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ABSTRACT

Handwritten documents have gained popularity in various domains including edu-

cation and business. A key task in analyzing a complex document is to distinguish

between various content types such as text, math, graphics, tables and so on. For

example, one such aspect could be a region on the document with a mathematical

expression; in this case, the label would be math. This differentiation facilitates the

performance of specific recognition tasks depending on the content type. We hypoth-

esize that the recognition accuracy of the subsequent tasks such as textual, math, and

shape recognition will increase, further leading to a better analysis of the document.

Content detection on handwritten documents assigns a particular class to a ho-

mogeneous portion of the document. To complete this task, a set of handwritten

solutions was digitally collected from middle school students located in two different

geographical regions in 2017 and 2018. This research discusses the methods to collect,

pre-process and detect content type in the collected handwritten documents. A total

of 4049 documents were extracted in the form of image, and json format; and were

labelled using an object labelling software with tags being text, math, diagram, cross

out, table, graph, tick mark, arrow, and doodle. The labelled images were fed to

the Tensorflows object detection API to learn a neural network model. We show our

results from two neural networks models, Faster Region-based Convolutional Neural

Network (Faster R-CNN) and Single Shot detection model (SSD).
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Chapter 1

INTRODUCTION

Handwritten documents have gained popularity in domains such as education and

business. The Formative Assessment with Computational Technologies (FACT) re-

search team built an educational software which takes handwritten and text input.

FACT research project is helping middle school math teachers understand how stu-

dents are collaborating or working individually on a set of math problems (VanLehn

et al., 2016). FACT system analyzes the content written by the student and sends

notifications (alerts) to the teacher regarding student performance. However, analyz-

ing handwritten content is a challenging task. Content detection helps in the analysis

by differentiating various types of content on a document.

A key task in analyzing a complex document is distinguishing between various

content types such as text, math, graphics, table and so on. This differentiation fa-

cilitates the performance of specific recognition tasks depending on the content type

(Indermühle et al., 2010a; Okun et al., 1999). My research goal is to detect interesting

aspects of a handwritten document and assign each aspect a meaningful label. For

example, one such aspect could be a region on the notes with a mathematical expres-

sion; in this case the label would be math. We call this task as content detection.

FACT system provides handwriting and text input without any restrictions. This

means that the student can write calculations or draw diagrams on the document

to come up with a solution. Sketch recognition, being a hard problem (Cheema and

LaViola, 2012), a recognizer may find it difficult to correctly recognize the letters/

equations/ diagrams on the whole document together. We hypothesize that content

detection helps the recognizer perform better by suggesting which kind of information
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to look for within each detected block; whether to look for text, math, diagram and

so on.

Figure 1.1: A training handwritten sample of a solved math problem from FACT

project

A preliminary task in analyzing a handwritten document is to detect regions

containing homogeneous pieces of data. In this context, a homogeneous piece of

data is a group of handwritten strokes representing similar content. Different content

types are text, math, diagram, cross out, table, graph, tick mark, arrow, and doodle

(Table 3.1). For example, Figure 1.1 depicts different content types on a document.

The Figure 1.1 shows a handwritten document with labelled rectangular boxes. The
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handwritten document, also called a poster, has a math problem which has been

solved by a student. We took a screen-shot of the handwritten data of a solved poster

from FACT and labelled meaningful parts of the solution as shown in Figure 1.1.

This image when processed by our trained model resulted with detections shown in

Figure 1.2.

Figure 1.2: A detected handwritten sample of a solved math problem from FACT

project

Recently, object detection techniques based on deep neural networks have been

shown to perform well on natural images. Our research question is

How accurately can we detect content type in a handwritten document
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using object detection techniques.

To investigate this question, we extraccted examples of student handwritten work

from the FACT system as images and labelled them individually. Additionally, this

thesis required a good understanding of FACT system’s code base for the extraction

of data. This thesis also required a thorough understanding of neural networks as the

models in use are novel state-of-art deep networks with most of the code written in

Python using the Tensorflow library.

We analyzed our dataset on two popular object detection techniques Faster Region-

based Convolution Neural Network (Ren et al., 2015) and Single Shot Detector (Liu

et al., 2016), with mean Average Precision (mAP) as the evaluation metric, a com-

mon evaluation metric for object detection tasks (Ren et al., 2015; Everingham et al.,

2015).

1.1 Terminology

We use the following terminology in this document. In a handwritten document,

we call the process of detecting meaningful rectangular boxes and assigning labels to

them as ‘content detection’. In this document, the word ‘object detection’ is used

more generally, on any kind of image, while ‘content detection’, on the other hand, is

on images of handwritten student work. In this document, the word tagging is used

interchangeably with labelling.

1.2 Reader’s Guide

This document is outlined in the following manner. Chapter 2 discusses different

approaches to content detection on documents and object detection in general. The

last section of chapter 2, Preliminary Data Collection & Research, describes a proof of

concept done for the proposal of this thesis. Chapter 3 discusses how the handwritten

4



data was collected and gives a detailed description of the data and how it was labelled.

In chapter 4, we give a brief introduction of the two neural networks Faster R-CNN

and SSD. Chapter 5 demonstrates how the models were evaluated in detail. In chapter

6, we discuss some possible improvements. We conclude what we have done in chapter

7.
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Chapter 2

RELATED WORK

A top-down approach for content detection is to detect interesting parts of the

document as bounding boxes and assign a label to each bounding box using a classifier

(Indermühle et al., 2010a; Keysers et al., 2007; Wong et al., 1982). A bottom-up

approach would be - to classify each stroke as a specific content type and then cluster

similar strokes together, forming segments (Stahovich and Lin, 2016; Indermühle

et al., 2010a; Jain et al., 2001; Strouthopoulos and Papamarkos, 1998). Both these

approaches have been applied on digital ink data and on images of the documents as

well. With the recent advancement of fast and accurate object detection techniques

using convolutional neural networks (Huang et al., 2017; Redmon et al., 2016; Ren

et al., 2015), content detection is being done on images which contain variety of

content. This thesis focuses on using recent object detection techniques to identify

content present on images of handwritten documents.

Extracting semantic information from digital ink data is a challenging problem.

The difficulty lies in detecting what type of drawings (with their boundaries) are

present on the document. The detection increases the recognition accuracy for the

upcoming tasks such as textual, shape and math recognition (Stahovich and Lin,

2016).

Content detection (Kleinberg et al., 1998) remains a challenging problem, espe-

cially when it comes to differentiating text and math strokes. Traditionally, content

detection was done using digital ink information or using pixel information of images

(Fu and Kara, 2011). Content detection on images of handwritten documents and

object detection on natural images (Redmon et al., 2016; Ren et al., 2015) are similar

6



in methodology. These object detection techniques have found a significant success

in related fields. This thesis focuses on content detection using these recent object-

detection deep neural network models on images of handwritten documents. We also

discuss the challenges faced in collecting and labelling the data.

In general, object detection in images has a wide range of applications such as

detection of traffic signs for autonomous cars (Escalera et al., 1997), human action

detection (Yu and Yuan, 2015), counting number of people in a very crowded scene,

and estimating the number of vehicles in a traffic congestion (Onoro-Rubio and López-

Sastre, 2016). With the recent advancement of neural networks, the object detection

task has achieved better performance, both in speed and accuracy (Huang et al.,

2017). (Huang et al., 2017) has a good review of different CNN models used for

object detection.

2.1 Preliminary Data Collection & Research

This section describes a initial proof of concept that was done for the proposal

of this thesis. The following paragraphs demonstrate a small experiment that was

carried out for evidence.

Given any arbitrary math problem, students typically write text, equations, tables

or graphs. Figure 2.1 shows a screen-shot of a solved math problem and the labels

assigned to each meaningful portion of the image. The labelling was done by selecting

rectangular regions on the image and assigning a label to them. We trained a DNN

model proposed by (Ren et al., 2015) with 21 labelled images and found high accuracy

on 6 test images. Figure 2.2 shows the output showing the label and confidence

percentage on the top left corner of each detected bounding box.

This proof of concept was performed using a DNN model from the Object detection

library of Tensorflow (Huang et al., 2017). The DNN model is known as faster R-CNN

7



model as proposed by (Ren et al., 2015) and has been shown to give good results on

PASCAL Visual Object Classes dataset (Everingham et al., 2010), Microsoft Common

Objects in Context dataset (Lin et al., 2014), and others1. The faster R-CNN model

is a state-of-art object detection neural network for performing fast object detection

on images and has achieved better accuracy compared to most other models on both

the PASCAL VOC and MS COCO datasets (Huang et al., 2017).

1https://en.wikipedia.org/wiki/List_of_datasets_for_machine_learning_research#

Object_detection_and_recognition
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Figure 2.1: A labelled training sample of a solved math problem from FACT project
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Figure 2.2: A test image of a solved math problem from FACT project detected by

the neural network model
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Chapter 3

DATA COLLECTION

3.1 Methods

By organizing 32 classroom trials in England and California, the FACT project has

collected more than 4049 unique examples of handwritten student work on complex

math problems (VanLehn et al., 2016). Figure 3.1 shows a handwritten solution also

called as a poster, contains anything from handwriting, text, and images. Students

could write calculations or draw diagrams on the poster to come up with a solution.

These solutions are written by middle school students in a classroom setting.

The first step in processing the data was to extract only the handwritten strokes

from the JSON-formatted poster. The removal of typed text and math was necessary

because the system was already aware of its presence on the poster. The handwritten

strokes were then further separated by their location on the poster - whether they

were on a card or on the canvas itself. All the strokes that were present on the canvas

were drawn on a Graphics2D (java.awt.Graphics2D) object and then rendered as an

image. A similar approach was followed for the strokes present on cards, which were

extracted separately as individual images per card. On both the canvas and cards, if

there were no or few strokes1, they were discarded. Algorithm 1 was used to extract

handwritten strokes. Figures 3.2 and 3.3 show samples of extracted strokes.

12 to 3 strokes which do not make text, math or shape
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Figure 3.1: A sample solved problem from FACT project

Algorithm 1 How to render an image from strokes

Input : strokesList: List of Strokes
Output: Image
BufferedImage bi = new BufferedImage();
Graphics2D g = bi.createGraphics();
while there exist a next stroke in strokesList do

Stroke s = strokeList.next()
for i=0 ; i < s.size()-1 ; i++ do

Point p1 = s.getPoint(i);
Point p2 = s.getPoint(i+1);
g.draw(new Line2D.Double(p1.getX(), p1.getY(), p2.getX(), p2.getY()));

end
end
ImageIO.write(buffer, ”png”, outputImageFile);
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Figure 3.2: A sample image of a poster containing only strokes

3.2 Tagging

The handwritten images had to be tagged before using them for training purposes.

They were tagged using the Microsoft’s Visual Object Tagging Tool (VoTT). Tagging

involves selecting a rectangular region on the photo and giving it a label. A meaningful

label could be text, math, diagram, cross out, table, graph, tick mark, arrow or doodle

(Table 3.1).
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Figure 3.3: A sample image of a card containing only strokes

Since Microsoft’s VoTT2 was an easy-to-use software with a portable executable

chosen for image tagging. The tagging process can be resumed if there was a pause in

between. The labels are stored in a format suitable for the neural network model, once

the tagging is done. Adversely, there is one known issue with the VoTT software -

once tagged, the rectangular boxs’ size and position change when revisiting an image.

A work around for this issue is to rearrange the boxes when revisiting an image. We

revisited every image in our dataset and rearranged the rectangular box’s size and

position. This assured that the tagging was properly done, but it is recommended to

use a different tagging tool or to use VoTT after this issue gets resolved.

3.3 Data Statistics

A total of 4049 documents were extracted in the form of images. 90% of these

form the training set and 10% form validation set. All the images were labelled using

VoTT software with tags being text, math, diagram, cross out, table, graph, tick

mark, arrow, and doodle. Figure 3.4 shows the number of labels of each class in

our dataset. We have more examples of text, math, diagram and doodle and less

examples of cross-out, table, graph, tick mark and arrow.

2https://github.com/Microsoft/VoTT
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Label Description

Text A piece of English writing on the notes, either handwritten or typed

Math A segment on the notes with mathematical character(s)

Diagram Geometrical shapes

Cross-out Anything on the notes that has been crossed out

Table Tabular information about variable(s)

Graph A plot showing the relation between two variables

Tick mark A check mark written with hand

Arrow Arrow showing a direction or position

Doodle A drawing which is not relevant to the assigned work

Table 3.1: Labels given to a region on a handwritten notes
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Figure 3.4: shows the number of labels of each class in our dataset
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Chapter 4

METHODOLOGY

In this section, we discuss the two models used for content detection. The first section

gives a brief introduction to convolutional networks, and the next two sections discuss

the models.

4.1 Convolutional Neural Networks

Figure 4.1 shows a typical convolutional neural network model. As shown in the

Figure 4.1, the model is divided into two phases, Feature learning and Classification.

In the feature learning phase, the model extracts a feature vector from an input

image. This phase, sometimes referred as feature extractor, generally, consists of

convolution and pooling layers with activation functions like ReLU (Nair and Hinton,

2010). These layers reduce the image to a smaller size producing a feature vector

as the output. An activation function is a mathematical function which defines the

output given an input or a set of inputs. In the classification phase, the extracted

feature vector is further reduced to generate a category.

We used meta-architectures (Huang et al., 2017) of the initially proposed Faster

R-CNN (Ren et al., 2015) and SSD (Liu et al., 2016). Meta-architectures differ

from the originally proposed architectures (Faster R-CNN & SSD) in a way that we

can plug-in different feature extractors and not the one’s originally used. There are

various features extractors specifically for image data. Some of them are VGG model

( named after the Visual Geometric Group (Simonyan and Zisserman, 2014)), Resnet

(Residual Network, (He et al., 2016)) and inception network (Szegedy et al., 2015).

These are convolutional networks that are proven to produce good results on image
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Figure 4.1: A typical supervised convolutional neural network architecture showing

feature learning and classification phases

data. The first few layers in these feature extractors are known to detect cusps and

curves. The deeper layers detect shapes and bodies.

4.2 Faster R-CNN

As described (Huang et al., 2017), the model used is a meta-architecture of the

Faster R-CNN (Region-based Convolutional Neural Network). The model, Faster R-

CNN (Ren et al., 2015) was implemented to improve the speed of object detection

while not compromising the accuracy. The models - Fast R-CNN (Girshick, 2015) and

R-CNN (Girshick et al., 2014) were released before Faster R-CNN was released. While

all three of them share a similar network architecture, the later one’s improvised on

the speed.

As shown in Figure 4.2a, Faster R-CNN has two convolutional networks. The first

network predicts 300 bounding boxes with their box regressions. Box regressions are

small corrections to refine the predicted bounding box. The network also provides

an objectness score which determines how confident the model is about the existence

on object. Note that the model doesn’t predict the class label for each region yet.

A second network determines the classes for each proposal and also predicts a box
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(a) Faster R-CNN

(b) Single Shot Detector (SSD)

Figure 4.2: Architectural comparison of the two models. (a) Faster R-CNN has two

networks - one to generate region proposals, the other to predict a class to find a box

refinement for each proposal. (b) SSD has a single network to find regions, classify

them and to refine to each region proposal. Images are from (Huang et al., 2017)
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refinement by taking the region proposals and the features extracted from the first

network. Note that the second network works as an image classifier and thus can

be a pre-trained network trained on different set of data. The Faster R-CCN model

we used, has a convolutional network (also called as feature extractor), is known as

ResNet-101 (residual network) as implemented in the paper (He et al., 2016).

4.3 Single Shot Detector (SSD)

As described (Huang et al., 2017), the model used is a meta-architecture of the

Single Shot Detector (SSD). As shown in Figure 4.2b, SSD has just one feature

extractor (CNN) to predict, refine, and classify the region proposals. The network

also provides a prediction score which determines how confident the model is about

the class.

The SSD model we used, has a feature extractor, is known as inception network

as implemented in (Szegedy et al., 2015). The neural network architecture of SSD

model is shown in the figure 4.3.

Figure 4.3: Network architecture of SSD
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4.4 System Specifications

Training of the model - Faster R-CNN, was done on a “Dell Inspiron 15.6 Laptop

with Intel Core i5, 8GB Memory and NVIDIA GeForce GTX 1050 Ti”. Training

of the SSD model was done on a remote machine with “Nvidia Tesla K40m (12GB

RAM)”. The proof of concept mentioned in section 2.1 was performed on a system

with Core i7 processor and 32GB RAM (and no GPU).

21



Chapter 5

RESULTS

In this section, we define and explain the evaluation metrics of this content detec-

tion task. We analyze both speed and accuracy in our experiments.

5.1 Intersection over Union (IoU)

Given a test image, our trained content detection model outputs a set of predicted

bounding boxes with their labels and prediction score.

Each predicted bounding box is evaluated based on how much it overlaps with the

ground truth object. We used a bounding box evaluation metric called Intersection

over Union (IoU). Each detected bounding box is assigned to ground truth object and

judged to be true/false positive by measuring the bounding box overlap (Everingham

et al., 2010). The IoU value is the proportion of intersection of the bounding box and

the predicted box to their union. Figure 5.1 shows how we calculate IoU value for a

given bounding box prediction.

Figure 5.2 shows samples of true positive, false positive and false negative. If the

model correctly labels the text with an IoU value greater than 0.5, it is considered

a true positive. If the IoU value is less than 0.5 or if the model incorrectly predicts

a bounding box when no such ground truth object is present, the prediction will be

regarded as false positive. For example, if there is no text present but the model

predicts a bounding box as math or text, then that predicted box will fall into the

false positive category. A false negative will occur when there is a ground truth object

and the model failed to identify it. A true negative does not occur in object detection

because if there is no ground truth and there is no prediction, then there is nothing
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Figure 5.1: Bounding box evaluation: The right part of the figure shows how to

calculate Intersection over Union (IoU), where as the left part shows two predicted

boxes in Cyan color, the ground truth boxes in black color and their IoU values.

to measure.

5.2 Precision and Recall

Precision is defined as the proportion of all predictions which are from the positive

class i.e. is calculated by dividing the number of true positives with the total number

of true positives and false positives. The recall value is calculated by dividing the

number of true positives by the number of true positives and false negatives. To

calculate IoU value, precision and recall; only bounding boxes and their predicted

classes were used but not the prediction score.

precision =
truepositives

truepositives + falsepositives
(5.1)

recall =
truepositives

truepositives + falsenegatives
(5.2)

The number of True/False positives is limited by the prediction score of the bound-

ing box. The prediction score gives the confidence level for the detected bounding
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(a) True Positive samples

(b) False Positive sample

(c) False Negative sample

Figure 5.2: Figure (a) shows two predicted boxes which are counted as True positive

samples because the IoU value is ≥ 0.5. Figure (b) shows a predicted box which is

counted as False positive sample because the IoU value is < 0.5. Figure (c) shows a

ground truth box which is considered as a False Negative sample because there is no

True Positive prediction for the ground truth box.
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Prediction score Precision Recall

1.0 1.0 0.0

0.8 0.7 0.6

0.7 0.7 0.6

0.6 0.6 0.6

0.5 0.6 0.7

0.4 0.6 0.7

0.3 0.5 0.7

0.2 0.5 0.7

0.1 0.5 0.7

0.0 0.0 0.9

Table 5.1: The correlation between precision and recall with varying prediction score

box, so a prediction score of 1.0 means that the model is very confident about the

predicted class and the possibility of the corresponding bounding box to be a true

positive sample is highly likely. On the other hand, a prediction score of 0.0 means

that the model is least confident about the predicted class, and the possibility of the

corresponding bounding box to be a false negative is highly likely. Prediction score

plays a defining role in the calculation of precision and recall. For example, if we

were to cap the prediction score to 0.8 (which would mean any bounding box with

a score less than 0.8 would not be taken into consideration), the number of false

positives decrease and number of false negatives increase. Our results follow the com-

mon fact that the prediction score is directly proportional to precision and inversely

proportional to recall.

Table 5.1 and the corresponding graph 5.3 show this correlation between precision
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Figure 5.3: The correlation between precision and recall with varying prediction score.

and recall with varying prediction scores. Figure 5.4 shows the scatter plot of precision

and recall for all the classes. These values are evaluated on the validation set with

1,400 epochs1 of training on Faster R-CNN.

A confusion matrix is often used to describe the performance of a classification

task (Bradley, 1997). Figures 5.5 and 5.6 show confusion matrices evaluated by the

two models, evaluated at prediction score = 0.5.

5.3 ROC Curves

As described in (Hastie et al., 2009) - “The receiver operating characteristic curve

(ROC) is a commonly used summary for assessing the tradeoff between sensitivity

(true positive rate) and specificity (false positive rate)”. It is a plot between true

positive rate and false positive rate as we vary prediction score from 1 to 0.

True positive rate, recall, and sensitivity are all the same and is defined as number

of true positives divided by number of positive samples. In our case, number of

1An epoch is one complete run of the training set to be learned on a model.
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Figure 5.4: Precision vs Recall curve for different classes, evaluated with Faster R-

CNN model.

positive samples is equal to the number of ground truth boxes.

True positive rate = recall = sensitivity =

∑
true positives∑

positive samples
(5.3)

False positive rate or Fall-out is defined as the number of false positives divided

by the number of negative samples. In our case, number of negative samples is equal

to total number of predictions made by the model minus number of true positives.

False positive rate = Fall − out = specificity =

∑
false positives∑

negative samples
(5.4)

Figures 5.7 and 5.8 shows the ROC curves for the models - Faster R-CNN and SSD

respectively. We see that the ROC curves for the both the models look almost similar.

The area under an ROC curve of a specific class signifies how well the classifier does

compared to other classes (Bradley, 1997) (Hanley and McNeil, 1982). The dotted

black line in Figures 5.7 and 5.8 shows the ROC curve for a random classifier. The
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(a) Confusion matrices for classes - Text, Math, Diagram, and Cross out

(b) Confusion matrices for classes - Table, Tick mark, Arrow, and Doodle

Figure 5.5: Figure (a) and (b) show confusion matrices evaluated by Faster R-CNN

model. (TP = True Positive, FN = False Negative, FP = False Positive, TN = True

Negative)
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(a) Confusion matrices for classes - Text, Math, Diagram, and Cross out

(b) Confusion matrices for classes - Table, Tick mark, Arrow, and Doodle

Figure 5.6: Figure (a) and (b) show confusion matrices evaluated by SSD model.

(TP = True Positive, FN = False Negative, FP = False Positive, TN = True Negative)
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area under the ROC curve of a random classifier is 0.5. It means that if a particular

class has an area under ROC curve less than 0.5, then it is better to just randomly

predict rather that using the model. We see that only the ‘arrow’ class under performs

in both the models.

Figure 5.7: Shows the ROC curve for Faster R-CNN model

5.4 Mean Average Precision (mAP)

The commonly used Mean Average Precision (mAP) for evaluating the quality of

object detectors, is the mean of the per-class average precisions2. It is computed as

per the protocol of the PASCAL VOC Challenge 2010-2012. Average Precision (AP)

2https://github.com/tensorflow/models/blob/master/research/object_detection/

g3doc/evaluation_protocols.md
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Figure 5.8: Shows the ROC curve for SSD model

is computed as the average of maximum precision at 11 recall levels as shown in the

equation 5.5. APr(i) is the maximum precision for any recall values exceeding i.

AP =
1

11
× (APr(0) + APr(0.1) + APr(0.2) + ... + APr(1.0)) (5.5)

APr(i) = max
j≥i

Precision(j) (5.6)

The mAP value depends on two factors: The Intersection over Union (IoU) num-

ber and the prediction score that the model provides for each predicted box. While

averaging the precision values account for the varying prediction score, the IoU thresh-

old of 0.5 was deliberately set low to account for the inaccuracies in bounding boxes

in the ground truth data (Everingham et al., 2010). We achieved a mAP of 55.3%

and 54.5% on evaluation set with Faster R-CNN and SSD respectively. Figures 5.9
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and 5.10 shows the Average Precision (AP) for each class and the overall mAP as

the epoch number changes. On natural images (PASCAL VOC 2007 dataset), Faster

R-CNN achieved 69.9% mAP and SSD achieved 74.3% mAP (Ren et al., 2015; Liu

et al., 2016).

Figure 5.9: Shows the AP (Average Precision) for each class and the overall mAP

(mean Average Precision) value as the epoch number on the X-axis for Faster R-CNN

model

5.5 Time analysis

With Tensorflow, after a model has learned the weights, the result can be saved

as a graph. The saved graph with all weights and variables takes 183MB and 55MB

for models Faster R-CNN and SSD respectively. SSD has smaller network when

compared to Faster R-CNN and thus loads and detects at a faster rate. Table 5.2

shows the time comparison for the two models when loaded on a Tesla K40m with

12GB memory.
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Figure 5.10: Shows the AP (Average Precision) for each class and the overall mAP

(mean Average Precision) value as the epoch number on the X-axis for SSD model

Model size on disk in Mega

Bytes (MB)

time to load into

memory on average

time to detect an

image on average

Faster R-CNN 183 MB 2.03 seconds 2.83 seconds

SSD 56 MB 1.60 seconds 1.68 seconds

Table 5.2: Time comparison of the two models on Nvidia Tesla K40m (12GB)

5.6 Example detections

In Figures 5.11 to 5.16, we show side-by-side comparisons of some test-set de-

tections of the models Faster R-CNN and SSD. We hand-tuned the threshold for

prediction score as 0.5 for visual attractiveness.
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(a) Faster R-CNN (b) SSD

Figure 5.11: Side-by-side comparisons of detections of the models Faster R-CNN and

SSD.
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(a) Faster R-CNN (b) SSD

Figure 5.12: Side-by-side comparisons of detections of the models Faster R-CNN and

SSD.

(a) Faster R-CNN (b) SSD

Figure 5.13: Side-by-side comparisons of detections of the models Faster R-CNN and

SSD.
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(a) Faster R-CNN (b) SSD

Figure 5.14: Side-by-side comparisons of detections of the models Faster R-CNN and

SSD.
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(a) Faster R-CNN (b) SSD

Figure 5.15: Side-by-side comparisons of detections of the models Faster R-CNN and

SSD.

(a) Faster R-CNN (b) SSD

Figure 5.16: Side-by-side comparisons of detections of the models Faster R-CNN and

SSD.
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Chapter 6

POSSIBLE IMPROVEMENTS

In this section, we discuss possible improvements in the model and in the data. We

also discuss how our data is best suited for the analysis of handwritten documents

written by middle school students.

6.1 Possible improvements in the model

The models Faster R-CNN and SSD were originally used to detect objects on

natural images, which are colored (have 3 channels, RGB) and have noise in them.

The handwritten data on the other hand is binary i.e. only black or white, has no

noise and is only 1 channel. For the handwritten data, the model only has to learn

the edges, shapes and their relations; it doesn’t need to learn color dependencies with

other objects and everything that relates to natural images. This leaves room for

change in the model by reducing the number of layers in the network.

The data we collected can be represented with only 0’s and 1’s - 0 for white

background and 1 for handwritten ink. This kind of reduction in data leaves room

for a change in model to work faster.

6.2 Possible improvements in the data

While gathering more data from students by conducting trials is a way of aug-

menting the handwritten corpus, another way is to transform the data by rotating

(90◦, 180◦, 270◦), flipping horizontally and vertically, and also by rearranging the

ground truth at different positions. These data augmentation techniques not only in-

crease the data but also are known to reduce over-fitting on image data (Krizhevsky
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et al., 2012)

Another way of increasing the accuracy and decreasing the noise is to avoid the

white background during prediction. Some of the predictions such as the one shown

in Figure 5.2b has a prominent area of white space with detection as doodle. The

empty space can be avoided to account for only handwritten data on the image. This

will hopefully reduce the noise and increase the accuracy.

6.3 Complication with the data

Occasionally, the handwriting in the images were not legible as illustrated in

Figures 6.1. The authors of this data are middle school students and thus our data

is best suited for the analysis of handwritten document written by middle school

students. The illegibility accounts for the noise and thus can be used as training if

the test data is also from middle school students. However, if we were to work on

a typical hand written document (Figure 6.2), compiled by university students or

public in general, we can use the IAMonDo-database available at (Indermühle et al.,

2010b).
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(a) Image with illegible handwriting.

(b) Image with illegible handwriting.

(c) Image with illegible handwriting.

(d) Image with illegible handwriting.

Figure 6.1: Sample images with illegible handwriting.

Figure 6.2: A sample handwritten document from the IAMonDo-database.
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Chapter 7

CONCLUSION

We have gathered a handwritten image corpus, labelled it and used it to detect content

type (text, math, diagram, cross out, table, graph, tick mark, arrow or doodle) using

Faster R-CNN and SSD object detection techniques. We hope that this helps in

further analysis tasks such as understanding a digital handwritten document.
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Onoro-Rubio, D. and R. J. López-Sastre, “Towards perspective-free object counting
with deep learning”, in “European Conference on Computer Vision”, pp. 615–629
(Springer, 2016).

Redmon, J., S. Divvala, R. Girshick and A. Farhadi, “You only look once: Unified,
real-time object detection”, in “Proceedings of the IEEE conference on computer
vision and pattern recognition”, pp. 779–788 (2016).

Ren, S., K. He, R. Girshick and J. Sun, “Faster r-cnn: Towards real-time object detec-
tion with region proposal networks”, in “Advances in neural information processing
systems”, pp. 91–99 (2015).

Simonyan, K. and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition”, arXiv preprint arXiv:1409.1556 (2014).

Stahovich, T. F. and H. Lin, “Enabling data mining of handwritten coursework”,
Computers & Graphics 57, 31–45 (2016).

43



Strouthopoulos, C. and N. Papamarkos, “Text identification for document image
analysis using a neural network”, Image and Vision Computing 16, 12-13, 879–896
(1998).

Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, A. Rabinovich et al., “Going deeper with convolutions”, (Cvpr, 2015).

VanLehn, K., S. Cheema, J. Wetzel and D. Pead, “Some less obvious features of
classroom orchestration systems”, in “Educational Technologies: Challenges, Ap-
plications and Learning Outcomes”, (Nova Science Publishers, Inc., 2016).

Wong, K. Y., R. G. Casey and F. M. Wahl, “Document analysis system”, IBM journal
of research and development 26, 6, 647–656 (1982).

Yu, G. and J. Yuan, “Fast action proposals for human action detection and search”, in
“Proceedings of the IEEE conference on computer vision and pattern recognition”,
pp. 1302–1311 (2015).

44


