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ABSTRACT

The role of climate change, as measured in terms of changes in the climatology of

geophysical variables (such as temperature and rainfall), on the global distribution

and burden of vector-borne diseases (VBDs) remains a subject of considerable debate.

This dissertation attempts to contribute to this debate via the use of mathematical

(compartmental) modeling and statistical data analysis. In particular, the objective

is to find suitable values and/or ranges of the climate variables considered (typically

temperature and rainfall) for maximum vector abundance and consequently, maxi-

mum transmission intensity of the disease(s) they cause.

Motivated by the fact that understanding the dynamics of disease vector is cru-

cial to understanding the transmission and control of the VBDs they cause, a novel

weather-driven deterministic model for the population biology of the mosquito is for-

mulated and rigorously analyzed. Numerical simulations, using relevant weather and

entomological data for Anopheles mosquito (the vector for malaria), show that max-

imum mosquito abundance occurs when temperature and rainfall values lie in the

range [20− 25]◦C and [105− 115] mm, respectively.

The Anopheles mosquito ecology model is extended to incorporate human dynam-

ics. The resulting weather-driven malaria transmission model, which includes many

of the key aspects of malaria (such as disease transmission by asymptomatically-

infectious humans, and enhanced malaria immunity due to repeated exposure), was

rigorously analyzed. The model which also incorporates the effect of diurnal tem-

perature range (DTR) on malaria transmission dynamics shows that increasing DTR

shifts the peak temperature value for malaria transmission from 29◦C (when DTR is

0◦C) to about 25◦C (when DTR is 15◦C).

Finally, the malaria model is adapted and used to study the transmission dynamics

of chikungunya, dengue and Zika, three diseases co-circulating in the Americas caused
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by the same vector (Aedes aegypti). The resulting model, which is fitted using data

from Mexico, is used to assess a few hypotheses (such as those associated with the

possible impact the newly-released dengue vaccine will have on Zika) and the impact

of variability in climate variables on the dynamics of the three diseases. Suitable

temperature and rainfall ranges for the maximum transmission intensity of the three

diseases are obtained.
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Chapter 1

INTRODUCTION

1.1 Vector-borne Diseases (VBDs)

VBDs are infectious diseases caused by pathogens such as viruses, bacteria or pro-

tozoa. They are transmitted to humans by infected (transmitting) biological agents,

called vectors. Vectors of human diseases are, in most cases, species of arthropods,

such as mosquitoes and ticks that are able to transmit the pathogens. Arthropod-

borne viruses (arboviruses) constitute the largest class of vector-borne human pathogens

with over 500 arboviruses described, and 20% of which are known to cause human

disease (Gray and Banerjee, 1999; Gubler, 1998; Jacobson, 1997; Lemon et al., 2008).

VBDs account for about 17% of infectious diseases around the world (and over 50%

of the world’s population remains at risk of infection with at least one type of vector-

borne pathogen) (Gratz, 1999; Lemon et al., 2008).

VBDs can be classified into two categories, namely emerging (newly-emerging) or

re-emerging. Emerging (or newly-emerging) diseases are infections that have newly

appeared in the population, or have existed but are rapidly increasing in disease in-

cidence or geographic range (Morens et al., 2004; Morse, 2001). Kilbourne (1996)

and Morse (2001) states that a disease is recognized as “new” when its symptoms are

distinct from any disease that has previously existed and, they are usually caused by

preexisting zoonotic agents. Typical examples of such VBDs include human ehrlichio-

sis, dengue hemorrhagic fever, Zika virus etc (Gratz, 1999; Morens et al., 2004; Morse,

2001). Re-emerging VBDs are diseases that were under control through the use of

vector habitat modification and insecticides, but have re-emerged in recent times, and
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are spreading (including in geographical areas in which they have not been previously

found) (Gratz, 1999). This category of VBDs are the most abundant form of VBDs,

some of which are believed to have existed since 16th – 18th century (Gratz, 1999).

Example of these VBDs includes malaria, yellow fever, plaque, dengue, chikungunya,

Leishmaniasis, Lyme disease, trench fever, etc. Following the re-emergence of these

diseases, many, especially malaria and dengue, have spread beyond their previously

known geographical range, leading to major global health problems. In terms of hu-

man morbidity and mortality, malaria and dengue are the most important of these

reemerging VBDs (Gratz et al., 1996; Halstead, 1992; Morse, 2001). However, it is

important to note that both newly-emerging and re-emerging VBDs are of public

health importance, and require continuous research and development of effective con-

trol methods to prevent outbreaks (and eventually eradicate them). In this thesis,

major emphasis will be on mosquito-borne VBDs as they account for over 80% of all

VBDs (WHO, 2015, 2016).

1.2 Mosquito and Mosquito-borne Diseases (MBDs)

Mosquitoes are small biting insects that constitute of the family Culicidae. There are

about 3,500 mosquito species in the world (grouped into 41 genera) (CDC; Harbach,

2013). Mosquito species, such as Anopheles, Aedes aegypti, Aedes albopictus and

Culex, play significant roles as vectors of some major infectious diseases of humans,

such as malaria, yellow fever, chikungunya, West Nile virus, dengue fever, Zika virus

and other arboviruses. These diseases are responsible for several million deaths and

hundreds of millions of cases annually (Miller et al., 1994; Schofield and Grau, 2005;

WHO, 1994, 2009, 2015, 2016). These diseases are transmitted from human-to-human

via an effective bite from an infected adult female mosquito.
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1.2.1 Life-Cycle of the Mosquito

The life-cycle of the mosquito is completed via four distinct stages, namely: eggs,

larva, pupa and adult stages, with the first three largely aquatic. A female mosquito

can lay about 100–300 eggs per oviposition, and this process is temperature dependent

(Mordecai et al., 2013; Paaijmans et al., 2007; Parham and Michael, 2010; Parham

et al., 2012). The eggs are laid at a convenient breeding site, usually a swamp or

humid area in the aquatic environment (the Anopheles species typically lays their

eggs on the surface of the water) and after about 2 – 3 days, they hatch into larva.

Larvae develop through four instar stages (CDC). At the end of each larval stage,

the larvae molt, shedding their skins to allow for further growth (the larvae feed on

microorganisms and organic matter in the water). During the fourth molt, the larvae

mature into pupae (the whole process of maturation from larvae to pupae takes 4–10

days). The pupae then develop into adult mosquitoes in about 2–4 days.

The duration of the entire life-cycle of the mosquito, from egg laying to the emer-

gence of an adult mosquito, varies between 7 and 20 days, depending on the am-

bient temperature of the breeding site (typically a swamp or humid area) and the

mosquito species involved (for instance, Culex tarsalis, a common mosquito in Cal-

ifornia (USA), might go through its life cycle in 14 days at 70◦F and take only 10

days at 80◦F) (Ngwa, 2006). Adult mosquitoes usually mate within a few days after

emerging from the pupal stage, after which they go questing for bloodmeal (required

to produce eggs) (Harbach, 2013). While adult male mosquitoes feed on plant liquids

such as nectar, honeydew, fruit juices and other sources of sugar for energy, female

mosquitoes, in addition to feeding on sugar sources (for energy), feed on the blood

of human and other animals solely to acquire the proteins needed for eggs develop-

ment (Harbach, 2013). Once a bloodmeal is taken, the female mosquito moves to a
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convenient breeding site where it lays its eggs. The chances of survival of the female

adult mosquitoes depend on temperature and humidity, as well as their ability to

successfully obtain a bloodmeal while avoiding host defenses (Mordecai et al., 2013;

Paaijmans et al., 2007; Parham and Michael, 2010; Parham et al., 2012).

1.2.2 Mosquito Gonotrophic Cycle

At the adult stage, after initially emerging from the pupal stage and mating, the

female mosquito lifecycle is then defined by the gonotrophic cycle (Greek “offspring

feeding”), whereby the fertilized female mosquito takes mammalian bloodmeals to

nourish egg development and then deposits them on the surface of appropriate waters,

and classically divided into three stages (Detinova et al., 1962):

1. Stage I: Search for suitable host and the taking of a bloodmeal.

2. Stage II: Digestion of bloodmeal and egg maturation (this process is highly

temperature dependent).

3. Stage III: Search for and oviposition into a suitable body of water.

Like in the case of the development of immature mosquitoes, the rate at which stage

II (egg development) progresses depends on ambient (air) temperature, increasing up

to around 30 ◦C, leveling off, and possibly sharply declining at very high temperature

(Lardeux et al., 2008). Mosquito survival likewise peaks in the mid–20s (◦C), and is

impaired at both low and high temperatures (Lardeux et al., 2008).

The lifecycle of the Anopheles mosquito lifecycle is depicted in Figure 1.1.

1.3 Transmission and Global Distribution of MBDs

The major factors leading to the emergence and abundance of new MBDs and the

re-emergence of previously endemic MBDs (and, in addition, the distribution of the
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Figure 1.1: Anopheles mosquito lifecycle. Immature mosquitoes pass through aquatic

egg, larvae, and pupae stages, with the actively feeding larvae divided into four in-

star stages. Adult female mosquitoes pass through the gonotrophic cycle, by which

bloodmeals nourish the development of new eggs.

corresponding transmitting mosquitoes) worldwide are associated with ecological, de-

mographic and societal changes that have led to increased vector population densities

(Gratz, 1999; Gratz et al., 1996; Gubler, 1998; Morens et al., 2004). These factors in-

clude constructions of dams and irrigation systems, deforestation, change in landscape

and agricultural practices, global shipping transport and most especially, increased

human travel globally, leading to possible introduction of infectious humans into ar-

eas where the specific disease (they carry) have not been recorded (however, “if the

area into which an infection is introduced has no suitable vectors, then the introduc-
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tion remains a medical problem only for the individual patient and physician (Gratz,

1999)”).

Furthermore, climate change has played a significant role in the increased popula-

tion and survival of vectors of MBDs. Several studies such as those by Beck-Johnson

et al. (2013, 2017); Caminade et al. (2014); Christiansen-Jucht et al. (2015); Gething

et al. (2010); Hay et al. (2002); Imbahale et al. (2011); Lafferty and Mordecai (2016);

Mordecai et al. (2013); Negev et al. (2015); Ogden and Lindsay (2016); Paaijmans

et al. (2007); Parham and Michael (2010); Parham et al. (2012) and Watson et al.

(1996), have shown that the ecology of vectors of MBDs (and pathogen of the diseases)

tends to adjust continually to environmental changes in multifaceted ways. In this

section, the two most important re-emerging MBDs (namely, malaria and dengue),

and two emerging MBDs (Zika and chikungunya virus), will be briefly discussed.

1.3.1 Malaria

Malaria is transmitted to humans by the bite of female Anopheles mosquitoes that are

infected with the protozoan parasites of the genus Plasmodium (Mordecai et al., 2013;

Parham et al., 2012). Despite the existence of effective preventative measures and

treatment, malaria remains, possibly, the most serious infectious disease of humans,

as it is endemic in over 100 countries, with about 40% of the world’s population at

risk, causing up to 300-600 million cases and over 500,000 deaths annually (Miller

et al., 1994; Schofield and Grau, 2005; WHO, 2016). Further, over 90% of malaria-

induced morbidity and mortality are heavily concentrated in resource-poor areas of

sub-Saharan Africa (especially among pregnant woemn and children under the age of

five) (WHO, 2015, 2016) (Figure 1.2).

There are five Plasmodium species that infect humans, namely, P. falciparum,

P. vivax, P. ovale, P. malariae, and P. knowlesi (Schofield and Grau, 2005; Smith
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Figure 1.2: Worldwide distribution of malaria in 2014. Source: American Mu-

seum of Natural History. Website: https://www.amnh.org/explore/science-topics/

disease-and-eradication/countdown-to-zero/malaria.

et al., 2000). Of these specie types, P. falciparum is the major cause of morbidity

and mortality in sub-Saharan Africa and throughout most of the tropical regions

(Schofield and Grau, 2005; Smith et al., 2000), while on the other hand, P. ovale

also concentrated in sub-Saharan Africa and in some islands in the western Pacific

(Collins and Jeffery, 2005; Faye et al., 1998), is rare and relatively less dangerous than

P. falciparum. Malaria infections causes by P. vivax is also a common cause of acute

febrile illness and can also lead to severe disease and death Anstey et al. (2012); Baird

(2007); Schofield and Grau (2005). Although, less fatal than P. falciparum, P. vivax

is predominant in Asia and South America, where it accounts for about 65% of all

malaria cases (it is also found in some regions of Africa) (Anstey et al., 2012; Baird,

2007; Lindsay and Hutchinson, 2006; Schofield and Grau, 2005; Vogel, 2013; WHO,

2015, 2016). Malaria caused by P. malariae, is not as dangerous as that produced by
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P. falciparum or P. vivax and is found most commonly in malaria endemic regions

sub-Saharan Africa and southeast Asia Schofield and Grau (2005); Westling et al.

(1997); White (2008). Discovered by Knowles and Gupta (1932) after successfully

transmitting a monkey malaria parasite to humans, P. knowles was referred to as

“The Fifth Human Malaria Parasite” by White (2008). P. knowlesi infection has

been found in Malaysia (particularly on the island of Borneo) and some regions of

Southern Asia (Schofield and Grau, 2005; White, 2008).

Mosquito Sprogonic Cycle

Plasmodium parasites are complex pathogens capable of completing a life-cycle both

inside the female Anopheles mosquito and the human host (Coleman et al., 2007;

Cowman et al., 2016; Whitten et al., 2006). Plasmodium sporozoites are injected into

the host dermis during a blood feed by an infected mosquito. Once the sporozoites

enter the host, they infect hepatocytes (the liver cells), and this is followed by the

asexual cycle in the blood (Coleman et al., 2007; Cowman et al., 2016; Whitten et al.,

2006) (Figures 1.3).

Sexual forms that develop during the blood stage are ingested by a feeding (suscep-

tible) mosquito (during stage I of the gonotrophic cycle), this initiates the sporogonic

(or extrinsic) cycle, by which the gametocytes emerge as extracellular male and fe-

male gametes in the mosquito’s midgut. Mating occurs by fusion of micro (male) and

macro (female) to form a zygote which then transform into a ookinete that migrates

through the mosquito midgut epithelium and encysts to become an oocyst where

asexual sporogenic replication occurs (Cowman et al., 2016; Whitten et al., 2006).

“Motile sporozoites are released into the hemocoel by oocyst rupture and pass into

salivary glands where they can be injected into the next human host through feed-

ing on bloodmeal” (Cowman et al., 2016) (Figures 1.3 and 1.4). It is important to
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Figure 1.3: Malaria transmission cycle. Source: American Museum of Natural His-

tory.

note that, as with other developmental processes, the sporogonic cycle also generally

progresses more rapidly at higher temperatures (Detinova et al., 1962).

Malaria incubation period in an individual varies by the infecting species, immune

status of patient and number of parasites transmitted (Detinova et al., 1962; Schofield

and Grau, 2005). Moreover, for patients infected with P. falciparum and P. vivax,

the incubation period takes about 7–30 days, unlike infection with P. malariae which

may take several months to show symptoms (Schofield and Grau, 2005). Symptoms

of malaria include fever, headache, chills and vomiting, and if left untreated, P.
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Figure 1.4: Life cycle of the Plasmodium parasite. Obtained from Epidemiology of

Infectious Diseases, Johns Hopkins Bloomberg School of Public Health. Creative

Commons BY-NC-SA. Website: http://ocw.jhsph.edu.

falciparum malaria can progress to severe illness and death (WHO, 2015, 2016). In

areas of high malaria transmission, and in non-immune individuals (usually children

under the age of five), infections are more clinically overt (asymptomatic), and can

become severe or life threatening usually in the form of metabolic acidosis (which

leads to respiratory distress), cerebral malaria and severe malarial anaemia (Schofield

and Grau, 2005). Moreover, adaptive immune responses in the human (acquired after

recovery from malaria) provide partial, but incomplete, protection against pathogen

replication and limit the clinical impact of infection (Miller et al., 1994; Schofield and

Grau, 2005).
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Control Strategies Against Malaria: Global Efforts

Concerted global efforts were embarked upon by numerous public health agencies

globally to combat the threat of VBDs (WHO, 2009, 2016) In 1955, the Global

Malaria Eradication Programme (GMEP) was launched by World Health Organiza-

tion (WHO) with the primary objective of eradicating malaria worldwide, by provid-

ing drugs (chloroquine; for prevention and treatment of malaria) and DDT chemical

(for mosquito control). The success of the GMEP program saw a dramatic decline

in incidence of malaria in endemic countries such as in India (from an estimated 110

million in 1955 to less than 1 million in 1968) and Sri Lanka (from an estimated 2.8

million cases in 1946 to a reported 18 cases in 1966). Between 1955 and 2015, 27 coun-

tries have been certified as malaria-free countries by the WHO (that is, the countries

that reported zero indigenous cases of malaria) (WHO, 2016). Furthermore, in 1998,

WHO, the World Bank, the United Nations Development Programme (UNDP) and

the United Nations Children’s Fund (UNICEF) created the Roll Back Malaria initia-

tive with the aimed of reducing malaria mortality on the African continent by 50%

by the year 2010. However, malaria transmission still remain largely uncontrolled (or

poorly controlled) in Africa and other parts of Asia and Latin America, and until

recently, malaria has resurfaced in some countries where a high level of control had

been achieved (Gratz, 1999; WHO, 2016).

1.3.2 Dengue Fever

Dengue fever (DF) is caused by a virus (Dengue virus: DENV) of the Flavivirus genus,

Flaviviridae family and it is transmitted to humans through bites of infected female

adult Aedes mosquitoes. It is one of the most prevalent VBDs, affecting about 50–100

million people annually (and causing over 22,000 deaths), especially among children
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under the age of 15, and it remains endemic in over 100 countries (and approximately

2.5 billion people live in dengue endemic countries) (Gubler, 1998; Packard, 2016;

Rigau-Pérez et al., 1998; Simmons et al., 2012; Undurraga et al., 2017; WHO, 2009).

DF is an acute illness when left untreated and can lead to severe case of dengue called

Figure 1.5: Countries and areas at risk of dengue transmission. Source: WHO (2009).

the dengue haemorrhagic fever (DHF) or dengue shock syndrome (DSS), which are

more common after a secondary infection with dengue virus (Gibbons and Vaughn,

2002; Rigau-Pérez et al., 1998). DF and DHF/DSS were attributed to the “break-

bone” fever in Philadelphia, 1780 (Gubler, 1998; Packard, 2016), due to its severe

symptoms, which includes, headache, muscle pain, marked muscle, rash and joint

pains plasma leakage resulting in shock, accumulation of serosal fluid sufficient to

cause respiratory distress (or both), severe bleeding and organ impairment, and, in

some cases, death (Gubler, 1998; Kalayanarooj et al., 1997; Simmons et al., 2012).

DHF and DSS are the leading cause of hospital admission and death among children

in Asia (Gubler, 1989; Rigau-Pérez et al., 1998; WHO, 2009).
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DF and DHF/DSS can be caused by any of four viral serotypes, namely, DENV-1,

DENV-2, DENV-3, DENV-4, which are closely related antigenically (Edelman, 2005;

Gibbons and Vaughn, 2002; Gubler, 1998; Undurraga et al., 2017; WHO, 2009), with

all four predominantly present in tropical and sub-tropical regions of Asia and Africa

(where the Aedes mosquitoes are widely distributed). Infection with one serotype

enhance long-term protective immunity to reinfection with the serotype but the indi-

vidual remains susceptible (or gain only a short-term immunity) to all other serotypes

(Edelman, 2005; Gibbons and Vaughn, 2002; Gubler, 1998; Innis, 1995; Sabin, 1952;

WHO, 2009). In addition, an important characteristic of DF and DHF/DSS is its

properties of antibody-dependent enhancement (ADE), whereby dengue infection be-

comes more severe in individual who have acquired dengue antibodies after recovering

from a previous dengue infection (Edelman, 2005; Halstead, 1988; Kliks et al., 1989;

Sullivan, 2001).

Dengue-related epidemics were first reported in the medical literature in 1779 and

1780 Rigau-Pérez et al. (1998). Moreover, the co-circulation of multiple dengue virus

serotypes and increased epidemic activities was recorded in South-east Asia during

World war II, which emerged as a major public-health problem in most countries of

South-east Asia due to uncontrolled growth of cities. Specifically, the first epidemic

of DHF occured in Manila, Philippines in 1953 and the disease remained localized

in South-east Asia through the 1970s (Gubler, 1989, 1998; Rigau-Pérez et al., 1998).

However, by 1997, with the introduction of new virus strains and serotypes, DF

and DHF/DSS epidemics had spread into several other countries including India,

Pakistan and Sri Lanka and this is largely as a result of immigration, population

growth, unplanned and uncontrolled urbanization, increased air travel, the lack of

effective mosquito control and adequate public-health infrastructure (Gubler, 1998;

Rigau-Pérez et al., 1998) (Figure 1.5).
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Control Strategies Against Dengue Disease

Current efforts to reduce dengue transmission is focused on the vector control, espe-

cially using combinations of chemical and biological targeting of Aedes mosquitoes and

management of breeding sites. In addition, control effort have also been emphasized

on public-health programs that promotes and encourages communal understanding of

the vector specie and the disease, to enhance community vector control and practice

of personal protection (Gubler, 1989; Gubler and Clark, 1994; Rosenbaum et al., 1995;

WHO, 1994; Winch et al., 1992). However, these substantial vector control efforts

have not stopped the rapid emergence and global spread of DENV. Recently, a new

vaccine for DENV (Dengvaxia R© (CYD-TDV), by Sanofi Pasteur) has been released

in 2015 (and has been approved in 11 countries in 2016) (Vannice et al., 2016).

The efficacy of the tetravalent Dengvaxia vaccine varies by serotypes (71.6% for

serotype 3; 76.9% for serotype 4; 54.7% for serotype 1 and 43.0% for serotype 2) 256.

However, the ADE property of the DENV plays an important factor for the develop-

ment of dengue vaccine as “ADE suggest that dengue vaccines must induce protective

neutralizing antibodies to all 4 serotypes simultaneously, rather than sequentially, to

avoid enhancement of dengue illness after subsequent infection” (Edelman, 2005). As

a result, the manufacturer (Sanofi) issued a press release in 2017 stating that “for in-

dividuals who have not been previously infected by dengue virus, vaccination should

not be recommended” (Halstead, 2018).

1.3.3 Zika virus

Similar to DENV, Zika virus (ZIKV) is a member of the family Flaviviridae, and genus

Flavivirus (ZIKV has a closer phylogenetical relation to dengue than to any other

flavivirus (Cao-Lormeau et al., 2016)). It is transmitted to humans by an infected
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female adult Aedes mosquitoes. ZIKV was first detected in 1947 in the Zika region

of Uganda (Dick et al., 1952). It later spread to Senegal (West Africa) in 1991 and

to the South Pacific around 1960 (Duffy et al., 2009; Macnamara, 1954; Yakob and

Walker, 2016). It is known that from 1951–1991, ZIKV-reported activity was rather

sporadic (Kindhauser et al., 2016). However, ZIKV epidemic episodes appeared in

Micronesia, the French Polinesia, with outbreaks occurring in the Yap Islands (2007),

where, although no hospitalizations, hemorrhagic manifestations, or deaths due to

Zika virus were reported, 73% of Yap residents (3 years of age or older) were estimated

to have been infected with Zika virus (Cao-Lormeau et al., 2016; Duffy et al., 2009;

Kindhauser et al., 2016; Oehler et al., 2014). ZIKV has also been reported in Easter

Island, New Caledonia and Cook Islands in 2014 (Kindhauser et al., 2016). In 2014,

the virus appeared in Brazil, mainly as a result of human migration from the French

Polinesia (Corsica, 2015; Duffy et al., 2009; Musso et al., 2014; Pyke et al., 2014). The

Pan American Health Organization (PAHO) reports, as of May 12, 2016, about 272

cases in Mexico, 711 cases in Central America, 1,742 cases in Latin Caribbean states,

4,195 in Andean states, 1034 cases in Brazil and 709 cases in non Latin Caribbean

states [177].

Countries with past and current ZIKV transmission with locally-acquired cases

comprise largely of geographical areas of the Americas, Central and West Africa and

Southeast Asia, including many archipielagos of the South Pacific (Fauci and Morens,

2016). Fauci and Morens (2016) reported that ZIKV was originally a zoonotic dis-

ease in Central Africa, with a tendency to follow Aedes-transmitted chikungunya

epizootics and epidemics. This has been the case in the Americas recently, where

outbreaks of chikungunya were reported in 2015 followed ZIKV outbreaks in 2016

(Cohen, 2016). There are concerns that ZIKV may adapt to Aedes albopictus in the

American continent Fauci and Morens (2016), a mosquito species with wide distri-
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Figure 1.6: Countries with Past or Current Evidence of Zika Virus Transmission (as

of December 2015). Source: Fauci and Morens (2016).

bution in the United States. This poses an important threat for ZIKV epidemics

in the United States. Consequently, the CDC has taken preventive measures CDC

(2016). It is known that the primary mode of ZIKV transmission between humans

is through the bite of female Aedes aegypti mosquitoes, although other non-vector

means of transmission (such as via sexual intercourse, blood transfusion, perinatal

transmission from mother to foetus) may exist (Besnard et al., 2014; Foy et al., 2011;

Petersen, 2016). It is further known that ZIKV has been isolated from semen from 90

to 188 days after symptoms onset (Petersen, 2016). Transmission from women-to-men

(sexually) has also been reported to date [45].

Although, Zika and other arboviral infections like dengue or chikungunya are clin-

ically different, the symptoms of ZIKV infection is often mistaken with these diseases

(Cao-Lormeau et al., 2016; Oehler et al., 2014). These symptoms include, arthralgia

(i.e., pains in small joints of hands and feet), with possible swollen joints, myalgia,

retro ocular headaches, conjunctivitis, and cutaneous maculopapular rash, digestive

troubles (abdominal pain, diarrhoea, constipation) (Duffy et al., 2009; Heang et al.,
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2012; Oehler et al., 2014; Simpson, 1964). Severe cases, such as neurologic compli-

cations, have also been recorded in patients (Oehler et al., 2014; Simpson, 1964).

Currently, there is no specific vaccine for the preventive treatment of ZIKV infection

(Rather et al., 2017; Singh et al., 2018). The current strategies to prevent ZIKV

infection include the use of biological or chemical control measures for vector popu-

lation, as well as use of drugs and personal protection. Moreover, the possibility of

other modes of transmission need to be checked and kept under control, especially,

by adopting appropriate precautions during sexual intercourse, blood transfusion and

organ transplantation. Several ongoing research is currently focused on the develop-

ment of the ZIKV vaccine (Rather et al., 2017; Singh et al., 2018).

1.3.4 Chikungunya

Chikungunya virus (CHIKV), an emerging arbovirus associated with several recent

large-scale epidemics (Tsetsarkin et al., 2007), is transmitted to humans through the

bite of an infectious adult female Aedes mosquito (the same mosquitoes that transmit

DENV and ZIKV) (Jeandel et al., 2004; Powers and Logue, 2007; Tsetsarkin et al.,

2007). Moreover, the CHIKV is in the family Alphavirus in the family Togaviridae

(serologically, CHIKV is most closely related to O’nyong-nyong virus) (Pialoux et al.,

2007; Powers and Logue, 2007). CHIKV was first isolated in Tanzania in 1953 (Pi-

aloux et al., 2007; Powers and Logue, 2007; Robinson, 1955; Ross, 1956). Initially

diagnosed as DENV, serological and antigenic characterization of the isolates indi-

cated that it was an alphavirus (and not a flavivirus) (Casals and Whitman, 1965;

Spence and Thomas, 1959).

Between the 1960s and 1990s, possibly due to increased rate of infected travelers,

CHIKV had spread or was isolated repeatedly from several countries in Central and

Southern Africa including Sudan, Uganda, Democratic Republic of Congo, the Central
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African Republic, Malawi, Zimbabwe, Kenya and South Africa (Pialoux et al., 2007;

Powers and Logue, 2007). CHIKV occurs in western African countries including

Senegal, Benin, the Republic of Guinea, Cote d’Ivoire and Nigeria (Diallo et al.,

1999; Fagbami, 1977; Kuniholm et al., 2006; Moore et al., 1974; Muyembe-Tamfum

et al., 2003; Pialoux et al., 2007; Powers and Logue, 2007). CHIKV outbreaks was

also reported in other countries such as Burma, Thailand, Cambodia, Vietnam, India,

Sri Lanka, and the Philippines (Ligon, 2006; Mackenzie et al., 2001; Pialoux et al.,

2007).

Figure 1.7: Worldwide distribution of Chikungunya virus. Source: Powers and Logue

(2007).

The primary transmitting vector of CHIKV is the Aedes aegypti mosquito, which
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is responsible for about 1.4 million reported CHIKV cases in India in 2006 (Jeandel

et al., 2004; Pialoux et al., 2007; Powers and Logue, 2007; Ravi, 2006; Saxena et al.,

2006; Yergolkar et al., 2006). However, CHIKV epidemic reported on Réunion island

in 2005–2006 where there were approximately 266,000 cases (about 34% of the total

island population), was reported to be transmitted by Aedes albopictus, (“the Asian

tiger mosquito”: a mosquito species endemic to Réunion and other islands in the

Indian ocean) (Charrel et al., 2007; Enserink, 2006; Pialoux et al., 2007; Powers and

Logue, 2007; Zeller, 1998). The word “chikungunya” originated from Tanzania (from

(a) Aedes aegypti. (b) Aedes albopictus.

Figure 1.8: Aedes aegypti is predominant in India and it is responsible for over 1.4

million CHIKV reported cases in India, 2006, while Aedes albopictus is predominant

on Réunion island and it is responsible for approximately 266,000 CHIKV cases.

Source: Public Health Image Library.

the Makonde language), and means “that which bends up” (Charrel et al., 2007). This

meaning is attributed to the major symptoms/features of both the acute and chronic

phases CHIKV infections, which include intense pain caused by pressure on peripheral

small joints, usually, in the ankles, wrists and phalanges (CHIKV has also been

reported to affect large joints) Pialoux et al. (2007); Robinson (1955); Saxena et al.

(2006). Other symptoms may include headache, muscle pain, joint swelling, or rash
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Figure 1.9: World Distribution of the Aedes albopictus Mosquito. Source: Charrel

et al. (2007).

(Charrel et al., 2007; Pialoux et al., 2007; Powers and Logue, 2007). Non-vector CHIV

transmission, especially, peripartum mother-to-infant CHKV transmission, have also

been reported Charrel et al. (2007). Although CHIKV rarely affects children, people

at risk include newborns (less than 3 months old), older adults (≥50 years, with the

highest rates observed in the 51–55 year age-group), pregnant women and people with

medical conditions such as high blood pressure, diabetes, or heart disease (Pialoux

et al., 2007; Ravi, 2006). Incubation period is about 2–12 days and, within 2 to 5 days

of infection, conjunctivitis and a rash are common while arthralgias (joints pain) can

persist for weeks to months (Pialoux et al., 2007; Powers and Logue, 2007; Ravi, 2006).

There is currently no commercial vaccine for CHIKV, and the most common (and

best) control strategies for CHIKV includes individual protection against mosquito

bites and vector control (usually following the same model as for dengue) (Pialoux

20



et al., 2007).

1.4 Climate Change

The Earth’s climate is rapidly changing, mainly as a result of increases in green-

house gases (especially carbon dioxide (CO2) and methane) caused by human (an-

thropogenic) activities (mostly in the developed countries), predominantly as a result

of burning fossil fuels through industrialization, deforestation, and other changes in

land-use (Boden; Siegenthaler et al., 2005; Stern, 2006) (Figures 1.10 and 1.11). The

(a) Emission by economic sectors. (b) Emission by countries.

Figure 1.10: Greenhouse gas emissions by sector and by country. Source: United

States Environmental Protection Agency.

evidence that the rising levels of greenhouse gases will have an effect on the cli-

mate variabilities (such as temperature, rainfall, etc.) is “the greenhouse effect” phe-

nomenon which is the increased amount of infrared radiation (heat energy) trapped

by the atmosphere (Siegenthaler et al., 2005; Stern, 2006). The signs and effects of

climate changes can be seen in many physical and biological systems. For instance,
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Figure 1.11: Atmospheric concentrations of important greenhouse gases over the last

2,000 years. Increases since about 1750 are attributed to human activities in the

industrial era. The uncertainty on each of these is up to 10%. Source: IPCC (2001).

many species have been observed to be moving poleward for the past 30 – 40 years to

search for water and favorable weather condition necessary for breeding (Parmesan

and Yohe, 2003; Root et al., 2005). Moreover, the major concern of climate change is

its consequences on human health as it threatens the basic elements of life for people

around the world, especially, affecting access to water, food, health, and use of land

and the environment in general. The increasing temperatures, especially in regions at

the higher latitudes, changes in precipitation pattern, have resulted into severe storm

flood in some areas and leaving some areas more drought prone (generally, causing

extreme weather events such as severe storms, extreme heat and heavy rainfall, etc).

(Ogden and Lindsay, 2016; Watson et al., 1996).
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Another major sign of global climate change is the changing seasonal events,

and one which is of major concern to human health is its effect on the ecology and

physiology on vectors of infectious disease, most specifically, mosquitoes. Climate

change alters biological features of the vectors, such as survival, development and

reproduction rates of the vector (and their associated pathogens), usually leading to

increasing the abundance of vectors (Mordecai et al., 2013; Negev et al., 2015; Ogden

and Lindsay, 2016; Parham and Michael, 2010; Parham et al., 2012). For instance,

mosquito egg laying have been observed to occur 2 – 3 days earlier each decade

in many Northern Hemisphere temperate regions (Parmesan and Yohe, 2003; Root

et al., 2005). Furthermore, the production of adults vectors (and subsequently, the

intensity of disease transmission) is dependent on the longevity of the aquatic stages

of the mosquitoes, thus, directly impacted by temperature of the water in which they

occur (Bayoh and Lindsay, 2004; Parham et al., 2012).

1.4.1 Effect of Climate Variability on Mosquitoes and Mosquito-borne Diseases

Climate change is a complex phenomenon. So also is the transmission dynamics

of MBDs and the ecological and behavioral features of the mosquitoes. Two main

climate variables (temperature and rainfall) will be discussed in this section. This is

because, while temperature is considered to be the main climate variable affecting the

biology and ecology of the transmitting vectors, rainfall is essential for availability

of breeding sites for majority of the transmitting vectors (Bi et al., 2003; Mordecai

et al., 2013; Negev et al., 2015; Ogden and Lindsay, 2016; Parham and Michael, 2010;

Parham et al., 2012).

1. Effect of temperature:

Temperature directly impacts the ecology and physiology of disease vectors, for

instance, Bayoh and Lindsay (2003); Bayoh (2001); Bayoh and Lindsay (2004);
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Bi et al. (2003); Mordecai et al. (2013); Paaijmans et al. (2007); Parham et al.

(2012) have all shown (using both field and laboratory experimental data) that

temperature affects the survival, development and mortality rates (as well as

the oviposition rate) of both adult and immature mosquitoes. Especially, under

laboratory conditions, Bayoh and Lindsay (2004) used groups of 30 Anophe-

les mosquitoes, to show a critical relationship between temperature and the life

cycle of the insect. They indicated that “larvae developed into adults at temper-

atures ranging from [16− 34]◦C and larval survival was shortest at [10− 12]◦ C

and [38−40]◦C, and longest at [14−20]◦C”. It was also stated that “within the

temperature range at which adults were produced, larval mortality was highest

at the upper range [30− 32]◦C, with death (rather than adult emergence) rep-

resenting over 70% of the terminal events”. Furthermore, temperature has also

been considered as a major factor of the pathogen development (Detinova et al.,

1962). For instance, Detinova et al. (1962) showed, using laboratory data, that

the minimum temperature for development of P. falciparum and P. vivax in

the mosquito host is about 18◦C and 15◦C, respectively.

2. Effect of rainfall:

Rainfall is an essential climate variable. It is the most influential factor leading

to the abundance of mosquitoes, as it is necessary for the creation of breeding

sites (Bi et al., 2003; Parham et al., 2012). By conducting a time-series analy-

sis, using monthly climatic variables and monthly incidence of malaria data in

Shuchen County, China, for the period 1980–1991, Bi et al. (2003) showed that

monthly amount of precipitation were positively correlated with the monthly

incidence of malaria. Moreover, extreme climate conditions such as excessive

rainfall, leading to flood, (and prolonged absence of water) are not favorable
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for the survival and maturation of the larvae (as a result of washing away of

larvae at breeding habitats/sites), thereby, affecting the longevity of immature

mosquitoes and reducing the population of adult mosquitoes (Agusto et al.,

2015; Imbahale et al., 2011; Paaijmans et al., 2007, 2010c; Parham et al., 2012).

However, due to poor drainage system, especially in disease-endemic regions, ex-

cess rainfall leave behind stagnant water on yards or lawns, thus, creating more

favorable breeding sites for mosquitoes, which in-turn could leads to increased

persistence of MBDs.

1.5 Research Objectives

Early studies raised and demonstrated the possibility of significant impacts of climate

change on MBDs. For instance, while Martens et al. (1995) showed the correlation

of climate change on the incidence on malaria, Patz et al. (1998) studied the im-

pact of climate change on dengue. However, some studies, such as those by Reiter

(2001) and Reiter et al. (2004) have countered these opinions with claims such as the

lack of accuracy in results. Thus, the precise role of climate change on the spread

of MBDs remains a subject of considerable debate within the scientific community.

Consequently, this dissertation seeks to contribute to this global effort, by providing

a realistic insight into the effect of, and mitigating the impact of, climate change

on effectively combating MBDs endemic areas (and, subsequently, globally). This

dissertation work addresses three main research themes, namely:

1. Develop a new mathematical modeling framework for realistically assessing the

impact of anthropological climate change on the population dynamics (and ecol-

ogy) of mosquito and the corresponding disease transmission dynamics in the

chosen study area.

2. Determine the qualitative features of realistic models for assessing the impact
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of climate change on the dynamics of malaria vector and disease (in particular,

the distribution of vectors and malaria transmission intensity).

3. Use the developed models to determine suitable temperature ranges for max-

imum local mosquito abundance and transmission intensity of the disease(s)

they cause.

1.6 Outline of the Dissertation

To achieve the goals of this dissertation, the following outline will be used. In Chapter

2, a new mathematical (compartmental) model for assessing the impact of two cli-

mate variables (rainfall and temperature) on the population biology of the mosquito

is designed. Malaria transmission is strongly influenced by environmental tempera-

ture, notably by impacting the life-cycles of the female Anopheles mosquitoes and

the Plasmodium parasite in these vectors. In Chapter 3, a new non-autonomous

model, that explicitly accounts for the stages of the temperature-dependent Anophe-

les gonotrophic cycle as well as the temperature-dependent Plasmodium sporogonic

cycle, is designed and used to assess the impact of temperature variability on the

transmission dynamics of malaria in a population.

In Chapter 4, a new mathematical model is designed to gain qualitative and

quantitative insight into the transmission dynamics of three disease viruses: DENV,

CHIKV and ZIKV, that co-circulate in a given region, owing to the fact that they

share the same transmitting vector (Aedes mosquito) but have some variations in

transmission modes. In addition, the model is used to the evaluate the efficacy of

the Dengvaxia vaccine (and its possibility of ADE on ZIKV). The model is further

extended to incorporate the effect of temperature and rainfall variability on the pop-

ulation biology of Aedes mosquitoes, to gain insight into the effect of these climate
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variables on transmission dynamics of the three diseases in the region of study. Con-

clusions derived from the dissertation are discussed in Chapter 5.
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Chapter 2

MATHEMATICAL ANALYSIS OF A WEATHER-DRIVEN MODEL FOR THE

POPULATION ECOLOGY OF MOSQUITOES

2.1 Introduction

As stated in Chapter 1, mosquito-borne diseases (MBDs) account for over 80% of all

vector-borne diseases (VBDs). Understanding mosquito population dynamics (i.e.,

abundance and distribution of mosquitoes, as well as the relationship between the

mosquitoes and the local environment) is very crucial to gaining realistic insight into

the epidemiology of the diseases they cause and, subsequently, crucial to the design

of effective strategies for combating the spread of the MBDs in human populations

(Mordecai et al., 2013; Ngwa, 2006; Ngwa et al., 2010; Parham et al., 2012). This

chapter presents a new deterministic weather-driven model for the population biology

of the mosquito.

2.2 Literature Review of Mathematical Modeling of Mosquito Ecology

A number of population biology models have designed and used to assess the role

of environmental variables on mosquito populations. These models are typically de-

signed using a process-based approach, incorporating established biological and en-

tomological features that affect the mosquito vital rates (such as the egg oviposition

rate, adult (and immature) survival rate of adult mosquitoes and the development

rate of immature mosquitoes) (Ermert et al., 2011; Hoshen and Morse, 2004; Martens,

2013; Parham et al., 2012). In particular, process-based models have been used to

assess the impact of seasonality on the distribution of various mosquito species, such
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as Anopheles mosquitoes (the vector for malaria) (Beck-Johnson et al., 2013, 2017;

Cailly et al., 2012; Christiansen-Jucht et al., 2015; Mordecai et al., 2013; Parham

et al., 2012), Aedes mosquitoes (the vector for DENV, CHIKV and ZIKV) (Lana

et al., 2014; Liu-Helmersson et al., 2016; Tran et al., 2013; Yang et al., 2009, 2011),

and Culex mosquitoes (the vector of West Nile virus) (Abdelrazec and Gumel, 2017;

Ahumada et al., 2004; Ewing et al., 2016; Mulatti et al., 2014; Wang et al., 2011).

These models also allow for the determination of parameters that influence the life-

cycle and distribution of the mosquito species (Ahumada et al., 2004; Cailly et al.,

2012; Mulatti et al., 2014; Parham et al., 2012; Tran et al., 2013; Yang et al., 2011).

Parham et al. (2012) formulated a mathematical model to establish the relation-

ships between key aspects of mosquito ecology (and abundance) and environmental

variables (such as in rainfall, temperature, wind speed and cloudiness). Parham et al.

(2012) suggested that, while rainfall plays a major role in the development of mosquito

breeding sites and typically correlates with vector abundance and malaria prevalence,

the survival of adult Anopheles mosquitoes is strongly sensitive to temperature. Their

model was fitted using longitudinal vector abundance data from Tanzania (in an area

where no vector controls are applied; thus, suggesting that recent malaria reductions

in certain areas of Africa is due to changing environmental conditions affecting vector

populations). Moreover, the model designed by Parham et al. (2012) did not explic-

itly include the four stages of the larvae (and three distinct gonotrophic stages of the

adult female mosquitoes).

Furthermore, Abdelrazec and Gumel (2017) used a stage-structured deterministic

model to assess the effect on rainfall and temperature on the population dynamics of

the female Culex mosquito subject to two forms of egg oviposition rate (namely, the

Verhulst-Pearl logistic and Maynard-Smith-Slatkin functions). Their model, which in-

corporates density-dependent larval mortality (to account for larval competition for
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nutrients), exhibits a Hopf bifurcation under certain conditions (they further showed

that increased density-dependent competition in larval mortality reduces the like-

lihood of such bifurcation). Numerical simulations of their model, using mosquito

surveillance and weather data from the Peel region of Ontario, Canada, showed a

peak mosquito abundance for temperature and rainfall values in the range [20−25]◦C

and [15–35] mm, respectively.

2.3 Formulation of Weather-driven Model for Mosquito Population Dynamics

The purpose of this chapter is to design a new stage-structured model for the pop-

ulation dynamics of Anopheles mosquitoes, which extends earlier published models

in the literature for this setting. The model to be designed, which takes the form

of a deterministic system of non-autonomous nonlinear differential equations, will be

used to study the effect of variability in temperature and rainfall on the population

dynamics of adult female Anopheles mosquitoes in a certain region.

The model is developed by splitting the total immature mosquito population at

time t (denoted by IM(t)) into mutually-exclusive compartments for eggs (E(t)),

four larval instars (Li(t); i = 1, 2, 3, 4) and pupae (P (t)), so that IM(t) = E(t) +
4∑
i=1

Li(t) + P (t). Similarly, the population of adult female Anopheles mosquitoes at

time t (AM(t)) is sub-divided into mutually-exclusive compartments for the class

of unfertilized adult female vectors not questing for bloodmeal and fertilized female

mosquitoes that have laid eggs at the breeding site (V (t)), the class of fertilized,

but not producing, adult female mosquitoes questing for bloodmeal (W (t)), and the

class of fertilized, well-nourished with blood, and reproducing adult female mosquitoes

(U(t)), so that AM(t) = U(t)+V (t)+W (t). Let N represents the amount of nutrients

for the larvae (assumed to be constant or uniformly available at the breeding sites).

The model is given by the following deterministic system of nonlinear differential
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equations (Okuneye et al., 2018a):

dE

dt
= ψU(TA)

(
1− U

KU

)
+
U −

[
σE(R, TW ) + µE(TW )

]
E,

dL1

dt
= σE(R, TW )E −

[
σL1(N,R, TW ) + µL(TW ) + δLL

]
L1,

dLi
dt

= σL(i−1)
(N,R, TW )L(i−1) −

[
σLi(N,R, TW ) + µL(TW ) + δLL

]
Li ; i = 2, 3, 4,

dP

dt
= σL4(N,R, TW )L4 −

[
σP (R, TW ) + µP (TW )

]
P, (2.3.1)

dV

dt
= fσP (R, TW )P + γUU −

ηVH

H + F
V − µA(TA)V,

dW

dt
=

ηVH

H + F
V − [τWH + µA(TA)]W,

dU

dt
= ατWHW − [γU + µA(TA)]U,

where L =
4∑
i=1

Li and r+ = max{0, r}, with r > 0. The notation r+ is used to

ensure the nonnegativity of the logistic term
(

1 − U

KU

)
(since the negativity is not

ecologically realistic). In the model (2.3.1), R = R(t), TA = TA(t), and TW = TW (t)

denote mean monthly rainfall (precipitation), air (ambient) temperature and (surface)

water temperature at time t, respectively. Typically, a sinusoidal function, such as

T (t) = T0

[
1 + T1 cos

(
2π

365
(ωt+ θ)

)]
, (2.3.2)

(where T0 is the mean annual temperature, T1 captures variation about the mean,

and ω and θ represent, respectively, the periodicity and phase shift of the function)
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is used to model local fluctuations (Agusto et al., 2015) in air and surface water

temperature (and similar appropriate time-dependent functions are used to account

for rainfall and water temperature variability (Abdelrazec and Gumel, 2017; Okun-

eye and Gumel, 2017); Figure 2.1 depicts sinusoidal fluctuations in temperature and

precipitation (based on the Garki project data (Dietz et al., 1974))). Thus, the

Figure 2.1: Sinusoidal pattern of temperature and rainfall variable over time. Data

was extracted from The Garki Project http://garkiproject.nd.edu/.

functions TA(t), TW (t) and R(t) are assumed to be continuous, bounded, positive

and ω-periodic. Furthermore, the parameters ψU(TA), σE(R, TW ), σLi(N,R, TW ) (for

i = 1, 2, 3, 4), σP (R, TW ), µE(TW ), µL(TW ), µP (TW ) and µA(TA) in the model (2.3.1)

are non-negative, ω-periodic, continuous and bounded functions defined on [0,∞).

Since temperature and rainfall are functions of time t, it follows that the temperature-

and rainfall-dependent parameters of the model (2.3.1) are also functions of time t.

Hence, the model (2.3.1) is non-autonomous. However, when fixed rainfall and tem-
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perature values are used (e.g., when mean daily or monthly temperature values are

used) in the model, as against the time-varying case using the function of the form

(2.3.2), then the model (2.3.1) is autonomous (and standard dynamical systems tools

can generallybe used forits rigorous qualitative analysis).

The term ψU(TA)

(
1 − U

KU

)
+

represents the density-dependent eggs oviposition

rate (where ψU(TA) is the temperature-dependent egg deposition rate and KU is the

environmental carrying capacity of the breeding sites of adult female mosquitoes).

Eggs hatch into the first larval instar stage at a rainfall- and temperature-dependent

rate σE(R, TW ). Larvae in Stage i mature into Stage i+1 at a rate σLi(N,R, TW ) (i =

1, 2, 3), which is assumed to depend on temperature, rainfall and the amount of avail-

able nutrients. Larvae in Stage 4 (L4 class) mature into pupae at a nutrient-, rainfall-

and temperature-dependent rate σL4(N,R, TW ). It should be emphasized that the

maturation rates for the larval stages (σLj ; j = 1, 2, 3, 4) are dependent on nutrient,

water temperature and rainfall because, while nutrients are needed for the growth

and development of the larvae, rainfall is required for availability of breeding sites

and habitats and favorable temperature values improve the prospect for the develop-

ment of the larvae (Berkelhamer and Bradley, 1989; Imbahale et al., 2011; Paaijmans

et al., 2007, 2010c; Van Handel, 1988). However, extreme climate conditions, such as

excessive rainfall, washes out the larval breeding sites (such as small stagnant water

on yards or lawn) and excessively hot or low temperatures are not favorable to the

survival and maturation of the larvae (Agusto et al., 2015; Imbahale et al., 2011;

Paaijmans et al., 2007, 2010c).

Pupae mature into adult female mosquitoes of type V at a rainfall- and temperature-

dependent rate fσP (R, TW ) (where f accounts for the proportion of the new adult

mosquitoes that are female). These adult female mosquitoes quest for bloodmeal at

the human habitat at a rate ηV (and become adult female mosquitoes of type W )
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(Ngwa, 2006). The term
H

H + F
accounts for the preference of human blood, as op-

posed to that of other animals (Hirsch et al., 1985; Ngwa et al., 2010) (where H is

the population density of humans that are accessible to the mosquitoes (local to the

breeding sites of the mosquitoes) and F is a positive constant representing a constant

alternative food source for the adult female mosquitoes) (Ngwa, 2006).

At the human habitat, adult female mosquitoes of type W interact with humans

according to standard mass action law, at a constant rate τW (Ngwa, 2006; Ngwa et al.,

2010). This interaction can be successful with probability α ∈ [0, 1], so that questing

mosquitoes successfully obtain bloodmeals and become vectors of type U (at the rate

ατW ) which, in turn, return to become adult female mosquitoes of type V at a rate

γU after laying eggs. Furthermore, the parameters µE(TW ), µL(TW ), µP (TW ), µA(TA)

represent, respectively, the temperature-dependent natural death rate for eggs, larvae,

pupae and adult female mosquitoes, and δL is the density-dependent larval mortality

rate (accounting for intra and inter-species larval competition for resources and space).

A flow diagram of the model (2.3.1) is depicted in Figure 2.2, and the variables and

parameters of the model are described in Table 2.1.

Figure 2.2: Flow diagram of the model (2.3.1).
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Variables Description

E Population of female eggs

Li Population of female larvae at Stage i (for i = 1, 2, 3, 4)

P Population of female pupae

V Population of fertilized female mosquitoes that have laid

eggs at the breeding site

(including unfertilized female mosquitoes not questing for bloodmeal)

W Population of fertilized, but non-reproducing, female mosquitoes

questing for bloodmeal

U Population of fertilized, well-nourished with blood, and reproducing

female mosquitoes

Parameters Description

ψU Egg oviposition rate

σE (σP ) Maturation rate of eggs (pupae)

σLi Maturation rate of larvae from larval stage i to stage i+ 1 (with i = 1, 2, 3)

f Proportion of new mosquitoes that are adult female mosquito

µE, µL, µP , µA Natural mortality rate of eggs, larvae, pupae and adult female

mosquitoes, respectively

δL Density-dependent larval mortality rate

τW Constant mass action contact rate between adult female mosquitoes

of type W and humans

α Probability of successfully taking a bloodmeal

γU Rate of return of adult female mosquitoes of type U to the mosquitoes

breeding site

ηV Rate at which adult female mosquitoes of type V visit human habitat sites

H Constant population density of humans at human habitat sites

F Constant alternative source of bloodmeal for adult female mosquitoes

KU Environmental carrying capacity of adult female mosquitoes

Table 2.1: Description of the state variables and parameters of the model (2.3.1).
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2.3.1 Formulation of Thermal Response Functions

Air and Water Temperature

Several (field) studies have shown (and applied) a rather linear relation between air

(TA(t)) and water (TW (t)) temperatures (Christiansen-Jucht et al., 2015; Fry and

Watt, 1957; McCombie, 1959; Parham et al., 2012). For instance, by studying the

effects of weather on the bass populations in South Bay and neighboring waters in

Manitoulin Island, Fry and Watt (1957) showed that the daily rate of change in water

temperature was a linear function of the difference between the air and water temper-

atures. Furthermore, by analyzing meteorological and hydrographic records collected

at South Bay, Ontario, over a period of nine years, McCombie (1959) showed that

the relation between water and air temperature can be expressed as linear regressions

(Figure 2.3). Moreover, Christiansen-Jucht et al. (2015) indicated that the best fit-

ting models predict a difference between environmental air and water temperature of

approximately 7◦C. Similarly, some studies (Paaijmans et al., 2008a), Parham et al.

(2012) and Huang et al. (2006) reported that the difference between mean daily wa-

ter and air temperatures is typically around [3− 6]◦C, depending on factors such as

breeding site dimensions, microclimate and weather conditions. Although some other

studies have suggested a non-linear relationship between the two temperature (see,

for instance, the review paper by Eikenberry and Gumel (2018)), this dissertation

will use a linear relationship between the two temperatures. In particular, we will use

the relation TW = TA + ∆T ; where ∆T ≥ 0 is (to a first approximation) assumed to

capture all the thermodynamic processes taking place at the breeding sites.

The functional forms of the thermal response (rainfall- and temperature-dependent)

functions of the model (2.3.1) are formulated based on using available laboratory data,

as follows.
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Figure 2.3: “The relation between the monthly means of the air and surface water

temperatures at Lake Mendota”. Source: McCombie (1959).

Survival Rate of Adult Female Mosquitoes (µM(TA))

The mean survival times for adult Anopheles gambiae (µM(TA)) under laboratory

conditions are taken from Bayoh (2001), whose reported survival under constant

ambient temperatures from 5 to 40◦C (5◦C intervals), and for a range of relative

humidities. We use the survival curve in Bayoh (2001) for 60% relative humidity, and

fit a quadratic polynomial, such that (Figure 2.4A) (Okuneye et al., 2018b):

1

µM(TA)
= max

(
−11.8239 + 3.3292TA − 0.0771T 2

A, 0.1
)
.

Egg Oviposition Rate (ψU(TA))

Most Anopheles mosquitoes deposit individual eggs directly onto the water surface

or scatter them across the water as the adult female mosquito hovers above the
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oviposition site. The number of eggs laid per oviposition event, ψU , may vary from

10 to 150 for Anopheles gambiae (Afrane et al., 2005; Takken et al., 1998), but is

typically about 40 to 85 under field conditions (Afrane et al., 2005). The per-capita

rate of deposition of eggs (ψU(TA)), defined using the quadratic function used in

Mordecai et al. (2013), is given by (Figure 2.4B) (Okuneye et al., 2018a):

ψU(TA) = −0.153T 2
A + 8.61TA − 97.7.

Survival Rate of Immature Mosquitoes (µi(TW ), i = E,L, P )

Using larval survival times reported by Bayoh and Lindsay (2004), we fit the per-

capita death rate (inverse of survival time) of the immature mosquitoes (µE, µL, and

µP ) fairly well using the following fourth-order polynomial (for i = E, L, P ) (Figure

2.4C) (Okuneye et al., 2018b):

µi(TW ) = 8.929× 10−6T 4
W − 9.271× 10−4T 3

W + 3.536× 10−2T 2
W − 0.5814TW + 3.509.

Maturation Rate of Eggs and Pupae (σE(TW , R), σP (TW , R))

Eggs hatch into larvae in 1 − 3 days, and while this is a rainfall-and temperature-

dependent process, most eggs hatch by the third day regardless (Dao et al., 2006).

Therefore, as a first approximation, the maturation rate for eggs (σE) is assumed to

be constant, and in the range 0.33 − 1 day−1. Similarly, pupae hatch within a few

days (Bayoh and Lindsay, 2003). Thus, it is assumed that σP = 0.33− 1 day−1, with

all temperature-dependence manifested at the larval stage of development.

Maturation Rate of Larvae (σLi(N,R, TW ), i = 1, 2, 3, 4)

Larval development is formulated using the relations derived by Parham et al. (2012)

Parham and Michael (2010) and Bayoh and Lindsay (2003). Following Parham et al.
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(2012), the per-capita maturation rate of larvae in Stage j is given by:

σLj(N,R, TW ) = σLj(N)σLj(R)σLj(TW ), (2.3.3)

where the nutrient-dependent function σLj(N) is defined as:

σLj(N) = ejN,

with ej representing the rate of nutrients intake for larvae in Stage j. Following

Parham and Michael (2010) (Supplemental Material), the rainfall-dependent daily

probability of survival of larvae is given by:

σLj(R) = R(RIM −R)(4pMj/R
2
IM

), j = 1, 2, 3, 4, (2.3.4)

where pMi is the peak daily survival probability of larvae in Stage j and RIM > R(t) >

0, for all time t, is the maximum rainfall threshold in the community. Furthermore,

water temperature-dependent larval development (σLj(TW )) is formulated using the

unimodal relation derived by Bayoh and Lindsay (2003), where the overall time from

egg to adult mosquito, denoted by DEA(TW ), is given by (Okuneye et al., 2018b):

DEA(TW ) =
(
a+ bTW + ceTW + de−TW

)−1
, (2.3.5)

with a = −0.05, b = 0.005, c = −2.139 × 10−16, and d = −2.81357×105 (it is further

assumed, based on survival data in Bayoh and Lindsay (2003), that development

ceases below 16.1 ◦C and beyond about 33.9 ◦C. That is, it is assumed that for

j = 1, 2, 3, 4, σLj = 0 for TW < 16.1 ◦C or TW > 39.1 ◦C). Furthermore, it is assumed

that all four larval instar stages are equal in duration, so that (Figure 2.4D) (Okuneye

et al., 2018b):

σLj(TW ) = 4

(
DEA(TW )− 1

σE
− 1

σP

)−1
for j = 1, 2, 3, 4.
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It should be stated that, in line with Parham et al. (2012), the definition of σLj(R, TW ) =

σLj(N)σLj(R)σLj(TW ), emphasizes the assumed independence among temperature,

rainfall and nutrient resources.

Figure 2.4: Profile of temperature-dependent parameters of the model (2.3.1): (a) Sur-

vival time of adult mosquitoes, (µA(TA)) (b) Mosquito egg deposition rate, (ψU(TA))−1

(c) Survival time of larvae, (µL(TW ))−1 and (d) total time for larvae development as

a function of temperature (σLj(TW )).
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2.3.2 Basic Properties

Model Invariant Region

The basic properties of the non-autonomous model (2.3.1) will now be explored.

Definition 2.3.1. For each of the time-dependent (i.e., temperature- and rainfall-

dependent) parameters, the following quantities hold:

a∗ = sup
t≥0

a(t), a∗ = inf
t≥0

a(t) (2.3.6)

Lemma 2.3.1. For any φ ∈ Ω = R9
+, the model (2.3.1) has a unique non-negative

solution through φ, and solutions are ultimately bounded and uniformly bounded.

Proof. Following Lou and Zhao (2010), define, for all φ ∈ Ω,

G(t, φ) =



ψU(t)

[
1− φ9

KU

]
+

φ9 −
[
σE(t) + µE(t)

]
φ1

σE(t)φ1 −
[
σL1(t) + µL(t) + δLφL

]
φ2

σL(i−2)
(t)φ(i−1) −

[
σL(i−1)

(t) + µL(t) + δLφL
]
φi; i = 3, 4, 5

σL4(t)φ5 −
[
σP (t) + µP (t)

]
φ6

fσP (t)φ6 + γUφ9 −
ηVH

H + F
φ7 − µA(t)φ7

ηVH

H + F
φ7 −

[
τWH + µA(t)

]
φ8

ατWHφ8 −
[
γU + µA(t)

]
φ9



,

with φL =
5∑
i=2

φi. Thus, for all φ ∈ Ω, the function G(t, φ) is continuous and Lip-

schitzian (with respect to φ in each compact set in R × Ω) (Lou and Zhao, 2010).

Hence, there is a unique solution of system (2.3.1) through (0, φ). It should be noted

that Gi(t, φ) ≥ 0 whenever φ ≥ 0 and φi = 0 (Lou and Zhao, 2010). Thus, it follows
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from Theorem A.4 in Thieme (2003) that the region Ω is positively-invariant with

respect to the model (2.3.1).

Consider, next, the first equation of the model (2.3.1). It follows from the bound-

edness of the logistic term, and Definition 2.3.1, that:

dE

dt
≤ψ∗U

K4
U

4
− (σE∗ + µE∗)E,

so that lim sup
t→∞

E(t) ≤ ψ∗UK
2
U

4(σE∗ + µE∗)
= E. In addition, for any ε > 0, there exists

t1 ∈ N such that E(t) ≤ E + ε, whenever t ≥ t1. Furthermore, it follows, by

substituting E + ε into the second equation of the model (2.3.1), that

dL1

dt
= σE(t)E − (σL1 + µL + δLL)L1 ≤ σ∗E(E + ε)− (σL1∗ + µL∗)L1, t ≥ t1,

(2.3.7)

so that L1(t) ≤
σ∗E(E + ε)

σL1∗ + µL∗
= L1. Using similar approach, the following bounds can be

established for the remaining immature mosquito compartments: Lj(t) ≤ Lj (for j =

2, 3, 4) and P (t) ≤ P .

Furthermore, considering the compartments for adult female mosquitoes in the

model (2.3.1) (given by the seventh, eighth and ninth equations of the model), the

rate of change of the total adult mosquito population (AM(t)) is given by:

dAM
dt

= fσP (t)P − µA(t)AM − (1− α)τWHW ≤ fσ∗PP − µA∗AM .

Thus, AM(t) ≤ fσ∗PP

µA∗
= AM . Hence, the solutions of the model (2.3.1) are ultimately

and uniformly bounded.

Since the region Ω is positively-invariant, the existence, uniqueness, and continuation

results hold for the system (hence, it is sufficient to consider the dynamics of the flow

generated by model (2.3.1) in the region Ω (Hethcote, 2000)).
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2.4 Analysis of Autonomous Version of the Model

In this section, the autonomous (i.e., no explicit temperature and rainfall effects, or

fixed (mean) values of these climate variables are used in the model) version of model

(2.3.1) will be analyzed. The objective is to determine whether or not the autonomous

version exhibits dynamical features not present in the original non-autonomous model.

This special case, obtained by setting each of the rainfall- and temperature-dependent

parameters of the model (2.3.1) to a constant (i.e., σE(t) = σE, σP (t) = σP , σLi(t) =

σLi , µE(t) = µE, µL(t) = µL, µA(t) = µA), is given by:

dE

dt
= ψU

(
1− U

KU

)
+

U − (σE + µE)E,

dL1

dt
= σEE − (σL1 + µL + δLL)L1,

dLi
dt

= σL(i−1)
L(i−1) − (σLi + µL + δLL)Li ; i = 2, 3, 4,

dP

dt
= σL4L4 − (σP + µP )P,

dV

dt
= fσPP + γUU −

(
η∗V + µA

)
V,

dW

dt
= η∗V V − (τ ∗W + µA)W,

dU

dt
= ατ ∗WW − (γU + µA)U,

(2.4.1)

where, now, L =
4∑
i=1

Li, η
∗
V =

ηVH

H + F
and τ ∗W = τWH.

2.4.1 Computation of Vectorial Reproduction Number (RM)

The autonomous model (2.4.1) has a trivial (mosquito-free) equilibrium solution,

denoted by T0, given by:

T0 = (E∗, L∗1, L
∗
2, L

∗
3, L

∗
4, P

∗, V ∗,W ∗, U∗) =
(
0, 0, 0, 0, 0, 0, 0, 0, 0

)
.

The linear stability of T0 is obtained by using the next generation operator method

(Diekmann et al., 1990; van den Driessche and Watmough, 2002) applied the system
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(2.3.1). Using the notation in van den Driessche and Watmough (2002), the non-

negative matrix F and the non-singular matrix V , for the new egg deposition terms

and the remaining transfer terms, are, respectively, given (at the trivial equilibrium,

T0) by:

F =


0 0 F1

0 0 0

0 0 0

 and V =


V1 0 0

V2 V3 0

0 V4 V5

 ,

where 0 denotes a zero matrix of order 3, and

F1 =


0 0 ψU

0 0 0

0 0 0

 ,V1 =


CE 0 0

−σE C1 0

0 −σL1 C2

 ,V2 =


0 0 −σL2

0 0 0

0 0 0

 ,

V3 =


C3 0 0

−σL3 C4 0

0 −σL4 CP

 ,V4 =


0 0 −fσP

0 0 0

0 0 0

 ,V5 =


C5 0 −γU

−η∗V C6 0

0 −ατ∗W C7

 .

It follows that the associated vectorial reproduction number of the autonomous model

(2.4.1) is given by (where ρ denotes the spectral radius) (see also Ngwa (2006); Ngwa

et al. (2010)).

RM = ρ(FV−1)

= (ψU ) ·
( σE
σE + µE︸ ︷︷ ︸

(a)

)
·



4∏
j=1

σLj

4∏
j=1

(σLj + µL)︸ ︷︷ ︸
(b)


·
( fσP
σP + µP︸ ︷︷ ︸

(c)

)
·
( ατ∗W η

∗
V

C5C6C7 − ατ∗W η∗V γU︸ ︷︷ ︸
(d)

)
,

(2.4.2)

where C5 = η∗V +µA, C6 = τ ∗W +µA, C7 = γU +µA, so that C5C6C7−ατ ∗Wη∗V γU > 0.
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Interpretation of Vectorial Reproduction Number (RM)

The threshold quantity, RM , measures the average number of new adult female

mosquitoes (offspring) produced by one reproductive adult female mosquito during its

entire reproductive period (Ngwa et al., 2010). It is the product of the egg oviposition

rate (ψU), the fraction of eggs that survived and hatched into larvae (a), fraction of

larvae that survived all four larval instar stages and matured into pupae (b), the frac-

tion of pupae that developed into adult female mosquitoes (c) and the total average

duration in the adult stage (of mosquitoes of all three types) (d).

The total duration in the adult stage can further be simplified to:

ατ ∗Wη
∗
V

C5C6C7 − ατ ∗Wη∗V γU
=
(η∗V
C5

)
·
(ατ ∗W
C6

)
·
[n→∞∑
i=0

(
γU
C7

· η
∗
V

C5

· ατ
∗
W

C6

)i]
·
( 1

C7

)
,

where
η∗V
C5

,
ατ ∗W
C6

and
γU
C7

is the fraction of adult female mosquitoes that transit from

type V to type W , type W to type U , and type U to type V , respectively, and

1

C7

is the average duration in the class of the reproducing mosquitoes (U class).

Furthermore, n (usually n ≤ 6 (Delatte et al., 2009)) denotes the number of times an

adult female mosquito completes (or survives) all three stages of the adult gonotrophic

cycle after the first cycle (i.e., n = 0 means that an adult female mosquito survived

all three stages only once, and n ≥ 1 indicates that the mosquito completes the cycle

more than once). The result below follows from Theorem 2 in van den Driessche and

Watmough (2002).

Theorem 2.4.1. The trivial equilibrium (T0) is locally-asymptotically (LAS) stable

whenever RM < 1, and unstable if RM > 1.

Furthermore, the following result holds.

Theorem 2.4.2. T0 is globally-asymptotically stable (GAS) in Ω whenever RM ≤ 1.
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Proof. Consider the Lyapunov function

K1 = a0
[
a1E + a2L1 + a3L2 + a4L3 + a5L4

]
+ a6

[
a7P + a8V + a9W + a10U

]
,

where,

a0 = ατ ∗Wη
∗
V σL4fσP , a1 = σEσL1σL2σL3 , a2 = CEσL1σL2σL3 , a3 = C1CEσL2σL3 ,

a4 = C1C2CEσL3 , a5 = C1C2C3CE, a6 = C1C2C3C4CE, (2.4.3)

a7 = ατ ∗Wη
∗
V fσP , a8 = CPη

∗
V ατ

∗
W , a9 = CPC5ατ

∗
W , a10 = CPC5C6

with CE = σE + µE, CP = σP + µP , Ci = σLi + µL (for i = 1, 2, 3, 4), C5 = η∗V + µA,

C6 = τ ∗W + µA, C7 = γU + µA. Thus, the Lyapunov derivative is given by:

K̇1 = a0
[
a1Ė + a2L̇1 + a3L̇2 + a4L̇3 + a5L̇4

]
+ a6

[
a7Ṗ + a8V̇ + a9Ẇ + a10U̇

]
,

= a0

{
a1

[
ψU

(
1− U

KU

)
+

U − CEE
]

+ a2
[
σEE − (C1 + δLL)L1

]
+ a3

[
σL1L1 − (C2

+ δLL)L2

]
+ a4

[
σL2L2 − (C3 + δLL)L3

]
+ a5

[
σL3L3 − (C4 + δLL)L4

]}
+ a6

[
a7

(σL4L4 − CPP ) + a8
(
fσPP + γUU − C5V

)
+ a9

(
η∗V V − C6W

)
+ a10

(
ατ∗WW − C7U

)]
.

(2.4.4)

Using (2.4.3) in (2.4.4), and simplifying, gives:

K̇1 = a7σE

4∏
j=1

σLj

[
ψU

(
1− U

KU

)
+

U

]
+ CECP

4∏
j=1

Cj
(
η∗V ατ

∗
WγU − C5C6C7

)
U − δLLS,

= CECPD
(
RM − 1

)
U

4∏
j=1

Cj − a7σEψU
U2

KU

4∏
j=1

σLj − δLLS, (2.4.5)

where S = a0
[
a2L1 + a3L2 + a4L3 + a5L4

]
and D = C5C6C7 − ατ ∗Wη∗V γU > 0. Thus,

it follows from (2.4.5) that, for RM ≤ 1 in Ω, the Lyapunov derivative K̇1 ≤ 0 (with

K̇1 = 0 if and only if L1 = L2 = L3 = L4 = U = 0). Furthermore, substituting
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L1 = L2 = L3 = L4 = U = 0 into the model (2.4.1) gives:

dE

dt
= − (σE + µE)E,

dP

dt
= − (σP + µP )P,

dV

dt
= fσPP −

(
η∗V + µA

)
V,

dW

dt
= η∗V V − (τ ∗W + µA)W,

dU

dt
= ατ ∗WW.

(2.4.6)

It can be deduced from the last equation of (2.4.6) that W = 0. Substitution U =

W = 0 in (2.4.6) show that E = P = V = 0. Thus, it follows from the LaSalle’s

Invariance Principle (Theorem 6.4 in LaSalle (1976)) that the maximal invariant set

contained in {
(
E,L1, L2, L3, L4, P, V,W,U

)
∈ Ω | K̇1 = 0} is {T0}. Hence, the trivial

equilibrium T0 is GAS in Ω whenever RM ≤ 1.

The ecological implication of Theorem 2.4.2 is that the mosquito population (both

immature and mature) will be effectively controlled in (or eliminated from) the com-

munity if the associated vectorial reproduction threshold, RM , can be brought to

(and maintained at) a value less than or equal to unity. In other words, a vector con-

trol strategy (e.g., larvaciding or adulticiding that can bring RM to a value less than

unity can lead to the effective control of the mosquito population in the community).

2.4.2 Existence and Asymptotic Stability of Non-trivial Equilibrium Point

The existence and stability of a non-trivial equilibrium of the autonomous model

(2.4.1) is explored in this Section. Let T ∗∗1 =
(
E∗∗, L∗∗1 , L

∗∗
2 , L

∗∗
3 , L

∗∗
4 , P

∗∗, V ∗∗,W ∗∗, U∗∗
)

represents an arbitrary non-trivial equilibrium of the model (2.4.1). Solving for the
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state variables of the model (2.4.1) at T ∗∗1 gives

E∗∗ =
ψU
CE

(
1− U∗∗

KU

)
U∗∗, E∗∗ =

1

σE

(
C1 + δLL

∗∗)L∗∗1 , L∗∗1 =
1

σL1

(
C2 + δLL

∗∗)L∗∗2 ,
L∗∗2 =

1

σL2

(
C3 + δLL

∗∗)L∗∗3 , L∗∗3 =
1

σL3

(
C4 + δLL

∗∗)L∗∗4 , L∗∗4 =
CPDU

∗∗

ατ ∗Wη
∗
V σPσL4

,

(2.4.7)

P ∗∗ =
DU∗∗

ατ ∗Wη
∗
V σP

, V ∗∗ =
C6C7U

∗∗

ατ ∗Wη
∗
V

, W ∗∗ =
C7U

∗∗

ατ ∗W
, U∗∗ =

ατ ∗Wη
∗
V σPσL4L

∗∗
4

CPD
.

where D = C5C6C7 − ατ ∗Wη∗V γU > 0. It follows from (2.4.7) that

L∗∗j =

(
Cj+1 + δLL

∗∗)L∗∗j+1

σLj
; j = 1, 2, 3. (2.4.8)

It can be shown, by multiplying the second, third, fourth and fifth equations of (2.4.7),

and substituting the first and sixth equations of (2.4.7) into the resulting equation

(and simplifying), that:

ατ ∗Wη
∗
V ψUσEσP

(
1− U∗∗

KU

) 4∏
j=1

σLj = CECPD
4∏
i=1

(
Ci + δLL

∗∗). (2.4.9)

Substituting the equation for U∗∗ in (2.4.7) into (2.4.9), and simplifying, gives (it can

be shown that L∗∗4 > 0)

L∗∗4 =
KUCPD

ατ ∗Wη
∗
V σPσL4

[
1−

CECPD
4∏
i=1

(
Ci + δLL

∗∗)
ατ ∗Wη

∗
V ψUσEσP

4∏
j=1

σLj

]
. (2.4.10)

Furthermore, substituting the expressions for Li (i = 1, 2, 3), given in (2.4.8), into

L∗∗ =
4∑
i=1

L∗∗i gives,

L∗∗ =
L∗∗4
3∏
j=1

σLj

[ 3∏
j=1

σLj +
2∏
j=1

σLj
(
C4 + δLL

∗∗)+ σL1

4∏
i=3

(
Ci + δLL

∗∗)+

4∏
i=2

(
Ci + δLL

∗∗)].
(2.4.11)
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Finally, substituting Equation (2.4.10) into (2.4.11), and simplifying, shows that the

non-trivial equilibria of the model (2.4.1) satisfy the following polynomial:

b7(L
∗∗)7 + b6(L

∗∗)6 + b5(L
∗∗)5 + b4(L

∗∗)4 + b3(L
∗∗)3 + b2(L

∗∗)2 + b1(L
∗∗) + b0 = 0,

(2.4.12)

where the coefficients bi (i = 0, . . . , 7) are constants, and are given in Appendix A1.

It follows from the expressions of bi (i = 0, . . . , 7) in Appendix A1 that:

(i) The coefficients bi (i = 0, . . . , 7) > 0 whenever RM < 1. Thus, no positive

solution exists whenever RM < 1. Furthermore, when RM = 1, the coefficients

bi (i = 1, . . . , 7) > 0 and b0 = 0 (thus, the polynomial has no positive roots for

the case when RM = 1).

(ii) The polynomial (2.4.12) has at least one positive root whenever RM > 1 (using

the Descartes’ Rule of Signs).

These results are summarized below.

Theorem 2.4.3. The model (2.4.1) has at least one non-trivial (non-zero) equilibrium

whenever RM > 1, and no non-trivial equilibrium whenever RM ≤ 1.

Furthermore, it is worth stating that, for the special case of the autonomous model

(2.4.1) with no density-dependent larval mortality (i.e., δL = 0), the coefficients

bi (i = 2, . . . , 7) = 0 and b1 = 1. Thus, in this special case with δL = 0, the

polynomial (2.4.12) reduces to L∗∗+ b0 = 0, so that (where Q1 and X6 are defined in

Appendix A1)

L∗∗ =

(
1− 1

RM

)
Q1X6. (2.4.13)

Thus, in the absence of density-dependent larval mortality (i.e., δL = 0), the au-

tonomous model (2.4.1) has a unique non-trivial equilibrium (denoted by T1 = (E∗∗, L∗∗1 ,
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L∗∗2 , L
∗∗
3 , L

∗∗
4 , P

∗∗, V ∗∗,W ∗∗, U∗∗)) whenever RM > 1 (the components of this unique

equilibrium can be obtained by substituting (2.4.13) into (2.4.7)).

Theorem 2.4.4. The model (2.4.1) with δL = 0 has a unique non-trivial equilibrium

whenever RM > 1, and no non-trivial equilibrium otherwise.

Asymptotic Stability of Non-trivial Equilibrium Point: Special Case

Consider the special case of the autonomous model (2.4.1) in the absence of density-

dependent mortality rate for larvae (i.e., δL = 0), so that the model (2.4.1) has a

unique non-trivial equilibrium (T1) whenever RM > 1. Linearizing the autonomous

model (2.4.1), with δL = 0, at T1 gives:

J (T1) =



−CE 0 0 0 0 0 0 0 ψU

(
2

RM
− 1

)
σE −C1 0 0 0 0 0 0 0

0 σL1 −C2 0 0 0 0 0 0

0 0 σL2 −C3 0 0 0 0 0

0 0 0 σL3 −C4 0 0 0 0

0 0 0 0 σL4 −CP 0 0 0

0 0 0 0 0 fσP −C5 0 γU

0 0 0 0 0 0 η∗V −C6 0

0 0 0 0 0 0 0 ατ∗W −C7



,

where, CE = σE + µE, CP = σP + µP , Ci = σLi + µL (for i = 1, 2, 3, 4), C5 = η∗V +

µA, C6 = τ ∗W + µA, C7 = γU + µA. The eigenvalues of J (T1) satisfy:

P9(λ) = λ9 + A8λ
8 + A7λ

7 + A6λ
6 + A5λ

5 + A4λ
4 + A3λ

3 + A2λ
2 + A1λ

+ CD(RM − 1),

(2.4.14)
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where C = CECP
4∏
j=1

Cj, D = C5C6C7 − ατ ∗Wη∗V γU and Ai (i = 1, . . . , 8) are positive

constants given in Appendix A2.

It is convenient to re-write the polynomial (2.4.14) as

P9(λ) = F (λ)G(λ) + CD
(
RM − 2

)
, (2.4.15)

where,

F (λ) = (λ+ CE)(λ+ CP )(λ+ C1)(λ+ C2)(λ+ C3)(λ+ C4), (2.4.16)

G(λ) = λ3 + (C5 + C6 + C7)λ
2 + (C5C6 + C5C7 + C6C7)λ+D, (2.4.17)

so that,

F (λ)G(λ) = λ9 + A8λ
8 + A7λ

7 + A6λ
6 + A5λ

5 + A4λ
4 + A3λ

3 + A2λ
2 + A1λ+ CD.

(2.4.18)

The asymptotic stability of T1 will be explored using the properties of Bézout matrices

(Hershkowitz, 1992). It is, first of all, convenient to recall the following four results:

Theorem 2.4.5. (Routh-Hurwitz (Hershkowitz, 1992)). Let A be an n× n complex

matrix, and let Ek be the sum of all principal minors of A of order k, k ∈< n >.

Let Ω(A) be the n× n Hurwitz matrix of A and assume that Ω(A) is real. Then A is

stable if and only if all leading principal minors of Ω(A) are positive.

Definition 2.4.1. (Bézout Matrix (Hershkowitz, 1992)). Let a(x) and b(x) be two

polynomials with real coefficients of degree n and m respectively, n ≥ m. The

Bézoutiant defined by a(x) and b(x) is the bilinear form

a(x)b(y)− a(y)b(x)

x− y
=

n−1∑
i,k=0

bikx
iyk.

The symmetric matrix (bik)
n−1
0 associated with this bilinear form is called the Bézout

matrix and is denoted by Ba,b. Each entry bi,j of Ba,b can be computed separately by

51



the entry formula

bi,j =

min(i,n−1−j)∑
k=max(0,i−j)

(
bi−kaj+1+k − ai−kbj+1+k

)
for all i, j ≤ n.

Theorem 2.4.6. (Liénard-Chipart (Hershkowitz, 1992)) Let f(x) = xn − anxn−1 −

. . .− a1 be a polynomial with real coefficients, and let an−1 = −1. Define the polyno-

mials

h(u) = −a1 − a3u− · · · ,

g(u) = −a2 − a4u− · · · .

The polynomial f(x) is negative stable if and only if the Bézout matrix Bh,g is positive

definite and ai < 0 for all i ∈< n >.

Theorem 2.4.7. (Sylvester’s Criterion (George, 1991)) A real, symmetric matrix is

positive definite if and only if all its principal minors are positive.

We claim the following result.

Lemma 2.4.1. The polynomial F (λ)G(λ), defined by Equations (2.4.16), (2.4.17)

and (2.4.18), is Hurwitz stable (i.e., all its roots have negative real part).

Proof. It follows from the equation for F (λ) in (2.4.16) that all roots of F (λ) are

negative. Furthermore, consider G(λ) = 0 from (2.4.17). That is,

G(λ) = λ3 + (C5 + C6 + C7)λ
2 + (C5C6 + C5C7 + C6C7)λ+D = 0.

Using the Routh-Hurwitz Criterion (Theorem 2.4.5), the principal minors, ∆k (k =

1, 2, 3), of the associated Hurwitz matrix for G(λ) are:

∆1 = C5 + C6 + C7 > 0,

∆2 = (C5 + C6 + C7)(C5C6 + C5C7) + C6C7(C6 + C7) + ατ ∗Wη
∗
V γU > 0,

∆3 = (C5C6C7 − ατ ∗Wη∗V γU)∆2 > 0.
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Thus, all the roots of G(λ) have negative real part. Hence, all nine roots of F (λ)G(λ)

have negative real part.

Remark 2.4.1. It follows from Lemma 2.4.1 and Theorem 2.4.6 that the correspond-

ing Bézout matrix of F (λ)G(λ) is positive-definite (Hershkowitz, 1992).

Remark 2.4.2. Consider P9(λ) = F (λ)G(λ) + CD(RM − 2). Then, P9(λ) ≤

F (λ)G(λ) whenever 1 < RM ≤ 2. Thus, it follows from Lemma 2.4.1 that all nine

roots of P9(λ) have negative real part whenever 1 < RM ≤ 2 (hence, T1 is LAS

whenever 1 < RM ≤ 2).

Furthermore, consider the characteristic polynomial P9(λ) given in (2.4.14). Let

A0 = CD(RM − 1), where C = CECP
4∏
j=1

Cj, D = C5C6C7 − ατ ∗Wη∗V γU ,

P9(λ) = λ9 + A8λ
8 + A7λ

7 + A6λ
6 + A5λ

5 + A4λ
4 + A3λ

3 + A2λ
2 + A1λ+ A0.

To apply Theorem 2.4.6, let

h(u) = A0 + A2u+ A4u
2 + A6u

3 + A8u
4, g(u) = A1 + A3u+ A5u

2 + A7u
3 + u4.

Thus, it follows from Definition 2.4.1 that the corresponding Bézout matrix of P9(λ),

denoted by Bh,g(P9), is given by Bh,g(P9) =

A1A2−A0A3 A1A4−A0A5 A1A6−A0A7 A1A8−A0

A1A4−A0A5 A3A4−A2A5 +A1A6−A0A7 A3A6−A2A7 +A1A8−A0 A3A8−A2

A1A6−A0A7 A3A6−A2A7 +A1A8−A0 A5A6−A4A7 +A1A8−A2 A5A8−A4

A1A8−A0 A3A8−A2 A5A8−A4 A7A8−A6


.

Sylvester’s Criterion (Theorem 2.4.7) can be used to obtain the necessary and suf-

ficient conditions for Bh,g(P9) to be positive-definite. First of all, it is evident that

Bh,g(P9) is symmetric. It then suffices to show that the kth leading principal minor

of Bh,g(P9) is positive (i.e., to show that the determinant of the upper-left k× k sub-

matrix of Bh,g(P9) is positive). It is convenient to introduce the following notations:
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(i) b
(J)
i,j : 0 ≤ i, j ≤ 3, J ∈ {FG, P9} are the entries of the corresponding Bézout

matrix of the polynomial F (λ)G(λ) (denoted by Bh,g(FG)) and P9(λ) (clearly,

Bh,g(FG) = Bh,g(P9) when A0 = CD).

(ii) ∆
(P9)
k is the kth leading principal minor of Bézout matrix Bh,g(P9).

Therefore, Bh,g(P9) can be re-written (in terms of the entries of the positive-definite

Bézout matrix, Bh,g(FG). That is, in terms of b
(FG)
i,j ) as

Bh,g(P9) =


b
(FG)
0,0 −CD(RM −2)A3 b

(FG)
0,1 −CD(RM −2)A5 b

(FG)
0,2 −CD(RM −2)A7 b

(FG)
0,3 −CD(RM −2)

b
(FG)
1,0 −CD(RM −2)A5 b

(FG)
1,1 −CD(RM −2)A7 b

(FG)
1,2 −CD(RM −2) b

(FG)
1,3

b
(FG)
2,0 −CD(RM −2)A7 b

(FG)
2,1 −CD(RM −2) b

(FG)
2,2 b

(FG)
2,3

b
(FG)
3,0 −CD(RM −2) b

(FG)
3,1 b

(FG)
3,2 b

(FG)
3,3

 .
It follows from Remark 2.4.2 that the Bézout matrix, Bh,g(P9), is a positive definite

matrix for 1 < RM ≤ 2. Furthermore, the Bézout matrix, Bh,g(P9), can be re-written

as (after row-column operations)

Bh,g(P9) =



∆
(P9)
1 b

(P9)
0,1 b

(P9)
0,2 b

(P9)
0,3

0
∆

(P9)
2

∆
(P9)
1

b
(P9)
1,2 −

b
(P9)
0,1 b

(P9)
0,3

b
(P9)
0,0

b
(P9)
1,3 −

b
(P9)
0,1 b

(P9)
0,4

b
(P9)
0,0

0 0
∆

(P9)
3

∆
(P9)
2

B1

0 0 0
∆

(P9)
4

∆
(P9)
3


, (2.4.19)

where B1 = B1

(
b
(P9)
i,j

)
0 ≤ i, j ≤ 3. However, since the kth leading principal minor of

a triangular matrix is the product of its diagonal elements up to row k, Sylvester’s

Criterion is equivalent to finding conditions for which all the diagonal elements of

Bézout matrix, Bh,g(P9), in (2.4.19) are all positive (i.e., finding the conditions for

which ∆
(P9)
k are positive for all k = 1, 2, 3, 4) (Porphyre et al., 2005). For example, it
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can be verified that the first leading principal minor of the matrix Bh,g(P9), given by

∆
(P9)
1 = A1A2 − CECP (C5C6C7 − ατ ∗Wη∗V γU)(RM − 1)A3

4∏
j=1

Cj

= b
(FG)
0,0 − CECP (C5C6C7 − ατ ∗Wη∗V γU)(RM − 2)A3

4∏
j=1

Cj,

is positive whenever the following inequality holds:

RM < 2 +
b
(FG)
0,0

CECP (C5C6C7 − ατ ∗Wη∗V γU)A3

4∏
j=1

Cj

= 2 + Z1,

where, b
(FG)
0,0 = A1A2 − CECP (C5C6C7 − ατ ∗Wη∗V γU)A3

4∏
j=1

Cj > 0 is the first leading

principal minor of Bh,g(FG) and Z1 is the positive constant such that ∆
(P9)
1 is positive

whenever RM < 2 + Z1. Similarly, we obtain constants Zk = Zk
(
b
(FG)
i,j (0 ≤ i, j ≤

3), Ai (1 ≤ i ≤ 9), C,D
)

such that the kth principal minor ∆
(P9)
k is positive whenever

RM < 2 + Zk, for each k = 2, 3, 4 (i.e., Zi (i = 1, 2, 3, 4), is the constant such

that RM < 2 + Zi makes the determinant of the associated matrix of minors of

matrix (2.4.19) to be positive). Therefore, the result below follows (from the above

derivations and Remark 2.4.2).

Theorem 2.4.8. Consider the model (2.4.1) with δL = 0. The unique non-trivial

equilibrium (T1) is LAS in Ω \ {T0} whenever

1 < RM < RC
M = 2 + min

{
Zk : ∆

(P9)
k > 0 for all k = 1, 2, 3, 4

}
,

and unstable whenever RM > RC
M .

The two results above (Theorem 2.4.4 and Theorem 2.4.8) show that the condition

RM > 1 defines the existence of a unique non-trivial equilibrium
(
T1
)

of the special

case of the model (2.4.1) with δL = 0 (which is LAS if 1 < RM < RC
M). Thus, it can

be deduced that, to maintain a non-trivial mosquito population, each reproducing
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adult female mosquito (of type U) must produce at least one egg during its entire

reproductive life period (see also Ngwa (2006)). In other words, an increase in adult

female mosquitoes of type U(t) leads to a corresponding increase in the number of

eggs laid in the population (E(t). We claim the following result.

2.4.3 Hopf Bifurcation Analysis

Consider the special case of the autonomous model (2.4.1) with δL = 0 and RM > 1

(so that T1 exists, by Theorem 2.4.4). Hopf bifurcation can occur (at a fixed value of

a chosen bifurcation parameter) when the Jacobian of this special case of the system

(2.4.1) with δL = 0, evaluated at T1, has a pair of purely imaginary eigenvalues (i.e.,,

when the polynomial P9(λ) given by (2.4.14), has a pair of purely imaginary roots).

The rank and signature of the Bézout matrix, Bh,g(P9), can be used to evaluate

the number of roots with negative real parts. The direct effect of the characteristic

polynomial P9 having a pair of purely imaginary eigenvalues is that the rank of the

Bézout matrix, Bh,g(P9), is reduced by exactly one (Parks, 1977). From the stability

point of view, this possibility represent the existence of a boundary (Hopf bifurcation)

(Parks, 1977). To prove the existence of Hopf bifurcation, it also suffices to verify the

transversality condition (Chow et al., 1994).

Let ψU be a bifurcation parameter. Solving for ψU from RM = RC
M gives

ψU = ψ∗U =

CECP
(
C5C6C7 − ατ ∗Wη∗V γU

)
(2 + Z4)

4∏
j=1

Cj

ατ ∗Wη
∗
V σEσP

4∏
j=1

σLj

,

where Z4 is as defined in Theorem 2.4.8.

Theorem 2.4.9. Consider the autonomous model (2.4.1) with δL = 0. A Hopf

bifurcation occurs at ψU = ψ∗U .
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Proof. To prove Theorem 2.4.9, it is sufficient to establish the transversality condition

[49]. Let ψU = ψ∗U (and all other parameters of the model (2.4.1) are fixed). Then,

RM = RC
M = 2 + Z4. Since Z4 < Zi ( i = 1, 2, 3), it follows from Theorem 2.4.8

that ∆
(P9)
i > 0 for i = 1, 2, 3. Furthermore, ∆

(P9)
4 can be re-written as (where

B = σEσP
4∏
j=1

σLj , C = CECP
4∏
j=1

Cj, D = C5C6C7 − ατ ∗Wη∗V γU)

∆
(P9)
4 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b
(FG)
0,0 −(ατ∗W η∗V ψUB−2CD)A3 b

(FG)
0,1 −(ατ∗W η∗V ψUB−2CD)A5 b

(P9)
0,2 b

(P9)
0,3

b
(FG)
1,0 −(ατ∗W η∗V ψUB−2CD)A5 b

(FG)
1,1 −(ατ∗W η∗V ψUB−2CD)A7 b

(P9)
1,2 b

(P9)
1,3

b
(FG)
2,0 −(ατ∗W η∗V ψUB−2CD)A7 b

(FG)
2,1 −(ατ∗W η∗V ψUB−2CD) b

(P9)
2,2 b

(P9)
2,3

b
(FG)
3,0 −(ατ∗W η∗V ψUB−2CD) b

(P9)
3,1 b

(P9)
3,2 b

(P9)
3,3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Hence, ∆
(P9)
4 (ψU) = 0 if and only if ψU = ψ∗U . Furthermore, it can be verified that

d∆
(P9)
4 (ψU)

dψU

∣∣∣∣
ψU=ψ

∗
U

= Tr

(
Adj(Bh,g(P9)(ψU))

∣∣∣∣
ψU=ψ

∗
U

dBh,g(P9)(ψU)

dψ

∣∣∣∣
ψU=ψ

∗
U

)
6= 0,

where ’Tr’ and ’Adj’ denote, respectively, the trace and adjoint of a matrix. Similarly,

let µA be a bifurcation parameter (and all other parameters of the model (2.4.1) are

fixed). Thus,

d∆
(P9)
4 (µA)

dψ

∣∣∣∣
µA=µ

∗
A

= Tr

(
Adj(Bh,g(P9)(µA))

∣∣∣∣
µA=µ

∗
A

dBh,g(P9)(µA)

dµA

∣∣∣∣
µA=µ

∗
A

)
,

for all ∆
(P9)
4 (µ∗A) = 0. It can be verified that

d∆
(P9)
4 (µA)

dψ

∣∣∣∣
µA=µ

∗
A

6= 0.

Theorem 2.4.9 shows that sustained oscillations are possible, with respect to the

special case of the autonomous model (2.4.1) with δL = 0, whenever RM = RC
M . This

result, which is numerically illustrated in Figure 2.6 (a), is in line with that reported

in Abdelrazec and Gumel (2017) using a simple mosquito dynamics population model

that does not incorporate vector gonotrophic cycle. It is worth mentioning that, in

the proof of Theorem 2.4.9, two bifurcation parameters (ψU and µA) were considered.

The reason is, that the transversality condition may fail at some points if only one
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parameter is used (Chow et al., 1994). The nature of the Hopf bifurcation property

of the model (2.4.1) is investigated numerically. The results obtained, depicted in

Figure 2.6 (b), show convergence of the solutions to a stable limit cycle.

2.4.4 Numerical Illustrations

In this section, a bifurcation diagram for the special case of the autonomous model

(2.4.1) with δL = 0, which summarizes the main results obtained in Section 2.4, will

be generated in the µA − ψU plane as follows:

(i) Solving for ψU from RM = 1 gives the following equation for ψlU (depicted in

Figure 2.7):

l : ψU = ψlU =

CECP
(
C5C6C7 − ατ ∗Wη∗V γU

) 4∏
j=1

Cj

ατ ∗Wη
∗
V σEσP

4∏
j=1

σLj

.

(ii) Solving for ψU from ∆
(P9)
4 = 0 (and fixing all parameters of the models (using

their values as in Figure 2.5), except the parameters, µA and ψU) give the

following curve ∆
(P9)
4 = 0:

H : ψU = ψ∗U =
CECP

(
C5C6C7 − ατ ∗Wη∗V γU

[
2 + Z4(µA)

]
ατ ∗Wη

∗
V σEσP

4∏
j=1

σLj

,

where, CE = σE +µE, CP = σP +µP , Ci = σLi +µL (for i = 1, 2, 3, 4), C5 = η∗V +µA,

C6 = τ ∗W +µA, C7 = γU +µA. The curves l and H (depicted in Figure 2.7) divide the

µA − ψU plane into three distinct regions, namely D1, D2 and D3, given by:

D1 =
{

(µA, ψU) : 0 < ψU ≤ ψlU ; µA > 0
}
,

D2 =
{

(µA, ψU) : ψlU < ψU < ψ∗U ; µA > 0
}
,

D3 =
{

(µA, ψU) : ψU > ψ∗U ; µA > 0
}
.
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The regions can be described as follows (see also Table 2.2):

(i) Region D1: In this region, RM ≤ 1. Hence, in this region (note that δL = 0), the

trivial equilibrium (T0) is globally-asymptotically stable (in line with Theorem

2.4.2).

(ii) Region D2: Here, 1 < RM < RC
M . Thus, the model has two equilibria, namely

the unstable trivial equilibrium (T0) and the locally-asymptotically stable non-

trivial equilibrium (T1). The model undergoes a Hopf bifurcation whenever

RM = RC
M .

(iii) Region D3: In this region, RM > RC
M . Thus, the model has the unstable trivial

equilibrium (T1), unstable non-trivial equilibrium and a stable limit cycle.

Threshold Condition T0 T1 Existence of Stable Limit Cycle

RM ≤ 1 GAS No No

1 < RM < RC
M Unstable LAS No

RM > RC
M Unstable Unstable Yes

Table 2.2: Stability properties of the solutions of the autonomous model (2.4.1).

It is worth mentioning that, for the fixed values of the parameters used in Figure

2.5, the associated bifurcation point of the model (2.4.1) with δL = 0 is ψU = ψ∗U =

107.889493160695073 (so that, ∆2 = 0). This is equivalent to RM = RC
M = 4.5573.

Therefore, for this particular set of parameter values, the non-trivial equilibrium (T1)

is LAS for 1 < RM < 4.5573, and unstable whenever RM > 4.5573.
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(a) t− U plane (b) a stable T1

Figure 2.5: Simulations of the autonomous model (2.4.1), showing: (a) total number

of adult female mosquitoes of type U(t) as a function of time. (b) phase portrait of

U(t) − P (t) showing stable non-trivial equilibrium T1. The parameter values used

are: ψU = 100.91, KU = 105, σE = 0.84, µE = 0.05, σL1 = 0.15, σL2 = 0.11, σL3 =

0.24, σL4 = 0.5, µL = 0.34, δL = 0, KL = 107, fσP = 0.8, µP = 0.17, γU = 0.3, η∗V =

0.4, τ ∗W = 16, α = 0.86 and µA = 0.12 (so that, RM = 4.2625 < RC
M = 4.5573).

2.4.5 Sensitivity Analysis

The autonomous model (2.4.1) contains 17 parameters, and uncertainties in the esti-

mates of their values used in the numerical simulations of the model are expected to

arise (Cariboni and Saltelli, 2007; Wu et al., 2013). Thus, it is instructive to assess

the impact of such uncertainties on the overall numerical simulation results obtained.

The effect of these uncertainties, as well as the determination of the parameters that

have the greatest influence on the mosquitoes dispersal dynamics (with respect to

a given response function), will be carried out using an uncertainty and sensitivity

analysis (Blower and Dowlatabadi, 1994; Marino et al., 2008; McKay et al., 1979;
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(a) t− U plane (b) a stable limit cycle

Figure 2.6: Simulations of the autonomous model (2.4.1), showing: (a) total number

of adult female mosquitoes of type U(t) as a function of time. (b) phase portrait of

U(t)−P (t) showing a stable limit cycle. The parameter values used are as given in the

simulations for Figure 2.5, with ψU = 110.91 (so that, RM = 4.6849 > RC
M = 4.5573).

McLeod et al., 2006). In particular, following Blower and Dowlatabadi (1994), the

Latin Hypercube Sampling (LHS) and Partial Rank Correlation Coefficients (PRCC)

will be used for the autonomous model (2.4.1). The PRCC method of sensitivity

analysis is an efficient and reliable sampling-based method that determines the sensi-

tivity of an output state variable to an input parameter as a linear correlation. This

method provides a measure of monotonicity between parameters and model output

after removing the linear effects of all parameters except the parameter of interest

(Blower and Dowlatabadi, 1994; Marino et al., 2008; Wu et al., 2013). PRCC is usu-

ally combined with LHS, which is a stratified Monte Carlo sampling method that

divides each parameter’s range into equal intervals and randomly draws one sample

from each interval (only once) (Blower and Dowlatabadi, 1994; Helton and Davis,
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Figure 2.7: Bifurcation curves in the µA−ψU plane for the autonomous model (2.4.1).

2003; Wu et al., 2013). LHS is computationally-efficient, requiring fewer simulations

than other Monte Carlo sampling approach (Helton and Davis, 2003; Wu et al., 2013).

The combined LHS-PRCC procedure generally involves the following steps (Wu et al.,

2013):

(i) Generating LHS of the parameter space.

(ii) Obtaining model output for each set of sampled parameters.

(ii) Ranking parameter and output values and replacing their original values with

their ranks.

(iv) Calculating the PRCC for each input parameter.
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The PRCC method is implemented on the model (2.4.1) using the range and baseline

values of the parameters tabulated in Table 2.3. Appropriate response functions

are chosen for these analyses. For instance, using the population of adult female

mosquitoes of type U as the response function, it is shown in Table 2.4 that the

top three PRCC-ranked parameters of the autonomous version of the model are the

probability of adult female mosquito of type W successfully taking a bloodmeal (α),

the natural mortality rate of adult female mosquitoes (µA) and the natural mortality

rate of female larvae (µL).

Similarly, using the population of adult female mosquitoes of type V as the re-

sponse function, the top three PRCC-ranked parameters are the natural mortality

rate of female larvae (µL), the deposition rate of female eggs (ψU) and the matu-

ration rate of female larvae from Stage 1 to Stage 2 (σL1). Furthermore, using the

population of female larvae in stage 4 (L4) and population of female pupae (P ) as

the response functions, it is shown that the same top three PRCC-ranked parameters

appeared as in the case when the population of adult female mosquitoes of type V

is chosen as the response function for both cases. However, using the vectorial re-

production number of the autonomous version of the model (RM) as the response

function, the top three PRCC-ranked parameters are the natural mortality rate of

female larvae (µL), the deposition rate of female eggs (ψU) and the natural mortality

rate of adult female mosquitoes (µA).

In summary, the sensitivity analyses conducted in this chapter led to the identifi-

cation of five model parameters that significantly influence the population dynamics

and dispersal of the mosquito, namely:

(a) the probability of adult female mosquito of type W successfully taking a blood-

meal (α);
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(b) the natural mortality rate of adult female mosquitoes (µA);

(c) the natural mortality rate of female larvae (µL);

(d) the deposition rate of female eggs (ψU);

(e) the maturation rate of female larvae (σLi).

The specific effect of each of the aforementioned influential parameters (α, ψU , σLi , µL

and µA) on the population dynamics of the mosquito and the reproduction threshold

(RM) are tabulated in Table 2.5.

Parameters Baseline Value Range Reference

ψU 50/day (10− 100)/day [9; 60; 131; 140; 213]

KU 40000 (50− 3× 106) [9; 131; 213]

σE 0.84/day (0.33− 1)/day [60]

µE 0.05/day (0.01− 0.07)/day [60]

σL1 0.095/day (0.05− 0.15)/day [72]

σL2 0.11/day (0.06− 0.17)/day [72]

σL3 0.13/day (0.08− 0.19)/day [72]

σL4 0.16/day (0.08− 0.23)/day [72]

µL 0.34/day (0.15− 0.48)/day [60]

δL 0.04/ml (0.02− 0.06)/ml [60]

f 0.5 (0.45− 0.55) [72]

σP 0.8/day (0.3− 1)/day [60]

µP 0.17/day (0.12− 0.21)/day [72]

γU 0.89/day (0.30− 1)/day [166; 167]

η∗V 0.8/day (0.46− 0.92)/day [166; 167]

τ ∗W 16 (12− 20) [166]

α 0.86 (0.75− 0.95) [166]

µA 0.05/day (0.041− 0.203)/day [9; 48; 131; 168; 213]

Table 2.3: Values and ranges of the parameters of the autonomous model (2.4.1).
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Parameters U Class V Class L4 Class P Class RM

ψU +0.6863 +0.8509 +0.9083 +0.8958 +0.88

KU +0.1174 +0.1783 +0.1952 +0.2218 −

σE +0.0066 +0.1099 −0.0959 +0.0046 +0.031

µE −0.1118 +0.0045 −0.0326 −0.0291 −0.082

σL1 +0.4598 +0.6525 +0.6896 +0.7019 +0.63

σL2 +0.4366 +0.6337 +0.6817 +0.6543 +0.60

σL3 +0.3224 +0.5714 +0.2781 +0.5779 +0.49

σL4 +0.4213 +0.6473 +0.0914 +0.2447 +0.55

f +0.0223 +0.0437 +0.0014 +0.0747 +0.032

µL -0.7842 -0.9103 -0.9193 -0.9427 -0.96

δL −0.1121 −0.0679 −0.0807 −0.0699 −

KL +0.0472 +0.0173 +0.0869 −0.1206 −

σP +0.0621 −0.3878 +0.1045 +0.0088 +0.093

µP −0.1031 −0.1578 −0.0648 +0.0171 −0.051

γU −0.0948 −0.2255 −0.2908 −0.2934 −0.25

η∗V +0.2278 +0.1773 +0.2047 +0.2521 +0.16

τ ∗W -0.6390 +0.0956 −0.0123 +0.0523 −0.026

α +0.9284 +0.5431 +0.6106 +0.6224 +0.55

µA -0.8597 −0.2584 −0.5379 −0.3373 -0.69

Table 2.4: PRCC values for the parameters of the autonomous model (2.4.1) using

total number of adult mosquitoes of type U , adult mosquitoes of type V , fourth

instar larvae (L4), pupae (P ), and RM as output. The parameters that have the

most influence on the dynamics of the model with respect to each of the six response

functions are highlighted in bold font. “Notation: a line (−) indicates the associated

model parameter does not appear in the expression for RM”.
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2.5 Analysis of Non-autonomous Model

In this section, the full non-autonomous model (2.3.1) will be analyzed.

2.5.1 Computation of Vectorial Reproduction Ratio

The vectorial reproduction ratio, associated with the non-autonomous model (2.3.1),

will be computed using the operator theory approach in Bacaér (2007, 2009, 2011);

Bacaér and Abdurahman (2008); Bacaér and Guernaoui (2006); Bacaér and Ouifki

(2007); Wang and Zhao (2008). The next generation matrices F (t) and V (t), asso-

ciated with the non-autonomous model (2.3.1) (linearized at the trivial equilibrium

T0), are given, respectively, by:

F (t) =


0 0 F1(t)

0 0 0

0 0 0

 and V (t) =


V1(t) 0 0

V2(t) V3(t) 0

0 V4(t) V5(t)

 ,
where,

F1(t) =


0 0 ψU(t)

0 0 0

0 0 0

 , V1(t) =


CE(t) 0 0

−σE(t) C1(t) 0

0 −σL1(t) C2(t)

 ,

V2(t) =


0 0 −σL2(t)

0 0 0

0 0 0

 , V3(t) =


C3(t) 0 0

−σL3(t) C4(t) 0

0 −σL4(t) CP (t)

 ,

V4(t) =


0 0 −fσP (t)

0 0 0

0 0 0

 , V5 =


C5(t) 0 −γU

−η∗V C6(t) 0

0 −ατ ∗W C7(t)

 ,
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with, CE(t) = σE(t) + µE(t), Cj(t) = σLj(t) + µL(t) (for i = 1, 2, 3, 4), CP = σP (t) +

µP (t), C5(t) = η∗V + µA(t), C6(t) = τ ∗W + µA(t), C7(t) = γU + µA(t).

The linearized version of the model (2.3.1), at T0, can be expressed as

dx(t)

dt
=
[
F (t)− V (t)

]
x(t),

where x(t) =
(
E(t), L1(t), L2(t), L3(t), L4(t), P (t), V (t),W (t), U(t)

)
. Following Wang

and Zhao (2008), let Y (t, s), t ≥ s, be the evolution operator of the linear ω-periodic

system
dy

dt
= −V (t)y. Thus, for each s ∈ R, the associated 9 × 9 matrix Y (t, s)

satisfies Wang and Zhao (2008)

dY (t, s)

dt
= −V (t)Y (t, s) ∀ t ≥ s, Y (s, s) = I9×9,

where I9×9 is the 9× 9 identity matrix.

Suppose that φ(s) (ω-periodic in s) is the initial distribution of new eggs. Thus,

F (s)φ(s) is the rate of generation (hatching) of new eggs in the breeding habitat at

time s. Since t ≥ s, it follows that Y (t, s)F (s)φ(s) represents the distribution of new

eggs at time s, and became adult at time t. Hence, the cumulative distribution of

new eggs at time t, produced by all adult female mosquitoes (φ(s)) introduced at a

prior time s = t, is given by

Ψ(t) =

∫ t

−∞
Y (t, s)F (s)φ(s) ds =

∫ ∞
0

Y (t, t− a)F (t− a)φ(t− a) da.

Let Cω be the ordered Banach space of all ω-periodic functions from R to R9, which is

equipped with maximum norm and positive cone C+
ω =

{
φ ∈ Cω : φ(t) ≥ 0,∀ t ∈ R

}
[251]. Define a linear operator L : Cω → Cω

(Lφ)(t) =

∫ ∞
0

Y (t, t− a)F (t− a)φ(t− a) da ∀ t ∈ R, φ ∈ Cω.

The vectorial reproduction ratio of the model (2.3.1) (RMt) is then given by the

spectral radius of the linear operator L, (i.e., RMt = ρ(L)).
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Lemma 2.5.1. The model (2.3.1) further satisfies Assumptions A1 − A7 in Wang

and Zhao (2008).

The proof of Lemma 2.5.1 is given in Appendix B. Thus, the following result follows

from Lemma 2.5.1 and Theorem 2.2 in Wang and Zhao (2008).

Theorem 2.5.1. The trivial equilibrium (T0), of the non-autonomous model (2.4.1),

is LAS in Ω if RMt < 1, and unstable if RMt > 1.

Furthermore, the following result holds.

Theorem 2.5.2. The trivial equilibrium (T0) of the non-autonomous model (2.3.1)

is GAS in Ω whenever RMt < 1.

Proof. Consider the non-autonomous model (2.3.1) with RMt < 1. Using the fact

that U(t) ≥ 0 for all t (Lemma 2.3.1) and ψU

(
1 − U(t)

KU

)
+

U(t) ≤ ψUU(t) it then

follows that the non-autonomous model (2.3.1) can be re-written as

dE

dt
≤ ψUU − CE(t)E,

dL1

dt
≤ σE(t)E − C1(t)L1,

dLi
dt

≤ σL(j−1)
(t)L(j−1) − Cj(t)Lj ; i = 2, 3, 4,

dP

dt
= σL4(t)L4 − CP (t)P, (2.5.1)

dV

dt
= σP (t)P + γUU(t)− C5(t)V,

dW

dt
= η∗V V − C6(t)W,

dU

dt
= ατ ∗WW − C7(t)U.

The expressions in (2.5.1), with equalities used in place of the inequalities, can be

re-written in terms of the next generation matrices F (t) and V (t), as follows

dX(t)

dt
= [F (t)− V (t)]X(t). (2.5.2)
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It follows, from Lemma 2.1 in Zhang and Zhao (2007), that there exists a positive

and bounded ω-periodic function, x(t) =
(
Ē, L̄1, L̄2, L̄3, L̄4, P̄ , V̄ , W̄ , Ū

)
(t), such that

X(t) = eθtx(t), with θ =
1

ω
ln ρ
[
φF−V (ω)

]
,

is a solution of the linearized system (2.5.1). Furthermore, it follows from Theorem

2.2 in Wang and Zhao (2008) that RMt < 1 if and only if ρ
[
φF−V (τ)

]
< 1. Hence,

θ is a negative constant. Thus, X(t) → 0 as t → ∞. Thus, the unique trivial

solution of the linear system (2.5.1), given by X(t) = 0, is globally-asymptotically

stable (Lou and Zhao, 2010; Safi et al., 2012)]. For any non-negative initial solu-

tion (E,L1, L2, L3, L4, P, V,W,U)(0))T of the system (2.5.2), there exists a sufficiently

large Q∗ > 0 such that

((E,L1, L2, L3, L4, P, V,W,U)(0))T ≤ Q∗
(
(Ē, L̄1, L̄2, L̄3, L̄4, P̄ , V̄ , W̄ , Ū)(0)

)T
.

Thus, it follows, by comparison theorem (Lakshmikantham and Leela, 1969; Smith,

1996), that

(
E(t), L1(t), L2(t), L3(t), L4(t), P (t), V (t),W (t), U(t)

)
≤ Q∗X(t) for all t > 0,

where Q∗X(t) is also a solution of (2.5.2). Hence,

(
E(t), L1(t), L2(t), L3(t), L4(t), P (t), V (t),W (t), U(t)

)
→
(
0, 0, . . . , 0

)
, as t→∞.

The epidemiological implication of Theorem 2.5.2 is that the mosquito population

(both immature and mature) can be effectively controlled (or eliminated) if the asso-

ciated vectorial reproduction threshold, RMt, can be brought to (and maintained at)

a value less than unity. Thus, any vector control strategy that can reduce RMt to a

value less than unity can lead to the effective control of the mosquito population in

the community.
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2.5.2 Existence of Non-trivial Positive Periodic Solution

In this section, the possibility of the existence of a non-trivial positive periodic solution

for the non-autonomous model (2.3.1) will be explored using uniform persistence

theory (Lou and Zhao, 2010; Smith, 1996; Thieme, 1993; Zhao et al., 2017; Zhi-Fen

et al., 2006). Using notations in Lou and Zhao (2010), it is convenient to define the

following sets (X, X0 and ∂X0):

X = Ω,

X0 =
{
φ = (φ1, φ2, φ3, φ4, φ5, φ6, φ7, φ8, φ9) ∈ X : φi(0) > 0 for all i ∈ {1, 2, . . . , 9}

}
,

∂X0 = X \X0 =
{
φ ∈ X : φi(0) = 0 for some i ∈ {1, 2, . . . , 9}

}
.

Theorem 2.5.3. Consider the non-autonomous model (2.3.1) Let RMt > 1. The

model has at least one positive periodic solution, and there exists a ϕ > 0 such that

any solution u(t, φ) of the model with initial data φ ∈ X0 satisfies

lim inf
t→∞

(E,L1, L2, L3, L4, P, V,W,U)(t) ≥ (ϕ, ϕ, ϕ, ϕ, ϕ, ϕ, ϕ, ϕ, ϕ).

Proof. The proof is based on using uniform persistent theory. Following Lou and

Zhao (2010), let u(t, φ) be the unique solution of the model (2.3.1), with u(0, φ) = φ.

Let Φ(t)ψ = u(t, ψ) and let P : X → X be the Poincaré map associated with the

model (2.3.1). That is, P(φ) = u(ω, φ) for all φ ∈ X. Then, using similar approach

as in Lemma 2.3.1, it can be seen X0 is a positively invariant set. Hence, since the

solutions of model (2.3.1) are uniformly (ultimately) bounded, P is point dissipative

(Lou and Zhao, 2010). It then follows from Theorem 1.1.2 in Zhao et al. (2017)

that P admits a global attractor in X. Thus, it suffices to show that model (2.3.1) is
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uniformly-persistent with respect to (X0, ∂X0). It is convenient to define:

K∂ =
{
φ ∈ ∂X0 : Pn(φ) ∈ ∂X0 for n ≥ 0

}
,

D1 =
{
φ ∈ X : φi = 0 for all i = 1, . . . , 9

}
, (2.5.3)

∂X0 \D1 =
{
φ ∈ X : φi ≥ 0 for some i ∈ [1, 9]

}
.

We claim the following result.

Lemma 2.5.2. K∂ = D1.

Proof. This result can be proved by, first of all, seeing that for any ψ ∈ D1, ui(t, ψ) = 0

for all i = 1, . . . , 9, (hence, D1 ⊂ K∂). Furthermore, for any ψ ∈ ∂X0 \ D1, we can

choose ψi(0) > 0 for all i = 1, . . . , 9, so that u(t, ψ) ∈ X0. This implies that, for any

ψ ∈ ∂X0 \ D1, there exists some n, with nω > t0, such that Pn(ψ) /∈ ∂X0. Hence,

K∂ ⊂ D1.

Thus, it follows from Lemma 2.5.2 that A := {T0} is a compact and isolated invari-

ant set for the Poincaré map P in K∂ and ∪φ∈K∂ω(φ) = A (Lou and Zhao, 2010).

Furthermore, A does not form a cycle in K∂ (and, hence, not in ∂X0). In addition, it

follows from the proof of Theorem 3.2 (Claim 2) in Lou and Zhao (2010) that there

exists an ε > 0 such that

lim sup
t→∞

|Φ(nω)φ− T0| ≥ ε for all φ ∈ X0.

Thus, A is a compact, and an isolated invariant set for P in X and W s(A) ∩X0 = ∅

where W s(A) is the stable manifold of A for P (Lou and Zhao, 2010). Hence, every

trajectory in K∂ converges to A, and {A} is acyclic in K∂ (Zhao et al., 2017). It

then follows from Theorem 1.3.1 in Zhao et al. (2017) that P is uniformly persistent

with respect to X0. Thus, it follows from Theorem 3.1.1 in Zhao et al. (2017) that

the periodic semiflow Φ(t) : X → X is also uniformly persistent to X (Lou and Zhao,
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2010) where Φ(t)ψ = ut(ψ). It then follows from Theorem 4.5 in Magal and Zhao

(2005) (see also Theorem 4.6 in Thieme (1992) and Theorem 3.1 in Zhao (2008)) that

the autonomous model (2.3.1) admits a positive ω-periodic solution T ∗1 = Φ(t)φ∗ with

φ∗ ∈ X0.

It follows, from Theorem 4.5 in Magal and Zhao (2005) (see also Theorem 2.1

in Zhao (1995)), that P : X0 → X0 has a compact global attractor, denoted by

A0. Hence, A0 is invariant for P (that is, A0 = P(A0) = Φ(ω)A0). Furthermore,

let A∗0 :=
⋃

t∈[0,ω]
Φ(t)A0. Then, ψi(0) > 0 for all ψ ∈ A∗0, i = 1, . . . , 9. Since X0 is

invariant, it follows that Φ(t)X0 ⊂ X0. Thus, A∗0 ⊂ X0 and lim sup
t→∞

d(Φ(t)φ,A∗0) = 0

for all φ ∈ X0 (Lou and Zhao, 2010; Zhao, 1995). Also, it follows, by the continuity of

Φ(t)φ for (t, φ) ∈ [0,∞)×X0 and the compactness of [0, τ ]×A0, that A∗0 is compact

in X0 (Lou and Zhao, 2010; Zhao, 1995). Thus, inf
φ∈A∗0

d(φ, ∂X0) = min
φ∈A∗0

d(φ, ∂X0) > 0

(Lou and Zhao, 2010; Zhao, 1995). Consequently, there exists ϕ > 0 such that

lim inf
t→∞

min
(
E(t, φ), L1(t, φ), L2(t, φ), L3(t, φ), L4(t, φ), P (t, φ), V (t, φ),W (t, φ), U(t, φ)

)
= lim inf

t→∞
d(φ, ∂X0) ≥ ϕ, for all φ ∈ X0.

In particular, lim inf
t→∞

min(Φ(t)φ∗) ≥ ϕ. Hence, ui(t, φ) > 0, i = 1, . . . , 9 for all

t ≥ 0.

The ecological implication of Theorem 2.5.3 is that the mosquito population will

persist in the community if RMt > 1. The theoretical results obtained in Theorems

(2.5.1), (2.5.2) and (2.5.3) show that the two models (2.3.1) and (2.4.1) have the same

dynamics with respect to the elimination or persistence of the mosquito population

in the community. In other words, adding the effect of local climate variability on the

autonomous model (2.4.1) does not alter its dynamics with respect to the asymptotic

stability of its steady-state solutions.
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2.6 Numerical Simulations

The non-autonomous model (2.3.1) will now be simulated to assess the effect of the

two climate variables (temperature and rainfall) on the population dynamics of adult

mosquitoes in a community. Suitable functional forms for the temperature- and

rainfall-dependent functions, relevant to Anopheles mosquitoes as defined in Section

2.3.1, will be used in the simulations. For these simulations, water temperature (TW )

is taken to be defined by TW = TA+3◦C. Furthermore, the simulations are carried out

using the parameter values in Table 2.3 (with a fixed nutrient value of N = 100, 000).

The combined effect of mean monthly temperature and rainfall is assessed by

simulating the model (2.3.1) using various mean monthly temperature and rainfall

values in the range [16−40]◦C and [90−120] mm, respectively (the temperature ranges

for most tropical and sub-tropical regions of the world lie within this temperature

range (Belda et al., 2014)). The results obtained for this general settings (as measured

in terms of the total number of adult female mosquitoes), depicted in Figure 2.8, show

that the total mosquito population (of a typical community with the aforementioned

temperature and rainfall ranges) is maximized when the mean monthly temperature

and rainfall values lie in the range [20− 25]◦C and [105− 115] mm, respectively.

Furthermore, simulations were carried out using weather (temperature and rain-

fall) data for three cities in Africa, namely, KwaZulu-Natal, South-Africa (Southern

Africa); Lagos, Nigeria (Western Africa) and Nairobi, Kenya (Eastern Africa) (see

profiles Tables 2.6, 2.7 and 2.8, respectively). While the peak mosquito abundance

for KwaZulu-Natal (Figure 2.9a) and Lagos (Figure 2.9b) occur when the tempera-

ture and rainfall values lie in the range [22− 25]◦C, [98− 121] mm (occurring during

the months of January, March, April, November and December) and [24 − 27]◦C

[113 − 255] mm (occurring during the months of May, July, August, September and

73



October) respectively, the peak mosquito abundance for Nairobi (Figure 2.9c) occurs

for temperature and rainfall ranges [20.5 − 21.5]◦C and [50 − 120] mm (occurring

during the months of January, February, March and April).

Figure 2.8: Simulation of the model (2.3.1), using parameter values in Table 2.3,

showing the total number of adult female mosquitoes (AM) for various values of

mean monthly temperature and rainfall values in the range TA (TW ) ∈ [16 − 40]◦C

and R ∈ [90− 120] mm.

2.7 Summary of Results

In this chapter, a new mathematical model for the population biology of the mosquito

(the world’s deadliest animal, which accounts for 80% of vector-borne diseases of
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Figure 2.9: Simulation of non-autonomous model (2.3.1), showing the total number of

adult female mosquitoes (AM) for three cities in sub-Saharan Africa: (a) KwaZulu-

Natal, South-Africa (RIM = 200 mm); (b) Lagos, Nigeria (RIM = 400 mm); (c)

Nairobi, Kenya (RIM = 200 mm).

humans) is presented. Some of the notable features of the model include:

(i) incorporating four developmental stages of the mosquito larvae (i.e., the four

instar larval stages, L1, L2, L3, L4);

(ii) including density-dependence for the eggs oviposition process given by the lo-
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gistic term

(
ψU

(
1− U

KU

))
and larval mortality rates (i.e., δL 6= 0);

(iii) including the gonotrophic cycle of the adult female mosquitoes (i.e., compart-

ments U, V and W ).

The model, which takes the form of a non-autonomous deterministic system of non-

linear differential equations, is used to assess the impact of temperature and rainfall

on the population dynamics of the mosquito. The main findings, with regards the

theoretical analysis and numerical simulations of the model, include:

(i) The trivial equilibrium of the autonomous version of the model (given by Equa-

tion (2.4.1)) is globally-asymptotically stable whenever the associated vectorial

reproduction number (RM) is less than unity. For the case when RM exceeds

unity, it was shown that the model has at least one non-trivial equilibrium.

Furthermore, the autonomous model has a unique non-trivial equilibrium for

the special case with no density-dependent larval mortality (i. e., δL = 0). Us-

ing the properties of Bèzout matrices, it is shown that this unique non-trivial

equilibrium is shown to be locally-asymptotically stable under certain condi-

tions. Furthermore, the equilibrium bifurcates into a stable limit cycle via a

Hopf bifurcation.

(ii) Uncertainty and sensitivity analysis of the autonomous version of the model

shows that the top five parameters that have the most influence on the dynamics

of the model (with respect to various response functions) are the probability

of adult female mosquito of type W successfully taking a bloodmeal (α), the

natural mortality rate of adult female mosquitoes (µA), the natural mortality

rate of female larvae (µL), the deposition rate of female eggs (ψU) and the

maturation rate of female larvae from Stage 1 to Stage 2 (σL1). Hence, this
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study suggests that the population of adult mosquito in a community can be

effectively-controlled using mosquito-reduction strategies, as well as personal

protection against mosquito bites.

(iii) The trivial periodic solution of the non-autonomous model (2.3.1) is shown to

be locally-asymptotically stable, whenever the spectral radius of a certain linear

operator (denoted by RMt) is less than unity. Furthermore, it is shown, using

uniform persistence theory, that the non-autonomous model (2.3.1) has at least

one positive periodic solution whenever RMt > 1.

Numerical simulations of the non-autonomous model (2.3.1), using the functional

forms of the temperature- and rainfall-dependent parameters of the model given in

Section 2.3.1 and parameter values associated with the population dynamics of the

Anopheles species of mosquitoes (which causes malaria in humans), show the follow-

ing:

(i) For mean monthly temperature and rainfall values in the range [10, 40]◦C and

[90 − 120] mm, respectively, peak mosquito abundance is attained when tem-

perature and rainfall values lie in the range [20 − 25]◦C and [105 − 115] mm,

respectively.

(ii) For mean monthly temperature and rainfall data for three cities in Africa,

namely, KwaZulu-Natal, South-Africa; Lagos, Nigeria and Nairobi, Kenya (Ta-

bles 2.6, 2.7 and 2.8), it is shown that the peak mosquito abundance for KwaZulu-

Natal (Figure 2.9a) and Lagos (Figure 2.9b) occur when the mean temperature

and rainfall values lie in the range [22− 25]◦C, [98− 121] mm (these ranges are

typically recorded during the months of January, March, April, November and

December) and [24 − 27]◦C, [113 − 255] mm (occurring during the months of

May, July, August, September and October) respectively. Similarly, the peak
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mosquito abundance for Nairobi (Figure 2.9c) occur when the mean temper-

ature and rainfall values lie in the range [20.5 − 21.5]◦C and [50 − 120] mm

(recorded during the months of January, February, March and April). Thus,

the results of these simulations can be used, in each of the three chosen cities,

to determine a more suitable time to intensify mosquito control strategies (i.e.,

corresponding to the time periods when the aforementioned temperature and

rainfall are recorded in each of the three chosen cities).
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Control measure Effect on population Effect on vectorial Environmental

by model (2.4.1) dynamics of mosquitoes reproduction number interpretation

RM

Significant reduction Significant decrease in Significant decrease Personal protection

in the value of α: the population size of in the value of RM against mosquito

(probability of succ- adult mosquitoes of bite plays an impor-

essfully taking a blo- type U tant role in minimi-

od meal) zing the size of mosq-

uito population in

the community.

Significant reduction Significant decrease in Significant decrease The removal of

in the value of ψU : the population size of in the value RM mosquito breeding

(deposition rate of all three adult mosquito (egg laying) sites,

female eggs) compartments such as removal of

stagnant waters, is

an effective control

measure against the

mosquito population.

Significant reduction Significant decrease in Significant decrease The removal of

in the value of σLi the population size of in the value RM mosquito breeding

(maturation rate of all three adult mosquito sites and use of

female larvae) compartments larvicides are effective

and significant incr- control measures

ease of µL against the mosquito

(natural mortality population.

rate of female larvae)

Significant increase Significant decrease in Significant decrease The use of insecticides

in the value of µA: the population size of in the value of RM and insecticides treat-

(natural mortality adult mosquitoes of ed bednets (ITNs) are

rate of adult female type U important control

mosquitoes) measures against the

mosquito population.

Table 2.5: Control measures suggested by the sensitivity analysis of the model (2.4.1).
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Month Jul Aug Sept Oct Nov Dec Jan Feb Mar Apr May Jun

Temperature (◦C) 17.5 18.5 20 21.0 22.5 22.0 25 25 25.5 22.5 20 17.5

Rainfall (mm) 48.2 32.3 65.2 107.1 121 118.3 124 142.2 113 98.1 35.4 34.7

Table 2.6: Monthly mean temperature (in 0C) and rainfall (in mm) for KwaZulu-

Natal, South Africa [1].

Month Jul Aug Sept Oct Nov Dec Jan Feb Mar Apr May Jun

Temperature (◦C) 25.5 25 24 25.5 26 26.5 25.5 26 27 27.5 27 26.5

Rainfall (mm) 255 115 162 113 57 15 20 55 80 150 210 320

Table 2.7: Monthly mean temperature (in 0C) and rainfall (in mm) for Lagos, Nigeria

[2].

Month Jul Aug Sept Oct Nov Dec Jan Feb Mar Apr May Jun

Temperature (◦C) 17.5 18 19 20.5 20 19.5 20.5 20.5 21.5 20.5 19.5 18.5

Rainfall (mm) 14.5 29.8 21.3 36.7 151 79.1 73.9 48.8 89.2 119.9 129.4 15.8

Table 2.8: Monthly mean temperature (in 0C) and rainfall (in mm) for Nairobi, Kenya

[4].
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Chapter 3

WEATHER-DRIVEN MALARIA TRANSMISSION MODEL WITH

GONOTROPHIC AND SPOROGONIC CYCLES

3.1 Introduction

Malaria is a complex disease (with complex vector-host-parasite dynamics), and real-

istically modeling its transmission dynamics (especially when climate effects are taken

into account) is inherently complex. Consequently, realistically modeling of malaria

transmission dynamics subject to variability in local climate variables will require the

use of a reasonably complex model. Therefore, while the focus of this chapter is on

the design of a model that incorporates these complexities (hence, more realistic),

comparison will be made with simplified versions of the model (to determine what

features of the complex model may, or may not, be safely relaxed, without compromis-

ing the model’s ability to capture the disease dynamics, or observed data, reasonably

well). In other words, the main aim of this chapter is to design a realistic model for

malaria transmission dynamics, which is reasonably tractable enough for mathemat-

ical analysis and computation. In particular, a new malaria model that incorporates

crucial aspects of malaria transmission dynamics, such as the aquatic structure (i.e.,

the dynamics of immature mosquitoes), mosquito gonotrophic and sporogonic cycles

and increased malaria immunity in humans due to recovery from past exposure, will

be developed.

The model to be designed is based on subdividing the total human popula-

tion at time t (denoted by NH(t)) into mutually-exclusive compartments of wholly-

susceptible (SH(t)) humans, uninfected humans with reduced susceptibility to malaria
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infection due to recovery from prior malaria infection (WH(t)), exposed (infected but

not yet infectious) humans without immunity to malaria (i.e., exposed and malaria-

naive humans) (EHN(t)), exposed humans with partial immunity to malaria due to

recovery from prior infection (EHR(t)), symptomatic and infectious humans (IH(t)),

asymptomatically-infectious humans (AH(t)) and recovered (RH(t)) humans. Thus,

NH(t) = SH(t) + WH(t) + EHN(t) + EHR(t) + IH(t) + AH(t) + RH(t). Similarly,

the total mosquito population at time t (denoted by NV (t)) is sub-divided into sub-

populations of immature (aquatic stages) mosquitoes (denoted by AM(t)) and adult

female mosquitoes (denoted by NM(t)), so that NV (t) = AM(t) + NM(t). The total

immature mosquito population at time t is sub-divided into compartments for eggs

(E(t)), four larval (instar) stages (L1(t), L2(t), L3(t), L4(t)) and pupae (P (t)), so that

AM(t) = E(t) +L1(t) +L2(t) +L3(t) +L4(t) +P (t). The female mosquito lifecycle is

defined by the gonotrophic cycle (Greek for “offspring feeding”), classically divided

into the following three stages Detinova et al. (1962); Mala et al. (2014):

1. Stage I: Search for suitable host and the taking of a bloodmeal.

2. Stage II: Digestion of bloodmeal and egg maturation.

3. Stage III: Search for, and oviposition into, a suitable body of water (breeding

site).

Vectors in Stages I, II and III at time t are denoted by X(t), Y (t) and Z(t), respec-

tively. Vectors in each of these compartments are further subdivided into susceptible

(SX(t), SY (t), SZ(t)), exposed (EX(t), EY (t), EZ(t)) and infected (IX(t), IY (t), IZ(t))

vectors (where the exposed vector classes are included to account for the vector sporo-

gonic cycle). Thus,

NM(t) = SX(t) + EX(t) + IX(t) + SY (t) + EY (t) + IY (t) + SZ(t) + EZ(t) + IZ(t).
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3.2 Literature Review: Mathematical Modeling of Malaria Transmission Dynamics

Malaria is one of the earliest diseases that has been subject to extensive mathemati-

cal inquiry, dating back to the pioneering works of Sir Ronald Ross (who discovered

the malaria lifecycle) in the early 1900s (Ross et al., 1916), and its extensions in the

early 1950s by the highly influential British malariologist George Macdonald Mac-

donald et al. (1957). Since these seminal works, numerous mathematical models have

been introduced to study malaria transmission. Since the 1990s, numerous authors

(e.g., Agusto et al. (2015); Christiansen-Jucht et al. (2015); Paaijmans et al. (2010c);

Parham et al. (2012); Yang et al. (2009)) have turned to modeling to quantify the

impact of weather and climate on malaria transmission, mainly focusing on tempera-

ture and rainfall, and how anthropogenic climate change might be expected to affect

(potential) disease burden, especially in tropical Africa.

The models used to gain insight into the likely impact of anthropogenic (man-

made) climate change on malaria transmission dynamics and control are typically

statistical (using data and statistical approaches to correlate some climate variables

with malaria incidence) or mechanistic (accounting for the detailed dynamic nonlin-

ear processes involved in disease transmission, also sometimes referred to as “process-

based”) in nature. These models have (generally) reached divergent conclusions, with

some predicting a large expansion in the continental land area suitable for transmis-

sion (Caminade et al., 2014; Martens, 1999; Tanser et al., 2003) and in the number

of people at risk of malaria (Martens, 1999; Pascual and Bouma, 2009; Patz et al.,

1996), while others predict only modest poleward (and altitudinal) shifts in the bur-

den of disease, with little net effect (Gething et al., 2010; Hay et al., 2002; Rogers

and Randolph, 2000), and the issue remains unresolved thus far. In other words,

the current related debate within the ecology community is on poleward-expansion of
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malaria from tropical latitudes vs. poleward-shift-with-no-net-expansion in malaria

cases. Similarly, malaria burden may expand into equatorial highland areas, such as

those of eastern Africa, with uncertain changes at lower altitude (Bhattacharya et al.,

2006; Gething et al., 2010; Lafferty, 2009; Lafferty and Mordecai, 2016; Pascual and

Bouma, 2009; Rogers and Randolph, 2000).

It is now generally believed that, in the context of malaria for example (and if

non-climatic human factors are not taken into account), climate warming will lead to

poleward expansion of malaria from tropical latitudes (Gething et al., 2010; Rogers

and Randolph, 2000). Additionally, models differ regarding the expected optimum

temperature for transmission (Mordecai et al., 2013) (in particular, Mordecai et al.

(2013) showed that models which use monotonic functions for the vector and parasite

temperature-dependent vital rates, may have over-estimated the optimal tempera-

ture range for malaria transmission). Although, most of the above modeling studies

used constant or mean monthly temperature in their formulation, recent studies have

shown that a more realistic approach is to incorporate daily (diurnal) temperature

fluctuations in the model (Beck-Johnson et al., 2013, 2017; Paaijmans et al., 2010a).

The parasite sporogonic and vector gonotrophic cycles are clearly central to malaria

transmission dynamics and should be incorporated into mathematical models of

malaria transmission for such dynamics (Detinova et al., 1962; Eikenberry and Gumel,

2018). To explicitly account for the effect of the gonotrophic cycle on malaria trans-

mission, Ngonghala et al. (2012) considered a mathematical model for the dynam-

ics of malaria transmission that includes the gonotrophic cycle of the adult female

mosquitoes and its interaction with the human population. The model by Ngonghala

et al. (2012) does not incorporate the vector sporogonic cycle (i.e., it assumes that

newly-infected mosquito is instantaneously capable of transmitting infection without

necessarily completing the sporogonic cycle). To establish the epidemiological effec-
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tiveness of malaria vectors and its implications on malaria incidence in human host

populations, it is necessary to incorporate the duration of the temperature-dependent

gonotrophic and sporogony cycles of the transmitting vector (Detinova et al., 1962).

The model to be designed in this chapter extends the previous (autonomous)

model by Ngonghala et al. (2012), which has only two classes of (susceptible and in-

fectious) mosquitoes for each stage of the gonotrophic cycle, to include the sporogonic

cycle (i.e., have three classes of susceptible, exposed and infectious mosquitoes) for

each stage of the gonotrophic cycle of the adult female mosquitoes. This allows for

a comprehensive (and a more realistic) modeling, and a quantitative understanding

of the effect of temperature-dependent gonotrophic and sporogonic cycles on malaria

transmission dynamics. Furthermore, the model to be designed considers disease

transmission to vectors by asymptomatically-infectious humans, reduced malaria sus-

ceptibility in humans due to recovery from prior malaria infection, the possibility of

progression from a symptomatically infected to asymptomatically infected state, and

the complete loss of partial immunity in humans.

3.3 Weather-driven Model for Malaria Transmission Dynamics

The model is designed by monitoring the temporal dynamics of the mosquito (imma-

ture and adult) and human populations, as follows.

3.3.1 Dynamics of Immature Mosquitoes

The population of mosquito eggs is generated at the logistic rate:

ψEϕZ

(
1− E

KE

)
+

(SZ + EZ + IZ),

where ψE is the number of eggs laid per oviposition, ϕZ is the rate at which female

mosquitoes transition from Stage III to Stage I of the gonotrophic cycle (i.e. the rate of
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oviposition for mosquitoes in Stage III) and KE is the environmental carrying capacity

of eggs (as in Chapter 2, the notation r+ = max{0, r > 0} is used to ensure the non-

negativity of the logistic term). The parameters µi(TW ) and ηi (i = E,L, P ) represent

the temperature-dependent and temperature-independent death rates, respectively,

for immature mosquitoes of type i, where the latter may be due to processes such

as predation, anthropogenic vector control measures, etc. Density-dependent larval

mortality occurs at a rate kLL (where L = L1 +L2 +L3 +L4). Furthermore, σE(TW )

is the temperature-dependent hatching rate of eggs into larvae, σLj(TW )(j = 1, 2, 3)

is the temperature-dependent progression rate of larvae from Stage j to Stage j + 1

and σP (TW ) is the temperature-dependent rate at which pupae mature into adult

mosquitoes.

Based on the above formulation and assumptions, the equations for the dynamics

of the immature Anopheles mosquitoes are given by (Okuneye et al., 2018b):

dE

dt
= ψEϕZ

(
1− E

KE

)
+

(SZ + EZ + IZ)−
[
σE(TW ) + ηE + µE

]
E,

dL1

dt
= σE(TW )E −

[
σL1(TW ) + ηL + kLL+ µL(TW )

]
L1,

dLj
dt

= σL(j−1)
(TW )Lj−1 −

[
σLj(TW ) + ηL + kLL+ µL(TW )

]
Lj, j = 2, 3, 4,

dP

dt
= σL4(TW )L4 −

[
σP (TW ) + ηP + µP

]
P.

(3.3.1)

3.3.2 Dynamics of Adult Female Mosquitoes: Gonotrophic and Sporogonic Cycles

We first note that only mosquitoes in Stage I of the gonotrophic cycle (i.e., of typeX in

our formulation, regardless of infection status) will bite humans (i.e., only mosquitoes
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in classes SX , EX and IX will bite humans). Furthermore, it is convenient to define

the quantity

GH =
IH + AH
NH

, (3.3.2)

as the proportion of infectious humans in the community.

The equations for the dynamics of the adult mosquitoes (taking into account the

gonotrophic and sporogonic cycles) are given by (Okuneye et al., 2018b):

dSX
dt

= fσP (TW )P + ϕZSZ −
[
bHpH + ηM + µM(TA)

]
SX ,

dEX
dt

= ϕZEZ −
[
bHpH + κM(TA) + ηM + µM(TA)

]
EX ,

dIX
dt

= ϕZIZ + κM(TA)EX −
[
bHpH + ηM + µM(TA)

]
IX ,

dSY
dt

= bHpH(1− βV )GHSX + bHpH(1− GH)SX −
[
θY (TA) + ηM + µM(TA)

]
SY ,

dEY
dt

= bHpHβV GHSX + bHpHEX −
[
θY (TA) + κM(TA) + ηM + µM(TA)

]
EY ,

dIY
dt

= κM(TA)EY + bHpHIX −
[
θY (TA) + ηM + µM(TA)

]
IY , (3.3.3)

dSZ
dt

= θY (TA)SY −
[
ϕZ + ηM + µM(TA)

]
SZ ,

dEZ
dt

= θY (TA)EY −
[
ϕZ + κM(TA) + ηM + µM(TA)

]
EZ ,

dIZ
dt

= θY (TA)IY + κM(TA)EZ −
[
ϕZ + ηM + µM(TA)

]
IZ ,

where f is the fraction of new adult mosquitoes that are females, σP (TW ) and ϕZ are

as defined above, bH is the percapita biting rate of adult female mosquitoes (during

Stage I of the gonotrophic cycle) and pH is the probability that female mosquitoes

(in Stage I) successfully take a bloodmeal from humans. Stage II of the gonotrophic

cycle progresses at rate θY (TA), and is thus the transition rate from the Y to Z

mosquito class. The parameters µM(TA) and ηM represent, respectively, the natural

temperature-dependent and temperature-independent adult mosquito death rates,

with the latter possibly related to predation, accidents, or human vector control
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measures. Parasites mature in exposed mosquitoes at a temperature-dependent rate

κM(TA). The parameter βV is the transmission probability from infectious human to

a susceptible mosquito and the quantity GH is as defined in Equation (3.3.2).

3.3.3 Human Dynamics

The equations for the dynamics of the human populations are given as (Okuneye

et al., 2018b):

dSH
dt

= ΠH − λH(NV , NH)SH + ρHWH − µHSH ,

dWH

dt
= ξHRH − (1− ε)λH(NV , NH)WH − (ρH + µH)WH ,

dEHN
dt

= λH(NV , NH)SH − (γHN + µH)EHN ,

dEHR
dt

= (1− ε)λH(NV , NH)WH − (γHR + µH)EHR, (3.3.4)

dIH
dt

= rγHNEHN + qγHREHR − (αH + νH + µH + δH)IH ,

dAH
dt

= (1− r)γHNEHN + (1− q)γHREHR + νHIH − (αHA + µH + δHA)AH ,

dRH

dt
= αHIH + αHAAH − (ξH + µH)RH ,

where ΠH is the recruitment rate (by birth or immigration) and λH is the force of

infection of susceptible humans (by infectious adult female mosquitoes of type X),
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given by

λH = bHβHpH
IX
NH

,

where bH is the effective per capita biting rate of adult female mosquitoes during

the first stage (X) of the gonotrophic cycle and βH is the probability of infection

of susceptible humans per bite by an infectious mosquito. Furthermore, µH is the

natural death rate of humans and ξH is the rate at which initially-recovered humans

progress to the partially-immune class. It is assumed that individuals who recovered

from malaria acquire partial protective immunity against further infection (and move

to the WH class) (Doolan et al., 2009). The parameter 0 < ε < 1 accounts for reduced

susceptibility to infection, per se, among individuals in the WH class; those humans

who are infected from the WH class transition to the exposed class EHR, and are

more likely to then become asymptomatic than those exposed from the malaria-naive

state (EHN). Partially immune individuals eventually lose immunity at rate ρH (to

become wholly-susceptible again).

The parameter γHR (γHN) models the transition out of the exposed EHR (EHN)

class, a proportion r (q) of which develops clinical symptoms of malaria (and moves to

the IH class), while the remaining proportion, 1−r (1−q), becomes asymptomatically-

infectious (and moves to the AH class); it is assumed that susceptible mosquitoes in

Stage I of the gonotrophic cycle can acquire malaria infection by biting both symp-

tomatic and asymptomatically infected humans (IH and AH classes) (Laishram et al.,

2012). Symptomatic humans progress to the asymptomatic class AH at a rate νH .

Infectious humans in the IH (AH) recover at a rate αH (αHA) and die due to malaria

at rate δH (δHA). The flow diagram of the model is depicted in Figure 3.1, and the

state variables of the model are described in Table 3.1.

The model {(3.3.1), (3.3.3), (3.3.4)} includes numerous key aspects of malaria dis-
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Figure 3.1: Flowchart of model {(3.3.1), (3.3.3), (3.3.4)}.

ease (e.g., mosquito life-cycle, density-dependent larval mortality, reduced suscepti-

bility due to prior infection and climate change effects). Hence, it can be used to

realistically assess the impacts of microclimate on malaria dynamics and control.

Formulation of Thermal-response Functions

In this section, only the thermal response function associated with the gonotrophic

and sporogonic cycle will be discussed (other thermal response functions related im-

mature and adult mosquitoes have been described in Section 2.3.1).
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Variables Description

E Population of eggs

Lj Population of larvae at Stage j (with j = 1, 2, 3, 4)

P Population of pupae

SX , EX , IX Population of susceptible, exposed, and infectious

female mosquitoes in gonotrophic Stage I, respectively

SY , EY , IY Population of susceptible, exposed, and infectious

female mosquitoes in gonotrophic Stage II, respectively

SZ , EZ , IZ Population of susceptible, exposed, and infectious,

exposed, infectious adult female mosquitoes in gonotrophic

Stage III, respectively

SH Population of wholly-susceptible humans

WH Population of susceptible humans with reduced malaria

susceptibility due to prior recovery from malaria

EHN Population of exposed humans without prior immunity

(i.e., exposed and malaria-naive humans)

EHR Population of exposed humans with partial malaria immunity

due to recovery from prior immunity infection

IH Population of symptomatically-infectious humans

AH Population of asymptomatically-infectious humans

RH Population of recovered humans

Table 3.1: Description of state variables of the model {(3.3.1), (3.3.3), (3.3.4)}.

Plasmodium’s Sporogonic Cycle

Mosquito sporogony is modeled as follows. The transition rate from the exposed

to infectious mosquito class (κM(TA)) is the inverse of the mean sporogonic cycle
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duration (in days). The Moshkovsky formula (Detinova et al., 1962) is used, such

that:

1

κM(TA)
=

D

TA − Tmin
,

where D = 111 and Tmin = 16◦C (Detinova et al., 1962). We assume that, above

some temperature, Tmax, sporogony ceases (i.e., κM(TA) = 0), with Tmax = 40 ◦C.

That is (Okuneye et al., 2018b),

κM(TA) =


TA − 16

111
, if 16◦C < TA < 40◦C,

0, if TA ≤ 16◦C, TA ≥ 40◦C.

Adult Female Mosquito Gonotrophic Cycle

Mosquito gonotrophy is modeled as follows. The rate at which mosquitoes complete

Stage II of the gonotrophic cycle (i.e., the transition from the Y to Z compartments)

is given by Moshkovky’s formula (Detinova et al., 1962):

θY (TA) =


TA − 9.9

36.5
, if 9.9◦C < TA < 40◦C,

0, if TA ≤ 9.9◦C, TA ≥ 40◦C.

Mosquitoes are assumed to bite once every gonotrophic cycle, which is subdivided

into three stages, progressing at rates bH , ϕZ , and θY , respectively. Therefore, the

overall biting rate (the inverse of the gonotrophic cycle length Mordecai et al. (2013)),

in days−1, is given as (Mordecai et al., 2013):

Γ =

(
1

bH
+

1

ϕZ
+

1

θY

)−1
.

It should be noted that Γ is temperature-dependent, since it is a function of θY .

Thus, no biting occurs when temperatures are extreme (i.e., when T (t) ≤ 9.9◦C and

T (t) ≥ 40◦C).
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Figure 3.2: (A) Sporogonic cycle duration in adult female mosquitoes, (κM(TA))−1

(B) Duration of Stage II of the gonotrophic cycle.

3.3.4 Basic Properties

Model Invariant Region

Lemma 3.3.1. Each component of the solution of the model {(3.3.1), (3.3.3), (3.3.4)},

subject to non-negative initial conditions, remains nonnegative and bounded for all

t > 0.

Proof. Since the functions on the right-hand side of the model {(3.3.1), (3.3.3), (3.3.4)}

(denoted by Q(t, φ), where φ ∈ R22
+ ) is continuous and Lipschitzian at t = 0, then for

each non-negative initial condition, the model has a unique and non-negative solution

in R22
+ . In addition, using similar approach as in Section 2.3.2, it should be noted

that Qi(t, φ) ≥ 0 whenever φ ≥ 0 and φi = 0 (Lou and Zhao, 2010). Hence, it follows

from Theorem A.4 in Thieme (2003) that the region R22
+ is positively-invariant with

respect to the model {(3.3.1), (3.3.3), (3.3.4)}.

The boundedness of the solutions of the model {(3.3.1), (3.3.3), (3.3.4)} is shown

as follows:
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(i) Immature and adult mosquito compartments :

Since

(
1− E

KE

)
+

≥ 0, then E(t) ≤ KE for all t. Thus, using Definition 2.3.1,

it can be deduced from the second equation of (3.3.1) (i.e., using the equation

for the first larval instar stage, L1) that,

dL1

dt
= σE(t)E − [σL1(t) + ηL + kLL+ µL(t)]L1 ≤ σ∗EKE − (σL1∗ + ηL + µL∗)L1,

so that lim sup
t→∞

L1(t) ≤
σ∗EKE

σL1∗ + ηL + µL∗
= L1. Similarly, the following bounds

are obtained: lim sup
t→∞

Lj(t) ≤ Lj, (for j = 2, 3, 4) and lim sup
t→∞

P (t) ≤ P .

Furthermore, the equation for the rate of change of the total adult mosquitoes

population (NV (t)) is given by:

dNV

dt
= fσP (t)P − [ηM + µM(t)]NV ≤ fσ∗PP − (ηM + µM∗)NV .

from which it follows that lim sup
t→∞

NV (t) ≤ fσ∗PP

ηM + µM∗
= NV .

(ii) Human compartments

The equation for the rate of change of the total human population (NH(t)):

dNH

dt
= ΠH − µHNH(t)− δHAAH(t)− δHIH(t) ≤ ΠH − µHNH(t),

so that NH(t) =
ΠH

µH
+
[
NH(0)−ΠH

µH

]
e−µH t. Thus, NH ≤

ΠH

µH
if NH(0) ≤ ΠH

µH
. In

addition, if NH(0) >
ΠH

µH
, then NH(t)→ ΠH

µH
as t→∞. That is, lim sup

t→∞
≤ ΠH

µH
.

It is convenient to define the set of variables B by:

B =
(
SH ,WH , EHN , EHR, IH , AH , RH , E, L1, L2, L3, L4, P, SX , EX , IX , SY , EY , IY , SZ , EZ , IZ

)
.

(3.3.5)
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Consider the region:

Ω =
{
B(t) ∈ R22

+ : NH(t) ≤ ΠH

µH
, 0 ≤ E(t) < KE , 0 ≤ Lj(t) ≤ Lj (j = 1, 2, 3, 4),

0 ≤ P (t) ≤ P , 0 ≤ NV (t) ≤ NV

}
.

Thus, it follows from Lemma 3.3.1 that Ω is positively-invariant for the model

{(3.3.1), (3.3.3), (3.3.4)}. Hence, it is sufficient to consider the dynamics of the model

in Ω (Hethcote, 2000).

3.4 Analysis of Autonomous Version of the Model

As in Chapter 2, it is instructive to, first of all, to gain insight into the dynam-

ics of the autonomous version of the model {(3.3.1), (3.3.3), (3.3.4)}. Setting the

temperature-dependent parameters of the model to constants give the following au-

tonomous version of the model {(3.3.1), (3.3.3), (3.3.4)} (denoted as the “autonomous
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model”; the parameters of the model (3.4.1) are described in Table 3.2):

dE

dt
= ψEϕZ

(
1− E

KE

)
+

(SZ + EZ + IZ)− (σE + ηE + µE)E,

dL1

dt
= σEE − (σL1 + ηL + kLL+ µL)L1,

dLj
dt

= σL(j−1)
Lj−1 − (σLj + ηL + kLL+ µL)Lj , j = 2, 3, 4,

dP

dt
= σL4L4 − (σP + ηP + µP )P,

dSX
dt

= fσPP + ϕZSZ − (bHpH + ηM + µM )SX ,

dEX
dt

= ϕZEZ − (bHpH + κM + ηM + µM )EX ,

dIX
dt

= ϕZIZ + κMEX − (bHpH + ηM + µM )IX ,

dSY
dt

= bHpH(1− βV )GHSX + bHpH(1− GH)SX − (θY + ηM + µM )SY ,

dEY
dt

= bHpHβV GHSX + bHpHEX − (θY + κM + ηM + µM )EY ,

dIY
dt

= κMEY + bHpHIX − (θY + ηM + µM )IY ,

dSZ
dt

= θY SY − (ϕZ + ηM + µM )SZ ,

dEZ
dt

= θYEY − (ϕZ + κM + ηM + µM )EZ ,

dIZ
dt

= θY IY + κMEZ − (ϕZ + ηM + µM )IZ ,

dSH
dt

= ΠH − bHβH
IX
NH

SH + ρHWH − µHSH ,

dWH

dt
= ξHRH − (1− ε)bHβH

IX
NH

WH − (ρH + µH)WH ,

dEHN
dt

= bHβH
IX
NH

SH − (γHN + µH)EHN ,

dEHR
dt

= (1− ε)bHβH
IX
NH

WH − (γHR + µH)EHR,

dIH
dt

= rγHNEHN + qγHREHR − (αH + νH + δH + µH)IH ,

dAH
dt

= (1− r)γHNEHN + (1− q)γHREHR + νHIH − (αHA + δHA + µH)AH ,

dRH
dt

= αHIH + αHAAH − (ξH + µH)RH ,

(3.4.1)
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with L =
4∑
j=1

Lj and GH =
IH + AH
NH

.

Vectorial Reproduction Number (RMP )

It is convenient to define the threshold quantity:

RMP =

ψEϕZσE

4∏
k=1

σLkfσP θY bHpH

(
σE + ηE + µE

)(
σP + ηP + µP

)(
CXCY CZ − θY bHpHϕZ

) 4∏
k=1

(
σLk + ηL + µL

) ,
where CX = bHpH + ηM + µM , CY = θY + ηM + µM , CZ = ϕZ + ηM + µM and

CXCYCZ−θY bHpHϕZ =
(
ηM +µM

)[
CZ(CX +θY )+bHpHθY

]
> 0 (so that RMP > 0).

The procedure to obtain (and interpretation of) threshold quantity (RMP ) is similar

to the vectorial reproduction number described in Chapter 2 (Section 2.4.1, Equation

2.4.2). That is, it measures the average number of new adult female mosquitoes

produced by one reproductive mosquito during its entire reproductive period.

3.4.1 Existence and Asymptotic Stability of Disease-free Equilibria

For mathematical tractability, the analysis for the existence and asymptotic stability

of the disease-free equilibrium of the autonomous model (3.4.1) will be carried out

for the special case with no density-dependent larval mortality (i.e., kL = 0).

Definition 3.4.1. Given B(t) as the vector of state variables defined in Equation

(3.3.5), it is convenient to define

B� =
(
S�
H ,W

�
H , E

�
HN , E

�
HR, I

�
H , A

�
H , R

�
H , E

�, L�
1, L

�
2, L

�
3, L

�
4, P

�, S�
X , E

�
X , I

�
X , S

�
Y , E

�
Y , I

�
Y , S

�
Z , E

�
Z , I

�
Z

)
.

The following results follow from model (3.4.1):

(i) The model (3.4.1) has a trivial disease-free equilibrium (TDFE), where no

mosquitoes exist, given by:

T0 =
(ΠH

µH
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

)
.
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(ii) The model (3.4.1), with kL = 0 has a unique non-trivial disease-free (mosquito-

present) equilibrium (NDFE), given by,

E0 = B� =
(ΠH

µH
, 0, 0, 0, 0, 0, 0, E�, L�1, L

�
2, L

�
3, L

�
4, P

�, S�X , 0, 0, S
�
Y , 0, 0, S

�
Z , 0, 0

)
,

where,

E�V =KE

(
1− 1

RMP

)
, L�1 =

σE
CL1

E�, L�j =
σLj−1

CLj
L�j−1, (j = 2, 3, 4), P �V =

σL4

CP
L�4,

S�X =
1

CX
(fσPP

� + ϕZS
�
Z), S�Y =

1

CY
bHpHS

�
X , S

�
Z =

θY bHpHfσPP
�

CXCY CZ − θY bHpHϕZ
,

(3.4.2)

with CLj = σLj+ηL+µL (j = 1, 2, 3, 4), CP = σP +ηP +µP , CX = bHpH +ηM +µM ,

CY = θY + ηM + µM , CZ = ϕZ + ηM + µM and CXCY CZ − θY bHpHϕZ =
(
ηM +

µM
)[
CZ(CX + θY ) + bHpHθY

]
> 0. This equilibrium exists if and only if RMP > 1.

Asymptotic Stability of TDFE

Theorem 3.4.1. The TDFE of the model (3.4.1), denoted by T0, is GAS in Ω when-

ever RMP ≤ 1.

The proof of Theorem 3.4.1 is given in Appendix C. It should, however, be stated that

the TDFE (mosquito-free equilibrium), is ecologically unrealistic (since mosquitoes

always exist in the (malaria-endemic) regions of interest).

3.4.2 Basic Reproduction Number (R0)

Asymptotic Stability of NDFE: Special Case

Consider the special case of the autonomous model (3.4.1) with no density-dependent

larval mortality (i.e., kL = 0). Furthermore, let RMP > 1 (so that the unique NDFE,

E0, of the model (3.4.1) exists). It can be shown, using the next generation operator

method Diekmann et al. (1990); van den Driessche and Watmough (2002), that the
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associated reproduction number of the model (3.4.1) (denoted by R0) is given by:

R0 =
√
RHV ×RV H , (3.4.3)

where,

RHV = bHpHβV
S�X
N∗H

[
rγHN
g1

1

g3
+
rγHN
g1

νH
g3

1

g4
+

(1− r)γHN
g1

1

g4

]
, (3.4.4)

and,

RV H = bHβH
S�H
N∗H

κMϕZθY (CYCZ + CY gX + gXgZ)

(CXCYCZ − bHpHϕZθY )(gXgY gZ − bHpHϕZθY )
, (3.4.5)

with N∗H =
ΠH

µH
, g1 = γHN + µH , g2 = γHR + µH , g3 = αH + νH + δH + µH ,

g4 = αHA+δHA+µH , CX = bHpH+ηM+µM , CY = θY +ηM+µM , CZ = ϕZ+ηM+µM ,

gX = CX + κM , gY = CY + κM , gZ = CZ + κM and CXCYCZ − θY bHpHϕZ =(
ηM + µM

)[
CZ(CX + θY ) + bHpHθY

]
> 0. It is worth nothing that, at disease free

equilibrium,
S�H
N∗H

= 1. The result below follows from Theorem 2 of van den Driessche

and Watmough (2002).

Theorem 3.4.2. The NDFE, E0, of the autonomous model (3.4.1), with kL = 0 and

REP > 1, is LAS in Ω \ {T0} if R0 < 1, and unstable if R0 > 1.

Epidemiological Interpretation of Reproduction Threshold (R0)

The threshold quantity R0, given by Equation (3.4.3), measures the average number

of new infections in humans (vectors) generated by an infectious vector (human). Its

components are epidemiologically interpreted as follows.

1. Interpretation of RHV : The quantity RHV , given by (3.4.4), is associated with

the infection of susceptible mosquitoes by infectious (asymptomatic and symp-

tomatic) humans. It can further be expressed as:

RHV = RIHV +RAHV , (3.4.6)
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where,

RIHV = bHpHβV
S�X
N∗H

rγHN
g1

1

g3
and RAHV = bHpHβV

S�X
N∗H

[
rγHN
g1

νH
g3

+
(1− r)γHN

g1

]
1

g4
,

with RIHV accounting for the average number of new infectious adult female

mosquitoes generated by symptomatically-infectious humans (IH) and RAHV

measures the average number of new infectious adult female mosquitoes gener-

ated by asymptomatically-infectious humans (AH). In particular,

i. the quantityRIHV is the product of the infection rate of susceptible mosquitoes

by symptomatically infected humans
(
bHpHβV

S�X
N∗H

)
, the probability that

an exposed human survived theEHN class and moved to the symptomatically-

infected class (IH)
(rγHN

g1

)
, and the average duration in the IH class,( 1

g3

)
;

ii. the quantity RAHV is the product of infection rate of susceptible mosquito

by asymptomatically infected humans
(
bHpHβV

S�X
N∗H

)
, the sum of the prob-

ability that an exposed human survived the EHN and IH classes and moved

to the asymptomatically infected class (AH)
((1− r)rγHN

g1
+
rγHN
g1

νH
g3

)
,

and the average duration in the AH class
( 1

g4

)
.

2. Interpretation of RV H : The threshold quantity RV H , given by (3.4.5), is asso-

ciated with the infection of susceptible humans by infected mosquitoes at Stage

I of the gonotrophic cycle (IX). It can further be expressed as

RV H = bHβH
S�H
N∗H

1

CX

(
RV 1H +RV 2H +RV 3H

)
, (3.4.7)

where, RV 1H ,RV 2H and RV 3H account for all possible routes at which an ex-

posed mosquito in Stage II of the gonotrophic cycle (EY ) mosquito survives to

become (and remain) an infected mosquito at Stage I of the gonotrophic cycle
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(IX) (i.e., the sum RV 1H + RV 2H + RV 3H is the probability that an exposed

mosquito in EY class survives to become an infected mosquito in IX class; see

Appendix D for the derivation of the quantities RV 1H ,RV 2H and RV 3H). It is

convenient to introduce the following notations.

Definition 3.4.2. (a) X → Y means the fraction of adult mosquitoes that

survives the X class and moves to the Y class;

(b) X → Y → Z is the product of the proportions of adult mosquitoes that

survived X → Y and Y → Z transmissions;

(c)
(
→ X → Y → Z

)j
=→ X → Y → Z → X → Y → Z → · · · → X →

Y → Z (j times). That is, for j = 2,
(
→ X → Y → Z

)2
=→ X → Y →

Z → X → Y → Z.

(d)
(
→ X → Y → Z

)◦
= 1.

(i) The quantity RV 1H , which accounts for the infection route (for j, k ∈ Z)

EY → EZ → EX
(
→ EY → EZ → EX

)j → IX
(
→ IY → IZ → IX

)k
,

is given by:

RV 1H =
θY
gY

ϕZ
gZ
×

n∑
j=0

(
bHpH
gX

θY
gY

ϕZ
gZ

)j
× κM
gX
×

m∑
k=0

(
bHpH
CX

θY
CY

ϕZ
CZ

)k
.

That is, there are two routes for an exposed mosquito in the second stage

of the gonotrophic cycle (EY ) to reach IX class (so that it can transmit

infection to a susceptible human), namely

(a) Direct route: EY → EZ → EX → IX (when n = 0);

(b) Indirect route (i.e., EY fails to show symptoms the first time it become

an EX mosquito): EY → EZ → EX
(
→ EY → EZ → EX

)j → IX

(when n > 0).
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This mosquito will remain in IX where it can undergo the gonotrophic

cycle (with m > 0) or not (with m = 0).

(ii) The quantity RV 2H which accounts for the infection route (for j, k ∈ Z)

EY → EZ
(
→ EX → EY → EZ

)j → IZ → IX
(
→ IY → IZ → IX

)k
,

is given by:

RV 2H =
θY
gY
×

n∑
j=0

(
ϕZ
gZ

bHpH
gX

θY
gY

)j
× κM
gZ

ϕZ
CZ
×

m∑
k=0

(
bHpH
CX

θY
CY

ϕZ
CZ

)k
.

(iii) The quantity RV 3H which accounts for the infection route (for j, k ∈ Z)

EY
(
→ EZ → EX → EY

)j → IY → IZ → IX
(
→ IY → IZ → IX

)k
,

is given by:

RV 3H =
n∑
j=0

(
θY
gY

ϕZ
gZ

bHpH
gX

)j
× κM
gY

θY
CY

ϕZ
CZ
×

m∑
k=0

(
bHpH
CX

θY
CY

ϕZ
CZ

)k
.

It is worth nothing that 0 ≤ n,m ≤ 6, since an adult mosquito undergoes the

gonotrophic cycle at most six in its lifetime Maharaj (2003). The quantity RV H

is the product of infection rate of susceptible humans by infected mosquitoes at

Stage I of the gonotrophic cycle
(
bHβH

S�H
N∗H

)
, the probability that an exposed

mosquito at Stage II of the gonogtrophic cycle (EY ) survived to become an

infectious mosquito at Stage I of the gonotrophic cycle (IX) (i.e., the sum of

RV 1H ,RV 2H and RV 3H), and the average duration in the IX class
( 1

CX

)
.

Global Asymptotic Stability of the NDFE: Special Case

The epidemiological implication of Theorem 3.4.2 is that the disease can be effectively

controlled in a population if the initial sizes of the subpopulations of the model are

close enough to the non-trivial disease-free equilibrium (E0). For such control to be
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independent of the initial size of the subpopulation, a global asymptotic stability

result need to be established for the NDFE (E0). This is done below for a special case

of the model (3.4.1) with no disease-induced mortality in the human population (i.e.,

δH = δHA = 0) and no density-dependent larval mortality (i.e., kL = 0).

Theorem 3.4.3. The unique NDFE of the special case of the autonomous version of

the model (3.4.1) with kL = δH = δHA = 0 is GAS in Ω \ {T0} whenever RMP > 1

and R1 = R0

∣∣
δH=δHA=0

< 1.

Proof. Consider the special case of the autonomous model (3.4.1) with δH = δHA = 0

so that NH(t) → N∗H =
ΠH

µH
, as t → ∞. Furthermore, let kL = 0 and RMP > 1 (so

that the unique NDFE, E0, exists) and R1 = R0

∣∣
δH=δHA=0

< 1. Following Dumont

and Chiroleu (2010), it is convenient to re-write the autonomous model (3.4.1) as:

dxS
dt

= A1(x)(xS − xNDFE,S) + A12(x)xI ,

dxI
dt

= A2(x)xI ,

(3.4.8)

where,

xS(t) =
(
SH(t),WH(t), RH(t), E(t), L1(t), L2(t), L3(t), L4(t), P (t), SX(t), SY (t), SZ(t)

)T
,

xI(t) =
(
EHN (t), EHR(t), IH(t), AH(t), EX(t), IX(t), EY (t), IY (t), EZ(t), IZ(t), 0, 0

)T
,

xNDFE,S =
(
S�H , 0, 0, E

�, L�1, L
�
2, L

�
3, L

�
4, P

�
V , S

�
X , S

�
Y , S

�
Z

)T
, with A1(x) =
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

−µH +ρH 0 0 0 0 0 0 0 0 0 0

0 −(ρH+µH ) ξH 0 0 0 0 0 0 0 0 0

0 0 −(ξH+µH ) 0 0 0 0 0 0 0 0 0

0 0 0 −gE−ψEϕZ
SZ

KE

0 0 0 0 0 0 0 ψEϕZ

(
1−

E�

KE

)

0 0 0 σE −gL1 0 0 0 0 0 0 0

0 0 0 0 σL1
−gL2 0 0 0 0 0 0

0 0 0 0 0 σL2
−gL3 0 0 0 0 0

0 0 0 0 0 0 σL3
−gL2 0 0 0 0

0 0 0 0 0 0 0 σL4
−gP 0 0 0

0 0 0 0 0 0 0 fσP −CX 0 0 0

0 0 0 0 0 0 0 0 0 bHpH (1−βV GH ) −CY 0

0 0 0 0 0 0 0 0 0 0 θY −CZ



,

A12(x) =



0 0 0 0 0 bHβH
SH

NH
0 0 0 0 0 0

0 0 0 0 0 (1− ε)bHβH
WH

NH
0 0 0 0 0 0

0 0 αH αHA 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 ψEϕZ

(
1−

E

KE

)
ψEϕZ

(
1−

E

KE

)
0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0



,
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and, A2(x) =

−g1 0 0 0 0 bHβH
SH

NH
0 0 0 0 0 0

0 −g2 0 0 0 (1− ε)bHβH
WH

NH
0 0 0 0 0 0

rγHN qγHR −g3 0 0 0 0 0 0 0 0 0

(1− r)γHN (1− q)γHR νH −g4 0 0 0 0 0 0 0 0

0 0 0 0 −gX 0 0 0 0 0 0 0

0 0 0 0 κM −CX 0 0 0 0 0 0

0 0 bHpHβV
SX

NH
bHpHβV

SX

NH
bHpH 0 −gY 0 0 0 0 0

0 0 0 0 0 bHpH κM −CY 0 0 0 0

0 0 0 0 0 0 θY 0 −gZ 0 0 0

0 0 0 0 0 0 0 θY κM −CZ 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0



,

where g1 = γHN +µH , g2 = γHR+µH , g3 = αH +νH +δH +µH , g4 = αHA+δHA+µH ,

CX = bHpH + ηM + µM , CY = θY + ηM + µM , CZ = ϕZ + ηM + µM , gX = CX + κM ,

gY = CY + κM and gZ = CZ + κM . It can be verified that the eigenvalues of A1(x)

are real and non-positive. Hence, the system
dxS
dt

= A1(x)(xS − xNDFE,S) is GAS at

xNDFE,S (Dumont and Chiroleu, 2010). It should be noted that the matrix A2(x) is

a Metzler irreducible. Consider, next, the following bounded invariant set:

B2 =
{(
SH ,WH , RH , E, L1, L2, L3, L4, P, SX , SY , SZ , EHN , EHR, IH , AH , EX , IX , EY , IY ,

EZ , IZ , 0, 0
)
∈ R24

+ : NH(t) ≤ ΠH

µH
, 0 ≤ E(t) < KE , 0 ≤ Lj(t) ≤ Lj (j = 1, 2, 3, 4),

0 ≤ P (t) ≤ P , 0 ≤ NV (t) ≤ NV

}
,

It is convenient to define

(RG)2 =
NV

S�X
(R1)

2 > (R1)
2.

Further, define a matrix A2(x̄) = Ā2, where Ā2 is an upperbound of the set (Dumont
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and Chiroleu, 2010)

M =
{
A2(x) ∈ R12×12 : x(t) ∈ B2

}
,

with x̄ =
(
SH ,WH , RH , E, L1, L2, L3, L4, P, SX , SY , SZ , EHN , EHR, IH , AH , EX , IX , EY ,

IY , EZ , IZ , 0, 0
)
∈ R12

+ × {0}. It can be verified that ρ(Ā2) ≤ 0 if and only if RG ≤ 1.

Thus, it follows from Theorem 2.7 in Dumont and Chiroleu (2010) that, for RMP > 1

and R1 < 1,

(
SH ,WH , RH , E, L1, L2, L3, L4, P, SX , SY , SZ , EHN , EHR, IH , AH , EX , IX , EY , IY , EZ ,

IZ
)
(t)→

(ΠH

µH
, 0, 0, E�, L�1, L

�
2, L

�
3, L

�
4, P

�, S�X , S
�
Y , S

�
Z , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

)
, as t→∞,

(3.4.9)

where E,L1, L2, L3, L4, P, SX , SY , SZ are as defined in Equation (3.4.2). Thus, the

NDFE (E0) of the autonomous model (3.4.1), with δH = δHA = 0, is GAS in Ω \ {T0}

whenever RMP > 1 and R1 < 1.

The epidemiological implication of Theorem 3.4.3 is that, for the special case of the

autonomous version of the model (3.4.1) considered in Theorem 3.4.3, bringing (and

maintaining) the threshold quantity R1 to a value less than unity is necessary and

sufficient for the effective control (or elimination) of malaria in the population. It

is worth mentioning that, as in prior models for spread of malaria and other vector-

borne diseases (such as those in Castillo-Chavez and Song (2004); Forouzannia and

Gumel (2014); Garba et al. (2008)), the autonomous version of the model (3.4.1)

undergoes the phenomenon of backward bifurcation if the assumption on disease-

induced mortality in humans is relaxed (i.e., if δH 6= 0, δHA 6= 0).

3.4.3 Sensitivity Analysis

As in Section 2.4.5, sensitivity analysis is carried out on the parameters of the model

(3.4.1), with the basic reproduction number (R0) chosen as the response function. The
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sensitivity analysis result obtained, tabulated in Table 3.4, show that the top PRCC-

ranked parameters of the model are the aggregate (natural and biological control-

related) death rate of adult female mosquitoes (µM + ηM), percapita mosquito biting

rate (bH) and the transmission probability from infected mosquitoes to susceptible

humans (βH). These sensitivity analysis results suggest that malaria can be effectively

controlled in the endemic setting considered by implementing a multi-faceted control

strategy that minimizes the contact humans have with mosquitoes (i.e., minimize the

parameters bH and βH by, for instance, using mosquito repellents and insecticide-

treated bed nets) and reduces the mosquito population (i.e., increase µM + ηM by

insecticide spraying and the use of insecticide-treated bed nets).

3.5 Numerical Simulations

3.5.1 Simulation of Autonomous Version of the Model

In this section, we present numerically-obtained curves relating R0 (for the au-

tonomous model (3.4.1)) and temperature, across a range of fixed temperature values.

We examine the effect of several key parameters on the relationship between R0 and

temperature, namely temperature-independent adult (ηM) and immature death rates

(ηE, ηL, and ηP ) which may be related to the use of chemical/ biological control (e.g.,

the use of larvacides and adulticides), carrying capacity of eggs (KE) which is a gen-

eral measure of anopheline habitat availability, and finally infected human recovery

rates (αH and αHA). For each temperature value (using a range of 14 − 40 ◦C), the

temperature-dependent parameters given in Section 3.3.3 are evaluated and set to a

constant (i.e., R0 changes with temperature, but is time-invariant).

The results, depicted in Figure 3.3, show that the R0–temperature curves largely

takes the same basic form regardless of which parameter (set) controls variations
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in the R0–temperature curve, but with some slight variations. Most notably, the

curve is extremely sensitive to temperature-independent adult Anopheles death, ηM ,

and increasing values of ηM also act to shift both the temperature range for sus-

tained transmission and the peak temperature to higher values. Indeed, we note that

when R0 is near one over much of its range, the temperature range where trans-

mission is possible (i.e., R0 > 1) is invariable narrowed, but asymmetrically, such

that higher temperatures are relatively favorable. This suggests that, in areas of

marginal malaria potential, small increases in mean temperature could be more likely

to increase malaria than elsewhere.

3.5.2 Simulation of Non-autonomous Model

The model {(3.3.1), (3.3.3), (3.3.4)} is simulated to illustrate the effect of temperature

on malaria transmission, with the temperature-dependent parameters determined us-

ing the expressions given in Section 3.3.3). Interestingly (and limiting ourselves to

the case of constant temperature), we find that steady-state total (NM) and infec-

tious vector populations (IX + IY + IZ) are nearly linear functions of R0, whereas the

infectious human compartments (IH and AH) vary hyperbolically with R0. This is

demonstrated in Figure 3.4, and suggests that, when R0 is relatively small, smaller

changes in R0, whether due to changing climate or other factors, may significantly

affect the burden of disease. Whereas when the baseline R0 is high, disease burden,

but not the infectious vector population, is insensitive to such small changes.

This pattern is further demonstrated in Figure 3.5, which shows how steady-state

populations vary with temperature when R0 is relatively small versus large: when R0

is small over the temperature range where transmission is possible, infectious human

populations also vary significantly, while whenR0 is large over this temperature range,

these populations are almost invariant, and the model tends to the same steady-
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Figure 3.3: Curves for R0 as a function of temperature for various values of (a)

adult mosquitoes death due to biological control (ηM) with ηM ∈ [0.0079, 0.1], (b)

immature mosquitoes death due to biological control (ηE, ηL and ηP ) with ηE = ηL

= ηP ∈ [0.040, 0.79], (c) carrying capacity of eggs (KE) with KE ∈ [103, 7× 104], and

(d) recovery rates of infectious humans (αA and αHA) with αH = αHA ∈ [0.33, 0.01].

Note that, while the curves under variations in adult (ηM) and immature (ηE, ηL, ηP )

mosquito mortality are similar in magnitude, ηM values are fivefold lower, and the

peak of transmission potential also shifts slightly towards higher temperatures with

increasing ηM . Other parameters values used are as given in Table 3.3.

state regardless. However, the infectious vector population still varies markedly with

temperature even when R0 is large enough such that IH(∞) and AH(∞) do not. In

all cases shown, R0 is modulated by KE.
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Figure 3.4: Steady-state vector (total and infectious, left panel) and infected human

populations (symptomatic and asymptomatic, right panel), as a function of R0, when

the carrying capacity KE is used to modulate KE (similar results are obtained when

other parameters are used). Both vector populations increase somewhat super-linearly

with R0, while a hyperbolic relationship between both infected human populations

is seen, with little variation seen above R0 > 4. Also of note, a greater proportion

of infected humans are symptomatic when R0 is relatively small. Parameters values

used are as given in Table 3.3.

3.5.3 Effect of Diurnal Temperature Range (DTR)

While the simulations in Section 3.5.1 employ a constant ambient air and water tem-

perature, there is increasing interest in the effect of diurnal temperature variations

upon malaria transmission and climate (Beck-Johnson et al., 2017). Diurnal tem-

perature variation is the possible fluctuation in temperature that occur during each

day. This phenomenon has been shown (theoretically and experimentally) to have
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Figure 3.5: Steady-state infectious vector (left panels) and infected human popula-

tions (right panels) as a function of temperature, using either KE = 2 × 104 (top

panels) or KE = 2 × 105 (bottom panels), with R0 normalized to the peak of either

population also inscribed (the dotted line gives R0 ≡ 1); peak R0 values are also

indicated in the right panels. We see that infectious vectors track R0 quite well re-

gardless, whereas infected human populations are nearly invariant when R0 is large

across most of the temperature range where transmission is possible.

important (or consequential) effect on pathogen development, vector survival (and de-

velopment) and malaria transmission potential (Beck-Johnson et al., 2017; Eikenberry

and Gumel, 2018; Gething et al., 2010; Paaijmans et al., 2008a,b). For instance, Paai-

jmans et al. (2010b) showed, experimentally, that the daily temperature fluctuations

about relatively low temperatures accelerate the Plasmodium sporogonic duration,

while fluctuations at higher temperatures leads to increased the Plasmodium sporo-

gonic duration. Thus, most existing mathematical models of effect of temperature on

malaria transmission dynamics that do not incorporate the effect of diurnal temper-

ature variation may either under- or overestimated malaria potential at low and high
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temperatures, respectively.

For these simulations, the following sinusoidal function will be used to simulate the

model {(3.3.1), (3.3.3), (3.3.4)} to account for the hourly fluctuations in local ambient

temperature (Okuneye et al., 2018b):

TA(t) = TA0 −
DTR

2
sin
[2π

24

(
th + 14

)]
, (3.5.1)

where in (3.5.1), TA0 is the mean daily air temperature, DTR captures variation about

the mean (i.e., DTR is the diurnal temperature range), and th is the time in hours

for any given day. Furthermore, near the surface of the water, air and surface water

temperature are assumed equal in these simulations (i.e., TW (t) = TA(t) = T (t)) for

computational tractability.

Therefore, we run the model under repeated (sinusoidal) diurnal temperature

variation (given by Equation 3.5.1), with the daily temperature range (DTR) varying

from 0 (constant temperature) to 15 ◦C, until it reaches a stable periodic solution.

Average values of this periodic solution are plotted against daily mean temperature

under different values of DTR in Figures 3.6 and 3.7, which differ in that KE is

104 and 105, giving relatively low and high R0 values, respectively, and again shows

how this affects the infected human populations. As we see, increasing DTR always

shifts the temperature at which transmission peaks to a lower value, and also acts

to asymmetrically narrow the temperature range over which transmission is possible:

Transmission is decreased at both low and high temperature extremes, but the effect

is more noticeable at the higher temperature range. Moreover, we also have found

that peak transmission temperature decreases roughly linearly with DTR, from about

29.5 ◦C at a DTR of ◦0, down to 23.5 ◦C at a DTR of 20 ◦C (not shown).

Figure 3.8 shows how temperature-independent adult Anopheles mortality (ηM)

interacts with both mean daily temperature and DTR. This figure shows that in-
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Figure 3.6: Approximate, normalized steady-state vector and infected human popu-

lations as functions of mean daily temperature, for DTRs of 0, 5, 10, and 15 ◦C (with

daily variation about the mean given by Equation (3.5.1)). Vector populations are

normalized to the maximum total population under DTR of 0, while human popula-

tions are normalized to the maximum asymptomatic population under DTR 0. All

temperature-independent parameters are as in Table 3.3, except KE = 104, giving

a relatively low R0(T ) throughout. Increasing DTR results in both smaller vector

and infected human populations, and shifts the temperature for peak transmission to

lower values (peak temperatures for all curves are indicated in the figure).

creasing ηM tends to very slightly increase peak transmission temperatures, and dis-

proportionately reduces the infectious vector population relative to the total vector

population.

113



Figure 3.7: Mirroring Figure 3.6, we have approximate, normalized steady-state vec-

tor and infected human populations as functions of mean daily temperature, for DTRs

of 0, 5, 10, and 15 ◦C, but with KE = 105 (and other parameters per Table 3.3), giv-

ing a relatively high R0(T ) throughout. Vector and human numbers are normalized

to the peak total vector and asymptomatic human population under DTR 0 ◦C,

respectively.

Effect of Sporogony and Gonotropy

We have also formulated two slightly different versions of the full non-autonomous

model, with Case (a) the model lacking an explicit representation of the gonotrophic

cycle (the resulting compartments for the dynamics of the adult female mosquitoes

are presented in Appendix E), and, therefore, oviposition occurs at temperature-

dependent rate proportional to all adult female mosquitoes (not just those in stage
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Figure 3.8: The left set of panels shows how increasing values of ηM , from 0.0079 to

0.1585 day−1, affect (normalized) steady-state total adult vector, infectious vector,

symptomatic human, and asymptomatic human populations as a function of daily

mean temperature, when DTR is 0 ◦C. The right set panels gives the same popu-

lations, but under DTR = 10 ◦C. Lighter curves indicate larger ηM values, and all

temperature-independent parameter values are given in Table 3.3. As in Figures 3.6

and 3.7, vector and human populations are always normalized to the peak total vec-

tor and peak asymptomatic human populations when DTR is 0 ◦C. Also note that

the symptomatically infected human population size is inflated by a factor of ten for

clarity.

III of the gonotrophic cycle), and Case (b) a model omitting the exposed but non-

infectious mosquito compartments (i.e., the model does not account for the delay from

infection to infectivity imposed by the sporogonic cycle; the resulting compartments

for the dynamics of the adult female mosquitoes are presented in Appendix E). As seen
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in Figure 3.9, the omission of gonotrophy has almost no effect on the temperature

range across which transmission is predicted to be possible, with the omission of

sporogony much more influential. It should be noted that, while (normalized) steady-

state values for infected humans and adults mosquitoes are essentially unaffected by

the omission of gonotrophy, its inclusion is still expected to affect model dynamics

under more variable weather conditions.

Figure 3.9: Normalized steady-state total adult vector, infectious vector, symptomatic

human, and asymptomatic human populations under either the full model or versions

omitting either gonotrophy or sporogony, as a function of daily mean temperature,

with DTR either 0 (left panels) or 10 ◦C (right panels). Normalization is performed

independently for each model version, with normalization performed relative to the

maximum total vector and asymptomatic human populations, and with the symp-

tomatic human compartment inflated tenfold for display purposes. All temperature-

independent parameters are as given in Table 3.3, except KE = 104.
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3.6 Summary of Results

A new temperature-dependent model for assessing the population-level impact of

temperature variability on the transmission dynamics of malaria in a community

has been developed and rigorously analyzed. Some of the notable novel features

of the model include incorporating the gonotrophic cycle of the female Anopheles

mosquitoes and the Plasmodium’s sporogonic cycle, as well as all aquatic stages of

the immature mosquitoes. This allows for a comprehensive modeling and a quan-

titative understanding of the effect of the temperature-dependent gonotrophic and

sporogonic cycles on malaria transmission dynamics. Furthermore, other pertinent

features of malaria transmission dynamics, such as, disease transmission to vectors

by asymptomatically-infectious humans, reduced malaria susceptibility in humans

due to recovery from prior malaria infection, the possibilities of conversion of symp-

tomatic humans to an asymptomatic state, and the complete loss of partial immunity

in humans, are also incorporated.

The non-autonomous model {(3.3.1), (3.3.3), (3.3.4)} has a non-trivial disease-free

solution (NDFS) which exists whenever a certain vectorial reproduction ratio (RMt;

the spectral radius of a certain linear operator of a function of the next generation

matrices of vector-only model) is greater than unity. The NDFS is shown to be

globally-asymptotically stable, in the absence of disease-induced mortalities in hu-

mans (i.e., δH = δHA = 0), whenever the spectral radius of a certain linear operator

of a function of the next generation matrices of full model (denoted by R0t) is less

than unity. The model has at least one positive periodic solution whenever R0t > 1

(and the disease persists in the population in this case).

Furthermore, this study suggests (using detailed sensitivity and uncertainty anal-

yses of the autonomous version of the model, to identify the top PRCC-ranked pa-
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rameters) that effective malaria control entails a multi-faceted approach based on:

(a) minimizing the contact humans have with mosquitoes (i.e., minimizing the

percapita mosquito biting rate and the transmission probability from infected

mosquitoes by using mosquito repellents and insecticide-treated bed nets, and

potentially via the use of anti-malaria drugs as intermittent preventative ther-

apy);

(b) reducing the mosquito population (i.e., increasing death rate of mature mosquitoes

by insecticide spraying, using insecticide-treated bed nets and removing stag-

nant waters, to prevent successfully fed adult female mosquitoes from returning

close-by breeding sites);

(c) early diagnosis and treatment of malaria cases.

The aforementioned simulations suggest several interesting observations. First, there

is a highly nonlinear, hyperbolic, relationship between R0, which represents the num-

ber of new infections introduced by a single case into a fully susceptible, non-immune

population, and the actual asymptotic populations of infected humans (both symp-

tomatic and asymptomatic), such that, once R0 is sufficiently large, disease burden

is essentially unaffected by (reasonably small) changes in R0. This relates to the

well-known epidemiology of malaria: in highly endemic areas, the population may be

exposed to as many as hundreds of infectious bites per year, yet disease burden is

essentially stable, with most clinical disease concentrated in very young children who

have not yet developed a degree of immunity (Carter and Mendis, 2002). It is only

in more marginal areas of malaria transmission that disease burden tends to be more

unstable, where severe disease affects persons across age groups and the population

has a high degree of vulnerability to epidemics (Carter and Mendis, 2002; Macdonald
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et al., 1957). This is reflected in our model, in that only at relatively low R0 values

do changes in this parameter translate nearly linearly into clinical disease.

Furthermore, this phenomenon of R0 relating hyperbolically to clinical disease

is also manifested in our R0-temperature curves. When temperature-independent

parameters are such that R0 is relatively low across the temperature range for which

transmission is possible, bothR0 and infected human populations (IH and AH) change

appreciably with temperature. If, on the other hand, the “basal” R0 is high, then

while R0 changes with temperature, IH and AH do not, except for a quasi-threshold

phenomenon where, below about 17 and above 34 ◦C, IH and AH are zero, but

almost constant within these temperature bounds. Thus, our results suggest that

climate change may affect areas of high endemicity (e.g. holo- and hyperendemic

areas) and areas of low endemicity or unstable transmission very differently. Within

the former, which tend to be warm areas in western and central equatorial Africa,

several degrees of warming will affect disease burden only if a threshold mean daily

temperature (likely on the order of about 34 ◦C) is crossed, and then dramatically,

with a sharp drop in disease burden. In the latter, which tend to be cooler areas, such

as the eastern African highlands, warming temperatures may affect disease burden in

a more continuous manner, with increases in R0 with temperature translating more

directly into clinical disease. Thus, modest warming would most likely result in a net

increase in overall disease potential.

Numerical simulations of the model also indicate that temperature variability is

important in determining the optimum temperature ranges for malaria transmission,

with increasing daily temperature range (DTR) shifting the optimum temperature

for transmission down from about 29.5 ◦C when temperature is constant, to 23.5 ◦C

when DTR is 20 ◦C, and moreover, asymmetrically contracting the temperature range

where transmission is possible, such that higher temperatures are more affected, in

119



reasonable concordance with recent modeling work by Beck-Johnson et al. (2017).

Finally, two reduced version of the model (one omitting explicit representation of

the gonotrophic cycle and the other omitting the sporogonic cycle) are also briefly

considered. In the former case, normalized asymptotic mosquito and infected humans

populations are hardly affected under constant weather conditions, although dynam-

ics may still be affected when weather conditions vary (in other words, mosquito

gonotrophic cycle does not seem to have major impact on malaria dynamics, and

its explicit inclusion in malaria transmission models can be relaxed). The omission

of sporogony, however, very strongly affects model predictions (suggesting that it is

crucial to include in models for malaria transmission dynamics).
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Parameters Description

ΠH Recruitment rate of humans

µH Natural death rate of humans

ρH Rate of complete loss of partial immunity (from WH to SH class)

bH percapita mosquito biting rate in gonotrophic Stage I

βH Transmission probability from infectious mosquitoes to susceptible humans

ξH Rate of loss of infection-acquired immunity (from RH to WH)

ε Modification parameter for the reduction of human susceptibility after

recovery from prior infection

γHR (γHN) Progression rate of exposed humans with (without) prior immunity

to infectious class

q (r) Probability of exposed humans with (without) prior immunity showing

symptoms of disease

pH Probability of successfully taking bloodmeal from humans

νH Transition rate of symptomatic humans to asymptomatically infectious class

δH , δHA Malaria-induced death rates of humans in class IH and AH , respectively

αH Recovery rate of symptomatically infectious humans

αHA Recovery rate of asymptomatically infectious humans

ψE Number of eggs laid per oviposition

σE Maturation rate of eggs

σLj Maturation rate of larvae from larval Stage j to Stage j + 1 (for j = 1, 2, 3)

σP Maturation rate of pupae

f Proportion of adult mosquitoes that are females

µE, µL, µP , µM Temperature-dependent death rates of eggs, larvae, pupae and adult

mosquitoes, respectively

ηE, ηL, ηP , ηM Temperature-independent death rates for eggs, larvae, pupae and adult female

mosquitoes, respectively

kL Density-dependent mortality rate of larvae

βV Transmission probability from infectious humans to susceptible mosquitoes

θY Rate of progression for stage II of the gonotrophic cycle

ϕZ Rate of oviposition for adults in stage III of the gonotrophic cycle

κM Progression rate of exposed adult female mosquitoes to infectious stage

KE Carrying capacity of eggs

Table 3.2: Description of parameters of the autonomous model (3.4.1).
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Parameters Range Baseline Reference

µH 1/(50× 365)− 1/(70× 365) day−1 1/(60× 365) day−1 Derived from data

ΠH 3− 5 day−1 4.5 day−1 Derived from data

ξH 0.003− 0.016 day−1 0.01 day−1 [72]

αH 1/1500− 1 day−1 1/30 day−1 [117; 216; 225]

αHA 1/1500− 1/100 day−1 1/180 day−1 [117; 216; 225]

r 0.67− 1.0 0.9 [72]

q 0.01− 0.33 0.33 [72]

γHN 0.09− 0.15 day−1 1/14 day−1 [72]

γHR 0.08− 0.13 day−1 1/14 day−1 [72]

δH 0.0001− 0.0025 0.0021 [72]

δHA 1× 10−7 − 5.61× 10−6 5.61× 10−6 [72]

bH 0.5− 4 day−1 2 day−1 [61]

pH 0.3− 1 1 [120]

βH 0.01− 0.50 0.50 [141; 198; 204; 225]

νH 0.001− 0.05 1/30 [72]

ε 0.1− 1.0 0.5 [229]

βV 0.02− 0.25 0.15 [46; 91; 138]

ρH 1/(5× 365)− 1/(7× 365) day−1 1/(6× 365) day−1 [80]

f 0.4− 0.6 0.5 [72]

σE 0.33− 1 day−1 0.5 [72]

σP 0.33− 1 day−1 0.5 [72]

ηE 0− 0.5 day−1 0 [72]

ηL 0− 0.5 day−1 0 [72]

ηP 0− 0.5 day−1 0 [72]

ηM 0− 0.5 day−1 0 [72]

ϕZ 0.5− 4 day−1 2 day−1 [61]

ψE 10− 150 eggs oviposition−1 65 eggs oviposition−1 [8; 234]

KE 1.0× 104 − 1.0× 106 1.0× 105 [72]

kL 0− 0.0001 0 [72]

Table 3.3: Ranges and baseline values for the temperature-independent parameters

of the model (detailed derivation of the values of these parameters is given in Section

2.5).
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Parameters R0 Parameters R0

ΠH −0.18 bH +0.57

βH +0.53 pH +0.067

γHN +0.013 r −0.35

νH +0.081 δH +0.046

δHA −0.034 αH −0.26

αHA −0.44 ψE +0.061

σE +0.32 σL1 +0.15

σL2 +0.17 σL3 +0.15

σL4 +0.12 σP +0.23

f +0.13 βV −0.42

µE + ηE +0.15 µL + ηL −0.15

µP + ηP −0.034 µM + ηM -0.72

θY +0.22 ϕZ −0.29

κM +0.34 KE +0.28

Table 3.4: PRCC values for the parameters of the model (3.4.1), using the basic

reproduction number R0 as the response functions. The top (most-influential) pa-

rameters that affect the dynamics of the model (with respect to R0) are highlighted

in bold font. Parameter values and ranges used are as given in Table 3.3.
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Chapter 4

MATHEMATICAL ANALYSIS OF DENGUE-CHIKUNGUNYA-ZIKA

TRANSMISSION: ROLE OF DENGUE VACCINE AND SEASONALITY

4.1 Introduction

Aedes aegypti is the vector for numerous diseases in humans and other (reservoir)

hosts, such as chikungunya (CHIKV), dengue fever (DENV) and Zika virus (ZIKV).

In this chapter, a new deterministic model is designed and used to assess the dy-

namics of the three diseases in a population where Aedes mosquitoes are abundant.

The model to be designed incorporates the recently-released imperfect vaccine against

dengue virus (Dengvaxia R© vaccine by Sanofi Pasteur) as well as allow for sexual trans-

mission of Zika. Further, the model allows for the assessment of the population-level

impact of three biological hypotheses, namely a competitive dengue-chikungunya-

Zika superinfection hierarchy, an antibody-dependent enhancement of dengue over

Zika and that the Dengvaxia vaccine can induce reduced susceptibility to Zika infec-

tion in vaccinated individuals. The effect of seasonality on the dynamics of the three

diseases in a population will be studied.

Three mosquito-borne viruses CHIKV, DENV and ZIKV, are currently co-circulating

in the same geographical regions of the American continent (with ZIKV being the

most recent of the three mosquito-borne viral diseases). Concurrent outbreaks of

these three viruses have been reported in the South Pacific region Roth et al. (2014).

The outbreaks distribution is interesting, since, in the South Pacific, there are islands

with a single outbreak with one virus differing from the virus of the outbreak in a

neighboring island. Furthermore, there are multiple outbreaks of different viruses in
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a single island (for instance, DENV-1, DENV-3, ZIKV and CHIKV in New Caledonia

and the islands of Kiribati (DENV-1 and DENV-3) and Fiji (DENV-1, DENV-2 and

DENV-3)) (Roth et al., 2014).

Dengue, chikungunya and Zika are epidemic vector-borne diseases co-circulating in

many parts of the world. There is evidence for rare occurrence of co-infections limited

to certain geographical areas (mainly in Asia and Southeast Asia) and under-reporting

of each of them because of the diagnostic clues which are similar in all three diseases

Cardoso et al. (2017); Dupont-Rouzeyrol et al. (2015); Furuya-Kanamori et al. (2016).

In particular, although such co-infections are very rare in the Americas (e.g., that of

ZIKV and DENV Dupont-Rouzeyrol et al. (2015); Furuya-Kanamori et al. (2016)),

the three viruses maintain their own epidemic (the current study does not include

the effect of co-infections, owing to their rarity).

Furthermore, it is known that ZIKV shares up to 60% of nucleotide identity with

DENV, and it has been postulated that primary infection with DENV (or other fla-

vivirus) may induce antibody that cross-react with a subsequent secondary infection

with ZIKV and result in increased viral burden and a cascade of deleterious immuno-

logic and clinical events Barouch et al. (2017); Dejnirattisai et al. (2016); Durbin

(2016). On the other hand, Althouse et al. (2015) pointed out that the patterns

of viral abundance (referring to ZIKV, CHIKV and DENV) “could stem from pro-

cesses within their mammalian hosts, including cycling of immunity, cross-immunity

between viruses, and host demographics and abundance”. The distribution of the

mosquitoes capable of transmitting the disease is also heterogeneous. Aedes aegypti

is present in most of the islands in the South Pacific, but at least four different species

of Aedes are present in different regions of this area of the world.
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Dengue Vaccine: Dengevaxia

A new vaccine for DENV (Dengvaxia R©, by Sanofi Pasteur) has been released in

2015 (and has been approved in 11 countries in 2016) (Vannice et al., 2016). The

vaccine is a tetravalent vaccine but has lower efficacy for one of the four dengue

serotypes. The efficacy of the vaccine varies by serotypes (71.6% for serotype 3; 76.9%

for serotype 4; 54.7% for serotype 1 and 43.0% for serotype 2) [176]. Although the

precise effect of the dengue vaccine on ZIKV is not yet known, the possible practical

and theoretical impact of this vaccine on ZIKV has been a subject of considerable

debate. For instance, while Paul et al. (2016) described the possible consequence

of the large antigenic overlap of ZIKV and DENV, (Tang et al., 2016) noted that

ADE is a real concern (since the response of ZIKV to DENV antibody has not been

fully investigated). Furthermore, Halstead (interview reported by Cohen (2016))

warned about the possible secondary undersigned implications that ADE and DENV

vaccine may produce. Consequently, it seems plausible to explore the hypothesis that

the Dengvaxia vaccine may have some effect on ZIKV. The model to be designed

in this study will incorporate the assumption that DENV vaccine could decrease

susceptibility to ZIKV.

The purpose of this chapter is to study the transmission dynamics of the three dis-

eases in a population. In particular, the study will focus on exploring the coexistence

mechanisms, among these three viral species, given that they share the same vector

but have some variations in transmission modes and regional spread. This study

proposes three fundamental hypotheses. The first is a superinfection hypothesis (i.e.,

the existence of a competitive hierarchy among the viruses involved). Superinfec-

tion has been postulated as a common mechanism for community structure (Levin

and Pimentel, 1981; Nowak and May, 1994; Tilman, 1994), and has been used to
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particularly explain pathogen communities sharing a common host (Castillo-Chavez

and Velasco-Hernandez, 1998; Mena-Lorca et al., 2006; Nowak and May, 1994). The

second hypothesis is that dengue can increase Zika dynamics via antibody-dependent

enhancement. The third hypothesis is that the dengue vaccine can impact (reduce or

increase) the susceptibility of vaccinated individuals to ZIKV infection.

4.2 Formulation of Mathematical Model

The total human population at time t, denoted by NH(t), is split into the mutually-

exclusive compartments of humans who are wholly-susceptible (SH(t)), vaccinated

against DENV (VH(t)), susceptible and partially-immuned to CHIKV due to past ex-

posure and recovery from CHIKV (SRC(t)), susceptible and fully-immuned to DENV

due to past exposure and recovery from DENV (SRD(t)), susceptible and partially-

immuned to ZIKV due to past exposure and recovery from ZIKV (SRZ(t)), infected

with CHIKV (YC(t)), DENV (YD(t)), ZIKV (YZ(t)), recovered from CHIKV (RC(t)),

recovered from DENV (RD(t)) and recovered from ZIKV (RZ(t)), so that:

NH = SH + VH + SRC + SRD + SRZ + YC + YD + YZ +RC +RD +RZ .

Similarly, the total population of adult female Aedes aegypti mosquitoes at time t,

denoted by NV (t), is split into susceptible mosquitoes (SV (t)) and mosquitoes infected

with CHIKV (IC(t)), infected with DENV (ID(t)) and infected with ZIKV (IZ(t)).

Thus,

NV (t) = SV (t) + IC(t) + ID(t) + IZ(t).

The model is given by the following deterministic system of nonlinear differential

equations (where a prime represents differentiation with respect to time t) (Okuneye

et al., 2017):
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S′H = µHNH + αHVH − βH
ID + θCIC + θZIZ

NH
SH − βS

YZ
NH

SH − (ψD + µH)SH ,

V ′H = ψDSH − βH
σDID + θCIC + σZθZIZ

NH
VH − βSσZ

YZ
NH

VH − (αH + µH)VH ,

S′RC = ξCRC − βH
ID + ϕCθCIC + θZIZ

NH
SRC − βS

YZ
NH

SRC − µHSRC ,

S′RD = ξDRD − βH
θCIC + θZIZ

NH
SRD − βS

YZ
NH

SRD − µHSRD,

S′RZ = ξZRZ − βH
ID + θCIC + ϕZθZIZ

NH
SRZ − ϕZβS

YZ
NH

SRZ − µHSRZ ,

Y ′C = βHθC
IC
NH

(
SH + VH + ϕCSRC + SRD + SRZ

)
+ ηCβHθC

IC
NH

YZ − ρDβH
ID
NH

YC

− (γC + µH)YC , (4.2.1)

Y ′D = βH
ID
NH

(
SH + σDVH + SRC + SRZ

)
+ ηDβH

ID
NH

YZ + ρDβH
ID
NH

YC

− (γD + µH + δD)YD,

Y ′Z = βH
θZIZ
NH

(SH + σZVH + SRC + SRD + ϕZSRZ) + βS
YZ
NH

(
SH + σZVH + SRC

+ SRD + ϕZSRZ
)
− βH

ηCθCIC + ηDID
NH

YZ − (γZ + µH)YZ ,

R′i = γiYi − (ξi + µH)Ri, (i = C, D, Z)

S′V = ΠV − βV
YD + θCYC + θZYZ

NH
SV − µV SV ,

I ′C = βV θC
YC
NH

SV − µV IC ,

I ′D = βV
YD
NH

SV − µV ID,

I ′Z = βV θZ
YZ
NH

SV − µV IZ .

In the SIRS model (4.2.1), µH is the per capita birth/death rate of humans, βH is the

rate of acquisition of infection (effective contact rate) and βS is the rate of male-to-

female sexual transmission of ZIKV (as stated in the Introduction section, although

there is evidence for sexual transmission of ZIKV from male-to-female, not significant

evidence exists for female-to-male transmission (CDC, 2016; Davidson, 2016). This
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fact obviates the need to incorporate sex structure in the model). Although it is

plausible to expect sexual transmission of ZIKV to be important in highly-endemic

areas, it (alone) cannot sustain appreciable epidemics (since the ZIKV transmission

cycle is not completed by infected females to their susceptible male partners, but by

the mosquito) (Davidson, 2016).

The modification parameter 0 < θC < 1 accounts for the assumption that a suscep-

tible human is more likely to acquire DENV infection than CHIKV. This hypothesis

is supported by epidemiological records in Mexico. In particular, the Mexican Health

Surveillance systems (Bolet́ın Epidemiológico SE 7, 2016) reported a cumulative total

of 234 confirmed cases of DENV by Week 7, 2016. For the same week, the cumulative

cases for CHIKV (which first appeared in Mexico in 2015) and DENV were only 60

and 28, respectively. In the case of ZIKV, these low numbers may be due to its recent

introduction, and the fact that it is still colonizing the region (the case of CHIKV,

however, is different since colonization took place during 2015). For the year 2016,

the Mexican authorities reported a cumulative total of 200 CHIKV and 865 DENV

cases. Furthermore, for Week 14, Bolet́ın Epidemiológico (SE 14, 2016) reported a

total of 2,109 DENV cases, 264 CHIKV cases and 224 ZIKV cases.

Susceptible humans are vaccinated against DENV at a rate ψD, and it is assumed

that the vaccine wanes at a rate αH . The DENV vaccine to be released and applied

in Mexico is a recombinant, live-attenuated, tetravalent vaccine immunogenic for all

DENV serotypes and protective for Serotypes 1, 3 and 4 (the recommended schedule

is of three doses per child (Betancourt-Cravioto et al., 2014)). Natural death occurs

in all human compartments at a rate µH .

Vaccinated humans receive vaccine-induced protection at a rate βHσD, where 0 ≤

1− σD is the vaccine efficacy against DENV infection for the case where the vaccine

does indeed generate such protection. Furthermore, σD can be greater than unity for
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the case when the vaccine induces immune enhancement effect, which is well known

in DENV transmission dynamics (Acosta and Bartenschlager, 2016). Vaccinated

individuals can also acquire CHIKV (at a rate θCβH) or ZIKV (at a rate θZβH)

infection, where, 0 < θC < 1 and 0 < θZ < 1 are the modification parameters for the

assumed reduction in infectiousness of CHIKV and ZIKV, respectively, over DENV

(it is possible, due to antibody-dependent enhancement, that the parameter θZ can

exceed unity). In other words, the case θZ > 1 represents the scenario where DENV

vaccine induces an increase in ZIKV cases due to antibody-dependent enhancement

(Cohen, 2016).

The parameter 0 ≤ 1 − σZ has the same definition as σD (but with respect to

ZIKV). It is known that, in antigen diagnostic tests, ZIKV cross-reacts with DENV

(Gyurech et al., 2016); thereby producing false positives for DENV. This fact, coupled

with the close phylogenetic relationship between DENV and ZIKV that triggers sim-

ilar immune responses to infection, prompted us to explore the theoretical possibility

that microcephaly and abortions and other neurologic abnormalities associated with

ZIKV are related to immune enhancement mechanisms (Solomon et al., 2016).

As stated earlier, a DENV-CHIKV-ZIKV competitive hierarchy of the three dis-

eases is hypothesized, with DENV more competent than CHIKV, and both more

competent than ZIKV. In other words, DENV can replace CHIKV and ZIKV, via

super-infection; and CHIKV can displace ZIKV, but not DENV vice versa. Using

this working hypothesis, we will use the mathematical model presented above, and

the available data on DENV-CHIKV-ZIKV epidemiology, to investigate the transmis-

sion dynamics of the rather new pandemic scenario of three concurrent viral infections

transmitted by the same mosquito species.

Humans infected with CHIKV acquire DENV (super) infection at a rate ρDβH ,

where 0 < ρD < 1 is a modification parameter accounting for the reduced likelihood
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of CHIKV-DENV super-infection, and humans infected with ZIKV acquire CHIKV

(super) infection at a rate ηCθCβH or DENV (super) infection at a rate ηDβH , where

0 < ηC , ηD < 1 are modification parameters accounting for the reduced likelihood of

ZIKV-CHIKV or ZIKV-DENV super-infection, respectively. Humans recover from

CHIKV, DENV and ZIKV infection at a rate γC , γD and γZ , respectively, and par-

tially lose their infection-acquired immunity to CHIKV and ZIKV at a rate ξC and

ξZ , respectively (it should be mentioned that individuals who partially lost their

immunity to CHIKV or ZIKV can still acquire infection with CHIKV or ZIKV, re-

spectively (but at a reduced rate compared to someone who is wholly susceptible to

these diseases) and are wholly susceptible to the other two diseases). Individuals who

recovered from prior DENV infection develop permanent immunity to DENV at a

rate ξD (while they remain wholly susceptible to CHIKV and ZIKV).

The parameter ΠV represents the production (birth) rate of adult female Aedes

mosquitoes. Susceptible adult female mosquitoes acquire infection at a rate βV . Nat-

ural death occurs in all adult female mosquito compartments at a rate µV . It is

worth mentioning that the model (4.2.1) is robust enough to allow for the assessment

of the impact of the three hypotheses advanced in this study by varying the relevant

parameters (ρD, ηC and ηD affecting the relative secondary infections strength that,

in turn, affect the realized (observed) competitive hierarchy; θZ for the ADE hypoth-

esis and σZ for the hypothesis on the impact of the DENV vaccine on ZIKV). The

hierarchy hypothesis can be relaxed by setting ρD = ηC = ηD = 0. Similarly, the

ADE hypothesis can be relaxed by fixing θZ in the interval (0,1], while the DENV

vaccine hypothesis can be relaxed by setting σZ to unity.

The state variables and parameters of the model are described in Table 4.1 and

4.2, respectively (and a flow diagram of the model is depicted in Figure 4.1). The

main assumptions made in the construction of the model are:
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1. A DENV-CHIKV-ZIKV superinfection hierarchy is assumed for primary infec-

tions based upon the relative magnitude of the reproduction numbers. That

is, it is assumed that in a completely naive (susceptible) population DENV is

the competitively superior species, followed by CHIKV and then ZIKV (thereby

presenting a scenario where DENV may take over hosts already infected with

either of the other two species; while CHIKV can only take over ZIKV infected

hosts and ZIKV can colonize only fully susceptible hosts).

2. Individuals with prior immunity to CHIKV and ZIKV (due to recovery from

prior infection) can acquire infection with any of the three diseases (with reduced

susceptibility to that particular disease, in comparison to wholly susceptible in-

dividuals). Individuals with prior immunity to DENV are permanently immune

from getting DENV again (but are fully susceptible to CHIKV or ZIKV).

3. The four DENV serotypes (DENV1, DENV2, DENV3 and DENV4) are lumped

into one for mathematical tractability (data shows that, for several years in

the Americas, DENV epidemics are largely dominated by one DENV serotype

(Carrillo-Valenzo et al., 2010)).

4. The (imperfect) Dengvaxia vaccine may induce a cross-reaction to ZIKV. Hence,

individuals who received such a vaccine may be at risk to ZIKV infection due

to the immune-enhancement effect seen in DENV (Cohen, 2016; Solomon et al.,

2016).
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Variable Description

SH(t) Population of wholly-susceptible humans

VH(t) Population of susceptible humans vaccinated against DENV

SRj(t), (j = C,D,Z) Population of susceptible humans with prior immunity to CHIKV,

DENV, ZIKV, respectively

Yj(t), (j = C,D,Z) Population of humans infected with CHIKV, DENV, ZIKV,

respectively

Rj(t), (j = C,D,Z) Population of humans who recovered from CHIKV, DENV, ZIKV,

respectively

SV (t) Population of susceptible adult female mosquitoes

Ij(t), (j = C,D,Z) Population of adult female Aedes mosquitoes infected with CHIKV,

DENV, ZIKV, respectively

Table 4.1: Description of the state variables of the model (4.2.1).

Figure 4.1: Flowchart of the model (4.2.1).
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Parameters Description Best Range Reference

µH Per capita birth/death rate of humans 1/(70× 365) day−1

βH Effective contact rate of susceptible humans with an infected (0.43− 0.79) day−1 Fitted

mosquitoes

βS Sexual transmission rate of ZIKV (0.008− 0.01) day−1 Fitted

ψD DENV-vaccination rate (0.15− 0.48) day−1 Fitted

αH Failure rate of DENV-vaccination (0.29− 0.38) day−1 Fitted

1− σD Vaccination efficacy against DENV 0.81− 0.88 Fitted

1− σZ Vaccination efficacy against ZIKV 0.74− 0.88 Fitted

θC Modification parameter for the infectiousness of CHIKV in 0.18− 0.99 Fitted

relation to DENV

θZ Modification parameter for the infectiousness of ZIKV in 0.10− 0.69 Fitted

relation to DENV

ξC Rate of partial loss of natural immunity to CHIKV (0.032− 0.035) day−1 Fitted

ξD Rate of acquisition of permanent natural immunity to DENV (0.026− 0.035) day−1 Fitted

ξZ Rate of partial loss of natural immunity to ZIKV (0.029− 0.030) day−1 Fitted

ϕC Modification parameter for the re-infection of CHIKV 0.18− 0.40 Fitted

ϕZ Modification parameter for the re-infection of ZIKV 0.03− 0.51 Fitted

ηC Modification parameter for super-infection of CHIKV over ZIKV 0.14− 0.40 Fitted

ηD Modification parameter for super-infection of DENV over ZIKV 0.07− 0.41 Fitted

ρD Modification parameter for super-infection of DENV over CHIKV 0.02− 0.15 Fitted

γC Recovery rate from CHIKV (0.15− 0.27) day−1 [264]

γD Recovery rate from DENV (0.11− 0.15) day−1 Garba et al. (2008)

γZ Recovery rate from ZIKV (0.09− 0.11) day−1 Fitted

δD Disease-induced death rate for humans 0.001 day−1 Garba et al. (2008)

ΠV Birth rate of adult female mosquitoes 5000− 50000 day−1 Garba et al. (2008)

βV Effective contact rate of susceptible mosquitoes with an infected 0.60− 0.75 day−1 Garba et al. (2008)

humans

µV Per capita death rate of Aedes mosquitoes (1/21− 1/7) day−1 Garba et al. (2008)

Table 4.2: Description, values and ranges of the parameters of the model (4.2.1).
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4.2.1 Basic Properties

Theorem 4.2.1. (Invariant region) The closed set

D =

{(
SH , VH , SRC , SRD, SRZ , YC , YD, YZ , RC , RD, RZ , SV , IC , ID, IZ

)
∈ R15

+ :

NH(t) ≤ NH(0), NV ≤
ΠV

µV

}
is positively-invariant and attracting for the model (4.2.1).

Proof. Adding the first eleven equations and the last four equations of the model

(2.4.1) gives, respectively,

N ′H(t) = − δDYD(t) and N ′V (t) = ΠV − µVNV (t).

Since N ′V (t) = ΠV −µVNV (t), it follows that N ′V (t) ≤ 0 if NV (t) ≥ ΠV

µV
. Furthermore,

it follows, using comparison theorem Lakshmikantham and Leela (1969), that

NH(t) = NH(0) exp

[
−
∫ t

0

δDYD(s)ds

]
and NV (t) =

ΠV

µV
+
[
NV (0)− ΠV

µV

]
e−µV t.

In particular, NH(t) ≤ NH(0) for all t ≥ 0 andNV (t) ≤ ΠV

µV
ifNV (0) ≤ ΠV

µV
. Thus, the

region D is positively-invariant for the model (4.2.1). Furthermore, if NV (0) >
ΠV

µV
,

then either the solution enters D in finite time or NV (t) → ΠV

µV
as t → ∞. Hence,

the region D attracts all solutions of model (2.4.1) in R15
+ .

By Theorem 4.2.1, the existence, uniqueness, continuation results hold for the system

(hence, it is sufficient to consider the dynamics of the flow generated by the model

(4.2.1) in D (Hethcote, 2000)).
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4.3 Asymptotic Stability Disease-free Equilibrium (DFE)

4.3.1 Local Asymptotic Stability of DFE

The DFE of the model (4.2.1), denoted by E0, is given by (where N∗H = NH(0) =

S∗H + V ∗H)

E0 =
(
S∗H , V

∗
H , S

∗
RC , S

∗
RD, S

∗
RZ , Y

∗
C , Y

∗
D, Y

∗
Z , R

∗
C , R

∗
D, R

∗
Z , S

∗
V , I

∗
C , I

∗
D, I

∗
Z

)
,

=

(
(αH + µH)N∗H
αH + ψD + µH

,
ψDN

∗
H

αH + ψD + µH
, 0, 0, 0, 0, 0, 0, 0, 0, 0,

ΠV

µV
, 0, 0, 0

)
.

It can be shown, using the next generation operator method (Diekmann et al., 1990;

van den Driessche and Watmough, 2002), that the associated reproduction number of

the model (4.2.1) (denoted by R0) is given by:

R0 = max
{
RC ,RD,RZ

}
,

where,

RC =

√
θ2CβHβV S

∗
V

µV (γC + µH)N∗H
,

RD =

√
(S∗H + σDV

∗
H)S∗V βHβV

µV (γD + µH + δD)(N∗H)2
, (4.3.1)

RZ =
1

2

βS(S∗H + σZV
∗
H)

(γZ + µH)N∗H
+

√[
βS(S∗H + σZV

∗
H)

(γZ + µH)N∗H

]2
+ 4

θ2ZβHβV (S∗H + σZV ∗H)S∗V
µV (γZ + µH)(N∗H)2

 .

The square roots in the expressions in (4.3.1) account for the two generations (vector-

human-vector) needed to complete the (vector-component of the) transmission cycle

of each of the three diseases.

Interpretation of R0

The three components of the reproduction number (R0) can be interpreted as follows.
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1. Interpretation of RC :

This threshold quantity is associated with the transmission dynamics of CHIKV

(between humans and mosquitoes). It can be re-written as

RC =
√
RCHRCV ,

where,

RCH =
θCβV S

∗
V

(γC + µH)N∗H
and RCV =

θCβH
µV

.

The quantity RCH measures the human-to-vector transmission of CHIKV (i.e.,

the average number of new cases of CHIKV in the vector population gener-

ated by an average infected human). It is the product of the infection rate of

susceptible mosquitoes by CHIKV-infected humans (
θCβV S

∗
V

N∗H
) and the average

symptomatic period of CHIKV-infected humans (i.e., average duration in the

YC class, given by
1

γC + µH
). Similarly, the quantity RCV accounts for the

infection of susceptible humans by CHIKV-infected mosquitoes. It is the prod-

uct of the infection rate of susceptible humans by CHIKV-infected mosquitoes

(θCβH) and the average duration in the IC class (
1

µV
).

2. Interpretation of RD:

This quantity, associated with DENV transmission between humans and mosquitoes,

can be re-written as

RD =
√
RDHRDV ,

where,

RDH =
βV S

∗
V

(γD + µH + δD)N∗H
and RDV =

βH
(
S∗H + σDV

∗
H

)
µVN∗H

,

where RDH measures DENV transmission from DENV-infected humans to sus-

ceptible mosquitoes and RDV accounts for DENV transmission from infected
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mosquitoes to susceptible humans. The quantity RDH is the product of the in-

fection rate of susceptible mosquitoes by DENV-infected humans (βV ) and the

average duration in the YD class (
1

γD + µH + δD
). Similarly, RDV is the prod-

uct of the infection rate of susceptible humans by DENV-infected mosquitoes(βH(S∗H + σDV
∗
H

)
N∗H

)
and the average duration in the ID class (

1

µV
).

3. Interpretation of RZ :

This threshold quantity is associated with the ZIKV disease transmission be-

tween humans and mosquitoes and sexually between humans. It can be re-

written as

RZ =
1

2

[
RZSH +

√(
RZSH

)2
+ 4RZHRZV

]
,

where,

RZSH =
βS(S∗H + σZV

∗
H)

(γZ + µH)N∗H
, RZH =

θZβV S
∗
V

(γZ + µH)N∗H
and RZV =

θZβH
(
S∗H + σZV

∗
H

)
µVN∗H

.

The quantityRZSH is associated with the sexual transmission of ZIKV between

humans (and it is equal to the basic reproduction number of ZIKV transmis-

sion in the absence of vectorial transmission). It is the product of the rate

at which ZIKV is transmitted sexually to susceptible and vaccinated humans

(
βS
(
S∗H + σZV

∗
H

)
N∗H

) and the average duration in the YZ class (
1

γZ + µH
). Further-

more, the threshold quantity RZH is associated with the infection of susceptible

mosquitoes by ZIKV-infected humans. It is the product of the infection rate

of susceptible mosquitoes by ZIKV-infected humans (βV θZ) and the average

duration in the YZ class (
1

γZ + µH
). Similarly, the threshold quantity RZV ac-

counts for the infection of susceptible and vaccinated humans by ZIKV-infected

mosquitoes. It is the product of the infection rate of susceptible and vaccinated

humans
(θZβH(S∗H + σZV

∗
H

)
N∗H

)
and the average duration in the IZ class (

1

µV
).

138



It should be mentioned that the product RZHRZV is the square of the repro-

duction number of ZIKV transmission in the absence of sexual transmission of

ZIKV (i.e., it is the square of the vector-human-vector transmission of ZIKV.

Hence, it is the square of a geometric mean).

It is worth stating that the reproduction number (R0) of the model is the number of

secondary infections generated by a typical infected vector or host. The vector-host

and host-vector cycles naturally divide the transmission process into two parts (con-

tributing
√
RZHRZV secondary infections into the overall R0). However, while either

of these transmissions is happening, human sexual transmission is also going on (with

a reproduction number of RZSH during the time host-vector transmission happens,

and RZSH while vector-host happens). Hence, the total contribution of secondary

cases during the whole vector-human cycle, in the presence of sexual human trans-

mission, is
√
R2
ZSH +RZHRZV . The square root appears because of the averaging

(of transmissions) over multiple processes. It should be mentioned that
√
RZHRZV is

the reproduction number of ZIKV for vectorial transmission only (i.e., in the absence

of sexual transmission). The numbers 1/2 and 4, that appeared in the expression for

RZSH , result from the averaging of the two modes of ZIKV transmission (sexual and

vector-based). The result below follows from Theorem 2 of (van den Driessche and

Watmough, 2002).

Theorem 4.3.1. The DFE (E0) of the model (4.2.1) is locally-asymptotically stable

(LAS) whenever R0 < 1, and unstable whenever R1 = min{RC ,RD,RZ} > 1.

Target Reproduction Number (RZT )

It is convenient to define the following quantity:

RZT = RZSH +RZHRZV =
βS
(
S∗H + σZV

∗
H

)
(γZ + µH)N∗H

+
θZβV S

∗
V

(γZ + µH)N∗H
·
θZβH

(
S∗H + σZV

∗
H

)
µVN∗H

.
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The formulation (or form) of the quantity RZT is consistent with the concept of target

reproduction number discussed in Shuai et al. (2013).

Theorem 4.3.2. RZT < 1 (> 1) if and only if RZ < 1 (> 1).

Proof. For RZ < 1, then

RZ =
1

2

[
RZSH +

√(
RZSH

)2
+ 4RZHRZV

]
< 1,

⇐⇒ RZSH +

√(
RZSH

)2
+ 4RZHRZV < 2,

⇐⇒
(
RZSH

)2
+ 4RZHRZV <

(
2−RZSH

)2
,

⇐⇒
(
RZSH

)2
+ 4RZHRZV < 4− 4RZSH +

(
RZSH

)2
,

⇐⇒ RZSH +RZHRZV < 1.

Thus, from now, we define R0T = max{RC , RD, RZT} as the basic reproduction

number in terms of the target reproduction number for the transmission of the ZIKV.

Thus (by Theorem 4.3.2), Theorem 4.3.1 can be re-written in terms of the target

reproduction number as below:

Theorem 4.3.3. The DFE (E0) of the model (4.2.1) is LAS whenever R0T < 1, and

unstable whenever R1T = min{RC ,RD,RZT} > 1.

4.3.2 Global Asymptotic Stability of DFE: Special Case

Consider the special case of the model (4.2.1) in the absence of DENV-induced mor-

tality (i.e., δD = 0, so that N∗H = NH(0)).

Theorem 4.3.4. The DFE, E0 of the model (4.2.1) with δD = 0, is GAS in D

whenever R0T ≤ 1 and unstable whenever R1T = min{RC ,RD,RZT} > 1.
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Proof. It is convenient to define the following

λ∗iH =
βHθi
N∗H

, λ∗iV =
βV θi
N∗H

(i = C, D, Z), λ∗SH =
βS
N∗H

,

with θD = 1, g1 = γC + µH , g2 = γD + µH and g3 = γZ + µH . Furthermore, consider

the Lyapunov function

K1 =µH
(
YC + YD + YZ

)
+
µH
µV

[
λ∗CH(S∗H + V ∗H)IC + λ∗DH(S∗H + σDV

∗
H)ID

+ λ∗ZH(S∗H + σZV
∗
H)IZ

]
.

Thus, the Lyapunov derivative is given by

K′1 = µH
(
Y ′C + Y ′D + Y ′Z

)
+
µH
µV

[
λ∗CH(S∗H + V ∗H)I ′C + λ∗DH(S∗H + σDV

∗
H)I ′D + λ∗ZH(S∗H

+ σZV
∗
H)I ′Z

]
,

= µH

[
λ∗CHIC(SH + VH + ϕCSRC + SRD + SRZ)− g1YC + λ∗DHID(SH + σDVH+

SRC + SRZ)− g2YD +
(
λ∗ZHIZ + λ∗SHYZ

)
(SH + σZVH + SRC + SRD + ϕZSRZ)

− g3YZ
]

+
µH
µV

[
λ∗CH(S∗H + V ∗H)

(
λ∗CV SV YC − µV IC

)
+ λ∗DH(S∗H + σDV

∗
H)
(
λ∗DV SV

YD − µV ID
)

+ λ∗ZH(S∗H + σZV
∗
H)
(
λ∗ZV SV YZ − µV IZ

)]
.

Since SH(t) + VH(t) + SRC(t) + SRD(t) + SRZ(t) ≤ N∗H = S∗H + V ∗H in D for all t,

then

K′1 ≤ µH

[
λ∗CHIC(S∗H + V ∗H)− g1YC + λ∗DHID(S∗H + σDV

∗
H)− g2YD +

(
λ∗ZHIZ + λ∗SHYZ

)
(S∗H + σZV

∗
H)− g3YZ

]
+
µH
µV

[
λ∗CH(S∗H + V ∗H)

(
λ∗CV SV YC − µV IC

)
+ λ∗DH(S∗H + σD

V ∗H)
(
λ∗DV SV YD − µV ID

)
+ λ∗ZH(S∗H + σZV

∗
H)
(
λ∗ZV SV YZ − µV IZ

)]
,

≤ YC

{
µHg1

[(
RC
)2 − 1

]}
+ YD

{
µHg2

[(
RD
)2 − 1

]}
+ YZ

{
µHg3

[(
RZ
)2 − 1

]}
.

Thus, it follows that, for R0T ≤ 1 in D, the Lyapunov derivative K′1 ≤ 0. Further-

more, it follows from the LaSalle’s Invariance Principle (LaSalle, 1976) that the max-

imal invariant set contained in
{

(SH , VH , SRC , SRD, SRZ , YC , YD, YZ , RC , RD, RZ , SV ,
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IC , ID, IZ)(t) ∈ D : K′1 = 0
}

is the singleton {E0}. Hence, E0 is GAS in D whenever

R0T ≤ 1. Equivalently, E0 is GAS in D whenever R0 ≤ 1.

Theorem 4.3.4 shows that the three diseases (CHIKV, DENV and ZIKV) will be

effectively controlled in (or eliminated from) the community if the associated basic

reproduction threshold, R0T , can be brought to (and maintained at) a value less than

or equal to unity.

It is worth mentioning that persistence results, for the three diseases, can be

established for the case when R1T > 1 using the approach in Section 2.5.3.

4.4 Model (Data) Fitting, Simulations and Sensitivity Analysis

4.4.1 Data Fitting and Simulations

The model (4.2.1) is fitted using weekly data (for the three disease), given by the

Mexican Health Secretariat Boletin Epidemiologico for 2016 for the period Week 42

of 2015 to Week 33 of 2016 en México (2003), as tabulated in Table 4.3 (see also Figure

4.2). Pearson’s Chi-squared and the least square regression method (implemented

in the statistical software, R) were used to fit the model (4.2.1) to the data. Figures

4.3 − 4.5 show reasonably good fit with respect to the cumulative number of new

cases for each of the three diseases over the same time period. The model (4.2.1) is

further simulated, using parameter values from the ranges given in Table 3.3, to gain

insight into some of its qualitative and quantitative properties. A contour plot of the

reproduction number of CHIKV (RC) as a function of coverage for DENV vaccine

at steady-state (V ∗H/N
∗
H) and the modification parameter for the infectiousness of

CHIKV in relation to DENV (θC) is depicted in Figure 4.6. This contour plot show

a marked reduction in the reproduction number with decreasing θC since (RC) is

directly proportional to this parameter: a decrease in the first induces a decrease in
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Figure 4.2: Data integrated from the weekly reports in en México (2003). Courtesy

of Dr. Andreu Comas-Garćıa, Universidad Autónoma de San Luis Potośı

the second.

A similar plot, for the reproduction number of DENV (RD) as a function of vaccine

coverage (V ∗H/N
∗
H) and efficacy (1−σD), is depicted in Figure 4.7, from which it follows

that RD decreases (albeit marginally) with increasing vaccine coverage and efficacy.

It is, however, worth noting that, with the parameter values used in the simulations,

the DENV vaccine is not adequate enough to lead to effective control (or elimination)

of DENV (since they are unable to reduceRD to values less than unity). Furthermore,

a contour plot of the reproduction number of ZIKV (RZ), as a function of coverage

for DENV vaccine at steady-state (V ∗H/N
∗
H) and the modification parameter for the

infectiousness of ZIKV in relation to DENV (θZ), is depicted in Figure 4.8. This
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Figure 4.3: Fitting of the model (2.4.1) to CHIKV data given in Table 4.3. Best fit

parameter values obtained are µH = 1/(70 × 365), βH = 0.79, βS = 0.009, ψD =

0.43, αH = 0.38, σD = 0.19, σZ = 0.26, θC = 0.99, θZ = 0.10, ηC = 0.14, ηD =

0.07, ρD = 0.15, γC = 0.086, γD = 0.143, γZ = 0.098, ϕC = 0.22, ϕZ = 0.51, ξC =

0.032, ξD = 0.033, ξZ = 0.029, δD = 0.001,ΠV = 5000, βV = 0.75 and µV = 1/12.

figure shows that RZ is only mildly affected by changes in θZ even in the region of

antibody-dependent enhancement (θZ > 1). However, if the modification parameter

θZ is low (implying a relatively low infectiousness with respect to DENV), then a

sufficiently large vaccination coverage can reduce the ZIKV reproduction number.

On the other hand, as depicted in Figure 4.9, DENV vaccine efficacy has a very mild

impact on ZIKV transmission dynamics. This figure further shows that the vaccine

(no matter the high levels of efficacy and coverage) is unable to reduce the ZIKV

reproduction number to a value less than unity (implying that the DENV vaccine

will have a limited effect on the onset of ZIKV outbreaks). It can be concluded from
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Figure 4.4: Fitting of the model (2.4.1) to DENV (FD strain) data given in Table

4.3. Best fit parameter values obtained are µH = 1/(70 × 365), βH = 0.56, βS =

0.009, ψD = 0.48, αH = 0.38, σD = 0.14, σZ = 0.12, θC = 0.79, θZ = 0.69, ηC =

0.40, ηD = 0.35, ρD = 0.28, γC = 0.086, γD = 0.143, γZ = 0.10, ϕC = 0.18, ϕZ =

0.03, ξC = 0.045, ξD = 0.026, ξZ = 0.029, δD = 0.001,ΠV = 50000, βV = 0.75 and

µV = 1/12.

these simulations that reducing RZ to a value below unity depends very much on

intrinsic mosquito sensitivity towards the two viruses (DENV and ZIKV), and not on

the DENV vaccine properties.
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Figure 4.5: Fitting of the model (2.4.1) to ZIKV data given in Table 4.3. Best

fit parameter values obtained are µH = 1/(70 × 365), βH = 0.43, βS = 0.01, ψD =

0.15, αH = 0.29, σD = 0.12, σZ = 0.20, θC = 0.18, θZ = 0.10, ηC = 0.19, ηD =

0.41, ρD = 0.02, γC = 0.086, γD = 0.143, γZ = 0.10, ϕC = 0.40, ϕZ = 0.36, ξC =

0.035, ξD = 0.035, ξZ = 0.030, δD = 0.001,ΠV = 50000, βV = 0.75 and µV = 1/12.

4.4.2 Sensitivity Analysis

As in Section 2.4.5, sensitivity analysis (using LHS-PRCC) is carried out to determine

the parameters of the model (4.2.1) that have the greatest influence on the dynamics

of the three of the diseases (with respect to a chosen response function), as described

below. Ranges and baseline values of the parameters (relevant to the dynamics of the

three diseases in Mexico), tabulated in Table 4.2, will be used in these analyses.

Using the population of humans infected with CHIKV (YC) as the response func-

tion, it is shown in Table 3.4 that the top PRCC-ranked parameters of the autonomous
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Figure 4.6: Simulations of the model (2.4.1), showing a contour plot of RC as a func-

tion of the fraction of vaccinated humans at steady-state (V ∗H/N
∗
H) and modification

parameter for chikungunya infection (θC) ∈ [0, 1]. Parameter values used are as given

in Figure 4.3.

version of the model are:

(a) the modification parameter accounting for the assumption that a susceptible

human is more likely to acquire DENV infection than ZIKV (θZ);

(b) the rate at which humans acquire DENV infection (βH);

(c) the rate of recovery from ZIKV (γZ);

(d) the vaccination rate of susceptible humans against DENV disease (ψD).

A possible explanation of this observed effect may lie on the assumption that CHIKV

is competitively-weaker than DENV, but stronger than ZIKV. In an ecological con-

text, CHIKV is competitively-inferior only to DENV. Therefore, if a vaccine against
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Figure 4.7: Simulations of the model (2.4.1), showing a contour plot of RD as a

function of the fraction of vaccinated humans at steady-state (V ∗H/N
∗
H) and dengue

vaccine efficacy (1− σD) ∈ [0, 1]. Parameter values used are as given in Figure 4.4.

DENV is acting it may or may not be very efficient in preventing DENV but it

widens the niche that CHIKV can occupy (since the top competitor is being reduced

in competitive ability). The effect is that more hosts are available to CHIKV, but

not to DENV (thus, generating a net increase in the incidence of the former virus).

Similarly, using the population of humans infected with DENV (YD) as the response

function, the top PRCC-ranked parameters:

(a) the modification parameter accounting for the assumption that a susceptible

human is more likely to acquire DENV infection than CHIKV (θC);

(b) the rate of acquisition of infection (βH);
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Figure 4.8: Simulations of the model (2.4.1), showing a contour plot of RZ as a func-

tion of the fraction of vaccinated humans at steady-state (V ∗H/N
∗
H) and modification

parameter for Zika virus infection (θZ) ∈ [0, 2]. Parameter values used are as given

in Figure 4.5.

(c) the rate of recovery from CHIKV (γC);

(d) the natural mortality rate of mosquitoes (µV ).

Furthermore, using the population of individuals with ZIKV (YZ) as the response

function, the top PRCC-ranked parameters are:

(a) the rate at which susceptible humans acquire DENV infection (βH);

(b) mosquito recruitment rate (ΠV );

(c) the natural mortality rate of mosquitoes (µV );
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Figure 4.9: Simulations of the model (2.4.1), showing a contour plot of RZ as a

function of the fraction of vaccinated humans at steady-state (V ∗H/N
∗
H) and (dengue)

vaccine efficacy on Zika virus (1− σD) ∈ [0, 1]. Parameter values used are as given in

Figure 4.5.

(d) the recovery rate from DENV (γD);

(e) the vaccination rate of susceptible humans against DENV (ψD).

However, using the basic reproduction number (R0) as the response function (i.e.,

using RC ,RD and RZ), the top PRCC-ranked parameters are:

(a) the modification parameter accounting for the assumption that a susceptible

human is more likely to acquire DENV infection than ZIKV (θZ);

(b) the modification parameter accounting for the assumption that a susceptible

human is more likely to acquire DENV infection than CHIKV (θC);
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(c) mosquito birth rate (ΠV ) and natural death rate of adult mosquitoes (µV );

(d) the rate at which humans acquire DENV infection (βH).

In summary, this study identifies six highly-ranked parameters that play a crucial

role on the transmission dynamics of the three disease, namely:

(a) the rate at which humans acquire DENV infection (βH);

(b) the modification parameter accounting for the assumption that a susceptible

human is more likely to acquire DENV infection than CHIKV (θC) and ZIKV

(θZ);

(c) the recovery rate from CHIKV (γC);

(d) the natural mortality rates (µV ) and recruitment rate of mosquitoes (ΠV ).

4.5 Effect of Seasonality and Climate Variability

4.5.1 Thermal Response Functions

To incorporate the effect of seasonal and climate (local weather) variabilities in the

model (4.2.1), the weather-related parameters of the model (namely, mosquitoes re-

cruitment rate (ΠV ), mosquitoes death rate (µV ), effective contact rate of suscep-

tible mosquito with an infected human (βV ) and effective contact rate of suscep-

tible humans with an infected mosquito (βH)) are now expressed as functions of

temperature and/or rainfall (with mean monthly temperature chosen to be in the

range 16◦C ≤ T (t) ≤ 32◦C). For simplicity, air and water temperature are as-

sumed to be the same near the surface of the water (so that, as in Chapter 3,

TW (t) = TA(t) = T (t)).
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(i) Natural death rate of mosquitoes (µV ): Following Polwiang (2015) and Yang

et al. (2009), the temperature-dependent natural death rate of mosquitoes

(Aedes aegypti) is given by:

µV = µV (T ) = 0.8692− 0.159T + 0.01116T 2 − 3.408× 10−4T 3 + 3.809× 10−6T 4.

(ii) Production (birth) rate of mosquitoes (ΠV ): Following Agusto et al. (2015);

Okuneye and Gumel (2017); Parham and Michael (2010); Polwiang (2015) and

Tun-Lin et al. (2000), the temperature- and rainfall-dependent recruitment rate

of mosquitoes (Aedes aegypti) is given by:

ΠV = ΠV (T,R) =
NAB(T )pEA(T )pEA(R)

τE + τL(T ) + τP
,

where NA is the total number of adult female mosquitoes and B(T ) is the

temperature-dependent number of eggs laid peradult peroviposition given by

B(T ) = −15.437 + 1.289T − 0.0163T 2.

Furthermore, following Parham and Michael (2010), pEA(T,R) (the temperature-

and rainfall-dependent daily probability that an egg survives to become an adult

mosquito) is given by:

pEA(T,R) = pEA(T )pEA(R),

where temperature-dependent daily probability that an egg survives to become

an adult mosquito, denoted by pEA(T ), is given by:

pEA(T ) = −0.0000472222T 3 − 0.000622222T 2 + 0.130278T − 1.19333.

Following Parham and Michael (2010) (Supplemental Material), the rainfall-

dependent daily probability that an egg survives to become an adult mosquito,

denoted by pEA(R), is given by:
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pEA(R) =
∏

i=E,L,P

(4pMi/R
2
M)R(RM −R),

where pMi is the peak daily survival probability of immature mosquitoes in de-

velopment stage i (where i = E = eggs; i = L = larvae; i = P = pupae) and

RM > R(t) > 0, for all t, is the maximum rainfall threshold in the community.

It should be stated that, in line with Parham et al. (2012), the definition of

pEA(R, T ) = pEA(R)pEA(T ) emphasizes the assumed independence of temper-

ature and rainfall with each other. Finally, τE, τL(T ) and τP are the develop-

ment times of eggs, larvae and pupae in the aquatic stages. The development

times from eggs to larvae and pupae to adults are approximately independent

of temperature, while the development time from larvae to pupae varies with

temperature (Parham and Michael, 2010; Waldock et al., 2013). Thus, following

Waldock et al. (2013), the temperature dependent development time of larvae

is given by,

τL(T ) =
(
−0.000705544T 2 + 0.0355594T − 0.293506

)−1
.

(iii) Effective contact rate of a susceptible mosquito with an infected human (βV ):

Following Lambrechts et al. (2011); Polwiang (2015); Scott et al. (2000), the

effective contact rate of susceptible mosquito with an infected human is a

temperature-dependent parameter given by:

βV = βV (T ) =


(0.0943 + 0.0043T ) (−0.9037 + 0.0729T ) , if 16◦C ≤ T ≤ 26◦C,

(0.0943 + 0.0043T ) , if 26◦C < T ≤ 32◦C.

For the temperature range 160C ≤ T ≤ 260C, the first bracket in the definition

of the parameter βV is the temperature-dependent biting rate and the second
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bracket represents the temperature-dependent probability of infection per bite

(Polwiang, 2015). For the temperature range 260C < T ≤ 320C, the probability

of infection per bite is reported to be 1 (Polwiang, 2015).

(iv) Effective contact rate of a susceptible human with an infected mosquito (βH):

Similarly, following Lambrechts et al. (2011); Polwiang (2015); Scott et al.

(2000), the effective contact rate of susceptible humans with an infected mosquito

is a temperature-dependent parameter given by:

βH = βH(T ) = (0.0943 + 0.0043T ) 0.001044T (T − 12.286)
√

32.461− T .

The terms in the definition of βH are similarly defined as in βV .

It is worth mentioning that all of the aforementioned temperature-and/or-rainfall-

dependent parameters of the model (4.2.1) are positive for all mean monthly temper-

ature and rainfall in the chosen range [16, 28]◦C and [10, 190] mm, respectively (see

Table 4.6). The chosen mean monthly temperature is for some regions within Mexico

(see Tables 4.7− 4.9). Furthermore, the maximum rainfall threshold (RM) is chosen

for Mexico to be RM = 198 mm [93].

Numerical Simulations

The model (4.2.1), with the weather-dependent parameters (namely, mosquitoes re-

cruitment rate (ΠV ), mosquitoes death rate (µV ), effective contact rate of susceptible

mosquito with an infected human (βV ) and effective contact rate of susceptible hu-

mans with an infected mosquito (βH)) defined in Section 4.5 (now defined as the

non-autonomous model), is now simulated to assess the effect of variability in local

temperature and rainfall on the dynamics of the three diseases in the model. Simu-

lations are carried out for Mexico (and two Mexican states where the three diseases

are endemic).
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4.5.2 Simulations for Mexico

Mexico, a country in the southern portion of North America, lie in the coordinate

23◦N (latitude), 102◦W (longitude) and covers about 2 million square kilometers

with climate conditions varying from tropical to desert and a total population of ap-

proximately 121 million (INEGI, 2013). Mosquito-borne diseases (especially CHIKV,

DENV and ZIKV) remain a public health problem in Mexico, despite the efforts to

stop and mitigate the impact of epidemics, with 24, 605 confirmed cases of DENV on

EW (epidemiological week) 47 of 2015 and 16,835 cases in the same EW of 2016 (and

all four DENV serotypes have been reported in Mexico) [5]. The total reported cases

of CHIKV exploded in 2015 with the updated confirmed cases reaching 9,952 cases in

November 2015 from 155 cases in October 2014 (see Figure 4.2). Similarly, the cases

of the ZIKV (first case reported in 2015) have been reported in 23 states with a total

number of confirmed cases reaching 6,764 in November, 2016 (Figure 4.2).

The non-autonomous model is now simulated to assess the impact of the afore-

mentioned climate variables on the transmission dynamics of the three diseases in the

chosen regions. The first set of simulations are carried out for a fixed mean monthly

rainfall value of Mexico (namely, R(t) = 63.2 mm [93]). Figure 4.10 (see also Ta-

ble 4.6 for the values of the temperature-dependent parameters of the model) shows

that the total number of new cases of the three diseases increases with increasing

mean monthly temperature until a peak of [27−29]◦C is attained, and decreases with

increasing temperature thereafter. Similarly, for Mexico’s fixed mean monthly tem-

perature (T (t) = 22◦C), Figure 4.11 shows an increase in the number of cases with

increasing rainfall until an initial peak rainfall value (of R(t) = 100 mm) is reached,

and the number of cases decreases with increasing rainfall thereafter.

It is further evident from Figure 4.10 that (for the fixed mean monthly rainfall
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of 63.2 mm for Mexico), maximum disease activity (for all three diseases) occurs for

temperature in the range [27−29]◦C. Hence, since the current mean monthly temper-

ature for Mexico is 22◦C, projected increase in global temperature could cause a shift

(increase in mean monthly temperature) to the high transmission temperature range

(thereby making Mexico more vulnerable for the spread of the three mosquito-borne

diseases). Furthermore, the combined effect of the mean monthly temperature and

rainfall for Mexico is assessed by simulating the model (4.2.1) using various combina-

tions of mean monthly temperature and rainfall values, as tabulated in Table 4.7. The

results obtained, depicted in Figure 4.12 show an increase in the number of burden of

these diseases with increasing temperature and rainfall until a peak is reached, and

a decrease with decreasing mean monthly temperature and (or increasing) rainfall

thereafter. These diseases-associated burden are maximized in the whole of Mexico

when the mean monthly temperature values are in the [25 − 26.4]◦C range and the

mean monthly rainfall values are in the range [90 − 128] mm (occurring during the

months of June, July and September). Several Mexican states fit, on average, the

above climatic conditions. Simulations for two of these states are described below.

4.5.3 Simulations for Mexican States of Oaxaca and Chiapas

Oaxaca and Chiapas are the fifth and sixth largest states in Mexico, respectively (with

Oaxaca covering an area of 95, 364 square kilometers and a population of about 3.9

million, while Chiapas covers an area of 75, 634 square kilometers and a population

of around 4.8 million people [113]). The Mexican Dirección General de Elidemioloǵıa

reports Oaxaca and Chiapas as two of Mexicos’s 28 states with endemic levels of

mosquito-borne viral diseases (particularly DENV, CHIKV and ZIKV) throughout

2015 and 2016 (See Table 4.3 for the epidemiological weeks of years 2015 and 2016 in

Mexico [73]). For instance, the two states account for 25.92% of the total number of
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confirmed cases of ZIKV infection in pregnant women in Mexico (7.52% in Oaxaca and

18.4% in Chiapas) [257]. Furthermore, data from Pan American Health Organization

shows that, since the first local transmission of CHIKV in Chiapas in 2015, the

cumulative total confirmed cases reached 11,199 as of mid-December 2015 [3].

To assess the effect of local variabilities in temperature and rainfall in the two

states, we run simulations of the non-autonomous model using various combinations of

mean monthly temperature and rainfall values for each of the two states (as tabulated

in Tables 4.8 and 4.9). The results obtained, depicted in Figures 4.13 and 4.14, show

an increase in the burden of these diseases with increasing temperature and rainfall

until a peak is reached, and a decrease with decreasing mean monthly temperature and

(or increasing) rainfall thereafter. The peak diseases-associated burden for Oaxaca

(Figure 4.13) and Chiapas (Figure 4.14) occur when temperature and rainfall values

lie in the range [20 − 22.5]◦C, [51 − 102] mm (occurring during the months of May

through September) and [19− 21]◦C, [85− 107] mm (occurring during the months of

May, July, August and October), respectively. Thus, this study suggests that control

efforts on these diseases should be intensified for these states during these months.

4.6 Summary of Results

In this chapter, a new SIRS model for the transmission dynamics of (co-existence of)

DENV, CHIKV and ZIKV in a population, where a proportion of individuals receive

the newly-released Dengvaxia vaccine against DENV, is formulated. The model is

built based on three main hypotheses, namely:

(a) a competitive DENV-CHIKV-ZIKV superinfection hierarchy;

(b) antibody-dependent enhancement (represented by setting the parameter, θZ to
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Figure 4.10: Effect of temperature on disease dynamics (for fixed mean monthly

rainfall R(t) = 63.2 mm). Simulations of the non-autonomous version of the model

(2.4.1), showing the total number of new infections as a function of time for various

temperature values in the range [16, 32]◦C. Parameter values used in the simulations

are as in Tables 3.3 and 4.6.

a value greater than unity);

(c) that the Dengvaxia vaccine could reduce susceptibility to ZIKV (represented by

setting the parameter σZ to a value less than unity).

The main findings in this chapter are summarized below:

(i) The model has a disease-free equilibrium which is locally-asymptotically stable

whenever a certain threshold quantity (R0) is less than unity. This disease-free

equilibrium is globally-asymptotically stable, for a special case without dengue-

induced mortality in humans, whenever the associated reproduction number is
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Figure 4.11: Effect of rainfall on disease dynamics (for fixed mean monthly tempera-

ture 22◦C). Simulations of the non-autonomous version of the model (2.4.1), showing

the total number of new infections as a function of time for various levels of rainfall

in the range [10, 150] mm. Parameter values used in the simulations are as in Tables

3.3 and 4.6.

less than unity. The diseases persist in the community if a certain threshold

quantity (R1T ) exceeds unity.

(ii) Uncertainty and sensitivity analysis of the model shows that the top eight pa-

rameters that have the most influence on the dynamics of the model (with

respect to various response functions) are, the rate at which humans acquire

DENV infection (βH), the modification parameter accounting for the assump-

tion that a susceptible human is more likely to acquire DENV infection than

CHIKV (θC) and ZIKV (θZ), the vaccination rate of susceptible humans against

DENV (ψD), the recovery rate from CHIKV (γC), the natural mortality rates
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Figure 4.12: Simulations of the non-autonomous version of the model (2.4.1), showing

the total number of new infections in Mexico for the various temperature and rainfall

values given in Table 4.7. All parameters are as given in Tables 3.3 and 4.6.

of mosquitoes (µV ), the recruitment rates of mosquitoes (ΠV ) and the rate of

loss of vaccine-induced immunity (αH).

Numerical simulations of the model show that:

(a) The ZIKV reproduction number (RZ) is only mildly affected by changes in the

parameter related to the infectiousness of ZIKV in relation to DENV (θZ) even

in the region where antibody-dependent enhancement (θZ > 1) is assumed.

(b) For low values of θZ (i.e., a relatively low infectiousness of ZIKV in relation to

DENV), a sufficiently large vaccination coverage can reduce the ZIKV repro-

duction number.
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Figure 4.13: Simulations of the non-autonomous version of model (2.4.1), showing

the total number of new infections in Oaxaca, Mexico for the various temperature

and rainfall values given in Table 4.8. All parameters are as given in Tables 3.3 and

4.6.

(c) The efficacy of the DENV vaccine has a very mild impact on ZIKV transmission

dynamics. In particular, the DENV vaccine (no matter the levels of efficacy and

coverage) is unable to reduce the ZIKV reproduction number to a value less than

unity (implying that the DENV vaccine will have a limited effect on the onset

of Zika outbreaks).

(d) Reducing the ZIKV reproduction number (RZ) to a value below unity depends

very much on the intrinsic mosquito sensitivity towards the two viruses (DENV

and ZIKV), and not on the DENV vaccine properties.

Furthermore, to understand the effect of seasonality and climate variability on the dy-
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Figure 4.14: Simulations of the non-autonomous version of model (2.4.1), showing

the total number of new infections in Chiapas, Mexico for the various temperature

and rainfall values given in Table 4.9. All parameters are as given in Tables 3.3 and

4.6.

namics of the model, functional forms of the weather-related parameters of the model

(namely, mosquitoes recruitment rate (ΠV ), mosquitoes death rate (µV ), effective

contact rate of susceptible mosquito with an infected human (βV ) and effective con-

tact rate of susceptible humans with an infected mosquito (βH)) are simulated with

the model. Numerical simulations of the effect of seasonality and climate variability

on the dynamics of the model, using relevant data from Mexico (and the Mexican

states of Oaxaca and Chiapas), show the following:

(i) For a fixed mean monthly rainfall value for Mexico (i.e., R(t) = 63.2 mm),

the burden of the three diseases (measured in terms of the total number of

new cases) increases with increasing mean monthly temperature in the range
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([16 − 29]◦C, and decreases with increasing mean monthly temperature above

29◦C.

(ii) For a fixed mean monthly temperature value for Mexico (i.e., T (t) = 22◦C), the

burden of the diseases increases with increasing rainfall value until a threshold

of [95 − 100] mm is reached. At higher rainfall values (above the threshold),

disease burden decreases. This is as a result of decreases in the maturation rate

of immature mosquitoes (above this rainfall threshold) due to the flushing out

of the immature mosquitoes from the breeding sites.

(iii) For mean monthly temperature and rainfall data for the whole of Mexico and

the Mexican states of Oaxaca and Chiapas (Tables 4.7, 4.8 and 4.9), the peak

burden of the diseases for the Mexican states of Oaxaca (Figure 4.13) and Chi-

apas (Figure 4.14) occur when temperature and rainfall values lie in the range

[20 − 22.5]◦C, [51 − 102] mm (these occur during the months of May through

September) and [19− 21]◦C, [85− 107] mm (these occur during the months of

May, July, August and October), respectively. The burden of the diseases is

maximized in the whole of Mexico when the mean monthly temperature val-

ues are in the [25− 26.4]◦C range and the mean monthly rainfall values are in

the range [90 − 128] mm (which occurs during the months of June, July and

September).

(iv) For the fixed mean monthly rainfall of 63.2 mm for Mexico, maximum disease

activity (for all three diseases) occur for temperature in the range [27, 29]◦C

(Figure 4.10). Hence, since the current mean monthly temperature for Mexico

is 22◦C, projected global warming could cause a shift (increase in mean monthly

temperature) to the high transmission temperature range (thereby making Mex-

ico more vulnerable for the spread of the three mosquito-borne diseases).
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Week Chikungunya Dengue Zika virus

cases cummulative cases cummulative cases cummulative

1 0 0 658 658 0 0

2 0 0 835 1493 0 0

3 330 330 627 2120 0 0

4 524 854 766 2886 0 0

5 284 1138 920 3806 0 0

6 290 1428 872 4678 0 0

7 146 1574 802 5480 0 0

8 195 1769 784 6264 0 0

9 74 1843 407 6671 0 0

10 30 1873 213 6684 0 0

11 79 1952 89 6973 13 13

12 0 1952 4 6977 0 13

13 7 1959 88 7065 3 16

14 12 1971 167 7232 16 32

15 30 2001 180 7412 31 63

16 18 2019 140 7552 15 78

17 13 2032 189 7741 13 91

18 60 2092 234 7975 28 119

19 18 2110 243 8218 22 141

20 10 2120 239 8457 8 149

21 14 2134 163 8620 9 158

22 29 2163 193 8813 23 181

23 5 2168 60 8873 18 199

24 4 2172 102 8975 21 220

25 44 2216 107 9082 17 237

26 2 2218 120 9202 13 250

27 4 2222 107 9309 12 262

28 3 2225 116 9425 8 270

29 7 2232 113 9538 16 286

30 4 2236 108 9646 22 308

31 7 2243 141 9787 4 312

32 5 2248 123 9910 31 343

33 4 2252 157 10067 12 355

34 9 2261 168 10235 62 417

35 7 2268 173 10408 143 560

36 9 2277 204 10612 105 665

37 12 2289 191 10803 119 784

38 5 2294 169 10972 141 925

39 16 2310 176 11148 188 1113

40 26 2336 234 11382 170 1283

41 4 2340 206 11588 25 1308

42 3 2343 49 11637 129 1437

43 4 2347 354 11991 265 1702

44 18 2365 255 12246 249 1951

Table 4.3: Case data for the three diseases obtained from the weekly Mexican Health

Secretariat Boletin Epidemiologico for 2016 [73].
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T (◦C) R (mm) RC RD RZ

16− 20

16− 30 0.012− 0.111 0.018− 0.166 1.363− 1.384

30− 60 0.027− 0.235 0.04− 0.349 1.364− 1.451

60− 90 0.058− 0.299 0.086− 0.444 1.369− 1.50

90− 120 0.069− 0.303 0.103− 0.45 1.371− 1.504

120− 150 0.047− 0.282 0.07− 0.42 1.367− 1.487

20− 24

16− 30 0.079− 0.343 0.118− 0.511 1.374− 1.54

30− 60 0.18− 0.724 0.268− 1.076 1.416− 1.975

60− 90 0.38− 0.920 0.565− 1.369 1.57− 2.236

90− 120 0.456− 0.932 0.679− 1.386 1.653− 2.252

120− 150 0.308− 0.87 0.458− 1.293 1.508− 2.168

24− 28

16− 30 0.247− 0.782 0.368− 1.162 1.46− 2.05

30− 60 0.564− 1.646 0.839− 2.447 1.777− 3.272

60− 90 1.188− 2.093 1.768− 3.112 2.61− 3.931

90− 120 1.428− 2.119 2.124− 3.151 2.955− 3.97

120− 150 0.964− 1.978 1.433− 2.94 2.296− 3.761

28− 32

16− 30 0.223− 0.662 0.332− 0.984 1.443− 1.896

30− 60 0.507− 1.394 0.754− 2.073 1.710− 2.906

60− 90 1.068− 1.774 1.588− 2.637 2.441− 3.460

90− 120 1.284− 1.795 1.909− 2.670 2.746− 3.492

120− 150 0.866− 1.676 1.288− 2.492 2.163− 3.316

Table 4.4: Values of reproduction numbers (for the non-autonomous version of the

model (4.2.1)) for the three diseases for various temperature and rainfall values in

the range [16 − 32]0C and [16 − 150] mm, respectively. Specifically, the maximum

reproduction number for each of these diseases is found to be in the temperature and

rainfall range of [27− 29]0C and [90− 120] mm, respectively.
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Parameters YC Class YD Class YZ Class RC RD RZ

µH −0.0042 −0.0746 −0.0127 +0.018 +0.041 −0.059

βH +0.8943 +0.8493 +0.9546 +0.76 +0.57 +0.44

βS +0.0587 −0.0219 +0.0202 − − +0.02

ψD -0.6364 −0.0133 -0.8734 − -0.72 −0.27

αH 0.1582 +0.0231 +0.3067 − +0.74 +0.053

σD +0.0133 −0.0127 +0.2582 − −0.01 −

σZ +0.3325 −0.0596 −0.0334 − − +0.12

ηC −0.0234 −0.0180 +0.0298 − − −

ηD −0.0134 +0.0481 +0.0109 − − −

ρD +0.0445 −0.0208 −0.0707 − − −

θZ +0.9853 +0.0781 +0.0056 − − +0.95

θC +0.0315 +0.9826 −0.0030 +0.95 − −

γC −0.0046 -0.8002 +0.0246 −0.48 − −

γD +0.0363 −0.0678 −0.6910 − −0.32 −

γZ +0.8160 −0.1079 −0.0465 − − −0.24

ϕC +0.0049 −0.0046 −0.0301 − − −

ϕZ +0.0881 −0.0737 +0.0106 − − −

ξC +0.0588 +0.0776 +0.0210 − − −

ξD +0.0449 +0.0521 −0.0261 − − −

ξZ +0.6024 −0.0268 −0.0088 − − −

ΠV +0.2771 +0.6615 +0.9357 +0.89 +0.93 +0.85

βV +0.0460 +0.2475 +0.4247 +0.54 -0.25 +0.19

µV −0.5804 -0.7960 -0.9147 -0.75 +0.79 -0.87

δD +0.0609 −0.0063 −0.0001 − -0.024 −

N∗H − − − −0.11 -0.08 −0.054

Table 4.5: PRCC values for the parameters of the model (4.2.1), using the total

number of humans with symptoms of CHIKV (YC), DENV (YD) and ZIKV (YZ) as

the response functions. The top (most-dominant) parameters that affect the dynamics

of the model, with respect to each of the three response functions, are highlighted

in bold font. “Notation: a dashed line (−) indicates the parameter is not in the

expression for the relevant responses RC ,RD and RZ”.
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T (◦C) µV (T ) βV (T ) βH(T ) ΠV (T,R)

(×10−2) (×10−2) (×10−2) Rainfall (mm)

16− 30 30− 60 60− 90 90− 120 120− 150

16− 18 3.52− 3.59 4.0− 7.0 4.1− 7.0 0.6− 10 2.9− 46.5 13.2− 75.3 19− 77.2 8.7− 67.2

18− 20 3.53− 3.6 7.0− 10 7.0− 10 2.0− 19.7 10.5− 87.6 46.5− 141.6 67.2− 145.2 30.6− 126.5

20− 22 3.6− 3.64 10− 13 10− 14 3.8− 30.1 19.7− 133.5 87.6− 216 126.5− 221.4 57.6− 192.9

22− 24 3.4− 3.6 13− 17 14− 17 5.8− 42.1 30.1− 187 133.5− 302.5 192.9− 310.1 87.8− 270.2

24− 26 3.0− 3.4 17− 20 17− 19 8.1− 56.2 42.2− 249.3 187− 403.3 270.2− 413.4 123.0− 360.1

26− 28 2.7− 3.0 20− 21 19− 21 10.8− 68.8 56.2− 304.9 249.3− 493.2 360.1− 505.5 163.9− 440.4

28− 30 2.66− 2.7 21− 223 19− 21 13.3− 70.8 67.5− 314.1 299.2− 508.2 432.2− 520.8 196.9− 453.8

30− 32 2.7− 3.6 22− 23 10− 19 8.8− 67.5 45.5− 299.2 201.8− 484.0 291.5− 496.1 132.7− 432.2

Table 4.6: Temperature- and rainfall-dependent parameters of the model (where T :

Temperature and R: Rainfall) for various temperature and rainfall values in the range

[16− 32]◦C and [16− 150] mm, respectively.
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Month Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec

Temperature (◦C) 16.5 17.2 19.7 22.6 24.9 26.4 25.9 26.4 25.0 23.0 19.2 16.7

Rainfall (mm) 18.0 29.2 11.0 15.9 47.9 90.6 127.4 150.0 121.0 65.1 20.2 17.8

Table 4.7: Monthly mean temperature (in ◦C) and rainfall (in mm) for Mexico [93].

Month Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec

Temperature (◦C) 18 18 20 21.5 22.5 21 20.5 20 20 19 17.5 16.5

Rainfall (mm) 3.0 3.0 3.0 12 51 99 102 69 99 36 9.0 3.0

Table 4.8: Monthly mean temperature (in ◦C) and rainfall (in mm) for Oaxaca,

Mexico [93].

Month Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec

Temperature (◦C) 17 18 19.5 21 21 20 19.5 20 20 19 17.5 17

Rainfall (mm) 4.7 5.6 14.3 50.6 106.1 177.8 87.4 106.5 188.6 106.2 23.4 9

Table 4.9: Monthly mean temperature (in ◦C) and rainfall (in mm) for Chiapas,

Mexico [93].
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Chapter 5

CONCLUSION

MBDs continue to inflict severe public health and socio-economic burden on human

populations in many parts of the world (particularly the tropical and sub-tropical

parts of the world where MBDs are endemic). Although progress has been made, over

the decades, on the control of such diseases (due to the use of numerous intervention

strategies), these diseases remain major public health burden in affected areas and

regions. A major factor responsible for this is climate change, which has been shown

to strongly affect the ecology and physiology of the MBD vectors.

Mathematical models have played significant roles in the study of the spread of

MBDs, and consequently, contributing to the design of various effective and optimal

control strategies. This dissertation is focused on using mathematical approaches to

gain insight into the role of climate change on the population biology of the mosquito,

and on the dynamics of some of the main diseases they cause. The main contributions

of this dissertation can be classified into three main categories, namely:

(a) formulation of new and realistic weather-driven models;

(b) rigorous analyses of these models to gain qualitative insight into the dynamics

of these models;

(c) contributions to public health (which includes carrying out sensitivity analysis

to suggest control strategies and numerical analysis to determine of suitable

range for maximum local mosquito abundance and disease transmission inten-

sity).

The specific contributions of the dissertation are summarized as follows:
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5.1 Chapter 2

In Chapter 2, a new weather-driven mathematical model for assessing the impact

of two climate variables (rainfall and temperature) on the population biology of the

mosquito was designed. Some of the notable ecological features of this model, which

extends numerous other models for mosquito population biology in literature, include

adding:

(i) four larval instar stages in the aquatic stages;

(ii) density-dependence for egg oviposition process;

(iii) three distinct stages of the gonotrophic cycle of the adults female mosquito.

Detailed qualitative analysis of the autonomous version of the model is carried out

(showing the global asymptotic stability of the trivial equilibrium when a certain re-

production threshold (RM) is less than unity; as well as showing the local asymptotic

stability of the non-trivial equilibrium when the threshold exceeds unity; this latter

equilibrium bifurcates intoa stable limit cycle via a super-critical Hopf bifurcation).

Furthermore, it was shown that the dynamics of the full (non-autonomous) model

is governed by the vectorial reproduction ratio (RMt; the spectral radius of a certain

linear operator of a function of the next generation matrices of the model which

account for the number of new adult female mosquitoes produced by a reproductive

adult female mosquito over its reproductive period). The trivial periodic solution of

the model is shown to be locally-asymptotically stable, whenever the RMt is less than

unity. Furthermore, it is shown, using uniform persistence theory, that the model has

at least one positive periodic solution whenever RMt > 1.

Sensitivity analysis of the autonomous version of the model shows that the top

five parameters that have the most influence on the dynamics of the model (with
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respect to various response functions) are:

(a) the probability that an adult female mosquito questing for bloodmeal success-

fully take a bloodmeal;

(b) the natural mortality rate of larvae and adult female mosquitoes;

(c) the maturation rate of female larvae from Stage 1 to Stage 2.

Hence, this study suggests that the population of adult mosquito in a community

can be effectively-controlled using mosquito-reduction strategies, as well as personal

protection against mosquito bites.

In addition, numerical simulations of the non-autonomous model (2.3.1), using

relevant functional forms of the temperature- and rainfall-dependent parameters of

the model (given in Section 2.3.1) and parameter values associated with the pop-

ulation dynamics of the Anopheles species of mosquitoes (which causes malaria in

humans), show that for mean monthly temperature and rainfall values in the range

[10, 40]◦C and [90 − 120] mm, respectively, peak mosquito abundance is attained

when temperature and rainfall values lie in the range [20−25]◦C and [105−115] mm,

respectively.

5.2 Chapter 3

In Chapter 3, a new weather-driven mathematical model (an extension of designed

in chapter 2 by including the population dynamics of the human host and the inter-

action between Anopheles mosquitoes and humans) is designed to assess the impact

of temperature variability on the transmission dynamics of malaria in a population.

Some of the notable additional features of the model include incorporating:

(a) the Plasmodium’s sporogonic cycle;
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(b) disease transmission to vectors by asymptomatically-infectious humans;

(c) reduced malaria susceptibility in humans due to recovery from prior malaria

infection;

(d) transition from symptomatic to asymptomatically-infectious stages for malaria-

infected humans;

(e) the complete loss of partial immunity in humans;

(f) the effect of daily temperature range (DTR).

It was shown that the autonomous version of the model has a non-trivial disease-

free equilibrium (NDFE) which exists whenever the vectorial reproduction number

(RM) exceeds unity. The NDFE is shown to be globally-asymptotically stable, in the

absence of disease-induced mortalities in humans (i.e., δH = δHA = 0), whenever the

associated reproduction number (denoted by R0) is less than unity.

Furthermore, this study suggests (using detailed sensitivity analysis of the au-

tonomous version of the model) that effective malaria control entails a multi-faceted

approach based on:

(i) minimizing the contact humans have with mosquitoes (i.e., minimizing the

per capita mosquito biting rate and the transmission probability from infected

mosquitoes by using mosquito repellents and insecticide-treated bed nets, and

potentially via the use of anti-malaria drugs as intermittent preventative ther-

apy);

(ii) reducing the mosquito population (i.e., increasing death rate of mature mosquitoes

by insecticide spraying, using insecticide-treated bed nets and removing stag-

nant waters, to prevent successfully fed adult female mosquitoes from returning

close-by breeding sites);
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(iii) early diagnosis and treatment of malaria cases.

Numerical simulations of the model indicate that temperature variability is impor-

tant in determining the optimum temperature ranges for malaria transmission, with

increasing DTR shifting the optimum temperature for transmission down from about

29.5 ◦C when temperature is constant, to 23.5 ◦C when DTR is 20 ◦C. In addition,

by considering two reduced version of the model (one omitting explicit representation

of the gonotrophic cycle and the other omitting the sporogonic cycle), numerical sim-

ulations indicate that the mosquito gonotrophic cycle does not seem to have major

impact on malaria dynamics, and its explicit inclusion in malaria transmission models

can be relaxed. Moreover, the omission of sporogony, significantly affects the model

predictions (suggesting that it is crucial to include sporogony in models for malaria

transmission dynamics).

5.3 Chapter 4

In Chapter 4, a new mathematical model is designed to gain qualitative and quantita-

tive insight into the transmission dynamics of three disease viruses: DENV, CHIKV

and ZIKV, that co-circulate in a given region, owing to the fact that they share the

same transmitting vector (Aedes mosquito) but have some variations in transmission

modes. In the SIRS model designed, a proportion of individuals receive the newly-

released Dengvaxia vaccine against DENV. The model is built based on three main

hypotheses, namely:

(a) a competitive DENV-CHIKV-ZIKV superinfection hierarchy;

(b) antibody-dependent enhancement (represented by setting a parameter, θZ to a

value greater than unity);
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(c) that the Dengvaxia vaccine could reduce susceptibility to ZIKV (represented by

setting a parameter, σZ to a value less than unity).

The model is further extended to incorporate the effect of temperature and rainfall

variability on the population biology of Aedes mosquitoes, to gain insight into the

effect of these climate variables on transmission dynamics of the three diseases in the

region of study.

The model has a disease-free equilibrium (DFE) which is locally-asymptotically

stable whenever the basic reproduction number (R0; which is the maximum of the

reproduction number of each of the three diseases) is less than unity. Furthermore,

this equilibrium is globally-asymptotically stable, for a special case without dengue-

induced mortality in humans, whenever the associated reproduction number is less

than unity. Furthermore, the diseases are shown to persist in the community if a

certain threshold quantity (R1T ; which is the minimum of the reproduction number

of each of the three diseases) exceeds unity.

Sensitivity analysis of the autonomous model shows that the top parameters that

have the most influence on the dynamics of the model (with respect to various response

functions) are:

(a) the rate at which humans acquire DENV infection;

(b) the modification parameter accounting for the assumption that a susceptible

human is more likely to acquire DENV infection than CHIKV and ZIKV;

(c) the recovery rate from CHIKV;

(d) the natural mortality rates of mosquitoes;

(e) the recruitment rates of mosquitoes;
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Numerical simulations of the autonomous model show that the ZIKV reproduction

number (denoted by RZ) is only mildly affected by changes in the parameter related

to the infectiousness of ZIKV in relation to DENV (θZ) even in the region where

antibody-dependent enhancement (θZ > 1) is assumed. In addition, the efficacy

of the DENV vaccine has a very mild impact on ZIKV transmission dynamics. In

particular, the DENV vaccine (no matter the levels of efficacy and coverage) is unable

to reduce the ZIKV reproduction number to a value less than unity (implying that

the DENV vaccine will have a limited effect on the onset of Zika outbreaks).

The model is further simulated to assess the effect of seasonality and climate vari-

ability on the dynamics of the model, using relevant data from Mexico. These simula-

tions show that, for a fixed mean monthly rainfall value for Mexico (i.e., R(t) = 63.2

mm), the burden of the three diseases (as measured in terms of the total number

of new cases) increases with increasing mean monthly temperature in the range

([16 − 29]◦C, and decreases with increasing mean monthly temperature thereafter.

Moreover, for a fixed mean monthly temperature value for Mexico (i.e., T (t) = 22◦C),

the burden of the diseases increases with increasing rainfall value until a threshold

of [95− 100] mm is reached. At higher rainfall values (above the threshold), disease

burden decreases. In addition, for the fixed mean monthly rainfall of 63.2 mm for

Mexico, maximum disease activity (for all three diseases) occur for temperature in

the range [27, 29]◦C. Hence, since the current mean monthly temperature for Mexico

is 22◦C, projected global warming could cause a shift (increase in mean monthly tem-

perature) to the high transmission temperature range (thereby making Mexico more

vulnerable for the spread of the three mosquito-borne diseases).
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associated with zika virus infection in french polynesia: a case-control study. The
Lancet, 387(10027):1531–1539, 2016.

C. W. Cardoso, M. Kikuti, A. P. P. Prates, I. A. Paploski, L. B. Tauro, M. M. Silva,
P. Santana, M. F. Rego, M. G. Reis, U. Kitron, et al. Unrecognized emergence of
chikungunya virus during a zika virus outbreak in salvador, brazil. PLoS neglected
tropical diseases, 11(1):e0005334, 2017.

G. D. L. R. Cariboni, J. and A. Saltelli. The role of sensitivity analysis in ecological
modeling. Ecological modeling, 203(1-2):167 – 182, 2007.

178



E. Carrillo-Valenzo, R. Danis-Lozano, J. X. Velasco-Hernández, G. Sánchez-Burgos,
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A.1 COEFFICIENT OF EQUATION (2.4.12)

The coefficients (bi, i = 0, 1, . . . , 7) of Equation (2.4.12) in Section 2.4.2 are given by:

b0 =
( 1

RM

− 1
)
Q1X6,

b1 =

[( 1

RM

− 1
)
Q1X3 +Q2X5X6

]
δL + 1,

b2 =

[( 1

RM

− 1
)
Q1X2 +Q2

(
X5X3 +X4X6

)]
δ2L,

b3 =

[( 1

RM

− 1
)
Q1 +Q2

(
X1X6 +X2X4 +X3X4

)]
δ3L,

b4 = Q2

(
X1X3 +X2X4 +X5 +X6

)
δ4L,

b5 = Q2

(
X1X2 +X3 +X4

)
δ5L,

b6 = Q2 (X1 +X2) δ
6
L,

b7 = Q2δ
7
L,

(A.1.1)

where,

Q1 =
σECPDKU

ατ ∗Wη
∗
VB

, Q2 =
KU(CPD)2σECE
(ατ ∗Wη

∗
VB)2ψU

, X1 = C1 + C2 + C3 + C4,

X2 = C2 + C3 + C4 + ξ1, X3 = C2C3 + C2C4 + C3C4 + C3ξ1 + C4ξ1 + ξ1σL2 ,

X4 = C1C2 + C1C3 + C1C4 + C2C3 + C2C4 + C3C4, X5 = C1C2C3 + C1C2C4

+ C1C3C4 + C2C3C4, X6 = C2C3C4 + C3C4ξ1 + C4ξ1σL2 + ξ1σL2σL3 ,
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A.2 COEFFICIENT OF EQUATION (2.4.14)

A1 = D
(
C1C2C3C4CE + C1C2C3C4CP + C1C2C3CECP + C1C2C4CECP + C1C3C4CECP

+C2C3C4CECP
)

+ C
(
C5C6 + C5C7 + C6C7

)
> 0,

A2 =
2∑
i=1

Ci

3∑
j=i+1

Cj

4∑
k=j+1

Cj

5∑
l=k+1

Cl

6∑
m=l+1

Cm

7∑
n=m+1

Cn

CE + CP +
7∑

q=n+1

Cq


+ CECP

 3∑
i=1

Ci

4∑
j=i+1

Cj

5∑
k=j+1

Ck

6∑
l=k+1

Cl

7∑
m=l+1

Cm − ατ∗W η∗V γU
3∑
i

Ci

4∑
j=i+1

Cj


− ατ∗W η

∗
V γU

2∑
i=1

Ci

3∑
j=i+1

Cj

4∑
k=j+1

Ck

(
4∑

l=k+1

Cl + CE + CP

)
> 0,

A3 =
3∑
i=1

Ci

4∑
j=i+1

Cj

5∑
k=j+1

Cj

6∑
l=k+1

Cl

7∑
m=l+1

Cm

(
CE + CP +

7∑
n=m+1

Cn

)

+ CECP

 4∑
i=1

Ci

5∑
j=i+1

Cj

6∑
k=j+1

Ck

7∑
l=k+1

Cl − ατ∗W η∗V γU
4∑
i

Ci


− ατ∗W η

∗
V γU

3∑
i=1

Ci

4∑
j=i+1

Cj

 4∑
k=j+1

Ck + CE + CP

 > 0,

A4 =
4∑
i=1

Ci

5∑
j=i+1

Cj

6∑
k=j+1

Cj

7∑
l=k+1

Cl

(
CE + CP +

7∑
m=l+1

Cm

)

+ CECP

 5∑
i=1

Ci

6∑
j=i+1

Cj

7∑
k=j+1

Ck − ατ∗W η∗V γU

 (A.2.1)

− ατ∗W η
∗
V γU

3∑
i=1

Ci

 4∑
j=i+1

Cj + CE + CP

 > 0,

A5 =

5∑
i=1

Ci

6∑
j=i+1

Cj

7∑
k=j+1

Cj

(
CE + CP +

7∑
l=k+1

Cl

)
+ CECP

6∑
i=1

Ci

7∑
j=i+1

Cj

− ατ∗W η
∗
V γUC > 0,

A6 =

6∑
i=1

Ci

7∑
j=i+1

Cj

CE + CP +

7∑
k=j+1

Ck

+ CECP

7∑
i=1

Ci − ατ∗W η∗V γU > 0,

A7 =
7∑
i=1

Ci

CE + CP +
7∑

j=i+1

Cj

 > 0,

A8 = CE + CP +
7∑
i=1

Ci > 0,
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where, CE = σE + µE, CP = σP + µP , Ci = σLi + µL (for i = 1, 2, 3, 4), C5 =

η∗V +µA, C6 = τ ∗W +µA, C7 = γU +µA, C = CECP
4∏
j=1

Cj, D = C5C6C7−ατ ∗Wη∗V γU > 0

and Ai (i = 1, . . . , 8).
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Proof. Model (2.3.1) can be written as

dx

dt
= F(x, t)− V(x, t) = f(t, x)

where x = (E,L1, L2, L3, L4, P, V,W,U)T ,

F =
(
ψU

(
1− U

KU

)
U, 0, 0, 0, 0, 0, 0, 0, 0

)T
V =

(
CE(t)E,C1(t)L1 − σE(t)E,C2(t)L2 − σL1(t)L1, C3(t)L3 − σL2(t)L2, C4(t)L4

− σL3(t)L3, CP (t)LP − σL4(t)L4, C5(t)− σP (t)P − γUU,C6(t)− η∗V , C7(t)− ατ∗W
)T
.

The function V can further be expressed as V = V− − V+ where

V+ =
(

0, σE(t)E, σL1(t)L1, σL2(t)L2, σL3(t)L3, σL4(t)L4, σP (t)P + γUU, η
∗V, ατ ∗W

)T
,

V− =
(
CE(t)E,C1(t)L1, C2(t)L2, C3(t)L3, C4(t)L4, CP (t)LP , C5(t), C6(t), C7(t)

)T
.

The functions F , V+, and V− satisfy the following:

(A1) For each 1 ≤ i ≤ 9, the functions Fi(t, x), V+
i (t, x), and V−i (t, x) are non-

negative, continuous on R × R9
+ and continuously differential with respect to

x.

(A2) Since some of the model parameters are ω-periodic functions, there exists a real
number ω > 0, such that Fi(t, x), V+

i (t, x), and V−i (t, x) are ω-periodic in t.

(A3) If xi = 0, then clearly, V−(t, x) = 0.

(A4) Fi = 0 for 2 ≤ i < 9.

(A5) If xi = 0 ∀i, Fi(x) = V+
i (x) = 0.

(A6) Since the trivial solution for the model is given by x0(t) = (0, 0, 0, 0, 0, 0, 0, 0, 0),
then for

M(t) =
(∂fi(t, x0(t))

∂xj

)
1≤i,j≤9

,

ρ(ΦM(ω)) = 0 < 1, where ΦM(ω) is the monodromy matrix of the linear ω-

periodic system
dz

dt
= M(t)z.

(A7) Similarly, for

V (t) =
(∂Vi(t, x0(t))

∂xj

)
1≤i,j≤9

,

ρ(Φ−V (ω)) = 0 < 1.
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C.1 PROOF OF THEOREM 3.4.1

203



Proof. Let RMP ≤ 1. Consider, first of all, the mosquito-only system of the model
(3.4.1):

dE

dt
= ψEϕZ

(
1− E

KE

)
+

(SZ + EZ + IZ)− (σE + ηE + µE)E,

dL1

dt
= σEE − (σL1 + ηL + kLL+ µL)L1,

dLj
dt

= σL(j−1)
Lj−1 − (σLj + ηL + kLL+ µL)Lj , j = 2, 3, 4,

dP

dt
= σL4L4 − (σP + ηP + µP )P,

dSX
dt

= fσPP + ϕZSZ − (bHpH + ηM + µM )SX ,

dEX
dt

= ϕZEZ − (bHpH + κM + ηM + µM )EX ,

dIX
dt

= ϕZIZ + κMEX − (bHpH + ηM + µM )IX ,

dSY
dt

= bHpH(1− βV )GHSX + bHpH(1− GH)SX − (θY + ηM + µM )SY ,

dEY
dt

= bHpHβV GHSX + bHpHEX − (θY + κM + ηM + µM )EY ,

dIY
dt

= κMEY + bHpHIX − (θY + ηM + µM )IY ,

dSZ
dt

= θY SY − (ϕZ + ηM + µM )SZ ,

dEZ
dt

= θYEY − (ϕZ + κM + ηM + µM )EZ ,

dIZ
dt

= θY IY + κMEZ − (ϕZ + ηM + µM )IZ ,

(C.1.1)

The system (C.1.1) has a unique trivial equilibrium (whenever RMP ≤ 1), given by

T01 =
(
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

)
, (C.1.2)

in the invariant region

Ω1 =
{(
E,L1, L2, L3, L4, P, SX , EX , IX , SY , EY , IY , SZ , EZ , IZ

)
(t) ∈ R15

+ : 0 ≤ E(t),

0 ≤ Lj(t) (j = 1, 2, 3, 4), 0 ≤ P (t), 0 ≤ SX(t), 0 ≤ EX(t), 0 ≤ IX(t), 0 ≤ SY (t),

0 ≤ EY (t), 0 ≤ IY (t), 0 ≤ SZ(t), 0 ≤ EZ(t), 0 ≤ IZ(t)
}
,

Further, consider the following Lyapunov function for the system (C.1.1):

K1 = a0

[
a1E + a2L1 + a3L2 + a4L3 + a5L4

]
+ CE

4∏
j=1

CLj

[
a6P + CP θY bHpH(SX

+ EX + IX) + CPCXθY (SY + EY + IY ) + CPCXCY (SZ + EZ + IZ)
]
.
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where

a0 = θY bHpHσL4fσP , a1 = σEσL1σL2σL3, a2 = CEσL1σL2σL3,

a3 = CL1CEσL2σL3, a4 = CL1CL2CEσL3 , a5 = CL1CL2CL3CE,

a6 = fσP θY bHpH .

The Lyapunov derivative is given by (where a dot represents differentiation with
respect to time t)

K̇1 = a0

[
a1Ė + a2L̇1 + a3L̇2 + a4L̇3 + a5L̇4

]
+ CE

4∏
j=1

CLj

[
a6Ṗ + CP θY bHpH(ṠX

+ ĖX + İX) + CPCXθY (ṠY + ĖY + İY ) + CPCXCY (ṠZ + ĖZ + İZ)
]
,

= a0

4∏
j=1

σLj

[
ψEϕZ

(
1− E

KE

)
(SZ + EZ + IZ)

]
− CECPD1

4∏
j=1

CLj
(
SZ + EZ + IZ

)
− kLLS,

=

[
CECPD1

4∏
j=1

CLj
(
RMP − 1

)
−D2

E

KE

]
(SZ + EZ + IZ)− kLLS,

where CE = σE + ηE + µL, CLj = σLj + ηL + µL (j = 1, 2, 3, 4), CP = σP +
ηP + µP , CX = bHpH + ηM + µM , CY = θY + ηM + µM , CZ = ϕZ + ηM + µM ,
D1 = CXCYCZ − θY bHpHϕZ =

(
ηM + µM

)[
CZ(CX + θY ) + bHpHθY

]
> 0 and D2 =

θY bHpHfσEσP

4∏
j=1

σLjψEϕZ and S = a0
[
a2L1 + a3L2 + a4L3 + a5L4

]
.

Thus, it follows, for RMP ≤ 1 in Ω1, that the Lyapunov derivative K̇1 ≤ 0.
Furthermore, it follows from the Theorem 6.4 in LaSalle (1976) (LaSalle’s Invariant
Principle) that the maximal invariant set contained in{(

E,L1, L2, L3, L4, P, SX , EX , IX , SY , EY , IY , SZ , EZ , IZ
)
∈ Ω1 : K̇1 = 0

}
is the singleton {T01} (as shown in proof of Theorem 2.4.2). Hence, the unique trivial
equilibrium (T01) of the system (C.1.1) is GAS in Ω1 whenever RMP ≤ 1. Thus, for
RMP ≤ 1,(
E,L1, L2, L3, L4, P, SX , EX , IX , SY , EY , IY , SZ , EZ , IZ

)
(t)→ (0, 0, . . . , 0), as t→∞.

(C.1.3)

Since the model (3.4.1) is Type K Smith (1986), it follows, by substituting (C.1.3)
into (3.4.1), that(

SH ,WH , EHN , EHR, IH , AH , RH

)
(t)→

(
ΠH

µH
, 0, 0, 0, 0, 0, 0

)
, as t→∞. (C.1.4)

Thus, by combining (C.1.3) and (C.1.4), it follows that the TDFE (T0) of the model
(3.4.1) is GAS in Ω whenever RMP ≤ 1.
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Consider the expression for RV H given by Equation (3.4.5),

RV H = bHβH
S�H
N∗H

κMϕZθY (CY CZ + CY gX + gXgZ)

(CXCY CZ − bHpHϕZθY )(gXgY gZ − bHpHϕZθY )
,

= bHβH
S�H
N∗H

κMϕZθY ×
CY CZ + CY gX + gXgZ
CXCY CZgXgY gZ

×
[
1− bHpHϕZθY

CXCY CZ

]−1
×
[
1− bHpHϕZθY

gXgY gZ

]−1
,

= bHβH
S�H
N∗H

1

CX

[
κMϕZθY
gXgY gZ

+
κMϕZθY
CZgY gZ

+
κMϕZθY
CY CZgY

] n∑
j=0

(
bHpH
gX

θY
gY

ϕZ
gZ

)j
m∑
k=0

(
bHpH
CX

θY
CY

ϕZ
CZ

)k
,

where n,m→∞ It can further be expressed as

RV H = bHβH
S�H
N∗H

1

CX

(
RV 1H +RV 2H +RV 3H

)
,

where

RV 1H =
θY
gY

ϕZ
gZ

κM
gX

n∑
j=0

(
bHpH
gX

θY
gY

ϕZ
gZ

)j m∑
k=0

(
bHpH
CX

θY
CY

ϕZ
CZ

)k
,

RV 2H =
θY
gY

κM
gZ

ϕZ
CZ

n∑
j=0

(
bHpH
gX

θY
gY

ϕZ
gZ

)j m∑
k=0

(
bHpH
CX

θY
CY

ϕZ
CZ

)k
,

RV 3H =
κM
gY

θY
CY

ϕZ
CZ

n∑
j=0

(
bHpH
gX

θY
gY

ϕZ
gZ

)j m∑
k=0

(
bHpH
CX

θY
CY

ϕZ
CZ

)k
.
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E.1 REDUCED MODELS
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E.1.1 GONOTROPHIC CYCLE OMITTED

Adult female model equations without explicit modeling of the gonotrophic cycle.

dSX
dt

= fσPP −
[
ΓpHβV GH + ηM + µM(t)

]
SX ,

dEX
dt

= ΓpHβV GHSX −
[
κM(t) + ηM + µM(t)

]
EX ,

dIX
dt

= κM(t)EX −
[
ηM + µM(t)

]
IX ,

(E.1.1)

where

Γ =

(
1

bH
+

1

ϕZ
+

1

θY

)−1
.

The egg production term in the resulting model is given by

ψEΓ

(
1− E

KE

)
(SX + EX + IX),

and the force of infection is given by

λH = ΓβH
IX
NH

.

E.1.2 SPOROGONIC CYCLE OMITTED

Adult female compartments in the absence of the Plasmodium’s sporogonic cycle

dSX
dt

= fσPP + ϕZSZ −
[
bHpH + ηM + µM(t)

]
SX ,

dIX
dt

= ϕZIZ −
[
bHpH + ηM + µM(t)

]
IX ,

dSY
dt

= bHpH(1− βV )GHSX + bHpH(1− GH)SX −
[
θY (t) + ηM + µM(t)

]
SY ,

dIY
dt

= bHpHβV GHSX + bHpHIX −
[
θY (t) + ηM + µM(t)

]
IY ,

dSZ
dt

= θY (t)SY −
[
ϕZ + ηM + µM(t)

]
SZ ,

dIZ
dt

= θY (t)IY −
[
ϕZ + ηM + µM(t)

]
IZ ,

(E.1.2)
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