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ABSTRACT

Cell death is a powerful tool through which organisms can inhibit the spread of

viruses by preventing their replication. In this work, I used viral and chemical stressors

to elucidate the mechanisms by which one anti-viral system might be activated over

another, focusing on the programmable death pathway necroptosis and Protein Kinase

R (PKR). PKR can detect viral dsRNA and trigger antiviral effects such as cessation of

translation and induction of programmed death. Necroptosis is a rapid cellular death

that can be induced via sensors such as DNA-dependent activator of IFN-regulatory

factors (DAI), also known as Z-DNA-binding protein 1 (ZBP1). DAI contains a

Z-form nucleic acid (ZNA) binding domain. E3, the primary vaccinia virus (VACV)

interferon resistance protein, contains a similar domain in its amino terminus. We

have previously reported this domain to be necessary for the inhibition of both PKR

activation and DAI/ZBP1-mediated necroptosis.

Monkeypox virus is a reemerging human pathogen. Despite a partial amino-

terminal deletion in its E3 homolog, it does not activate PKR. In chapter 2, I show

that MPXV produces less dsRNA than VACV, which could explain how the virus

avoids activating PKR.

The amino-terminus of vaccinia is associated with ZNA binding, inhibition of

PKR, and inhibition of necroptosis. To determine the roles of PKR inhibition and ZNA

binding in necroptosis inhibition, I characterized the VACV mutants Za(ADAR1)-

E3, which binds ZNA but does not inhibit PKR, and E3:Y48A, which cannot bind

ZNA. I found that while Za(ADAR1)-E3 fails to induce necroptosis, E3:Y48A does

not activate PKR but does induce necroptosis. This suggests that Z-form nucleic
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acid binding is not necessary for vaccinia E3-mediated inhibition of PKR, nor is the

inhibition of PKR sufficient for the inhibition of necroptosis.

Finally, all known ZNA-binding proteins have immune functions and home to

stress granules. I asked if stress granule formation alone could lead to necroptosis. I

found that in L929 cells sodium arsenite, a known inducer of stress granules, could

trigger DAI-dependent necroptosis. This suggests that DAI/ZBP1 is not necessarily

a sensor of viral ligands but perhaps is a sensor of stress signals brought about by

infection.
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Chapter 1

INTRODUCTION

Viral infection is a persistent threat. Upon entering a cell, a virus is able to

hijack the cells biochemical reactions in order to synthesize new virions, which can

go on to infect other cells and other hosts. Organisms utilize a number of techniques

in order to mitigate this risk. One of the most potent of these is the programmed

death of infected cells. By rapidly destroying themselves, infected cells can effectively

prevent the replication of intracellular organisms such as viruses, thereby inhibiting

their spread [1]. To be successful in this environment, some viruses have evolved

mechanisms to evade, suppress, or co-opt the systems that can cause an abortive

infection due to premature death.

Vaccinia virus makes dsRNA, a potent pathogen-associated-molecular-

pattern. Vaccinia virus (VACV) is the prototypical member of the Orthopoxvirus

genus, whose members include variola virus, the causative agent of smallpox, and

the human pathogen monkeypox virus. VACV has a large dsDNA genome, encoding

approximately 200 proteins, many of which are involved in immune evasion [2]. The

members of Poxviridae are unique among DNA viruses in that their entire life cycle

is cytosolic. This necessitates the production of their own polymerases as they do

not have access to those in the nucleus. The vaccinia virion contains the components

necessary for transcription and is responsible for the expression of genes immediately

after entry. These so-called Early genes encode potent inhibitors of the antiviral

response, such as E3, the factors necessary for DNA replication, and transcription
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factors for post-replicative gene expression. Following DNA replication, the virus

enters the Intermediate stage of its life cycle. Genes associated with this phase include

the transcription factors for the final, Late phase [3].

A curious aspect of the Intermediate and Late phases of VACV infection is that

transcription termination becomes unregulated. Early genes have specific termination

signals that are recognized by the viral RNA polymerase. These sequences are absent

in Intermediate and Late genes, so RNA polymerase does not disassociate upon

reaching the end of the open reading frame. This results in transcripts that can

be considerably longer than the actual genes they encode [4]. This is significant

because throughout the poxvirus genome there are instances of genes on opposite

strands that face one another. The resulting long transcripts can overlap and hybridize

into double-stranded (ds)RNA [5, 6]. Figure 1 illustrates this process. Although

some dsRNA is produced naturally by the host, in general long dsRNA segments are

aberrant and an indication of pathology. Therefore, numerous cellular sensors exist to

detect dsRNA. The activation of these sensors can result in the induction of type I

interferons [7].

Type I interferons signaling puts the cell into an antiviral state. It was

observed in the 1930s that exposing tissue to a virus would protect it from subsequent

exposure [8]. It was not until 1957 that interferon (IFN) was first described as a

distinct factor released from chick chorioallantoic membrane after exposure to heat-

inactivated influenza [9]. Since then, a great deal has been learned about the pathways

leading to the production of interferons and the mechanisms by which they inhibit

viral replication [10].

The known interferons are grouped into three families. Type I interferons consist
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of IFNβ and the many subtypes of IFNα. IFNγ the only known Type II interferon. The

type III family contains IFNλ1, λ2, and λ3 [11]. Although type II and III interferons

have important functions in immunity, the type I system is the most relevant to the

work described in this manuscript.

Consistent with their potent roll in antiviral immunity, virtually all cells are

capable of expressing type I interferons. The key transcription factors regulating Type

I IFN expression are IRF3 and IRF7 [12]. These factors are also upregulated by the

interferon they produce, leading to a positive feedback loop that amplifies the IFN

signal [13]. Multiple pathways exist in the cell to activate them in response to diverse

pathogen associated molecular patterns.

The adapter protein TIR-domain-containing adapter-inducing interferon-β (TRIF)

is recruited by Toll Like Receptor (TLR) 3, which recognizes endosomal dsRNA, and

TLR 4, which binds to extracellular LPS. TRIF mediates the signal cascade that

results in the phosphorylation of IRF3, leading to it translocating to the nucleus where

it initiates the initial expression of IFNα and IFNβ[14, 15, 16]. dsRNA can also be

sensed in the cytosol by the RNA helicases retinoic acid-inducible gene I (RIG-I) and

melanoma differentiation-associated gene 5 (MDA5) [17]. RIG-I and MDA5 signaling

leads to the phosphorylation and activation of inhibitor of NF-κB kinase ε (IKK ε)

and TANK-binding kinase (TBK-1). TBK-1 and IKKε phosphorylate and activate

IRF-3, IRF-7. This also activates the transcription factor NF-κB, which has roles in

inflammation and may contribute to IFN induction as well [18].

Type I interferons are then expressed and secreted by the cell, where they bind

to the receptors that recognize them, IFNAR1 and IFNAR2. These receptors are

expressed in virtually all cells. Secreted interferon can act upon neighboring cells as
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well as the expressing cell itself. IFN signaling induces the expression of over 100

genes [11]. These interferon stimulated genes include sensors and effectors that greatly

enhance the cell’s ability to identify and respond to a viral infection. Three such

ISG are DNA-dependent Activator of IFN-regulatory factors (DAI), Protein Kinase R

(PRK), and members of the 2’-5’ linked oligoadenylate synthetase (OAS) family.

OAS activates the nucleic acid enzyme RNaseL. Active RNaseL cleaves ssRNA,

agnostic to whether it is viral or cellular in origin. Besides inhibiting total protein

synthesis, this also creates RNA fragments that can be detected my MDA5, leading to

additional IFN induction [19]. PKR is able to bind to dsRNA; dimerized PKR auto-

phosphorylates and activates, while DAI is activated by dimerization following dsDNA

binding. Both proteins have been shown to stimulate type I interferon expression to

further enhance the interferon response, and both are associated with programmed

cell death [20, 21, 22, 23].

Apoptosis is an anti-inflammatory and implosive cell death pathway.

In 1962, it was reported that serum isolated from mice treated with endotoxin and

a bacterial polysaccharide had anti-tumor properties when injected into non-treated

mice [24]. It was later shown that this was not due to the persistence of the bacterial

components in the serum but instead by a factor induced by them, dubbed Tumor

Necrosis Factor [25]. In the mid 80’s, two such factors were isolated and characterized:

TNFα[26] and Lymphotoxin [27] (later renamed TNFβ due to sequence similarity

between the two). Through DNA sequence analysis, 17 additional members of the

TNF superfamily have been identified [28]. Fas Ligand (FasL) is a membrane bound

protein that can be cleaved and released or secreted by CD8+ T-cells and interacts

with the Fas receptor [29]. Tumor necrosis factor-Related Apoptosis-Inducing Ligand
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(TRAIL) is broadly expressed, but appears to primarily effect tumor cells while having

little effect on normal cells [30].

In addition to their anti-tumor properties, these death receptor ligands has also

been identified as inhibitors of a broad range of viruses, including encephalomyocarditis

virus, vesicular stomatitis virus, adenovirus-2, and herpes simplex virus II [31, 32, 33].

This restriction of viruses is associated with the induction of apoptosis [34, 35]. VACV

expresses proteins that inhibit TNFα-mediated apoptosis, and VACV engineered to

express TNFα has been found to be attenuated in mice [36, 37].

Apoptosis is a programmed cell death in which cells disassemble in an ordered

fashion. Hallmarks of apoptosis are membrane blebbing, nuclear condensation, and

chromosomal fragmentation. A key aspect of apoptosis is that the plasma membrane

remains intact; this prevents the release of the majority of intracellular components

and facilitates clearance of the remaining apoptotic bodies by phagocytes [38]. For

this reason, apoptosis is generally considered to be anti-inflammatory [39]. Two

main signal pathways lead to apoptosis. The first, extrinsic apoptosis, is initiated by

external stimuli binding to cell membrane receptors. Intrinsic apoptosis is initiated

by intracellular signals [40]. The major proteins associated with apoptosis and their

signaling pathways are shown in Figures 3 and 4.

The binding of TNFα to TNF receptor 1 (TNFR1) leads to the recruitment of the

adapter protein Tumor necrosis factor Receptor type 1-Associated DEATH Domain

protein (TRADD), which associates with TNFR1 due to their shared DEATH domain.

This same domain allows TRADD to recruit Receptor-Interacting Protein Kinase

(RIP or RIPK) 1. This assembly of proteins is referred to as Complex 1. The ultimate

fate of the cell depends upon the regulation of this complex.
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The proteins TNF receptor-associated factor 2 (TRAF2) and the inhibitors of

apoptosis (cIAP) 1 and 2 have been implicated in the ubiquitination of RIP1. If RIP1

is ubiquitinated, Complex I will initiate a signal cascade that results in dissociation

of IκB from the transcription factor NF-κB [41]. NF-κB is expressed constitutively

in the cytosol; upon release from IκB, it translocates to the nucleus and initiates

transcription [42, 43, 44].

Like type I IFN, there is a broad diversity in the genes induced by NF-κB. Gener-

ally, they are considered to be pro-inflammatory and pro-survival [45, 46]. Examples

of pro-survival proteins are IAPs, cellular FLICE-Inhibitory Proteins (cFLIPs), and

some members of the B cell lymphoma/leukemia type 2 (Bcl-2) protein family. The

Bcl-2 protein Bfl-1/A1 inhibits the mitochondrial release of cytochrome C, thereby

restricting intrinsic apoptosis [47]. cIAP1 and cIAP2 induce the ubiquitination of RIP,

inhibiting extrinsic apoptosis. Finally, x-IAP binds to and inhibits caspases 3 and 7

and the long isoform of cFLIP can competitively binds caspase 8, thereby inhibiting

both apoptosis pathways [48, 49, 50, 51, 52].

If RIP1 is not ubiquitinated or has its ubiquitin removed, it will recruit additional

proteins and form into Complex II [53]. TRADD will recruit Fas-Associated protein

with Death Domain (FADD), which in addition to a Death Domain has a Death

Effector Domain. This allows it to recruit procaspase 8 [54]. Caspases (cysteine-

aspartic proteases) are a family of proteolytic enzymes with important signaling and

effector functions. Caspase-mediated cleavage can either activate or inactivate a

given target; in this manner they can act as inhibitors and activators of various cell

signaling pathways [55]. The aggregation of procaspase 8 with Complex II allows

it to self-cleave. This activates it, allowing it to cleave and activate caspases 3 and

6



7, the effector caspases [56]. These enzymes initiate apoptosis by modulating the

activities of proteins such as Caspase Activated Dnase (CAD). CAD is released by

caspase-mediated cleavage of its inhibitor, allowing it to translocate to the nucleus

and cleave genomic DNA [57, 58].

Intrinsic apoptosis is an alternate pathway to death receptor-mediated death

that is initiated by intracellular messengers. Intrinsic apoptosis is associated with the

release of signals from the mitochondria, and can be caspase independent or dependent.

Caspase independent apoptosis is associated with the release of Apoptosis Inducing

Factor (AIF), which causes chromatin condensation and DNA fragmentation [59].

Alternatively, stresses such as the activation of RnaseL have been found to lead to the

release of cytochrome C from the mitochondria [60]. This release leads to the formation

of a complex, the apoptosome, that activates caspase 9. Like caspase 8, caspase 9 is

able to cleave and activate caspases 3 and 7, leading to apoptosis [61]. An additional

caspase-dependent intrinsic pathway is initiated by the interferon-stimulated gene

PKR. Active PKR can directly interact with and activate caspase 8; PKR in turn is

able to be cleaved by caspase 8 into a constitutively active form [62, 63, 64].

The promiscuity of the enzymes associated with apoptosis allows for connections

between seemingly separate pathways. Although caspase 9 is associated with caspase-

dependent intrinsic apoptosis, it is known that caspase 8 is able to cleave and activate

it [65]. Caspase 8 can also cleave and inactivate RIP1, thereby preventing its initiation

of the signal cascade that activates NF-κB [66]. However, other activating pathways

exist. In addition to activating caspase 8, PKR has been shown to have the seemingly-

contradictory ability to activate NF-κB [67, 68]. Interestingly, kinase activity does

not appear to be necessary for this function [69].
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Necroptosis is an inflammatory and explosive cell death pathway. An

alternate death pathway to apoptosis is programmed necrosis, also known as necrop-

tosis. In necroptosis, the plasma membrane ruptures, releasing the contents of the cell

[70]. In contrast to the anti-inflammatory death of apoptosis, necroptosis is considered

to be pro-inflammatory. This is because the rupturing of the plasma membrane

releases numerous damage associated molecular patterns that can serve as a "danger"

signal to surrounding cells [71]. Necroptosis and apoptosis also differ morphologically.

Cells undergoing necroptosis tend to round and then burst, leaving a faint "halo"

around the dead cells, while apoptotic cells involute and bleb. This can be seen in

Figure 2, in which L929 cells were treated to induce either apoptosis or necroptosis as

described in [72].

The major proteins associated with necroptosis and their signaling pathways are

shown in Figures 5 and 6. Unlike necrosis, which is considered to be a disordered

process, necroptosis follows an ordered signal cascade program in a similar manner

to apoptosis. Also like apoptosis, multiple signal pathways can lead to the induction

of necroptosis [70]. All known pathways share the need for the proteins RIP3 and

Mixed Lineage Kinase domain Like pseudokinase (MLKL). Activated RIP3 is able

to phosphorylate and activate MLKL [73, 74]. While unphosphorylated MLKL is

involved in endosomal trafficking [75], activated MLKL is considered to be the effector

of necroptosis. Upon phosphorylation, MLKL trimerizes and homes to the cell surface,

where it triggers the influx of calcium ions into the cell. This influx is dependent

on the cation channel TRPM7 [76]. Death can be delayed by the activity of the

plasma membrane-repairing Endosomal Sorting Complex Required for Transport III

(ESCRT-III) machinery [77].
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One of the best characterized necroptosis pathways is RIP1-dependent necroptosis.

This path is an alternate outcome of the formation of Complex II. If caspase 8 is

able to be activated by this complex the cell will shift towards an apoptotic death

as previously described. However, if the activation of caspase 8 is inhibited, RIP1

is able to dissociate from Complex II and autophosphorylate [78, 79, 80]. This

allows it to interact with RIP3 via their shared RIP Homotypic Interaction Motif

(RHIM) domains, forming Complex IIb (also known as a necrosome) [81, 82]. The

aggregation of RIP3 allows it to auto-phosphorylate and activate, leading to MLKL

phosphorylation, activation and death. Death receptor signaling does not appear to be

the only means by which RIP1-mediated necroptosis can be induced. FADD knock-out

cells have been found to undergo RIP1-dependent necroptosis following treatment

with either IFNα, IFNβ, or IFNγ. This death is dependent on JAK/STAT-mediated

activation of PKR [83].

RIP1 is not necessary for all necroptotic pathways. TRIF, the adapter molecule

for toll like receptors 3 and 4, also contains a RHIM domain that allows it to associate

with RIP3. TLR stimulation via treatment with poly(I:C) or LPS has been shown to

induce TRIF/RIP3 complexes that lead to the activation of the latter, which is then

able to activate MLKL [84, 85]. In addition to its interferon-stimulatory functions,

DAI also has a RHIM domain and has been shown to complex with and activate RIP3

during viral infections [22, 86, 87].

Besides caspases 3,7, and 9, active caspase 8 has been found to cleave and

inactivate RIP1 and RIP3 [66, 88]. As all known necroptotic pathways necessitate

RIP3-mediated activation of MLKL, necroptosis cannot occur when caspase 8 is active

[89] In this manner, caspase 8 acts as an important molecular "switch" in determining
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whether a cell undergoes apoptosis or necroptosis[90]. Because TNFα is known to

lead to caspase 8 activation, caspase activity must be inhibited for TNFα-mediated

necroptosis to occur.

Vaccinia virus inhibits apoptosis, necroptosis, and inflammation. Fig-

ure 7 summarizes the apoptosis, necroptosis, and inflammatory pathways. Vaccinia

must navigate this complex network of interconnected sensors and effectors in order

to have a productive infection. It does so by expressing numerous immune evasion

genes that serve to obfuscate the virus’s presence from the cellular antiviral sensors

and inhibit the activation and activity of the antiviral effectors.

Several immune evasion genes contribution to the inhibition of apoptosis. An

early member of this family to be described was the cowpox virus protein Cytokine

response modifier A (CrmA), which confers resistance to TNFα[91, 92, 93]. CrmA is

a serine proteinase inhibitor (serpin) that blocks the activation of several caspases,

including 1, 8, and 9 [94, 95]. Homologs of this protein exist in VACV, including

B13R and B24R. However, while B24R is well conserved among VACV strains, B13R

is more diversely found; for example while B13 is conserved in the nerurovirulent WR

strain, but absent in the Copenhagen strain used as a vaccine against smallpox in

some countries [96, 97, 98]. Another TNFα inhibitor found in some but not all VACV

strains is CrmE, a soluble TNF receptor that competitively binds to TNFα to inhibit

apoptosis [99]. Finally, F1L acts to inhibit the intracellular proteins that trigger the

release of cytochrome c from the mitochondria, thereby abrogating intrinsic apoptosis

[100].

VACV also suppresses inflammation. This is mediated by inhibitors of of NF-κB,

including C4, N1, and K1. C4 inhibits it at or downstream of IκB [101]. N1 is able to
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inhibit both NF-κB and apoptosis through distinct amino acid residues [102]. Finally,

K1 acetylates one of the subunits of NF-κB, thereby preventing even activated protein

from initiating transcription [103].

A46R produces an inhibitor of TRIF, which reduces the ability of TLR3 to initiate

an interferon response after detection of endosomal dsRNA [104]. Although TRIF is

also associated with necroptosis, there have not been any reports of A46R inhibiting

TRIF-dependent necroptosis. However, one VACV protein has been identified that

inhibits necroptosis: E3.

E3 was first identified as an IFN resistance gene in 1992 [105]. Initially this

resistance was associated with the inhibition of PKR, which was dependent on the

ability of E3 to bind dsRNA via a carboxyl-terminal dsRNA binding domain [106, 107,

108, 109]. Later it was found that the amino terminus is necessary for full pathogenesis

in mice [110], contributes to the inhibition of PKR [111], and confers resistance to

DAI-mediated necroptosis [87]. Sequence analysis revealed that the amino terminus

of E3 contains a consensus Z-form nucleic acid binding domain.

Nucleic acids in the Z-form have zig-zagging left turning double-helices.

The initial report on the structure of DNA described it as a right-handed double helix,

resembling a spiral staircase [112]. However, in 1979 a novel DNA x-ray crystallography

structure was published of poly [d(CG)] that described a left-turning, zig-zagging helix.

This orientation of DNA was dubbed Z-form. Five years later, a similar structure was

found for dsRNA [113, 114]. It is thought that the Z-form is energetically unfavorable

under normal physiologic conditions, but nucleic acids can enter it under high salt

conditions, when they are under torsional strain (such as by the unwinding of DNA to

allow transcription), or in stretches of alternating purines and pyrimidines [115, 116].
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To date, all observed ZNA has been double-stranded. However, it has been proposed

that certain single-stranded DNA and RNA sequences may be capable of adopting

"Z-like steps" with conformations similar to dsZNA [117]. Initially, it was uncertain

whether ZNA had a biological function or was an artifact only seen under the specific

conditions needed to crystallize it. The identification of proteins that can bind to

ZNA indicated that it in fact serves a biologic purpose. The first of these proteins to

be identified was Adenosine Deaminase, RNA Specific (ADAR1) [118].

ADAR1 is an enzyme that disrupts dsRNA by converting adenosine into inosine;

as the latter does not base pair with uracil this destabilizes the dsRNA strand. ADAR1

consists of a Zα domain, a similar Zβ domain, three dsRNA binding domains, and a

catalytic domain [119, 120, 121]. ADAR1 exists as two isoforms. The p110 isoform is

expressed constitutively, is primarily nuclear, and lacks the Zα binding domain. The

p150 isoform is expressed upon interferon stimulation, contains the Zα domain, and is

cytoplasmic. In the context of a viral infection, ADAR1 has been observed to be both

pro and antiviral. For some viruses, disruption of dsRNA inhibits their life cycle. For

others, it eliminates a potent PAMP, thereby assisting in immune evasion. We have

observed ADAR1 to be pro-viral in the case of vaccinia virus [122, 123] It is the Zα

domain that can bind to Z-form nucleic acids [124, 125, 126]. Furthermore, ADAR1

has a higher affinity for dsRNA containing sequences prone to entering the Z form

[127]. Finally it is worth noting that despite ADAR1 being associated with dsRNA,

the Zα domain has been shown to be able to bind to both Z-form dsDNA and Z-form

dsRNA [128].

A second protein with ZNA binding capability is found in zebrafish. PKZ is a

homolog of PKR, in which the two dsRNA binding domains are replaced with two Zα
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domains [129, 130]. PKZ+ fish are still able to express PKR, and it appears that the

two proteins have non-redundant, synergistic effects [131]. The importance of PKZ

in fish immunity was highlighted by the discovery that the fish pathogen cyprinid

herpesvirus 3 encodes a protein, ORF112, with a ZNA binding domain that inhibits

the activity of PKZ [132].

The third cellular protein with known ZNA-binding activity is DLM1. This

protein was initially isolated from tumor-stimulated mouse macrophages [133] It was

later found to have Zα and Zβ sites homologous to those in ADAR1, and gained the

name Z-DNA Binding Protein 1 (ZBP1) [134]. Both domains are necessary for efficient

ZNA binding [135]. Later, it was found that ZBP1 can bind to cytosolic dsDNA and

induce type I interferons, and was given a third name: DNA-dependent Activator

of IFN-regulatory factors, which has been previously described for its role in IFN

signaling and RIP1-independent necroptosis [20, 21]. ZNA binding in DAI/ZBP1 is

necessary for the induction of necroptosis during influenza A virus infection [136].

E3 contains a domain homologous to the Zα domains found in ADAR1 and DAI.

Although ZαE3 has a lower affinity for ZNA than ADAR1 and DAI [137, 138], the

ability to bind ZNA is nevertheless necessary for full pathogenesis in mice [110]. E3

inhibition of DAI-dependent necroptosis is also dependent on ZNA binding [87].

To date, all known host ZNA-binding proteins have been found to have anti-viral

properties. Another interesting property shared by all, including VACV E3, is that

they home to stress granules [139].

Stress granules are aggregations of stalled mRNA and RNA binding

proteins. RNA translation requires a complex assembly of proteins and mRNA. If
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translation becomes stalled, the mRNA and RNA binding proteins can aggregate

into non-membrane bound organelles. These aggregations recruit and are stabilized

by RNA binding proteins such as Ras GTPase-activating protein-binding protein 1

(G3PB1), T-cell intracellular antigen (TIA)-1 and TIA-1-related protein (TIAR). If

the stall in translation is ameliorated, these complexes can disassemble as protein

synthesis resumes. Otherwise, they will be removed via autophagy [140].

One of the most important causes of stalled translation is the phosphorlyation

of eukaryotic translation initiation factor 2α (eIF2α). This phosphorylation causes

the formation of an inactive eIF2-GDP and eIF2B complex, causing the cessation of

the majority of protein translation [141, 142]. However, this inhibition does allow

for the expression of the transcription factor ATF4, leading to an upregulation of

stress-response associated genes [143].

Depending on the context, stress granules can be either pro or anti-viral [144].

Granules formed by reovirus have been reported to be proviral. While this effect can be

partially explained by increased viral transcription mediated by eIF2α phosphorylation-

induced ATF4, it may also be due to the sequestration of host mRNA, thereby

eliminating competitors to viral transcripts [145]. Polio virus induces stress granules

early in infection, but goes on to inhibit them as infection progresses; loss of viral

proteins that inhibit stress granule formation attenuates the virus [146]. Finally,

vaccinia virus mutants lacking the E3 protein induce stress granules; formation of

granules correlated with reduced viral replication [147].

The phosphorylation of eIF2α is mediated by the eIF2α kinase family, whose

members are activated by various forms of stress. Heme-regulated eIF2α kinase (HRI)

responds to iron deficiency [148]. GCN2 is activated by amino acid starvation [149].
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PERK is triggered by misfolded proteins in the endoplasmic reticulum [150]. Finally,

eIF2α-phosphorylation is yet another activity of PKR [151]. A number of chemical

stressors have been identified that are able to initiate eIF2α phosphorylation. One of

these is sodium arsenite.

Sodium arsenite induces stress granule formation. Sodium arsenite has

been used in biomedical research for over a century. An 1882 publication describes

the toxicity of arsenite in frogs [152], while a 1900 article reported several case studies

in which arsenite injections were used to treat tuberculosis enteritis [153]. In more

recent times, arsenite has been used to probe the oxidative stress response.

Sodium arsenite treatment causes cellular stress that is detected by heat shock

proteins [154]. These in turn activate the eIF2α kinase HRI, leading to a cessation

of the majority of translation [155, 156]. This is associated with the accumulation

of stress granules [157]. For this reason, arsenite is commonly used in experiments

involving the cellular stress response.

Arsenite has diverse effects in the cell beyond HRI activation [158]. These include

the induction of apoptosis [159] and sensitizing cells to TNFα[160]. Some of these

effects have been observed to be dose dependent. Lower concentration exposure has

been found to be stimulatory for the pro-survival and proliferation ERK MAP Kinase

pathway, while higher doses trigger pro-death JNK-mediated signals [161, 162, 163].

The work described in this document. This dissertation details my work to

better understand the ways in which cell death is triggered, and the means by which

a virus might abrogate them. In Chapter 2, I explore a possible mechanism by which

monkeypox virus could compensate for the partial loss of the amino terminus of its E3
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homolog. In Chapter 3, I use mutants of VACV E3 to ask if ZNA binding is necessary

for PKR inhibition and if PKR inhibition is necessary for the inhibition of necroptosis.

Finally, in chapter 4 I use sodium arsenite to ask if a viral ligand is necessary for the

induction of DAI/ZBP1-dependent necroptosis.
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Figure 1: Model for how double-stranded RNA accumulates in VACV-infected cells.
(A) The VACV genome has several instances of open reading frames present on
opposite strands that face towards one another. (B) Genes that are expressed in the
Early phase of the virus life cycle have precise transcription termination, and produce
mRNA that does not overlap. (C) Following genome replication, the virus enters the
Intermediate and eventually Late phases of its life cycle. Genes expressed in these
phases lack transcription termination signals, and so can produce long mRNA
transcripts. For opposing ORFs, this creates the possibility of overlapping mRNA
that hybridizes into dsRNA.
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Figure 2: Timelapse images of cells treated to induce either necroptosis or apoptosis.
L929 cells were treated with TNFα, and either the pan caspase inhibitor
Z-VAD-FMK to induce necroptosis (top row) or the protein synthesis inhibitor
Cycloheximide to induce apoptosis (bottom row). In necroptosis, cells round and
burst; blue arrows point to representative cells. In apoptosis, cells shrink and bleb;
red arrows point to blebs.
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Figure 3: Shared motifs link members of the extrinsic apoptosis pathway. TNFR1 is
a trans-membrane protein with an extracellular receptor that recognizes TNFα and
an intracellular Death Domain. This Death Domain allows TRADD and RIP1 to
associate with it, forming complex I. FADD has a Death Domain that allows it to
associate with complex I and a Death Effector Domain that can recruit Pro-Caspase
8; if these proteins join complex I it becomes complex II.
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Figure 4: Overview of pathways leading to apoptosis. Complex I formation can be
triggered by TNFα binding to its receptor. If RIP1 is ubiquitinated, NF-κB becomes
activated and induces the expression of prosurvival proteins that inhibit apoptosis. If
RIPI is not ubiquitinated, FADD and caspase 8 are recruited, forming Complex II. In
this complex, caspase 8 can self-cleave and activate. Activated caspase 8 can cleave
and activate caspases 3 and 7, the effectors of apoptosis. Alternatively, intracellular
signals can trigger the release of cytochrome C from the mitochondria. This leads to
the activation of caspase 9, which can also activate caspases 3 and 7. PKR can
activate and be activated by caspase 8.
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Figure 5: Shared RHIM domains link members of the necroptosis pathway. RIP1 is a
member of TNF complexes I and II via its Death Domain. TRIF is a signal
transducer for TLRs 3 and 4 via its TIR domain. DAI/ZBP1/DLM1 binds to Z-form
nucleic acids via its Zα domain. These three proteins are able to associate with RIP3
via their RHIM domains. The association of any of these molecules with RIP3 leads
to its phosphorylation. Phosphorylated RIP3 is able to phosphorylate MLKL, leading
to necroptosis.
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Figure 6: Overview of the extrinsic and intrinsic apoptosis pathways. The effector of
necroptosis is MLKL; all known necroptotic pathways end with RIP3-mediated
phosphorylation and activation of MLKL. In death receptor-mediated necroptosis,
Complex II forms but the activation of caspase 8 is inhibited, allowing RIP1 to
dissociate from the complex and instead interact with and activate RIP3. RIP3 can
also be activated by the RHIM-domain-containing proteins TRIF and DAI/ZBP1.
TRIF is an adapter for TLRs 3 and 4, while DAI can bind to cytosolic dsRNA and
dsDNA.
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Figure 7: Simplified schematic of cell pathways leading to death or inflammation.
The phosphorylation of MLKL leads to necroptosis. The activation of caspase 8
triggers a signal cascade that leads to apoptosis and inhibits necroptosis. NFκB
induces the expression of prosurvival and proinflammatory proteins that can inhibit
apoptosis and necroptosis. PKR has been found to be able to induce all three
pathways in certain contexts.
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Chapter 2

MONKEYPOX VIRUS MAKES LESS DOUBLE-STRANDED RNA THAN

VACCINIA VIRUS

2.1 Abstract

Monkeypox virus is a reemerging human pathogen. Despite the pathology MPXV

can cause, it is known to have a partial truncation in the protein F3, the MPXV

homolog of the vaccinia virus interferon-resistance protein E3. A similar mutation in

E3 attenuates VACV and leads to the phosphorylation of PKR. However, we do not

observe this in MPXV-infected cells.

Because PKR activation is associated with viral production of dsRNA, we decided

to test whether or not MPXV synthesizes less double-stranded RNA than VACV.

VACV mutants that are resistant to the antiviral drug isatin-β-thiosemicarbazone are

known to have reduced accumulation of dsRNA in infected cells. We determined that

MPXV is naturally resistant to IBT compared to wild-type VACV, suggesting that

it as well synthesizes less dsRNA. For direct confirmation, we performed a slot blot

on total RNA extracts from infected cells and probed with an antibody specific for

dsRNA. We found that while wild-type VACV had a significant increase in detectable

dsRNA as early as 9 hours post infection, neither MPXV clade produces dsRNA to

comparable levels. These data suggest that reduced accumulation of dsRNA is a

possible strategy that a virus can use to compensate for loss-of-function mutations

that reduce its ability to inhibit PKR.
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2.2 Introduction

Monkeypox virus is an emerging pathogen Monkeypox virus (MPXV) is a

member of the genus Orthopoxvirus, which also includes variola virus and vaccinia

virus (VACV). MPXV is split into two clades, West African and Central African.

Although both clades have been found to infect humans, Central African MPXV has

a worse prognosis, with mortality rates as high as 10% [164, 165]. Although the vast

majority of MPXV infections occur in Africa, there was an outbreak in the United

States in 2003 that was traced to the import of African rodents [166, 167].

During the global campaign to eradicate variola virus, MPXV cases were reduced

as well due to cross protection between the smallpox vaccine and other members of

Orthopoxvirus. However, following the eradication of smallpox vaccination against it

has largely ceased, meaning that over time there has been an increase in the number

of people vulnerable to other poxviruses, including monkeypox virus [168]. Therefore,

there is considerable value in better understanding the virus and the risks it poses to

human health.

Monkeypox virus has a deletion in the amino terminus of its homolog

of the vaccinia virus IFN-resistance gene E3L The gene E3L is highly conserved

among members of the chordopoxviridae family, with homologs found in all members

with the exception of molluscum contagiosum virus and the avipoxvirus genus [169,

170]. For the remaining chordopoxviridae, E3L expresses a protein consisting of a

dsRNA binding domain on the carboxyl terminus [171] and a Z-form nucleic acid

binding domain on the amino terminus [110]. For vaccinia virus, both domains are

necessary for pathogenesis in mice [172] and inhibiting PKR [105, 111] and inhibition
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of necroptosis is dependent on the ZNA binding domain [87]. However, the amino

terminus is not necessary for pathogenesis for all of chordopoxviridae. It has been

found that the E3 homolog in the Leporipoxvirus family lacks an amino-terminal

ZNA binding domain [173, 174]. Despite this, myxoma virus is fully pathogenic in

European rabbits, a phenotype that is lost in the absence of the E3 homolog [175].

Another poxvirus lacking a complete E3 amino terminus is monkeypox virus.

Due to leaky AUG scanning, E3 is sometimes expressed in a truncated form

lacking the first 37 amino acids, p20. As this truncation extends into the ZNA binding

domain, p20 is not expected to be capable of binding to the molecule. Sequence

analysis of the MPXV genome reveals that a series of mutations in F3L, the E3L

homolog, cause it to only be capable of being expressed as the truncated p20 [176].

Based on observations that the amino-terminus is involved in PKR inhibition, we

might expect the partial loss of it to sensitize virus to PKR activation [177, 111]. In

fact, we observe that VACV with an equivalent mutation in E3 (E3Δ37N) or that

has E3 replaced with MPXV F3 leads to eIF2α and PKR phosphorylation. However,

MPXV fails to induce PKR phosphorylation under the same experimental conditions

[178]. Therefore, MPXV must have evolved some alternative mechanism to inhibit

PKR phosphorylation.

PKR activation is associated with the accumulation of dsRNA [179]. VACV

produces this dsRNA due to imprecise transcription termination. This results in the

synthesis of long mRNA molecules that can potentially overlap and hybridize into

dsRNA. dsRNA accumulation can be further enhanced by treating infected cells with

isatin-β-thiosemicarbazone (IBT), which increases the processivity of the VACV RNA

polymerase. This increases dsRNA accumulation to the extent that E3 is no longer
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able to fully obfuscate it, leading to the activation of PKR and RNase L and restriction

of viral replication [6]. Several IBT-resistant mutants of VACV have been identified;

this resistance appears to be mediated by reduced RNA polymerase processivity,

resulting in reduced dsRNA accumulation both in the presence and absence of IBT

[180, 181]. Figure 8 illustrates this process.

Based on these observations, we hypothesized that MPXV has evolved reduced

transcript processivity to produce less dsRNA in order to compensate for the reduced

ability of F3 to inhibit PKR.
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2.3 Materials and Methods

Cells and viruses. L929 cells were maintained in minimum essential medium

(MEM, Cellgro) supplemented with 5% fetal bovine serum (FBS) (HyClone). BSC40

cells were maintained in Dulbecco’s Modified Eagle Medium (DMEM, Cellgro) supple-

mented with 5% FBS and 2 µM L-Glutamine. All vaccinia virus work was performed

with the WR strain of virus. In addition to wild-type VACV we also used the previ-

ously generated VACV E3Δ37N [182]. Two strains of MPXV were studied, one from

each clade. MPXV WRAIR 7-61 (7-61) was used as an example of a West African

clade virus and Zaire V79-I-005 (Zaire) was the Central African clade member.

Slot Blot HeLa cells were mock-infected or infected with VACV, MPXV 7-61, or

MPXV Zaire. Total RNA was extracted with the RNeasy Mini Kit, using QiaShredder

homogenization and in-column DNase treatment as described by the manufacturer

(Qiagen). An equal volume of total RNA (2 µL) was diluted in ddH20 (198 µL).

Diluted RNA was applied through a VacuSlot VS manifold and transferred onto

BrightStar-Plus Positively Charged Nylon Membrane (Ambion). The membrane

was UV crosslinked with a Stratagene Stratalinker 1800 (Stratagene). dsRNA was

detected using the J2 monoclonal anti-dsRNA antibody (Scicons). Goat anti-mouse

HRP conjugate was used as the secondary antibody. Probe specificity was verified using

dsRNA and ssRNA ladders (New England Biolabs) as positive and negative controls

respectively. As additional controls, RNaseIII (NEB) and RnaseA (ThermoFisher)

digestions were performed as described by the manufacturer; RNaseA digestion was

performed with 0.5µg/mL enzyme in 2x SSC buffer (300 mM NaCl and 30 mM Sodium

Citrate).
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IBT-resistance assay BSC40 cells were infected with serial dilutions of virus.

Following 30 minutes of rocking, media was added that included 0, 15, 30, 60, or 90

µM of IBT. After 48 hours, the cells were stained and plaques were counted. Each

virus and IBT concentration was tested in triplicate and significance was determined

using a two-tailed unpaired T-test.

Bioinformatics NCBI’s BLAST algorithm [183] was used to compare the nu-

cleotide and amino acid sequences of VACV genes known to have IBT-resistance

alleles with their MPXV homologs. Strains used for analysis were VACV Western

Reserve and MPXV WRAIR7-61. The specific genes and their Ref sequences follow.

VACV genes are preceeded by YP; MPXV by AAU. A18R: YP233020.1 AAU01334.1,

A24R: YP233026.1 AAU01340.1, G2R: YP232962.1 AAU01276.1, H5R: YP232985.1

AAU01299.1, J3R: YP232977.1 AAU01291.1, and J6R: YP232980.1, AAU01294.1.

This analysis determined that the gene H5R differed the most between VACV

and MPXV. For further anlysis, we used ClustalW [184, 185] to compare the H5R

homologs of vaccinia, monkeypox, horsepox, ectromelia, variola, taterapox, camelpox,

cowpox, and myxoma virus.

29



2.4 Results

Monkeypox virus produces less double-stranded RNA than vaccinia

virus To determine whether MPXV produces less dsRNA than vaccinia virus, we used

a slot blot to detect dsRNA present in total RNA extract. To verify the specificity of

the J2 antibody, we tested whether it would give signal in preparations that we would

expect to have no dsRNA. First, it is known that treatment with cytosine arabinoside

(araC) inhibits the synthesis of VACV dsRNA [186]. We found that extracts from

araC-treated and VACV-infected cells had reduced dsRNA compared to untreated

infected cells (Figure 9a). Next, we collected total RNA from VACV-infected cells

and boiled it for 5 minutes at 95°C in order to denature any dsRNA present. We then

either snap-froze the solution or left it at room temperature to reanneal in different

concentrations of salt. We found that while the snap frozen and no salt preparations

failed to give dsRNA signal, low and high salt did (Figure 9b). Finally, dsRNA ladder,

ssRNA ladder (New England Biolabs), and VACV 12HPI extract were either mock

treated or treated with RNAse III (dsRNA specific) or RnaseA (ssRNA specific).

As seen in Figure 10b, signal was detected in mock and RNAseA-treated dsRNA

ladder and VACV extract, while no signal was detected for ssRNA ladder or samples

treated with RNAseIII. Taken together, these data demonstrate that the J2 antibody

is dsRNA specific in the conditions we are using it.

To determine the amount of dsRNA produced by MPXV, HeLa cells were mock

infected or infected with wild-type VACV, VACV E3Δ37N, MPXV 7-61, or MPXV

Zaire at an MOI of 5. Total RNA was collected at 6, 9, and 12 hours post infection

and then a slot blot was performed to detect dsRNA (Figure 10a). To verify that

extracts were in the linear range, 2 fold serial dilutions of the 12 hour wild-type VACV
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extract were also measured (Figure 10b). The slot blot was performed in triplicate,

and the resulting bands were quantified using TotalLab Quant. As shown in Figure

10c, neither the West nor Central African strains of MPXV accumulated as much

dsRNA as VACV, confirming our prediction.

Monkeypox virus is IBT-resistant Because resistance to the drug isatin-β-

thiosemicarbazone (IBT) is associated with reduced accumulation of dsRNA [187, 181],

we assayed the sensitivity of MPXV to IBT. BSC-40 cells were infected with serial

dilutions of MPXV-761 and wild-type VACV. An IBT-resistant mutant of VACV,

A24R-1R, was used as a resistance control [180]. Infected cells were treated with

increasing concentrations of IBT and then stained with crystal violet 48 HPI. As seen

in Figure 11, wild-type VACV was highly sensitive, with plaques almost completely

eliminated at 15 µM IBT, the lowest concentration tested. MPXV 7-61 was resistant

to IBT, though it’s phenotype was intermediate compared to A24R-1R; A24R-1R

never reached 50% reduction, even at the highest concentration tested (90 µM) while

the IC50 of MPXV was reached at 60 µM (Figure 11).

MPXV has polymorphisms in known IBT-resistance genes, but none

known to confer resistance. Several VACV genes have been identified to have

IBT-resistance alleles. In an attempt to identify the gene responsible for MPXV’s IBT

resistance, we used BLAST to compare the nucleotide and amino acid sequences of

the MPXV homologs of VACV genes known to have alleles that confer IBT resistance.

The overall percentage match is shown in Figure 12. Although differences were found,

none of the MPXV polymorphisms mapped to residues previously shown to confer

IBT resistance.

As H5R had the most divergence between the two viruses, with 89% sequence
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homology, we decided to further analyze it by aligning the h5R homologs of vaccinia,

monkeypox, horsepox, ectromelia, variola, taterapox, camelpox, cowpox, and myxoma

virus (data not shown). Unsurprisingly, myxoma virus differed the most from the

others. We also noted that VACV had two unique deletions relative to the other

orthopoxviruses, while MPXV had a unique amino acid addition and variola virus has

a series of DN repeats inserted.
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2.5 Discussion

Despite missing a portion of the F3 amino terminus, MPXV does not lead to PKR

activation. The purpose of this project was to determine if monkeypox virus produces

less double-stranded RNA than vaccinia virus as a possible mechanism for this lack

of activation. Our results demonstrate that monkeypox virus produces less dsRNA

than VACV and is naturally IBT-resistant. These results suggest that a decrease in

dsRNA production is able to compensate for the partial loss of the amino terminus.

If this is the case, then an IBT-resistant strain of VACV E3Δ37N should also fail to

phosphorylate PKR.

Our findings lead to a number of new questions. First, the specific mechanism

for MPXV’s reduced transcript processivity is not known. While BLAST analysis

indicated that MPXV does have some polymorphisms compared to VACV genes with

IBT-resistance alleles, it is unclear which of these, if any, might be responsible for the

reduced accumulation of dsRNA. It is entirely possible that IBT-resistance in MPXV

is conferred by a gene previously unassociated with the phenotype. Mapping of the

gene in MPXV will be needed to resolve this issue.

The amino terminal of E3 is not only involved in the inhibition of PKR but in

inhibiting DAI/ZBP1-mediated necroptosis as well [87]. Because DAI has been shown

to bind to viral RNA [188] one might predict that reduced dsRNA accumulation

contributes to necroptosis inhibition as well. However, we have found that IBT

resistance alone is not sufficient to rescue VACV amino-terminal mutants in necroptosis-

competent cell lines (unpublished observations), suggesting that MPXV inhibits
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necroptosis through an alternate mechanism. Identifying it would give considerable

insight into the life cycle of the virus.

Another question is why PKR activation inhibits VACV in some cell lines but not

others. Although VACV E3Δ83N is IFN-sensitive in MEF129 cells, this sensitivity

is lost in PKR knockouts [111]. In contrast, E3Δ83N is IFN-resistant in L929 cells

in which necroptosis is inhibited or deficient [87]. HeLa cells are also permissive to

E3Δ83N despite the virus triggering phosphorylation of PKR and eIF2α. Interestingly,

rather than blocking global translation, E3Δ83N-mediated phosphorylation of eIF2α

instead was found to only restrict the expression of secreted cellular and viral proteins.

In these same cells, ΔE3 infection lead to earlier phosphorlyation of PKR and eIF2α

and the complete cessation of translation [189]. One possible explanation for this

difference between the partial and total loss of E3 is that the carboxyl terminus

has been found to associate with the interferon-inducible protein ISG15. ISG15 is a

ubiqutin-like protein that can trigger antiviral activity when conjugated to protein.

E3 inhibition of this protein is independent of the amino terminus and PKR activation

[190]. therefore, it could be that in HeLa cells the difference between E3Δ83N and

ΔE3 isn’t the amount or timing of PKR activation but instead the loss of inhibition

of ISG15.

Finally, it has been reported that despite having a full length E3 homolog, the

orthopoxvirus Ectromelia virus also makes less dsRNA compared to VACV; it has

been proposed that this is to compensate for the lack of a homolog of K3, another

inhibitor of PKR-mediated eIF2α phosphorylation [191]. This raises the question of

how representative the high dsRNA accumulation observed in vaccinia virus is for

the rest of poxviridae; is it a result of the unique evolutionary pressures that come
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from being primarily grown in tissue culture rather than whole organism over several

decades? If this is the case, what is the advantage conferred (at least in cell culture)

by increase polymerase processivity? Studies comparing pathogenicity to processivity

might begin to elucidate these questions.

35



2.6 Figures

Figure 8: IBT-resistant vaccinia virus produces less dsRNA. (A)Wild-type vaccinia
virus naturally produces extended mRNA transcripts at the intermediate and late
stages of its life cycle, leading to hybridization into dsRNA. Treatment with IBT
further increases transcript length, leading to an increase in dsRNA accumulation. In
wild-type virus, this leads to replication inhibition. (B) VACV mutants that confer
IBT-resistance decrease the processivity of viral RNA polymerase, leading to shorter
mRNA transcripts and reduced accumulation of dsRNA. While treatment with IBT
still increases transcript length, these mRNA molecules are still not as long as is
observed in wild-type virus treated with IBT and so replication is not inhibited.
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(a) (b)

(c)

Figure 9: The J2 antibody can specifically bind to dsRNA in a slot blot. dsRNA was
transferred onto BrightStar®-Plus Positively Charged Nylon Membrane (Ambion)
using a vacuum slot apparatus. dsRNA was visualized on the blot by probing with J2
anti-dsRNA antibody and Goat anti-mouse HRP conjugate secondary antibody. (a)
Hela cells were mock pretreated or pretreated with 40ug/mL AraC 1 hour prior to
infection with VACV WR. Total RNA was extracted at 3 and 12 HPI. (b) BSC40
cells were infected with VACV and total RNA was extracted at 8HPI. RNA was
denatured by boiling at 95°C for 5 minutes; samples where then either snap frozen or
left at room temperature to reanneal in either no, low, or high salt conditions. (c)
dsRNA ladder, ssRNA ladder, and VACV 12HPI extract were either mock treated or
treated with RNAse III (dsRNA specific) or RnaseA (ssRNA specific).

37



(a) (b)

(c)

Figure 10: Monkeypox virus infection leads to less accumulation of dsRNA than
infection with vaccinia virus. dsRNA was transferred onto BrightStar®-Plus
Positively Charged Nylon Membrane (Ambion) using a vacuum slot apparatus.
dsRNA was visualized on the blot by probing with J2 anti-dsRNA antibody and
Goat-anti-mouse HRP conjugate secondary antibody. (a) HeLa cells were mock
infected or infected with VACV WR, MPXV 7-61, or MPXV Zaire at an MOI of 5.
Total RNA was collected at 6, 9, and 12 hours post infection. RNA extractions were
performed in triplicate; figure shows representative results. (b) Serial 2-fold dilutions
of the VACV WR 12HPI extract were included to verify the exposure was in the
linear range. (c) Band intensity of slot blots was analyzed with TotalLab Quant. The
intensity of the WR 12HPI extraction was calibrated to 100 arbitrary units. The
triplicate extraction intensities were averaged; error bars show standard deviation.
Significance was calculated with unpaired 2-tailed t-test. Asterisks indicate
significance of difference from the 6HPI time point of the same treatment. *p <.05,
** p: <.005
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Figure 11: Monkeypox virus is IBT-resistant. BSC40 cells were infected with serial
dilutions of wild-type VACV, VACV A24R-1R, or MPXV 7-61. Infected cells were
treated with the indicated concentrations of IBT. After 48 hours, the cells were
stained with crystal violet and plaques were counted. Presented data are the averages
of three independent experiments.
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Figure 12: MPXV has polymorphisms in its homologs of VACV genes with known
IBT-R alleles. BLAST and BLAST-P were used to compare the nucleotide and
amino acid sequences of the MPXV homologs of VACV genes with known IBT-R
alleles. Although differences were found, none of the MPXV polymorphisms mapped
to residues previously shown to confer IBT resistance.
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Chapter 3

Z-FORM NUCLEIC ACID BINDING IS NOT NECESSARY FOR VACCINIA

E3-MEDIATED INHIBITION OF PKR, NOR IS THE INHIBITION OF PKR

SUFFICIENT FOR THE INHIBITION OF NECROPTOSIS.

3.1 Abstract

Vaccinia E3L is a potent immune evasion gene, with a C-terminal dsRNA binding

domain and an n-terminal Z-form nucleic acid binding domain. We have previously

shown that the amino terminus contributes to the inhibition of PKR, and have recently

found that N-terminus of E3L can also inhibit necroptosis, a rapid and explosive cell

death. Necroptosis is observed in E3L mutants with total loss of the N-terminus as

well as point mutants that lose the capacity to bind to Z-DNA in vitro. To determine

the role of PKR and ZNA binding in cell death, we searched for viruses which can

bind to ZNA but do not inhibit PKR and virus that inhibits PKR but does not bind

ZNA, then tested these viruses for cell death. We have found that the VACV mutant

ZαADAR1-E3, which replaces the amino terminus of E3 with the Zα binding domain

from ADAR1, binds to ZNA and causes PKR phosphorylation, but fails to induce

necroptosis. Conversely, the mutant E3:Y48A inhibits PKR and does not bind ZNA,

and induces necroptosis. These data suggest that the mechanism for the N-terminal

mediated loss of PKR-inhibition is distinct from that for inhibition of necroptosis.
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3.2 Introduction

Vaccinia virus infection leads to the production of double-stranded

RNA, a potent Pathogen-Associated Molecular Pattern Vaccinia virus

(VACV) is a large double-stranded DNA virus in the Orthopoxvirus genus, which

also includes variola virus, the causative agent of smallpox, and monkeypox virus, an

emerging human pathogen. The virus’s entire life cycle is cytosolic, and it encodes its

own transcription machinery in order to produce mRNA [192]. This transcription is

split into three phases: Early genes are expressed immediately upon viral entry by

proteins brought in with the virion core. Intermediate genes are produced following

replication of the DNA genome, and include the transcription factors for the final,

Late genes [3].

Starting at the Intermediate phase, VACV makes double-stranded RNA [5]. It

is believed that this is due to the presence of opposing open reading frames in the

VACV genome. Unlike Early genes, which have precise transcription termination

signals [4], at the Intermediate and Late stages of the virus life cycle transcription is

no longer terminated precisely. This results in the synthesis of long mRNA transcripts

[6]. When these transcripts derive from opposing ORFs, it is possible for them to

have overlapping complementary sequence, thereby allowing hybridization and the

formation of double-stranded RNA.

Type-I Interferons induce expression of antiviral proteins Viral ligands

such as dsRNA can lead to the expression of type I interferon (IFN). IFN exposure will

cause a cell to enter an antiviral state, in which several antiviral sensor and effector

genes are upregulated [11]. One important interferon-stimulated gene is Protein Kinase
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R (PKR). PKR has a dsRNA binding domain, and if sufficient dsRNA is present to

allow two PKR proteins bind in close proximity, they will auto-phosphorylate, thereby

activating [179]. Activated PKR has numerous effects, including phosphorlyation

of eukaryotic Translation Initiation Factor 2α (eIF2α), leading to the cessation of

the majority of translation. It is also associated with signaling leading to apoptosis

[64], necroptosis [83], and further stimulation of Type-I interferon expression [193].

Another protein induced by Type-I interferon is DAI/ZBP1/DLM1. This protein has

been shown to be necessary for inducing necroptosis in cells infected with VACV [87],

influenza A virus [86], or murine cytomegalovirus [22].

Vaccinia virus is resistant to Type I Interferons Despite the potency of

the interferon-stimulated genes, vaccinia virus is resistant to type I interferon. This is

largely due to the activity of the viral gene E3L, which encodes the 25 kDa protein

E3 [105]. Figure 13 illustrates the domains of E3 and their functions. E3 has two

major regions: a z-form nucleic acid (ZNA) binding domain located toward the amino

terminus [110] and a dsRNA binding domain on the carboxyl terminus [171]. Both

domains are necessary for pathogenesis in mice [172] and both are highly conserved in

the Orthopoxvirus genus. A notable exception is monkeypox virus, which expresses

a homolog lacking the first 37 amino acids; this loss extends into the ZNA binding

domain [176, 178].

We have found that the ZNA binding domain is necessary for full pathogenesis in

mice[110]. This attenuation correlates with both the activation of PKR [111] and of

DAI-dependent necroptosis [87]. However, it is not currently known if the inhibition of

these pathways is linked or if E3 does so through distinct mechanisms. To determine
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if PKR inhibition is necessary for necroptosis inhibition, we screened for E3 mutant

viruses that either inhibit PKR or bind to ZNA but not both.

For virus that binds ZNA but fails to inhibit PKR, we tested E3:L36R, E3:L50P,

and ZαADAR1-E3. In ZαADAR1-E3, the ZNA binding domain of VACV was replaced

with the equivalent Zαdomain from human ADAR1. Previous results indicated that

it is able to bind ZNA but fails to suppress PKR [110, 177] but its ability to inhibit

necroptosis has not been determined. The L36R and L50P mutations were initially

identified by screening plasmid-expressed variola E3 mutants in yeast with inducible

PKR; these mutants failed to rescue PKR-mediated death while still maintaining the

ability to bind to ZNA [194]. They have not been characterized when expressed by

VACV.

To determine if ZNA binding is necessary for PKR inhibition, we tested the virus

E3:Y48A. This mutant was generated based on the known crystal structure of the Zα

ZNA binding domain in ADAR1. Because the equivalent mutation in the the ADAR1

α domain has been shown to lose the ability to bind ZNA, we believe that E3:Y48A

is unable to as well. Previous work has found it to be attenuated in inter-cranial

injections [110]. However, its ability to inhibit PKR has not been determined.

Figure 14 summarizes the viruses used in the following experiments.
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3.3 Materials and Methods

Cells and virus. HeLa cells were maintained in Dulbecco’s Modified Eagle

Medium (DMEM, Cellgro) supplemented with 5% FBS and 2 µM L-Glutamine. Wild-

type, ΔPKR, and ΔDAI L929 cells were maintained in minimum essential medium

(MEM, Cellgro) supplemented with 5% fetal bovine serum (FBS) (HyClone) and not

allowed to exceed 7 passages.

Generation ofΔDAI andΔPKR L929 cells. L929ΔDAI/ZBP1 andΔPKR

were generated using CRISPR/Cas9 technology [195]. Cas9-expressing L929 cells

were generated by Jackie Sicalo Williams using Edit-R Lentiviral Blast-Cas9 Nuclease

Particles (Dharmacon) according to manufacturer instructions. In brief, a 24 well dish

was seeded with L929 cells to 50% confluency. Individual wells were mock infected

or infected with lentivirus containing a transformable cassette that contained genes

for Cas9 and blasticidin resistance. After 24 hours, blasticidin was added to the

media. After 48 hours, cell were trypsinized and serial diluted into 24 well palate in

order to achieve single cell seeding. These were grown in the presence of Blasticidin.

Blasticidin-resistant clonal lineages were stored in LN2 for future use.

Following the generation of Cas9-expressing cells, the cells were transformed

to stably express guide RNA against the proteins of interest using Edit-R CRISPR

Mouse Lentiviral sgRNA (Dharmacon). Cas9+ L929 cells were infected with lentivirus

containing a transformable cassette that contained genes for puromycin resistance

and express guide RNA specific for either PKR or DAI/ZBP1. Isolation of clonal

lineages of puromycin-resistant cells was performed as described above. Successful
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gene knockdown was verified via Western blot. DAI knockouts were generated by

Jackie Sicalo Williams.

Treatments and Inhibitors The pan-caspase inhibitor Z-VAD-FMK (ZVD,

ApexBio) was prepared in DMSO and used at a final concentration of 100 µM.

The RIP3 inhibitor GSK872 and RIP1 inhibitor GSK963 (GlaxoSmithKline) were

prepared in DMSO and used at a final concentration of 3 µM. Sodium arsenite (Sigma)

was used at a final concentration of 500 µM. Mouse TNFα (Sigma) was used at a

final concentration of 10 ng/mL. SYTOX Green (ThermoFisher) was used at a final

concentration of 1.25 µM.

Cell viability assay L929 cells were pretreated for 18 hours with 500 units

of mouse IFNα. When applicable, they were then treated for one hour with ZVD,

GSK872, and/or GSK963. Following treatment with inhibitors, without changing the

media either sodium arsenite or TNFα were added. Finally, all cells were treated with

SYTOX Green. The cells were then placed in the heated incubator stage of an EVOS

FL Auto microscope (ThermoFisher), which was calibrated to take Z-Stack images in

the Phase and GFP channels at selected time-points. At each time-point the ratio

of green to non-green cells was used to determine the number of viable cells. Each

experimental condition was performed in triplicate.

Generation of virus E3 mutants. Vaccinia viruses expressing E3:L36R or

E3:L50P were generated as described previously [107, 182]. Briefly, point mutants to

generate E3:L36R or E3:L50P were generated via whole plasmid PCR of the plasmid

PMP-E3L. Following plasmid purification and sequence validation, transfection reac-

tions were prepared using X-tremeGENE 9 (Sigma) according to the manufacturer’s

instructions. BHK cells were infected at an MOI of 0.5 with VACV ΔE3:LacZ. After
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rocking the dishes at 15 minute intervals for 30 minutes, the cells were overlaid with

media containing the previously-prepared transfection reagent. Two days post infec-

tion, virus was harvested from the infected cells and plaque purified via blue-white

screen. White plaques were selected as these presumably contained virus in which

LacZ was replaced with the recombinant E3L. Several such plaques were collected and

screened via Sanger sequencing of PCR product for the correct E3L sequence.

Treatments and Inhibitors The pan-caspase inhibitor Z-VAD-FMK (ZVD,

ApexBio) was prepared in DMSO and used at a final concentration of 100 µM. The

RIP3 inhibitor GSK872 (GlaxoSmithKline) was prepared in DMSO and used at a

final concentration of 3 µM. Mouse TNFα (Sigma) was used at a final concentration

of 10 ng/mL. SYTOX Green (ThermoFisher) was used at a final concentration of 1.25

µM

Cell viability assay. L929 cells were pretreated for 18 hours with 500 units of

mouse IFNα. When applicable, they were then treated for one hour with GSK872.

Following treatment with inhibitors, the cells were infected with virus. After 30

minutes of rocking, media containing 1.5 µM of SYTOX Green was added. The cells

were then placed in the heated incubator stage of an EVOS FL Auto microscope

(ThermoFisher), which was calibrated to take Z-Stack images in the Phase and GFP

channels at selected time-points. At each time-point the ratio of green to non-green

cells was used to determine the number of viable cells. Each experimental condition

was performed in triplicate.

Protein extraction Cells were scrapped at the indicated times then spun at

1000G for 10 minutes at 4°C. The media was aspirated, then RIPA buffer containing

Halt Protease and Phosphatase Inhibitor Cocktail (ThermoFisher) was added; the
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pellet was disrupted via pipetting. Following a 10 minute incubation on ice, the

lysate was spun at 16000G for 20 minutes at 4°C. The supernatant was collected and

combined with 2X SDS buffer containing DTT and Halt Protease and Phosphatase

Inhibitor Cocktail. This solution was then heated for 10 minutes at 95 °C.

Western Blot Protein samples were separated via SDS PAGE using a 7% loading

gel and 10% stacking gel. Protein was transferred to nitrocellulose membrane that was

then blocked at room temperature for 1 hour with TBS-Tween containing 3% BSA.

Following blocking, membranes were incubated with antibodies in TBS-T 3% BSA

overnight at 4°C. They were then washed with TBS-T and probed with secondary

antibody in TBS-T 3% dry milk (Carnation) for 1 hour at room temperature. After a

final 1 hour wash in TBS-T at room temperature, the membranes were treated with

Pierce ECL Western Blotting Substrate (ThermoFisher) and exposed to X-ray film.
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3.4 Results

VACV E3:L36R but not E3:L50P induces PKR phosphorlyation Vac-

cinia virus expressing E3:L36R and E3:L50P, and wild-type revertants of these viruses,

were generated using IVR. HeLa cells were then mock infected or infected with wt-

VACV, VACV ΔE3, E3:L36R, or E3:L50P. Total cell lysate was harvested 9HPI to

probe for PKR phosphorlyation. As shown in Figure 15, E3:L36R showed high levels

of PKR phosphorylation similar to ΔE3, while E3:L50P had low phosphorylation

more similar to mock and wt infection. This data is in contrast to what was reported

previously, in which both L36R and L50P were unable to inhibit PKR-mediated death

in yeast

VACV E3:L36R and E3:L50P are interferon-sensitive and induce

necroptosis in L929 cells The phenotypes of VACV E3:L36R and E3:L50P were

further characterized by determining if they were IFN-sensitive and if said sensitivity

was due to necroptosis. L929 cells were infected with these viruses and revertants

and SYTOX Green was used to measure cell viability over time. In IFN-negative

cells, there was no significant change in viability over 12 hours (Figure 17a). In

IFNα-treated cells, infection with E3:L36R and E3:L50P but not the revertants lead

to death, approaching 25% viability by 12HPI (Figure 17b). The timing and morphol-

ogy of the death was consistent with previous observations of necroptotic cells [87].

Furthermore, treatment with the RIP3 kinase inhibitor GSK872 delayed and reduced

death for E3:L36R and E3:L50P, with both viruses only reaching 75% viability by

12HPI (Figure 18). Taken together, these experiments suggest that VACV E3:L36R

and E3:L50P are both able to induce necroptosis in L929 cells.
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To determine if this death correlated with reduced viral yield, we performed a

plaque reduction assay. L929 cells were infected with serial dilutions of VACV express-

ing either wild-type E3, E3Δ83N, E3:L36R, E3:L50P, or the wild-type revertants of the

latter two viruses (Figure 16). All six viruses were able to form plaques in untreated

L929 cells. However, pre-treatment with IFNα caused a reduction in plaques for virus

that expressed E3Δ83N, E3:L36R, or E3:L50P. Treating IFN pre-treated cells with the

RIP3 kinase inhibitor GSK872 rescued plaque formation for E3Δ83N, and E3:L50P,

suggesting that IFN sensitivity in these viruses was due to necroptosis. However,

GSK872 did not lead to a statistically significant change from IFN-treatment alone

for E3:L36R. Given that the timelapse experiment showed that GSK872 treatment

is able to inhibit E3:L36R-mediated rapid cell death, this suggested that additional

factors to necroptosis contribute to the IFN-sensitivity of E3:L36R. One candidate for

this is PKR, as unlike E3:L50P, E3:L36R causes PKR phosphorylation.

VACV E3:L36R and E3:L50P fail to accumulate E3 to wild-type levels

We had observed several discrepancies between the observed behaviors for VACV

expressing E3:L36R and L50P and what was predicted based on the properties of these

proteins when expressed via plasmid in yeast. One possible explanation for this is

that these mutants lead to unstable proteins that do not persist and therefore cannot

accumulate to wild-type levels in a virus infection. Plasmid expression generally gives

higher protein yields which could have masked this effect. To test this hypothesis, we

measured the accumulation of total E3 in HeLa cells at several times post-infection.

We compared this to E3 accumulation in wild-type virus and to VACV E3Δ54N,

which we have previously found to be an unstable protein [196].

As shown in Figure 19, we were able to observe E3 in total cell lysate by 3HPI in
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wild-type VACV, which persisted to the final point checked, 9HPI. VACV E3Δ54N

also produced observable E3 by 3HPI, but by 9HPI it was almost completely absent.

In contrast to these, E3:L36R did not produce detectable E3 until 9HPI, and E3:L50P

until 6HPI.

This delay in accumulation compared to wild-type virus may be responsible for

the differences between our observations and what was reported previously. In earlier

work, both E3 leucine mutants were expressed via a plasmid expression system rather

than in whole virus, and were expressed at similar levels as wild-type E3 [194]. Because

the virally-expressed mutants do not accumulate to detectable levels until much later

in an infection, there may simply not be enough E3 present to inhibit necroptosis in

cells with an intact pathway.

VACV ZαADAR1-E3 but not E3:Y48A induces PKR phosphorylation

in HeLa cells Our original goal for this project was to identify one or more VACV

E3 n-terminal mutants in which inhibition of PKR was separated from binding to

Z-form nucleic acids. The altered accumulation of VACV E3:L36R and E3:L50P

introduces additional variables to this characterization, making them unsuitable tools

for this question. We moved on to another virus, VACV ZαADAR1-E3. In this virus,

the ZNA-binding domain of E3 was replaced with the Zα ZNA binding domain from

ADAR1. Although this E3 mutant maintains ZNA binding, it induces phosphorlyation

of eIF2α and is attenuated in mice [177].

To determine if VACV E3:Y48A infection leads to PKR phosphorlyation, we

infected HeLa cells with it or VACV expressing wild-type E3, E3Δ83N, or ZαADAR1-

E3 (Figure 20). Cells were harvested 9HPI and the total cell lysate underwent a

Western Blot probing for phosphorylated PKR. The membrane was then stripped and
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probed for total PKR. As has been reported previously, we observed higher levels of

phosphorlyation in E3Δ83N and ZαADAR1-E3 than cells that were either mock infected

or infected with wild-type VACV [111] [177]. VACV E3:Y48A gave phosphorlyation

similar to wild-type VACV, suggesting that loss of Z-form nucleic acid binding does

not enhance activation of the PKR pathway.

VACV E3:Y48A but not VACV ZαADAR1-E3 induces DAI-dependent

necroptosis and is interferon-sensitive in L929 cells With the identification

of viruses that separately either bind ZNA or are able to inhibit PKR, we then

tested whether or not they would undergo necroptosis. L929 cells were infected with

wild-type virus, VACV E3Δ83N, E3:Y48A, or ZαADAR1-E3. SYTOX Green was used

to measure cell viability over time. In IFN-negative cells, there was no significant

change in viability over 12 hours (Figure 21a), while in IFNα pre-treated cells, viability

was reduced by 50% by 9HPI for E3Δ83N and E3:48A while significant death was

not observed for wild-type and ZαADAR1-E3 infection (Figure 21b). Treatment with

GSK872 fully rescued death, further supporting the idea that the interferon sensitivity

E3:Y48A is due to necroptosis. (Figure 22)

As an alternate method to show that VACV ZαADAR1-E3 does not undergo

necroptosis, we used a western blot to determine if MLKL was being phosphorylated

(Figure 23). IFNα-treated L929 cells were infected with the four viruses above with

an additional mock infection. Total cell lysate was harvested via RIPA at 3HPI. We

then analyzed the lysate using a Western Blot and probed for phosphorylated MLKL

and total MLKL. Consistent with our cell viability data, we observed phosphorylated

MLKL in virus expressing E3Δ83N and E3:Y48A but not wild-type E3 or ZαADAR1-E3.

To determine the interferon sensitivity of VACV ZαADAR1-E3 and E3:Y48A, we
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infected L929 cells with serial dilutions of it and VACV expressing wild-type E3,

E3Δ83N, and E3:Y48A (Figure 24). The cells were either mock treated, pretreated

18 hours with IFNα, or pretreated 18 hours with IFNαand 1 hour with the RIP3

kinase inhibitor GSK872. We found that while VACV expressing wild-type E3 and

ZαADAR1-E3 did not show a statistically significant decrease in plaque numbers in

interferon-treated cells, both E3Δ83N and E3:Y48A yielded fewer plaques in IFNα-

treated cells. However, GSK872 treatment was able to fully restore plaque yields for

these viruses, suggesting that IFN-sensitivity was dependent on necroptosis.

Finally, to determine if E3:Y48A-mediated necroptosis is DAI-dependent, we

repeated the SYTOX Green viability assay using L929 cells in which CRISPR was

used to knockout DAI. In these cells, while TNF-ZVD was still able to induce death,

none of the viruses were able to (Figure 25). This suggests that like E3Δ83N, E3:Y48A

induces necroptosis via the DAI pathway.

PKR is not necessary for VACV-induced necroptosis in L929 cells It

has previously been reported that PKR activation can lead to necroptosis [83]. To

determine if PKR plays a role in VACV-induced necroptosis, we used CRISPR-Cas9 to

generate PKR-knockout L929 cells. The knockout was verified through a western blot

(Figure 26). Using SYTOX Green, we then measured the viability of these cells when

infected with VACV expressing wild-type E3, E3Δ83N, ZαADAR1-E3, and E3:Y48A.

We found that as was the case with wild-type L929 cells, we did not observe significant

death in untreated cells (Figure 27a). In IFNα-treated cells, E3Δ83N and E3:Y48A

induced a rapid death morphologically consistent with necroptosis while wild-type E3

and ZαADAR1-E3 did not significantly reduce viability (Figure 27b). Finally, death was

fully rescued with GSK872 treatment (Figure 28). These data suggest that although
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PKR activity can be a potent inhibitor of VACV [105], it does not play a role in

necroptotic inhibition of VACV.

Figure 29 shows an updated list of the phenotypes associated with the viruses

used in the preceding experiments.
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3.5 Discussion

The purpose of this project was to determine if PKR inhibition and ZNA binding

were necessary for vaccinia virus E3 protein inhibition of DAI-dependent necroptosis.

We initially believed that VACV E3:L36R and E3:L50P would bind ZNA but not

inhibit PKR phosphorylation due to the variola virus homolog proteins’ ability to

bind to ZNA but not rescue PKR-mediated death in yeast. However, we found that

when expressed in vaccinia virus, only E3:L36R induced phosphorylation of PKR.

One possible explanation for this discrepancy is that these mutants accumulate less

E3 protein than wild-type protein in the same time frame, and therefore some of

the resulting phenotypes are due to the decreased levels of E3 rather than unique

properties of the point mutants themselves.

Despite this, we were able to identify E3 mutants with the desired phenotypes.

ZαADAR1-E3 is able to bind to Z-form nucleic acids but leads to PKR phosphorylation.

E3:Y48A does not bind ZNA but is able to inhibit PKR activation. We found that of

the two viruses, only E3:Y48A induces DAI-depending necroptosis, suggesting that

PKR activation is not necessary for this programmed death pathway.

It is known that PKR can act as a signal transducer in FADD-dependent necrop-

tosis [83]. Because of this, it might have been expected that PKR plays some role

in viral DAI-dependent necroptosis. Our data show that PKR is in fact dispensable

for this necroptosis pathway, further supporting the idea that PKR and necroptosis

inhibition are important, but separate functions of E3.

Taken together, these data indicate that in the context of a VACV infection,

PKR activation and necroptosis constitute distinct antiviral systems that the virus
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must overcome. This is especially significant when one considers that the reemerging

pathogen monkeypox virus, another member of Orthopoxvirus, has a 37 amino acid

truncation in the amino terminus of its E3 homolog F3. Based on our findings in VACV,

we might predict such a mutation to induce PKR phosphorylation and necroptosis.

Presumably, monkeypox virus has evolved alternative means to block these pathways.

Identifying how it specifically accomplishes this could provide valuable insight into

this human pathogen.

Several important questions remain. First, it is not clear how the amino terminus

of wild-type E3 contributes to the inhibition of PKR. While VACV ΔE3 has detectable

PKR phosphorylation as early as 6 hours post infection, we typically do not observe

this activation in VACV E3Δ83N until 9 hours post infection, suggesting that the

carboxy terminus contributes to but is not sufficient for total inhibition of PKR

[189]. We have previously hypothesized that E3 inhibits PKR via competitive binding

to dsRNA; the dsRNA binding domain on the carboxyl terminus associating with

right-helical dsRNA and the ZNA-binding domain associating with left-helical dsRNA.

However, the data presented here suggest that there is a mechanism of PKR inhibition

independent of nucleic acid binding. This is consistent with the characterization of

VACV E3:N123A, a c-terminal point mutant that is able to bind to dsRNA and pull

down PKR in an affinity assay but does not inhibit PKR phosphorylation [197].

Another question this work raises is the role of the carboxyl terminus, especially

the dsRNA binding domain, of E3 in inhibiting necroptosis. We have observed that

VACV that expresses the ZNA and dsRNA binding domains as separate proteins rather

than as a single linked protein induces PKR and eIF2α phosphorylation, suggesting

that the two domains have a synergistic effect when bound together [198]. Is this
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also true for inhibition of necroptosis? Answering these questions could provide

further insight into the specific mechanisms by which E3 is able to inhibit PKR and

necroptosis.

TRIF, an adapter for TLRs 3 and 4, has also been shown to be able to induce

necroptosis in L929 cells following poly(IC) [85]. However, to date TRIF-mediated

necroptosis has not been associated with any virus. VACV is known to produce

an inhibitor of TRIF, A46 [104], which may be responsible for this. If this is the

case, then knocking out this protein in VACV E3:Y48A should lead to necroptosis in

DAI-deficient cells.

Finally, it has been reported that E3 has a lower affinity for ZNA than other Zα

domain-containing proteins, including ADAR1 and E3 homologs in other poxviruses

[199]. Is there an adaptive advantage to this, or is it a compromise brought about

by the need to inhibit PKR? Identifying the specific residues responsible for PKR

inhibition would help to answer this question. Although it is clear that VACV ZαADAR1-

E3 fails to inhibit PKR phosphorylation, it is not yet known what specific differences

between the E3 ZNA binding domain and the ADAR1 Zα domain allow one but not

the other to inhibit PKR. Due to the sequence variation between the two, predicting

the specific residue(s) responsible may prove difficult. To date, the best candidates for

these residues are Leu36 and Leu50. Although L36R and L50P viruses did not have

the phenotypes we predict, this could be explained by the fairly significant amino

acid substitutions that these mutants contain. There could be alternative amino acid

substitutions that would result in stable proteins lacking PKR inhibition.

57



3.6 Figures

Figure 13: Schematic of the E3 protein, its domains, and their known functions. E3
consists of two major domains: a Z-form nucleic acid binding domain in the amino
terminus and a dsRNA binding domain on the carboxyl terminus. These domains are
joined by a linker region that is less well-conserved. Both ZNA and dsRNA binding
domains have been shown to contribute to inhibition of PKR. Necroptosis inhibition
is associated with the amino-terminal ZNA binding domain. Both domains must be
present and linked for full pathogenesis in mice.

58



Figure 14: List of E3 mutants and their known and predicted phenotypes. Wild-type
E3 has an amino-terminal ZNA binding domain and a carboxyl-terminal dsRNA
binding domain. VACV that expresses this protein binds to ZNA, (indicated by "+"),
inhibits PKR, and inhibits necroptosis. In E3Δ83N the amino-terminus, including the
ZNA binding domain, has been deleted. This virus does not bind to ZNA (indicated
by "-"), does not inhibit PKR 9-hours post infection, and does not inhibit necroptosis.
E3:L36R and E3:L50P have point mutants in the ZNA binding domain. They are
predicted to bind ZNA (indicated by "(+)") but are not predicted to inhibit PKR
(indicated by "(-)"). Their ability to inhibit necroptosis is unknown, indicated by "?".
ZαADAR1-E3 has the VACV ZNA binding domain replaced with the Zα ZNA
binding domain from human ADAR1. It is able to bind to ZNA, and does not inhibit
PKR 9 hours post infection; it’s ability to inhibit necroptosis is unknown. Finally,
E3:Y48A has a point mutation in the ZNA binding domain. This virus does not bind
to ZNA and does not inhibit necroptosis; its ability to inhibit PKR is unknown.
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Figure 15: VACV E3:L36R but not E3:L50P infection leads to PKR phosphorlyation
in HeLa cells. HeLa cells were infected with VACV, VACV E3Δ83N, E3:L36R or
E3:L50P. At 9HPI total cell lysate was collected via RIPA extraction. The lysate was
used in a Western blot probing for phosphorylated PKR, phosphorylated eIF2α, and
total eIF2α.
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Figure 16: VACV E3:L36R and E3:L50P are interferon sensitive in L929 cells. L929
cells were either mock or treated with 100 U of IFNαfor 18 hours. Following IFN
treatment, the cells were then mock treated or treated with 3 µM GSK872 for 1 hour.
The cells were then infected with serial dilutions of VACV, VACV E3Δ83N, VACV
E3:L36R, E3:L50P, or wild-type revertants of the point mutant viruses. After 4 days,
the cells were stained with crystal violet and plaques were counted. The presented
data are averages of thee independent experiments. Asterisks indicate a
statistically-significant difference in plaque count from untreated cells. *p<.05
**p<0.005
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(a)

(b)

Figure 17: Interferon sensitizes L929 cells to rapid death when infected with VACV
E3:L36R or E3:L50P. L929 cells were infected with VACV E3:L36R, E3:L50P, or
wild-type revertants of these viruses. The cells were then treated with Sytox Green
and loaded into an EVOS FL Auto heated incubator microscope. The microscope
was programmed to take Z-Stack images in the Phase and GFP channels every hour
for 12 hours. At teach time point the ratio of non-viable (green) cells to total cells
was calculated. Presented data are averages of three independent experiments. (a)
Untreated L929 cells (b) L929 cells pretreated 18 hours with 100 U of IFNα
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Figure 18: VACV E3:L36R and E3:L50P death in IFNα-treated L929 cells is
inhibited by the RIP3 kinase inhibitor GSK872. L929 cells were treated 18 hours
with 100 U of IFNα. Following IFN treatment, the cells were then treated for 1 hour
with 3 µM GSK872. The cells were then infected with VACV E3:L36R, E3:L50P, or
wild-type revertants of these viruses. The cells were then treated with Sytox Green
and loaded into an EVOS FL Auto heated incubator microscope. The microscope
was programmed to take Z-Stack images in the Phase and GFP channels every every
hour for 12 hours. At teach time point the ratio of non-viable (green) cells to total
cells was calculated. Presented data are averages of three independent experiments.
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Figure 19: VACV E3:L36R and E3:L50P have delayed E3 accumulation in HeLa cells.
HeLa cells were infected with VACV, VACV E3Δ54N, E3:L36R or E3:L50P. At 1, 3,
6, and 9 hours post infection total cell lysate was collected via RIPA extraction. The
lysate was used in a Western blot probing for E3 and GAPDH.
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Figure 20: VACV ZαADAR1-E3 but not VACV E3:Y48A induces PKR
phosphorlyation in HeLa cells. HeLa cells were infected with VACV, VACV E3Δ83N,
VACV ZαADAR1-E3, or E3:Y48A. At 9HPI total cell lysate was collected via RIPA
extraction. The lysate was used in a Western blot probing for phosphorylated PKR
and total PKR.
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(a)

(b)

Figure 21: Interferon sensitizes L929 cells to rapid death when infected with VACV
E3:Y48A but not ZαADAR1-E3. L929 cells were infected with VACV, VACV E3Δ83N,
VACV ZαADAR1-E3, or E3:Y48A. The cells were then treated with Sytox Green and
loaded into an EVOS FL Auto heated incubator microscope. The microscope was
programmed to take Z-Stack images in the Phase and GFP channels every hour for
12 hours. At teach time point the ratio of non-viable (green) cells to total cells was
calculated. Presented data are averages of three independent experiments. (a)
Untreated L929 cells (b) L929 cells pretreated 18 hours with 100 U of IFNα
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Figure 22: VACV E3:Y48A death in IFNα-treated L929 cells is inhibited by the RIP3
kinase inhibitor GSK872. L929 cells were treated 18 hours with 100 U of IFNα.
Following IFN treatment, the cells were then treated for 1 hour with 3 µM GSK872.
The cells were then infected with VACV, VACV E3Δ83N, VACV ZαADAR1-E3, or
E3:Y48A. The cells were then treated with Sytox Green and loaded into an EVOS FL
Auto heated incubator microscope. The microscope was programmed to take Z-Stack
images in the Phase and GFP channels every every hour for 12 hours. At teach time
point the ratio of non-viable (green) cells to total cells was calculated. Presented data
are averages of three independent experiments.

67



Figure 23: VACV Y48A but not ZαADAR1-E3 induces MLKL phosphorlyation in L929
cells. L929 cells were infected with VACV, VACV E3Δ83N, VACV ZαADAR1-E3, or
E3:Y48A. At 3HPI total cell lysate was collected via RIPA extraction. The lysate
was used in a Western blot probing for phosphorylated and total MLKL.
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Figure 24: VACV E3:Y48A but not ZαADAR1-E3 is interferon-sensitive in L929 cells.
L929 cells were either mock or treated with 100 U of IFNαfor 18 hours. Following
IFN treatment, the cells were then mock treated or treated with 3 µM GSK872 for 1
hour. The cells were then infected with serial dilutions of VACV, VACV E3Δ83N,
VACV ZαADAR1-E3, or E3:Y48A. After 4 days, the cells were stained with crystal
violet and plaques were counted. The presented data are averages of thee
independent experiments. Asterisks indicate a statistically-significant difference in
plaque count from untreated cells. *p<.05 **p<0.005
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Figure 25: The interferon sensitivity of VACV E3:Y48A in L929 cells is
DAI-dependent. DAI-knockout L929 cells were either mock treated or treated with
100 U of IFNα for 18 hours. The cells were then infected with VACV, VACV E3Δ83N,
VACV ZαADAR1-E3, or E3:Y48A. The cells were then treated with Sytox Green and
loaded into an EVOS FL Auto heated incubator microscope. The microscope was
programmed to take Z-Stack images in the Phase and GFP channels every every hour
for 12 hours. At teach time point the ratio of non-viable (green) cells to total cells
was calculated. Presented data are averages of three independent experiments.
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Figure 26: Verification of PKR knockout in L929 cells. Cas9-expressing L929 cells
were infected with lentivirus containing a transformable cassette that encoded
puromycin resistance and PKR guide RNA. Following puromycin selection, serial
dilution was used to generate a clonal lineage derived from a single cell. These cells
and wild-type L929 cells were then mock treated or treated for 18 hours with 100U
IFNα. Total cell lysate was collected via RIPA extraction and used for a Western blot
that probed for total GAPDH and total PKR.
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(a)

(b)

Figure 27: The interferon sensitivity of VACV E3Δ83N and E3:Y48A in L929 cells is
not PKR-dependent. PKR-knockout L929 cells were infected with VACV, VACV
E3Δ83N, VACV ZαADAR1-E3, or E3:Y48A. The cells were then treated with Sytox
Green and loaded into an EVOS FL Auto heated incubator microscope. The
microscope was programmed to take Z-Stack images in the Phase and GFP channels
every hour for 12 hours. At teach time point the ratio of non-viable (green) cells to
total cells was calculated. Presented data are averages of three independent
experiments. (a) Untreated L929 cells (b) L929 cells pretreated 18 hours with 100 U
of IFNα
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Figure 28: Loss of PKR does not affect GSK872 rescue of the interferon-sensitivity of
VACV E3Δ83N and E3:Y48A. PKR-knockout L929 cells were treated 18 hours with
100 U of IFNα. Following IFN treatment, the cells were then treated for 1 hour with
3100 M GSK872. The cells were then infected with VACV, VACV E3Δ83N, VACV
ZαADAR1-E3, or E3:Y48A. The cells were then treated with Sytox Green and loaded
into an EVOS FL Auto heated incubator microscope. The microscope was
programmed to take Z-Stack images in the Phase and GFP channels every every hour
for 12 hours. At teach time point the ratio of non-viable (green) cells to total cells
was calculated. Presented data are averages of three independent experiments.
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Figure 29: Updated list of E3 mutant phenotypes using data from this study. Based
on the results from these experiments, E3:L36R does not inhibit PKR as predicted,
and does not inhibit necroptosis. E3:L50P does inhibit PKR, contrary to predictions,
and does not inhibit necroptosis. ZαADAR1-E3 binds ZNA, does not inhibit PKR,
and does inhibit necroptosis. Finally, E3:Y48A does not bind to ZNA, does inhibit
PKR, and does not inhibit necroptosis.

74



Chapter 4

SODIUM ARSENITE INDUCES DAI/ZBP1-MEDIATED NECROPTOSIS

INDEPENDENT OF VIRAL INFECTION

4.1 Abstract

Necroptosis is an anti-viral cell death pathway in which cells undergo a rapid

and explosive death. One mechanism in which it can be induced is via the interferon-

stimulated gene DAI/ZBP1. DAI has a Zα domain that confers the ability to interact

with Z-form nucleic acids, and a RHIM domain allowing it to interact with and

activate RIP3. This allows RIP3 to activate MLKL, the effector of necroptosis. This

DAI-dependent pathway has been observed in herpes virus, influenza virus, and

vaccinia virus infections. E3, the vaccinia virus interferon resistance protein, contains

a Z-form nucleic acid binding domain. We have previously reported that loss-of-

function mutations to this domain result in the virus inducing DAI/ZBP1-mediated

necroptosis.

Since proteins that bind Z-form nucleic acid home to stress granules, we decided to

ask if stress granule formation could lead to necroptosis. Stress granule formation was

induced in L929 cells with the oxidative stressor sodium arsenite. While arsenite alone

did not induce necroptosis, when DAI/ZBP1 was induced by IFN treatment MLKL

phosphorylation and rapid cell death that was fully rescuable by a RIP3 inhibitor, was

observed. We did not observe these hallmarks of necroptosis in L929 cells that did

not express DAI/ZBP1, indicating that arsenite-mediated necroptosis is DAI/ZBP1

75



dependent. These data suggest that DAI/ZBP1 is not necessarily a sensor of viral

ligands but perhaps is a sensor of stress signals brought about by viral infection.
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4.2 Introduction

ZNA is an alternate form of double-stranded nucleic acid Z-form nucleic

acids (ZNA) are DNA or dsRNA molecules that are in a left-handed helix as opposed

to the more common right-handed helix. Although this form shares the same base-pair

complementation as seen in right-handed helices, the overall shape of the resulting

molecule tends to form a zig-zag pattern (hence Z-form) [113]. ZNA formation is

associated with transcription and is thought to be caused when the nucleic acid is

under torsional stress [200]. Several proteins have been identified with ZNA binding

domains, including the mammalian proteins ADAR1 [125] and DAI/ZBP1/DLM1

[134], and the vaccinia virus protein E3 [110]. ZNA binding is necessary for complete

functionality of these proteins.

ZNA-binding proteins home to stress granules Stress granules are complex

mixtures of mRNA, translational machinery, and RNA binding proteins. They form

when translation is inhibited, such as through lack of materials or cellular stress. Many

stressors can induce stress granule formation, including the toxin sodium arsenite.

Stress caused by exposure to arsenite is detected by heat shock proteins [154]; these

proteins will then associate with and activate Heme-Regulated eIF2α kinase (HRI).

Like Protein Kinase R (PKR), HRI phosphorylates eIF2α, leading to a cessation of

the majority of translation [155, 156]. This leads to the aggregation of RNA-binding

proteins such as G3BP1 and TIAR1 to stalled mRNA/ribosome complexes, forming

stress granules [140].

It has been reported that proteins containing a function ZNA-binding domain,

including the aforementioned E3 and DAI, will home to arsenite-induced stress granules
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in HeLa cells [139]. Because of the role DAI plays in viral-associated necroptosis [22]

and E3 plays in inhibiting necroptosis [87], this lead us to ask whether the colocalization

of DAI with stress granules was necessary for the induction of necroptosis. If this

is the case, we might expect that any cellular stressor that leads to stress granule

formation in cells with an in-tact necroptosis pathway could induce DAI-dependent

necroptosis.
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4.3 Materials and Methods

Cells and treatments. HeLa cells were maintained in Dulbecco’s Modified Eagle

Medium (DMEM, Cellgro) supplemented with 5% FBS and 2 µM L-Glutamine.L929

cells were maintained in minimum essential medium (MEM, Cellgro) supplemented

with 5% fetal bovine serum (FBS) (HyClone) and not allowed to exceed 7 passages.

Generation ofΔDAI andΔPKR L929 cells. L929ΔDAI/ZBP1 andΔPKR

were generated using CRISPR/Cas9 technology [195]. Cas9-expressing L929 cells

were generated by Jackie Sicalo Williams using Edit-R Lentiviral Blast-Cas9 Nuclease

Particles (Dharmacon) according to manufacturer instructions. In brief, a 24 well dish

was seeded with L929 cells to 50% confluency. Individual wells were mock infected

or infected with lentivirus containing a transformable cassette that contained genes

for Cas9 and blasticidin resistance. After 24 hours, blasticidin was added to the

media. After 48 hours, cell were trypsinized and serial diluted into 24 well palate in

order to achieve single cell seeding. These were grown in the presence of Blasticidin.

Blasticidin-resistant clonal lineages were stored in LN2 for future use.

Following the generation of Cas9-expressing cells, the cells were transformed

to stably express guide RNA against the proteins of interest using Edit-R CRISPR

Mouse Lentiviral sgRNA (Dharmacon). Cas9+ L929 cells were infected with lentivirus

containing a transformable cassette that contained genes for puromycin resistance

and express guide RNA specific for either PKR or DAI/ZBP1. Isolation of clonal

lineages of puromycin-resistant cells was performed as described above. Successful

gene knockdown was verified via Western blot. DAI knockouts were generated by

Jackie Sicalo Williams.

79



Treatments and Inhibitors The pan-caspase inhibitor Z-VAD-FMK (ZVD,

ApexBio) was prepared in DMSO and used at a final concentration of 100 µM.

The RIP3 inhibitor GSK872 and RIP1 inhibitor GSK963 (GlaxoSmithKline) were

prepared in DMSO and used at a final concentration of 3 µM. Sodium arsenite (Sigma)

was used at a final concentration of 500 µM. Mouse TNFα (Sigma) was used at a

final concentration of 10 ng/mL. SYTOX Green (ThermoFisher) was used at a final

concentration of 1.25 µM.

Cell viability assay L929 cells were pretreated for 18 hours with 500 units

of mouse IFNα. When applicable, they were then treated for one hour with ZVD,

GSK872, and/or GSK963. Following treatment with inhibitors, without changing the

media either sodium arsenite or TNFα were added. Finally, all cells were treated with

SYTOX Green. The cells were then placed in the heated incubator stage of an EVOS

FL Auto microscope (ThermoFisher), which was calibrated to take Z-Stack images in

the Phase and GFP channels at selected time-points. At each time-point the ratio

of green to non-green cells was used to determine the number of viable cells. Each

experimental condition was performed in triplicate.

Protein extraction Cells were scrapped at the indicated times then spun at

1000 x g for 10 minutes at 4°C. The media was aspirated, then RIPA buffer containing

Halt Protease and Phosphatase Inhibitor Cocktail (ThermoFisher) was added; the

pellet was disrupted via pipetting. Following a 10 minute incubation on ice, the lysate

was spun at 16000 x g for 20 minutes at 4°C. The supernatant was collected and

combined with 2X SDS buffer containing DTT and Halt Protease and Phosphatase

Inhibitor Cocktail. This solution was then heated for 10 minutes at 95 °C.

Western Blot Protein samples were separated via SDS PAGE using a 7% loading
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gel and 10% stacking gel. Protein was transferred to nitrocellulose membrane that was

then blocked at room temperature for 1 hour with Tris-buffered saline containing 0.1%

Tween-20 (TBT-T) and 3% BSA. Following blocking, membranes were incubated with

antibodies in TBS-T 3% BSA overnight at 4°C. They were then washed with TBS-T

and probed with secondary antibody in TBS-T 3% dry milk (Carnation) for 1 hour

at room temperature. After a final 1 hour wash in TBS-T at room temperature, the

membranes were treated with Pierce ECL Western Blotting Substrate (ThermoFisher)

and exposed to X-ray film.
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4.4 Results

IFNα sensitizes L929 cells to sodium arsenite. Because DAI/ZBP1 is an

interferon-stimulated gene, we began by determining if IFNα sensitizes sodium arsenite-

treated L929 cells to cell death. L929 cells were mock treated or pretreated for 18

hours with 100 U of IFNα and then treated with increasing concentrations of sodium

arsenite. At 6 hours post arsenite treatment, the percentage of nonviable cells was

determined using SYTOX Green. Treatment with TNFα and the pan caspase inhibitor

Z-VAD-FMK, which is known to induce RIP1-dependent necroptosis [79], was used a

positive control. We found that while arsenite concentrations as high as 1000 µM failed

to induce a significant amount of death in IFN-negative cells, concentrations as low as

250 µM of arsenite were sufficient to cause significant death (Figure 30a). Visually,

we observed cell rounding and bursting without blebbing, which is morphologically

consistent with a necroptotic death.

To further characterize the interferon sensitization, we pretreated L929 cells with

10 fold serial dilutions of IFNα for 18 hours and then treated them with 500 µM of

arsenite. Cell viability was determined 6 hours post treatment with SYTOX Green.

The lowest concentration to have significant death was 100 U of IFN (Figure 30b).

Based on these results, in subsequent experiments we used 500 µM of sodium arsenite

and 500U of IFNα.

Arsenite induces necroptosis in IFNα-treated L929 cells To determine if

arsenite-mediated death was necroptosis, we administered necroptosis inhibitors to

arsenite and IFN-treated cells and measured the percentage of viable cells over 12

hours using SYTOX Green. We found that the RIP3 kinase inhibitor GSK872 reduced
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and delayed death for both arsenite+IFNα and TNFα+ZVD treated cells, suggesting

that the death is in fact necroptosis. However, the RIP1 kinase inhibitor GSK963

rescued TNFα+ZVD but not arsenite+IFNα, suggesting that arsenite-mediated death

is not RIP1 kinase dependent (Figure 31); this is consistent with our hypothesis

that DAI/ZBP1 can act independently of viral ligands through stress granules as

DAI-mediated necroptosis does not require RIP1 kinase activity.

For final confirmation that arsenite+IFNα induces necroptosis, we performed

a western blot against total and phosphorylated MLKL on L929 lysate harvested 3

hours post treatment. As seen in Figure 32, phosphorylated MLKL was observed in

cells treated with arsenite+IFNα and TNFα+ZVD. This phosphorylation was not

observed in cells that were also treated with GSK872.

Arsenite-mediated necroptosis is DAI/ZBP1 dependent We next wanted

to verify that arsenite-mediated necroptosis is DAI-dependent. To accomplish this, we

used CRISPR/Cas9 to generate DAI/ZBP1-knockout L929 cells. We then assayed cell

viability using the SYTOX Green assay. As seen in Figure 33a, TNFα+ZVD induced

death, indicating that the cells were still capable of necroptosis despite the loss of

DAI. However, neither arsenite alone nor arsenite+IFNα induced significant death by

12 hours post treatment. This indicated that arsenite-mediated necroptosis is DAI

dependent. This was further supported by a western blot against MLKL in the DAI

knockout cells, which showed phosphorylation of MLKL for TNFα+ZVD but much

less in arsenite+IFNα-treated cells (Figure 33b).

Sodium arsenite-induced necroptosis does not require PKR. Although

arsenite is known to induce eIF2 α phosphorylation via activation if HRI, it has also

been observed that sodium arsenite treatment can induce activation of PKR through
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PACT (PKR activating protein), which can heterodimerize with and activate PKR

in the absence of dsRNA [201, 202]. PKR is also known to be recruited to stress

granules via G3BP1 [203]. Because PKR has been shown to induce RIP1-dependent

necroptosis [83], we asked whether it is necessary for arsenite-induced necroptosis.

Cell viability was determined using the SYTOX time lapse assay. We found

that as was the case with wild-type L929 cells, IFNα-treated cells were sensitized to

arsenite-mediated death, and this death was ameliorated by GSK872 (Figure 34a.

Furthermore, arsenite + IFNα treatment led to the phosphorlyation of MLKL (Figure

34b). Together, these data indicate that arsenite is able to induce necroptosis in the

absence of PKR.
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4.5 Discussion

The purpose of this project was to determine if sodium arsenite can induce

DAI/ZBP1-dependent necroptosis. Our results demonstrate that this is the case. We

propose that the mechanism for this death is that the formation of stress granules

allow DAI to aggregate and recruit RIP3, thereby initiating the signal cascade leading

to necroptotic death; Figure 35 visualizes this model.

A key aspect of our findings is that it is possible to induce DAI-mediated death

wholly independent of any viral ligands. This suggests that DAI/ZBP1 is not nec-

essarily a sensor of viral ligands but perhaps is a sensor of stress signals brought

about by viral infection. One important implication of this is that DAI-dependent

necroptosis may play a far bigger part in the antiviral response than has previously

been shown. One possible reason for the relative paucity of viruses shown to interact

in some manner with the necroptotic pathway is that the pathway is not intact in

many cell lines, especially those derived from cancers. For example, RIP3, a key

signaling molecule for all known necroptosis pathways, has down-regulated expression

in many cell lines including HeLa [204]. Therefore, it simply is not possible to detect

necroptosis unless the correct cells are used. For example, although it has been known

for some time that the ZNA-binding domain of E3 is necessary for full pathogenesis

in mice [110], it was not until we used cells with intact necroptosis pathways that we

were able to find that it inhibits necroptosis [87].

It has been reported that the flaviruses West Nile Virus, Dengue Virus, and

Japanese Encephalitis Virus are able to inhibit arsenite-mediated stress granule

formation. Interestingly, it was found that treating BHK cells in such a manner as to
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prevent the inhibition of SG formation did not affect WNV replication in these cells

[205]. Based on our results, we might expect that repeating this experiment in cells

that are capable of DAI-dependent necroptosis would in fact lead to cell death and

inhibition of viral replication. Further evidence for this prediction is the observation

that MLKL necroptosis enhances the neuroinflammation associated with Japanese

encephalitis virus, though it was not determined if this was DAI-dependent [206].

This work has implications for non-viral pathologies as well. Stress granule

formation and necroptosis have separately been found to be linked to neurodegenerative

disease [12, 207]. These findings suggest that a link exists between the two that is

mediated by DAI/ZBP1. DAI-/- are viable, and could be useful tools by which to

probe this relationship [208].

For future work, it would be valuable to generate a recombinant DAI/ZBP1 that

replaces the Zα and/or RHIM domains with sites for chemically-induced dimerization,

as has been done for PKR [209, 210]. This would allow for more precise analysis of the

role of DAI without the use of treatments such as poly:IC and arsenite, which have

diverse effects beyond those associated with DAI. In addition, while arsenite-mediated

death is clearly DAI dependent, the specific pathway allowing this is only predicted

and has not been verified experimentally. Colocalization assays and siRNA screens

are necessary to gain a full understanding of this phenomenon.
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4.6 Figures

(a) (b)

Figure 30: Interferon sensitizes L929 cells to sodium arsenite. L929 cells were mock or
pretreated for 18 hours with mouse IFNα and then treated with sodium arsenite. The
ratio of viable to total cells was determined at 6 hours post-treatment using SYTOX
Green. TNFα+ZVD was used as a positive control. Graphed data are averages of 3
independent experiments. Significant was determined with unpaired two-tailed T-Test
*p<.05 **p<0.005. (a) L929 cells were treated 500 µM of mouse IFNα and then
varying concentrations of sodium arsenite. (b) L929 cells were pretreated with varying
concentrations of mouse IFNα and then treated with 500 µM of sodium arsenite.
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Figure 31: RIP3 but not RIP1 kinase activity is necessary for arsenite-mediated
death. L929 cells were treated as indicated with arsenite and the RIP1 inhibitor
GSK963 and the RIP3 inhibitor GSK872. TNFα+ZVD treatment was used as a
positive control. Viability was measured over 12 hours using SYTOX Green.
Graphed data is mean of three independent trials.
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Figure 32: Sodium arsenite induces phosphorylation of MLKL in IFNα-treated L929
cells. L929 cells were treated as indicated. At 3 hours post-treatment, total cell lysate
was collected via RIPA extraction. Lysate was then analyzed via Western Blot,
probing for phosphorylated MLKL.
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(a) (b)

Figure 33: DAI/ZBP1 is necessary for arsenite-mediated necroptosis. ΔDAI L929
cells were mock treated or pre-treated with 100U of IFNα. 18 hours post-treatment,
cells were either mock treated or treated with 100 µM ZVD or 3 µM GSK872.
Following 1 hour, cells were were either mock treated or treated with 500 µsodium
arsenite or 10 ng/mL TNFα. (a) Viability was measured over 12 hours using SYTOX
Green. Graphed data is mean of three independent trials. (b)ΔDAI L929 cell total
lysate was harvested 3 hours after the indicated treatments and probed via Western
Blot for the indicated proteins.
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(a)

(b)

Figure 34: PKR is not necessary for arsenite-mediated necroptosis. ΔPKR L929 cells
were mock treated or pre-treated with 100U of IFNα. 18 hours post-treatment, cells
were either mock treated or treated with 100 µM ZVD or 3 µM GSK872. Following 1
hour, cells were were either mock treated or treated with 500 µsodium arsenite or 10
ng/mL TNFα. (a) Viability was measured over 12 hours using SYTOX Green.
Graphed data is mean of three independent trials. Significance was determined using
an unpaired two-tailed T-Test.(b)ΔPKR L929 cell total lysate was harvested 3 hours
after the indicated treatments and probed via Western Blot for the indicated proteins.
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Figure 35: Proposed model for how sodium arsenite might induce
DAI/ZBP1-dependent necroptosis. Treatment with arsenite triggers the formation of
stress granules. Interferon-stimulation leads to the production of DAI/ZBP1, which
homes to the stress granule, where it is able to recruit RIP3 due to their shared
RHIM domains. RIP3 goes on to activate MLKL, leading to necroptosis.
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Chapter 5

DISCUSSION

The overarching goal of the projects described in this document was to understand

how PKR and necroptosis contribute to the attenuation of amino-terminal mutants of

the vaccinia virus E3 protein. In Chapter 2, we report the finding that monkeypox

virus produces less double-stranded RNA, and propose it as a means by which the

virus can compensate for a partial deletion in its E3 homolog. In Chapter 3, we

found that inhibition of PKR and of necroptosis are distinct activities of the vaccinia

interferon-resistance gene E3, and that one is not necessary for the other. Finally,

in Chapter 4, we found that DAI/ZBP1-dependent necroptosis is not necessarily

dependent on the presence of viral ligands but instead might be activated via a more

general stress response. Our proposed mechanism for this is that the stress response

leads to the aggregation of DAI, which in turn allows RIP3 to become phosphorylated

and propagate the necroptotic signal.

Based on these findings, we propose the following model for VACV inhibition

of PKR activation and necroptosis, visualized in Figure 36. Vaccinia virus infection

leads to the production of dsRNA. E3 inhibits the activation of PKR both by binding

competitively to dsRNA and interacting with PKR directly. Separately, the stress

brought about by virus infection can lead to the formation of stress granules. If

DAI/ZBP1 is able to home to these granules, necroptosis will be induced. E3 is able

to interfere with this, possibly via competitive binding to the stress granule ligand

that recruits DAI. In this manner, E3 is able to block both PKR and necroptosis.
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Why does vaccinia virus produce dsRNA? One fundamental question that

remains unresolved is why VACV produces dsRNA in the first place. It is known that

Early genes have precise transcription termination; it is only Intermediate and Late

genes that lack the termination signal. Why is this the case? Imprecise transcription

termination would seem to be a deleterious trait both from the metabolic cost of

"inefficient" mRNA production as well as the production of dsRNA whose detection

must be blocked in some manner. This is especially confounding when one considers

that it is relatively easy for VACV to acquire low-dsRNA phenotypes. Multiple

mutations in several genes have been found to confer IBT-resistance and by extension

reduced RNA polymerase processivity and dsRNA accumulation [181]. Furthermore,

the low-dsRNA phenotypes of pathogenic members of orthopoxvirus such as MPXV

and ectromelia virus suggest that high dsRNA is not critical for virus success [211,

191].

One explanation for this phenomenon is that dsRNA is not desirable but is instead

simply a byproduct of enhanced transcription. Unlike their eukaryotic homologs, some

of the VACV elongation subunits are unable to dissociate from polymerase. It has been

proposed that this increases the rate of transcription, leading to a faster accumulation

of mRNA which allows for more rapid viral replication [212]. In this scenario, early

transcription termination is precise because dsRNA is undesirable at the beginning

of an infection as host sensors would detect and inhibt the infection. However, once

immune modulators such as E3 are expressed, the virus is able to suppress the detection

and response to dsRNA and so no longer has to compromise transcription speed for

immune evasion. Precise studies on biochemical dynamics of IBT-resistant viruses are

one means in which this could be explored. However, even if it is the case that dsRNA

accumulation correlates with faster viral replication, this does not fully explain why
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Intermediate and Late genes lack the transcription termination signals found in early

genes.

An alternate explanation is that dsRNA is serving as a modulator of the innate

immune response. It has previously been shown that PKR can activate the tran-

scription factor NF-κB [67], and that VACV can activate NF-κB through PKR [68].

Furthermore, it has been demonstrated that PKR-mediated activation of NF-κB can

enhance cell survival via induction of pro-survival signals such as c-IAPs [52, 213].

One interesting possibility is that the dsRNA produced by VACV exists in order to

achieve low levels of PKR activation which in turn might lead to some pro-survival

signals via NF-κB. However, it has also been shown that VACV produces several

inhibitors of NF-κB, such as C4, K1, and N1 [101, 103, 102], so the full story is likely

far more complicated. The ΔPKR L929 cell line would be a useful tool to test this

hypothesis.

Can necroptosis be leveraged to make more effective oncolytic viruses?

Oncolytic virus therapy entails the use of viruses in the clearance of cancer cells. T-

VEC, a recombinant HSV-1 virus, was the first such therapy to be approved by the

FDA in 2015 for use in melanoma patients [214]. A great many more are in clinical

trials. In general, the underlying principle of onoclytic therapy is that the immune

disregulation of tumor cells makes them more vulnerable to viral infection . As such,

an attenuated virus that is inhibited in normal cells might be fully infective in a tumor

line [215]. We have observed this with mutants of E3; E3Δ54N is apathogenic in

SCID mice yet leads to the total loss of xenografted human cancer cells [216]. Another

potential use of oncolytic viruses is to break tumor tolerance and recruit an immune

response against it. Figure 37 illustrates these methods.
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Necroptosis, or the lack thereof, may be a factor that contributes to tumor

specificity. It has been found that many cancer cells transcriptionally repress the

expression of RIP3, thereby preventing all known pathways leading to necroptosis [204].

Therefore, while a virus such as E3:Y48A would lead to rapid death and inhibition of

virus spread in normal cells, it would not be blocked by necroptosis in the tumor cell

and thus would be able to replicate and spread to adjacent tumor cells, potentially

affecting the entire tumor bed.

Apoptosis and necroptosis can both lead to the release of tumor antigens. Al-

though necroptosis is generally more inflammatory than apoptosis due to the release of

intracellular cytokines such as HMGB1 [217], there have been conflicting reports as to

the relative abilities of these programmed death pathways to induce tumor immunity.

Some reports find that apoptosis but not necroptosis produces a potent antitumor

response and stimulates dendridic cells [218, 219]. Others have found the opposite

[220, 221]. This might be explained by the reported need for RIP1 and NF-κB activity

in dying cells [222]. If true, a VACV with reduced ability to inhibit necroptosis and

NF-κB might be a potent recruiter of anti tumor immunity. A further implication of

this observation is that pyroptosis, which is not thought to involve NF-κB or RIP1

activity, may not be a suitable endpoint [223, 224]. Another possible explanation

is that necroptosis has also been reported to be anti-inflammatory by the killing of

inflammatory cytokine-releasing cells [225]. Whether the effects of necroptosis are net

inflammatory or anti-inflammatory could be quite important for the ultimate fate of

the tumor as the relative inflammatory environment of a tumor has huge impacts on

clearance and spread. This highlights what I believe to be a critical problem facing

any tumor intervention: the immense complexity of the death pathways.
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PKR serves as an excellent example of this challenge. As has been reviewed in

this document, besides inhibiting translation via the phosphorylation of eIF2α, PKR

has been found to activate NF-κB and caspase 8 as well as RIP1-mediated necroptosis.

In this regard it may be useful to consider the protein as as a more general signal

amplifier rather than an activator of any specific pathway. Suppose VACV ZαADAR1-E3,

which activates PKR but not necroptosis, were used as a virotherapy. The ultimate

effects of such an infection would be dependent on the specific cellular environment.

For example, it may skew towards apoptosis in cells with high expression of caspase

8, but be inflammatory when caspase 8 and RIP3 levels are low. Therefore, I would

predict this virus to be anti-tumor in some situations and ineffective in others.

How might this uncertainty be navigated? While efforts to elucidate the different

cellular pathways and their interactions, such as what has been described in this

dissertation, are important steps, I do not believe that they alone will lead to a "silver

bullet" drug. I propose that the next step needed is to determine the state of the

transcriptome following various interventions, and what network effects correlate with

the final state of the cell. With this information, it might be possible to predict the

effects of a given intervention on a given cell based on its transcriptome [226, 227].

For pathologies where specific cell outcomes are known to be desirable a suite of

personalized treatments could then be used that target the specific pathway. For

example, if necroptosis is desirable but sequencing reveals that the tumors are RIP3

negative, RIP3-expressing virus could be introduced. This could also potentially

surmount the challenge brought by tumor heterogeneity; while a particular cell

might be resistant to effects of one virus, a cocktail of viruses each targeting distinct

components of the desired death pathway would be more challenging to evade. Figure

38) illustrates this workflow.
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Figure 36: Proposed model for how VACV E3 separately inhibits PKR activation and
necroptosis. VACV infection leads to the synthesis of dsRNA, which can be detected
by PKR, leading to the activation of antiviral pathways such as apoptosis. E3 binds
to dsRNA and interacts with PKR directly in order to prevent PKR activation.
Separately, the stress caused by a viral infection can lead to the formation of stress
granules, which recruit DAI/ZBP1 to activate RIP3 and lead to necroptosis. E3
inhibits this pathway, possibly by competing with the ligand target of DAI and
preventing it from co-localizing to stress granules.
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Figure 37: How necroptosis could be leveraged for oncolytic virotherapy. (A) Because
many tumor cells have inhibited necroptosis, an attenuated virus that triggers
necroptosis in a healthy cell might be fully replication competent in a given tumor
cell. (B) Such a virus would be able to spread throughout the tumor bed, while being
restricted by normal cells with intact death pathways. (C) Alternatively, a virus
could be engineered to restore necroptosis in a tumor cell that lacks it. As necroptosis
is inflammatory, triggering this death could potentially break tolerance and recruit an
immune response against the tumor.
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Figure 38: Possible workflow for personalized virotherapy. (A) In the laboratory
setting, in vitro assays are used to identify the protein networks that contribute to
cell fate. These networks would then be perturbed by targeting specific components,
and the effects on the overall network, including the transcriptome, would be
determined. This data would be used to build models to predict the effects of these
specific stimuli on the network and the ultimate effect on cell fate. (B) In the clinic,
tumor cells would be harvested and the status of their cell fate network determined
by RNA-Seq. Using this information, personalized therapy would be delivered that is
compatible with the specific status of the signaling pathways and the desired cell fate.
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