]

Location
of

containers
on Vessel
[nominal

factor]

Location
of

containers
on Yard

[nominal
factor]

Simulation
result
[time
units]

Analytical
result
[time
units]

Error
[time
units]

1 2500 2500 150 150 1 1 989838 870077.59 119760.41

2 2500 2500 150 150 1 2 1020678 870077.59 150600.41

3 2500 2500 150 150 2 1 1020678 870088.84 150589.16

4 2500 2500 150 150 2 2 989568 870088.84 119479.16

5 2500 2500 150 300 1 1 1739838 1245077.6 494760.4

6 2500 2500 150 300 1 2 1739838 1245077.6 494760.4

7 2500 2500 150 300 2 1 1739568 1245088.8 494479.2

8 2500 2500 150 300 2 2 1739568 1245088.8 494479.2

9 2500 2500 300 150 1 1 1739838 1245077.6 494760.4

10 2500 2500 300 150 1 2 1739568 1245077.6 494490.4

11 2500 2500 300 150 2 1 1739838 1245088.8 494749.2

12 2500 2500 300 150 2 2 1739568 1245088.8 494479.2

13 2500 2500 300 300 1 1 1739838 1620077.6 119760.4

14 2500 2500 300 300 1 2 1770678 1620077.6 150600.4

15 2500 2500 300 300 2 1 1770678 1620088.8 150589.2

16 2500 2500 300 300 2 2 1739568 1620088.8 119479.2

17 2500 6000 150 150 1 1 2425950 1553498.2 872451.8

18 2500 6000 150 150 1 2 2582832 1553466.2 1029365.8

19 2500 6000 150 150 2 1 2354856 1553509.5 801346.5

20 2500 6000 150 150 2 2 2480712 1553477.5 927234.5

21 2500 6000 150 300 1 1 4225146 2190998.2 2034147.8

22 2500 6000 150 300 1 2 4225062 2190966.2 2034095.8

23 2500 6000 150 300 2 1 4120146 2191009.5 1929136.5

24 2500 6000 150 300 2 2 4120062 2190977.5 1929084.5

25 2500 6000 300 150 1 1 4218458 2190998.2 2027459.8

26 2500 6000 300 150 1 2 4285918 2190966.2 2094951.8

27 2500 6000 300 150 2 1 4218428 2191009.5 2027418.5

28 2500 6000 300 150 2 2 4285888 2190977.5 2094910.5

29 2500 6000 300 300 1 1 4226098 2828498.2 1397599.8

30 2500 6000 300 300 1 2 4382982 2828466.2 1554515.8

31 2500 6000 300 300 2 1 4155988 2828509.5 1327478.5

32 2500 6000 300 300 2 2 4280862 2828477.5 1452384.5

33 6000 2500 150 150 1 1 2425918 1553450.8 872467.2

34 6000 2500 150 150 1 2 2354596 1553464 801132

35 6000 2500 150 150 2 1 2582832 1553470.1 1029361.9

36 6000 2500 150 150 2 2 2480712 1553483.4 927228.6

37 6000 2500 150 300 1 1 4218458 2190950.8 2027507.2

38 6000 2500 150 300 1 2 4218428 2190964 2027464

 58

Total runs

Number
of

unloading
jobs

Number
of

loading
jobs

Yard
Crane
time
[time
units]

Quay
Crane
time
[time
units]

Location
of

containers
on Vessel
[nominal

factor]

Location
of

containers
on Yard

[nominal
factor]

Simulation
result
[time
units]

Analytical
result
[time
units]

Error
[time
units]

39 6000 2500 150 300 2 1 4285918 2190970.1 2094947.9

40 6000 2500 150 300 2 2 4285888 2190983.4 2094904.6

41 6000 2500 300 150 1 1 4225146 2190950.8 2034195.2

42 6000 2500 300 150 1 2 4120146 2190964 1929182

43 6000 2500 300 150 2 1 4225062 2190970.1 2034091.9

44 6000 2500 300 150 2 2 4120062 2190983.4 1929078.6

45 6000 2500 300 300 1 1 4226098 2828450.8 1397647.2

46 6000 2500 300 300 1 2 4155988 2828464 1327524

47 6000 2500 300 300 2 1 4382982 2828470.1 1554511.9

48 6000 2500 300 300 2 2 4280862 2828483.4 1452378.6

49 6000 6000 150 150 1 1 2795838 2298101.8 497736.2

50 6000 6000 150 150 1 2 2998938 2298101.8 700836.2

51 6000 6000 150 150 2 1 2998938 2298130.5 700807.5

52 6000 6000 150 150 2 2 2794938 2298130.5 496807.5

53 6000 6000 150 300 1 1 4595838 3198101.8 1397736.2

54 6000 6000 150 300 1 2 4595838 3198101.8 1397736.2

55 6000 6000 150 300 2 1 4594938 3198130.5 1396807.5

56 6000 6000 150 300 2 2 4594938 3198130.5 1396807.5

57 6000 6000 300 150 1 1 4595838 3198101.8 1397736.2

58 6000 6000 300 150 1 2 4594938 3198101.8 1396836.2

59 6000 6000 300 150 2 1 4595838 3198130.5 1397707.5

60 6000 6000 300 150 2 2 4594938 3198130.5 1396807.5

61 6000 6000 300 300 1 1 4595838 4098101.8 497736.2

62 6000 6000 300 300 1 2 4798938 4098101.8 700836.2

63 6000 6000 300 300 2 1 4798938 4098130.5 700807.5

64 6000 6000 300 300 2 2 4594938 4098130.5 496807.5

 59

APPENDIX F

DISCRETE EVENT SIMULATION MODEL CODE

 60

import numpy as np

total_platform=input("Enter the number of platforms")

unload_containers=input("Enter the number of containers to be unloaded")

load_containers=input("Enter the number of containers to be loaded")

vesselloadjob_schedule_strategy=input("Enter loading job strategy at vessel

side")

yardloadjob_schedule_strategy=input("Enter loading job strategy at yard side")

vesselunloadjob_schedule_strategy=input("Enter unloading job strategy at vessel

side")

yardunloadjob_schedule_strategy=input("Enter unloading job strategy at yard

side")

length_vessel=input("enter the number of containers in vessel across length")

width_vessel=input("enter the number of containers in vessel across width")

height_vessel=input("enter the number of containers in vessel that could be

stacked including the bottom one")

length_yard=input("enter the number of containers in yard across length")

width_yard=input("enter the number of containers in yard across width")

height_yard=input("enter the number of containers in yard that could be stacked

including the bottom one")

vessel_load=np.zeros((length_vessel,width_vessel))

truck_load=np.zeros((length_yard,width_yard))

vessel_empty=np.zeros((2*length_vessel,width_vessel))

truck_empty=np.zeros((2*length_yard,width_yard))

for lengt in range(0,length_vessel):

 for widtt in range(0,width_vessel):

 vessel_load[lengt,widtt]=height_vessel

for lengt in range(0, length_yard):

 for widtt in range(0, width_yard):

 truck_load[lengt,widtt]=height_yard

for leng in range(0,length_vessel):

 for widt in range(0, width_vessel):

 vessel_empty[leng,widt]=2*height_vessel

for leng in range(0, length_yard):

 for widt in range(0, width_yard):

 truck_empty[leng,widt]=2*height_yard

#Variables in the process

previous_operation=1#If the previous iteration was an unloading process, this

value will take 1, if it was a loading process, it will take 2. for

initializing we set to 2

truck_unloadtime=1#Time it takes for yard crane in an unloading process to

place container on yard from platform. This value is kept for initialization

purpose

vessel_emptytime=150#Time it takes for quay crane to perform an empty-container

movement

truck_emptytime=150#Time it takes for yard crane to perform an empty-container

movement

vessel_loadtime=1#Time it takes for quay crane in a loading process to place

container on vessel from platform.This value is kept for initialization purpose

vessel_unloadtime=1#Time it takes for quay crane in an unloading process to

place container on platform from vessel.This value is kept for initialization

purpose

truck_loadtime=1#Time it takes for yard crane in a loading process to place

container on platform from vessel.This value is kept for initialization purpose

#total_containers is the total number of containers to be loaded & unloaded

platform_time=0#The minimum amount of time a container would wait on platform

 61

is 20.

i=0# i and j are the indexes for location of containers on vessel to be

unloaded

j=0

k=25# k and j are indexes for empty location on vessel where containers would

be placed during loading operation

l=0

a=0# a and b are the indexes for location of containers on yard to be loaded

b=0

c=25# c and d are the indexes for empty location on yard where containers would

be placed during unloading operation

d=0

unload_time=0#Time taken for a container to get unloaded(includes the movement

time on cranes and waiting time on platform)

load_time=0#Time taken for a container to get loaded(includes the movement time

on cranes and waiting time on platform)

plat=[]

no_platform=total_platform#Total number of platforms that are available or

unoccupied

process_indicator=1#1 for unloading, 2 for loading

unload_count=0

load_count=0

time_to_reach_startposition_yardcrane=0

time_to_reach_startposition_quaycrane=0

time_to_reach_endposition_quaycrane=0

time_to_reach_endposition_yardcrane=0

time_quaycrane=0

time_yardcrane=0

unload_waiting=0

load_waiting=0

position_yardcrane=0

position_quaycrane=0

platform_handling_time_forcrane=0

container_handling_time_forcrane=0

alignment_time=0

time_emptyquaycrane=150

time_emptyyardcrane=150

position_yardcranedummy=2

position_quaycranedummy=2

time_to_reach_endposition_yardcrane_dummy=0

time_to_reach_endposition_quaycrane_dummy=0

time_to_reach_startposition_quaycrane_dummy=0

time_to_reach_startposition_yardcrane_dummy=0

dummy_123=0

simclock=0

iteration_range=(unload_containers+load_containers)*20

count_truck1=0

count_truck2=0

count_vessel1=0

count_vessel2=0

for process in range(0,iteration_range):

 print "position of yard crane",position_yardcrane

 print "position of quay crane",position_quaycrane

 print process

 def unload_quaycrane():

 global vessel_unloadtime,vessel_load,i,j,

 62

truck_unloadtime,c,d,platform_time,unload_time,process_indicator,unloading_coun

t,previous_operation,position_quaycrane

 global

time_quaycrane,time_yardcrane,no_platform,unload_waiting,time_to_reach_endposit

ion_quaycrane,time,

platform_handling_time_forcrane,alignment_time,time_to_reach_endposition_quaycr

ane_dummy#process_indicator=1

 global

time_emptyquaycrane,container_handling_time_forcrane,count_vessel1#previous_ope

ration=1

 count_vessel1=count_vessel1+1

 dummy1=1

 if vesselunloadjob_schedule_strategy==1:#vertical and across j

 for i in range(0,length_vessel):

 for j in range(0,width_vessel):

 for k in range(0,height_vessel):

 if vessel_load[i,j]>0:

 vessel_unloadtime = (2 * (i + 1)) + (2 * (j + 1)) +

(2 * vessel_load[i, j]) + time_emptyquaycrane

 vessel_load[i,j]=vessel_load[i,j]-1

 dummy1=2

 break

 if dummy1==2:

 if vessel_load[i,j]==0:

 vessel_empty[i, j] = vessel_load[i, j]

 else:

 pass

 break

 if dummy1 == 2:

 break

 elif vesselunloadjob_schedule_strategy==2:#horizontal and across j

 for i in range(0,length_vessel):

 for k in range(0,height_vessel):

 for j in range(0,width_vessel):

 if vessel_load[i,j]>0:

 vessel_unloadtime = (2 * (i + 1)) + (2 * (j + 1)) +

(2 * vessel_load[i, j]) + time_emptyquaycrane

 vessel_load[i,j]=vessel_load[i,j]-1

 dummy1=2

 break

 if dummy1==2:

 if vessel_load[i,j]==0:

 vessel_empty[i, j] = vessel_load[i, j]

 else:

 pass

 break

 if dummy1 == 2:

 break

 elif vesselunloadjob_schedule_strategy==3:#vertical across i

 for j in range(0, width_vessel):

 for i in range(0, length_vessel):

 for k in range(0,height_vessel):

 if vessel_load[i, j] > 0:

 vessel_unloadtime = (2 * (i + 1)) + (2 * (j + 1)) +

(2 * vessel_load[i, j]) + time_emptyquaycrane

 vessel_load[i, j] = vessel_load[i, j] - 1

 dummy1 = 2

 break

 63

 if dummy1 == 2:

 if vessel_load[i, j] == 0:

 vessel_empty[i, j] = vessel_load[i, j]

 else:

 pass

 break

 if dummy1 == 2:

 break

 elif vesselunloadjob_schedule_strategy==4:#horizontal across i

 for j in range(0,width_vessel):

 for k in range(0,height_vessel):

 for i in range(0,length_vessel):

 if vessel_load[i,j]>0:

 vessel_unloadtime = (2 * (i + 1)) + (2 * (j + 1)) +

(2 * vessel_load[i, j]) + time_emptyquaycrane

 vessel_load[i,j]=vessel_load[i,j]-1

 dummy1=2

 break

 if dummy1==2:

 if vessel_load[i,j]==0:

 vessel_empty[i, j] = vessel_load[i, j]

 else:

 pass

 break

 if dummy1 == 2:

 break

 position_quaycrane=1

time_quaycrane=vessel_unloadtime+time_quaycrane+platform_handling_time_forcrane

+alignment_time+container_handling_time_forcrane

 no_platform=no_platform-1

 unload_waiting=unload_waiting+1

 time_to_reach_endposition_quaycrane=time_quaycrane

 time_to_reach_endposition_quaycrane_dummy=time_quaycrane

 time=timing_routine()

 def unload_yardcrane():

 global vessel_unloadtime, vessel_load, i, j, truck_unloadtime, c, d,

platform_time, unload_time, process_indicator, unloading_count,

previous_operation,unload_count,position_yardcrane,unload_waiting

 global time_quaycrane,

time_yardcrane,no_platform,time_to_reach_startposition_yardcrane,time,platform_

handling_time_forcrane,alignment_time

 global

time_emptyyardcrane,container_handling_time_forcrane,count_truck1

 dummy=1

 if yardunloadjob_schedule_strategy==1:#vertical and across d

 for c in range(0,2*length_yard):

 for d in range(0,width_yard):

 for e in range(0,height_yard):

 if truck_empty[c, d] < height_yard:

 truck_unloadtime = (2 * (c + 1)) + (2 * (d + 1)) +

(2 * (truck_empty[c, d]+1)) + time_emptyyardcrane

 truck_empty[c, d] = truck_empty[c, d] + 1

 dummy=2

 break

 64

 if dummy==2:

 break

 if dummy == 2:

 break

 elif yardunloadjob_schedule_strategy==2:#Horizontal and across d

 for c in range(0,2*length_yard):

 for e in range(0,height_yard):

 for d in range(0,width_yard):

 if truck_empty[c, d] < height_yard:

 truck_unloadtime = (2 * (c + 1)) + (2 * (d + 1)) +

(2 * (truck_empty[c, d]+1)) + time_emptyyardcrane

 truck_empty[c, d] = truck_empty[c, d] + 1

 dummy=2

 break

 if dummy==2:

 break

 if dummy == 2:

 break

 elif yardunloadjob_schedule_strategy==3:#Vertical and across c

 for d in range(0,width_yard):

 for c in range(0,2*length_yard):

 for e in range(0,height_yard):

 if truck_empty[c, d] < height_yard:

 truck_unloadtime = (2 * (c + 1)) + (2 * (d + 1)) +

(2 * (truck_empty[c, d]+1)) + time_emptyyardcrane

 truck_empty[c, d] = truck_empty[c, d] + 1

 dummy=2

 break

 if dummy==2:

 break

 if dummy == 2:

 break

 elif yardunloadjob_schedule_strategy==4:#Horizontal and across c

 for d in range(0,width_yard):

 for e in range(0,height_yard):

 for c in range(0,2*length_yard):

 if truck_empty[c, d] < height_yard:

 truck_unloadtime = (2 * (c + 1)) + (2 * (d + 1)) +

(2 * (truck_empty[c, d]+1)) + time_emptyyardcrane

 truck_empty[c, d] = truck_empty[c, d] + 1

 dummy=2

 break

 if dummy==2:

 break

 if dummy == 2:

 break

 unload_count=unload_count+1

 position_yardcrane=0

 unload_waiting=unload_waiting-1

 no_platform=no_platform+1

 if time_to_reach_endposition_yardcrane<=

time_to_reach_endposition_quaycrane :

 platform_time = 0+platform_time

 time_yardcrane=time_to_reach_endposition_quaycrane

 else:

 65

 platform_time=time_to_reach_endposition_yardcrane-

time_to_reach_endposition_quaycrane+platform_time

 time_yardcrane=time_yardcrane +

truck_unloadtime+platform_handling_time_forcrane+alignment_time+container_handl

ing_time_forcrane

 time_to_reach_startposition_yardcrane=time_yardcrane

 timing_routine()

 def load_yardcrane():

 global vessel_loadtime,truck_load,a,b,

truck_loadtime,k,l,platform_time,load_time,process_indicator,loading_count,prev

ious_operation,position_yardcrane

 global time_quaycrane,

time_yardcrane,no_platform,load_waiting,time_to_reach_endposition_yardcrane,tim

e,platform_handling_time_forcrane,alignment_time,time_to_reach_endposition_yard

crane_dummy

 global

time_emptyyardcrane,container_handling_time_forcrane,count_truck2#process_indic

ator=2

 global dummy_123

 dummy2=1

 if yardloadjob_schedule_strategy==1:#Vertical and across b

 for a in range(0,length_yard):

 for b in range(0,width_yard):

 for c in range(0,height_yard):

 if truck_load[a,b]>0:

 truck_loadtime = (2 * (a + 1)) + (2 * (b + 1)) + (2

* truck_load[a, b]) + time_emptyyardcrane

 truck_load[a,b]=truck_load[a,b]-1

 dummy2=2

 break

 if dummy2==2:

 if truck_load[a,b]==0:

 truck_empty[a, b] = truck_load[a, b]

 else:

 pass

 break

 if dummy2 == 2:

 break

 elif yardloadjob_schedule_strategy == 2:#Horizontal and across b

 for a in range(0, length_yard):

 for c in range(0, height_yard):

 for b in range(0, width_yard):

 if truck_load[a, b] > 0:

 truck_loadtime = (2 * (a + 1)) + (2 * (b + 1)) + (2

* truck_load[a, b]) + time_emptyyardcrane

 truck_load[a, b] = truck_load[a, b] - 1

 dummy2 = 2

 break

 if dummy2 == 2:

 if truck_load[a, b] == 0:

 truck_empty[a, b] = truck_load[a, b]

 else:

 pass

 break

 66

 if dummy2 == 2:

 break

 elif yardloadjob_schedule_strategy == 3:#Vertical and across a

 for b in range(0, width_yard):

 for a in range(0, length_yard):

 for c in range(0, height_yard):

 if truck_load[a, b] > 0:

 truck_loadtime = (2 * (a + 1)) + (2 * (b + 1)) + (2

* truck_load[a, b]) + time_emptyyardcrane

 truck_load[a, b] = truck_load[a, b] - 1

 dummy2 = 2

 break

 if dummy2 == 2:

 if truck_load[a, b] == 0:

 truck_empty[a, b] = truck_load[a, b]

 else:

 pass

 break

 if dummy2 == 2:

 break

 elif yardloadjob_schedule_strategy == 4:#Horizontal and across a

 for b in range(0, width_yard):

 for c in range(0, height_yard):

 for a in range(0, length_yard):

 if truck_load[a, b] > 0:

 truck_loadtime = (2 * (a + 1)) + (2 * (b + 1)) + (2

* truck_load[a, b]) + time_emptyyardcrane

 truck_load[a, b] = truck_load[a, b] - 1

 dummy2 = 2

 break

 if dummy2 == 2:

 if truck_load[a, b] == 0:

 truck_empty[a, b] = truck_load[a, b]

 else:

 pass

 break

 if dummy2 == 2:

 break

 position_yardcrane=1

 time_yardcrane=time_yardcrane +

truck_loadtime+platform_handling_time_forcrane+alignment_time+container_handlin

g_time_forcrane

 no_platform=no_platform-1

 load_waiting=load_waiting+1

 time_to_reach_endposition_yardcrane=time_yardcrane

 time_to_reach_endposition_yardcrane_dummy=time_yardcrane

 dummy_123=dummy_123+truck_loadtime

 timing_routine()

 def load_quaycrane():

 global vessel_loadtime, truck_load, a, b, truck_loadtime, k, l,

platform_time, load_time, process_indicator, loading_count,

previous_operation,load_count,position_quaycrane,load_waiting

 global time_quaycrane,

time_yardcrane,no_platform,load_waiting,time_to_reach_startposition_quaycrane,t

ime,platform_handling_time_forcrane,alignment_time

 global

 67

time_emptyquaycrane,container_handling_time_forcrane,count_vessel2

 dummy3=1#Its used for this for block alone

 if vesselloadjob_schedule_strategy==1:#Vertical and across l

 for k in range(0,2*length_vessel):

 for l in range(0,width_vessel):

 for m in range(0,height_vessel):

 if vessel_empty[k, l] < height_vessel:

 vessel_loadtime = (2 * (k + 1)) + (2 * (l + 1)) +

(2 * (vessel_empty[k, l]+1)) + time_emptyquaycrane

 vessel_empty[k, l] = vessel_empty[k, l] + 1

 dummy3=2

 break

 if dummy3==2:

 break

 if dummy3 == 2:

 break

 elif vesselloadjob_schedule_strategy==2:#Horizontal and across l

 for k in range(0,2*length_vessel):

 for m in range(0,height_vessel):

 for l in range(0,width_vessel):

 if vessel_empty[k, l] < height_vessel:

 vessel_loadtime = (2 * (k + 1)) + (2 * (l + 1)) +

(2 * (vessel_empty[k, l]+1)) + time_emptyquaycrane

 vessel_empty[k, l] = vessel_empty[k, l] + 1

 dummy3=2

 break

 if dummy3==2:

 break

 if dummy3 == 2:

 break

 elif vesselloadjob_schedule_strategy==3:#Vertical and across k

 for l in range(0,width_vessel):

 for k in range(0,2*length_vessel):

 for m in range(0,height_vessel):

 if vessel_empty[k, l] < height_vessel:

 vessel_loadtime = (2 * (k + 1)) + (2 * (l + 1)) +

(2 * (vessel_empty[k, l]+1)) + time_emptyquaycrane

 vessel_empty[k, l] = vessel_empty[k, l] + 1

 dummy3=2

 break

 if dummy3==2:

 break

 if dummy3 == 2:

 break

 elif vesselloadjob_schedule_strategy==4:#Horizontal and across k

 for l in range(0,width_vessel):

 for m in range(0,height_vessel):

 for k in range(0,2*length_vessel):

 if vessel_empty[k, l] < height_vessel:

 vessel_loadtime = (2 * (k + 1)) + (2 * (l + 1)) +

(2 *(vessel_empty[k, l]+1)) + time_emptyquaycrane

 vessel_empty[k, l] = vessel_empty[k, l] + 1

 dummy3=2

 break

 if dummy3==2:

 break

 if dummy3 == 2:

 break

 68

 load_count=load_count+1

 load_waiting=load_waiting-1

 load_time=truck_loadtime+vessel_loadtime+platform_time+load_time

 position_quaycrane=0

 no_platform=no_platform+1

 if

time_to_reach_endposition_quaycrane<=time_to_reach_endposition_yardcrane:

 platform_time = 0+platform_time

 time_quaycrane=time_to_reach_endposition_yardcrane

 else:

 platform_time=time_to_reach_endposition_quaycrane-

time_to_reach_endposition_yardcrane+platform_time

 time_quaycrane = time_quaycrane + vessel_loadtime +

platform_handling_time_forcrane +

alignment_time+container_handling_time_forcrane

 time_to_reach_startposition_quaycrane=time_quaycrane

 timing_routine()

 def timing_routine():

 global time_yardcrane, time_quaycrane,simclock

 if time_yardcrane>time_quaycrane:

 simclock=time_yardcrane

 else:

 simclock=time_quaycrane

 if unload_count<unload_containers and load_count<load_containers:

 if no_platform>0:

 if position_yardcrane == 0 and position_quaycrane==0:

 if time_to_reach_startposition_yardcrane <

time_to_reach_startposition_quaycrane:

 load_yardcrane()

 if no_platform>0: #and unload_waiting>0:

 unload_quaycrane()

 else:

 time_quaycrane = time_quaycrane + time_emptyquaycrane +

alignment_time

 position_quaycrane=1

 time_to_reach_endposition_quaycrane=time_quaycrane

#time_to_reach_endposition_quaycrane_dummy=time_quaycrane

 timing_routine()

 else:

 print "2.0"

 unload_quaycrane()

 print "pos quay", position_quaycrane

 if no_platform>0:

 load_yardcrane()

 else:

time_yardcrane=time_yardcrane+time_emptyyardcrane+alignment_time

 69

 position_yardcrane=1

 time_to_reach_endposition_yardcrane=time_yardcrane

##time_to_reach_endposition_yardcrane_dummy=time_yardcrane

 timing_routine()

 elif position_yardcrane == 0 and position_quaycrane == 1:

 print "test2"

 print "start

pos_yardcrane",time_to_reach_startposition_yardcrane

 print "end pos_quay",time_to_reach_endposition_quaycrane

 if

time_to_reach_startposition_yardcrane<time_to_reach_endposition_quaycrane:

 load_yardcrane()

 if load_waiting>0:

 load_quaycrane()

 else:

time_quaycrane=time_quaycrane+time_emptyquaycrane+alignment_time

 position_quaycrane=0

 time_to_reach_startposition_quaycrane=time_quaycrane

 timing_routine()

 else:

 ##time_to_reach_endposition_quaycrane = 10000000

 ##time_to_reach_startposition_yardcrane = 10000000

 if load_waiting>0:

 load_quaycrane()

 else:

time_quaycrane=time_quaycrane+time_emptyquaycrane+alignment_time

 position_quaycrane=0

 time_to_reach_startposition_quaycrane=time_quaycrane

 timing_routine()

 #load_yardcrane()

 #print "Test2.1"

 #position_yardcranedummy = position_yardcrane

 #position_yardcrane = 2

 elif position_yardcrane == 1 and position_quaycrane == 0:

 print "test3"

 if

time_to_reach_endposition_yardcrane<time_to_reach_startposition_quaycrane:

 ##time_to_reach_endposition_yardcrane=10000000

 ##time_to_reach_startposition_quaycrane=10000000

 if unload_waiting>0:

 print "subtest3"

 unload_yardcrane()

 else:

time_yardcrane=time_yardcrane+time_emptyyardcrane+alignment_time

 position_yardcrane=0

 time_to_reach_startposition_yardcrane=time_yardcrane

 timing_routine()

 else:

 ##time_to_reach_endposition_yardcrane = 10000000

 ##time_to_reach_startposition_quaycrane = 10000000

 unload_quaycrane()

 if unload_waiting>0:

 70

 unload_yardcrane()

 else:

time_yardcrane=time_yardcrane+time_emptyyardcrane+alignment_time

 position_yardcrane=0

 time_to_reach_startposition_yardcrane=time_yardcrane

 timing_routine()

 elif position_yardcrane == 1 and position_quaycrane == 1:

 print "test"

 if

time_to_reach_endposition_yardcrane<time_to_reach_endposition_quaycrane:

 if unload_waiting>0 and load_waiting>0:

 unload_yardcrane()

 elif unload_waiting>0 and load_waiting==0:

 unload_yardcrane()

 elif unload_waiting==0 and load_waiting>0:

time_yardcrane=time_yardcrane+time_emptyyardcrane+alignment_time

 position_yardcrane=0

 time_to_reach_startposition_yardcrane=time_yardcrane

 timing_routine()

 else:

 unload_yardcrane()

 else:

 if unload_waiting>0 and load_waiting>0:

 load_quaycrane()

 elif unload_waiting>0 and load_waiting==0:

time_quaycrane=time_quaycrane+alignment_time+time_emptyquaycrane

 position_quaycrane=0

 time_to_reach_startposition_quaycrane=time_quaycrane

 timing_routine()

 elif unload_waiting==0 and load_waiting>0:

 load_quaycrane()

 else:

 load_quaycrane()

 else:

 print "position yardcrane",position_yardcrane

 print "position quaycrane",position_quaycrane

 if position_yardcrane==0 and position_quaycrane==0:

 if

time_to_reach_startposition_yardcrane<time_to_reach_startposition_quaycrane:

 ##time_to_reach_startposition_quaycrane=10000000

 ##time_to_reach_startposition_yardcrane=10000000

 if unload_waiting==total_platform:

time_yardcrane=time_yardcrane+time_emptyyardcrane+alignment_time

 position_yardcrane=1

 time_to_reach_endposition_yardcrane=time_yardcrane

##time_to_reach_endposition_yardcrane_dummy=time_yardcrane

 timing_routine()

 elif load_waiting==total_platform:

time_quaycrane=time_quaycrane+time_emptyquaycrane+alignment_time

 position_quaycrane=1

 71

 time_to_reach_endposition_quaycrane=time_quaycrane

##time_to_reach_endposition_quaycrane_dummy=time_quaycrane

 timing_routine()

 else:

 time_yardcrane = time_yardcrane + time_emptyyardcrane +

alignment_time

 position_yardcrane = 1

 time_to_reach_endposition_yardcrane = time_yardcrane

 timing_routine()

 position_yardcranedummy = position_yardcrane

 else:

 ##time_to_reach_startposition_quaycrane = 10000000

 ##time_to_reach_startposition_yardcrane = 10000000

 if unload_waiting==total_platform:

time_yardcrane=time_yardcrane+time_emptyyardcrane+alignment_time

 position_yardcrane=1

 time_to_reach_endposition_yardcrane=time_yardcrane

##time_to_reach_endposition_yardcrane_dummy=time_yardcrane

 timing_routine()

 elif load_waiting==total_platform:

time_quaycrane=time_quaycrane+time_emptyquaycrane+alignment_time

 position_quaycrane=1

 time_to_reach_endposition_quaycrane=time_quaycrane

##time_to_reach_endposition_quaycrane_dummy=time_quaycrane

 timing_routine()

 else:

 time_quaycrane = time_quaycrane + time_emptyquaycrane +

alignment_time

 position_quaycrane = 1

 timing_routine()

 time_to_reach_endposition_quaycrane=time_quaycrane

##time_to_reach_endposition_quaycrane_dummy=time_quaycrane

 elif position_yardcrane == 0 and position_quaycrane == 1:

 if

time_to_reach_startposition_yardcrane<time_to_reach_endposition_quaycrane:

 ##time_to_reach_startposition_yardcrane=10000000

 ##time_to_reach_endposition_quaycrane=10000000

 if unload_waiting==total_platform:

time_yardcrane=time_yardcrane+time_emptyyardcrane+alignment_time

 position_yardcrane=1

 timing_routine()

 time_to_reach_endposition_yardcrane=time_yardcrane

##time_to_reach_endposition_yardcrane_dummy=time_yardcrane

 elif load_waiting==total_platform:

 time_yardcrane=time_quaycrane

 load_quaycrane()

 else:

 time_yardcrane = time_yardcrane + time_emptyyardcrane +

alignment_time

 position_yardcrane = 1

 timing_routine()

 time_to_reach_endposition_yardcrane=time_yardcrane

 72

##time_to_reach_endposition_yardcrane_dummy=time_yardcrane

 else:

 #time_to_reach_startposition_yardcrane = 10000000

 #time_to_reach_endposition_quaycrane = 10000000

 if load_waiting>0:

 load_quaycrane()

 else:

 time_quaycrane = time_quaycrane + time_emptyquaycrane +

alignment_time

 position_quaycrane = 0

 time_to_reach_endposition_quaycrane=time_quaycrane

##time_to_reach_endposition_quaycrane_dummy=time_quaycrane

 timing_routine()

 elif position_yardcrane == 1 and position_quaycrane == 0:

 if time_to_reach_endposition_yardcrane <

time_to_reach_startposition_quaycrane:

 ##time_to_reach_endposition_yardcrane = 10000000

 ##time_to_reach_startposition_quaycrane = 10000000

 if unload_waiting>0:

 unload_yardcrane()

 else:

time_yardcrane=time_yardcrane+time_emptyyardcrane+alignment_time

 position_yardcrane=0

 time_to_reach_startposition_yardcrane=time_yardcrane

 timing_routine()

 else:

 ##time_to_reach_endposition_yardcrane = 10000000

 ##time_to_reach_startposition_quaycrane = 10000000

 if unload_waiting == total_platform:

 time_quaycrane=time_yardcrane

 unload_yardcrane()

 elif load_waiting == total_platform:

 time_quaycrane = time_quaycrane + time_emptyquaycrane +

alignment_time

 position_quaycrane = 1

 time_to_reach_endposition_quaycrane=time_quaycrane

##time_to_reach_endposition_quaycrane_dummy=time_quaycrane

 timing_routine()

 else:

 time_quaycrane = time_quaycrane + time_emptyquaycrane +

alignment_time

 position_quaycrane = 1

 time_to_reach_endposition_quaycrane=time_quaycrane

##time_to_reach_endposition_quaycrane_dummy=time_quaycrane

 timing_routine()

 elif position_yardcrane == 1 and position_quaycrane == 1:

 print "test1"

 if time_to_reach_endposition_yardcrane <

time_to_reach_endposition_quaycrane:

 ##time_to_reach_endposition_yardcrane = 10000000

 ##time_to_reach_endposition_quaycrane = 10000000

 if unload_waiting >0:

 73

 unload_yardcrane()

 else:

 time_yardcrane = time_yardcrane + time_emptyyardcrane +

alignment_time

 position_yardcrane = 0

 time_to_reach_startposition_yardcrane = time_yardcrane

##time_to_reach_endposition_quaycrane_dummy=time_quaycrane

 timing_routine()

 else:

 ##time_to_reach_endposition_yardcrane = 10000000

 ##time_to_reach_endposition_quaycrane = 10000000

 if load_waiting >0:

 load_quaycrane()

 else:

 time_quaycrane = time_quaycrane + time_emptyquaycrane +

alignment_time

 position_quaycrane = 0

 time_to_reach_startposition_quaycrane = time_quaycrane

##time_to_reach_endposition_quaycrane_dummy=time_quaycrane

 timing_routine()

 elif unload_count==unload_containers and load_count<load_containers:

 if no_platform>0:

 if position_quaycrane==1 and position_yardcrane==1 and

load_waiting>0:

 if

time_to_reach_endposition_yardcrane<time_to_reach_endposition_quaycrane:

time_yardcrane=time_yardcrane+time_emptyyardcrane+alignment_time

 position_yardcrane=0

 time_to_reach_startposition_yardcrane=time_yardcrane

 timing_routine()

 else:

 load_quaycrane()

 ##time_to_reach_endposition_yardcrane=10000000

 ##time_to_reach_endposition_quaycrane=10000000

 elif position_quaycrane==1 and position_yardcrane==1 and

load_waiting==0:

time_yardcrane=time_yardcrane+time_emptyyardcrane+alignment_time

 position_yardcrane=0

 time_to_reach_startposition_yardcrane=time_yardcrane

 timing_routine()

 elif position_quaycrane==1 and position_yardcrane==0 and

load_waiting>0:

 if

time_to_reach_startposition_yardcrane<time_to_reach_endposition_quaycrane:

 load_yardcrane()

 else:

 load_quaycrane()

 ##time_to_reach_startposition_yardcrane=10000000

 ##time_to_reach_endposition_quaycrane=10000000

 elif position_quaycrane==1 and position_yardcrane==0 and

load_waiting==0:

 load_yardcrane()

 ##time_to_reach_startposition_yardcrane=10000000

 74

 ##time_to_reach_endposition_quaycrane=10000000

 elif position_quaycrane==0 and position_yardcrane==0:#It does not

matter if there is a loading job waiting or not, since both of them are at 0th

positions

 if time_to_reach_startposition_yardcrane <

time_to_reach_startposition_quaycrane:

 load_yardcrane()

 else:

time_quaycrane=time_quaycrane+time_emptyquaycrane+alignment_time

 position_quaycrane=1

 time_to_reach_endposition_quaycrane=time_quaycrane

 ##time_to_reach_endposition_quaycrane_dummy=time_quaycrane

 timing_routine()

 ##time_to_reach_startposition_yardcrane=10000000

 ##time_to_reach_startposition_quaycrane=10000000

 elif position_quaycrane==0 and position_yardcrane==1:

 if

time_to_reach_endposition_yardcrane<time_to_reach_startposition_quaycrane:

time_yardcrane=time_yardcrane+time_emptyyardcrane+alignment_time

 timing_routine()

 position_yardcrane=0

 time_to_reach_startposition_yardcrane=time_yardcrane

 else:

time_quaycrane=time_quaycrane+time_emptyquaycrane+alignment_time

 position_quaycrane=1

 time_to_reach_endposition_quaycrane=time_quaycrane

 ##time_to_reach_endposition_quaycrane_dummy=time_quaycrane

 timing_routine()

 ##time_to_reach_startposition_quaycrane=10000000

 ##time_to_reach_endposition_yardcrane=10000000

 else:

 if position_quaycrane == 1 and position_yardcrane == 1:# and

load_waiting > 0:

 if time_to_reach_endposition_yardcrane <

time_to_reach_endposition_quaycrane:

 time_yardcrane = time_yardcrane + time_emptyyardcrane +

alignment_time

 position_yardcrane = 0

 time_to_reach_startposition_yardcrane = time_yardcrane

 timing_routine()

 else:

 load_quaycrane()

 ##time_to_reach_endposition_yardcrane = 10000000

 ##time_to_reach_endposition_quaycrane = 10000000

 elif position_quaycrane == 1 and position_yardcrane == 0:# and

load_waiting > 0:

 time_yardcrane=time_quaycrane

 load_quaycrane()

 elif position_quaycrane == 0 and position_yardcrane == 0:# It does

not matter if there is a loading job waiting or not, since both of them are at

0th positions

 time_quaycrane = time_quaycrane + time_emptyquaycrane +

alignment_time

 position_quaycrane = 1

 time_to_reach_endposition_quaycrane = time_quaycrane

 ##time_to_reach_endposition_quaycrane_dummy=time_quaycrane

 timing_routine()

 elif position_quaycrane == 0 and position_yardcrane == 1:

 75

 if time_to_reach_endposition_yardcrane <

time_to_reach_startposition_quaycrane:

 time_yardcrane = time_yardcrane + time_emptyyardcrane +

alignment_time

 timing_routine()

 position_yardcrane = 0

 time_to_reach_startposition_yardcrane = time_yardcrane

 else:

 time_quaycrane = time_quaycrane + time_emptyquaycrane +

alignment_time

 position_quaycrane = 1

 time_to_reach_endposition_quaycrane = time_quaycrane

 ##time_to_reach_endposition_quaycrane_dummy=time_quaycrane

 timing_routine()

 ##time_to_reach_startposition_quaycrane = 10000000

 ##time_to_reach_endposition_yardcrane = 10000000

 elif load_count == load_containers and unload_count < unload_containers:

 if no_platform > 0:

 if position_quaycrane == 1 and position_yardcrane == 1 and

unload_waiting > 0:

 if time_to_reach_endposition_yardcrane <

time_to_reach_endposition_quaycrane:

 unload_yardcrane()

 else:

 time_quaycrane = time_quaycrane + time_emptyquaycrane +

alignment_time

 position_quaycrane = 0

 time_to_reach_startposition_quaycrane = time_quaycrane

 timing_routine()

 ##time_to_reach_endposition_yardcrane = 10000000

 ##time_to_reach_endposition_quaycrane = 10000000

 elif position_quaycrane == 1 and position_yardcrane == 1 and

unload_waiting == 0:

 time_quaycrane = time_quaycrane + time_emptyquaycrane +

alignment_time

 position_quaycrane = 0

 time_to_reach_startposition_quaycrane = time_quaycrane

 timing_routine()

 elif position_quaycrane == 1 and position_yardcrane == 0:

 if time_to_reach_startposition_yardcrane <

time_to_reach_endposition_quaycrane:

time_yardcrane=time_yardcrane+time_emptyyardcrane+alignment_time

 position_yardcrane=1

 time_to_reach_endposition_yardcrane=time_yardcrane

 ##time_to_reach_endposition_yardcrane_dummy=time_yardcrane

 timing_routine()

 else:

time_quaycrane=time_quaycrane+time_emptyquaycrane+alignment_time

 position_quaycrane=0

 time_to_reach_startposition_quaycrane=time_quaycrane

 timing_routine()

 ##time_to_reach_startposition_yardcrane = 10000000

 ##time_to_reach_endposition_quaycrane = 10000000

 elif position_quaycrane == 0 and position_yardcrane == 0: # It

does not matter if there is a loading job waiting or not, since both of them

are at 0th positions

 if time_to_reach_startposition_yardcrane <

time_to_reach_startposition_quaycrane:

 time_yardcrane = time_yardcrane + time_emptyyardcrane +

 76

alignment_time

 position_yardcrane = 1

 time_to_reach_endposition_yardcrane = time_yardcrane

 ##time_to_reach_endposition_yardcrane_dummy=time_yardcrane

 timing_routine()

 else:

 unload_quaycrane()

 ##time_to_reach_startposition_yardcrane = 10000000

 ##time_to_reach_startposition_quaycrane = 10000000

 elif position_quaycrane == 0 and position_yardcrane == 1 and

unload_waiting>0:

 if time_to_reach_endposition_yardcrane <

time_to_reach_startposition_quaycrane:

 unload_yardcrane()

 else:

 unload_quaycrane()

 ##time_to_reach_startposition_quaycrane = 10000000

 ##time_to_reach_endposition_yardcrane = 10000000

 elif position_quaycrane == 0 and position_yardcrane == 1 and

unload_waiting== 0:

 unload_quaycrane()

 ##time_to_reach_startposition_quaycrane = 10000000

 ##time_to_reach_endposition_yardcrane = 10000000

 else:

 if position_quaycrane == 1 and position_yardcrane == 1:# and

unload_waiting > 0:

 if time_to_reach_endposition_yardcrane <

time_to_reach_endposition_quaycrane:

 unload_yardcrane()

 else:

time_quaycrane=time_quaycrane+time_emptyquaycrane+alignment_time

 position_quaycrane=0

 time_to_reach_startposition_quaycrane=time_quaycrane

 timing_routine()

 ##time_to_reach_endposition_yardcrane = 10000000

 ##time_to_reach_endposition_quaycrane = 10000000

 elif position_quaycrane == 1 and position_yardcrane == 0:# and

unload_waiting > 0:

 if

time_to_reach_startposition_yardcrane<time_to_reach_endposition_quaycrane:

time_yardcrane=time_yardcrane+time_emptyyardcrane+alignment_time

 position_yardcrane=1

 time_to_reach_endposition_yardcrane=time_yardcrane

 ##time_to_reach_endposition_yardcrane_dummy=time_yardcrane

 timing_routine()

 else:

time_quaycrane=time_quaycrane+time_emptyquaycrane+alignment_time

 position_quaycrane=0

 time_to_reach_startposition_quaycrane=time_quaycrane

 timing_routine()

 elif position_quaycrane == 0 and position_yardcrane == 0: # It

does not matter if there is a loading job waiting or not, since both of them

are at 0th positions

 time_yardcrane = time_yardcrane + time_emptyyardcrane +

alignment_time

 position_yardcrane = 1

 time_to_reach_endposition_yardcrane = time_yardcrane

 ##time_to_reach_endposition_yardcrane_dummy=time_yardcrane

 timing_routine()

 77

 elif position_quaycrane == 0 and position_yardcrane == 1:# and

unload_waiting>0:

 time_quaycrane = time_yardcrane

 unload_yardcrane()

 else:

 print "process over"

print simclock

 78

APPENDIX G

ANALYTICAL MODEL CODE FOR SYSTEM WITH BUFFER OF SIZE ONE

 79

import numpy as np

nu=input("no. of containers to be unloaded")

nl=input("no of containers to be loaded")

vesseload_X1=input("enter the vesselload strategy from 0 to 3")

yardload_X2=input("enter the yardload strategy from 0 to 3")

vesselunload_X3=input("enter the vessel unload strategy from 0 to 3")

yardunload_X4=input("enter the yard unload strategy from 0 to 3")

variable_vessel=1

variable_truck=1

length_vessel=input("enter the number of containers in vessel across length")

width_vessel=input("enter the number of containers in vessel across width")

height_vessel=input("enter the number of containers in vessel that could be

stacked including the bottom one")

length_yard=input("enter the number of containers in yard across length")

width_yard=input("enter the number of containers in yard across width")

height_yard=input("enter the number of containers in yard that could be stacked

including the bottom one")

vessel_load=np.zeros((length_vessel,width_vessel))

truck_load=np.zeros((length_yard,width_yard))

vessel_empty=np.zeros((2*length_vessel,width_vessel))

truck_empty=np.zeros((2*length_yard,width_yard))

for lengt in range(0,length_vessel):

 for widtt in range(0,width_vessel):

 vessel_load[lengt,widtt]=height_vessel

for lengt in range(0, length_yard):

 for widtt in range(0, width_yard):

 truck_load[lengt,widtt]=height_yard

for leng in range(0,length_vessel):

 for widt in range(0, width_vessel):

 vessel_empty[leng,widt]=2*height_vessel

for leng in range(0, length_yard):

 for widt in range(0, width_yard):

 truck_empty[leng,widt]=2*height_yard

vesselside_time=0

yardside_time=0

vesselside_rate=0

yardside_rate=0

dummy=0

dummy1=0

dummy2=0

dummy3=0

count_load=0

count_unload=0

total_vesselunload_time=0

total_truckunload_time=0

total_vesselload_time=0

total_truckload_time=0

def vesselunload():

 global vessel_unloadrate,

dummy1,vessel_unloadtime,i,j,variable_vessel,vessel_load,vessel_empty,rate,vess

el_unloadjob_time_matrix,nth_container_beingunloaded,total_vesselunload_time

 dummy1=0

 if vesselunload_X3==0:#vertical across v

 80

 for u in range(0, length_vessel):

 for v in range(0, width_vessel):

 for w in range(0, height_vessel):

 if vessel_load[u, v] > 0:

 vessel_unloadtime = (2 * (u + 1)) + (2 * (v + 1)) + (2

* vessel_load[u, v])

 vessel_load[u, v] = vessel_load[u, v] - 1

 dummy1 = 2

 break

 if dummy1 == 2:

 if vessel_load[u, v] == 0:

 vessel_empty[u, v] = vessel_load[u, v]

 else:

 pass

 break

 if dummy1==2:

 break

 elif vesselunload_X3==1:#horizontal across v

 for u in range(0, length_vessel):

 for w in range(0, height_vessel):

 for v in range(0, width_vessel):

 if vessel_load[u, v] > 0:

 vessel_unloadtime = (2 * (u + 1)) + (2 * (v + 1)) + (2

* vessel_load[u, v])

 vessel_load[u, v] = vessel_load[u, v] - 1

 dummy1 = 2

 break

 if dummy1 == 2:

 if vessel_load[u, v] == 0:

 vessel_empty[u, v] = vessel_load[u, v]

 else:

 pass

 break

 if dummy1==2:

 break

 elif vesselunload_X3==2:#vertical across u

 for v in range(0, width_vessel):

 for u in range(0, length_vessel):

 for w in range(0, height_vessel):

 if vessel_load[u, v] > 0:

 vessel_unloadtime = (2 * (u + 1)) + (2 * (v + 1)) + (2

* vessel_load[u, v])

 vessel_load[u, v] = vessel_load[u, v] - 1

 dummy1 = 2

 break

 if dummy1 == 2:

 if vessel_load[u, v] == 0:

 vessel_empty[u, v] = vessel_load[u, v]

 else:

 pass

 break

 if dummy1==2:

 break

 elif vesselunload_X3==3:#horizontal across u

 for v in range(0, width_vessel):

 for w in range(0, height_vessel):

 for u in range(0, length_vessel):

 if vessel_load[u, v] > 0:

 vessel_unloadtime = (2 * (u + 1)) + (2 * (v + 1)) + (2

 81

* vessel_load[u, v])

 vessel_load[u, v] = vessel_load[u, v] - 1

 dummy1 = 2

 break

 if dummy1 == 2:

 if vessel_load[u, v] == 0:

 vessel_empty[u, v] = vessel_load[u, v]

 else:

 pass

 break

 if dummy1==2:

 break

 vessel_unloadjob_time_matrix[nth_container_beingunloaded-

1,0]=vessel_unloadtime

 total_vesselunload_time=total_vesselunload_time+vessel_unloadtime

 #vessel_unloadrate = 1.0 / vessel_unloadtime

 #rate[i,j]=vessel_unloadrate

 #variable_vessel=2

def vesselload():

 global

vessel_loadrate,dummy3,vessel_loadtime,i,j,variable_vessel,vessel_loadtime,vess

el_empty,rate,nth_container_beingloaded,vessel_loadjob_time_matrix,total_vessel

load_time

 dummy3=0

 if vesseload_X1==0:# vertical across l

 for k in range(0, 2*length_vessel):

 for l in range(0, width_vessel):

 for m in range(0, height_vessel):

 if vessel_empty[k, l] < height_vessel:

 vessel_loadtime = (2 * (k + 1)) + (2 * (l + 1)) + (2 *

(vessel_empty[k, l]+1))

 vessel_empty[k, l] = vessel_empty[k, l] + 1

 dummy3 = 2

 break

 if dummy3 == 2:

 break

 if dummy3 == 2:

 break

 elif vesseload_X1==1:#horizontal across l

 for k in range(0, 2*length_vessel):

 for m in range(0, height_vessel):

 for l in range(0, width_vessel):

 if vessel_empty[k, l] < height_vessel:

 vessel_loadtime = (2 * (k + 1)) + (2 * (l + 1)) + (2 *

(vessel_empty[k, l]+1))

 vessel_empty[k, l] = vessel_empty[k, l] + 1

 dummy3 = 2

 break

 if dummy3 == 2:

 break

 if dummy3 == 2:

 break

 elif vesseload_X1==2:#vertical across k

 for l in range(0, width_vessel):

 for k in range(0, 2*length_vessel):

 for m in range(0, height_vessel):

 if vessel_empty[k, l] < height_vessel:

 vessel_loadtime = (2 * (k + 1)) + (2 * (l + 1)) + (2 *

 82

(vessel_empty[k, l]+1))

 vessel_empty[k, l] = vessel_empty[k, l] + 1

 dummy3 = 2

 break

 if dummy3 == 2:

 break

 if dummy3 == 2:

 break

 elif vesseload_X1==3:#horizontal acroos k

 for l in range(0, width_vessel):

 for m in range(0, height_vessel):

 for k in range(0, 2*length_vessel):

 if vessel_empty[k, l] < height_vessel:

 vessel_loadtime = (2 * (k + 1)) + (2 * (l + 1)) + (2 *

(vessel_empty[k, l]+1))

 vessel_empty[k, l] = vessel_empty[k, l] + 1

 dummy3 = 2

 break

 if dummy3 == 2:

 break

 if dummy3 == 2:

 break

 vessel_loadjob_time_matrix[nth_container_beingloaded-1,0]=vessel_loadtime

 total_vesselload_time=total_vesselload_time+vessel_loadtime

 #vessel_loadrate = 1.0 / vessel_loadtime

 #rate[i,j]=rate[i,j]+vessel_loadrate

 #variable_vessel=1

def truckload():

 global dummy2,

truck_loadtime,truck_loadrate,i,j,variable_truck,truck_empty,truck_load,rate,co

unt,nth_container_beingloaded,truck_loadjob_time_matrix,total_truckload_time

 dummy2=0

 if yardload_X2 == 0: # Vertical and across b

 for a in range(0, length_yard):

 for b in range(0, width_yard):

 for c in range(0, height_yard):

 if truck_load[a, b] > 0:

 truck_loadtime = (2 * (a + 1)) + (2 * (b + 1)) + (2 *

truck_load[a, b])

 truck_load[a, b] = truck_load[a, b] - 1

 dummy2 = 2

 break

 if dummy2 == 2:

 if truck_load[a, b] == 0:

 truck_empty[a, b] = truck_load[a, b]

 else:

 pass

 break

 if dummy2==2:

 break

 elif yardload_X2 == 1: # Horizontal and across b

 for a in range(0, length_yard):

 for c in range(0, height_yard):

 for b in range(0, width_yard):

 if truck_load[a, b] > 0:

 truck_loadtime = (2 * (a + 1)) + (2 * (b + 1)) + (2 *

truck_load[a, b])

 truck_load[a, b] = truck_load[a, b] - 1

 83

 dummy2 = 2

 break

 if dummy2 == 2:

 if truck_load[a, b] == 0:

 truck_empty[a, b] = truck_load[a, b]

 else:

 pass

 break

 if dummy2==2:

 break

 elif yardload_X2 == 2: # Vertical and across a

 for b in range(0, width_yard):

 for a in range(0, length_yard):

 for c in range(0, height_yard):

 if truck_load[a, b] > 0:

 truck_loadtime = (2 * (a + 1)) + (2 * (b + 1)) + (2 *

truck_load[a, b])

 truck_load[a, b] = truck_load[a, b] - 1

 dummy2 = 2

 break

 if dummy2 == 2:

 if truck_load[a, b] == 0:

 truck_empty[a, b] = truck_load[a, b]

 else:

 pass

 break

 if dummy2==2:

 break

 elif yardload_X2 == 3: # Horizontal and across a

 for b in range(0, width_yard):

 for c in range(0, height_yard):

 for a in range(0, length_yard):

 if truck_load[a, b] > 0:

 truck_loadtime = (2 * (a + 1)) + (2 * (b + 1)) + (2 *

truck_load[a, b])

 truck_load[a, b] = truck_load[a, b] - 1

 dummy2 = 2

 break

 if dummy2 == 2:

 if truck_load[a, b] == 0:

 truck_empty[a, b] = truck_load[a, b]

 else:

 pass

 break

 if dummy2==2:

 break

 truck_loadjob_time_matrix[nth_container_beingloaded-1,0]=truck_loadtime

 total_truckload_time=total_truckload_time+truck_loadtime

 #truck_loadrate = 1.0 / truck_loadtime

 #rate[i,j]=truck_loadrate

 #variable_truck=1

def truckunload():

 global dummy,

truck_unloadtime,truck_unloadrate,i,j,variable_truck,truck_empty,rate,count,nth

_container_beingunloaded,truck_unloadjob_time_matrix,total_truckunload_time

 dummy=0

 if yardunload_X4 == 0: # vertical and across d

 for c in range(0, 2*length_yard):

 84

 for d in range(0, width_yard):

 for e in range(0, height_yard):

 if truck_empty[c, d] < height_yard:

 truck_unloadtime = (2 * (c + 1)) + (2 * (d + 1)) + (2 *

(truck_empty[c, d]+1))

 truck_empty[c, d] = truck_empty[c, d] + 1

 dummy = 2

 print c,d

 print truck_empty[c,d]

 break

 if dummy == 2:

 break

 if dummy==2:

 break

 elif yardunload_X4 == 1: # Horizontal and across d

 for c in range(0, 2*length_yard):

 for e in range(0, height_yard):

 for d in range(0, width_yard):

 if truck_empty[c, d] < height_yard:

 truck_unloadtime = (2 * (c + 1)) + (2 * (d + 1)) + (2 *

(truck_empty[c, d]+1))

 truck_empty[c, d] = truck_empty[c, d] + 1

 dummy = 2

 break

 if dummy == 2:

 break

 if dummy==2:

 break

 elif yardunload_X4== 2: # Vertical and across c

 for d in range(0, width_yard):

 for c in range(0, 2*length_yard):

 for e in range(0, height_yard):

 if truck_empty[c, d] < height_yard:

 truck_unloadtime = (2 * (c + 1)) + (2 * (d + 1)) + (2 *

(truck_empty[c, d]+1))

 truck_empty[c, d] = truck_empty[c, d] + 1

 dummy = 2

 break

 if dummy == 2:

 break

 if dummy==2:

 break

 elif yardunload_X4 == 3: # Horizontal and across c

 for d in range(0, width_yard):

 for e in range(0, height_yard):

 for c in range(0, 2*length_yard):

 if truck_empty[c, d] < height_yard:

 truck_unloadtime = (2 * (c + 1)) + (2 * (d + 1)) + (2 *

(truck_empty[c, d]+1))

 truck_empty[c, d] = truck_empty[c, d] + 1

 dummy = 2

 break

 if dummy == 2:

 break

 if dummy==2:

 break

 truck_unloadjob_time_matrix[nth_container_beingunloaded-

1,0]=truck_unloadtime

 85

 total_truckunload_time=total_truckunload_time+truck_unloadtime

 #truck_unloadrate = 1.0 / truck_unloadtime

 #rate[i,j]=rate[i,j] + truck_unloadrate

 #variable_truck=2

nth_container_beingloaded=0

nth_container_beingunloaded=0

truck_loadjob_time_matrix=np.zeros((nl,1))

truck_unloadjob_time_matrix=np.zeros((nu,1))

vessel_loadjob_time_matrix=np.zeros((nl,1))

vessel_unloadjob_time_matrix=np.zeros((nu,1))

for nth_container_beingloaded in range(nl,0,-1):

 truckload()

 vesselload()

for nth_container_beingunloaded in range(nu,0,-1):

 truckunload()

 vesselunload()

if nl>0:

 for nth_container_beingloaded in range(nl,0,-1):

 truckload()

 vesselload()

if nu>0:

 for nth_container_beingunloaded in range(nu,0,-1):

 truckunload()

 vesselunload()

if nu==0:

 total_truckunload_time=0

 total_vesselunload_time=0

 nu=1#To make the average value to be zero

if nl==0:

 total_truckload_time=0

 total_vesselload_time=0

 nl=1##To make the average value to be zero

state=np.zeros((5,1))

state[2,0]=1

state[1,0]=2

state[0,0]=3

state[3,0]=4

state[4,0]=5

rate=np.zeros((5,5))

quaycrane_time=300

yardcrane_time=300

global total_time

global total_time_processing

total_time=0

total_time_processing=0

 86

total_time=(total_time_processing+0.5*(total_truckload_time+total_vesselload_ti

me+total_vesselunload_time+total_truckunload_time))/(nu+nl)

print "total time is",total_time

time_yard_drop_pick=0.5*(total_truckload_time+total_truckunload_time)/(nu+nl)

time_vessel_drop_pick=0.5*(total_vesselload_time+total_vesselunload_time)/(nu+n

l)

length_state=5

for i in range(0,length_state):

 for j in range(0,length_state):

Refer the following 2 codes

 if state[i,0]==1 and state[j,0]==4:#(nu,nl,x,x,x)'s next transition

provided nu and nl remain the same in next transition ie, transitions like

(2,2,0,1,0) to (2,2,1,0,0)

 rate[i,j]=(1.0 /((2*yardcrane_time)+(total_truckload_time/nl)))

 elif state[i,0]==2 and state[j,0]==3:

 rate[i,j]=(1.0/((2*quaycrane_time)+(total_vesselunload_time/nu)))

 elif state[i,0]==3 and state[j,0]==5:

 rate[i, j] = (1.0 / (2*yardcrane_time)+(total_truckunload_time/nu))

 elif state[i,0]==4 and state[j,0]==5:

 rate[i, j] = (1.0 / (2*quaycrane_time)+(total_vesselload_time/nl))

 else:

 pass

print "below is rate"

for i in range(0,length_state):

 for j in range(0,length_state):

 if i!=j:

 rate[i][i] = (rate[i][i] + rate[i][j])

 else:

 pass

for i in range(0,length_state):

 rate[i][i]=-(rate[i][i])

print rate

print state

print length_state

q=np.zeros((length_state-1,length_state-1))

for i in range(0,length_state-1):

 for j in range(0,length_state-1):

 q[i][j]=rate[i][j]

print "q"

print q

#print del_opn

q_neg=-q

r=np.zeros((4,1))

j_r=0

 87

j=4

for i in range(0,length_state-1):

 r[i][0]=rate[i,j]

print q_neg

from numpy.linalg import inv

e=inv(q_neg)

#ident_matrix=np.identity(length_state-1)

#e=solve(q_neg,ident_matrix)

duration=np.zeros((length_state,1))

for i in range(0,length_state-2):

 for j in range(0,length_state-2):

 duration[i,0]=duration[i,0]+e[i,j]

print duration

print e

a_matrix=np.matmul(e,r)

a_neg=np.zeros((len(a_matrix),1))

for i in range(0,len(a_matrix)):

 a_neg[i,0]=-a_matrix[i,0]

print a_neg

q_mult_a=np.matmul(q,a_matrix)

print "q_mult_a"

print q_mult_a

print a_matrix

total_time_processing=0

mean_time=np.linalg.solve(q,a_neg)

print mean_time[1,0]

print mean_time[2,0]

 88

APPENDIX H

ANALYTICAL MODEL CODE FOR SYSTEM WITH BUFFER OF SIZE TWO

 89

import numpy as np

nu=input("no. of containers to be unloaded")

nl=input("no of containers to be loaded")

vesseload_X1=input("enter the vesselload strategy from 0 to 3")

yardload_X2=input("enter the yardload strategy from 0 to 3")

vesselunload_X3=input("enter the vessel unload strategy from 0 to 3")

yardunload_X4=input("enter the yard unload strategy from 0 to 3")

variable_vessel=1

variable_truck=1

length_vessel=input("enter the number of containers in vessel across length")

width_vessel=input("enter the number of containers in vessel across width")

height_vessel=input("enter the number of containers in vessel that could be

stacked including the bottom one")

length_yard=input("enter the number of containers in yard across length")

width_yard=input("enter the number of containers in yard across width")

height_yard=input("enter the number of containers in yard that could be stacked

including the bottom one")

vessel_load=np.zeros((length_vessel,width_vessel))

truck_load=np.zeros((length_yard,width_yard))

vessel_empty=np.zeros((2*length_vessel,width_vessel))

truck_empty=np.zeros((2*length_yard,width_yard))

The following 4 blocks load excel and import that data into array.

for lengt in range(0,length_vessel):

 for widtt in range(0,width_vessel):

 vessel_load[lengt,widtt]=height_vessel

for lengt in range(0, length_yard):

 for widtt in range(0, width_yard):

 truck_load[lengt,widtt]=height_yard

for leng in range(0,length_vessel):

 for widt in range(0, width_vessel):

 vessel_empty[leng,widt]=2*height_vessel

for leng in range(0, length_yard):

 for widt in range(0, width_yard):

 truck_empty[leng,widt]=2*height_yard

vesselside_time=0

yardside_time=0

vesselside_rate=0

yardside_rate=0

dummy=0

dummy1=0

dummy2=0

dummy3=0

count_load=0

count_unload=0

total_vesselunload_time=0

total_truckunload_time=0

total_vesselload_time=0

total_truckload_time=0

def vesselunload():

 global vessel_unloadrate,

dummy1,vessel_unloadtime,i,j,variable_vessel,vessel_load,vessel_empty,rate,vess

el_unloadjob_time_matrix,nth_container_beingunloaded,total_vesselunload_time

 dummy1=0

 90

 if vesselunload_X3==0:#vertical across v

 for u in range(0, length_vessel):

 for v in range(0, width_vessel):

 for w in range(0, height_vessel):

 if vessel_load[u, v] > 0:

 vessel_unloadtime = (2 * (u + 1)) + (2 * (v + 1)) + (2

* vessel_load[u, v])

 vessel_load[u, v] = vessel_load[u, v] - 1

 dummy1 = 2

 break

 if dummy1 == 2:

 if vessel_load[u, v] == 0:

 vessel_empty[u, v] = vessel_load[u, v]

 else:

 pass

 break

 if dummy1==2:

 break

 elif vesselunload_X3==1:#horizontal across v

 for u in range(0, length_vessel):

 for w in range(0, height_vessel):

 for v in range(0, width_vessel):

 if vessel_load[u, v] > 0:

 vessel_unloadtime = (2 * (u + 1)) + (2 * (v + 1)) + (2

* vessel_load[u, v])

 vessel_load[u, v] = vessel_load[u, v] - 1

 dummy1 = 2

 break

 if dummy1 == 2:

 if vessel_load[u, v] == 0:

 vessel_empty[u, v] = vessel_load[u, v]

 else:

 pass

 break

 if dummy1==2:

 break

 elif vesselunload_X3==2:#vertical across u

 for v in range(0, width_vessel):

 for u in range(0, length_vessel):

 for w in range(0, height_vessel):

 if vessel_load[u, v] > 0:

 vessel_unloadtime = (2 * (u + 1)) + (2 * (v + 1)) + (2

* vessel_load[u, v])

 vessel_load[u, v] = vessel_load[u, v] - 1

 dummy1 = 2

 break

 if dummy1 == 2:

 if vessel_load[u, v] == 0:

 vessel_empty[u, v] = vessel_load[u, v]

 else:

 pass

 break

 if dummy1==2:

 break

 elif vesselunload_X3==3:#horizontal across u

 for v in range(0, width_vessel):

 for w in range(0, height_vessel):

 for u in range(0, length_vessel):

 if vessel_load[u, v] > 0:

 91

 vessel_unloadtime = (2 * (u + 1)) + (2 * (v + 1)) + (2

* vessel_load[u, v])

 vessel_load[u, v] = vessel_load[u, v] - 1

 dummy1 = 2

 break

 if dummy1 == 2:

 if vessel_load[u, v] == 0:

 vessel_empty[u, v] = vessel_load[u, v]

 else:

 pass

 break

 if dummy1==2:

 break

 vessel_unloadjob_time_matrix[nth_container_beingunloaded-

1,0]=vessel_unloadtime

 total_vesselunload_time=total_vesselunload_time+vessel_unloadtime

 #vessel_unloadrate = 1.0 / vessel_unloadtime

 #rate[i,j]=vessel_unloadrate

 #variable_vessel=2

def vesselload():

 global

vessel_loadrate,dummy3,vessel_loadtime,i,j,variable_vessel,vessel_loadtime,vess

el_empty,rate,nth_container_beingloaded,vessel_loadjob_time_matrix,total_vessel

load_time

 dummy3=0

 if vesseload_X1==0:# vertical across l

 for k in range(0, 2*length_vessel):

 for l in range(0, width_vessel):

 for m in range(0, height_vessel):

 if vessel_empty[k, l] < height_vessel:

 vessel_loadtime = (2 * (k + 1)) + (2 * (l + 1)) + (2 *

(vessel_empty[k, l]+1))

 vessel_empty[k, l] = vessel_empty[k, l] + 1

 dummy3 = 2

 break

 if dummy3 == 2:

 break

 if dummy3 == 2:

 break

 elif vesseload_X1==1:#horizontal across l

 for k in range(0, 2*length_vessel):

 for m in range(0, height_vessel):

 for l in range(0, width_vessel):

 if vessel_empty[k, l] < height_vessel:

 vessel_loadtime = (2 * (k + 1)) + (2 * (l + 1)) + (2 *

(vessel_empty[k, l]+1))

 vessel_empty[k, l] = vessel_empty[k, l] + 1

 dummy3 = 2

 break

 if dummy3 == 2:

 break

 if dummy3 == 2:

 break

 elif vesseload_X1==2:#vertical across k

 for l in range(0, width_vessel):

 for k in range(0, 2*length_vessel):

 for m in range(0, height_vessel):

 if vessel_empty[k, l] < height_vessel:

 92

 vessel_loadtime = (2 * (k + 1)) + (2 * (l + 1)) + (2 *

(vessel_empty[k, l]+1))

 vessel_empty[k, l] = vessel_empty[k, l] + 1

 dummy3 = 2

 break

 if dummy3 == 2:

 break

 if dummy3 == 2:

 break

 elif vesseload_X1==3:#horizontal acroos k

 for l in range(0, width_vessel):

 for m in range(0, height_vessel):

 for k in range(0, 2*length_vessel):

 if vessel_empty[k, l] < height_vessel:

 vessel_loadtime = (2 * (k + 1)) + (2 * (l + 1)) + (2 *

(vessel_empty[k, l]+1))

 vessel_empty[k, l] = vessel_empty[k, l] + 1

 dummy3 = 2

 break

 if dummy3 == 2:

 break

 if dummy3 == 2:

 break

 vessel_loadjob_time_matrix[nth_container_beingloaded-1,0]=vessel_loadtime

 total_vesselload_time=total_vesselload_time+vessel_loadtime

 #vessel_loadrate = 1.0 / vessel_loadtime

 #rate[i,j]=rate[i,j]+vessel_loadrate

 #variable_vessel=1

def truckload():

 global dummy2,

truck_loadtime,truck_loadrate,i,j,variable_truck,truck_empty,truck_load,rate,co

unt,nth_container_beingloaded,truck_loadjob_time_matrix,total_truckload_time

 dummy2=0

 if yardload_X2 == 0: # Vertical and across b

 for a in range(0, length_yard):

 for b in range(0, width_yard):

 for c in range(0, height_yard):

 if truck_load[a, b] > 0:

 truck_loadtime = (2 * (a + 1)) + (2 * (b + 1)) + (2 *

truck_load[a, b])

 truck_load[a, b] = truck_load[a, b] - 1

 dummy2 = 2

 break

 if dummy2 == 2:

 if truck_load[a, b] == 0:

 truck_empty[a, b] = truck_load[a, b]

 else:

 pass

 break

 if dummy2==2:

 break

 elif yardload_X2 == 1: # Horizontal and across b

 for a in range(0, length_yard):

 for c in range(0, height_yard):

 for b in range(0, width_yard):

 if truck_load[a, b] > 0:

 truck_loadtime = (2 * (a + 1)) + (2 * (b + 1)) + (2 *

truck_load[a, b])

 93

 truck_load[a, b] = truck_load[a, b] - 1

 dummy2 = 2

 break

 if dummy2 == 2:

 if truck_load[a, b] == 0:

 truck_empty[a, b] = truck_load[a, b]

 else:

 pass

 break

 if dummy2==2:

 break

 elif yardload_X2 == 2: # Vertical and across a

 for b in range(0, width_yard):

 for a in range(0, length_yard):

 for c in range(0, height_yard):

 if truck_load[a, b] > 0:

 truck_loadtime = (2 * (a + 1)) + (2 * (b + 1)) + (2 *

truck_load[a, b])

 truck_load[a, b] = truck_load[a, b] - 1

 dummy2 = 2

 break

 if dummy2 == 2:

 if truck_load[a, b] == 0:

 truck_empty[a, b] = truck_load[a, b]

 else:

 pass

 break

 if dummy2==2:

 break

 elif yardload_X2 == 3: # Horizontal and across a

 for b in range(0, width_yard):

 for c in range(0, height_yard):

 for a in range(0, length_yard):

 if truck_load[a, b] > 0:

 truck_loadtime = (2 * (a + 1)) + (2 * (b + 1)) + (2 *

truck_load[a, b])

 truck_load[a, b] = truck_load[a, b] - 1

 dummy2 = 2

 break

 if dummy2 == 2:

 if truck_load[a, b] == 0:

 truck_empty[a, b] = truck_load[a, b]

 else:

 pass

 break

 if dummy2==2:

 break

 truck_loadjob_time_matrix[nth_container_beingloaded-1,0]=truck_loadtime

 total_truckload_time=total_truckload_time+truck_loadtime

 #truck_loadrate = 1.0 / truck_loadtime

 #rate[i,j]=truck_loadrate

 #variable_truck=1

def truckunload():

 global dummy,

truck_unloadtime,truck_unloadrate,i,j,variable_truck,truck_empty,rate,count,nth

_container_beingunloaded,truck_unloadjob_time_matrix,total_truckunload_time

 dummy=0

 if yardunload_X4 == 0: # vertical and across d

 94

 for c in range(0, 2*length_yard):

 for d in range(0, width_yard):

 for e in range(0, height_yard):

 if truck_empty[c, d] < height_yard:

 truck_unloadtime = (2 * (c + 1)) + (2 * (d + 1)) + (2 *

(truck_empty[c, d]+1))

 truck_empty[c, d] = truck_empty[c, d] + 1

 dummy = 2

 print c,d

 print truck_empty[c,d]

 break

 if dummy == 2:

 break

 if dummy==2:

 break

 elif yardunload_X4 == 1: # Horizontal and across d

 for c in range(0, 2*length_yard):

 for e in range(0, height_yard):

 for d in range(0, width_yard):

 if truck_empty[c, d] < height_yard:

 truck_unloadtime = (2 * (c + 1)) + (2 * (d + 1)) + (2 *

(truck_empty[c, d]+1))

 truck_empty[c, d] = truck_empty[c, d] + 1

 dummy = 2

 break

 if dummy == 2:

 break

 if dummy==2:

 break

 elif yardunload_X4== 2: # Vertical and across c

 for d in range(0, width_yard):

 for c in range(0, 2*length_yard):

 for e in range(0, height_yard):

 if truck_empty[c, d] < height_yard:

 truck_unloadtime = (2 * (c + 1)) + (2 * (d + 1)) + (2 *

(truck_empty[c, d]+1))

 truck_empty[c, d] = truck_empty[c, d] + 1

 dummy = 2

 break

 if dummy == 2:

 break

 if dummy==2:

 break

 elif yardunload_X4 == 3: # Horizontal and across c

 for d in range(0, width_yard):

 for e in range(0, height_yard):

 for c in range(0, 2*length_yard):

 if truck_empty[c, d] < height_yard:

 truck_unloadtime = (2 * (c + 1)) + (2 * (d + 1)) + (2 *

(truck_empty[c, d]+1))

 truck_empty[c, d] = truck_empty[c, d] + 1

 dummy = 2

 break

 if dummy == 2:

 break

 if dummy==2:

 break

 truck_unloadjob_time_matrix[nth_container_beingunloaded-

 95

1,0]=truck_unloadtime

 total_truckunload_time=total_truckunload_time+truck_unloadtime

 #truck_unloadrate = 1.0 / truck_unloadtime

 #rate[i,j]=rate[i,j] + truck_unloadrate

 #variable_truck=2

print "time"

nth_container_beingloaded=0

nth_container_beingunloaded=0

truck_loadjob_time_matrix=np.zeros((nl,1))

truck_unloadjob_time_matrix=np.zeros((nu,1))

vessel_loadjob_time_matrix=np.zeros((nl,1))

vessel_unloadjob_time_matrix=np.zeros((nu,1))

if nl>0:

 for nth_container_beingloaded in range(nl,0,-1):

 truckload()

 vesselload()

if nu>0:

 for nth_container_beingunloaded in range(nu,0,-1):

 truckunload()

 vesselunload()

if nu==0:

 total_truckunload_time=0

 total_vesselunload_time=0

 nu=1#To make the average value to be zero

if nl==0:

 total_truckload_time=0

 total_vesselload_time=0

 nl=1##To make the average value to be zero

state=np.zeros((7,1))

state[2,0]=1

state[1,0]=2

state[0,0]=3

state[3,0]=4

state[4,0]=5

state[5,0]=6

state[6,0]=7

rate=np.zeros((7,7))

#vesselside_rate=sch_rate

#yardside_rate=sch_rate

quaycrane_time=300

yardcrane_time=300

global total_time

global total_time_processing

total_time=0

total_time_processing=0

total_time=(total_time_processing+0.5*(total_truckload_time+total_vesselload_ti

me+total_vesselunload_time+total_truckunload_time))/(nu+nl)

 96

print "total time is",total_time

length_state=7

#print rate

for i in range(0,length_state):

 for j in range(0,length_state):

Refer the following 2 codes

 if state[i,0]==1 and state[j,0]==5:#(nu,nl,x,x,x)'s next transition

provided nu and nl remain the same in next transition ie, transitions like

(2,2,0,1,0) to (2,2,1,0,0)

 rate[i,j]=(1.0 /((2*yardcrane_time)+(total_truckload_time/nl)))

 if state[i,0]==1 and state[j,0]==6:#(nu,nl,x,x,x)'s next transition

provided nu and nl remain the same in next transition ie, transitions like

(2,2,0,1,0) to (2,2,1,0,0)

 rate[i,j]=(1.0 /((2*yardcrane_time)+(total_truckload_time/nl)))

 elif state[i,0]==2 and state[j,0]==3:

 rate[i,j]=(1.0/((2*quaycrane_time)+(total_vesselunload_time/nu)))

 elif state[i,0]==2 and state[j,0]==4:

 rate[i,j]=(1.0/((2*quaycrane_time)+(total_vesselunload_time/nu)))

 elif state[i,0]==3 and state[j,0]==7:

 rate[i, j] = (1.0 / (2*yardcrane_time)+(total_truckunload_time/nu))

 elif state[i,0]==4 and state[j,0]==7:

 rate[i, j] = (1.0 / (2*yardcrane_time)+(total_truckunload_time/nu))

 elif state[i,0]==5 and state[j,0]==7:

 rate[i, j] = (1.0 / (2*quaycrane_time)+(total_vesselload_time/nl))

 elif state[i, 0] == 6 and state[j, 0] == 7:

 rate[i, j] = (1.0 / (2 * quaycrane_time) + (total_vesselload_time /

nl))

 else:

 pass

print "below is rate"

for i in range(0,length_state):

 for j in range(0,length_state):

 if i!=j:

 rate[i][i] = (rate[i][i] + rate[i][j])

 else:

 pass

for i in range(0,length_state):

 rate[i][i]=-(rate[i][i])

print rate

print state

print length_state

q=np.zeros((length_state-1,length_state-1))

for i in range(0,length_state-1):

 for j in range(0,length_state-1):

 q[i][j]=rate[i][j]

print q

#print del_opn

 97

q_neg=-q

print q_neg

from numpy.linalg import inv

e=inv(q_neg)

#ident_matrix=np.identity(length_state-1)

#e=solve(q_neg,ident_matrix)

duration=np.zeros((length_state,1))

for i in range(0,length_state-1):

 for j in range(0,length_state-1):

 duration[i,0]=duration[i,0]+e[i,j]

print duration

print e

r=np.zeros((6,1))

j_r=0

j=6

for i in range(0,length_state-1):

 r[i][0]=rate[i,j]

print "total processing time",total_time_processing

a_matrix=np.matmul(e,r)

a_neg=np.zeros((len(a_matrix),1))

for i in range(0,len(a_matrix)):

 a_neg[i,0]=-a_matrix[i,0]

print a_neg

q_mult_a=np.matmul(q,a_matrix)

print "q_mult_a"

print q_mult_a

print a_matrix

total_time_processing=0

mean_time=np.linalg.solve(q,a_neg)

print mean_time

print mean_time[1,0]

print mean_time[2,0]

