
A Framework for Spatial Database Explanations

by

Anique Tahir

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved May 2018 by the
Graduate Supervisory Committee:

Mohamed Sarwat, Chair
Sharon Hsiao

Ross Maciejewski

ARIZONA STATE UNIVERSITY

August 2018

ABSTRACT

In the last few years, there has been a tremendous increase in the use of big data.

Most of this data is hard to understand because of its size and dimensions. The

importance of this problem can be emphasized by the fact that Big Data Research

and Development Initiative was announced by the United States administration in

2012 to address problems faced by the government. Various states and cities in the

US gather spatial data about incidents like police calls for service.

When we query large amounts of data, it may lead to a lot of questions. For

example, when we look at arithmetic relationships between queries in heterogeneous

data, there are a lot of differences. How can we explain what factors account for these

differences? If we define the observation as an arithmetic relationship between queries,

this kind of problem can be solved by aggravation or intervention. Aggravation views

the value of our observation for different set of tuples while intervention looks at

the value of the observation after removing sets of tuples. We call the predicates

which represent these tuples, explanations. Observations by themselves have limited

importance. For example, if we observe a large number of taxi trips in a specific area,

we might ask the question: Why are there so many trips here? Explanations attempt

to answer these kinds of questions.

While aggravation and intervention are designed for non spatial data, we propose

a new approach for explaining spatially heterogeneous data. Our approach expands

on aggravation and intervention while using spatial partitioning/clustering to improve

explanations for spatial data. Our proposed approach was evaluated against a real-

world taxi dataset as well as a synthetic disease outbreak datasets. The approach

was found to outperform aggravation in precision and recall while outperforming

intervention in precision.

i

ACKNOWLEDGMENTS

I am extremely thankful to my advisor, Dr. Mohamed Sarwat, for his help in

making this thesis possible. It has been a great learning experience working with him

for over two years. I am grateful for his honest advice and guidance. In addition, I

would also like to express my gratitude towards Dr. Ross Maciejewski and Dr. Sharon

Hsiao for their insightful comments and critiques. Their feedback helped in improving

the quality of the work. Last but not the least, I am grateful for the unconditional

support provided by my family.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES . vi

CHAPTER

1 PROBLEM OVERVIEW. 1

1.1 Introduction . 1

1.2 Related Work . 5

1.3 Contributions . 8

2 PRELIMINARIES . 11

2.1 Star Schema . 11

2.2 Observations . 12

2.3 Explanations . 14

2.4 K-Folds Cross Validation . 15

2.5 Precision and Recall . 15

2.6 Distributed Processing Frameworks . 15

2.7 Front End Visualization Tools . 16

3 SYSTEM ARCHITECTURE . 17

3.1 Taxonomy . 17

3.1.1 Non spatial explanation for non spatial observations 17

3.1.2 Spatial explanations for non spatial observations 18

3.1.3 Spatial explanations for spatial observations 20

3.2 Studied Approaches . 21

3.2.1 Aggravation . 22

3.2.2 Intervention . 24

3.2.3 Salient Features . 26

iii

CHAPTER Page

4 SPATIAL EXPLANATIONS USING HIERARCHICAL INTERVEN-

TION . 30

4.1 Introduction . 30

4.2 Step1: Spatial Partitioning/Clustering . 35

4.2.1 R-Tree . 35

4.2.2 R*-Tree . 37

4.2.3 K-means clustering/Voronoi partitioning 38

4.2.4 Hierarchical Greedy Clustering . 38

4.2.5 Step2: Hierarchical Dataframes Construction 39

4.2.6 Step3: Building up the DAG . 40

4.2.7 Step4: Overlap Resolution . 41

4.3 Step5: Ranking Explanations . 41

4.3.1 Intensity . 41

4.3.2 Influence . 42

4.4 Implementation . 43

4.4.1 Hierarchical Intervention . 45

4.5 Interface . 53

5 EXPERIMENTS/EVALUATION . 59

5.1 K-Folds cross validation . 61

5.2 Precision and Recall . 65

5.2.1 Comparison . 67

5.3 Speed and Scalability . 68

6 CONCLUSION/FUTURE WORK . 71

iv

CHAPTER Page

REFERENCES . 73

APPENDIX

A NYC TLC SCHEMA . 78

v

LIST OF FIGURES

Figure Page

1.1 Average number of yellow cab trips against the day for January 2016 . . 2

2.1 An histogram showing an example observation . 13

3.1 An example of spatial explanation . 19

3.2 Heatmap for NYC trips for January 2016 . 20

3.3 An example of spatial explanation for a spatial observation 21

3.4 Number of Zones against Degree of Spatial Aggravation 25

3.5 Number of zones against their degree of Spatial Intervention 26

4.1 An outline for our system framework . 30

4.2 The hierarchy used by our algorithm . 33

4.3 Dataframes represent each level in our hierarchy . 34

4.4 We use memoization to build DAG bottom up . 35

4.5 Recalculation is done for overlapping nodes . 36

4.6 An illustration of R-Tree . 37

4.7 The web interface for our solution . 55

4.8 The filter interface for the GUI . 56

4.9 The histogram interface for the GUI . 57

4.10 The parameters interface for the GUI . 57

4.11 The map visualization interface for the GUI . 58

5.1 Comparison of Influence against number of clusters for K-Means, R-

Tree and R*-Tree . 60

5.2 Comparison of Influence and Intensity against level of hierarchy with

average passenger count as observation . 61

5.3 Influence for Spatial explanation for average tip percentage(Lower is

better) . 62

vi

FIGURE Page

5.4 The result for k-folds evaluation shows good results when the approach

is used in favor of influence(lower is better) for observations represented

by Queries 5.1, 5.2, and 5.3 . 64

5.6 Synthetic Outbreak data. The circles show the ground truth while the

polygons show the relevant explanations produced by our system 67

5.5 A heatmap showing sythesized data . 67

5.7 Time taken by each approach as we increase the size of data 69

vii

Chapter 1

PROBLEM OVERVIEW

1.1 Introduction

When we analyze data, we might make some observations that pique our curi-

ousity. We might want to explain trends or anomalies in data. Without an auto-

mated system, a data analyst has to go through several manual operations to find an

explanation. If the size of the data is small, doing so might take a bit of time, but

if we are dealing with a large amount of data, it can become a tedious process. Our

system is designed to answer questions based on observations over a large amount of

data. In the past few years there has been a lot of developments in the area of Big

Data.

We can find several examples of decisions being made using big data analysis in

everyday situations. Companies like Uber and Facebook handle large amounts of

spatial data every day. This data can be used to improve service. UPS is saving

millions of gallons of fuel per year by using Big Data Analytics. UPS uses On-Road

Integrated Optimization and Navigation system(ORION) to determine the order of

delivery, routes, and loading plans (InformationWeek, 2013).

Given the tremendous benefits of automated analysis, the motivation for this

thesis was to create an automated system to help analysts answer questions about

observations. The idea is to create a system which works on spatial data in general.

This thesis comes up with a generic system to explain observations on spatial data.

The New York City Taxi and Limousine Commission (NYC TLC) regulates yel-

low cab taxis(NYC and Commission, 2016). It has licensed around 146,000 distinct

1

day

Figure 1.1: Average number of yellow cab trips against the day for January 2016

drivers. In order to view a demonstration of the database explanation system, we

can use this dataset. The Yellow Cab data has several attributes including spatial

attributes such as latitude, longitude and non spatial attributes such as tip amount

and total amount for each trip. Fig. 1.1 shows the number of yellow cab trips against

time for January 2016. The sharp decline in the number of trips in the last quarter of

the month is pronounced. One might be inclined to look up the date when the num-

ber of trips crashed. In this paper, we look at different approaches to explain these

types of observations. In fact, we also look at observations with a spatial dimension.

Whenever we analyze some data, we might be tempted to find out a reason for

specific observations. While some data observations might be interesting, in order

to make decisions based on these observations, one might find it useful to find an

explanation. For example, someone looking to start a business might look at locations

in which their specific category of business succeeds. It might be even more beneficial

to find out why it prospers in that specific location.

This thesis describes a system that we have created to explain database observa-

tions. Our system intends to produce spatial explanations. There are two types of

input to our system. One of the inputs is the dataset we want to analyze. The second

2

input is our observation. The observation can be in the form of an aggregate query.

Our system uses one of several different solutions to find an explanation depending

on what the user wants. The output of our system is an explanation for our system

based on predicates.

The explanations produced by our system are formally defined later on in this

document. However, it is important to introduce the basic idea so the reader can

follow along. In our proposed system, explanations are parts of the data that have a

significant effect on what we are observing. For example, if we are observing tips for

taxi trips and removing a few tuples from the dataset has a significant effect on the

tips, then the few tuples would be considered as an explanation for our observation.

Another definition of explanations in our proposed solution involves looking at dif-

ferent parts of the data. For example, if we divide our data into a number of parts,

the parts which deviate from the average value of tip percentage are considered as

explanations because they introduce the largest differences.

In this thesis we define a taxonomy(Section 3.1) for observations and explanations.

The observation we made in Fig.1.1 can be considered as a non spatial observation. Its

explanation can either be non spatial or spatial. The first class in our taxonomy deals

with non spatial explanations for non spatial observations(Section 3.1.1). The second

class is related to spatial explanations for non spatial observations(Section 3.1.2) while

the last class is about spatial explanations for spatial observations. Many geospatial

datasets that we encounter contain time as one of the attributes. When we talk

about spatial explanations, we do not take time into consideration. Instead, time is

considered as a non-spatial attribute.

There are three main approaches to explanation that we study in this thesis. Each

approach has been extended to satisfy our taxonomy. Each approach relies on the fact

that the observation is an aggregated attribute in our data set while the explanation is

3

a predicate. Aggravation(Section 3.2.1) is based on the principle that if we consider

only the tuples in our database satisfying our explanation predicate, the value of

the observation on our modified dataset will be our measure of aggravation(Roy and

Suciu, 2014; Meliou et al., 2014).

In contrast, Intervention(Section 3.2.2) measures the influence of our explana-

tion i.e. what will be the value of our observation when all the tuples satisfying our

explanation predicate are removed(Roy and Suciu, 2014). We also extend Interven-

tion to introduce Hierarchical Intervention(Section 4). This approach measures

the value of intervention when the explanation consists of a cluster of spatial polygons

in our explanation predicate.

Finally, Salient Features(Section 3.2.3) can be used to find explanations(Chirigati

et al., 2016). Each salient feature encapsulates a polygon where an attribute in the

dataset is pronounced. The correlation between a salient feature of the observation

and the salient feature of the explanation can give us possible explanations.

Each approach has its own set of advantages and disadvantages. While one ap-

proach might give us very specific explanations that show a textbook example of our

observation, another might give us an explanation which is hard to see in the context

of the observation but has a large overall impact on it. One of the objectives of this

paper is to compare which approach is suitable considering its context.

We implemented(Section 4.4) these approaches, including hierarchical interven-

tion using distributed data frameworks(Borthakur, 2007; Dean and Ghemawat, 2008;

Shanahan and Dai, 2015; Zaharia et al., 2016). We made optimizations in our im-

plementation to make sure our approach is orders of magnitude faster than the naive

approach. The implementation of salient features was used from the Data Polygamy

framework (Chirigati et al., 2016).

4

In order to compare each approach, we defined a few evaluation metrics. The

Intensity(Section 4.3.1) metric measures how relevant each explanation is to the

observation. To be more specific, it measures the value of the observation for the top

explanations for each approach. The Influence(Section 4.3.2) metric measures the

observation when the top explanation is removed from the data. We also compare

the speed(Section 5.3) of our implementations of each approach.

1.2 Related Work

There has previously been some work related to database explanations. Most of

this work revolves around the notion of causality. There is existing work in the field

of Artificial Intelligence by Zhang and Zhang (2002) which expresses relationships

between different attributes in a dataset as conditional probabilities. Based on the

conditional probability each tuple is given a set of binary rankings.

The work by Meliou et al. (2010) is a survey which looks at causality from the

perspective of a database problem. Traditionally, work on causality from the database

perspective mainly deals with provenance i.e. events which occurred chronologically.

This solution, however, only works with databases with timestamps. This paper

also looks at the degree of responsibility which is defined as the number of tuples

which have to be removed to change a binary observation. An example of a binary

observation is winning and losing an election for instance. If a candidate wins by a

high margin, each tuple has a lower degree of responsibility. On the other hand a

close victory for a candidate increases each voters degree of responsibility.

The paper by Meliou et al. (2014) is a survey of work in causality and explanations

in both the Artificial Intelligence and Database communities. The take away from

this survey is that AI problems tend to have a bigger causal network while database

problems tend to have more variables.

5

There has also been a lot of work on correlation which shares some common

ground with the work on explanations. One interesting recent work on the subject is

the Data Polygamy framework(Chirigati et al., 2016). This framework is designed to

find the correlation between a corpus of datasets. It uses the peaks and troughs of the

data to calculate salient features (Dunn and Clark, 1986). The positive and negative

correlation between these salient features can be used to decide whether dataset are

related(Su et al., 2014). The objective of our system is a bit different from finding

corelations. There are a number of different factors which can effect observations.

Correlation might be one of these attributes in certain cases but if we ignore other

criteria such as selectivity then we might get results which do not have a significant

impact. E.g. if two attributes are highly corelated in a certain spatial cluster but the

selectivity of the cluster is small, it would lead to a low impact on the observation.

There has also been work related to why not explanations in databases. The work

by (ten Cate et al., 2015) looks at the question of why some tuples are missing from

database results. This paper uses the assumption that the relationship between tuples

is defined in the form of an ontology. The paper uses the relationship between the

ontology for a schema and the ontology for an instance of the schema to judge whether

an explanation exists. The ontologies that are used can be created manually or

automatically. Using provenance (Cheney et al., 2009) can help in creating ontologies.

Our solution mainly builds upon work by Roy and Suciu (2014) which outlines a

formal approach to explain data. The main solutions outlined in that work are Ag-

gravation and Intervention. The work by Roy and Suciu (2014) is designed to work

with non spatial datasets. One of the main points of the paper is that their approach

works on a dataset which can span several tables related by primary and foreign keys.

While the approach outlined by Roy and Suciu (2014) is great for non spatial data,

it does not translate well in the spatial domain. This approach develops on previous

6

work in causality and influence. It also resembles data mining concepts related to

association rule mining(Agarwal et al., 1994; Tan et al., 2006). In association rule

mining sets of attributes that occur together are assigned a support and confidence.

The support measures the frequency of occurrence of a set of attributes while con-

fidence measures how frequently an attribute occurs with another set of attributes.

The work by Koperski and Han (1995) looks at association rule mining in a spatial

context. Given a set of spatial relationships, it applies association rule mining to find

relationships that frequently occur together. There is a difference between associa-

tion rule mining and our prosposed approach. First of all, our proposed approach

uses a user defined observation. Secondly, in our approach we are not looking at the

associations but rather at the effect of removing or filtering pieces of data. A high

association between predicates does not necessarily mean that removing them will

significantly effect the observation.

Spatial Analysis is very popular in GeoScience and GeoInformatics. Regression

techniques can be used to explain data(Dunn and Clark, 1986; Cleveland and De-

vlin, 1988). The idea behind regression techniques is to express an attribute that

we are interested in as a dependent variable. This dependent variable can then be

expressed in the form of parametric equation involving other attributes in the dataset

as independent variables. An example of a loss function for this kind of regression

is Ordinary Least Squares(OLS)(Dismuke and Lindrooth, 2006). The user of this

system decides a dependent variable and a set of explanation variables. The result-

ing equation has coefficients assigned to each explanatory variable as well as a bias

term. This results in a curve fitting problem. The curve fitting problem is solved

using regression i.e. the coefficient terms and the bias are iteratively adjusted until

the sum of squared error between the predicted curve and the ground truth results

in a minimum value. Regression techniques are widely used for spatial data analysis.

7

However, they depend on predefined spatial partitioning and look at the data as a

whole rather than looking at it from the perspective of a user defined observation

compared to our solution.

Geographically Weighted Regression(GWR) expands on OLS regression for geospa-

tial data(Brunsdon et al., 1998; Charlton et al., 2009). GWR tries to use the regression

equation for each feature in the dataset. It uses the idea that spatially co-located

points contribute more to each other by using a spatially aware kernel function. A

kernel function like a Gaussian, for example, gives more weight to nearby points than

to points which are far apart.

Besides work related to explanation, there has been a lot of research in the area of

spatial correlation. Much of the work in this area extends from multiple old works by

Getis(Getis, 1991; Ord and Getis, 1995; Getis and Ord, 1996; Getis and Griffith, 2002;

Getis, 2007). The Getis Ord statistic (Ord and Getis, 1995) for example is useful in

showing us areas with high local spatial associations. The Moran’s I statistic is useful

for measuring the spatial heterogeneity of the data(Assuncao and Reis, 1999; Zhang

et al., 2008). Moran’s I is useful in hot spot analysis which can be viewed as a step

in the way of finding explanations.

1.3 Contributions

In this paper we extend several approaches and compare them. There are three

major contributions in this thesis:

• We extend aggravation and intervention for spatial explanations/observations.

Aggravation and Intervention techniques in literature are designed for giving

non spatial explanations for non spatial observation. When we look at spa-

tially heterogeneous data, the spatial context has impact on the value of the

explanations.

8

• We extend the use of salient features to give spatial explanations for simple

observations based on attributes. Salient Features can be used to compare

the correlation between attributes between multiple datasets. However, we re

purpose the use of salient features for explanations. We use the salient features

for attributes in the same dataset to form explanations.

• We introduce a new approach: Hierarchical Intervention. This approach uses

spatial partitioning/clustering. We find that there is a difference between ex-

planations for spatially heterogeneous data for different dimensions of spatial

explanations. Therefore, we propose a new approach which uses a spatial hier-

archy. This accounts for explanations for multiple dimensions of the data.

• We introduce a method to balance influence and intensity to give better ex-

planations. Influence and Intensity measure the global and local impact of an

explanation, respectively. We acknowledge that the user of our system can have

a non binary preference for either. We construct our system in a way that it

produces explanations as a linear relationship between influence and intensity.

• We introduce an automated system for giving explanations based on our find-

ings. The system that we have defined has a lot of parameters. It requires

observations, coefficients, arithmetic relationships and selectivities as parame-

ters. We have designed a Web based User Interface to help a user with little

knowledge of the system to get explanations for their observations.

One of the contributions of this thesis is to compare the different approaches. In

order for us to compare different things, we need to do so on the basis of a common

standard. The different solutions to the explanation problem are structurally very

different from each other. As previously mentioned, some of them are originally not

9

designed to handle spatial data. We have designed a common taxonomy to compare

all these different solutions. On top of designing this taxonomy, our extension of

each approach is designed to make sure each solution adheres to the taxonomy. Even

though, this still leaves room for differences between each solution, it gives us room

for comparison.

We also define a number of evaluation metrics and an approach which uses them

to come up with better explanations.

10

Chapter 2

PRELIMINARIES

In order to understand the system. The reader needs to understand a few concepts

related to Data Mining and Databases. This chapter attempts to give a brief overview

of the underlying concepts needed to understand the system.

2.1 Star Schema

Our system has the underlying assumption that the data that will be used to

generate explanations is the Fact Table for a Star schema(Giovinazzo, 2000; Adamson,

2010). To understand the Fact Table, it is important to understand the structure of

the Star Schema. A traditional relational database system contains a set of tables

related by primary and foreign keys. For instance, we can use our running example

of the NYC Taxi Trips dataset to illustrate a Star Schema. The trips and payment

type can be represented in separate tables. One trip can have a single payment type

while a payment type can be used in multiple trips. This is an example of a one-to-

many relationship. In order to represent this data in a relational database, the trips

table and the payment_type table need to have a primary and foreign key. Another

way of storing this data without primary and foreign keys is to save all payment type

information against all trips. Tables. 2.1 and 2.2 show some dummy data to illustrate

our example for our running example of the NYC taxi data.

The illustrated example has a normalized schema(Beeri et al., 1988). Table 2.2

can be considered as the central part of the schema because it contains the foreign

key to the payment_type table.

11

PaymentTypeId Name

1 Credit Card

2 Cash

3 No Charge

Table 2.1: Payment Type Table

pickup_lat pickup_lng PaymentTypeId tip_percentage

34.4 -74.2 1 15.3

34.6 -74.1 1 10.2

34.6 -74.3 1 9.8

34.8 -74.6 2 11.2

34.6 -74.3 1 10.7

34.9 -74.1 3 0.0

Table 2.2: Trips Table

This type of schema where there is a central table consisting of facts while the remain-

ing tables contain the meta data is called a star schema. The central table is called

the Fact Table, whereas, the tables containing the meta data are called the Dimension

Tables. In the case of the schema we just defined, Table. 2.1 is the dimension table

while Table. 2.2 is the fact table.

2.2 Observations

Observations are features in the data that the user wants to explain. Observations

are defined as arithmetic expressions over a set of aggregate queries. Let F be the

fact table in our star schema dataset. In the course of this document, we will be using

12

day

n
u

m
b

e
r

o
f

tr
ip

s

Figure 2.1: An histogram showing an example observation

relational algebra expressions defined by Elmasri and Navathe (2011) for aggregate

expressions. Thus, the F symbol represents an aggregate function. An aggregate

query is defined as:

AFB(D), A ∈ F

B is an aggregate function. A is an attribute in our dataset. D is the fact table.

Examples of an aggregate function include SUM, COUNT, and AVERAGE. We use

SQL to construct an example for an observation. Queries 2.1 and 2.2 show examples

of aggregate queries.

Observations made on data can also be represented on histograms. Fig. 2.1 shows an

example of an observation. The green bar on the histogram represents an aggregate

query where the day is Friday.

1 SELECT AVG(t ip_percentage) FROM

2 FROM nyc_data

3 WHERE payment_type = 1

Query 2.1: Aggregate Query for average tip percentage with credit cards

13

1 SELECT AVG(t ip_percentage) FROM

2 FROM nyc_data

3 WHERE payment_type = 2

Query 2.2: Aggregate Query for average tip percentage with cash

Using these aggregate queries we may form an observation based on the ratio of tip

percentage with credit card against tip percentage with cash.

observation =
Query. 2.1
Query. 2.2

2.3 Explanations

We represent explanations as a predicate. A predicate is a conditional statement

which results in a boolean value. We go into more details for the formal definition of

different kinds of explanations in Section 3.1. If we consider Queries 2.1 and 2.2 as

an example. The explanation would be in the form of a predicate:

tip_percentage = 15.3

Let D be our solution space. We can define our predicate to be the function P . Let

X represent a set of attributes in our schema. Our explanation can now be formally

defined as:

X|P (X) :=

true, if X ∈ D

false, otherwise
(2.1)

Note that P is an open ended function. In the case of spatial explanations, P can

take the form of a spatial function like ST_CONTAINS in PostGIS i.e. whether a

polygon contains a point. In the non spatial context, P can represent functions like

’greater than’, ’less than’, etc.

14

2.4 K-Folds Cross Validation

K Folds cross validation is a technique for data evaluation(Kohavi et al., 1995; Re-

faeilzadeh et al., 2009). The data is divided into k parts. One of the parts is used

as a training set and the remaining parts are used as test sets. The purpose of the

training set is to model the data. Once we have a model, we can use it to classify

and/or predict unseen data. The test set is used to evaluate how well the model was

trained.

2.5 Precision and Recall

Precision and Recall are methods for evaluation(Olson and Delen, 2008; Powers,

2011). Whenever we classify data we may have true positives, false positive, true

negative and false negatives. Precision is defined as:

precision =
true positives

false positives+ true positives

Recall is defined as:

recall =
true positives

true positives+ false negatives

2.6 Distributed Processing Frameworks

Map Reduce(Dean and Ghemawat, 2008) is a framework for data processing which is

designed for taking distributed and parallel computation into perspective. There are

three main operations in a mapreduce process: map, shuffle and reduce. The map

operation assigns a key to each element and performs any necessary transformations.

The shuffle operation relocates the elements such that elements with the same key

are nearby(since they are going to need each other in calculations). The reduce step

performs a calculation on each element with the same key and returns the output.

15

Spark(Shanahan and Dai, 2015; Zaharia et al., 2016) is a distributed and parallel

processing framework. Spark uses a directed acyclic graph to perform calculations.

Since the DAG created by Spark can have a lot of common nodes between tasks, the

computational complexity of the operation is reduced compared to MapReduce.

Geospark (Yu et al., 2015) is a framework for performing several spatial operations on

data in Apache Spark. It also has a component which helps in data visualizations(Yu,

2018).

2.7 Front End Visualization Tools

React(Facebook, 2018b) is a front end framework which originated in Facebook. The

React framework allows interfaces to be designed using components. Each component

has properties and a state. A component can have subcomponents. This makes it

simpler to design interfaces which show consistent data across components. Some of

the charts included in the interface make use of the eCharts library(Baidu, 2018).

MapBox(Mapbox, 2018) is a library for displaying maps. The maps provided by map-

box consists of tiles and vectors. Each tile represents a cube of the map while vectors

are shapes which represent roads, buildings, etc. Deck.gl(Uber, 2018) is a library

for creating an overlay on top of the map. Examples of overlays include scatterplots,

cartograms etc. Matplotlib was also used for static plots for evaluation(Hunter, 2007).

We have used all of these tools in a GUI for our our framework. The details of the

implementation can be found in Section 4.4

16

Chapter 3

SYSTEM ARCHITECTURE

3.1 Taxonomy

We define a taxonomy for observations and explanations. This taxonomy will help us

standardize different approaches to explanation. It will also help us compare these

approaches against each other. Our observation/explanation standard is based on the

assumption that observations take the form of a query, whereas, explanations take

the form of a predicate. Let D be the dataset that we are interested in. Let AD be

a set of attributes of D. Let Va represent the set of values for in D for attribute a

where {¬∅, ∅} ⊂ Va. Then we can define our candidate explanation ϕ as

ϕ |= ∧i,j(i = j)

where i ∈ AD, j ∈ Vi

The observation is simply just an aggregate query on D. Each approach returns a set

of candidate explanations and there is a value associated with each candidate expla-

nation which measures its score. We define the scoring function for each approach in

its respective section in the document.

3.1.1 Non spatial explanation for non spatial observations

Non spatial observations are aggregate queries on D. These queries can take any

form. Non spatial explanations are candidate explanations based purely on non spa-

tial attributes of the data. Let S be the spatial attributes in D. Our candidate

explanation can be defined as

ϕ |= ∧i,j(i = j)

17

where i ∈ AD, i /∈ S, j ∈ Vi

We can look at an example of non spatial explanations for non spatial observations

by looking at the NYC TLC data for Yellow Cab. There are several attributes

which are continuous e.g. tip amount, trip distance, and fare amount. A month of

taxi trip data consists of 10 million tuples. This means that if we find all possible

combinations of attribute values, it can exceed over a million. Instead each of the

approaches we discuss tries to simplify how the explanations are calculated. For

instance, salient features use crests and troughs in the value of an attribute over

time. Fig. 1.1 shows the average number of taxi trips per day for one month. If we

consider twenty thousand trips as an upper bound, we only get part of the curve

which we call a salient feature(Section 3.2.3). We can use this salient feature for our

explanations. The upper bound in the case of salient features is either user defined, or

automatically generated. We discuss the details of the salient features implementation

in Section 3.2.3

3.1.2 Spatial explanations for non spatial observations

Spatial explanations take the spatial attributes of the data into consideration. In

contrast to non spatial explanations, the candidate explanations for spatial explana-

tions contain polygons. Since we base our method on the assumption that important

tuples are spatially co-located, points which fall inside these polyons form a candidate

explanation. Let S be the spatial attributes of D. Let P be the set of all possible

polygons from S. Let G be a function such thatG(s, t) is true when (s, t) ∈ P and

false otherwise, where s,t are the dimensions of a point in the Cartesian plane. Our

candidate explanation can be defined as,

ϕ |= ∨l,kG(l, k)

18

where k, l ∈ AD

To illustrate spatial explanation in action, we can use NYC TLC data again. Fig. 3.1

shows the explanation in terms of tip percentage where the observation is also the

average tip percentage.

Figure 3.1: An example of spatial explanation

The polygons painted purple show polygons in the candidate explanation where the

tip percentage is high, while polygons painted blue show candidate explanations where

the tip percentage is low. It should be noted that P has a high number of permuta-

tions. It is up to the approach to decide which polygons to include in the candidate

explanation. For instance, hierarchical intervention may choose polygons in a spatial

proximity while aggravation may choose otherwise.

19

Figure 3.2: Heatmap for NYC trips for January 2016

Another interesting consideration when we are talking about spatial explanations is

the density of the data. Fig. 3.2 shows the heatmap for tip percentage with respect

to pickup coordinates. It is interesting to observe that the explanations provided in

Fig. 3.1 are all areas with low density of data. One of the reasons for this is because

each approach takes some liberty with our definition of the taxonomy. Even though,

we defined P to contain all permutations of polygons, an approach may use limited

polygons, such as neighborhoods or zones. The way the explanation is ranked also

plays a large role.

3.1.3 Spatial explanations for spatial observations

In the last two classes of our taxonomy, we only looked at non spatial observations.

In this class however, we will look at spatial observations. Spatial observations are

20

similar to non spatial observation. Both spatial and non spatial observations are

represented by an aggregate query. The difference is that spatial observations have a

polygon in the predicate. The spatial explanation in this class can be defined in the

same way as in Section 3.1.2.

Observation(Pickup)/Explanation(Dropoff)

Figure 3.3: An example of spatial explana-

tion for a spatial observation

Fig. 3.3 shows an example of a spatial ex-

planation for a spatial observation. The

observation, in this case, is the average

tip percentage when the pickup zone is

LaGuardia airport. The candidate ex-

planation displayed are also based on tip

percentage, though they could have been

any other attribute as well. Introducing

a spatial predicate has a large observable

impact on the explanation compared to

the one in Section 3.1.2

There is a visible difference between the

explanations in Fig. 3.1 and Fig. 3.3. This is because Fig. 3.1 shows the explanation

for average tip percentage in general where the entire New York area is covered in

the observation. Fig. 3.1 on the other hand shows the explanation in the context of

the dropoff zone for the trip where the pickup zone is LaGuardia airport.

3.2 Studied Approaches

There are three main approaches that we use in this thesis. Aggravation, Intervention

and Salient Features. We also introduce hierarchical intervention. This approach is an

extension of intervention which takes spatial clusters into account. Originally, Aggra-

vation and Intervention were used in a non spatial context in related works(Chirigati

21

et al., 2016). However, we extended these solutions to fit into our spatial taxonomy.

3.2.1 Aggravation

The first approach we will look at for explanation is aggravation. This approach tries

to look at tuples which ’aggravate’ the results. The main idea is to calculate the value

of the observation for each candidate explanation. The candidate explanation with

the highest value has the highest weight as the explanation.

Let q be our observation query(aggregate query). Let ϕ be our candidate explanation.

Let Dϕ be the dataset that satisfies our candidate explanation i.e. Dϕ = σϕ(D). Let

Q be a scalar function that takes in a dataset and gives the value obtained when q is

applied to this data. The degree of candidate explanation, δagg, by aggravation can

be simplified as Q(Dϕ).

In order to have a degree of explanation which is high when we are closer to our

desired explanation, we need to have a direction for our explanation. For example, if

we want to observe high values of tip percentage in the NYC TLC data, our direction

will be high. If we want to observe lower values of tip percentage, our direction will

be low. If our direction is low, we are interested in the lower values. However, since

we want our degree of candidate explanation to be higher when we have the desired

candidate explanation, we can simply reassign its value.

δagg :=

Q(Dϕ), if direction = high

−Q(ϕ), otherwise
(3.1)

In order to decrease the number of permutations for candidate explanations, we can

bucket the values. Consider an attribute a in the dataset. Let Va represent each value

that a can takes up, where Va = {v1, v2, ..., vn} and n is the number of tuples. Let the

minimum value in Va be represented by amin.The mean value, µ, is defined as Σivi
n

.

22

The standard deviation, σ, is defined as
√

1
n−1

Σi(vi − µ)2. Each value is assigned to

a bucket. Let bi be the bucket the value, vi is assigned to. Then

bi =

⌊
vi − amin

σ

⌋
Now, instead of using all the permutations in Va as part of our candidate explanations,

we can rather use all the distinct values of buckets. The predicate represented by each

bucket bi is simply

a ≥ (amin + bi × σ) ∧ a < (amin + bi × (σ + 1))

This decreases the number of permutions for candidate explanations by a factor of 1
σ
.

As a hands on example of this approach consider the observation on the NYC TLC

data represented in Query 3.1.

1 SELECT AVG(t r ip_d i s tance) FROM

2 FROM nyc_data

Query 3.1: Aggregate Query for average tip percentage

We are interested in the candidate explanation in the context of the number of

passengers. The top explanation for this observation gives Q = 6.00, bi = 3.

Since we know the bucket and σ. The explanation predicate turns out to be

passenger_count ≥ 3.97 ∧ passenger_count < 5.30. If you are a yellow cab driver,

this explanation may tell you to be prepared for a long trip if you have four or five

passengers.

Now that we have described the aggravation approach for the nonspatial case, we can

extend it to handle spatial observations and explanations. We introduce a dataset

of polygons P . The set P consists of distinct non overlapping polygons over our

dataset D. Let s,t be the spatial attributes in D. Each tuple in P has two attributes:

23

polygon_id, and polygon. We create a new dataset

D′ ← D ▷◁contains(P.polygon,(s,t)) P

Now we can use our spatial candidate explanations and observations defined in our

taxonomy(Section 3.1) on out new dataset D′

Fig. 3.3 can be considered as an example of spatial aggravation where the spatial

partitioning is based on taxi zones as dropoff locations. The observation is the tip

percentage where the pickup zone is LaGuardia airport.

3.2.2 Intervention

Intervention is an approach inspired by the concept of influence. It builds on the

aggravation approach(Section 3.2.1). Intervention tries to measure how much our

observations would change had our explanation not been present. Let D be the

dataset we are interested in. Let Q be a function which returns the value of our

observation given a dataset. Keeping our taxonomy in context, this means Q returns

the value of our aggregate observation query. Let ϕ be our candidate explanation.

Let ∆ϕ ← σϕ(D). Let Dϕ = D −∆ϕ. The direction of our observation can either be

high or low depending on whether we are interested in the greatest or least values of

observation respectively. Our degree of candidate explanation by intervention, δint,

can then be expressed as,

δint :=

−Q(Dϕ), if direction = high

Q(Dϕ), otherwise
(3.2)

We want the degree of candidate explanation by intervention to be higher the closer

we are to the direction of the observation, therefore, we use the negative value when

the direction is high. If the influence of the candidate explanation is high, it will

24

result in a low observation value once the candidate explanation is removed from the

dataset.

Since intervention extends the idea presented by aggravation, it has similar issues

when it comes to the number of permutations for candidate explanations. Similar to

our approach in aggravation(Section 3.2.1), we can reduce the number of permuta-

tions by bucketing the attributes. We can extend intervention for spatial observations

and explanations the same way we did for aggravation. The set P consists of distinct

non overlapping polygons in our dataset D. Let s,t be the spatial attributes in D.

Each tuple in P has two attributes: polygon_id, and polygon. We create a new

dataset D′ ← D ▷◁contains(P.polygon,(s,t)) P . Spatial observations can now be defined as

aggregate queries with a predicate containing P.polygon. Candidate spatial explana-

tions can be defined as candidate explanations containing P.polygon as emphasized

in our taxonomy(Section 3.1).

Figure 3.4: Number of Zones against Degree of Spatial Aggravation

In order to compare the differences between aggravation and intervention, it is helpful

to look at their degrees of aggravation and intervention respectively. As an example,

we look at the NYC TLC data where P is the set of taxi zones. Fig. 3.4 shows a

histogram for the number of taxi zones which fall inside different range of the degree

25

Figure 3.5: Number of zones against their degree of Spatial Intervention

of candidate explanation by aggravation. Fig. 3.5 shows a similar histogram for the

number of zones between certain ranges for the degree of candidate explanation by

intervention. The observation in both cases is the average tip percentage. The degrees

of explanation and the number of zones represent the domain and range, respectively.

It is immediately evident from these two histograms that the domain for explanation

by aggravation is 150 times larger than intervention while the range for explanation by

intervention is 2.5 times larger than aggravation in this instance of the problem. The

reason for having a small domain for intervention is because the influence of removing

one of the zones on the observation is very small, whereas, each zone may have a large

difference in average tip percentage compared to other zones. We will look further into

the implications of these differences when we evaluate these approaches(Section 5).

3.2.3 Salient Features

Another approach for finding explanations is the use of salient features. As the name

suggests, salient features intend to highlight portions of data which stand out. One

of the examples which illustrates this can be seen in Fig. 1.1. The figure shows the

average number of taxi trips per day over the course of a month. There is a large

26

noticeable decline in the number of trips. The data representing this decline can be

considered as a salient feature. Salient features like these tell a lot about the data.

For example, if you were to look up the date illustrated in the example where the

number of taxi trips drops, you would find that there was a travel ban because of

extreme weather conditions.

Salient features are based on temporal or spatio temporal scalar functions. This

approach does not work with non-temporal functions. We define two types of scalar

functions: 1-D scalar functions and 2-D scalar functions. 1-D scalar functions map

time to a scalar value. For example, the data presented in Fig. 1.1 maps time to

the number of taxi trips. 2-D scalar functions map time and space to a scalar value.

Fig. 3.1 shows an example of a 2-D scalar function for one time step. Since our

taxonomy is concerned with only the spatial domain of this problem, we will be

considering a 2-D scalar function where one time step covers the entire scope of our

dataset, i.e. 1-D scalar function based on space. We go from 2-D to 1-D by only

considering the entire time range as a single entity. It might be easier to understand

this by considering a rectangle and a line. If a rectangle only has a unit width, it

forms a line.

Now that we understand what salient features are, the natural question would be how

to find salient features in a dataset. In order to calculate salient features, we define

two threshold values θ+ and θ−. Positive salient features are the parts of our scalar

function where its value is greater than θ+ i.e. f−1([θ+,∞)). Negative salient features

are the parts of our scalar function where its value is less than θ− i.e. f−1((−∞, θ−]).

The local maxima and minima are referred to as critical points i.e. ∇f = 0

Our extension of this approach for spatial explanation stems from the fact that each

feature can be represented as a predicate. For instance if we consider the function

represented in Fig. 1.1. Let θ− be 20,000. Then the negative salient feature can be

27

represented as a predicate based on time and the number of trips. In the case of a 2-D

scalar function, the predicate would be based on the time, attribute, and a polygon.

In case of a 1-D spatial scalar function, the predicate would consist of a polygon,

and an attribute. In order to calculate an explanation, we measure the co-relation

between scalar functions of different attributes in a dataset. Let f1 be the scalar

function for one attribute and f2 be the scalar function of another attribute. Let F1

and F2 be the features of f1 and f2 respectively. We define F to be the set of features

both f1 and f2 have in common, where F = F1∩F2. f1 and f2 are feature related at a

point x if x ∈ F . f1 and f2 can be positively or negatively related. Let F+ = F+
1 ∩F+

2

where F+
1 and F+

2 are positive features of f1 and f2 respectively. Let F− = F−
1 ∩ F−

2

where F−
1 and F−

2 are negative features of f1 and f2 respectively. Then f1 and f2 are

positively related at x if x ∈ F+ or x ∈ F−. f1 and f2 are negatively related at x if

x /∈ F+ and x /∈ F− and x ∈ F .

The value of relationship score, τ , can help us decide whether two attributes are

co-related. If the attributes are related, then their features can be represented as

candidate explanations. Let p be the set of positive relations in F . Let n be the set

of negative relations in F . Then, τ = |p|−|n|
|F |

Our system builds on the implementation of the salient features by Chirigati et al.

(2016) in their work on the Data Polygamy framework. Calculating salient features

consists of three main steps: Pre processing, aggregation, and indexing. Each step in

this process is implemented as a map reduce operation.

In the preprocessing step, the spatial and temporal attributes of the dataset are

used to select the data. The spatial and temporal attributes form the key in the

MapReduce job while the average of our attributes forms the value. In the aggregation

step, the scalar functions are generated for the data. Each attribute in our dataset is

represented by a different scalar function. Several scalar functions are calculated for

28

each attribute for each spatio temporal resolution e.g. the spatio temporal resolution

of ’hour’ and ’neighborhood’ has a different scalar function compared to that for

’day’ and ’ZIP code’. The next step consists of indexing the data. Indexing consists

of creating a graph out of the aggregated data. Each node in the graph represents

a point in the spatiotemporal domain. It may be convenient to think of this as a

3-D graph where two axes represents space and another represents time. A node

is connected to another node if they are adjacent to each other in space(e.g. two

neighborhoods next to each other) and time. The value of each node is the average

attribute value. Due to the nature of the data, some points in the graph might be

missing. The indexing step linearly interpolates the missing points in the graph. The

2-D scalar functions we calculated are finally used to calculate whether each node in

our graph is a negative salient feature or positive salient feature.

After the salient features are calculated we need to measure how well they explain

the data. We do this by finding the relationship score between the observation scalar

function and the scalar function for the remaining attributes in our dataset. The

non spatial explanation consists of our threshold values while the spatial explanation

consists of the polygons represented by the co-related salient features.

29

Chapter 4

SPATIAL EXPLANATIONS USING HIERARCHICAL INTERVENTION

Figure 4.1: An outline for our system framework

4.1 Introduction

Hierarchical Intervention is an extension of the intervention approach. The idea

behind hierarchical intervention is to improve our explanations by grouping together

spatially colocated polygons in our candidate explanation. We divide the space into

30

a set of levels. The first level contains the entire space as one cluster, while the last

level contains each zone or each point in each cluster.

If we look at a high-level overview of our method, it involves partitioning the data

spatially into a hierarchy. The top level of the hierarchy consists of all the tuples in

the data. The lowest level of the hierarchy contains each individual tuple. We use

this hierarchy to perform aggravation and intervention. Each cluster in the hierarchy

represents a spatial predicate. Finally, we compare all the clusters in every level of

the hierarchy to rank explanations.

Algorithm 1 Algorithm for Hierarchical Intervention
1: procedure Explain(tuples)

2: input : tuples with spatial attribute

3: output : ranked spatial explanations

4: hierarchy ← Cluster(tuples) ▷ Step 1

5: dag ← Create Dataframes from hierarchical levels ▷ Step 2

6: current_level ← Get last level from dag

7: AggravationIntervention(current_level)

8: current_level ← current_level − 1

9: while current_level > 0 do

10: AggravationIntervention(current_level) ▷ Step 3

11: ResolveOverlaps(current_level) ▷ Step 4

12: end while

13: explanations← Rank(dag) ▷ Step 5

14: return explantions

15: end procedure

Fig. 4.1 shows the system diagram for our solution which uses hierarchical interven-

31

tion. We take inputs in the form for aggregate queries. An arithmetic expression

encapsulates the relationships between these queries. On the other hand, we have

a spatial dataset. We use clustering/partitioning to create a hierarchy out of our

spatial data. Depending on the hierarchy that we have created and our inputs, we

perform aggravation and intervention. The results of aggravation and intervention

are used to in a ranking system based on an explanation index. The explanation

index measures the candidate explanations as a linear relationship between aggra-

vation and intervention. How much each explanation approach is weighted in the

explanation index is under the control of the data analyst. Finally, the top results

are used for visualization. We have created a web-based GUI to display these kinds

of explanations.

In order to get a better understanding of our spatial explanation approach, we will

highlight our algorithm. We have designed our approach in the context of the pro-

gramming paradigms provided by Apache Spark. The algorithm uses dataframes to

store each level in the spatial hierarchy. The leaf nodes are populated using aggra-

vation/intervention operations. The intervention/aggravation values of the non-leaf

nodes are populated using the data from children nodes. Since our technique uses

memoization in a directed acyclic graph, it can be categorized as a dynamic program-

ming approach.

Fig. 4.2 shows our hierarchy in the form of a tree. Nodes with overlapping children

are marked using a red dashed line. The children of these nodes represent clusters of

tuples which have some common points of intersection. Since we want to build our

graph bottom up, such overlaps present a concern. We do not want to use tuples

multiple times in our calculations.

We represent each node in our hierarchy in a dataframe(Fig. 4.3). The dataframe

contains the id of the node(tid), the id of the parent node(parent), intervention,

32

Figure 4.2: The hierarchy used by our algorithm

aggravation, aggregates of each attribute, and a column for intervention and aggra-

vation for each aggregate query in our input. While dataframes look like traditional

RDBMS tables, they have a few differences. Our solution exploits these differences

to get more out of the system. In this case, we use the arbitrary number of columns

in the dataframe to our advantage by representing the aggravation/intervention for

each query in a separate column.

In order to build the DAG bottom up, we want to use the values of aggravation and

intervention in the children nodes to build up. At the beginning of the algorithm,

we keep a record of the aggregates for the entire dataset. As mentioned before, we

also have aggregates for each node in our dataframe. We can use these two values to

calculate aggravation or intervention. For example, if our aggregate query was SUM

of an attribute and the node we are looking at consists of two child nodes, then the

aggravation value would just be the sum of both the children. The intervention value

33

Figure 4.3: Dataframes represent each level in our hierarchy

would be the difference between the sum of the child nodes and the sum of the entire

data. Using this approach we can build the explanations up using a left join on the

parent and children dataframes.

Once we have built up our DAG one level, we still have tuples which contain incorrect

data. These are the tuples with duplicates. Fig. 4.5 shows a representation of this

scenario. In order to handle this case, we split our dataframe into two parts: one

containing nodes with overlap bit, and one containing tuples without the overlap bit.

The Dataframe with the tuples containing the overlap bit has the intervention and

aggravation values recalculated. Finally, the split dataframes are merged together to

give a final dataframe for the level in the hierarchy without and recounted values.

This dataframe can be used for constructing the DAG up further iteratively till we

reach the root node.

34

Figure 4.4: We use memoization to build DAG bottom up

4.2 Step1: Spatial Partitioning/Clustering

There are several approaches to cluster data. Each clustering approach has a large

impact on the resulting explanations. In order to understand the issues with expla-

nations using spatial clustering, we need to have an understanding of the clustering

approaches.

4.2.1 R-Tree

An R-Tree is a data structure which is commonly used for spatial data indexing. The

idea behind the R-Tree is similar to the idea behind a binary tree i.e. It is faster to

query data if it is stored in the form of a hierarchy(Guttman, 1984). In an R Tree,

this hierarchy exists in the form of Minimum Bounding Rectangles(MBR).

The top level of an R Tree consists of a set of MBRs which cover a large spatial area.

Each MBR can now be subdivided into further MBRs which makes up the second

35

Figure 4.5: Recalculation is done for overlapping nodes

level of the tree and so forth. At the leaf nodes of the tree, each node consists of a

single object in our underlying data.

There are three main considerations when building an R Tree: insertion, deletion, and

search. In order to insert data, it is important to consider that the tree is balanced.

A balanced tree results in faster search since the depth of the tree is reduced. The

same thing needs to be taken into consideration with deletion. In order to insert an

element, a heuristic is usually involved. The main objective when inserting into an

R-Tree is to minimize the splitting and enlargement. If an element can be inserted

into an existing MBR, then it is preferred. Otherwise, existing MBR’s are either split

or enlarged.

When elements from an R-Tree are deleted, the parent nodes are also taken into con-

sideration. This is because deleting elements may result in a change in the parent

MBR as well, unlike a B-Tree. B-Tree is an indexing structure inspired from a binary

tree (Bayer and McCreight, 1970). An R-Tree maintains a minimum utilization con-

stant into consideration when deleting. If a node in the R-Tree is below the minimum

36

R15

R2

R6

R7

R17

R18

R19

R1

R3

R4

R9
R11

R13

R10

R12

R16
R14

R8

R5

Figure 4.6: An illustration of R-Tree

utilization, the elements are reinserted.

Finally, the main purpose of constructing an R-Tree is to optimize search speed. If

the branching factor of the R-Tree is λ and there are n elements that are indexed,

then the search cost of the R-Tree is logλ n assuming that the tree is balanced.

4.2.2 R*-Tree

R* Tree is a variation of R-Tree(Beckmann et al., 1990). The objective of an R*-Tree

is to minimize overlaps and coverage in an R-Tree. It also optimizes for margin and

area. The idea behind R*-Tree which helps in achieving its objective is to use the

perimeter of the MBR as a heuristic when splitting and creating R-Trees.

Unlike R-Trees, the insert operation of an R* Tree also incorporates deletion. When

an element is added to an R-Tree, an existing MBR is either extended or split. How-

37

ever, ordering of the insertion in an R-Tree deforms existing MBRs and may lead to

more coverage. The R* Tree solves this problem by removing elements from nodes

and reinserting them. Splitting of MBRs is also based on perimeter. There are mul-

tiple ways to split an MBR, but if its split based on the least resulting perimeter as

a heuristic, then this heuristic leads to better partitioning with less overlaps.

The search and delete operations of an R* Tree are the same as an R Tree.

4.2.3 K-means clustering/Voronoi partitioning

K means clustering is an algorithm designed to cluster a group of points (MacQueen

et al., 1967). As the name suggests, the user decides the number of clusters that

he/she wants. K represents the number of clusters. The algorithm randomly selects

k seed points. The seed points can also be selected using a heuristic to improve the

clustering. The points closest to each of the seed points form clusters. The k means

algorithm is iterative. Which means it does not end there. The centroids of the

clusters are used as new seed points and the process is repeated until the centroids

are constant. Algorithm 3 shows our version of the kmeans algorithm where the

selectivity is used as a metric for judging the clusters.

4.2.4 Hierarchical Greedy Clustering

Hierarchical Greedy Clustering is a popular algorithm in data visualizations because

of its speed (Agafonkin, 2016). The idea behind this algorithm is to randomly select

points and create clusters around them.

Let D be our spatial dataset. Let P be a set of distinct polygons over our dataset

D. We define a set of distinct clusters of polygons Ph. Let C be the set of centroids

in P i.e. ∀pi ∈ P , ci is the centroid for pi, where ci ∈ C. We define a set of n levels,

L = {l1, l2, ..., ln}. We represent each centroid in C on a Cartesian plane where xi is

38

the first dimension of the centroid ci and yi is the second dimension of the centroid

ci. Let xmin, xmax be the minimum and maximum value for xi respectively. Let

ymin, ymax be the minimum and maximum values of yi respectively. There is a radius

associated with each level in L. Let ri be the radius for level li in L, We can define

ri in general as,

ri =

√
(ymax − ymin)2 + (xmax − xmin)2

2i−1

The set of clusters,Gi, for level li can be defined as Gi = {pk|(x2
k + y2k < r2i)}∀pk ∈ P .

The algorithm for the implementation of this approach is covered in Section 4.4.1.

Greedy Hierarchical Clustering turned out to have a drawback when we use it for ex-

planations. It selects seed points randomly. This means that in each level, the clusters

can be highly imbalanced. We compared this approach to K means(Voronoi parti-

tioning)(Hartigan andWong, 1979; Aurenhammer and Klein, 2000), R Tree(Guttman,

1984) and R* Tree(Beckmann et al., 1990).

The main idea behind the hierarchical intervention approach, regardless of the parti-

tioning algorithm, is to help us in increasing the domain for our degree of explanation.

Since intervention is a subset of this approach, the domain is at least as large as that

for intervention. After we have partitioned our data, each partition can be used as a

predicate for aggravation and/or intervention.

4.2.5 Step2: Hierarchical Dataframes Construction

In our implementation of the system, we use the programming paradigm provided by

Apache Spark. This involves using dataframes for processing. Dataframes resemble

tables in a traditional RDMS. Each cluster in our spatial hierarchy is represented as

a node in a tree. Each level of the tree is encapsulated as a dataframe. Each node has

an ID associated with it. A tuple in our dataframe contains the ID of the node, the

ID of the parent node, a column representing the overlap bit, columns representing

39

the aggregates of the attributes, columns representing the aggravation/intervention

for each query in our observation, and a column for the final values of aggravation/in-

tervention after evaluating the arithmetic operation that represents our observation.

The spatial hierarchy that we construct in step 1 of our algorithm is already a DAG

since it takes the form of a tree. But for the next few steps, the DAG that we use is

based on the dataframes. Instead of calculating aggravation and intervention for each

tuple in our set of dataframes, we can use the values calculated in the leaf dataframe

to build up the explanations.

4.2.6 Step3: Building up the DAG

Aggravation and Intervention are very expensive operations. In order to create a

system for explanations which performs well, we need to reuse calculations. Thats the

main reason we constructed our DAG in the first place. The intervention/aggravation

values stored in one level of our DAG can be used one level above. We use the

associative property of aggregate functions like sum and count to build our DAG

bottom up. We use the group and join operations to implement this. The tuples at

one level are grouped based on the parent id and left joined with the tuples at the

parent level based on the node id and parent id of the child and parent dataframes

respectively.

Our system is designed to work with arbitrary clustering algorithms. Some of the

clustering algorithms like K-Means have no overlapping tuples in the clusters with

others like R-Tree have partitions with overlaps. In our spatial hierarchy if a node has

child nodes with overlapping points, the overlap bit for that node is set to true. Using

our build up approach so far, these nodes contain inaccurate values of intervention

and aggravation. Before building the DAG further up these values need to be fixed.

40

4.2.7 Step4: Overlap Resolution

Depending of the type of spatial partitioning, some nodes in our DAG have incorrect

values of aggravation/intervention stored in the dataframe. These are nodes where

the overlap bit is true. Since we are using dataframes, we cannot update individual

tuples. Instead, we create two dataframes out of the original. One containing tuples

where the overlap bit is true and one containing the rest of the tuples. The aggra-

vation/intervention and aggregates for the first dataframe are recalculated. Finally

both the dataframes are combined using union and the old dataframe is replaced

with the new one in the DAG. Using this sequence of operations, we can reduce the

number of calculations. Since our dataframe now contains accurate information, we

can resume building the DAG further up.

4.3 Step5: Ranking Explanations

In order to get the most out of Hierarchical Intervention, we introduce two new

metrics: Intensity and Influence.

4.3.1 Intensity

We define intensity as a metric which measures the standalone value of the expla-

nation. The relevance metric borrows a lot from our definition of aggravation. It

might be convenient to think of a web search engine when we are looking at the

intensity metric. When we use a search engine, we provide a search term as a query.

The search engine looks at all the pages in its database and returns the results in

order of relevance. The top results in the search engine may not have a significant

effect on the entire web if they were to be removed. However, the top result in the

search engine has the highest relation to the data. For example, the top result for a

41

search engine which uses tf-idf might be a page containing the highest frequency of

the search term(Robertson, 2004).

Let D be our dataset. Let ϕ be our candidate explanation. Let R be the function

which maps our dataset to the value of our observation. Then we can define intensity

as,

intensity = |R(σ(D))−R(σϕ(D))|

4.3.2 Influence

We define influence as a metric which measures the value of the explanation compared

to the entire dataset. The influence metric borrows from our definition of intervention.

The influence metric measures how much the observation would be affected if we

remove the data related to our explanation(the influence of our explanation on the

observation). We can use the analogy of the search engine again here. One of the

earliest algorithms used by Google to rank webpages used links to other pages(Brin

and Page, 1998). The page which was linked the most on a variety of websites was

ranked higher. If you remove a highly relevant page, many other pages might not

exist. Influence uses the same principle.

Let D be our dataset. Let ϕ be our candidate explanation. Let R be the function

which maps our dataset to the value of our observation. Then we can define relevance

as,

influence = |R(σ(D))−R(σ¬ϕ(D))|

The greater the value of influence, the more its impact on the observation.

Our evaluation metrics suggest that influence and intensity explain data in different

ways. Explanations with higher influence tend to give predicates which cover a larger

area while explanations with higher intensity tend to give predicates which cover a

small area. We can balance out these two metrics according to the preferences of the

42

observer. We define the explanation index, ϵ as:

ϵ = α× influence+ (1− α)× intensity

α is the explanation coefficient. It is a variable whose value is decided by the user.

Explanations given by Hierarchical Intervention can be ranked on the basis of the

explanation index.

4.4 Implementation

We created an implementation of the our system as a proof of concept. Our system

uses a web based GUI for visualization while the backend processing is done using

Spark(Shanahan and Dai, 2015). Fig. 4.1 shows the archicture diagram of the en-

tiresystem. We borrowed from the MapReduce implementation of Salient Features

from the Data Polygamy Framework(Chirigati et al., 2016). There are three main

stages in our system pipeline: Preprocessing, User Input, and Explanation Visual-

ization. The preprocessing stage is different for each approach to explanation. The

user input stage can be divided into two further parts: The user observation, and the

type of explanation the user is interested in. An example of the explanation approach

would be intervention. The user observation can be one of the attributes the user

wants to observe e.g. a mathematical expression spanning several aggregate queries.

The aggravation approach that we use makes several optimizations to the naive ap-

proach one may come up with. A naive approach may consider each candidate expla-

nation and calculate the degree of explanation by aggravation for each one. However,

using such an approach would take a long time. If the attribute which we are looking

into for explanation has m possible values, it would take O(m) queries to come up

with top explanations. If we have r rows in our dataset and each observation query

has a linear time complexity, our total time complexity would be O(rm). We can

43

reduce the time complexity by a large factor if we make each candidate explanation

cover a larger range of the dataset.

As mentioned in Section 3.2.1, we use bucketing to reduce the number of permuta-

tions. We use the standard deviation, σ, of each attribute to separate values which are

near the average from the others. We can get the minimum and standard deviation

of each attribute over a single iteration of our table in O(r) time. Since the bucket

for each value of the attribute can be calculated in constant time, we create a new

table containing the bucket value of the attribute in O(r) time.

Since we bucketed our data, the number of candidate explanations have been reduced

to O(
(
m
σ

)
). However, there is still room for improvement. Our observation is always

an aggregate query. If we group on the explanation attributes, we can still get all of

the corresponding values of the observation in one iteration of the data, making our

time complexity O(r).

Another component of our system is spatial data. Our system is designed to handle

spatial observations and explanations. When given a spatial observation, our system

filters out the data with the spatial predicate given in the observation. The remaining

data is used just like any other explanation task. Spatial Explanations, on the other

hand, require a bit more work. Given a set of polygons, doing a spatial join with the

data is a very expensive process. Our system performs a spatial join once and assigns

each tuple an ID based on which polygon it belongs to. The ID can now be used like

a regular attribute for explanation.

Intervention is another approach that our system uses. Some of the work we did to

optimize aggravation cannot be used to improve the time complexity for intervention.

This is because intervention looks at the effect of removing data. While we could

use a single iteration of the data for aggravation. We cannot do so for intervention

because removing one portion of the data completely changes what the observation

44

looks like. We can still use bucketing to reduce the number of combinations.

4.4.1 Hierarchical Intervention

Hierarchical intervention is an improvement on top of the intervention approach. The

main idea behind hierarchical intervention is to group spatially colocated points/poly-

gons together in an attempt to improve explanations. We use a partitioning algorithm

to create clusters. The base case of our algorithm consists of clusters with a single

node each. This makes the results of intervention a subset of the results of hierarchical

clustering. Algorithm 2 highlights the algorithm that we used for our implementation

of greedy hierarchical clustering. Note that each level in the hierarchy is a set cover

of all the nodes.

Greedy Hierarchical Clustering is an iterative algorithm. The base

case(Algorithm. 2;line 27) is when we reach the lowest level in the hierarchy

where we have individual points or zones. We start off with the highest level in the

hierarchy(Algorithm. 2;line 4). We select random points and form clusters around

them(Algorithm. 2;line 16). In the following iteration we reduce the size of the

cluster by a constant factor(Algorithm. 2;line 8) and repeat until we reach the base

case.

While greedy hierarchical clustering helps in increasing the domain for the degree of

explanation by intervention, the random selection of seed points makes the rate of

change of influence and intensity(Section 4.3) over the levels of hierarchy very volatile.

Our point is illustrated by fig. 5.2. The red line represents influence while the blue

line represents intensity. One would expect the curves to be logarithmic. However,

they more closely resemble a sinusoidal function.

45

Algorithm 2 Algorithm for Hierarchical clustering
1: procedure Cluster(max_radius, points)

2: input : max_radius, points

3: output : hierarchy_of_clusters

4: level ← 0

5: isBaseCase← false

6: while isBaseCase = false do

7: level ← level + 1

8: levelRadius← max_radius
2.0level

9: hierarchy ← ∅

10: unusedPoints← ∅

11: for point← points do

12: unusedPoints← unusedPoint ∪ point

13: end for

14: while unusedPoints.size > 0 do

15: cluster ← ∅

16: centroid←random point from points

17: for point← unusedPoints do

18: if point inside levelRadius then

19: cluster ← cluster ∪ point

20: unusedPoint← unusedPoints− point

21: end if

22: end for

23: hierarchy ← hierarchy ∪ cluster

24: end while

46

25: hierarchy_of_clusters← hierarchy_of_clusters ∪ {level, hierarchy}

26: isBaseCase← true

27: for cluster ← heirarchy do

28: if cluster.size > 1 then

29: isBaseCase← false

30: end if

31: end for

32: end while

33: return hierarchy_of_clusters

34: end procedure

In order to try to counter this problem, we used k means clustering. Algorithm 3

highlights our implementation of k-means clustering centered around our problem.

The algorithm is designed to find the clusters based on a heuristic of giving more

preference to balanced clusters i.e. each cluster has similar number of points.

Our algorithm for K-Means clustering is designed to handle data which is divided

into groups of zones. The results of K-means clustering are dependent on the choice

of seed tuples. In our algorithm, we allow a number of iterations of clustering to allow

the best selection of seed tuples based on selectivity(Algorithm. 3; line 9). For each

run, we select k seed tuples randomly. The Euclidean distance of each tuple in our

dataset from the seed tuples is used to determine which cluster the tuple belongs to.

When we have data divided into zones, each zone can represent a variable number

of tuples. The Euclidean distance is simply chosen because we want each Voronoi

partition to represent points closest to its seed. The centroid when considering each

zone as a single entity is different from a centroid where a weight is assigned to

each zone. Our algorithm takes this into account and calculates the centroid as an

47

Algorithm 3 Explanation Aware K means
1: procedure Cluster(points, k, number_of_runs)

2: cluster_possibilities← ∅

3: for i← 0, number_of_runs do

4: cluster_possibilities← cluster_possibilities ∪ ClusterOnce(points, k)

5: i← i+ 1

6: end for

7: best_clustering ← ∅

8: best_distance←∞

9: for possibility ← cluster_possibilities do

10: cluster ← GetCluster(possibility, points)

11: k_distance← GetKMeansDistance(cluster)

12: if k_distance < best_distance then

13: best_distance← k_distance

14: best_clustering ← cluster

15: end if

16: end for

17: return best_clustering

18: end procedure

19: procedure GetKMeansDistance(clusters)

20: max_distance← −∞

21: min_distance←∞

22: centroids← centroids of clusters

23: for centroid← centroids do

24: related_cluster ← cluster from centroid

48

25: cluster_weight← GetClusterWeight(related_cluster)

26: if cluster_weight > max_distance then

27: max_distance← cluster_weight

28: end if

29: if cluster_weight < min_distance then

30: max_distance← cluster_weight

31: end if

32: end for

33: return |max_distance−min_distance|

34: end procedure

35: procedure GetClusterWeight(points)

36: count← 0

37: for point← points do

38: count← count+ 1

39: end for

40: return count

41: end procedure

42: procedure GetCluster(centroids, points)

43: clusters← ∅

44: for centroid← centroids do

45: clusters← clusters ∪ {centroid, {}}

46: end for

47: for point← points do

48: closest_centroid← nil

49: for centroid← centroids do

49

50: if closest_centroid = nil then

51: closest_centroid = centroid

52: else if distance from centroid < distance from closest_centroid then

53: closest_centroid← centroid

54: end if

55: end for

56: Add point to cluster where the centroid is closest_centroid

57: end for

58: return clusters

59: end procedure

60: procedure ClusterOnce(points, k)

61: centroids← ∅

62: selected_points = ∅

63: for i← 1, k do

64: random_point← random point from points

65: while random_point ∈ selected_points do

66: random_point← random point from points

67: end while

68: selected_points← selected_points ∪ random_point

69: centroids← centroids ∪ random_point

70: i← i+ 1

71: end for

72: while true do

73: clusters← GetCluster(centroids, points)

50

74: new_centroids← ∅

75: for centroid← centroids do

76: cluster ← cluster for centroid

77: sum_x← 0

78: sum_y ← 0

79: num_values← 0

80: for point← cluster do

81: sum_x← sum_x+ point.x

82: sum_y ← sum_y + point.y

83: num_values← num_values+ 1

84: end for

85: avg_point← (sum_x/num_values, sum_y/num_values)

86: closest_point← nil

87: for point← cluster do

88: if closest_point = nil∨ distance of point from avg_point < dis-

tance from closest_point then

89: closest_point← point

90: end if

91: end for

92: new_centroids← new_centroids ∪ closest_point

93: end for

94: centroids_same← true

95: for new_centroid← new_centroids do

96: centroid_found← false

97: for old_centroid← centroids do

51

98: if old_centroid = new_centroid then

99: centroid_found← true

100: break

101: end if

102: end for

103: if centroid_found = false then

104: centroid_same = false

105: break

106: end if

107: end for

108: if centroids_same then

109: break

110: else

111: centroids← new_centroids

112: end if

113: end while

114: return centroids

115: end procedure

average based on the selectivity of each tuple in the cluster(Algorithm. 3; line 80).

For each iteration we select new seed points as the tuples closest to the calculated

centroids(Algorithm. 3; line 95). This process is repeated several times. The heuristic

that we use to select the best seed tuples is mentioned in the GetKMeansDistance

procedure of our algorithm(Algorithm. 3; line 19). Here the heuristic is selected

such that a small absolute difference between the selectivity of its clusters would be

considered as a good clustering.

52

K-Means clustering gives a much better result than greedy hierarchical clustering for

our problem. However, we also used other spatial partitioning approaches like R-Tree

and R*-Tree for comparison. R*-Tree appears to be the partitioning algorithm which

gives us the best results according to our experiments (Section 5). Fig. 5.1 shows the

comparison between K-Means, R-Tree, and R*-Tree.

Once we have our hierarchy set up, we still have to use it to find an explanation. If we

had n nodes, the number of clusters we have for our hierarchy is n log n. This increases

the number of combinations for explanations significantly. However, we can use some

optimizations to save us some time complexity. Our approach uses memoization of

explanations for each spatial node to calculate the value of the degree of explanation.

We first calculate the statistics(sum, count) for each node individually and then

subtract it from the statistics for the attribute we are observing. For example, let

us consider a cluster, c, containing two spatial nodes a and b. We are interested

in the average tip percentage for taxi trips. The degree of candidate explanation

by intervention would be the average tip percentage when we remove a and b from

our dataset. Our system would memoize the values for the sum and count of tip

percentage for a, b as suma, counta, sumb and countb. It will also calculate the sum

and count for tip percentage for the entire dataset. When we need our system to

find the degree of explanation for cluster c. The formula for average is simply sum
count

.

Since our system calculated all the stats in one query, it does not need to perform

additional queries to find the degree. It can simply use sum−suma−sumb

count−counta−countb
to calculate

the average for intervention.

4.5 Interface

We created an interface for the system that we have proposed. This interface is web

based. It consists of a backend server and a front end for visualizations. The Backend

53

is responsible for querying the Apache Spark daemon with relevant queries. The front

end allows the user to define observations and visualize explanations. The front end

interface makes use of Mapbox to display the map, Deck.gl to create a visualization

overlay on the map. The overlay can be points or polygons. In order to handle

state changes in the front end, we used React.js front end library. We also show

histograms related to the data. For displaying these histograms, the Baidu eCharts

library was used. Since the front end was programmed in ES6, webpack was used for

transpilation(Webpack, 2018). Fig. 4.1 shows us a flow diagram for our system.

In order for the users to easily form observations, our frontend provides them with a

series of histograms. Each bar on a histogram represents an aggregate query. Instead

of writing queries, the user can easily use the bars in the histograms to be used as

variables. These variables can then be used in an arithmetic expression representing

the users observations. The user can also define custom variables in the form of

aggregate SQL queries manually using the interface.

The back end of the system is an Apache Spark application which calls the Spark

daemon for requests of aggravation, intervention, and hierarchical intervention. It

must be noted, however, that there are some operations that the backend performs

which are not executed as Spark tasks. There operations are: R-Tree and R*-Tree

creation. The framework that we have designed requires us to parse and alter queries

at multiple points in the pipeline. In order to avoid redesigning the wheel, we use the

parser implementation provided by PrestoDB(Facebook, 2018a).

To allow the front end to communicate with the backend, there is a middleware

application. The job of the middleware is to take the input from the front end and

execute our backend application with the appropriate function and input parameters.

Our middleware is designed using Node js(Tilkov and Vinoski, 2010; Cantelon et al.,

2017). It takes aggregate queries, selectivity range and the number of explanations

54

as input and sends it to the backend application. The results are then sent to the

frontend.

Figure 4.7: The web interface for our solution

Fig. 4.7 shows the interface that we have created for our solution. The users may add

variables from the histograms or they may add them from their own sql queries. The

interface allows the user to filter by attribute before viewing the histograms.

In order to give a better idea of how the GUI works, we will use the Tempe City Opioid

Abuse Probable EMS Call data to show a use case (City of Tempe, 2018). This data

consists of emergency calls related to opioid related cases in the city of Tempe. The

location of the incidents and attributes about the subjects such as gender, veteran

status, and whether the subject is a student, are recorded in this data.

Before starting the analysis. The GUI allows the user to filter the data based on its

attributes. Fig. 4.8 shows the interface for prefiltering data.

Fig. 4.9 shows how the user can add bars on a histograms as observations. The GUI

produces histograms based on the filtered data. In order to facilitate users who do

55

Figure 4.8: The filter interface for the GUI

not want to use a query language like SQL, the GUI allows them to add bars on the

histograms as variables. Under the hood each bar is represented as an aggragate SQL

query. The GUI also allows the user to add their own SQL if they want to. The user

can also choose to view the scatterplot or the heatmap for the data represented by

each bar.

Fig. 4.10 shows the user interface for specifying various parameters for the calcula-

tions. The user can specify the relationship between variables here.

Finally, Fig. 4.11 shows the map visualization of the explanations provided by the

56

Figure 4.9: The histogram interface for the GUI

Figure 4.10: The parameters interface for the GUI

system.

57

Figure 4.11: The map visualization interface for the GUI

58

Chapter 5

EXPERIMENTS/EVALUATION

The main contribution of this thesis is to introduce a new approach for explana-

tions(Hierarchical Intervention). We evaluate this new approach in a number of

different ways. We perform qualitative evaluation and speed/scalability evaluation.

In order to compare the different clustering techniques that we use in hierarchical

intervention, we did a couple of experiments. Our solution relies on the fact that

the higher the influence or intensity are a measure of the value of our explanations.

We used a number of observations on the NYC TLC data to see how each clustering

technique fares against the others.

Experimental Setup. In order to compare the different spatial partitioning tech-

niques, we set up an environment for experiments. Since the quality of the explana-

tions does not depend on the speed and scale of the system, these experiments were

performed on a single node machine with an i7 6400 3.5 GHz CPU and 8GB of RAM.

The dataset used for this experiment was the NYC TLC data for January 2016. This

data contains 10 million trips.

We found that R-Tree and R* Tree partitioning is usually more stable than K Means

or Greedy Clustering. The stability of the clustering technique is referring to its

monotonicity of the explanation as a function of the number of clusters. Fig. 5.2

shows the influence against the number of clusters where the observation is the average

passenger count. The influence and intensity are closer to a sinusoidal curve than a

exponential or logarithmic curve. Fig. 5.1 shows another observation and a plot of

the influence of R-Tree and R*-Tree as well. The influence as a function of the

number of clusters is a lot more monotonic here. Furthermore, R* Tree has a higher

59

influence on average compared to other approaches making it a lot more suitable for

explanations. The qualitative evaluation that we define is based on K-Folds cross

validation. The reason for selecting these evaluations is to measure how the top

explanations provided by each approach fair as stand alone parts of data as well as

their effects on the entire dataset as a whole. Other than qualitative analysis we look

at the speed and scalability of each approach for performance evaluation.

0 10 20 30 40 50 60 70 80
number of clusters

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

in
flu

en
ce

Comparison between clustering/partitioning approaches
K-means
R* Tree
R Tree

Figure 5.1: Comparison of Influence against number of clusters for K-Means, R-Tree

and R*-Tree

Influence Comparison.

Fig. 5.3 shows the comparison between the influence of different approaches. Salient

features and Aggravation have a very low influence compared to Intervention and

60

Intensity

Influence

Level of the Hierarchy

In
fl

u
e

n
ce

/I
n

te
n

si
ty

Figure 5.2: Comparison of Influence and Intensity against level of hierarchy with

average passenger count as observation

hierarchical intervention. This is because the explanations provided by those ap-

proaches cover a very small portion of the entire dataset. This makes removing the

associated data have a negligible impact on the entire data.

5.1 K-Folds cross validation

In order to qualitatively assess the solutions, we use K-Folds cross valida-

tion(Refaeilzadeh et al., 2009). Since we do not have ground truth for our expla-

nations, we have to make a compromise in terms of estimating how good our solution

is. Our assumption here is that in general, a good explanation would stand out on

61

1 2 3 4 5
rank

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

in
flu

en
ce

Top explanations for avg(tip_percentage)
Aggravation
Intervention
Hierarchical Intervention
Salient Features

Figure 5.3: Influence for Spatial explanation for average tip percentage(Lower is

better)

unseen data i.e. given a good explanation on part of the data, it would give similar

results on unseen parts of the data. This is the same assumption that was made by

Chirigati et al. (2016) in their evaluation of the Data Polygamy framework. We split

the data into k parts. The data was divides by the month of the year. This is because

there are specific observable patterns in each month, e.g. weekends have less density

of trips than the weekdays for the dataset we evaluated. One of the parts is used to

find the explanation(the training data). The rest of the data is the test data. We also

calculate an explanation of the test data. The relative distance between the explana-

tion index of the test data and the explanation index of the explanation provided by

62

the training data when applied to the test data is used as a measure of evaluation.

The reason for using K-Folds evaluation in this way is because there is a lack of data

with the ground truth values. We can see similar approaches for evaluation used in

the works that our approach has been inspired from. The evaluation in the work

by Roy and Suciu (2014) is less relaxed because they only look at the magnitude

of intervention for evaluation, whereas, Chirigati et al. (2016) also use the NYC

TLC data for evaluation using the assumption that the data for 2011 and 2012 have

the same pattern. In order to measure the quality of the explanations provided by

hierarchical intervention we compare it with intervention and aggravation.

There is a reason for applying the explanation provided by the training data to the

test data. The observation can be anything. The size of the training and test data is

different depending on k. The observation can depend on the size of the data. This

adds a bias when the explanation index for the training data is compared with the

explanation index of the test data. Thus, we must apply the explanation provided

by the training data on the test data and compare it with the explanation when we

apply the same approach to the test data.

Experimental Setup. We performed the evaluation on the first 5 months of data

from the NYC yellow cab dataset from 2016. The data spanned 50 million trips.

The k for our evaluation was 5. This value was chosen after a series of experiments.

We wanted the size of each partition to be large enough to support our generalization

assumption. If the solution space for evaluation is small, it leads to inconsistent

results. Each month represented a partition for k-folds evaluation. According to

our analysis, we found that the approach works very well with low values of alpha.

Fig. 5.4 shows some of the results of our evaluation for a number of observations. The

lower the value of the relative distance, the better the results.

The relative distance in the K Folds cross validation represents how much the ex-

63

Figure 5.4: The result for k-folds evaluation shows good results when the ap-

proach is used in favor of influence(lower is better) for observations represented by

Queries 5.1, 5.2, and 5.3

planation impact changes when we look at the explanations in the context of unseen

data. A relative distance of zero represents that the explanation has the same impact

on unseen data as if we had seen the data. A relative distance of one would represent

that the top explanation for the unseen data has nothing in common with the expla-

nation of seen data. Let etest be the explanation index for the test set. Let etrain be

the explanation index for the training set. Then,

relative_distance = |etest − etrain|
|etest + etrain|

The relative distance metric was chosen because of its nature of showing a steep

decline when two solutions do not match. It is also ideal because it caters to the

64

different types of observations that a user can specify. Since the observations in our

system are defined as an arithmetic operation over aggregate queries, they do not

have bounds on their values. Thus, it makes relative distance a useful metric for

measuring similarity.

Here are the observations that we show in Fig. 5.4:

1 S e l e c t count (∗) as q1 from data where payment_type=1;

2 S e l e c t count (∗) as q2 from data where payment_type=2;

3 Observation = q1/q2

Query 5.1: o1 for Fig. 5.4

1 S e l e c t AVG(t r ip_d i s tance) as q1 where passenger_count =4;

2 Observation = q1

Query 5.2: o2 for Fig. 5.4

1 S e l e c t count (∗) as q1 from data where vendor id =1;

2 S e l e c t count (∗) as q2 from data where vendor id =2;

3 Observation = q1/q2

Query 5.3: o3 for Fig. 5.4

5.2 Precision and Recall

Since it is very difficult to find datasets with the ground truth we used synthetic

datasets to evaluate our solution(Maciejewski et al., 2009). The synthetic dataset is

fabricated using real data from Indiana Public Health Emergency Surveillance Sys-

tem. This data contains information about Patients in Indiana and their health issues

over time and location. We can calculate precision and recall using this data(Powers,

2011). The data is synthesized in such a way that it shows similar patterns to the

actual data. Synthetic data related to outbreaks of certain diseases is synthesized into

65

this data. In order to evaluate our system, we used the temporal component of the

outbreak and the type of disease as our observation. To be specific, the synthetic data

consisted of an outbreak of Gastrointestinal infection in July. Our observation was

the ratio of the number of gastrointestinal infection incidents between June and July

when there’s an infection against the number of gastrointestinal infection incidents

between June and July in synthesized data where there wasn’t an outbreak. Precision

and Recall was calculated by comparing the areas of the top ten explanations related

to the ground truth with the approximate area covered by the outbreak data. We

cannot use the individual points to calculate precision and recall because there is a

lot of data unrelated to the outbreak which occurs in proximity. To put things into

context, each instance of the synthesized data contains 2 million records. The data

related to the outbreak consists of a few dozen records. Fig. 5.5 shows a heatmap of

all the points in the synthesized data. The outbreak for this particular instance only

affects a small part of Indiana to the North West just below Lake Michigan. Fig. 5.6

shows the points representing the outbreak as well as some of the top polygons re-

turned using Hierarchical Intervention. While our system is designed to work fast

on partitioning techniques with no overlaps like K-Means and Greedy Hierarchical

Clustering. Some of the clustering apporaches that we use which give better results

do have overlaps. Thus we used R*-Tree partitioning in our example. The candidate

explanations provided by this partitioning techniques can have spatial overlaps.

Let E be the area represented by our polygons. Let O be the area represented by the

Outbreak points. Then,

Precision =
E ∩O

E
= 0.31

66

Figure 5.6: Synthetic Outbreak data. The circles show the ground truth while the

polygons show the relevant explanations produced by our system

Figure 5.5: A heatmap showing

sythesized data

For calculating recall, we can use the actual out-

break points since it doesn’t require false posi-

tives.

Recall =
true_positives
false_negatives = 0.74

5.2.1 Comparison

We compared the precision and recall of Hierar-

chical Intervention with Aggravation and Inter-

vention.

Aggravation. We used the same observation for

aggravation that we did for Hierarchical Interven-

tion. From the top ten explanations, only one of

67

the explanation was able to predict one of the 27 correct tuples in the ground truth.

Precision = 0.01

Recall = 0.04

Intervention. Finally, Intervention was used to find an explanation. Since there was

only one hospital in the area of the outbreak, Intervention was able to provide that

hospital as a relevant predicate in an explanation. This resulted in all the ground

truth points being included in the explanation! However, since there are a large

number of tuples related to this predicate, it resulted in a low precision.

Precision = 0.0003, Recall = 1

5.3 Speed and Scalability

The speed of each approach is simply the time taken to calculate the explanations.

The time varies depending on the size of the data. For performance evaluation, we

used the NYC TLC data for 2016. The data is divided into months. As we increase

the number of months to be processed, the time taken for each approach increases

almost linearly for aggravation, intervention and hierarchical intervention. For salient

features, the time increases slightly exponentially. The results of our evaluation are

displayed in Fig. 5.7

Experimental Setup. The speed of each approach is simply the time taken to calcu-

late the explanations. Since all the approaches are implemented on top of distributed

systems, the time varies depending on the number of nodes used. We experimented

with calculating explanations for 1,3, and 5 months in a distributed environment.

For the cluster, we used Google Compute Engine nodes(1 vCPU, 3.5GB RAM, 4

nodes). All the nodes in our cluster had the same specifications. The Aggravation,

68

Intervention and Hierarchical Intervention were tested on Apache Spark running on

YARN while the Salient Features were generated with the Data Polygamy Framework

running on YARN.

Figure 5.7: Time taken by each approach as we increase the size of data

The run times that were observed can be explained as follows. Aggravation takes

the least amount of time of the compared approaches. Intervention costs more than

aggravation because it includes the additional step of calculating statistics for the

attributes as well as iterating the table. Hierarchical Intervention takes more time

than aggravation but less time than intervention. This is because of several factors.

One of the factors is that when we are using intervention and aggravation, we are

using several attributes, on the other hand, hierarchical intervention only uses the

69

spatial attribute. On the other hand, we are creating a hierarchy. The in the case

of this analysis we only used one query as the observation for the sake of compari-

son. However, multiple queries can affect the comparison as well. The time taken by

Salient Features is also affected by a number of factors. First, the implementation

of the salient features that we use is the one used in the Data Polygamy Framework

(Chirigati et al., 2016). This approach uses the MapReduce framework. The other

approaches use the Spark framework. Since Spark makes use of an execution plan

which is more efficient than MapReduce, it is a factor in the slower runtime of the

Salient Features approach. Thus, when comparing salient features to the other ap-

proaches, this can be considered something similar to black box testing. The most

expensive computation step in salient features is the interpolation step which doesn’t

occur in the other approaches.

70

Chapter 6

CONCLUSION/FUTURE WORK

In this thesis, we looked at different approaches for spatial explanations for arbitrary

observations. We built an approach called Hierarchical Intervention. According to

our evaluation, our approach outperforms aggravation and intervention in precision

while it outperforms aggravation in recall. If we look at our approach from the

context of a data analyst, it is designed to provide an advantage over traditional data

analytics using relational database systems. The reason for this is because we use

programming paradigms for distributed processing. Even though our implementation

is designed to work on Apache Spark, the paradigms used may be useful for future

distributed processing systems like GOLEM which have an even larger processing

scope (Golem Factory GmbH, 2018). In addition to saving valuable time for data

analyst, our system is also useful for reducing the scope of work for the analyst. The

proposed system can be used as a search engine much like Google where the analyst

uses observations instead of search terms and the system comes up with explanations

instead of web pages. Instead of looking at the entire data, the analyst can look at a

small subset represented by these explanations to find what they are looking for.

There are a number of improvements that can be made on top of our proposed

approach that we weren’t able to implement due to the lack of time or availability of

datasets with the ground truth. One interesting idea is to use influence and intensity

as parameters of perceptrons in a neural network(Grossberg, 1988; Widrow and Lehr,

1990). The neural network can be trained to explain specific datasets by using ground

truth. Many spatial datasets that we find also have a temporal component. Our

system does not handle the temporal aspect of the data. An improvement that can be

71

made to our approach is to use time range as a secondary component of our candidate

explanations. We can build a temporal hierarchy in the same way we build a spatial

hierarchy. The spatiotemporal hierarchy can be represented as a pyramid instead of a

tree. If we extend our idea of the spatiotemporal system to a neural network, we can

think of it from the perspective of a recurrent neural network(Chung et al., 2016). It

might also help to use Long Short Term Memory(LSTM) model to encapsulate the

value of explanations at levels of the hierarchy which are far apart (Hochreiter and

Schmidhuber, 1997). Since influence and intensity are expensive operations, the time

complexity of the network should also be taken into account and heuristics should be

used where necessary when using approaches with a lot of inputs.

72

REFERENCES

Adamson, C., Star schema the complete reference (McGraw Hill Professional, 2010).

Agafonkin, V., “Clustering millions of points on a map with Superclus-
ter”, https://blog.mapbox.com/clustering-millions-of-points-on-a-map-with-
supercluster-272046ec5c97, accessed: 2018-04-27 (2016).

Agarwal, R., R. Srikant et al., “Fast algorithms for mining association rules”, in
“Proc. of the 20th VLDB Conference”, pp. 487–499 (1994).

Assuncao, R. M. and E. A. Reis, “A new proposal to adjust Moran’s I for population
density”, Statistics in medicine 18, 16, 2147–2162 (1999).

Aurenhammer, F. and R. Klein, “Voronoi diagrams”, Handbook of computational
geometry 5, 201–290 (2000).

Baidu, “echarts”, http://echarts.baidu.com/, accessed: 2018-03-28 (2018).

Bayer, R. and E. McCreight, “Organization and maintenance of large ordered indices”,
in “Proceedings of the 1970 ACM SIGFIDET (now SIGMOD) Workshop on Data
Description, Access and Control”, pp. 107–141 (ACM, 1970).

Beckmann, N., H.-P. Kriegel, R. Schneider and B. Seeger, “The R*-tree: an efficient
and robust access method for points and rectangles”, in “Acm Sigmod Record”,
vol. 19, pp. 322–331 (Acm, 1990).

Beeri, C., P. A. Bernstein and N. Goodman, “A sophisticate’s introduction
to database normalization theory”, in “Readings in Artificial Intelligence and
Databases”, pp. 468–479 (Elsevier, 1988).

Borthakur, D., “The hadoop distributed file system: Architecture and design”,
Hadoop Project Website 11, 2007, 21 (2007).

Brin, S. and L. Page, “The anatomy of a large-scale hypertextual web search engine”,
Computer networks and ISDN systems 30, 1-7, 107–117 (1998).

Brunsdon, C., S. Fotheringham and M. Charlton, “Geographically weighted regres-
sion”, Journal of the Royal Statistical Society: Series D (The Statistician) 47, 3,
431–443 (1998).

Cantelon, M., M. Harter, T. Holowaychuk and N. Rajlich, Node. js in Action (Man-
ning Publications, 2017).

Charlton, M., S. Fotheringham and C. Brunsdon, “Geographically weighted regres-
sion”, White paper. National Centre for Geocomputation. National University of
Ireland Maynooth (2009).

Cheney, J., L. Chiticariu, W.-C. Tan et al., “Provenance in databases: Why, how,
and where”, Foundations and Trends® in Databases 1, 4, 379–474 (2009).

73

Chirigati, F., H. Doraiswamy, T. Damoulas and J. Freire, “Data polygamy: the many-
many relationships among urban spatio-temporal data sets”, in “Proceedings of the
2016 International Conference on Management of Data”, pp. 1011–1025 (ACM,
2016).

Chung, J., S. Ahn and Y. Bengio, “Hierarchical multiscale recurrent neural networks”,
arXiv preprint arXiv:1609.01704 (2016).

City of Tempe, A., “Opioid Abuse Probable EMS Call”,
http://tempegov.maps.arcgis.com/apps/opsdashboard/index.html, accessed:
2018-05-02 (2018).

Cleveland, W. S. and S. J. Devlin, “Locally weighted regression: an approach to
regression analysis by local fitting”, Journal of the American statistical association
83, 403, 596–610 (1988).

Dean, J. and S. Ghemawat, “MapReduce: simplified data processing on large clus-
ters”, Communications of the ACM 51, 1, 107–113 (2008).

Dismuke, C. and R. Lindrooth, “Ordinary least squares”, Methods and Designs for
Outcomes Research 93, 93–104 (2006).

Dunn, O. J. and V. A. Clark, Applied statistics: analysis of variance and regression
(John Wiley & Sons, Inc., 1986).

Elmasri, R. and S. Navathe, “Fundamentals of Database Systems sixth Edition Pear-
son Education”, Reproduced with permission of the copyright owner. Further re-
production prohibited without permission (2011).

Facebook, “Prestodb”, https://prestodb.io/, accessed: 2018-03-28 (2018a).

Facebook, “React - a javascript library for building user interfaces”,
https://reactjs.org/, accessed: 2018-03-28 (2018b).

Getis, A., “Spatial interaction and spatial autocorrelation: a cross-product approach”,
Environment and Planning A 23, 9, 1269–1277 (1991).

Getis, A., “Reflections on spatial autocorrelation”, Regional Science and Urban Eco-
nomics 37, 4, 491–496 (2007).

Getis, A. and D. A. Griffith, “Comparative spatial filtering in regression analysis”,
Geographical analysis 34, 2, 130–140 (2002).

Getis, A. and J. K. Ord, “Local spatial statistics: an overview”, Spatial analysis:
modelling in a GIS environment 374, 261–277 (1996).

Giovinazzo, W. A., Object-oriented data warehouse design: building a star schema
(Prentice Hall PTR, 2000).

Golem Factory GmbH, “GOLEM”, https://golem.network/, accessed: 2018-05-29
(2018).

74

Grossberg, S., “Nonlinear neural networks: Principles, mechanisms, and architec-
tures”, Neural networks 1, 1, 17–61 (1988).

Guttman, A., R-trees: A dynamic index structure for spatial searching, vol. 14 (ACM,
1984).

Hartigan, J. A. and M. A. Wong, “Algorithm AS 136: A k-means clustering algo-
rithm”, Journal of the Royal Statistical Society. Series C (Applied Statistics) 28,
1, 100–108 (1979).

Hochreiter, S. and J. Schmidhuber, “Long short-term memory”, Neural computation
9, 8, 1735–1780 (1997).

Hunter, J. D., “Matplotlib: A 2D graphics environment”, Computing in science &
engineering 9, 3, 90–95 (2007).

InformationWeek, “Informationweek”, https://www.informationweek.com/software/information-
management/ups-nets-huge-fuel-savings-with-analytics/d/d-id/1112165, accessed:
2018-04-27 (2013).

Kohavi, R. et al., “A study of cross-validation and bootstrap for accuracy estimation
and model selection”, in “Ijcai”, vol. 14, pp. 1137–1145 (Montreal, Canada, 1995).

Koperski, K. and J. Han, “Discovery of spatial association rules in geographic infor-
mation databases”, in “International Symposium on Spatial Databases”, pp. 47–66
(Springer, 1995).

Maciejewski, R., R. Hafen, S. Rudolph, G. Tebbetts, W. S. Cleveland, S. J. Grannis
and D. S. Ebert, “Generating synthetic syndromic-surveillance data for evaluat-
ing visual-analytics techniques”, IEEE Computer Graphics and Applications 29, 3
(2009).

MacQueen, J. et al., “Some methods for classification and analysis of multivariate
observations”, in “Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability”, vol. 1, pp. 281–297 (Oakland, CA, USA, 1967).

Mapbox, “Mapbox”, https://www.mapbox.com/, accessed: 2018-03-28 (2018).

Meliou, A., W. Gatterbauer, J. Y. Halpern, C. Koch, K. F. Moore and D. Suciu,
“Causality in databases”, IEEE Data Eng. Bull. 33, EPFL-ARTICLE-165841, 59–
67 (2010).

Meliou, A., S. Roy and D. Suciu, “Causality and explanations in databases”, Pro-
ceedings of the VLDB Endowment 7, 13, 1715–1716 (2014).

NYC and L. Commission, “TLC trip record data”,
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml, ac-
cessed: 2018-04-29 (2016).

Olson, D. L. and D. Delen, Advanced data mining techniques (Springer Science &
Business Media, 2008).

75

Ord, J. K. and A. Getis, “Local spatial autocorrelation statistics: distributional issues
and an application”, Geographical analysis 27, 4, 286–306 (1995).

Powers, D. M., “Evaluation: from precision, recall and F-measure to ROC, informed-
ness, markedness and correlation”, (2011).

Refaeilzadeh, P., L. Tang and H. Liu, “Cross-validation”, in “Encyclopedia of
database systems”, pp. 532–538 (Springer, 2009).

Robertson, S., “Understanding inverse document frequency: on theoretical arguments
for IDF”, Journal of documentation 60, 5, 503–520 (2004).

Roy, S. and D. Suciu, “A formal approach to finding explanations for database
queries”, in “Proceedings of the 2014 ACM SIGMOD international conference on
Management of data”, pp. 1579–1590 (ACM, 2014).

Shanahan, J. G. and L. Dai, “Large scale distributed data science using Apache
Apark”, in “Proceedings of the 21th ACM SIGKDD international conference on
knowledge discovery and data mining”, pp. 2323–2324 (ACM, 2015).

Su, Y., G. Agrawal, J. Woodring, A. Biswas and H.-W. Shen, “Supporting correlation
analysis on scientific datasets in parallel and distributed settings”, in “Proceedings
of the 23rd international symposium on High-performance parallel and distributed
computing”, pp. 191–202 (ACM, 2014).

Tan, P.-N. et al., Introduction to data mining (Pearson Education India, 2006).

ten Cate, B., C. Civili, E. Sherkhonov and W.-C. Tan, “High-level why-not expla-
nations using ontologies”, in “Proceedings of the 34th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems”, pp. 31–43 (ACM, 2015).

Tilkov, S. and S. Vinoski, “Node. js: Using javascript to build high-performance
network programs”, IEEE Internet Computing 14, 6, 80–83 (2010).

Uber, “deck.gl”, https://uber.github.io/deck.gl/, accessed: 2018-03-28 (2018).

Webpack, “Webpack”, https://webpack.js.org/, accessed: 2018-03-28 (2018).

Widrow, B. and M. A. Lehr, “30 years of adaptive neural networks: perceptron,
madaline, and backpropagation”, Proceedings of the IEEE 78, 9, 1415–1442 (1990).

Yu, J., “Src: geospatial visual analytics belongs to database systems: the babylon
approach”, SIGSPATIAL Special 9, 3, 2–3 (2018).

Yu, J., J. Wu and M. Sarwat, “Geospark: A cluster computing framework for pro-
cessing large-scale spatial data”, in “Proceedings of the 23rd SIGSPATIAL Interna-
tional Conference on Advances in Geographic Information Systems”, p. 70 (ACM,
2015).

Zaharia, M., R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng, J. Rosen,
S. Venkataraman, M. J. Franklin et al., “Apache Spark: a unified engine for big
data processing”, Communications of the ACM 59, 11, 56–65 (2016).

76

Zhang, C., L. Luo, W. Xu and V. Ledwith, “Use of local Moran’s I and GIS to
identify pollution hotspots of Pb in urban soils of Galway, Ireland”, Science of the
total environment 398, 1-3, 212–221 (2008).

Zhang, S. and C. Zhang, “Discovering causality in large databases”, Applied Artificial
Intelligence 16, 5, 333–358 (2002).

77

APPENDIX A

NYC TLC SCHEMA

78

Attribute Type
VendorID int

tpep_pickup_datetime date
tpep_dropoff_datetime date

Passenger_count int
Trip_distance float

Pickup_longitude float
Pickup_latitude float
RateCodeID int

Store_and_fwd_flag bool
Dropoff_longitude float
Dropoff_ latitude float
Payment_type int
Fare_amount float

Extra float
MTA_tax float

Improvement_surcharge float
Tip_amount float
Tolls_amount float
Total_amount float

Table A.1: Trips Table

Attribute Type
VendorID int
Name string

Table A.2: Vendors Table

Attribute Type
RateCodeID int

Name string

Table A.3: Rate Code Table

Attribute Type
Payment_type int

Name string

Table A.4: Payment Type Table

79

