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ABSTRACT 

  

Investigation of measurement invariance (MI) commonly assumes correct 

specification of dimensionality across multiple groups. Although research shows that 

violation of the dimensionality assumption can cause bias in model parameter estimation 

for single-group analyses, little research on this issue has been conducted for multiple-

group analyses. This study explored the effects of mismatch in dimensionality between 

data and analysis models with multiple-group analyses at the population and sample 

levels. Datasets were generated using a bifactor model with different factor structures and 

were analyzed with bifactor and single-factor models to assess misspecification effects on 

assessments of MI and latent mean differences. As baseline models, the bifactor models 

fit data well and had minimal bias in latent mean estimation. However, the low 

convergence rates of fitting bifactor models to data with complex structures and small 

sample sizes caused concern. On the other hand, effects of fitting the misspecified single-

factor models on the assessments of MI and latent means differed by the bifactor 

structures underlying data. For data following one general factor and one group factor 

affecting a small set of indicators, the effects of ignoring the group factor in analysis 

models on the tests of MI and latent mean differences were mild. In contrast, for data 

following one general factor and several group factors, oversimplifications of analysis 

models can lead to inaccurate conclusions regarding MI assessment and latent mean 

estimation. 
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CHAPTER 1 

INTRODUCTION 

Measurement invariance (MI) investigates the extent to which the relationships 

between latent variables and their indicators do not vary across populations or time 

points. MI is a desired statistical property of a measurement instrument in that it indicates 

that the same construct(s) are being measured across groups or occasions. The 

establishment of MI allows the means for groups to be compared on the latent variable(s) 

or to assess the relationships of latent variable(s) with external measures across groups 

(Jöreskog & Goldberger, 1975; Sörbom, 1974). If MI is violated, the interpretation of 

these results is likely to be misleading.  

MI is defined with respect to an explicit number of factors with a specific factor 

structure. Invariant measures with respect to a particular factor may be noninvariant if 

they are affected by additional factors that are not specified in the model. In practice, 

these additional factors often represent undesired or unexpected sources of influences on 

measures and are considered as the leading cause of the lack of MI in multiple group 

analysis (Kok, 1998; Meredith, 1993). In both structural equation modeling (SEM) and 

item response theory (IRT), the lack of MI has been informally conceptualized as the 

presence of unspecified factors on which populations have different latent distributions 

(e.g., Ackerman, 1992; Camilli, 1992; Jak, Oort & Dolan, 2009; Jeon, Rijmen & Rabe-

Hesketh, 2013; Kok, 1998; Roussos & Stout, 1996; Shealy & Stout, 1993). 

Knowing that measures are influenced by a wide variety of unexpected sources in 

practice, the feasibility of applying a unidimensional model to potential multidimensional 

data has been an important topic of research. For analyses with a single group, the effects 



  2 

of fitting a unidimensional model to data with multidimensional structures on parameter 

estimation have been investigated, especially in the IRT literature. For example, a 

number of studies have found that IRT item parameter estimates are relatively robust to 

the presence of additional latent variables if there exists one dominant latent variable 

(Drasgow & Parsons, 1983; Kirisci, Hsu, & Yu, 2001; Reckase, 1979). Procedures and 

indices were developed to judge whether a dataset is “unidimensional enough” such that 

parameter estimation is robust to the presence of multidimensionality in data (e.g., Stout, 

1993; Zhang & Stout, 1999). In SEM, dimensionality is typically assessed as a part of the 

overall model fit. In practice, parameter estimation is generally considered as unbiased if 

the overall model fit is sufficient, although this conclusion is not always warranted (e.g., 

Reise, Scheines, Widaman, & Haviland, 2013). Two recent studies examined the biasing 

effects of having unspecified factors that influence subsets of indicators on model 

parameter estimation within a bifactor modeling framework (Bonifay, Reise, Scheines, & 

Meijer, 2015; Reise et al., 2013). The results of the studies found that the size of bias in 

parameter estimates can be correlated with the relative strength of the general factor to 

the group factors in the bifactor structure, and that this relationship is moderated by the 

specific bifactor structures underlying one’s data.  

The assessment of MI, and subsequent analyses on latent variables, requires the 

correct specification of measurement model. Specifically, both the number of factors and 

the relationship between the factors and their indicators need to be correctly specified. In 

SEM, researchers have investigated methods to assess MI and the consequences of 

violating MI (e.g., Vandenberg & Lance, 2000), but have not directly considered the 

effects of misspecifying dimensionality in measurement models in their analyses. The 
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current study explored the effects of dimensionality misspecification on the assessment of 

MI and on testing latent mean difference between groups. Data were generated with 

multidimensional structures from two populations; unidimensional analysis models were 

fit to these data with different between-group equality constraints. MI and between-group 

latent mean differences were assessed in a multigroup confirmatory factor analysis (CFA) 

framework.  

A bifactor structure was employed to create data with multidimensional 

structures. With a bifactor model, a general factor underlies all indicators of the factor 

and one or more group factors underlie subset(s) of the indicators. The group factors 

reflect additional common variance among clusters of indicators that typically have 

similar content or have the same context. All factors are specified to be orthogonal to 

each other. Bifactor models have become increasingly popular in recent research (e.g., 

Chen, West, Sousa, 2006; Reise, 2012) and, particularly, have been suggested as an 

effective tool for assessing dimensionality (Morin, Arens, & Marsh, 2015; Reise, 

Morizot, & Hays, 2007). In this study, multigroup data were generated based on four 

bifactor structures with different numbers of group factors and different numbers of 

indicators per group factor. For each of the bifactor structures, factor loadings and factor 

means of the group factors were varied across groups.  

Next a series of single-factor models with different levels of between-group 

equality constraints were fit to data generated by the bifactor structures to evaluate the 

effects of misspecifying a multidimensional model as a unidimensional model on the 

assessment of MI and factor mean differences. The analysis models included models with 

no cross-group equality constraints, cross-group equality constraints on factor loadings, 
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and cross-group equality constraints on factor loadings and intercepts. To assess MI, four 

fit statistics (i.e., χ2, CFI, RMSEA, and SRMR) were examined for the nested models. 

Tests of between-group factor mean differences were conducted and estimates of the 

factor mean differences were examined for each analysis model. 

In the next section, I review the statistical definition of MI in SEM and the 

prototypical steps in assessing MI and latent mean differences, followed by a review of 

assessing unidimensionality in the context of both single group and multiple group 

analyses. 

Measurement Invariance and Latent Means 

Measurement Invariance in the Framework of Confirmatory Factor Analysis 

Measurement invariance is the equivalent functioning of a measurement model 

across different populations. MI holds over all populations defined by a single grouping 

variable K with respect to a set of latent variables W, if and only if 

Pk (X | W) = P (X | W), (1) 

where X is a p × 1 vector of p observed variables, W is an m × 1 vector of m latent 

variables, k is the group membership with k = 1, 2, …, K, and P denotes the probabilistic 

function for X in terms of W. Equation (1) states that the relationship between observed 

and latent variables does not vary as a function of group membership. Given two 

individuals with the same level on the latent variables, the probabilities of obtaining a 

specific response pattern on the observed variables should be the same regardless of their 

group membership.  

When equation (1) does not hold, MI is violated and a lack of MI is said to exist. 

Violation of MI implies an individual’s performance on X is not only a function of the 
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latent variables but also a function of group membership. Given the lack of MI, two 

sources of group differences on observed variables can be confounded: group differences 

due to population differences on the latent variables and group differences due to 

inconsistent measurement functions. Different from random errors in measurement, the 

inaccuracy due to the lack of MI is consistent over replications. Systematic errors will be 

present in parameter estimation if the measurement model is not appropriately specified. 

Researchers have found that violation of MI will cause biased estimates of indicator 

parameters (e.g., Meade & Lautenschlager, 2004) and, subsequently, problematic 

estimation of latent variables. For example, studies have shown that comparisons of 

individuals across groups on the latent variables can be biased if MI is violated and not 

correctly modeled (e.g., Chen, 2008; Meade & Lautenschlager, 2004; Millsap & Kwok, 

2004; Whittaker, 2013; Xu & Green, 2015). Also, when using latent variables as 

predictors in structural models, the lack of MI on the latent predictors can lead to biased 

estimation of prediction coefficients (e.g., Chen, 2008; Meade & Tonidandel, 2010).  

Confirmatory factor analysis is currently the primary factor analytic method for 

studying MI in SEM. To use CFA to assess MI, it is assumed that investigators have 

knowledge about the number of underlying factors and the configural pattern of how 

observed variables represent each factor. In CFA models, a linear relationship between p 

observed variables and m latent factors in the kth group is specified as in the following 

equation 

Xk = τk + λk ξk + δk, (2) 

where X is a p × 1 vector of observed scores on the p measured indicators, τ is a p × 1 

vector of intercepts of observed variables, λ is a p × m matrix of factor loadings, ξ is a m 
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× 1 vector of latent factor scores, and δ is a p × 1 vector of unique factor scores. 

Assuming a standard factor analytic model where E (δk) = 0 and the latent factor scores 

(ξk) and unique factor scores (δk) are uncorrelated, the model implied covariance matrix 

Σk and the mean vector μk for Xk in the kth group can be derived as 

Σk = λk Φk λ'k + Θk (3) 

and 

μk = τk + λk κk, (4) 

where Φ is a m × m matrix of factor variance and covariance, and Θ is a p × p diagonal 

matrix of variance of unique factors, and κ is a m × 1 vector of factor means in the kth 

group. Within the CFA framework, MI is defined in terms of the extent to which the 

equivalence of the model parameters τ, λ, and Θ across the K groups is tenable.  

A traditional taxonomy of MI in CFA defines four hierarchical levels of 

invariance from liberal to strict: configural invariance, metric invariance, scalar 

invariance, and strict invariance (e.g., Horn & McArdle, 1992; Meredith, 1993; Millsap, 

1997; Steenkamp & Baumgartner, 1998; Vandenberg & Lance, 2000). Configural 

invariance denotes that the same number of latent variables is represented in each of the 

groups, and the patterns of zero and non-zero elements in the factor loading matrices are 

the same across groups. Metric invariance (Horn & McArdle, 1992) or weak factorial 

invariance (Widaman & Reise, 1997) requires identical factor loading matrices across all 

groups (i.e., λk = λ). Scalar invariance (Steenkamp & Baumgartner, 1998) or strong 

invariance (Meredith, 1993) requires invariant indicator intercepts across groups in 

addition to invariant factor loading matrices (i.e., λk = λ and τk = τ). Strict invariance 

(Meredith, 1993) states the unique factor variance of indicators is equivalent across all 
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groups in addition to equivalent factor loadings and intercepts (i.e., λk = λ, τk = τ, and Θk 

= Θ). 

For any measure that exhibits some level of invariance but does not demonstrate 

strict invariance, it is possible that, in any element of λ, τ, and Θ, some indicators are 

invariant and some are not. Partial invariance is defined as the inclusion of both 

invariant and noninvariant indicators within any defined level of MI except for configural 

invariance (Byrne et al., 1989; Vandenberg & Lance, 2000). For example, a test can be 

partially metric invariant, meaning that only a subset of items in the test are equivalent in 

terms of factor loadings and the rest items have noninvariant factor loadings across 

groups.  

Assessment of MI and Latent Means 

Prototypical steps to assess MI. To assess MI, hypotheses are typically tested in 

a stepwise process. To test configural invariance, a factor model with the same factor 

loading pattern for all groups is fit to data; no cross-group constraints are imposed except 

the ones necessary for model identification. For each factor in the model, one indicator is 

chosen for assigning a metric for the factor, referred to as the referent indicator (RI). 

Inappropriate selection of RIs is likely to lead to biased estimates of model parameters 

and inadequate model fit initially before any other decision about invariance is made 

(e.g., Johnson, Meade, & DuVernet, 2009). Adequate fit of the configurally invariant 

model indicates that the hypothesized factor structure is supported for all the assessed 

groups. Failure to retain the model suggests that different underlying factor structure 

patterns are required for different groups, and group comparisons based on the 
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hypothesized factor structure are no longer meaningful. As a result, the configurally 

invariant model is often taken as a baseline model in the assessment of MI. 

Given adequate fit for the configurally invariant model, the fit of a metric 

invariant model with cross-group constraints on factor loadings is compared with the fit 

of the configurally invariant model. Metric invariance is considered to hold if constraints 

on factor loadings fail to produce meaningful lack of fit. Similarly, scalar invariance is 

assessed by comparing the fit of a scalar invariant model with cross-group constraints on 

both factor loadings and intercepts with the fit of the metric invariant model. Once scalar 

invariance is achieved, any systematic group differences in the means of observed 

variables can be attributed to differences in the population means of latent variables. 

Potentially the next step would be to assess strict invariance using the same strategy. The 

establishment of strict invariance implies that any systematic difference in the covariance 

matrices and/or means of observed variables across groups are due to their differences in 

the latent distributions. Statistically the invariance of unique variance is not a necessary 

requirement for tests of latent means (Bollen, 1989, pp. 365-369; Byrne et al., 1989; 

Millsap, 2012, pp. 102 - 109; Vandenberg & Lance, 2000). As a result, strict invariance is 

not considered in this study. Within any level of invariance except for configural 

invariance, partial invariance can be tested by comparing models with and without 

invariance constraints imposed on specific indicators, given the failure to achieve a 

complete level of invariance. This process of testing MI is discussed in detail in a variety 

of articles and chapters (e.g., Byrne & Stewart, 2006; Millsap, 2012; Thompson & Green, 

2013; Vandenberg & Lance, 2000). 
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Fit indices to assess lack of MI. Hypotheses about MI can be evaluated by 

examining how models with different levels of invariance constraints fit the data. 

Common fit indices include the χ2 statistic and a variety of goodness-of-fit indices. To 

compare the relative fit of two nested models (e.g., metric invariant model vs configurally 

invariant model), a χ2 difference test is commonly conducted as a formal hypothesis 

testing method. Simulation studies have found that the χ2 difference test for assessing 

group differences in factor loadings adequately controls the Type I error rate and 

provides relatively high power when used with ML estimator and normally distributed 

data (French & Finch, 2006). In addition to the χ2 difference test, one can examine the 

differences in goodness-of-fit indices from fitting two factor models to evaluate the 

equivalence of parameters. Previous studies on the sensitivity of fit indices to a lack of 

MI have found particular fit indices that are sensitive to model misspecifications 

regarding parameter equality across groups (e.g., Chen, 2007; Cheung & Rensvold, 2002; 

Fan & Sivo, 2009; Meade, Johnson, and Braddy, 2008). For instance, Cheung and 

Rensvold (2002) examined 20 goodness-of-fit indices for their changes when cross-group 

constraints are imposed on factor loadings. Based on a variety of simulation conditions 

with small to moderate sample sizes, three goodness-of-fit indices (i.e., ∆CFI, ∆Gamma, 

and ∆McDonald’s) were recommended for assessing MI because they are independent of 

both model complexity and sample size. However, these indices are found to be sensitive 

to model size for assessing factor mean differences when the mean structures are 

incorporated (Fan & Sivo, 2009). Chen (2007) examined the sensitivity of five fit indices 

to a lack of MI at three levels: metric, scalar, and strict invariance. CFI and RMSEA were 

found to perform equally well to all the three levels of noninvariance, and SRMR 
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appeared to be more sensitive to a lack of metric invariance than to a lack of scalar and 

strict invariance. Cutoff values for these indices in assessing MI were recommended in 

these studies. Across the various conditions in these simulation studies, the proposed 

cutoff values for examining metric, scalar, and strict invariance ranged from .010 to .021 

for RMSEA and -.010 to -.005 for CFI. The cutoff values for SRMR ranged from .005 to 

.030, depending on the level of MI being examined. Following these findings, this study 

focused on the χ2 difference statistic and three goodness-of-fit indices (i.e., RMSEA, CFI, 

and SRMR) in assessing MI. 

Testing latent means and partial invariance.Mean differences of factors can be 

tested after the establishment of (partial) scalar invariance. Testing factor mean 

differences across groups is one important application of assessing MI. Compared to 

other approaches such as multivariate analysis of variance or creating composite scores, 

the latent variable approach for testing multivariate means minimizes problematic effects 

of errors in measurement and provides meaningful interpretations of group differences 

(Cole, Maxwell, Arvey, & Salas, 1993; Hancock, Lawrence, & Nevitt, 2000). To test 

latent mean differences, two sets of models are specified: one with the factor means 

constrained to be equivalent across groups (restricted model) and the other with the 

means freely estimated (full model). The rest of the models are specified as determined 

through the previous steps of assessing MI. The fit of the two models is compared using a 

χ2 difference test. If the increment of fit is significant from the restricted model to the full 

model, the factor means are considered to be different across groups. 

The test of factor mean differences and many other latent variable analyses 

involving multiple groups require the establishment of MI at a particular level. 
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Traditionally, opinions state that a full metric invariance should be hold before testing 

scalar invariance; and only when a full scalar invariance holds, can one proceed to factor 

mean analysis (Bollen, 1989; Horn & McArdle, 1992). Different factor loadings and 

intercepts across groups would indicate that individuals with the same factor scores will 

likely result in different observed scores for the different groups. Alternative views 

support that partial invariance in terms of factor loadings and intercepts is sufficient for 

factor mean inferences (Carle, Millsap, & Cole, 2008; Byrne et al., 1989; Marsh & 

Hocevar, 1985). With partial invariance, only a subset of indicators with invariant factor 

loadings and intercepts is required for assessing factor mean differences. Statistically, 

testing of factor means is warranted as long as one of the indictors holds the invariance 

property. However, to the extent that more indicators are allowed to be different, 

estimation of factor mean differences are based on a limited number of indicators, 

resulting in a loss of interpretation in the estimated mean differences, as well as a loss of 

power in parameter estimation and model parsimony (Green & Thompson, 2012).With a 

partial invariance assumption, invariance constraints should be imposed on loadings and 

intercepts that are equivalent across groups in the population, and the remaining loadings 

and intercepts should be freely estimated in analysis models. If the parameters are 

improperly constrained across groups, estimates of factor mean differences can be biased. 

Several studies have found that pseudo-group difference in factor means can appear if 

cross-group loadings and/or intercepts are falsely constrained to be invariant in analysis 

models (Chen, 2008; Wang, Whittaker & Beretvas, 2012; Whittaker, 2013; Xu & Green, 

2015). As suggested in these studies, bias in estimates of factor mean differences 

increases as the differences in factor loadings and/or intercepts increases uniformly 
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between groups. Moreover, incorrectly constraining intercepts has a greater impact on 

factor mean estimation than incorrectly constraining factor loadings (Chen, 2008; Xu & 

Green, 2015). 

Assessing Dimensionality and Multiple Group Analysis 

In assessing MI, an important assumption is that there exists a fixed number of 

latent variables to characterize the covariance among observed variables. In other words, 

the establishment of MI relies on a clear definition of dimensionality underlying data. 

This section discusses the assumptions of model dimensionality and the assessment of 

unidimensionality in the context of single and multiple group analyses. 

Dimensionality and Conditional Independence 

Latent variable models generally assume the common variance among a set of 

variables can be accounted for by a fixed number of underlying factors. If the factor 

structure is correctly specified, observed variables should be uncorrelated with each other 

after controlling for factors. This assumption is referred to as conditional independence or 

local independence, and can be considered as a function of dimensionality (McDonald, 

1981). Conditional independence rules out any association among observed variables 

given the assumed factor structure. With conditional independence, performance on any 

indicator of a measure should be affected by only individuals’ level on the hypothesized 

latent variables rather than their performance on any other indicators of the measure. 

Violation of conditional independence indicates that the investigated data does not match 

the hypothesized dimensionality in a strict sense. The occurrence of conditional 

dependence can have serious consequences in regard to the applicability of the 
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hypothesized latent variable models and can lead to biased model estimation as 

demonstrated in several cases (e.g., Steinberg & Thissen, 1996; Yen, 1993).  

Model dimensionality can be explored using exploratory approaches if 

researchers have little prior knowledge. Exploratory factor analysis is a common method 

for data reduction and factor structure exploration. The number of factors is determined 

by synthesizing researchers’ substantive knowledge of the dataset and evidence from 

statistical analyses. Typical analyses for determining the number of factors include the 

eigenvalue-larger-than-one rule, parallel analysis, and scree plots, which are all based on 

evaluation of the eigenvalues of correlation matrix of observed variables.  

On the other hand, hypothesized factor structures can be tested in a confirmatory 

way by evaluating how the factor structures fit to empirical data. By conducting CFA, 

dimensionality is evaluated as an integrated part of the overall model fit (e.g., 

Swaminathan, Hambleton, & Rogers, 2007). It is assumed that one or more factors are 

sufficient to characterize data if the factor model fits the data adequately according to fit 

statistics. When model fit is inadequate, the residual covariance matrix of observed 

variables is often examined to detect where the misfit might be. Indices based on these 

residual terms such as SRMR can offer a general view of violation of conditional 

independence.  

Assessing Unidimensionality 

Researchers develop measurement instruments with hypothesized dimensions that 

are sufficiently broad, but at the same time parsimonious, to capture the latent constructs 

of interest. Unidimensionality is a central assumption for most models within classical 

test theory and item response theory and has been widely hypothesized in empirical 
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research (Lord, 1980; McDonald, 1999). Unidimensional measures are desirable in that 

they are less open to misinterpretation; that is, higher scores on a unidimensional measure 

can be due only to the single underlying factor rather than some combination of factors. 

In many multistep modeling procedures, establishing a unidimensional measure is an 

important preliminary step before conducting the additional required analysis.  

In theory, unidimensionality is a plausible assumption when a set of measures is 

designed to assess a unitary construct. However most measures in practice are unlikely to 

yield strictly unidimensional data for various reasons. For example, educational 

assessments measuring achievement and ability levels are often multidimensional. The 

multidimensionality can rise because a test requires several skills at the same time such as 

mathematics and reading, both of which have impact on different items in the test to the 

different extent. Multidimensionality also can emerge due to the multifaceted property of 

a single broad skill or construct. A mathematical achievement test can be 

multidimensional as it assesses both the general cognitive ability and the abilities on 

several specific topics including algebra, geometry, and trigonometry. Similarly, 

psychological constructs are often characterized by several related facets that are 

governed by one underlying attribute tendency. Performance on these tests or measures is 

determined by one’s level on both the overall dimension and the dimensions that are 

content or context specific (e.g., McDonald & Mok, 1995; Reise, Moore, & Haviland, 

2010).  

Common multidimensional models include correlated factor models and higher-

order factor models. The former model assumes a number of correlated latent variables 

with each accounting for the covariance among a cluster of indicators. The later model 
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characterizes multidimensionality by constructing one or more second-order factors to 

account for the covariance among the first-order factors that are often content or context 

specific (Gustafsson & Balke, 1993). In recent studies, a bifactor structure has become 

popular to characterize measures that are designed to assess broad constructs (e.g., 

Gibbons et al., 2008; Morin et al, 2015; Reise et al., 2007; Reise et al., 2010). Bifactor 

models assume a general factor and a number of group factors. In practice, the general 

factor usually represents a dominant factor that the test is purported to measure, whereas 

the group factors are likely to be smaller factors that are context or content specific. 

Bifactor models are specified such that the group factors are independent of each other 

and with the general factor. Because of the independence among factors, the variance of 

indicators in a bifactor model can be separated into three parts: the variance accounted for 

by the general factor, the variance accounted for by a specific group factor, and the 

residual variance. The separation of variance in bifactor models is an important 

advantage in describing factor analytic results (Chen et al., 2006; Reise, 2012). 

Researchers have used bifactor models to construct tests and item banks (Gibbons 

et al., 2008) and applied bifactor models as an alternative approach to other testlet-based 

models (Chen et al., 2012; DeMars, 2006). Recent substantive research has shown that a 

bifactor structure is useful in interpreting factor analytic results of measures relative to 

correlated factor structures and hierarchical factor structures (Reise et al., 2010; Reise, 

2012). For example, Reise et al. (2010) demonstrated how to conceptualize an 

alexithymia scale using a bifactor structure. For this scale, the general factor characterizes 

the “core” features of alexithymia, and the group factors represent different sub-traits of 

alexithymia.  
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Statistically it is desirable to fit multidimensional data with multidimensional 

models to avoid model misfit and parameter bias. However, unidimensional models 

frequently are employed to multidimensional data, given the difficulty in defining and 

interpreting multiple dimensions as well as the complexity in the application of 

multidimensional models (Kirisci et al., 2001). As a result, assessing whether a 

unidimensional model can be a sufficient approximation for empirical data becomes an 

important topic of research (Hattie, 1985; Embretson & Reise, 2000). Researchers argued 

that one should assess the adequacy of approximate unidimensionality rather than 

evaluating whether data is strictly unidimensional (Nandakumar & Stout, 1993; Stout, 

1987). A unidimensional model can be applicable for multifimensional data if the 

resulting parameter estimates are relatively unbiased, stable, and consistent.  

In the IRT literature, an appreciable body of research has been conducted to 

investigate the effects of fitting unidimensional models to multidimensional data on 

estimation accuracy of item parameters and ability distributions (e.g., Ackerman, 1989; 

De Ayala, 1994; DeMars, 2006; Drasgow & Parsons, 1983; Kirisci et al., 2001; Oshima 

& Miller, 1990; Reckase, 1979). Although results from these studies are inconclusive 

because they differed in simulation conditions, analysis methods, and evaluation criteria, 

a general finding is that the robustness of model estimation to a violation of 

unidimensionality is closely related to if there exists a strong general factor (Reise, Cook, 

& Moore, 2015). Unidimensional models are considered as generally applicable for data 

with one dominant dimension and several minor dimensions. Studies have demonstrated 

that the estimation of IRT item parameters and latent traits are relatively unbiased if there 

exists one strong general dimension (e.g., Drasgow & Parsons, 1983; Reckase, 1979). For 
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example, Reckase (1979) showed that good calibration of items and reasonable ability 

estimates can be obtained if the first extracted factor accounts for 20% of the variance of 

a test consisted of 50 items using the 1PL and 3PL models. In the work of Drasgow and 

Parsons (1983), bifactor data were generated based on factor models with five correlated 

factors using the Schmid-Leiman transformation method (Schmid & Leiman, 1957). 

Given the different levels of correlations between the factors, the transformed bifactor 

data had varying levels of strength for the general and group factors. The results showed 

that both the estimated item parameters and the latent trait estimates based on a 

unidimensional IRT model reflected the general factor when the strength of the general 

factor was moderate or higher. Similarly, for data with several dimensions of 

approximately equal strength, studies showed the feasibility of applying 

unidimensionality depends on the pairwise correlations between dimensions (Ackerman, 

1989; Kirisci et al., 2001; Oshima & Miller, 1990). The application of unidimensional 

IRT models is considered as feasible if the dimensions are moderately to highly 

correlated (r > .4), whereas multidimensional models are recommended if the correlations 

are low and/or vary across dimension pairs (Kirisci et al., 2001).  

In addition to examining the effects of violating unidimensional assumptions, 

methods for assessing the degrees of unidimensionality have been developed in the 

context of IRT. One common approach to explore “unidimensional enough” is the 

examination of item covariance residual after fitting a unidimensional model. Derived 

from the weak form of conditional independence (McDonald, 1981), the DIMTEST can 

be used to assess the degree of “essential” unidimensionality (Stout, 1987; Nandakumar 

& Stout, 1993). An essential unidimensionality is hold if, on average, the conditional 
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covariances of item pairs in a test tend to approach zero as the number of items become 

larger. Researchers also developed measures such as the DETECT index (Zhang & Stout, 

1999) to directly assess the degree of multidimensionality displayed in data, assuming the 

existence of a dominant single dimension. However, conditional dependence in item pairs 

will not always result in large residual values; instead, the conditional dependence may 

lead to distorted estimates of item loadings (Steinberg & Thissen, 1996). Also, the 

residual-based approach for examining unidimensionality relies on meaningful cutoff 

values of residuals, which are hard to determine.  

Within SEM, procedures that directly assess the “degree” of unidimensionality 

have not received much attention. The overall model fit remains as the essential rule for 

evaluating model dimensionality. With satisfactory model fit, bias in parameter estimates 

in practice is assumed implicitly to be minimal. In this sense, the commonly used fit 

statistics, such as the χ2 statistic and goodness-of-fit indices (e.g., CFI), are used to judge 

the adequacy of unidimensionality. Fit indices are not particularly sensitive for assessing 

dimensionality because they are designed in general to evaluate departure of data from a 

hypothesized model rather than specifically to assess dimensionality (Reise et al., 2013). 

A unidimensional model with good fit based on SEM fit indices can still yield biased 

item parameter estimates caused by multidimensionality. Recent studies proposed indices 

such as explained common variance (ECV) (Bentler, 2009; Reise et al., 2010; ten Berge 

& Sočan, 2004) and coefficient omega hierarchical (omegaH) (McDonald, 1999; 

Zinbarg, Revelle, Yovel, & Li, 2005) to denote the strength of the primary factor 

compared to other orthogonal factors in multifactor models. Particularly, Reise et al. 

(2013) and Bonifay et al. (2015) studied the performance of three goodness-of-fit indices 
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(i.e., RMSEA, CFI, and SRMR) and several factor strength indices (i.e., ECV, omegaH, 

and DETECT) in examining the relationship between data departing from a 

unidimensional structure and the bias in estimates of factor loadings and structural 

prediction coefficients. Using data generated from bifactor structures, the results found 

that the degree of parameter estimate bias depends strongly and inversely on ECV, but 

the effects are moderated by both the number of group factors and the number of 

indicators. Specifically, the effects are moderated by the percentage of the elements in the 

data correlation matrix that are uncontaminated by group factors. Given a high 

percentage of uncontaminated correlations, structural coefficients are found relatively 

unbiased even when general factor strength is low relative to group factor strength. Also, 

both CFI and SRMR appear to be related to factor loading and structural coefficient bias, 

but are not as predictive as ECV. In general, the studies indicated that bifactor structures 

with a larger number of group factors and a smaller number of indicators per group factor 

were found to be “closer” to a unidimensional structure in terms of producing less bias in 

parameter estimates. 

Unidimesionality and Multigroup Analysis 

The lack of MI is often conceptualized as the differences across populations on 

one or more unspecified secondary factors or dimensions. However, it is important to 

note that the presence of unspecified factors is not in itself sufficient for causing 

noninvariance. The presence of noninvariance depends on the joint distributions of the 

hypothesized factor and the unspecified factors. With one or more unspecified factors, a 

necessary requirement for having measurement noninvariance is that the populations 

must differ in their distributions on the unspecified factor, conditioning on the 
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hypothesized factor (see Millsap, 2012, pp. 68-71 for a mathematical proof). Conversely, 

if individuals from different populations have the same latent distributions on the 

unspecified factors conditioning on the hypothesized factor, the unspecified factors will 

not introduce noninvariance even if they are not included in the analysis model. 

Although the relationship between the lack of MI and the presence of secondary 

factors has been considered in the literature, the direct impact of ignoring such factors on 

the analyses for multiple groups has not been investigated. Violating unidimensionality in 

multigroup analysis can cause biasing effect of parameter estimation in multiple group 

analysis. Although all items of a test may be good measures of a hypothesized latent 

variable across all populations, some of the items might be influenced by additional 

factors in one or more groups. Different from the single group analysis where the primary 

focus is on parameter estimate accuracy, the research goals in multiple group analysis are 

predominantly on comparisons of multiple populations in terms of measurement 

parameters and latent distributions of the populations. Thus, instead of examining the 

direct relationship between the presence of secondary factors and parameter estimation 

bias in each group, the bias in differences in parameter estimates across multiple 

populations is of more concern; such bias in differences can form errors in judgments 

about MI and comparisons in the means of latent variables. 
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CHAPTER 2 

STUDY OBJECTIVES 

Methodological studies on multiple group analysis have focused on assessing 

scalar and metric invariance and the consequences of violating these particular levels of 

MI on parameter estimation (e.g., Byrne, Shavelson, & Muthen, 1989; Chen, 2008; 

Kaplan & George, 1995; Whittaker, 2013; Yoon & Millsap, 2007). In these studies, the 

assumption has been made that the same factor structure holds for all investigated groups. 

The first objective of the current study was to examine the impact of having unspecified 

secondary factors on the assessment of MI and on tests of latent mean differences. Data 

were generated using bifactor models and fit to a set of bifactor models and a set of 

single-factor models with different levels of invariance constraints. Assessments of MI 

and tests of latent mean differences were conducted for both the bifactor models and the 

single-factor models following the prototypical steps described earlier. The χ2 statistics 

and three goodness-of-fit indices (i.e., RMSEA, CFI, and SRMR) were used to assess a 

lack of MI. Bias in the estimates of latent mean differences were examined and compared 

when fitting the bifactor and single-factor analysis models. In addition, a standardized 

effect size measure of the estimated factor mean differences was computed.  

The second objective of the study was to investigate if the results of assessing MI 

based on fit indices and likelihood ratio tests are informative in indicating the size of bias 

in estimates of latent mean differences when the dimensionality of the analysis model is 

misspecified. It was expected that when bifactor data are analyzed with single-factor 

models, any between-group difference in parameters associated with group factors will be 

mapped into differences in indicator parameters in the single-factor model; the result will 
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be a lack of MI. Such measurement noninvariance is the cause of bias in latent mean 

differences if the analysis model is not respecified.  

The study used a series of bifactor structures to characterize data that are 

primarily unidimensional, but also are affected by one or more secondary factors. Several 

features of the bifactor models for data generation were varied. First, with a fixed number 

of indicators, the number of group factors and the number of indicators per factor were 

manipulated. The purpose was to create varying proportions of nonequivalent parameters 

of indicators in the single-factor analysis models. Both partial and complete 

noninvariance at a particular level of MI were created with this manipulation. Second, for 

any specific bifactor structure, factor loadings and latent means of the group factors were 

generated to have different values across populations. Population differences in group 

factor loadings and group factor means were expected to lead to nonequivalent factor 

loading and intercept estimates, respectively, when fitting a single-factor model. 

Additionally, varying the magnitude of differences of the group factor parameters was 

expected to show how these differences translated into the lack of MI, and potentially 

into the bias of estimating factor mean differences when specifying a single-factor 

analysis model. 
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CHAPTER 3 

METHODS 

The primary purpose of the study was to investigate the impact of unspecified 

secondary factors on the tests of MI as well as on the test of factor mean differences. In 

all analyses, data were generated based on bifactor models with nine indicators that 

loaded on a general factor and subset(s) of the indicators that loaded on one or more 

group factors for two populations. The latent distributions of the group factors and the 

factor loading strength of indicators on the group factors were manipulated within and 

between the populations. In conducting the analyses, a set of bifactor models and a set of 

single-factor models with varying levels of invariance constraints were fit to the 

generated data to test for MI and to estimate factor mean differences between the 

populations. The bifactor analysis models were considered as baseline models for 

comparisons with the single-factor models. Fit indices and the standardized estimates of 

factor mean differences were analyzed at each step of the MI tests. These statistics were 

expected to be diagnostic in detecting measurement model misspecification as 

increasingly strict invariance constraints were imposed on analysis models. 

The study was conducted in two steps. In Study 1, data simulation and analyses 

were conducted at a population level. Based on the results of Study 1, Monte Carlo 

simulations were conducted at a sample level for a subset of conditions in Study 1. 

Study 1 

Simulation conditions. In the generation of the data, four simulation factors were 

manipulated: the generation factor structure, indicator loadings on the general factor, 
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indicator loadings on the group factors, and the differences in latent means between 

populations on the group factors. Details of these manipulations are described below.  

Factor structure. Data were generated based on four different bifactor structures 

for two populations. All latent structures included a general factor associated with nine 

indicators and one or more group factors associated with subset(s) of the indicators. 

Figure 1 presents the path diagrams for the four bifactor structures. Structures 1 and 2 

were two-factor structures with all indicators loading on a general factor and a subset of 

indicators loading on a group factor. In structure 1, three of the nine indicators loaded on 

one group factor; in structure 2, six of the nine indicators loaded on one group factor. 

Structures 3 and 4 were bifactor structures with all indicators loading on a general factor 

as well as on one of the multiple group factors. Structure 3 had the first three indicators 

and the last six indicators loading on two group factors respectively. For structure 4, the 

first three indicators, the second three indicators, and the last three indicators loaded on 

each of the three group factors. For all factor structures, group factors were uncorrelated 

with the general factor and were uncorrelated with each other. In any generation 

condition, the two populations had the same factor structure.  

The four bifactor structures differed in the number of group factors, the number of 

indicators per group factor, and/or the number of indicators associated with a group 

factor. Among the four structures, structures 3 and 4 followed a typical bifactor structure 

where all indicators loaded on a general factor and on one of the group factors. Structures 

1 and 2 were less typical in that only a subset of the indicators were associated with a 

group factor.  
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General and group factor loadings. A preliminary study was conducted to 

determine the magnitudes of the general and group factor loadings for Study 1. In testing 

MI, the typical first step is to assess configural invariance. The same analysis model 

needs to fit adequately to each population before one can proceed to the next steps. In the 

current study, when the analysis model is a single-factor model, the first step of analysis 

is to assess if the single-factor model fits adequately to both populations. The preliminary 

study was conducted at the population level to explore the effects of the combinations of 

different magnitudes of general and group factor loadings on the fit of a single-factor 

model fitting to bifactor data. The fit of the single-factor models was assessed based on 

three fit indices – CFI, RMSEA, and SRMR. In the preliminary study, covariance 

matrices for a single population were generated based on different general and group 

factor loadings for the four factor structures. Standardized general factor loadings were 

varied at .4, .5, .6, .7, and .8; and standardized group factor loadings were varied 

at .2, .3, .4, and .5. Covariance matrices were simulated based on all combinations of 

these magnitudes and were fit using a single-factor model. Tables A1-A4 in Appendix A 

present the fit results for fitting a single-factor model to covariance matrices generated 

based on the four bifactor structures with all combinations of the magnitudes for the 

general and the group factor loadings. Based on the results, .5 and .7 were selected for 

general factor loadings, and .2 and .4 were selected for group factor loadings. At the 

population level, these loading values ensured that the fit indices from fitting a single-

factor model to data indicated somewhat below adequate to adequate model fit according 

to the conventional cutoff criteria (e.g., .08 for RMSEA, .95 for CFI, and .08 for SRMR; 

Hu & Bentler, 1999); therefore, configural invariance could be established across 
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populations. With the selected factor loadings, the single-factor model fit worst to data 

with general factor loadings of .5 and group factor loadings of .4 under factor structure 4. 

For this condition, RMSEA was .10, CFI was .84, and SRMR was .06 (see Table A4).  

General factor loading strength. Based on the preliminary study, the loadings on 

the general factor averaged around .5 or .7. The actual general factor loadings varied 

around these values. Specifically, for the average loading of .7, the actual general factor 

loadings were set at .6, .7, and .8 in sets across the nine indicators for a factor structure. 

Similarly for the average loading of .5, the actual general factor loadings were .4, .5, and 

.6 in sets across the nine indicators. For all generation conditions, the general factor 

loadings were kept invariant across groups.   

Group factor loading strength. Loadings on the group factors were either 

invariant or noninvariant across the two populations. The invariant conditions had 

average group factor loadings of .3 (specified values of .2, .3, and .4) for both 

populations. For noninvariant conditions, two thirds of the indicators associated with a 

group factor had different group factor loadings between populations. For these 

indicators, their noninvariant group factor loadings were .2 for population 1 and .4 for 

population 2. Table 1 presents the general and group factor loadings for conditions with 

an average general factor loading of .7. In these noninvariant conditions, population 2 had 

uniformly greater group factor loadings than population 1 on the specified indicators.  

The study also considered noninvariant conditions where two thirds of the 

indicator loadings on a group factor had different group factor loadings; however, the two 

populations had equivalent group factor loading values on average. For these 

noninvariant conditions with non-uniform differences, population 1 had loadings of [.2, 
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.3, .4] or [.2, .3, .4, .2, .3, .4] for the 3-indicator group factors or the 6-indicator group 

factors, respectively; in population 2, the group factor loadings were [.4, .3, .2] or [.4, .3, 

.2, .4, .3, .2]. The nonuniform conditions were examined for only a subset of the 

conditions of the simulation design, that is, with general factor loadings of .7 and group 

factor mean differences of .4. 

For both the general and group factors, the variation in the actual loadings around 

the average magnitude was purposely designed to avoid empirical under-identification of 

the bifactor analysis models found in the pilot study. Specifically, when fitting a bifactor 

model to data generated from a bifactor model with uniform general and group factor 

loadings (e.g., all general factor loadings equal to .7 and all group factor loadings equal to 

.2), the mean structure of the model was empirically under identified. Varying the factor 

loadings slightly across the indicators resolved the identification issue. See Green and 

Yang (2017) for further discussion of this issue. 

Group factor mean differences. Across all generation conditions, the latent 

scores on the general factor followed a normal distribution with a mean of 0 and a 

variance of 1 in both populations. The latent scores on the group factor(s) were normally 

distributed with variances of 1, but with either the same or different means in the two 

populations. In population 1, the group factor mean(s) were set at 0 for all generation 

conditions. In population 2, the group factor mean(s) were varied: 0, .2, and .4. For factor 

structures with more than one group factor, the means of all group factors within a 

population were kept the same. The values of .2 and .4 reflected small and small-to-

medium effect sizes of latent mean differences (Hancock, 2001) and were expected to 
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result in a lack of scalar invariance as well as bias in estimates of factor mean differences 

when analysis models were misspecified as unidimensional. 

For all generation conditions, the intercepts of all indicators were 0 for both 

populations. The residual variances were set at one minus the variance accounted for by 

the general factor and the group factors.  

The simulation design yielded a total of 52 conditions. Data covariance matrices 

were generated and were analyzed at the population level. 

Analysis models and assessment criteria. A set of bifactor models and a set of 

single-factor models were specified as analysis models. These included bifactor and 

single-factor models with no between-group equality constraint (configurally invariant 

models), with between-group equality constraints on factor loadings (metric invariant 

models), and with between-group equality constraints on both factor loadings and 

intercepts (scalar invariant models). A very large sample size of 1,000,000 was used for 

all model fitting to mimic analyses at the population level.  

In fitting the bifactor analysis models, one indicator for each group factor that had 

invariant loading across populations was selected as the RI for the factor. For the general 

factor in each factor structure, all indicators were invariant in terms of the loadings and 

intercepts so RIs were chosen arbitrarily: indicator 1 in analysis models that were 

consistent with structures 1, 3, and 4, and indicator 4 in analysis models that were 

consistent factor structure 2. For the RIs, factor loadings were fixed at 1 in both 

populations, and the intercepts were constrained to be equivalent across populations. 

Variances of all factors were allowed to be freely estimated for both populations. All 

factor means were fixed at 0 for population 1 and were freely estimated for population 2.  
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The selection of the RI for fitting the single-factor analysis models depended on 

the specific factor structures. For structures 1 and 2, the RIs were arbitrarily chosen from 

the indicators that were not associated with a group factor so that the RIs were truly 

invariant in the single-factor model (i.e., indicator 5 in Figure 1a and indicator 2 in Figure 

1b). In structure 3, indicator 2 (see Figure 1c) was selected as the RI because it was 

invariant in terms of both the general and group factors. In structure 4, indicator 2 was 

arbitrarily selected as the RI as shown in Figure 1d because it was invariant on both the 

general and group factors. For all single-factor analysis models, the factor means were 

fixed at 0 for population 1 and were freely estimated for population 2. Factor variances 

were freely estimated for both populations. 

For each of the analysis models, changes in fit indices, including RMSEA, 

SRMR, and a revised CFI, were examined for the nested invariant models. The revised 

CFI was computed using an appropriate baseline model (i.e., a baseline model nested 

within the analysis models) as suggested by Widaman and Thompson (2003) for MI 

assessment. Revised CFI will be referred to as simply CFI in the remainder of the 

manuscript. Estimates of mean differences on the general factor of the bifactor models 

and on the single factor of the single-factor models were examined. Bias in the estimates 

and standardized effect size statistics for the estimates were computed. The standardized 

effect size statistics were calculated using the estimated factor mean differences and the 

pooled variances from the two populations.  

All bifactor models were correctly specified in terms of dimensionality, but the 

models were misspecified in the assessment of metric invariance when data were 

generated to have noninvaraint group factor loadings. All single-factor models were 
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misspecified in terms of dimensionality. As a result, the metric invariant analysis models 

were expected to exhibit a lack of fit when data were generated with noninvariant group 

factor loadings. The scalar invariant models were expected to exhibit a lack of fit when 

group factor means were generated to be different between populations. 

Study 2 

A subset of the simulation conditions in Study 1 at the population level were 

conducted in Study 2 at the sample level. Specifically, Study 2 included conditions where 

the between-group group factor means differences were .4. Datasets were generated 

given the four different bifactor structures, two levels of general factor loadings (.7 or .5), 

and invariant or noninvariant group factor loadings. Study 2 also investigated two levels 

of sample sizes: 150 or 300 in each group. Factors and errors were generated to be 

normally distributed. The same set of analysis models investigated in Study 1 were 

applied in fitting sample data in Study 2. The design yielded a total of 32 simulation 

conditions. For each simulation condition, 1000 replications of sample datasets were 

generated and analyzed.  

Analysis models and assessment criteria. As in Study 1, the sets of bifactor and 

single-factor analysis models were fit to sample data. For each of these models, fit indices 

including CFI, RMSEA, and SRMR and the estimated factor mean differences were 

analyzed for their replication means. In addition, the χ2 difference tests were conducted 

for nested invariant models to assess different MI levels. For the bifactor analysis models, 

the empirical rejection rates for the Wald test of the general factor mean differences were 

examined at the .05 level. For the single-factor analysis models, the empirical rejection 
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rates were examined for the Wald test of the mean differences on the single-factor at the 

.05 level. 

For both Studies 1 and 2, the simulation and analysis work were conducted using 

R 3.1 and Mplus 6.11. 
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CHAPTER 4 

RESULTS 

Results of Studies 1 and 2 (i.e., results at the population and sample levels) are 

summarized in each of three sections. The first section summarizes model convergence 

for bifactor analysis models. In the second section, the effects of fitting bifactor and 

single-factor models to bifactor data on assessing MI at particular levels were examined. 

The third section examined the bias and the standardized effect size statistic for the 

estimates of between-group factor mean differences by fitting the bifactor and single-

factor analysis models. 

Model Convergence 

Fitting bifactor models to bifactor data resulted in out-of-bound parameter 

estimates for generation conditions under structure 3 at the population level. At the 

sample level, the bifactor analysis models resulted in different numbers of replications 

that did not converge and/or had model solutions with out-of-bound parameter estimates 

across all generation conditions. In contrast, fitting single-factor models to bifactor data 

never resulted in any improper model solution at the population or the sample level.  

Improper solutions when fitting bifactor models at the population level appeared 

for all generation conditions under structure 3 (the two-group-factor structure) if the 

model was misspcified. The estimates for the variances of one of the two group factors in 

group 1 were found to be negative when the group factor loadings of the bifactor analysis 

model were incorrectly constrained to be invariant. In addition, fitting bifactor metric 

invariant models to generated data with non-uniform noninvariant group factor loadings 

also led to improper solutions. The improper solutions were observed for three of the four 
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factor structures but not for structure 2. Under all the other generation conditions, 

solutions based on fitting a bifactor model converged properly when the invariance of 

group factor loadings were misspecified.  

At the sample level, fitting bifactor analysis models to the data generated for the 

1000 replications for each generation condition resulted in a limited number of 

replications that reached proper solution (i.e., successful model convergence with no out-

of-bound parameter estimates). Figure 2a and Figure 2b present the numbers of 

replications that reached proper solution across the three analysis models (i.e., 

configurally invariant model, metric invariant model, and scalar invariant model) for each 

generation condition. Figure 2a and 2b present the results for conditions with general 

factor loadings of .7 and .5, respectively. Only replications with proper solutions were 

included in the analyses at the sample level.  

Figures 2a and 2b evidence the same patterns across and within the generation 

factor structures. Conditions with higher loadings on the general factor had higher 

convergence rates. Across the structures, conditions with only one group factor (structure 

1 and structure 2) had better convergence rates than conditions with multiple group 

factors (structure 3 and structure 4). Comparing the two one-group-factor structures, 

having a group factor with more indicators (structure 2) had better convergence rates. For 

the multiple-group-factor structures, having group factors with equal numbers of 

indicators (structure 4) resulted in higher convergence rates than having group factors 

with unequal numbers of indicators. Within each factor structure, conditions with larger 

sample size had higher convergence rates as expected. The effects of the invariance of 

group factor loadings on convergence rates depends on the specific factor structures. 
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Under structures 1, 3, and 4, having noninvariant group factor loadings generally led to 

better convergence rates. While under structure 2, the conditions with invariant group 

factor loadings had higher convergence rates.  

Within each generation condition (not shown in Figures 2a and 2b), imposing 

invariance constraints on analysis models led to increased convergence rates, regardless 

of whether or not the parameters in the generation models were invariant. This is not 

surprising because imposing constraints to analysis models leads to greater numbers of 

degrees of freedom. The numbers of replications that reached proper solutions for all 

analysis models with different levels of invariance constraints are presented in Tables B1 

and B2 in Appendix B. 

Assessing Measurement Invariance 

Assessing configural invariance. Configural invariance was assessed by fitting 

bifactor and single-factor models with no invariance constraints imposed on the between-

group parameters (except for model identification purpose) to bifactor data at the 

population and the sample levels. As expected, bifactor models fit perfectly to data at the 

population level and had excellent fit at the sample level. The single-factor models fit 

worse than bifactor models at both population and sample level. The degree of misfit for 

single-factor models differed as a function of the generation factor structures. 

Assessment of configural invariance for fitting bifactor analysis models. 

Bifactor models fit perfectly to bifactor data for all generation conditions at the 

population level. At the sample level, bifactor models fit almost perfectly to the data for 

all generation conditions; the average RMSEAs were smaller than .03, average CFIs were 

greater than .98, and average SRMRs were smaller than .05. Figures 3a and 3b present 
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the averages of the χ2 statistic and the three fit indices for conditions with group factor 

mean differences of .4. Results for conditions with group factor mean differences of 0 

and .2 are not shown because the results differed from those for the .4 conditions only in 

the fourth decimal place. Figure 3a presents the results for conditions with general factor 

loadings of .7, and Figure 3b presents the results for conditions with general factor 

loadings of .5. Figures 3a and 3b demonstrated similar patterns for the four fit statistics. 

In both figures, conditions under structure 3 had either equal or smaller average χ2 than 

the corresponding conditions under structure 4 with the same degrees of freedom. The 

average RMSEA, CFI, and SRMR indicated slightly better fit for structures 2 and 3 than 

for structures 1 and 4. The former two structures both contained a group factor with six 

indicators. Increasing sample size from 150 to 300 led to better SRMR across all 

generation structures, but only for conditions under structures 1 and 4 for RMSEA and 

CFI. Comparing the Figure 3a and Figure 3b, conditions with weaker general factor 

loadings (.5) had slightly worse fit based on the fit indices, particularly for conditions 

under structures 1 and 2. 

Assessment of configural invariance for fitting single-factor models. Fit of 

single-factor models to bifactor data depended highly on the generation factor structures. 

Figure 4 presents the fit indices for fitting single-factor models at the population level for 

conditions with group factor mean differences of .4. Figures 5a and 5b present the 

averaged fit indices at the sample level for conditions with group factor mean differences 

of .4. Additionally, the effect of uniform and non-uniform noninvariant group factor 

loadings was also examined. The results are presented in Figure C1 in Appendix C for 

conditions with general factor loadings of .7 and group factor mean differences of .4 at 
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the population level. Results for conditions with group factor mean differences of 0 and 

.2 are not shown because the results differed from the .4 conditions only in the fourth 

decimal place. 

A similar pattern of results was demonstrated at the population and sample levels 

except that the average SRMRs at the sample level were higher than SRMRs at the 

population level for the corresponding conditions (i.e., Figures 4 and 5, respectively). 

When fitting single-factor models to data with bifactor structures with only one group 

factor (structures 1 and 2), the fit was adequate, but was slightly worse than the fit for 

bifactor analysis models. Compared to structure 1, structure 2 where more indicators 

were associated the group factor had better fit based on all the indices. When the 

generation factor structures had more than one group factors (structures 3 and 4), fit for 

the single-factor analysis models became substantially worse than fit for the bifactor 

analysis models. The single-factor model fit worst for the three-group-factor structure 

(structure 4). For conditions with generation models under structure 4, the RMSEAs were 

all greater than .06 and the CFIs were all below .95 at the population level.  

Conditions with uniform and non-uniform, noninvariant group factor loadings had 

comparable fit for fitting single-factor configurally invariant models at the population 

level, as shown in Figure C1. All three fit indices agree that the non-uniform conditions 

had slightly better fit than the uniform conditions for all structures except structure 2.  

Across the factor structures, CFIs indicated better fit for the single-factor models 

when the data were generated with stronger general factor loadings of .7, whereas χ2 and 

RMSEAs yielded results with the opposite interpretation. The latter pattern requires 

further investigation. This pattern is observed at both the population level (shown in 
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panels (b) and (a) of Figure 4) and the sample level (shown in panel (c) of Figures 5a and 

5b for CFI, panel (a) of Figures 5a and 5b for chi-square, and panel (b) of Figure 5a and 

5b for RMSEA). At the sample level, increasing sample size from 150 to 300 led to larger 

chi-squares and SRMRs (shown in panels (a) and (d) of Figure 5). 

Assessing metric invariance. To assess metric invariance, bifactor and single-

factor models with invariance constraints imposed on all between-group factor loadings 

were fit to bifactor data at the population and the sample levels. Fit for the metric 

invariant models was then compared to fit for the configurally invariant models. The 

presentation of the results of assessing metric invariance is divided into two parts. The 

first part discusses the results for generation conditions with group factor loadings 

generated to be invariant, and the second part discusses the results for conditions with 

noninvariant group factor loadings.  

Assessment of metric invariance for generation conditions with invariant group 

factor loadings. At the population level, for generation conditions with invariant group 

factor loadings, imposing invariance constraints on factor loadings led to no change in 

CFIs and SRMRs, and improved fit based on RMSEAs, regardless of whether the data 

were analyzed with a bifactor or a single-factor models. The improvement in RMSEA 

from the configurally invariant model to the metric invariant model demonstrated the 

penalty for model complexity of the index. With no additional misspecification, more 

parsimonious models are preferred based on RMSEA.    

At the sample level, the increases in average RMSEAs by imposing invariance 

constraints on factor loadings were smaller than .001 across conditions, regardless of the 
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analysis models. The decreases in average CFIs were smaller than .006, and the increases 

in average SRMRs were smaller than .02.  

Also at the sample level, the empirical rates of rejecting a metric invariant model 

for each generation condition were examined when fitting bifactor and single-factor 

models. The rejection rates were deemed as empirical Type I error rates when fitting 

bifactor models and pseudo Type I error rates when fitting single-factor models (because 

the single-factor models are misspecified models in terms of dimensionality). In Figure 6, 

I present the Type I and pseudo Type I error rates when assessing metric invariance for 

conditions with group factor mean differences of .4. Figure 6 panel (a) shows that Type I 

error rates for assessing metric invariance for the bifactor analysis models fell within the 

acceptable range of .025 to .075 (Bradley, 1978), with four exceptions. The exceptions 

occurred when sample size was 150 and when sample size was 300 with general factor 

loadings of .5. All four conditions were generated based on factor structures 3 and 4. For 

these four conditions, the models failed to properly converge across a large number of 

replications. The largest number of replications that converged properly was 99 out of the 

1000 replications. On the other hand, the pseudo Type I error rates for the single-factor 

models were comparable to the rates for the bifactor models and had less variability, as 

shown in panel (b) of Figure 6. No rate for the single-factor model fell outside the range 

of .025 to .075.  

Assessment of metric invariance for generation conditions with noninvariant 

group factor loadings. For generation conditions with noninvariant group factors, 

imposing invariance constraints on factor loadings led to worse fit for both bifactor and 

single-factor models. Table 2 summarizes the changes in fit indices at the population 
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level for the bifactor and the single-factor models. The changes in fit indices were 

calculated by subtracting fit values for a configurally invariant model from fit values for a 

metric invariant model. Underlined values in the table indicated that a metric invariant 

model fit better than a configurally invariant model based on the specific fit indices, 

despite the misspecified invariant constraints. Table C1 in Appendix C presents the 

results for comparing the uniform and non-uniform group factor loading differences 

when assessing metric invariance with single-factor models.  

In Table 2, across generation conditions, CFI was more sensitive to the lack of 

metric invariance for single-factor analysis models, whereas RMSEA was more sensitive 

to a lack of metric invariance when bifactor models were the analysis models given the 

greater change in degrees of freedom. Changes in SRMRs were not consistently greater 

for either the bifactor or the single-factor analysis models.  

As shown in Table C2, uniformity versus non-uniformity of group factor loadings 

did not have a consistent effect on the sensitivity of fit indices when assessing metric 

noninvariance with single-factor models. The fit indices had greater sensitivity for the 

uniform conditions under structure 1, but for the-nonuniform conditions under structure 

4.  

At the sample level, the empirical rates of rejecting a metric invariant model were 

examined for the bifactor and the single-factor analysis models. The rejection rates were 

deemed as empirical power rates for the bifactor models and pseudo power rates for the 

single-factor models. Figure 7 presents the power and pseudo power rates for assessing 

metric noninvaraince for the bifactor and single-factor analysis models for conditions 

with group factor mean differences of .4.  
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In panel (a) of Figure 7, the highest power of .22 was for the condition under 

structure 3 with general factor loadings of .7 and sample size of 300. Structure 2 had 

higher power rates than structure 1 across the other two generation factors; whereas 

power rates for structures 3 and 4 did not have a uniform pattern. This may due to the 

small number of replications that converged properly for these structures. Power rates for 

the single-factor analysis models are presented in panel (b) of Figure 7. Across the 

different general factor loadings and sample sizes, power rates were higher for factor 

structures with more indicators per group factor (structures 2 and 3) than for structures 

with fewer indicators per group factor (structures 1 and 4). Given the same magnitude of 

differences in group factor loadings for any noninvariant indicator in the generation 

models, the estimated loading differences when fitting a single-factor model to bifactor 

data depended on the total number of noninvariant indicators and the number of 

noninvariant indicators per group factor in the generation structure. The estimated 

loading differences between groups were found greater for structures 2 and 4, which had 

more indicators per group factor.  The greater differences in loadings lead to higher 

power rates for rejecting metric invariance. Although structures 3 and 4 had the same 

number of noninvariant group factors, power rates for structure 4 were lower because of 

the smaller differences in estimated loadings. For any factor structure, a greater sample 

size and/or stronger general factor loadings led to higher power rates.   

Across all the generation and analysis conditions, the power of rejecting metric 

invariance was low. The highest power was .25 for fitting single-factor models to bifactor 

data generated under structure 2 with general factor loadings of .7 and a sample size of 

300. Unexpectedly, power rates for the single-factor analysis models were consistently 
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higher than power rates for the bifactor analysis models across all but two generation 

conditions. The differences in the power rates between the bifactor and single-factor 

analysis models may be a function of the numbers of replications that converged 

properly.  

Assessing scalar invariance. Scalar invariance was assessed for generation 

conditions with invariant group factor loadings. To assess scalar invariance, bifactor and 

single-factor models with invariance constraints on all between-group factor loadings and 

intercepts were fit to bifactor data at the population and the sample levels. Fit statistics 

for the scalar invariant models were compared with fit statistics for the metric invariant 

models. 

Assessment of scalar invariance when fitting bifactor analysis models for 

generation conditions with invariant group factor loadings. Fitting bifactor scalar 

invariant models to data generated conditions with invariant group factor loadings led to 

no change in fit at the population level and little change in fit at the sample level as 

expected. Panel (a) of Figure 8 presents the empirical rejection rates (Type I error rates) 

for assessing scalar invariance when bifactor models were analyzed for conditions with 

group factor mean differences of .4. Across the two sample sizes and the two levels of 

general factor loadings, Type I error rates for structures 1 and 2 and all but one conditions 

under structure 4 were within the range of .025 - .075. Four of the five outliers were for 

conditions under structure 3 and one outlier was for one condition under structure 4. For 

these conditions, the numbers of replications that reached proper solution were very few. 

The highest number of replications for conditions under structure 3 was 17; the number 

of replication for the structure 4 condition was 99.  
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Assessment of scalar invariance when fitting single-factor analysis models for 

generation conditions with invariant group factor loadings. Imposing invariance 

constraints on indicator intercepts led to decreasing model fit when fitting single-factor 

models to bifactor data generated with nonzero group factor mean differences. Such 

results were consistent with expectation because the single-factor models misspecified 

data dimensionality.  

Table 3 presents changes in fit indices for single-factor models for generation 

conditions with group factor mean differences of .2 and .4 at the population level. In 

Table 3, with group factor mean differences of .2 or .4, a negative relationship was 

observed between the number of indicators associating with a group factor in the 

generation bifactor structure and the sensitivity of fit indices to a lack of scalar 

invariance. Specifically, all three fit indices had the greatest changes when intercept 

constraints were imposed for generation conditions under structure 1 (i.e., only three 

indicators loaded on a group factor). In contrast, changes in fit indices were minimal for 

structures with all nine indicators loading on group factors.  

Panel (b) of Figure 8 presents the empirical rates of rejecting a scalar invariant 

model for generation conditions with group factor mean differences of .4. This empirical 

rejection rate was deemed as pseudo power rate for rejecting scalar invariance for the 

single-factor models. Similar to results at the population level, the power rates were 

found to be highest for structure 1 (the structure with the fewest number of indicators 

loading on one group factor), and decreased as more indicators loaded on group factors in 

the generation structures across the sample sizes and the two levels of general factor 

loadings. Similar with assessing metric invariance, a greater sample size and/or stronger 
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general factor loadings led to higher power rates for detecting scalar noninvariance for a 

factor structure. 

Results in Table 3 and Figure 8 panel (b) are counterintuitive. With nonzero group 

factor mean differences in the generation factor structures, fit indices were less sensitive 

to scalar noninvariance when more indicators loaded on group factors. Fitting a single-

factor analysis model to bifactor data ignores the group factors. One would expect the 

mean differences in the ignored group factors are manifested as differences in intercepts 

of the associated indicators when a single-factor model is analyzed with data. Thus, 

imposing constraints on the intercepts should lead to worse model fit. This effect was 

observed under structures 1 and 2 when a subset of indicators loaded on a group factor. 

For structures 3 and 4, all indicators loaded on group factors with between-group mean 

differences. Thus, the observed means of all indicators in group 2 were homogeneously 

higher than the observed means of indicators in group 1. When fitting single-factor 

models, the homogeneous mean differences of all indicators were manifested as 

difference in means of the single factor, instead of differences in the intercepts of 

indicators. Thus, constraining intercepts to be invariant in structures 3 and 4 led to only 

minor changes in fit indices. 

Testing Between-Group Mean Differences 

Between-group factor mean differences were examined for generation conditions 

with invariant group factor loadings. For the bifactor analysis models, I tested the 

differences in the general factor means between groups. For single-factor analysis 

models, I tested the differences in the single factor means. With both analysis models, 
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invariance constraints were imposed on all between-group factor loadings and intercepts, 

regardless of whether scalar invariance was achieved in the previous step.  

Two statistics for the estimates of factor mean differences at the population and 

sample levels were computed: bias in the estimates and a standardized effect size 

measure for factor mean differences. At the sample level, the rejection rates of testing the 

equivalence of the factor means between groups were also summarized. 

Testing between-group factor mean differences for bifactor analysis models. 

For generation conditions with no group factor mean differences, no bias was observed 

for bifactor and single-factor models at the population level. Table 4 (left half) presents 

bias and the standardized effect size for bifactor analysis models at the population level 

for generation conditions with nonzero group factor mean differences (i.e., ∆κGRP = .2 

and .4). In Table 4, the bias and standardized effect sizes for bifactor models were all 

zero except for three conditions with structures 3 and 4 generation models. Panel (a) of 

Figure 9 presents the empirical Type I error rates for testing equivalent factor means for 

conditions with group factor mean differences of .4. All Type I error rates were within 

the acceptable range for conditions under structures 1 and 2. Type I error rates varied 

from .03 to .41 for conditions under structures 3 and 4 with very few numbers of 

replications that reached proper solutions.  

Testing between-group factor mean differences for single-factor analysis 

models. The right half of Table 4 presents bias and the standardized effect size for single-

factor models at the population level for generation conditions with nonzero group factor 

mean differences (i.e., ∆κGRP = .2 and .4). Compared to the bifactor analysis models, the 

bias and standardized effect sizes for single-factor models were much greater. For the 
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single-factor models, the magnitude of bias and standardized effect sizes varied as a 

function of the bifactor structures underlying data. Bias and the standardized effect size 

were greater when more indicators loaded on a group factor in the generation model. This 

pattern was observed at the sample level as well. Panel (b) of Figure 9 presents the 

empirical and pseudo empirical power rates for rejecting equivalent factor means 

between groups. For conditions with the same sample size and general factor loadings, 

power increased as more indicators loaded on group factors because of the increased bias 

in factor mean differences.  

The positive relationship between bias and the number of indicators loading on a 

group factor is consistent with the findings for assessing scalar invariance for the single-

factor analysis models. In assessing scalar invariance, fit indices were less sensitive to 

structures with more indicators loading on a group factor. This is because mean 

differences in the ignored group factors were manifested as mean differences in the single 

factor rather than differences in the intercepts when all indicators had homogenously 

greater means in one group versus the other group. As a result, for structures 3 and 4, 

misfit of the scalar invariant model was smaller, but bias in estimates of factor means was 

greater and thus leading to greater power rates. 

Standardized effect sizes for testing factor mean differences. A standardized 

effect size measure was calculated using the estimate of factor mean difference and the 

pooled factor variance estimates. Table 4 presents the standardized effect sizes for fitting 

the bifactor and the single-factor models at the population level. The standardized effect 

size measure had the same pattern with the bias in factor mean differences across 
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generation and analysis conditions. The only difference is that the effect sizes were 

smaller for conditions with stronger general factor loadings (λGEN =.7 versus λGEN =.5).  

In the last column of Table 4, I calculated the differences between the effect sizes 

for the bifactor analysis models and the effect sizes for the single-factor analysis models. 

This difference reflects the additional bias in estimating the latent means introduced by 

fitting an analysis model that was misspecified in terms of unidimensionality. Given 

moderate to large effect sizes for the group factor means in the generated data, the 

additional bias introduced by misspecification was under .10 if only one group factor 

with three indicators was present. As more indicators loaded on a group factor for a 

generation model, bias increased substantially for a single-factor analysis model. For data 

generated with all indicators loading on a group factor, misspecifying unidimensionality 

sometimes lead to bias in estimates of factor mean difference greater than .20. 

Summary 

This section briefly summarizes the results of fitting bifactor and single-factor 

models to bifactor data in assessing MI and evaluating factor mean differences.  

Not surprisingly, bifactor models that were properly specified in terms of 

between-group equality constraints fit the bifactor data well at the sample and population 

levels. However, at the sample level, the models failed to converge for a non-trivial 

number of replications across all generation conditions. When bifactor models were 

improperly specified in terms of between-group equality constraints, the models tended to 

have the convergence problem not only at the sample level, but also at the population 

level for some conditions. At the sample level, the fewest numbers of replications with 

properly converged models were for generation conditions with all indicators associated 
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with group factors and with different numbers of indicators across group factors. For the 

same generation conditions, the models failed to converge properly at the population 

level. I postulated that this convergence problem led to the large variabilities in the 

empirical error rates for assessing metric invariance and scalar invariance across the 

factor structures. Provocatively, bias in estimating mean differences on the general factor 

based on the bifactor analysis models were minimal across conditions. 

Fitting single-factor models to bifactor data led to model misfit in examining 

configural invariance (i.e., with no between-group equality constraints). The degree of 

misfit was found to be a function of the bifactor structure underlying the data. Based on 

the three fit indices, the single-factor analysis models evidenced insufficient fit for data 

generated based on two of the four bifactor structures (structures 3 and 4). These two 

bifactor structures had more group factors and fewer indicators per group factor. In 

assessing metric invariance, the empirical Type I error rates for the single-factor analysis 

models had less variability, and the power rates were greater compared to the bifactor 

analysis models. I hypothesized that these results were due to the greater number of 

replications that properly converged in each analysis condition. For the single-factor 

analysis models, power for rejecting metric invariance increased as the number of 

indicators per group factor increased. In testing scalar invariance, the empirical power 

rates differed as a function of the number of indicators associated with a group factor in 

the generation factor structure. Scalar invariance tended to be rejected for single-factor 

analysis models when a small number of indicators loaded on a group factor with 

different between-group factor means. The estimation biases of the factor mean 

differences were substantially larger when fitting single-factor models in comparison 
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with bifactor models. In contrast with assessing scalar invariance, bias in estimates of 

mean differences and pseudo power for rejecting equivalent factor means were greater if 

more indicators were associated with a group factor.  

Testing latent mean differences between groups requires the establishment of MI 

or partial MI, although the latter is not explored in this study. Failure to achieve a certain 

level of MI can lead to biased estimates of latent means if the incorrect invariance 

constraints are maintained. One objective of the study is to examine if the results of 

assessing MI can be informative in indicating the size of bias in the estimation of latent 

mean differences. Figures 10 and 11 plot the relationships between the results of 

assessing MI at the different hierarchical levels and the size of bias in latent mean 

difference estimates when fitting single-factor analysis models. Figure 10 shows the 

relationships at the population level, and Figure 11 illustrates the relationships at the 

sample level.  

Figures 10a and 11a depict the relationship between model fit for assessing 

configural invariance and bias in estimation. Model misfit for assessing configural 

invariance based on the three fit indices is positively related with estimation bias across 

generation conditions. Generation conditions with greater bias in the estimates of latent 

mean differences yielded worse fit when fitting single-factor models. For conditions with 

bias greater than .10, RMSEA and CFI indicated inadequate model fit for the single-

factor models using conventional cutoff criteria (RMSEA greater than .06 and CFI 

smaller than .95; Hu & Bentler, 1999), whereas SRMR suggested adequate fit at both the 

population (all below .04) and the sample levels (all below .05). The relationship between 

model misfit for assessing configural invariance and estimation bias is moderated by the 
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generation factor structure. Holding the general factor loadings constant, factor structures 

with worse model fit tended to have greater estimation bias with the exception of 

structure 1. The positive relationship between model misfit for assessing configural 

invariance and estimation bias became much weaker within factor structures.  

Figures 10b and 11b show the relationship between the changes in model fit for 

assessing scalar invariance and bias in estimates of latent mean differences. 

Provocatively, model misfit for assessing scalar invariance is associated with a lack of 

bias in latent mean estimates. More specifically, for conditions with substantial bias (bias 

greater than .10), minimal model misfit is observed when imposing invariance constraints 

on between-group intercepts. This result is consistent across all fit indices at both 

population and sample levels. Similarly, power rates for detecting scalar noninvariance 

were very low for conditions with substantial bias. In addition, RMSEA and CFI were 

found to be sensitive to a lack of scalar invariance for conditions with relatively small 

bias. At the sample level, the increases in RMSEA when fitting a scalar invariant model 

to a metric invariant model were all greater than .003 for generation conditions under 

structure 1. The decreases in CFI were all greater than .004 for the same conditions. 

Similar to the results for assessing configural invariance, this relationship between the fit 

in assessing scalar invariance and estimation bias was moderated by the bifactor 

structures underlying data. With the general factor loadings and sample size held 

constant, factor structures with smaller changes in fit and low power rates tended to have 

greater bias in estimation. This relationship was found to be much weaker within each 

factor structure. 
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CHAPTER 5 

DISCUSSION 

Assessment of MI starts with testing whether a presumed factor structure holds 

for multiple populations. A unidimensional structure is tested most commonly. In 

practice, however, tests and scales are unlikely to yield strictly unidimensional data and 

are likely to be affected by one or more secondary dimensions. The effects of 

misspecifying the secondary dimensions on model estimation have been extensively 

investigated in analyses with a single population (e.g., Bonifay et al., 2015; Drasgow & 

Parsons, 1983; Kirisci et al., 2001; Reckase, 1979; Reise et al., 2013). In contrast, the 

effects of such misspecifications on MI assessments have not been studied. This study 

explored the effects of including or ignoring the secondary factors in analysis models on 

assessing MI and testing factor mean differences using a bifactor modeling framework.  

The results of the study showed it is important to analyze bifactor data with an 

appropriate bifactor model in multiple group analysis. When the analysis model was 

consistent with the generation model, estimates of the latent mean differences were 

unbiased or slightly biased.  

The drawback of applying a bifactor model is that these models are more complex 

and thus are less likely to converge properly. Compared to single-factor models, bifactor 

models have more parameters to estimate for the same set of indicators and thus require a 

larger sample size for proper model convergence. The current study used sample sizes of 

150 and 300 for each group, and the highest convergence number was 810 out of 1000 

replications for a N = 300 condition. To avoid non-convergence in practice, a larger 

sample size would be useful for analyzing bifactor models in assessing MI.  
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The literature suggests that proper convergence of factor models depends on the 

magnitudes of the communalities of indicators and the number of indicators per factor in 

addition to sample size (Gagne & Hancock, 2006; MacCallum, Widaman, Zhang, & 

Hong, 1999). The results of the bifactor analysis models at the sample level showed that 

conditions with higher general factor loadings had more replications with properly 

converged models, given the same strength of group factor loadings. These results are 

consistent with the literature suggesting higher convergence rates occur with stronger 

communalities. Counter to the literature, the number of indicators per factor did not have 

a uniform impact on convergence of the bifactor models. With relatively weak group 

factors, the numbers of properly converged replications decreased dramatically as the 

number of group factors increased. For the two structures with multiple group factors, the 

numbers of properly converged replications were lower for structure 3 than for structure 

4, despite that structure 3 had more indicators per factor and had equal or more degrees of 

freedom than structure 4. These results suggest that scale developers should be cautious if 

multiple secondary dimensions are likely. In addition, the number of items falling on 

each of the secondary dimensions should be kept as similar as possible to avoid 

nonconvergence, especially when sample size is small. Applying bifactor models in 

practice may be aided by a priori knowledge of the true multidimensional factor structure 

to reach successful model convergence and satisfactory analysis results. In such cases, a 

Bayesian analysis approach might be considered to facilitate model estimation and to 

better reflect theories by incorporating substantively driven, small-variance priors for 

model parameters (Muthén & Asparouhov, 2012).  
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My study used a bifactor modeling framework to represent multidimensional 

factor structures. Bifactor models have been advocated in recent studies to characterize 

multidimensional data (e.g., Gibbons et al., 2008; Reise et al., 2007), and have been 

found to be helpful in the interpretation of psychological constructs (Chen, Hayes, 

Carver, Laurenceau, & Zhang, 2012). In the research literature on MI, however, few 

studies have considered a bifactor structure to represent multidimensional data, although 

the lack of MI is often conceptualized as the presence of multidimensionality. In my 

study, the lack of MI is conceptualized as between-group differences in indicator weights 

on the group factors and between-group differences in latent means of the group factors. 

The group factors represent content or context based factors that are independent of the 

general factor. One finding of my study is using single-factor models to analyze bifactor 

data is likely to confound differences in indicator parameters with difference in means of 

the latent distribution of interest. Depending on the generation bifactor structure, mean 

differences in the group factors produced either differences in indicator intercepts or 

differences in factor means in the single-factor models. With only a small number of 

indictors loading on a group factor, the mean differences in the group factors yielded 

differences in indicator intercepts. If detected, invariance constraints on the model can be 

respecified to avoid bias in latent mean comparison. As the number of indicators loading 

on group factors increased, the mean differences in the group factors were less likely to 

be detected as scalar noninvariance. The mean differences in the group factors then led to 

substantial bias in estimates of mean difference of the factor in the single-factor model.   

The results of the study have implications for applied studies in the process of 

constructing measures, selecting samples, and choosing statistical models. First, if the 
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goal of a multiple group study is to compare population means on a single latent variable, 

researchers should try to minimize the number of indicators that can potentially be 

affected by secondary factors. If the inclusion of items with similar content or context is 

inevitable, one should consider items reflecting many aspects of the construct, with each 

aspect containing only a small number of items, such as the bifactor structure 4 in this 

study as opposed to structure 3.  

Second, when selecting samples, one should try to minimize group differences on 

the possible secondary dimensions. Group comparison on the primary factor is not 

affected as long as the two groups have identical distributions on the secondary factors.  

Lastly, alternative factor structures should be considered when applying statistical 

models before conducting any MI analysis. The analysis models can include a single-

factor model and potentially different bifactor models with variations in the group factor 

structures. When comparing the fit of a single-factor model with a bifactor model, 

applied researchers should be cautious in that the fit function value for a bifactor model 

will yield a value smaller than or equal to the value for a single-factor model because the 

latter is nested within the former. The additional parameters of the bifactor model can 

capitalize on the idiosyncratic features of the sample to yield fit statistic that produce too 

positive view of the model, particularly if researchers conduct exploratory methods to 

specify the bifactor model. Thus, it is important that the selection of bifactor models is 

based on strong substantive theory and/or can be cross-validated to avoid overfitting. For 

cases where the fit of one model is not superior to the fit of the other, one might consider 

assessing MI using both bifactor and single-factor models and assess the results of the 

two models at each of the steps in MI assessment. A stronger conclusion can be reached 
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if the results are comparable across both bifactor and single-factor models. Moreover, if 

the MI results are comparable, it seems more likely that the estimated mean difference on 

the primary factor would be the similar across the two types of models.  

There are a number of ways that future researchers could expand on my findings. 

As with any Monte Carlo study, it was impossible to design a study that allowed me to 

reach conclusions across all possible conditions. In future studies, researchers should 

investigate additional dimensions. For example, it would be interesting to manipulate the 

number of indicators per group factor, independent of the number of group factors in the 

generation of the data.  Also, the total number of indicators for factor structures could be 

varied, as well as the relative magnitude of the group factor loadings to the general factor 

loadings. With my generation models, only the means of the latent distributions for the 

group factors were manipulated across groups. Different levels of variances (as well as 

other moments about the mean) of the latent distributions should also be considered.  

Finally, it would be beneficial to understand the effect of analyzing bifactor-generated 

data with a single-factor model when assessing MI on not only bias of differences in the 

general factor means, but also bias of differences in structure coefficients relating the 

general factor to external correlates. 



  55 

REFERENCES 

Ackerman, T. A. (1989). Unidimensional IRT calibration of compensatory and 

noncompensatory multidimensional items. Applied Psychological Measurement, 

13, 113–127. 

Ackerman, T. A. (1992). A didactic explanation of item bias, item impact, and item 

validity from a multidimensional perspective. Journal of educational 

measurement, 29(1), 67-91. 

Bentler, P. M. (2009). Alpha, dimension-free, and model-based internal consistency 

reliability. Psychometrika, 74(1), 137-143. 

Bollen, K. A. (1989). Structural equations with latent variables. New York: Wiley. 

Bonifay, W. E., Reise, S. P., Scheines, R., & Meijer, R. R. (2015). When are 

multidimensional data unidimensional enough for structural equation modeling? 

An evaluation of the DETECT multidimensionality index. Structural Equation 

Modeling: A Multidisciplinary Journal, 22(4), 504-516. 

Byrne, B. M., Shavelson, R. J., & Muthén, B. (1989). Testing for the equivalence of 

factor covariance and mean structures: The issue of partial measurement 

invariance. Psychological Bulletin, 105(3), 456. 

Byrne, B. M., & Stewart, S. M. (2006). Teacher's corner: The MACS approach to testing 

for multigroup invariance of a second-order structure: A walk through the 

process. Structural Equation Modeling, 13(2), 287-321. 

Camilli, G. (1992). A conceptual analysis of differential item functioning in terms of a 

multidimensional item response model. Applied Psychological 

Measurement, 16(2), 129-147. 

Carle, A. C., Millsap, R. E., & Cole, D. A. (2007). Measurement bias across gender on 

the Children's Depression Inventory: Evidence for invariance from two latent 

variable models. Educational and Psychological Measurement. 

Chen, F. F. (2007). Sensitivity of goodness of fit indexes to lack of measurement 

invariance. Structural equation modeling, 14(3), 464-504. 

Chen, F. F. (2008). What happens if we compare chopsticks with forks? The impact of 

making inappropriate comparisons in cross-cultural research. Journal of 

personality and social psychology, 95(5), 1005. 

Chen, F. F., Hayes, A., Carver, C. S., Laurenceau, J.-P., & Zhang, Z. (2012). Modeling 

general and specific variance in multifaceted constructs: A comparison of the 

bifactor model to other approaches. Journal of Personality, 80, 219-251. 



  56 

Chen, F. F., West, S. G., & Sousa, K. H. (2006). A comparison of bifactor and second-

order models of quality of life. Multivariate Behavioral Research, 41(2), 189-225. 

Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing 

measurement invariance. Structural equation modeling, 9(2), 233-255. 

Cole, D. A., Maxwell, S. E., Arvey, R., & Salas, E. (1993). Multivariate group 

comparisons of variable systems: MANOVA and structural equation 

modeling. Psychological Bulletin, 114(1), 174. 

De Ayala, R. J. (1994). The influence of multidimensionality on the graded response 

model. Applied Psychological Measurement, 18(2), 155-170. 

DeMars, C. E. (2006). Application of the Bi‐Factor Multidimensional Item Response 

Theory Model to Testlet‐Based Tests. Journal of Educational 

Measurement, 43(2), 145-168. 

Drasgow, F., & Parsons, C. K. (1983). Application of unidimensional item response 

theory models to multidimensional data. Applied Psychological 

Measurement, 7(2), 189-199. 

Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists. 

Psychology Press. 

Fan, X., & Sivo, S. A. (2009). Using Δgoodness-of-fit indexes in assessing mean 

structure invariance. Structural Equation Modeling, 16(1), 54-69. 

French, B. F., & Finch, W. H. (2006). Confirmatory factor analytic procedures for the 

determination of measurement invariance. Structural Equation Modeling, 13(3), 

378-402. 

Gibbons, R. D., Weiss, D. J., Kupfer, D. J., Frank, E., Fagiolini, A., Grochocinski, V. J., 

..., & Immekus, J. C. (2008). Using computerized adaptive testing to reduce the 

burden of mental health assessment. Psychiatric Services. 

Green, S. B., & Thompson, S. M. (2012). A flexible structural equation modeling 

approach for analyzing means. In R. H. Hoyle (Ed.), Handbook of structural 

equation modeling (pp. 393-416). New York: Guilford Press. 

Green, S., & Yang, Y. (2017). Empirical Underidentification with the Bifactor Model: A 

Case Study. Educational and Psychological Measurement, 0013164417719947. 

Hancock, G. R. (2001). Effect size, power, and sample size determination for structured 

means modeling and MIMIC approaches to between-groups hypothesis testing of 

means on a single latent construct. Psychometrika, 66(3), 373-388. 



  57 

Hancock, G. R., Lawrence, F. R., & Nevitt, J. (2000). Type I error and power of latent 

mean methods and MANOVA in factorially invariant and noninvariant latent 

variable systems. Structural Equation Modeling: A Multidisciplinary Journal, 7, 

534-556. 

Hattie, J. (1985). Methodology review: assessing unidimensionality of tests and 

items. Applied Psychological Measurement, 9(2), 139-164. 

Horn, J. L., & McArdle, J. J. (1992). A practical and theoretical guide to measurement 

invariance in aging research. Experimental aging research, 18(3), 117-144. 

Jak, S., Oort, F. J., & Dolan, C. V. (2010). Measurement bias and multidimensionality; an 

illustration of bias detection in multidimensional measurement models. AStA 

Advances in Statistical Analysis, 94(2), 129-137. 

Jeon, M., Rijmen, F., & Rabe-Hesketh, S. (2013). Modeling differential item functioning 

using a generalization of the multiple-group bifactor model. Journal of 

Educational and Behavioral Statistics, 38(1), 32-60. 

Johnson, E. C., Meade, A. W., & DuVernet, A. M. (2009). The role of referent indicators 

in tests of measurement invariance. Structural Equation Modeling, 16(4), 642-

657. 

Jöreskog, K. G., & Goldberger, A. S. (1975). Estimation of a model with multiple 

indicators and multiple causes of a single latent variable. Journal of the American 

Statistical Association, 70(351a), 631-639. 

Kaplan, D., & George, R. (1995). A study of the power associated with testing factor 

mean differences under violations of factorial invariance. Structural Equation 

Modeling: A Multidisciplinary Journal, 2(2), 101-118. 

Kok, F. (1988). Item bias and test multidimensionality. In Latent trait and latent class 

models (pp. 263-275). Springer US. 

Kirisci, L., Hsu, T. C., & Yu, L. (2001). Robustness of item parameter estimation 

programs to assumptions of unidimensionality and normality. Applied 

psychological measurement, 25(2), 146-162. 

Lord, F. M. (1980). Applications of item response theory to practical testing problems. 

Routledge. 

Marsh, H. W., & Hocevar, D. (1985). Application of confirmatory factor analysis to the 

study of self-concept: First-and higher order factor models and their invariance 

across groups. Psychological bulletin, 97(3), 562. 

McDonald, R. P. (1981). The dimensionality of tests and items. British Journal of 

Mathematical and Statistical Psychology, 34(1), 100-117. 



  58 

McDonald, R. P. (1999). Test theory: A unified approach. Mahwah, NJ: Lawrence 

Earlbaum. 

McDonald, R. P., & Mok, M. M. C. (1995). Goodness of fit in item response 

models. Multivariate Behavioral Research, 30(1), 23-40. 

Meade, A. W., Johnson, E. C., & Braddy, P. W. (2008). Power and sensitivity of 

alternative fit indices in tests of measurement invariance. Journal of Applied 

Psychology, 93(3), 568. 

Meade, A. W., & Lautenschlager, G. J. (2004). A comparison of item response theory 

and confirmatory factor analytic methodologies for establishing measurement 

equivalence/invariance. Organizational Research Methods, 7(4), 361-388. 

Meade, A. W., & Tonidandel, S. (2010). Not seeing clearly with Cleary: What test bias 

analyses do and do not tell us. Industrial and Organizational Psychology, 3(2), 

192-205. 

Meredith, W. (1993). Measurement invariance, factor analysis and factorial 

invariance. Psychometrika, 58(4), 525-543. 

Millsap, R. E. (1997). Invariance in measurement and prediction: Their relationship in the 

single-factor case. Psychological Methods, 2(3), 248. 

Millsap, R. E. (2012). Statistical approaches to measurement invariance. Routledge. 

Millsap, R. E., & Kwok, O. M. (2004). Evaluating the impact of partial factorial 

invariance on selection in two populations. Psychological methods, 9(1), 93. 

Morin, A. J., Arens, A. K., & Marsh, H. W. (2015). A bifactor exploratory structural 

equation modeling framework for the identification of distinct sources of 

construct-relevant psychometric multidimensionality. Structural Equation 

Modeling: A Multidisciplinary Journal, 1-24. 

Muthén, B., & Asparouhov, T. (2012). Bayesian structural equation modeling: A more 

flexible representation of substantive theory. Psychological methods, 17(3), 313. 

Nandakumar, R., & Stout, W. (1993). Refinements of Stout’s procedure for assessing 

latent trait unidimensionality. Journal of Educational and Behavioral 

Statistics, 18(1), 41-68. 

Oshima, T. C., & Miller, M. D. (1990). Multidimensionality and IRT‐Based Item 

lnvariance Indexes: The Effect of Between‐Group Variation in Trait 

Correlation. Journal of Educational Measurement, 27(3), 273-283. 

Reckase, M. D. (1979). Unifactor latent trait models applied to multifactor tests: Results 

and implications. Journal of Educational and Behavioral Statistics, 4(3), 207-230. 



  59 

Reise, S. P. (2012). The rediscovery of bifactor measurement models. Multivariate 

Behavioral Research, 47(5), 667-696. 

Reise, S. P., Cook, K. F., Moore, T. M. (2015). Evaluating the impact of 

multidimensionality on unidimensional item response theory model parameters. 

In Reise, S. P., Revicki, D. A. (Eds.), Handbook of item response theory modeling 

(pp. 13-40). New York, NY: Taylor & Francis. 

Reise, S. P., Moore, T. M., & Haviland, M. G. (2010). Bifactor models and rotations: 

Exploring the extent to which multidimensional data yield univocal scale 

scores. Journal of personality assessment, 92(6), 544-559. 

Reise, S. P., Morizot, J., & Hays, R. D. (2007). The role of the bifactor model in 

resolving dimensionality issues in health outcomes measures.Quality of Life 

Research, 16(1), 19-31. 

Reise, S. P., Scheines, R., Widaman, K. F., & Haviland, M. G. (2013). 

Multidimensionality and Structural Coefficient Bias in Structural Equation 

Modeling: A Bifactor Perspective. Educational and Psychological Measurement, 

73(1), 5-26. 

Roussos, L. A., & Stout, W. F. (1996). Simulation Studies of the Effects of Small Sample 

Size and Studied Item Parameters on SIBTEST and Mantel‐Haenszel Type I Error 

Performance. Journal of Educational Measurement, 33(2), 215-230. 

Schmid, J., & Leiman, J. M. (1957). The development of hierarchical factor 

solutions. Psychometrika, 22(1), 53-61. 

Shealy, R., & Stout, W. (1993). A model-based standardization approach that separates 

true bias/DIF from group ability differences and detects test bias/DTF as well as 

item bias/DIF. Psychometrika, 58(2), 159-194. 

Sörbom, D. (1974). A general method for studying differences in factor means and factor 

structure between groups. British Journal of Mathematical and Statistical 

Psychology, 27(2), 229-239. 

Steenkamp, J. B. E., & Baumgartner, H. (1998). Assessing measurement invariance in 

cross-national consumer research. Journal of consumer research, 25(1), 78-107. 

Steinberg, L., & Thissen, D. (1996). Uses of item response theory and the testlet concept 

in the measurement of psychopathology. Psychological Methods, 1(1), 81. 

Stout, W. F. (1987). A nonparametric approach for assessing latent trait 

unidimensionality. Psychometrika, 52, 589−617. 



  60 

Swaminathan, H., Hambleton, R. K., & Rogers, H. J. Assessing the fit of item response 

theory models. In C. R. Rao & S. Sinharay (Eds.), Handbook of Statistics: 

Psychometrics (pp. 683-718). Amsterdam: Elsevier. 

Ten Berge, J. M., & Sočan, G. (2004). The greatest lower bound to the reliability of a test 

and the hypothesis of unidimensionality. Psychometrika, 69(4), 613-625. 

Thompson, M. S. & Green, S. B. (2013). Evaluating between-group differences in latent 

variable means. In G. R. Hancock & R. O. Mueller (Eds.), Structural equation 

modeling: A second course (pp.163-218). lap. 

Vandenberg, R. J., & Lance, C. E. (2000). A review and synthesis of the measurement 

invariance literature: Suggestions, practices, and recommendations for 

organizational research. Organizational research methods, 3(1), 4-70. 

Wang, D., Whittaker, T. A., & Beretvas, S. N. (2012). The impact of violating factor 

scaling method assumptions on latent mean difference testing in structured means 

models. Journal of Modern Applied Statistical Methods, 11(1), 3. 

Whittaker, T. A. (2013). The Impact of Noninvariant Intercepts in Latent Means 

Models. Structural Equation Modeling, 20(1), 108-130. 

Widaman, K. F., & Reise, S. P. (1997). Exploring the measurement invariance of 

psychological instruments: Applications in the substance use domain. The science 

of prevention: Methodological advances from alcohol and substance abuse 

research, 281-324. 

Xu, Y., & Green, S. B. (2015). The Impact of Varying the Number of Measurement 

Invariance Constraints on the Assessment of Between-Group Differences of 

Latent Means. Structural Equation Modeling: A Multidisciplinary Journal, 1-12. 

Yen, W. M. (1993). Scaling performance assessments: Strategies for managing local item 

dependence. Journal of educational measurement, 30(3), 187-213. 

Yoon, M., & Millsap, R. E. (2007). Detecting violations of factorial invariance using 

data-based specification searches: A Monte Carlo study. Structural Equation 

Modeling, 14(3), 435-463. 

Zhang, J., & Stout, W. (1999). The theoretical DETECT index of dimensionality and its 

application to approximate simple structure. Psychometrika, 64, 213-249. 

Zinbarg, R. E., Revelle, W., Yovel, I., & Li, W. (2005). Cronbach’s α, Revelle’s β, and 

McDonald’s ωH: Their relations with each other and two alternative 

conceptualizations of reliability. Psychometrika, 70(1), 123-133. 

 



  61 

APPENDIX A 

  



  62 

RESULTS OF THE PRELIMINARY STUDY 

Table A1 

Fit indices for Fitting Single-Factor Models to Single-Group Data Generated Based on 

Bifactor Structure 1 with 3 Indicators Loading on One Group Factor at the Population 

Level. 

Generation Parameter 

 

Fit Indices 

General Factor  

Loading 

Group Factor  

Loading 

 

RMSEA CFI SRMR 

.8 .2  .027 .997 .008 

.8 .3  .060 .985 .017 

.8 .4  .108 .956 .031 

.8 .5  .171 .902 .065 
      

.7 .2  .019 .998 .008 

.7 .3  .042 .988 .017 

.7 .4  .074 .965 .030 

.7 .5  .115 .923 .050 
      

.6 .2  .015 .997 .007 

.6 .3  .033 .987 .017 

.6 .4  .058 .963 .029 

.6 .5  .088 .924 .047 
      

.5 .2  .012 .997 .007 

.5 .3  .028 .984 .017 

.5 .4  .048 .955 .029 

.5 .5  .072 .914 .045 
      

.4 .2  .011 .995 .007 

.4 .3  .024 .975 .016 

.4 .4  .041 .937 .028 

.4 .5  .058 .898 .041 
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Table A2 

Fit indices for Fitting Single-Factor Models to Single-Group Data Generated Based on 

Bifactor Structure 2 with 6 Indicators Loading on One Group Factor at the Population 

Level. 

Generation Parameter 

 

Fit Indices 

General Factor  

Loading 

Group Factor  

Loading 

 

RMSEA CFI SRMR 

.8 .2  .025 .998 .007 

.8 .3  .050 .991 .016 

.8 .4  .078 .981 .029 

.8 .5  .103 .975 .043 
      

.7 .2  .017 .998 .007 

.7 .3  .036 .992 .016 

.7 .4  .056 .984 .027 

.7 .5  .074 .977 .039 
      

.6 .2  .014 .998 .007 

.6 .3  .028 .992 .015 

.6 .4  .043 .984 .025 

.6 .5  .057 .978 .035 
      

.5 .2  .011 .997 .007 

.5 .3  .023 .991 .014 

.5 .4  .034 .984 .022 

.5 .5  .044 .980 .030 
      

.4 .2  .009 .996 .007 

.4 .3  .018 .989 .013 

.4 .4  .026 .984 .019 

.4 .5  .033 .983 .024 
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Table A3 

Fit indices for Fitting Single-Factor Models to Single-Group Data Generated Based on 

Bifactor Structure 3 with All Indicators Loading on Two Group Factors at the Population 

Level. 

Generation Parameter 

 

Fit Indices 

General Factor  

Loading 

Group Factor  

Loading 

 

RMSEA CFI SRMR 

.8 .2  .051 .990 .015 

.8 .3  .108 .959 .034 

.8 .4  .184 .905 .063 

.8 .5  .284 .838 .103 
      

.7 .2  .036 .991 .015 

.7 .3  .078 .965 .034 

.7 .4  .131 .917 .060 

.7 .5  .197 .860 .096 
      

.6 .2  .029 .991 .015 

.6 .3  .062 .963 .033 

.6 .4  .105 .915 .059 

.6 .5  .156 .860 .092 
      

.5 .2  .025 .988 .015 

.5 .3  .053 .955 .033 

.5 .4  .089 .903 .058 

.5 .5  .131 .849 .089 
      

.4 .2  .022 .982 .015 

.4 .3  .047 .937 .032 

.4 .4  .078 .879 .056 

.4 .5  .114 .829 .085 
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Table A4 

Fit indices for Fitting Single-Factor Models to Single-Group Data Generated Based on 

Bifactor Structure 4 with All Indicators Loading on Three Group Factors at the 

Population Level. 

Generation Parameter 

 

Fit Indices 

General Factor  

Loading 

Group Factor  

Loading 

 

RMSEA CFI SRMR 

.8 .2  .054 .988 .015 

.8 .3  .122 .945 .035 

.8 .4  .220 .847 .062 

.8 .5  .377 .670 .097 
      

.7 .2  .038 .990 .015 

.7 .3  .086 .954 .035 

.7 .4  .153 .874 .062 

.7 .5  .246 .744 .097 
      

.6 .2  .031 .989 .015 

.6 .3  .069 .951 .035 

.6 .4  .122 .869 .062 

.6 .5  .192 .746 .097 
      

.5 .2  .026 .986 .015 

.5 .3  .059 .937 .035 

.5 .4  .104 .841 .062 

.5 .5  .163 .709 .097 
      

.4 .2  .023 .977 .015 

.4 .3  .052 .906 .035 

.4 .4  .093 .782 .062 

.4 .5  .145 .636 .097 
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ADDITIONAL MODEL CONVERGENCE RESULTS 

Table B1 

Numbers of Replications of 1000 That Reached Proper Solutions When Fitting Bifactor 

Models to Data with General Factor Loadings of .7 and Group Factor Mean Differences 

of .4 at the Sample Level 

    Bifactor Analysis Models 

Generation 

Model 
λGRP N 

 
Configural  

Invariance 

Metric  

Invariance 

Scalar  

Invariance 

 All three  

analysis 

modelsa 

S1: One 

group factor 

(with 3 

indicators) 

Invariant 
150  467 700 841  394 

300  623 829 948  597 

Non-

invariant 

150  515 810 901  477 

300  718 936 992  699 
         

S2: One 

group factor 

(with 6 

indicators) 

Invariant 
150  689 883 958  645 

300  857 924 999  810 

Non-

invariant 

150  581 730 811  468 

300  805 876 924  718 
         

S3: Two 

group 

factors 

Invariant 
150  43 160 196  10 

300  71 247 250  17 

Non-

invariant 

150  59 127 187  8 

300  124 120 186  18 
         

S4: Three 

group 

factors 

Invariant 
150  98 417 508  70 

300  267 653 711  235 

Non-

invariant 

150  142 537 599  114 

300  416 849 897  386 
aThe number of replications that reached proper solutions across all three analysis models: 

configurally invariant model, metric invariant model, and scalar invariant model 
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Table B2 

Numbers of Replications That Reached Proper Solutions When Fitting Bifactor Models to 

Data with General Factor Loadings of .5 and Group Factor Mean Differences of .4 at the 

Sample Level 

    Bifactor Analysis Models 

Generation 

Model 
λGRP N 

 
Configural  

Invariance 

Metric  

Invariance 

Scalar  

Invariance 

 All three  

analysis 

modelsa 

S1: One 

group factor 

(with 3 

indicators) 

Invariant 
150  330 576 746  267 

300  537 774 945  466 

Non-

invariant 

150  352 581 713  288 

300  545 831 929  508 
         

S2: One 

group factor 

(with 6 

indicators) 

Invariant 
150  392 641 750  302 

300  586 805 934  504 

Non-

invariant 

150  350 573 669  239 

300  545 716 829  431 
         

S3: Two 

group 

factors 

Invariant 
150  45 152 215  6 

300  73 212 244  17 

Non-

invariant 

150  40 119 174  6 

300  111 151 257  14 
         

S4: Three 

group 

factors 

Invariant 
150  40 199 321  19 

300  144 522 607  99 

Non-

invariant 

150  36 199 286  14 

300  157 544 609  118 
aThe number of replications that reached proper solutions across all three analysis models: 

configurally invariant model, metric invariant model, and scalar invariant model 
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RESULTS FOR NON-UNIFORM NONINVARIANCE CONDITIONS 

Table C1 

Changes in Fit Indices for Assessing Metric Invariance When Fitting Single-Factor 

Analysis Models to Bifactor Data Generated with Uniform and Non-Uniform 

Noninvariant Group Factor Loadings at the Population Level (λGEN=.7 and ∆κGRP = .4) 

Generation 

Model 

Noninvaraince 

Pattern 

 Single-Factor Analysis Models (∆df = 8) 
 ∆RMSEA ∆CFI ∆SRMR 

S1: One group factor 

with 3 indicators 

Uniform  -.0026 -.0006 .0017 

Non-uniform  -.0030 -.0001 .0002 
      

S2: One group factor 

with 6 indicators 

Uniform  .0008 -.0020 .0095 

Non-uniform  .0008 -.0020 .0095 
      

S3: Two group factors 

with 9 indicators 

Uniform  -.0046 -.0017 .0032 

Non-uniform  -.0046 -.0013 .0041 
      

S4: Three group factors 

with 9 indicators 

Uniform  -.0070 < .0001 .0001 

Non-uniform  -.0063 .0001 .0002 

Note. ∆Goodness-of-fit indices with underlines indicate that a metric invariant model fits better 

than a configurally invariant model to data. Shaded cells indicate conditions with negative 

variance estimates of group factors for the misspecified bifactor metric invariant models. 
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(a) RMSEA (b) CFI 

 

 

  S1: One group factor with three indicators 

  S2: One group factor with six indicators 

  S3: Two group factors with six indicators 

  S4: Three group factors with nine indicators 

(c) SRMR  

 

Figure C1. Fit of single-factor configurally invariant models at the population level for 

conditions with uniform and non-uniform noninvariant group factor loadings (λGEN=.7 

and ∆κGRP = .4). 
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Table 1 

Population Factor Loadings for Generation Conditions with Average General Factor Loadings of 

.7 

 Invariant Group Factor Loading  

 Group 1 and Group 2 

Structure 1 λ
'
= �.6 .7 .8 .6 .7 .8 .6 .7 .8

.2 .3 .4 0 0 0 0 0 0
� 

  

Structure 2 λ
'
= �.6 .7 .8 .6 .7 .8 .6 .7 .8

0 0 0 .2 .3 .4 .2 .3 .4
� 

  

Structure 3 λ
'
= �.6 .7 .8 .6 .7 .8 .6 .7 .8

.2 .3 .4 0 0 0 0 0 0

0 0 0 .2 .3 .4 .2 .3 .4

� 
  

Structure 4 λ
'
= �.6 .7 .8 .6 .7 .8 .6 .7 .8

.2 .3 .4 0 0 0 0 0 0

0 0 0 .2 .3 .4 0 0 0

0 0 0 0 0 0 .2 .3 .4

� 
  

 Noninvariant Group Factor Loading 

 Group 1 Group 2 

Structure 1 λ
'
= �.6 .7 .8 .6 .7 .8 .6 .7 .8

.2 .3 .2 0 0 0 0 0 0
� λ

'
= �.6 .7 .8 .6 .7 .8 .6 .7 .8

.4 .3 .4 0 0 0 0 0 0
� 

   

Structure 2 λ
'
= �.6 .7 .8 .6 .7 .8 .6 .7 .8

0 0 0 .2 .3 .2 .2 .3 .2
� λ

'
= �.6 .7 .8 .6 .7 .8 .6 .7 .8

0 0 0 .4 .3 .4 .4 .3 .4
� 

   

Structure 3 λ
'
= �.6 .7 .8 .6 .7 .8 .6 .7 .8

.2 .3 .2 0 0 0 0 0 0

0 0 0 .2 .3 .2 .2 .3 .2

� λ
'
= �.6 .7 .8 .6 .7 .8 .6 .7 .8

.4 .3 .4 0 0 0 0 0 0

0 0 0 .4 .3 .4 .4 .3 .4

� 
   



 

 

7
3
 

Structure 4 λ
'
= �.6 .7 .8 .6 .7 .8 .6 .7 .8

.2 .3 .2 0 0 0 0 0 0

0 0 0 .2 .3 .2 0 0 0

0 0 0 0 0 0 .2 .3 .2

� λ
'
= �.6 .7 .8 .6 .7 .8 .6 .7 .8

.4 .3 .4 0 0 0 0 0 0

0 0 0 .4 .3 .4 0 0 0

0 0 0 0 0 0 .4 .3 .4

� 
Note. Bolded loadings are group factor loadings generated to be noninvariant between groups. S1: One 

group factor with 3 indicators; S2: One group factor with 6 indicators; S3: Two group factors with 9 

indicators; S4: Three group factors with 9 indicators.  
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Table 2 

Changes in Fit Indices for Assessing Metric Invariance When Fitting Bifactor Analysis Models and Single-Factor Analysis 

Models to Bifactor Data Generated with Noninvariant Group Factor Loadings at the Population Level (∆κGRP = .4) 

Generation 

Model 
  Bifactor Analysis Models  Single-Factor Analysis Models (∆df = 8) 

λGEN  ∆df ∆RMSEA ∆CFI ∆SRMR  ∆RMSEA ∆CFI ∆SRMR 

S1: One group factor 

with 3 indicators 

.5  10 .0048 -.0005 .0028  -.0014 -.0012 .0016 

.7  10 .0070 -.0003 .0028  -.0026 -.0006 .0017 
           

S2: One group factor 

with 6 indicators 

.5  13 .0107 -.0018 .0078  .0025 -.0044 .0084 

.7  13 .0151 -.0013 .0085  .0008 -.0020 .0095 
           

S3: Two group factors 

with 9 indicators 

.5  15 .0106 -.0015 .0062  -.0025 -.0030 .0028 

.7  15 .0144 -.0010 .0059  -.0046 -.0017 .0032 
           

S4: Three group factors 

with 9 indicators 

.5  14 .0087 -.0012 .0047  -.0045 -.0002 .0002 

.7  14 .0133 -.0009 .0050  -.0070 < .0001 .0001 

Note. Results for generation conditions with ∆κGRP = 0 or .2 were only different from those with ∆κGRP = .4 in the fourth decimal place; 

thus, only the results for ∆κGRP = .4 were shown. ∆Goodness-of-fit indices with underlines indicate that a metric invariant model fits 

better than a configurally invariant model to data. Shaded cells indicate conditions with negative variance estimates of group factors for 

the misspecified bifactor metric invariant models. 
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Table 3 

Changes in Fit Indices for Assessing Scalar Invariance When Fitting Single-Factor 

Analysis Models to Bifactor Data with Invariant Group Factor Loadings at the 

Population Level (∆df = 8) 

Generation Model ∆κGRP λGEN ∆RMSEA ∆CFI ∆SRMR 

S1: One group factor 

with 3 indicators 

.2 
.5 -.0005 -.0017 .0010 

.7 -.0012 -.0012 .0011 

.4 
.5 .0035 -.0077 .0039 

.7 .0031 -.0045 .0040 

      

S2: One group factor 

with 6 indicators 

.2 
.5 -.0003 -.0011 .0010 

.7 -.0012 -.0008 .0011 

.4 
.5 .0027 -.0041 .0035 

.7 .0023 -.0030 .0041 

      

S3: Two group factors 

with 9 indicators 

.2 
.5 -.0032 .0001 < .0001 

.7 -.0052 > -.0001 & < 0 .0001 

.4 
.5 -.0030 -.0003 .0001 

.7 -.0049 -.0003 .0002 

      

S4: Three group factors 

with 9 indicators 

.2 
.5 -0.0035 > -.0001 & < 0 <.0001 

.7 -0.0057 .0003 -.0001 

.4 
.5 -.0032 -.0006 .0002 

.7 -.0051 -.0005 .0002 

Note. ∆Goodness-of-fit indices with underlines indicate that a scalar invariant model fits 

better than a metric invariant model to data. 
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Table 4 

Bias in Estimates of Between-Group Differences in the Means and the Standardized 

Effect Sizes for the General/Single Factor When Fitting Bifactor and Single-Factor 

Scalar Invariant Models to Bifactor Data with Invariant Group Factor Loadings at the 

Population Level 

Generation 

Model 

  Bifactor Scalar  

Invariant Models 
 

Single-Factor  

Scalar Invariant 

Models 

 ∆Std 

Effect 

Sizea 
∆κGRP λGEN 

Bias 

in Est 

Std Effect 

Size 
 Bias in 

Est 

Std Effect 

Size 
 

S1: One 

group factor 

with 3 

indicators 

.2 
.5 0 0  .0230 .0471  .0471 

.7 0 0  .0240 .0347  .0347 

.4 
.5 0 0  .0450 .0924  .0924 

.7 0 0  .0480 .0695  .0695 
          

S2: One 

group factor 

with 6 

indicators 

.2 
.5 0 0  .0390 .0879  .0879 

.7 0 0  .0450 .0690  .0690 

.4 
.5 0 0  .0770 .1748  .1748 

.7 0 0  .0910 .1402  .1402 
          

S3: Two 

group factors 

with 9 

indicators 

.2 
.5 0 0  .0540 .1131  .1131 

.7 .0540 .0833  .0580 .0859  .0026 

.4 
.5 0 0  .1070 .2236  .2236 

.7 .1080 .1668  .1160 .1718  .0050 
          

S4: Three 

group factors 

with 9 

indicators 

.2 
.5 0 0  .0630 .1195  .1195 

.7 0 0  .0640 .0888  .0888 

.4 
.5 .0010 .0025  .1250 .2371  .2346 

.7 0 0  .1270 .1761  .1761 
aThe ∆std-effect-size measure is calculated by subtracting two standardized effect sizes: effect 

size of the general factor mean differences when fitting bifactor scalar invariant models and 

effect size of the single factor mean differences when fitting single-factor scalar invariant 

models. 
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a) Structure 1: One group factor with 3 indicators  b) Structure 2: One group factor with 6 indicators 

 

 

 
   

c) Structure 3: Two group factors with 9 indicators  d) Structure 4: Three group factors with 9 indicators 

 

 

 
  

Figure 1. Path diagrams for the four bifactor structures. The shaded indicator in each diagram indicates that this indicator is 

used as a referent indicator when fitting configurally invariant and metric invariant single-factor models to data. 
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Figure 2a. Numbers of replications that reached proper solution for all three analysis models (i.e., configurally invariant model, 

metric invariant model, and scalar invariant model) when fitting bifactor analysis models to bifactor data at the sample level 

with general factor loadings of .7. 
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Figure 2b. Numbers of replications that reached proper solution across all three analysis models (i.e., configurally invariant 

model, metric invariant model, and scalar invariant model) when fitting bifactor analysis models to bifactor data at the sample 

level with general factor loadings of .5. 
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(a) Chi-square (b) RMSEA 
  

  

(c) CFI (d) SRMR 
  

 

S1 (df=48): One group factor with 3 indicators 

S2 (df=42): One group factor with 6 indicators 

S3 (df=36): Two group factors with 6 indicators 

S4 (df=36): Three group factors with 9 indicators 

 

Figure 3a. Fit of bifactor factor configurally invariant models at the sample level for 

conditions with general factor loadings of .7 (∆κGRP = .4).  
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(a) Chi-square (b) RMSEA 
  

  

(c) CFI (d) SRMR 
  

 

S1 (df=48): One group factor with 3 indicators 

S2 (df=42): One group factor with 6 indicators 

S3 (df=36): Two group factors with 6 indicators 

S4 (df=36): Three group factors with 9 indicators 

 

Figure 3b. Fit of bifactor factor configurally invariant models at the sample level for 

conditions with general factor loadings of .5 (∆κGRP = .4).
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(a) RMSEA (b) CFI 

 

 

 

  S1: One group factor with 3 indicators 

  S2: One group factor with 6 indicators 

  S3: Two group factors with 6 indicators 

  S4: Three group factors with 9 indicators 

(c) SRMR  

 

Figure 4. Fit of single-factor configurally invariant models at the population level (∆κGRP 

= .4). 
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(a) Chi-square (b) RMSEA 
  

  

(c) CFI (d) SRMR 
  

 

S1: One group factor with 3 indicators 

S2: One group factor with 6 indicators 

S3: Two group factors with 6 indicators 

S4: Three group factors with 9 indicators 

 

Figure 5a. Fit for single-factor configurally invariant models at the sample level for 

conditions with general factor loadings of .7 (∆κGRP = .4). Degrees of freedom of single-

factor configurally invariant models fitting to all generation conditions are 54.  
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(a) Chi-square (b) RMSEA 
  

  

(c) CFI (d) SRMR 
  

 

S1: One group factor with 3 indicators 

S2: One group factor with 6 indicators 

S3: Two group factors with 6 indicators 

S4: Three group factors with 9 indicators 

 

Figure 5b. Fit for single-factor configurally invariant models at the sample level for 

conditions with general factor loadings of .5 (∆κGRP = .4). Degrees of freedom of single-

factor configurally invariant models fitting to all generation conditions are 54.
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(a) Bifactor analysis models (b) Single-factor analysis models 

 

S1: One group factor with 3 indicators 

S2: One group factor with 3 indicators 

S3: Two group factors with 6 indicators 

S4: Three group factors with 9 indicators 

 

 

Figure 6. Empirical rates of rejecting a metric invariant model when fitting bifactor analysis model and single-factor analysis models 

to bifactor data generated with invariant group factor loadings (∆κGRP = .4). 
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(a) Bifactor analysis models (b) Single-factor analysis models 

 

S1: One group factor with 3 indicators 

S2: One group factor with 3 indicators 

S3: Two group factors with 6 indicators 

S4: Three group factors with 9 indicators 

 

 

Figure 7. Empirical rates of rejecting metric invariance when fitting bifactor analysis model and single-factor analysis models to 

bifactor data generated with noninvariant group factor loadings (∆κGRP = .4).
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(a) Bifactor analysis models (b) Single-factor analysis models 

 
S1: One group factor with 3 indicators 

S2: One group factor with 3 indicators 

S3: Two group factors with 6 indicators 

S4: Three group factors with 9 indicators 

 

 

Figure 8. Empirical rates of rejecting scalar invariance when fitting bifactor analysis models and single-factor analysis models to 

bifactor data generated with invariant group factor loadings (∆κGRP = .4). 
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(a) Bifactor analysis models (b) Single-factor analysis models 

 
S1: One group factor with 3 indicators 

S2: One group factor with 3 indicators 

S3: Two group factors with 6 indicators 

S4: Three group factors with 9 indicators 

 

 

Figure 9. Empirical rates of rejecting equivalent between-group general/single factor means when fitting bifactor analysis models and 

single-factor analysis models to bifactor data generated with invariant group factor loadings (∆κGRP = .4).
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♦ λGEN = .5 

● λGEN = .7 

 RMSEA CFI SRMR 

Assessing Configural Invariance for Single-Factor Models  

  

S1: One group factor with 3 indicators 

S2: One group factor with 3 indicators 

S3: Two group factors with 6 indicators 

S4: Three group factors with 9 indicators 
 

 

Figure 10a. Relationships between fit indices for assessing configural invariance for single-factor models and bias in estiamtes of 

factor mean differences at the population level (∆κGRP = .4).  
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♦ λGEN = .5 

● λGEN = .7 

 ∆RMSEA ∆CFI ∆SRMR 

Assessing Scalar Invariance for Single-Factor Models  

  
S1: One group factor with 3 indicators 

S2: One group factor with 3 indicators 

S3: Two group factors with 6 indicators 

S4: Three group factors with 9 indicators 
 

 

Figure 10b. Relationships between the changes in fit indices for assessing scalar invariance for single-factor models and bias in 

estiamtes of factor mean differences at the population level (∆κGRP = .4).
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Assessing Configural Invariance for Single-Factor Models 
 

 
♦ λGEN = .5, N = 150 

♦ λGEN = .5, N = 300 

● λGEN = .7, N = 150 

● λGEN = .7, N = 300 
 

 

S1: One group factor with 3 indicators 

S2: One group factor with 3 indicators 

S3: Two group factors with 6 indicators 

S4: Three group factors with 9 indicators 

 

Figure 11a. Relationships between fit indices for assessing configural invariance for single-factor models and bias in estiamtes of 

factor mean differences at the sample level (∆κGRP = .4).  
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 ∆SRMR Empirical Power Rate 

Assessing Scalar Invariance for Single-Factor Models 
 

♦ λGEN = .5, N = 150 

♦ λGEN = .5, N = 300 

● λGEN = .7, N = 150 

● λGEN = .7, N = 300 
 

S1: One group factor with 3 indicators 

S2: One group factor with 3 indicators 

S3: Two group factors with 6 indicators 

S4: Three group factors with 9 indicators 

 

Figure 11b. Relationships between changes in fit indices for assessing scalar invariance 

for single-factor models and bias in estiamtes of factor mean differences at the sample 

level (∆κGRP = .4).  
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