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ABSTRACT  
   

Lignocellulosic biomass represents a renewable domestic feedstock that can support 

large-scale biochemical production processes for fuels and specialty chemicals. However, cost-

effective conversion of lignocellulosic sugars into valuable chemicals  by microorganisms still 

remains a challenge. Biomass recalcitrance to saccharification, microbial substrate utilization, 

bioproduct titer toxicity, and toxic chemicals associated with chemical pretreatments are at the 

center of the bottlenecks limiting further commercialization of lignocellulose conversion. Genetic 

and metabolic engineering has allowed researchers to manipulate microorganisms to overcome 

some of these challenges, but new innovative approaches are needed to make the process more 

commercially viable. Transport proteins represent an underexplored target in genetic engineering 

that can potentially help to control the input of lignocellulosic substrate and output of 

products/toxins in microbial biocatalysts. In this work, I characterize and explore the use of 

transport systems to increase substrate utilization, conserve energy, increase tolerance, and 

enhance biocatalyst performance. 
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CHAPTER 1 

INTRODUCTION 

Lignocellulosic bioconversion and transport bottlenecks 

Modern society is unsustainably dependent on petroleum. For example, approximately 120 

billion gallons of gasoline were consumed in the United States in 2012 (1). Besides transportation 

fuels, many other bulk industrial chemicals, such as solvents, fertilizers, pesticides, and plastics, 

are also derived from petroleum (2). Due to escalating global energy consumption, dramatic 

changes have manifested in the atmosphere and global climate (3). To ensure the future 

advancement of human society, a sustainable supply of energy and chemicals is needed. 

Production of fuels and chemicals by fermentation-based manufacturing processes using a 

renewable feedstock is a desirable alternative to petrochemical production.  

Lignocelluloses are the most abundant renewable natural organic materials present on the 

earth (4-6). They account for more than 60% of total biomass and are renewable due to carbon 

fixing photosynthetic processes of plants, with a net productivity of 155 billion tons per year (7). 

Converting lignocellulose into fuels and chemicals does not compete with food sources since 

economic plants grown for food and other commercial purposes generate millions of tons of 

lignocellulosic waste. A wide range and variety of agricultural, forestry and industrial wastes are 

available for value-added microbial conversion. For example, approximately 731 million tons of rice 

straw is annually produced globally as an agricultural waste (8). The stems, leaves and fibers from 

agricultural crops generally have sugar content higher than 50% of their dry weight, and thus these 

agricultural waste residues represent abundant carbon feedstocks. Additionally, ample amounts of 

lignocelluloses are present in forest residues, wood sulfite waste, fruit/vegetable waste, waste 

paper and municipal solid waste (5-7). The potential for using such wastes as a renewable carbon 

source is of great importance.  

Lignocellulose is a complex matrix present in plant cell wall structures; composed of many 

different polysaccharides, phenolic polymers, and proteins. Regardless of source, most 

lignocellulosic biomass contains cellulose, hemicellulose, and lignin as three major polymeric 

components as shown in Figure 1.1. Unlike starch, lignocellulose has been evolved to resist 
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deconstruction. Cellulose fibers are encased in a covalently -linked mesh of lignin and 

hemicellulose. Cellulose (30-50% of lignocellulose dry weight) is composed of D-glucose and is 

highly resistant to deconstruction. Efficient degradation of cellulose generally requires cellulases 

(9-11). Lignin (10-25% lignocellulose dry weight) is a heterogeneous aromatic polymer and is 

difficult for microbes to use as carbon source. Three basic phenol derivatives (p-coumaryl alcohol, 

coniferyl alcohol and sinapyl alcohol), the so-called monolignols, make up almost all types of lignin 

found in nature (12, 13). Hemicellulose (20-35% of lignocellulose dry weight) is composed of a 

mixture of pentoses and hexoses mostly with D-xylose as the major sugar (Figure 1.1) (5, 6, 14). 

Fermentable sugar content of lignocelluloses occupies 50 to 70% of biomass dry weight, which is 

comparable to corn (5). However, these sugars are covalently fixed in polymeric states, and thus 

require chemical and/or enzymatic pretreatment processes to release them for microbial 

conversion (5, 15). Simple pretreatments such as steam pretreatment with dilute mineral acids (e.g. 

sulfuric and phosphoric acid) are able to depolymerize hemicellulose into sugar monomers (5, 6, 

14).   

After pretreatment, the resulting syrups contain a mixture of hexoses and pentoses, however, 

conversion of this hydrolysate to valuable products is difficult for multiple reasons. First, utilization 

efficiency of sugar mixtures by microbes is hindered by a global regulatory mechanism called 

catabolite repression (16-18). This regulation is common for most microbes used in bio-based 

production, if not all, and is tightly controlled at transcriptional and biochemical levels (18, 19). 

Glucose is often the preferred substrate by industrial microbes and its presence represses the 

catabolism of other secondary sugars in lignocellulose such xylose and arabinose (20, 21). Under 

anaerobic or micro-aerobic fermentation, complete consumption of sugar mixtures at high rates is 

difficult, especially for high sugar concentrations (100 g/L total sugars or higher) (18). This results 

in sugar loss, decreased productivity, and lower product titers for lignocellulose conversion. 

Second, microbes that can utilize xylose, such as Escherichia coli, possess transport systems that

expend energy for the uptake of xylose. In E. coli, import of xylose is catalyzed primarily by XylFGH, 

an ATP-binding cassette transporter that expends one ATP per molecule of D-xylose imported (22, 

23).  Thus, under anaerobic and microaerobic xylose fermentation conditions, the amount of ATP 
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spent on transport approximately doubles compared to glucose fermentation (22). This ultimately 

contributes to decreased fermentative production, especially under microaerobic conditions when 

ATP is scarce. Third, toxic side products, such as furan aldehydes, formate, acetate and soluble 

aromatics, are produced during sugar degradation steps in thermochemical pretreatments (6, 15). 

The aforementioned toxic side products can hinder or even be detrimental to cell growth (24). Furan 

aldehydes and aromatics are especially problematic due to both abundance and cytotoxicity (25, 

26). Although efforts targeting cytosolic toxicity mechanisms of these compounds have 

incrementally enhanced tolerance, characterization of efflux systems for expulsion of lignocellulosic 

inhibitors from cells remains largely unexplored. Overliming to pH 10 with Ca(OH)2 or other physical 

methods such as active carbon filter or vacuum treatment are able to remove inhibitors and thus 

reduce cytotoxicity of lignocellulosic hydrolysate syrups (27, 28). However, these extra steps 

increase process complexity and operational costs, thus reducing economic viability. Lastly, the 

metabolic pathways of hosts catabolizing lignocellulosic sugars are often altered to direct a high 

flux of carbon to a non-natural product that may not optimally be transported to the extracellular 

space. Both product and lignocellulosic inhibitor export from the cell is then potentially catalyzed 

by promiscuous or other non-ideal transport systems, limiting fermentative production metrics and 

imposing toxicity on the biocatalyst. Thus, for bioconversion of lignocellulose to valuable products 

to be efficient, robust biocatalysts must be developed that optimally transport and utilize the sugars 

present while tolerating the toxic effects of both inhibitors and products in the media. The 

optimization and characterization of transport systems for this purpose is the theme of my 

dissertation. 

Overview of the bacterial cell envelope 

To effectively manipulate transport systems, it is important to have a high level understanding 

of the cellular envelope of the organism of interest. The cellular envelope of bacteria consists of 

either one or two lipid membranes, a feature that discerns bacteria as either Gram positive or Gram 

negative, respectively (29). The cellular envelope of Gram negative bacteria consists of an outer 

membrane, a cell wall containing a thin layer of peptidoglycan, and an inner membrane (30, 31). In 

contrast, Gram positive cells lack an outer membrane and instead have a much thicker 
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peptidoglycan cell wall that contains covalently linked anionic polymers called teichoic acids that 

help maintain membrane structure and function (31, 32). Although different in structure, the cell 

envelope of these organisms share the same general functions to maintain cell boundaries, 

selectively allow the passage of molecules to the cytoplasm, and maintain critical electrochemical 

gradients (31). For the sake of brevity, I will only discuss the cell envelope of Gram negative 

bacteria in detail.

The outer membrane is composed of lipopolysaccharides (LPS), phospholipids and 

approximately 50% proteins by mass and serves a number of functions involving nutrient transport, 

protein translocation, signal transduction, and protection from the extracellular environment (30, 

31, 33). Similar to the inner membrane, the phospholipid composition of the outer membrane is 

~80% phosphotidylethanolamine, 5% cardiolipin, and 15% phsophotidylglycerol (34). The LPS 

anchored to the outer membrane generally consist of an external hydrophilic polysaccharide region 

followed by an internal hydrophobic core which, together, serve as an effective permeability barrier 

against hydrophobic and hydrophilic molecules (30, 35). For example it has been observed that 

LPS slow the penetration of lipophilic molecules by diffusion to ~1-2% the rate of a normal 

phospholipid bilayer (36). Thus for many molecules to effectively cross the outer membrane, they 

must enter through proteinaceous channels known as porins (37) -barrel proteins 

essentially act as both specific and non-specific molecular filters, often preventing the passage of 

molecules larger than 600-1,000 Da (33, 38). For instance, OmpF is a general diffusion porin that 

is known to prefer cation molecules less than 600 Da in size (39), whereas other ligand-specific 

porins, such as LamB, are induced by maltose/maltodextrins and are essential for uptake of these 

molecules (40).  Even hydrophobic molecules such as toluene and benzene utilize porins for 

effective uptake due to the slow rate of diffusion through the outer membrane (41-43). Thus the 

outer membrane serves as an important first step in facilitating the exclusion and uptake of nutrients 

to the periplasm. 

Once in the periplasm, molecules can enter the cytoplasm through carrier-dependent and/or 

independent mechanisms depending on the properties of the molecule. Small uncharged 

molecules (e.g. ethanol, butanol), gases (such as O2 or CO2), and, to some extent, water can cross 
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the inner membrane via carrier-independent mechanisms such as passive diffusion (44). In this 

process, the rate of transport largely depends on the concentration gradient across the membrane 

and hydrophobicity of the molecule. Due to the correlation between partition coefficients of lipophilic 

compounds in membrane-buffer systems and octanol-water mixtures (Log Pow), the relevant 

hydrophobicity of a molecule is often determined by Log Pow (45, 46).  As Log Pow increases it 

becomes easier for a molecule to traverse the hydrophobic core of the inner membrane, which has 

been linked to increases in toxicity (46). Sometimes, however, the hydrophobicity of a molecule 

can actually make it favorable to partition and reside in the inner membrane instead of completely 

diffusing into the cytoplasm (46). This is a common toxicity mechanism of many short alcohols and 

small lipophilic molecules, such as those found in lignocellulose hydrolysate (e.g. furfural, 

syringaldehyde) and as valuable metabolic end-products of biocatalysis (e.g. ethanol, phenol) (24, 

46, 47).  This accumulation within the inner membrane results in disruption of phospholipid-

phospholipid interactions which can cause alterations in membrane fluidity (45, 48). Alterations in 

membrane fluidity can result in leaky membranes, dissipating important proton (49, 50) and nutrient 

(51, 52) gradients for maintaining the cellular energy status, intracellular pH and nutrient 

homeostasis (46). Although this process is free of energy expenditures, passive diffusion is a 

relatively slow and potentially toxic process, thus some molecules capable of passive di ffusion still 

have carrier-dependent transport mechanisms to cross the inner membrane as well. 

Channels are integral membrane proteins that transport ions across the inner membrane using 

concentration or electrochemical gradients. This passive transport is thus similar to diffusion, but 

occurs on a much faster time scale. For instance, GlpF and AqpZ are known to facilitate diffusion 

of water molecules at a rate could not be achieved when considering diffusion through a membrane 

(53, 54) . This allows cells to rapidly adjust to differences in osmotic pressure, among other things. 

These channels can be gated as well to provide control mechanisms to open/close the channel 

only when certain electrochemical, physical, or chemical signals are present. Possibly the most 

well-known example of this is with voltage gated channels for generating an action potential in 

mammalian cells (55). Although these proteins are often critical for maintaining cellular 
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homeostasis of water and ions, transport of organic compounds such as sugars are primarily 

handled by membrane proteins called transporters. 

Transporters are a diverse group of membrane proteins which can transport a wide range of 

ions, organic, and inorganic compounds using primary active, secondary active, or passive 

transport mechanisms. Active transporters, as the name implies, expend some type of energy to 

transport chemicals against a concentration gradient. Primary active transporters are single or 

multi-component membrane transport complexes which hydrolyze ATP to transport a compound 

across the membrane (56). The free energy released from ATP hydrolysis allows these transporters 

to concentrate a compound against a chemical gradient, making these transporters excellent high-

affinity transporters for compounds present in low concentrations in the extracellular environment. 

These ATP-binding cassette (ABC) transporters have been reviewed extensively and are known to 

carry out many key physiological activities for both import and export in cells (56-58). For instance, 

MsbA catalyzes transport of lipid A, the hydrophobic moiety largely present in LPS from the 

cytoplasm to the periplasm (59). This is a function essential to survival for many Gram negative 

cells, as intracellular accumulation of lipid A is known to be toxic and LPS are needed to help 

protect cells from the extracellular environment (35, 60). These transporters can have diverse 

conformational changes and mechanisms that permit transport, but all of these mechanisms 

depend on ATP hydrolysis in the nucleotide binding domain (NBD), a structure that is relatively 

widely conserved within ABC transporters (56). 

Secondary active transporters are permeases which use a favorable chemical gradient of one 

chemical to help facilitate the transport of another chemical against a chemical gradient (61). In this 

manner, the co-substrate actually drives the thermodynamically favorable accumulation or export 

of the substrate. This co-substrate can either be transported in the same or opposite direction 

across the membrane, a process termed symport or antiport, respectively. Although the co-

substrate for this process can widely vary, it is common for many transporters to leverage the proton 

(H+) and electrochemical gradients (Na+, K+) of the cell to drive translocation (61, 62). For instance 

many multidrug resistance (MDR) transporters use the proton motive force (proton:subs trate 

antiport) as an energy source to drive the export of a broad range of intracellular lipophilic chemicals 



  7 

and drugs (63-65). Import of a proton as a co-substrate has an energetic cost however of 

approximately 0.33 ATP per molecule transported due to the need for ATP synthase to hydrolyze 

ATP to maintain the proton gradient (66, 67). However, some transport systems can actually be 

electrogenic due to translocation of protons to the periplasm or net intracellular consumption of 

protons. This can be seen in lactate efflux with many Lactic Acid Bacteria (LAB). For example, 

Lactococcus lactis can catabolize sugars to lactate and use the high intracellular lactate 

concentration to drive lactate-/2H+ symport from the cytoplasm to the periplasm (68). Other non-

obvious transport mechanisms can be electrogenic as seen in malolactic acid fermentation, which 

couples malate2-
out/lactate-

in
 antiport with a proton consuming decarboxylation reaction to generate 

a net decrease in intracellular protons (69). Without the functioning of this transporter, malolactic 

acid fermentation cannot proceed, demonstrating the importance of transport mechanism on the 

cellular energy status. 

Passive transporters are uniporters (or facilitators) which facilitate the transfer of chemicals 

down a chemical concentration gradient by facilitated diffusion. In this sense, they are very similar 

to channels, but are not gated to simply open/close in response to chemical, electrical, or physical 

stimuli. Instead, they facilitate transport with conformational changes more similar to the 

mechanisms of symporters and antiporters (62, 70). For instance, GLUT1 is a well-studied glucose 

facilitator in eukaryotes which is thought to import glucose by an alternating access mechanism 

(70, 71). This is a mechanism common to many uniport, symport, and antiport transporters that 

ligand binding site facing the periplasm, and the other facing the cytoplasm (70). Similar to 

channels, this mechanism is much faster than diffusion through a membrane, and is free of 

energetic costs. It is important to note that there are not many well-characterized uniporters in 

bacteria, although there is at least one characterized sugar facilitator, glf from Zymomonas mobilis, 

which appears to function similarly to eukaryotic sugar facilitators (72). 

Finally, group translocators are a transport system that is relatively unique to bacteria and 

involves the transfer of a molecular donor to facilitate and provide energy for transport. The sugar 

phosphotransferase system (PTS) is the only very well studied member of these transporters, and 
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facilitates efficient transport of sugars from the periplasm to the cytoplasm by transferring the 

phosphoryl from phosphoenolpyruvate (PEP) to a membrane transporter complex (73, 74). One 

advantage of a group translocator system, such as the PTS, is that it can immediately transform 

the incoming substrate by phosphorylation which limits escape from the cytoplasm by a reversal of 

the uptake reaction. The PTS and other sugar transport systems of bacteria are however highly 

complex and involved in the regulation of catabolic pathways, making them an important target in 

engineering efficient utilization of sugars derived from lignocellulose (73, 75). This information is all 

summarized in Figure 1.2. 

Uptake and utilization of lignocellulose-derived sugars

In many bacterial species, the PTS facilitates the transport and concomitant phosphorylation 

of exogenous carbohydrates across the cytoplasmic membrane (75). Using Escherichia coli as an 

example, the PTS of E. coli is a multiprotein phosphorelay system consisting of two soluble and 

non sugar-specific enzymes Enzyme I (EI) and the histidine protein (HPr), encoded by the ptsI and 

ptsH genes, respectively, and the sugar-specific enzyme Enzyme II (EII) system (21) (Figure 1.3). 

EII is a multicomponent complex composed of two hydrophilic domains, EIIA and EIIB, and one or 

two carbohydrate selective transmembrane domains, EIIC and EIID (76). These mentioned 

domains of EII may occur as individual proteins or as a combination of subunits in variable order 

and number (76) (Figure 1.3). Multiple parallel EII complexes facilitate cellular uptake of different 

carbohydrates. The E. coli genome encodes for more than 20 different EII complexes, thus allowing 

for the transport and simultaneous phosphorylation of more than 20 different carbohydrates (77). 

In the PTS, relay of the phosphoryl group initiates with the autophosphorylation of EI from 

phosphoenolpyruvate (PEP) and subsequently transfers the phosphoryl group to a histidine residue 

on the HPr (His-15 in E. coli) (21, 78). HPr then phosphorylates various sugar-specific EII 

complexes. In E. coli, the glucose specific EII complex comprises of the soluble enzyme EIIAGlu

and the integral membrane permease EIIBCGlu, encoded by crr and ptsG, respectively (78). The 

reported kinetic activity of EIIGlu with glucose as substrate is reported to have a high affinity with 

Km and Vmax values of 3- -1 g-1, respectively (79, 80). Lastly, the 

gar during transport across the 
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cytoplasmic membrane (21) (Figure 1.3). With the monosaccharide phosphorylated it can now be 

catabolized through the respective pathways. For example, in E. coli glucose-6-phospate can be 

catabolized by the Embden-Meyerhof-Parnas (EMP) pathway or the Pentose Phosphate Pathway 

(PPP). Glucose transport by means other than the PTS EIIBCGlu complex has been observed in E. 

coli (Figure 1.3). There is compelling evidence that the mannose sugar specific EII complex (EIIMan) 

is a promiscuous component of PTS and is able to transport glucose, fructose and N-

acetylglucosamine. The EIIMan complex comprises of the EIIABMan homodimer enzyme encoded by 

manX and the integral membrane permease EIICDMan, encoded by manY and manZ. The 

phosphoryl group from PEP is transferred to EIIABMan and then to EIICDMan which facilitates the 

transport and concomitant phosphorylation of glucose. The reported kinetic activity of EIIMan with 

glucose as substrate is reported to 

-1 g-1, respectively (73, 79, 81). Glucose may also be transported via the galactose proton 

symporter (GalP). Upon transport of glucose via GalP, the enzyme glucokinase, encoded by glk, 

phosphorylates glucose producing glucose-6-phosphate, which can now enter EMP or PPP. The 

reported kinetic activity of GalP with glucose as substrate is reported to have Km and Vmax values 

in-1 g-1, respectively (73, 82). Transport of extracellular lignocellulose-

derived pentoses such as xylose and arabinose across the plasma membrane in E. coli occurs not 

through the PTS but through two unique set of transport systems: an ATP-binding cassette (ABC) 

and a proton symporter. The ABC transporters XylFGH for xylose and AraFGH for arabinose, 

encoded by xylFGH and araFGH, respectively, actively transport sugars with the cost of one ATP 

per sugar, whereas the proton symporters XylE for xylose and AraE for arabinose, encoded by xylE

and araE, respectively, uses a proton gradient to transport the monosaccharide across the plasma 

membrane (83-87). Both biochemical and genetic tests have suggested that XylFGH and AraE are 

primarily responsible for the uptake of their respective sugars in E. coli (22, 88). In other species 

such as Zymomonas mobilis, uniport of hexose and pentose sugars can be performed using a 

sugar facilitator Glf, encoded by glf (72, 89). 

AraE also has affinity towards xylose but its expression is repressed by xylose under normal 

conditions (88, 90). Both ABC transporters XylFGH and AraFGH exhibit a high affinity with low Km 
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values between 0.2-4 µM and 4.1-6.1 µM, respectively. The proton symporters XylE and AraE 

possess a relatively low affinity with high Km values between 63-169 µM and 150-320 µM, 

respectively (84, 91, 92). Immediately following the transport of xylose and arabinose into the cell 

both substrates are eventually converted to xylose-5-phosphate via the xylose isomerase and 

arabinose isomerase pathway (93, 94) (Figure 1.3). In the xylose isomerase pathway, xylose is 

converted to xylulose through a reversible one-step reaction catalyzed by xylose isomerase, 

encoded by xylA. Xylulose is then converted to xyulose-5-phosphate by the xylulokinase, encoded 

by xylB (95). Catabolism of arabinose begins by converting arabinose to ribulose by arabinose 

isomerase, encoded by araA. Ribulose is then phosphorylated by ribulokinase, encoded by araB, 

and finally, converted to xylulose-5-phosphate by ribulose-5-phosphate 4epimerase, encoded by 

araD (85, 94). With both xylose and arabinose converted to xylulose-5-phosphate, substrates can 

now be catabolized eventually by the EMP or PPP pathways. Many bacterial biocatalysts such as 

Z. mobilis, Pseudomonas putida, Streptomyces coelicolor, Corynebacterium glutamicum, 

Rhodococcus opacus and Lactococcus lactis, do not appear to have complete catabolic pathways 

for either xylose, or arabinose, or both (missing at least two homologues) (96-99) (Figure 1.4). 

Missing genes need to be integrated into these strains for an ideal lignocellulose conversion to use 

up all sugar content (100, 101). 

Lignocellulose-derived pentoses and hexoses are transported and preferentially selected for 

further catabolism based on accessibility and utilization that allows for optimal growth rate by 

bacteria (18, 102). Glucose commonly represses the catabolism of other secondary sugars such 

as xylose, arabinose and galactose, which causes hierarchical control of sugar mixture utilization 

(103-106). Catabolite repression is a well-studied and classic topic for bacterial global 

transcriptional regulation. In E. coli and many other enteric bacteria, catabolite repression is 

controlled by two non-mutually exclusive mechanisms: 1) operon-specific regulatory mechanisms, 

such as inducer exclusion, and 2) global regulatory mechanisms (21). Inducer exclusion is an 

operon-

A classic example is the glucose repression of the lac operon transcription through lactose 

permease transporter, LacY, in E. coli (21, 107-109). Expression of the lac operon requires lactose 
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-galactosidase forming allolactose, which can bind and inactivate the lac 

repressor. In a sugar mixture of glucose and lactose, the preferred sugar glucose at high 

concentrations causes the PTS glucose specific EIIA (EIIAGlu) to be dominantly dephosphorylated 

and EIIAGlu binds to LacY, preventing lactose transport (Figure 1.3). At low concentrations of 

glucose, the EIIAGlu is dominantly phosphorylated and cannot bind to LacY, thereby allowing lactose 

to be transported across the cell membrane, isomerized, and relieve repression of the lac operon 

by binding to the lac repressor. The EIIAGlu is an essential component of the PTS not only because 

is it a major component of catabolite repression, but it has been shown that the same mechanism 

is applicable to other secondary non-PTS carbohydrates, such as maltose, melibiose and glycerol 

(21, 78). For abundant secondary sugars in lignocellulose such as xylose and arabinose, the 

catabolite repression potentially caused by inducer exclusion mechanism remains to be 

investigated. The catabolite repression caused by global regulatory mechanisms generally involves 

global transcriptional regulators to modulate the transcription of catabolic genes for secondary 

sugars (Figure 1.3). In E. coli, the main involved global regulator is CRP (cAMP receptor protein), 

also called catabolite gene-activator protein (CAP), which is the transcriptional activator for 

catabolic genes for secondary sugars such as xylose and arabinose when bound by cAMP, an 

important intracellular signaling molecule employed in many different organisms. The membrane-

bound protein adenylate cyclase (AC) and the EIIAGlu component of the PTS are also essential 

parts of regulation (21, 73, 75, 78). At low glucose concentrations copious amounts of 

phosphorylated EIIAGlu exist and are able to bind and activate AC, leading to the synthesis of cAMP. 

As cAMP intracellular concentrations increase, the formation of cAMP-CRP complex activates 

catabolic operons such as xylAB, xylFGH and araBAD (Figure 1.3). The promoters for catabolic 

operons of secondary sugars are usually weak and require co-activation by both CRP and theirs 

own sugar-specific activators such as XylR and AraC to enhance binding of the RNA polymerase 

(Figure 1.3). In contrast, at high glucose concentrations, the cAMP level is low due to inactivation 

of AC, thereby limiting the CRP activity to increase the transcription of catabolic operons for 

secondary sugars (21, 110, 111). The global regulator CRP plays an essential role in not only 

regulating secondary catabolic genes, but also many other important biological processes such as 
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respiratory genes and multidrug resistance, with over 180 genes under its control (107, 112). The 

intricate catabolite repression mechanisms in other microorganisms are less understood. 

The inability of bacteria to efficiently consume two or more carbon sources hinders commercial 

use of lignocellulosic biomass due to increased residence time, lower product titer and productivity 

(73). In the past few decades, considerable engineering efforts have been made and successes 

have been achieved to engineer bacteria for co-utilization of lignocellulose-derived sugars such as 

glucose, xylose and arabinose. The strategies to abolish catabolite repression by inactivating the 

EIIBCGlu complex, encoded by ptsG, have been explored. For example, simultaneous uptake of 

glucose and pentoses for conversion to lactate was achieved at some degree by expressing the 

lactic acid dehydrogenase from Streptococcus bovis in a ptsG mutant yielding the FBR19 strain 

(102, 113). This strain produced a lactic acid titer of 64 g/L with a yield (g/g) of 77%. However,  

inactivation of the PTS often impairs glucose uptake and thus efforts to compensate this 

defectiveness are needed. One common strategy is to evolve PTS mutant strains for better growth 

using glucose as sole carbon source. For example, the work of Hernández-Montalvo et al. showed 

that subjecting the PTS devoid mutant (PTS- glucose- phenotype) NF6 to a continuous culture 

selective method led to revertants (PTS- glucose+ phenotype) with a specific growth rates on 

-1) comparable to a PTS+ wild-type E. coli -1 ) under aerobic 

conditions (114, 115). In these revertant mutants, catabolite repression of arabinose and xylose 

was alleviated and this allowed for simultaneous mixed sugar uptake (1 g/L glucose, xylose, and 

arabinose). Although sugar co-utilization was achieved, catabolite repression was only eradicated 

in a glucose-arabinose sugar mixture. In a glucose-xylose mixture, glucose exerted repression on 

xylose uptake. In an arabinose-xylose or a glucose-arabinose-xylose mixture, arabinose repressed 

xylose utilization (115). Additionally, it was shown that a plasmid overexpressing a non-PTS 

transport system, the galactose proton symporter (galP) and glucokinase, in a PTS-deficient strain 

(W3110 PTS-) resulted in growth rates corresponding to 89% of the growth rate for W3110 (116). 

Building upon the work of Hernández Montalvo and other colleagues, a W3110 mutant with a PTS-

glucose- phenotype was subjected to anaerobic adaptive laboratory evolution to obtain an evolved 

strain, VH30N4, capable of utilizing glucose (phenotype of PTS- glucose+). Upon transforming an 
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ethanologenic plasmid pLOI594 into VH30N4, the newly evolved strain was capable of co-utilizing 

a 5 g/L glucose-

g/L (117). These adaptive laboratory evolution approaches to obtain PTS- glucose+ mutants 

demonstrate that catabolite repression can be alleviated to allow simultaneous uptake of 

lignocellulose-derived sugar. Most recently, our lab performed adaptive laboratory evolution on an 

E. coli biocatalyst for conversion of xylose to lactate. This resulted in the finding that two point 

mutations in the xylose operon transcriptional activator, xylR, led to constitutive activation of the 

xylose catabolic operons independent of cAMP-CRP (118). Utilization of this mutation has shown 

to permit glucose-xylose co-utilization under microaerobic conditions under industrially relevant 

batch fermentation sugar concentrations (~10% w/v), thus largely eliminating the issue of catabolite 

repression in glucose-xylose sugar mixtures (118). 

Besides catabolite repression, ATP consumption of bacterial pentose transport systems has 

also been implicated as a potential limitation of achieving efficient sugar co-utilization. ATP is an 

important currency for 1) cell growth, 2) cell maintenance, and 3) metabolite transport systems. 

Under aerobic conditions, oxidative phosphorylation will generate the majority of the cellular ATP 

budget and cells grown on either glucose or xylose can generate approximately equal amounts of 

biomass even though cells growing on xylose expend approximately twice as much energy on 

transport (22). Production of renewable chemicals using aerobic processes can be desirable for 

some valuable products, but aeration significantly increases the cost of a bioprocess. This makes 

it economically more challenging to compete with many products traditionally derived from 

petroleum feedstocks, and thus microaerobic fermentation is often used to decrease operating 

costs.  However, under microaerobic conditions, the main mechanism of ATP production is 

glycolysis due to inactivation of oxidative phosphorylation, and the ATP budget of cells greatly 

decreases (22). Under these conditions, the transport of xylose consumes approximately 71% of 

the ATP budget, and cells grown using xylose show decreased biomass formation and specific 

growth rates (22). In contrast, during growth on glucose cells only allocate approximately 34% of 

the ATP budget for transport (22). Using XylFGH for substrate import would theoretically cost twice 
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as much ATP equivalents as the glucose PTS, thus further demonstrating that XylFGH is the main 

xylose import mechanism in E. coli under aerobic and microaerobic conditions. 

In comparison to catabolite repression, the burden of ATP consumption during pentose 

transport has been much less thoroughly investigated as a limitation for lignocellulose 

bioconversion, and thus robust genetic modifications have yet to be characterized. Strains 

constructed for homolactic acid fermentation under microaerobic conditions can convert glucose to 

lactate, however no growth is observed during xylose fermentation (88, 119). This is most likely 

due to the decrease in ATP budget under microaerobic conditions in combination with ATP 

consumption of XylFGH lowering the ATP/xylose yield to 0.67 (119). Work from Utrilla et al 

demonstrated that a simple inactivation of xylFGH permits growth of a homolactate strain on xylose.

Furthermore, by performing adaptive laboratory after inactivation of xylFGH, the specific growth 

rate can be further improved by ~50% after a mutation in the EIIC component of the galactitol PTS 

transport system, gatC, is gained that confers xylose transport activity (119). Multiple other studies 

have noticed a similar growth deficiency for E. coli biocatalysts converting xylose to succinate, a 

product with an inherently low ATP yield. (120-122). Similarly, inactivation of xylFGH in the 

succinate biocatalyst KJ122 led to enhanced growth and succinate production, and upon adaptive 

laboratory evolution the strain exhibited greatly increased xylose and glucose-xylose co-sugar 

fermentative production metrics (122). Although this work never characterized the causative 

mutation following adaptive laboratory evolution, work by Sawisit et al. performed a similar 

laboratory evolution without initial inactivation of xylFGH. By reverse engineering the strain, they 

found that a mutation in the galactose permease (galP G236D) that was hypothesized to confer 

xylose transport activity caused similar increases in production metrics (123). Interestingly, xylFGH 

was never identified to be inactivated in this strain however, suggesting that either galP is so highly 

expressed that a majority of xylose is imported through the mutant galP, or that more complicated 

interactions are occurring. In Chapter 2 I thoroughly probe the genetic determinants permitting 

adaptation of KJ122 for xylose fermentation and find that galP has unknown regulatory interactions 

that actually affect energy conservation during xylose fermentation. Although these pieces of work 

seem to provide general knowledge that xylFGH is an energetic burden to cells converting xylose 
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to a broad range of products and this has implications on lignocellulose bioconversion, no work to 

our knowledge has explicitly looked into engineering more energy efficient xylose transport 

mechanisms in bacterial cells released from catabolite repression. Work by Tang et al. optimized 

glucose to succinate conversion in a PTS- strain and found that overexpression of glf as an 

alternative glucose transporter resulted in increased production metrics relative to overexpression 

of galP, which could be a result of the energy saved during transport (124). Although Glf has also 

been observed to be a high velocity xylose facilitator, it can also be inhibited in the presence of 

glucose (125). Utilization of Glf for xylose uniport represents an energy efficient uptake system that 

has not been thoroughly explored in strains with catabolite repression released. In Chapter 3 I 

develop a transport deficient strain with catabolite repression released, and create variants of glf

that are capable of efficient xylose transport in the presence of glucose.  

Tolerance and efflux of pretreatment inhibitors 

Pretreatment of lignocellulosic materials is considered to be an essential unit process of a 

lignocellulosic biorefinery, accounting for 16-19% of its total investment (126). In the past few 

decades, a variety of pretreatment technologies have been developed to overcome the 

recalcitrance of lignocellulose, increase cellulase efficiency, and improve the yields of monomeric 

sugars. These different pretreatments yield varied amounts of sugars and degradation products 

and have varied effects on cellulose digestibility and lignin solubilization, which ultimately affect 

downstream bioconversion processes. It is challenging to achieve a high yield of fermentable 

sugars from lignocellulose while being economically viable however. Several physical and chemical 

pretreatment methods have been developed including dilute acid (127, 128), alkaline (129, 130), 

steam explosion (131, 132), organosolv (133, 134), ozonolysis (135, 136), ammonia fiber 

expansion (137, 138), ionic liquid (139-141) and other pretreatment technologies. The advantages 

and disadvantages of these technologies are briefly summarized in Table 1.1. 

In most pretreatments, three major categories of by-products are produced: furan aldehydes, 

small organic acids and phenolic compounds (142). Furan aldehydes include furfural and 5-

hydroxymethylfurfural (HMF), which are the dehydration products of pentoses and hexoses, 

respectively. Most phenolic compounds (e.g vanillin, syringaldehyde, etc.) are degradation 
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products from lignin (13). Pretreated lignocellulosic hydrolysates can also contain large amounts of 

organic acids, including acetic acid, formic acid, levulinic acid and lactic acid. These acids are only 

toxic at high concentrations compared to furan aldehydes (24, 143). Furan aldehydes, especially 

furfural, are able to potentiate the toxicity of other side-products and inhibit cell growth at relatively 

low concentrations (24, 143-145).The above-mentioned pretreatments in Table 1 yield different 

side product spectra even when treating the same type of biomass. Different types of biomass will 

also yield different amounts of side-products after the same pretreatment. Among these techniques, 

dilute acid pretreatment has widely been regarded as one of the most economically promising 

methods of biomass pretreatment (142, 146). The main advantages of this pretreatment method 

are that it is effective at hydrolyzing the hemicellulose fraction and increasing enzyme accessibility 

to the cellulose fraction with a relatively low operational cost. However, it also generates a wide 

variety of inhibitors, including furan aldehydes and other phenolic compounds. To mitigate the 

production of these inhibitors, downstream processes can be performed to decrease the 

concentration of inhibitors prior to fermentation. These include water washing the pretreated solids 

(147), overliming (148, 149), and reverse osmosis (150). Although relatively effective, these 

methods all introduce large additional costs at the industrial scale which are ultimately undesirable.  

Since the toxicity of side-products is a limiting factor for economically viable pretreatment 

technologies, it is desirable to have robust organisms that are capable of tolerating these 

compounds in fermentation broth. The development of biological solutions for addressing 

hydrolysate toxicity would not only be cheaper and more sustainable, but also more scalable. 

Among common toxic side-products derived from lignocellulose pretreatments, furan 

aldehydes are arguably the most studied due to their abundance, toxicity and the unique property 

to potentiate the toxicity of other side-products. Furfural and 5-HMF are formed by the dehydration 

of sugars (pentoses and hexoses, respectively) during some pretreatment processes with a 

concentration range between 0 to 5 g/L depending on the severity of the processes (25, 151). More 

specifically, furan aldehydes arrest the growth of most microbes when present above a threshold 

(~0.5-1 g/L furfural and ~2-3 g/L 5-HMF for E. coli in mineral salts medium, respectively). Due to 

the highly similar structures, furfural and 5-HMF share the same degradation pathways and 
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potential toxicity mechanisms. The genetic traits or methods proven useful for furfural are also 

effective for 5-HMF (152-154). Furfural is a potentially more important inhibitor than 5-HMF for the 

following reasons: first, dilute acid pretreatments and other pretreatment technologies yield more 

furfural than 5-HMF in hemicellulose hydrolysates (5, 14). Second, furfural is more toxic than 5-

HMF to industrial catalysts including both E. coli and S. cerevisiae. Therefore, most research about 

bacterial toxicity of furan aldehydes is focused on furfural.

In spite of the high toxicity of furan aldehydes, a number of microbes have evolved different 

strategies to deal with furan aldehydes, though with varying degrees of success. Microbes including 

S. cerevisiae and E. coli, for example, are capable of transforming furfural to furfuryl alcohol by a 

reduction reaction catalyzed by oxidoreductases (Figure 1.5A) (152). Furfuryl alcohol is a less toxic 

compound (24, 47) and is excreted into the culture medium and remains in the fermentation broth 

without further degradation (152). It was reported that a few bacterial oxidoreductases such as 

YqhD and FucO in E. coli (153, 155, 156), FudC in C. glutamicum (157), and ZMO0976 in Z. mobilis

(158) are able to reduce furfural into furfuryl alcohol using reducing factors NADH and/or NADPH 

(Figure 1.5A). This appears to be a common mechanism used by different bacteria to detoxify 

aldehydes including furfural and 5-HMF (Figure 1.5B). Without further degradation, however,  

terminal accumulation of furfuryl alcohol (especially in fed-batch operation) can itself eventually 

lead to growth inhibition. In contrast, certain other bacteria (e.g., Cupriavidus basilensis HMF14) 

have evolved a complete biodegradation pathway to fully metabolize furfural (when supplied as a 

sole carbon and energy source) under aerobic or microaerobic conditions (Figure 1.5A) (159, 160). 

Furfural is firstly oxidized into 2- -ketoglutarate that 

eventually enters TCA cycle to provide energy and biosynthetic building blocks (Figure 1.5A). In 

contrast to biotransformation, biodegradation has the potential to provide an irreversible and 

absolute solution to the problem of furfural toxicity (Figure 1.5). 

The exact mechanism of growth inhibition caused by furan aldehydes is not completely known, 

but it is thought to be multifaceted and include potential membrane damage (25, 93). Most positive 

genetic traits found thus far have focused on improving tolerance using cytosolic enzymes. One 

such approach for engineering bacterial tolerance to furan aldehydes is to improve microbial native 
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biotransformation or biodegradation abilities. Overexpression of furfural oxidoreductases confers 

tolerance to a variety of bacteria, although the actual kinetic properties could benefit from directed 

evolution (156, 161, 162). Second, the reducing cofactors play an important role for furfural 

biotransformation and cytotoxicity. Different growth conditions such as medium, aeration levels and 

carbon source influence the relative abundance of intracellular NADH and NADPH levels. For 

example, the NADPH source is relatively limited when E. coli is growing under anaerobic 

fermentative conditions using xylose as a sole carbon source. Exposure of furan aldehydes 

activates the transcription of furfural reductase genes such as yqhD (153). When E. coli cells 

overexpress the NADPH-dependent furfural reductase YqhD to reduce furfural or 5-HMF, the 

NADPH intracellular pool is depleted and cell growth is arrested (153, 155). Actually this depletion 

of NADPH by YqhD was proposed as the one of the main mechanism for furfural/5-HMF induced 

growth inhibition in E. coli under xylose fermentative conditions (153, 155, 156). With respect to the 

cofactor issue, NADH-dependent furfural reductases such as FucO are a better choice for 

anaerobic fermentation using xylose as a sole carbon source (156). The complete furfural 

degradation pathway discovered in C. basilensis HMF14 and other species (159) has not been 

introduced into common genetically tractable industrial hosts such as E. coli and S. cerevisiae. One 

caveat for this pathway is its oxygen requirement which is intrinsically conflicting with the 

anaerobic/microaerobic fermentation condition used in most bioproduction scenarios for biofuels 

and bulk chemicals. Although biological abatement can be effectively used to remove furfural from 

the media, this increases complexity and costs. After NADPH limitation was proposed as one 

toxicity mechanism for furfural, researchers have identified multiple effective methods to improve 

NADPH levels and thus to relieve furfural toxicity substantially. For example, deletion of yqhD or 

increased expression of pntAB (a transhydrogenase for interconversion of NADH and NADPH) 

increased tolerance to furan aldehydes in E. coli (154, 155, 163). DNA damage has also been 

evidenced to be a mechanism of furfural toxicity. Genomic libraries from three different bacteria 

and metagenomic libraries have been constructed and screened in separate instances that led to 

the discovery of thyA/thyX as genes which confer furfural tolerance to E. coli (164, 165). These 

genes encode thymidylate synthases, enzymes in dTMP biosynthesis, further suggesting that DNA 
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damage is a potential toxicity mechanism of these furans. A few genes such as ucpA, lpcA, groESL,

ahpC, yhiH, rna and dicA are associated with furfural tolerance and the overexpression of these 

genes individually conferred furfural tolerance at varied degrees (152, 166, 167). However, it is 

difficult to characterize how these genes are functionally linked in furfural resistance. Therefore, 

further rational engineering of cellular tolerance using these traits is limited without clear 

understanding of the resistance mechanism. Another important and effective approach used to 

improve microbial tolerance for lignocellulose inhibitors is adaptive laboratory evolution (also called 

(155, 168-170). For example, the mutations 

that cause yqhD inactivation was found in multiple furfural-resistant mutants isolated by adaptive 

laboratory evolution, suggesting that NADPH starvation induced by furfural enzymatic reduction is 

one important toxicity mechanism (153). Transcriptomic analysis of some furfural resistant E. coli

mutants showed that the transcription of multiple polyamine transporters was up-regulated 

compared to normal E. coli due to the gene multiplication at the chromosomal level as indicated by 

whole genome sequencing (171). Further tests discovered that overexpression of these polyamine 

transporter genes including potE, puuP, plaP and potABCD makes cells more resistant to furfural, 

suggesting a potential protection role of polyamine for important cellular constituents (171). Quite 

a few distinct beneficial genetic traits have been identified due to the complexity of toxicity modes 

of furan aldehydes (Table 2). It is plausible that multiple pathways need to be co-activated and 

recruited for optimization of furfural tolerance. The beneficial genetic traits mentioned above are 

summarized in Table 2.  

Besides furan aldehydes, there are two other groups of toxic side-products: small organic acids 

and phenolic compounds (142). Acetic acid and formic acid are the major organic acids after 

lignocellulose pretreatments, although others may also be present (25, 142). Generally,

lignocellulose hydrolysates need to be neutralized to a certain degree for the following fermentation 

processes if dilute acid pretreatment is used. Thus, small organic acids will be converted to salt 

forms after neutralization and the toxicity of these side products is greatly decreased. For example, 

only lower than 5 g/L acetate and formate were produced after a dilute acid pretreatment of 

sugarcane bagasse while E. coli can tolerate 12 g/L acetate or higher without significant growth 
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defect (14, 172). Furthermore, it has been shown that an ethanolgenic E. coli can tolerate up to 40 

g/L acetate after adaptive laboratory evolution (173). Researchers also have identified potential 

acetate-resistant genetic traits in different microbes such as E. coli (174, 175) and Z. mobilis (176). 

So the toxicity issue of small organic acids is often not s ignificant for industrial bacteria hosts. A 

variety of phenolic compounds are produced during some pretreatment processes (Table 1). Most 

of them are very toxic but the quantity is normally small compared to furan aldehydes and organic 

acids after pretreatments (142). Without clear understanding which phenolic compound is the 

predominant inhibitor, the research of engineering bacterial tolerance to phenolic compounds is 

limited. Recent research in Z. mobilis ZM4 showed that phenolic aldehydes were reduced into 

alcohol forms by oxidoreductases to decrease toxicity, analogous to how cells cope with toxic furan 

aldehydes by biotransformation (Figure 1.5A) (177). Conversion of these aldehydes into alcohol 

form is beneficial due to the reduced toxicity of the functional group and increasing culture inoculum 

has been shown to enhance tolerance of phenolic aldehydes (24, 47, 143). It seems reasonable to 

assume that the same approaches to engineering furfural tolerance, such as degradation, might 

be effective in engineering phenolic tolerance. However, one approach that has been widely 

overlooked for enhancing tolerance to furan aldehydes, phenolics, and even final metabolic end-

products of engineered strains has been the engineering of the cell envelope. 

In the context of lignocellulosic bioconversion, protection from the extracellular environment is 

an especially important function due to all of the lipophilic compounds that can be produced upon 

deconstruction of lignocellulosic biomass. A series of studies about the toxicity of side-products 

derived from lignocellulose suggest that the hydrophobicity of these chemicals is correlated with 

toxicity (24, 47, 143). The membrane damage caused by aromatic compounds was also proposed 

as an important toxicity mechanism (24, 25, 47, 143). Since membrane stress is a toxicity 

mechanism of potentially multiple lignocellulose-derived inhibitors, biocatalysts can benefit from 

strategies that decrease intracellular inhibitor concentrations and minimize membrane fluidity 

changes and the resulting disruptive effects (178). This can be accomplished by a broad range of 

changes, such as altering the conformation of phospholipid chains (179, 180), altering acyl chain 

length (181), modifying phospholipid head groups (182), and expressing transport proteins capable 
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of inhibitor export (183). However, very few of these have ever actually been explored in any detail 

for these molecules. One of the only pieces of work that has attempted to engineer the cell envelope 

for lignocellulose inhibitor tolerance modified phospholipid head groups to enhance tolerance to 

multiple compounds including furan aldehydes and multiple phenolics derived from lignocellulose 

(178, 182). By overexpressing a phosphotidylserine synthase, pssA, to increase the abundance of 

phosphotidylserine in the inner membrane, they managed to increase cell hydrophilicity and 

maintain a higher membrane potential than a control exposed to membrane damaging compounds 

(182). Multiple other works have demonstrated methods to alter acyl chain length and composition 

of phospholipids in the membrane to increase tolerance. However, these have been studied mainly 

with short alcohols, so it is difficult to tell how directly this will translate into tolerance for 

lignocellulose inhibitors. 

Transporters capable of lignocellulose inhibitor efflux also have yet to be discovered. MDR 

transporters are known to have broad substrate specificity for efflux of lipophilic compounds, yet 

the affinity for many industrially relevant compounds is relatively unknown (Figure 1.6). MDR 

proteins include transporters from the Resistance Nodulation Cell-Division (RND), Major Facilitator 

(MF), Multidrug and Toxin Extrusion (MATE), ATP-binding cassette (ABC), and Small Multidrug 

Resistance (SMR) families. Since most lignocellulose inhibitors are relatively lipophilic it seems 

probable that an endogenous MDR transporter may be capable of efflux. In Chapter 4 I construct 

a transporter library largely comprised of MDR transporters and screen for proteins capable of 

furfural efflux. I further extend the use of this library in Appendix B by screening for transporters 

capable of transporting a broad range of lipophilic lignocellulose inhibitors and aromatic 

bioproducts.  

Enhancing production by engineering bioproduct efflux 

Genetic systems have advanced rapidly to permit tuning of biological systems for the 

production of a diverse portfolio of compounds (184-186). In the past it was thought that 

endogenous transporters could facilitate export of a diverse array of chemicals of interest, and that 

most metabolic bottlenecks must be in the biosynthetic pathways. Although product export can be 

facilitated by promiscuous transport systems at low production metrics, as production parameters 
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increase the potential for increased intracellular accumulation of the product becomes more likely 

(187). This is supported by an increasing number of examples that have shown that modulation of 

endogenous or heterologous transport systems can increase production metrics (187-189). High 

intracellular accumulation of the metabolic end-product can be cytotoxic and potentially lead to 

regulatory changes through feedback inhibition (188). Thus, product export has been previously 

observed as a bottleneck for the bioproduction of both native and non-native products.

Engineering efficient export systems capable of enhancing production of non-native products 

is challenging for a number of reasons. One challenge is that export systems for many non-native 

bioproducts are uncharacterized and thus significant efforts are required just to identify a candidate 

transporter (190). Secondly, even once candidate proteins are identified, they may have sub-

optimal kinetics due to a lack of selective pressure from the environment to couple the transporter 

structure to the desired function (191, 192). For instance, previous work has identified the RND 

pump AcrAB-TolC as a candidate exporter for multiple non-native bioproducts, including n-butanol, 

styrene, limonene, fatty acids, and more (191, 193-195). This activity has been attributed to the 

broad substrate specificity of the inner membrane transporter, AcrB, and thus it has been proposed 

that efflux and expression may be sub-optimal for non-native products. However, the components 

of complexes like AcrAB-TolC often exist in functional ratios (3:6:3) necessitating fine tuning of 

expression for an optimal phenotype (196-198). This is demonstrated by the work of Wang et al. in 

which expression modulation of individual components of acrAB-tolC led to enhanced production 

of two separate isoprenoid molecules (198). Interestingly, the optimal ratio may not have 

necessarily been the defined 3:6:3 ratio the pump exists in, suggesting a more complex relationship 

between these genes and other tolerance genes/phenotypes (198). The expression of these pumps 

can also be modulated through native transcriptional regulators to enhance tolerance, which may 

represent a more natural way to maintain the protein functional ratios. The acrAB genes are known 

to be regulated by multiple transcription factors including marA, marR, acrR, and soxR (199-201). 

Recent work showed that simultaneous introduction of a nonsense mutation in marR and insertion 

into acrR could be used to enhance tolerance to multiple solvents including cyclohexane and p-

xylene, likely by upregulating the expression of acrAB-tolC (202). However, for an optimal 
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phenotype, transport proteins must be optimally expressed and have sufficient activity for the 

desired chemical. Directed evolution has been performed on AcrB to enhance tolerance to non-

native products such as n-butanol, n-heptanol, n-octane, 1- -pinene (191, 195, 203). 

In addition, overexpression of variants that conferred enhanced n-butanol tolerance increased titer 

in a production strain using a membrane stress sensitive expression system by ~40% (204). 

Success of these transporter engineering strategies vary widely from chemical to chemical 

however, as the same approach that was successful in isolating a mutant protein conferring 

enhanced tolerance to 1-hexene was unsuccessful for other compounds that are substrates of 

AcrB, such as styrene (195).

For many native metabolites, endogenous transporters may be present for product efflux but 

under sub-optimal transcriptional regulation. For instance, amino acids are a commonly produced 

valuable metabolic end-product with a global market volume of more than 2 million tons annually 

(205). Due to the highly regulated metabolic network surrounding amino acid biosynthesis, 

accumulation of the product of interest actually begins to inhibit the biosynthetic pathway, 

necessitating that biocatalysts be resistant to inhibition (205-207). Pathway optimization has been 

facilitated by numerous random and rational engineering approaches to achieve high titers using 

microbes for production of L-alanine, L-valine, L-phenylalanine, L-threonine, and more (206, 208-

210). Within these rational approaches, multiple pieces of work have incorporated feedback -

resistant biosynthetic enzymes to further decrease inhibitory effects during amino acid production 

(211, 212). This strategy has been wildly successful in enhancing production of multiple amino 

acids, but can potentially be limited by incomplete knowledge of all the different genetic targets that 

are affected by allosteric inhibition. Feedback inhibition has thus been further decreased non-

specifically by modulating the expression of amino acid exporters (188). To identify amino acid 

exporters, some previous studies have leveraged the toxicity of high concentration of amino acids 

or analogs to select mutants that aid in identification of the genetic determinants. For instance, to 

identify the alanine exporter, alaE, an E. coli strain incapable of L-alanine degradation was 

mutagenized and mutants with a growth deficiency were selected for in media with a toxic analog, 

L-alanyl-L-alanine (213). By creating a genomic library of the parent strain, they were able to prove 
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that alaE was capable of complementing the L-alanyl-L-alanine growth deficiency and furthermore 

that overexpression of this transporter could enhance alanine production 1.5 fold (214).  Multiple 

other amino acid pathways have achieved enhanced titers by identifying and engineering 

expression of native exporters, including threonine, cysteine, arginine, and glutamate (188, 215-

218). Modulation of exporters has also been shown to be synergistic with other rational engineering 

approaches. For example, one group engineered a threonine producing E. coli with a reduced 

genome (~14% less) that overexpressed a feedback resistant biosynthetic pathway and had 

relevant side product pathways inactivated. By inactivating threonine importers, and 

overexpressing the threonine exporter rhtA23, they achieved an ~80% increase in titer (219). 

Similar work has also been done for the modulation of transporters for short-chain carboxylic 

acids for bioproduction, especially those derived from the Tricarboxylic Acid Cycle (TCA). This 

includes products such as malate, succinate, and citrate that have multi-billion dollar markets with 

applications in agricultural, food, and pharmaceutical industries (220). Unlike the metabolic 

pathways for amino acid production, many of these pathways are actually regulated in a positive 

feedback manner, such that increases in the product actually s timulates relevant product 

biosynthetic pathways and transporters (221, 222). For instance, the expression of TCA cycle 

enzymes mdh, fumABC, and frdABCD are actually enhanced by increasing concentrations of the 

C4-dicarboxylates that they form, such as succinate (223, 224). Relevant succinate exporters such 

as dcuB and dcuC have also been demonstrated to be upregulated in the presence of C4-

dicarboxylates (225, 226). Although it might seem that positive feedback may be sufficient to 

adequately express transporters during production, modulation of actively expressed C4-

dicarboxylate transporters has been shown to further enhance production. For instance, Chen et 

al modulated the expression of dcuB and dcuC to enhance succinate titer by ~34% in an E. coli 

succinate production biocatalyst (227). In other hosts, such as fungi, this has been seen to be even 

more dramatic. For instance, the production of L-malate has been enhanced by >2-fold in S. 

cerevisiae by incorporation of a heterologous malate exporter, MAE1p from Schizosaccharomyces 

pombeii (228). This appears to be due to a lack of energy-efficient short-chain carboxylic acid 

exporters in bakers yeast, as production of lactate has also been proposed to be bottlenecked by 
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export (229). Other filamentous fungi such as Aspergillus oryzae have been able to increase malate 

production by more than two-fold just by overexpressing a native transporter homolog to MAE1p 

(189). By combining this approach along with overexpression of other important biosynthetic 

enzymes, they achieved an impressive titer of 154 g/l malate after approximately 164 h 

fermentation (189). Although E. coli has also been metabolically engineered to produce malate, 

there are no known malate exporters in Gram negative bacteria so this strategy has not been 

explored. This further highlights one of the most important challenges in engineering efflux systems 

for bioproducts, as transporters with affinity for relevant chemicals are largely unknown. 

The identification of transporters for product efflux is a particularly challenging task due to 

difficulties in performing genetic screens. One approach is to perform a genome-wide screen on 

the native cellular transport system, inactivating or overexpressing genes on an individual basis 

(190). However, if cellular efflux is not strongly linked to growth in the screening environment or if 

there are multiple transporters participating in efflux, this methodology can be ineffective. 

Transcriptomic assays can also be used to probe the native regulation of efflux pumps upon 

exposure to the bioproduct. In this screening method, transport proteins regulated by the chemical 

serve as potential candidates. For example, this method has been used to identify that expression 

of an ABC transporter, MdlB, is modulated by isopentanol and overexpression of this transporter 

can be used to moderately enhance isopentanol tolerance, suggesting a potential role in efflux 

(230). However, this type of screen relies on native transport proteins being transcriptionally 

regulated by the molecule of interest, which may not be the case for products not naturally 

encountered in the evolutionary history (66). Additionally, both of these methodologies assume that 

the host genome has an ideal efflux protein already present. Other screens have sought to 

overcome this issue by performing heterologous screens of efflux proteins. For instance one group 

screened a heterologous acrB homolog library and found multiple transporters capable of 

complementing the native function of acrB for tolerance to terpenes (193). They also demonstrated 

with this approach that acrB is important for production of terpenes, such as limonene (193). Other 

work has screened a library of heterologous ABC transporters and found that multiple homologs of 

-carotene 
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(231). In Chapter 4, I use this same screening methodology to characterize transporters for furfural 

efflux. However, in Chapter 5 I use a more targeted methodology to perform a negative screen by 

rationally selecting transporters with affinity to molecules of similar chemical structures.  
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Figures. 

 

  

Methods 
Potential 
inhibitors 

Advantages Disadvantages 

Diluted 
acid 

Furans; 
phenolic and 
small organic 
acids at low 
levels 

High hemicellulose 
monosaccharides 
production; increasing 
cellulose digestibility; 
relatively low cost 

Inhibitors; equipment 
corrosion; low sugar 
concentration in exit 
stream  

Alkaline Furans at low 
levels 

Some lignin 
degradation; 
increasing cellulose 
digestability 

Chemical reuse 
efficiency is low; low 
hemicellulose 
monosaccharides 
production  

Steam 
explosion 

Furans, 
acetate and 
other acids 

Increasing cellulose 
digestibility; low 
environmental impact 

Incomplete disruption 
of lignin-carbohydrate 
complex; inhibitors 

Organosolv lignin 
degradation 
products 

High efficiency for 
lignin degradation 

High operational costs  

Ozonolysis Short-chain 
carboxylic 
acids 

Low furan aldehydes; 
some lignin 
degradation; ambient 
temperature and 
pressure

Highly reactive and 
flammable; high 
energy demand and 
cost  

AFEX Small 
amounts of 
inhibitors; 
amide-
containing 
chemicals 

Decrystalization of 
cellulose; lignin 
removal

Low hemicellulose 
monosaccharides 
production; high 
operational cost  

Ionic liquid minimum 
inhibitors 

Reducing cellulose 
crystallinity and lignin 
content

High chemical costs  

Table 1.1. A summary of representative lignocellulose pretreatment technologies. 
Figure extracted from our book chapter (4).
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Figure 1.1. Composition of lignocellulose. The approximate lignocellulose 
composition is given as a percentage of total dry weight. The major carbon 
monomers of the main polymeric components for typical lignocelluloses are 
underlined in a white box. The representative sugar composition shown in the 
table was obtained from a sugarcane bagasse sample (14). Note that the 
composition of soft wood materials such as gymnosperm trees is usually different 
from this graph with higher lignin content and lower xylose content in the 
hemicellulose portion. Extracted from our book chapter (4). 
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Figure 1.2. Mechanisms of membrane transport. The outer membrane serves as 
the first layer of selective permeability in which diffusion of chemicals (blue 
triangle) through the outer membrane is difficult due to lipopolysaccharides (blue 
diamonds) and thus facilitated diffusion is mainly mediated through outer 
membrane porins (OMP). Upon entrance into the periplasmic space, cells can 
catalyze transport using 1) group translocators 2) primary activate transport 3) 
antiport, 4) symport, 5) uniport, 6) channels or diffusion (dotted line).  
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Figure 1.3. Transport, catabolism and catabolite repression mechanisms of major 
lignocellulose-derived sugars in E. coli. In E. coli, there are three known mechanisms 
for glucose transport including EIIGlu-based PTS, EIIMan-based PTS and GalP. EIIGlu-
based PTS is the predominant mechanism for glucose transport. Glucose induced-
repression is mainly caused by low levels of cAMP which leads to nonfunctional 
CRP. Without CRP activation, the transcriptional activation of most secondary sugar 
catabolism pathways cannot be achieved. Phosphorylated sugar intermediates from 
glucose, xylose and arabinose catabolism enter PPP or EMP pathways for full 
degradation. The details of the important components in E. coli are summarized in 
the table. Figure extracted from our book chapter (4). 
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Figure 1.4. Bacterial genes for xylose and arabinose catabolism, and major catabolite 
repression. Midpoint rooted cladogram of some important industrial prokaryotic biocatalysts 
is constructed using 16s rRNA sequences from the Greengenes database (96). Sequences 
were aligned using MAFFT (97), and tree construction was performed using the default 
PhyML parameters (98). One hundred bootstrap replicates were performed and confidence 
values of 60-69% (circles) 70-79% (diamonds) 80-89% (squares) and 90-100% (triangles) 
are listed at each respective node. The presence of potential gene homologs were tested in 
each biocatalyst using blastp (99). Proteins that exhibited >90% query coverage and identity 
of 40-100% (++), 25-39% (+) and <25% (-) compared to E.coli and B. subtilis homologues 
(only CcpA is from B. subtilis) were scored in the table for each respective gene. Proteins 
that had 80-89% query coverage are marked with an asterisk (*). Figure extracted from our 
book chapter (4). 
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Figure 1.5. Naturally-evolved mechanisms used by different microbes to detoxify 
furfural. A) Two native furfural detoxification mechanisms are used by different 
bacteria to relieve the toxicity. B) The presence of potential furfural detoxification 
protein homologs were tested in each biocatalyst using blastp (99). Proteins that 
exhibited >90% query coverage and identity of 40-100% (++), 25-39% (+) and 
<25% (-) were scored in the table for each respective gene. Figure extracted 
from our book chapter (4). 
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Figure 1.6. Hierarchical clustering of aromatics with a MW <400 g/mole and their 
respective transporters in the Transporter Classification Database (232) in addition to 
select aromatics of interest. Chemical similarity was compared using the Signature 
molecular descriptor (h=0,1) (233) to generate an all-against-all cosine angle distance 
(234) matrix that was clustered using complete linkage agglomeration with hclust (235) . 
Transporter family abbreviations: ABC, ATP-Binding Casette; RND, Resistance-
Nodulation-Cell Division; MFS, Major Facilitator Superfamily; MATE, Multi Antimicrobial 
Extrusion; SMR, Small Multidrug Resistance; APC, Amino Acid Polyamine-Organocation; 
ARAA/P-E, Aromatic Amino Acid/Paraquat Exporter; ARAE, Aromatic Acid Exporter; 
ARSB, Arsenite-Antimonite Efflux; BAT, 5-TMS Bacterial/Archaeal Transporter; BES, 
Bestrophin Family; BIP, Bacteriocin Immunity Protein; DAACS, Dicarboxylate/Amino 
Acid:Cation Symporter; HAAAP, Hydroxy/Aromatic Amino Acid Permease; NSS, 
Neurotransmitter:Sodium Symporter; OAT, Organo Anion Transporter; POP, Plant 
Organocation Permease; OMPP, Outer Membrane Pore-forming Protein; SSS, 
Solute:Sodium Symporter; TSUP, 4-Toluene Sulfonate Uptake Permease; MDR, Multidrug 
Resistance. Figure extracted from a co-authored review article (in revision). 
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CHAPTER 2 

REVERSE ENGINEERING ESCHERICHIA COLI FOR CONVERSION OF LIGNOCELLULOSIC 

SUGARS TO SUCCINATE BY MODULATING THE GENETIC CONTROL OF GALP 

Abstract 

Microbial conversion of lignocellulosic substrates into valuable products requires biocatalysts 

to use a mixture of sugars efficiently, especially glucose and xylose. Escherichia coli KJ122 has 

previously been engineered to produce succinate from glucose at high titer (85 g l -1), yield (0.9 g g-

1), and productivity (0.8 g l-1 h-1), but xylose utilization is surprisingly inefficient under fermentative 

conditions. To probe the potential underlying mechanism inhibiting xylose fermentation, KJ122 was 

adapted to enhance xylose utilization multiple times independently in xylose fermentation media. A 

quick adaptation repeatedly occurred within 20 generations and strains isolated after 60 

generations showed efficient succinate production from xylose (17-fold increase). Genome 

sequencing analysis of the evolved strains revealed that the convergent mutations occurred in the 

galactose regulon during laboratory adaptive evolution potentially decreasing the level or the 

activity of GalP, a galactose permease. GalP is the main substitute glucose transporter in KJ122 

since the phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS) was 

inactivated in KJ122 to improve PEP levels for succinate production. We showed that deletion of 

galP increased xylose utilization in KJ122 and wild-type E. coli, suggesting a common repressive 

role of GalP for xylose fermentation. Concomitantly, induced express ion of galP from a plasmid 

repressed xylose fermentation in wild-type E. coli. Transcriptome analysis using RNA sequencing 

indicates that galP inactivation increases transcription levels of many catabolic genes for secondary 

sugars including xylose and arabinose. In addition, many transcriptional changes facilitating 

succinate fermentative production were observed including genes involved in the anaplerotic 

reaction, the reductive branch of TCA cycle, and high-sugar osmotic stress tolerance. The 
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discovery of the repressive role of GalP for secondary sugars in E. coli suggests that utilization of 

GalP as a substitute glucose transporter may be undesirable for conversion of lignocellulosic sugar 

mixtures. 

 

Importance 

Lignocellulose is an abundant renewable feedstock that can be used for microbial conversion 

to produce renewable fuels and bulk chemicals. However, simultaneous co-utilization of 

heterogeneous sugar mixtures present in lignocellulose hydrolysates is a challenging task, 

especially when sugar concentrations are high. In this work, we discover that a commonly used 

substitute glucose transporter, GalP, represses the utilization of secondary sugars, such as xylose, 

in E. coli through transcriptional downregulation of many catabolic genes for secondary sugars, 

suggesting the presence of a novel repressive mechanism. Therefore, utilization of GalP as an 

alternative glucose transporter in PTS defective strains may hinder xylose conversion, an important 

consideration in engineering strains for bioconversion of lignocellulose to products that require the 

precursor PEP, such as C4-dicarboxylates and aromatics derived from the shikimate pathway. 

Introduction 

Lignocellulose is a complex matrix present in the cell wall of plants that makes up more than 

half of the (1). Independent of 

source, lignocellulose usually contains cellulose and hemicellulose, which can be degraded to 

glucose and pentoses for use as a feedstock for microbial conversion (2, 3). Glucose is the only 

sugar monomer in cellulose and xylose is the major sugar component for common hemicellulose 

fractions (2, 4). Simultaneous co-utilization of both sugars is desired for an efficient microbial 

lignocellulose bioconversion (5, 6). However, co-fermentation of mixed sugars often presents an 

obstacle to model microbial biocatalysts such as Escherichia coli due to a global regulation 

mechanism known as carbon catabolite repression (CCR) (6-8). For using secondary sugars such 

as xylose and arabinose in E. coli, transcriptional activation of the relevant catabolic operons needs 

1) the activated global transcriptional regulator CRP (cAMP receptor protein) bound by cAMP, 2) 

the activated transcriptional regulators specific for the secondary sugars, such as XylR for xylose 
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and AraC for arabinose, respectively (7, 8). In the presence of glucose, CRP is not activated due 

to the low cAMP levels, thereby causing glucose-induced transcriptional repression of catabolic 

genes for secondary sugars (7, 8).  

Glucose uptake and phosphorylation is mainly achieved by the phosphoenolpyruvate: sugar 

phosphotransferase system (PTS) in E. coli which is also an important component of CCR to control 

cAMP levels (6, 9, 10). Disruption of the PTS system (deletion of ptsG or ptsI) is an effective 

approach to release CCR, but glucose uptake is significantly impaired (11, 12), which necessitates 

alternative glucose transporter for optimal productivity (13-15). In addition to releasing CCR, 

inactivation of PTS also leads to more abundant PEP accumulation as PEP is used as the substrate 

by PTS to phosphorylate sugars through a phosphorylation cascade (9, 11), which is a useful 

approach to increase production of chemicals using PEP as the precursor, such as C4-

dicarboxylates using the reductive branch of TCA cycle (16, 17), and aromatic compounds derived 

from the shikimate pathway (18, 19). The galactose permease GalP, is a galactose:proton 

symporter that has glucose transport activity and has been often used as an alternative glucose 

uptake system in PTS deficient strains (13, 15, 19, 20).  

Interestingly, the mutations that inactivate PTS and upregulate of galP were acquired during 

adaptive evolution of an E. coli biocatalyst to enhance glucose-succinate conversion (17). Although 

the strain derived from this laboratory evolution, KJ122, has high succinate production metrics with 

a high titer (~85 g l-1), yield (~0.9 g g-1), and productivity (~0.8 g l-1 h-1) (21), the xylose fermentative 

growth of this strain is stunted with much lower production metrics (22). Here, to probe underlying 

genetic mechanisms inhibiting xylose utilization, we evolved KJ122 to enhance its xylose 

fermentation abilities in parallel and characterized the potential convergent genetic changes shared 

by multiple independently evolved strains. We discovered that GalP represses xylose fermentation 

in KJ122 and even in wild-type E. coli, suggesting that utilization of GalP as a substitute glucose 

transporter may be undesired for conversion of lignocellulosic sugar mixtures. 

Results 

Quick adaptation for xylose utilization in a succinate producing E. coli biocatalyst 
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KJ122 was previously developed for efficient conversion of glucose into succinate (21), but suffers 

from deficient xylose catabolism (22). Since this strain has all other fermentation and competing 

pathways disrupted, the growth and ATP production of this strain are linked to succinate 

fermentative production, thereby providing very strong growth-based selection. A quick adaption 

for using xylose was previously observed, and two evolved strains XW055 and AS1600a were 

isolated (22, 23). XW055 was isolated after ~40 generations, but the mechanism improving xylose 

fermentation remained unknown (22). For AS1600a, the causative mutation was identified as a 

point mutation in the coding region of galactose permease gene, galP (G236D). However, the 

working mechanism remains elusive. To gain deep mechanistic insights of the potential genetic 

changes inhibiting xylose fermentation, we hypothesized that characterization of independently 

evolved strains would reveal the convergent causative mechanism for this adaptation. We repeated 

the evolution of KJ122 in two independent experiments for enhanced xylose catabolism as 

previously described (22) by transferring cells during exponential growth phase into new AM1 

medium containing 10% (w/v) xylose (Figure 2.1A and 2.1B). In both evolutionary trajectories, a 

rapid adaptation occurred even at the second or third transfer that simultaneously increased xylose 

catabolism and cell growth (Figure 2.1A, 2.1B and Figure 2.2). From these two evolved populations 

(approximately 60 generations), strains LP001 and CM001 were isolated and confirmed with 

increased xylose fermentation capabilities (Table 2.2).  

Identification and characterization of convergent genetic changes occurring at the galactose 

regulon in the ancestor and evolved strains 

The genomic DNAs of the ancestor KJ122 as well as three evolved strains LP001, CM001, and 

XW055 were extracted and sequenced using Illumina paired-end sequencing. Interestingly, all 

three evolved strains have genetic differences in gal regulon including galR, galS and galP, 

compared to the ancestor KJ122 (Figure 2.1C), suggesting a result of convergent evolution to 

relieve the inhibitory mechanism for xylose catabolism in the ancestor strain. We hypothesized that 

these genetic changes in gal regulon are responsible for the increased xylose fermentation. 

KJ122 has an IS1 insertion sequence at the position 261 of galR ORF and an adenine insertion at 

the position 231 galS ORF causing frame-shift mutation, which likely inactivate both proteins 
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(Figure 2.1C). Both GalR and GalS are known to be repressors of genes needed for the transport 

and utilization of galactose, including galP, galETKM, and mglBAC (24) (Figure 2.1D). It was 

reported that expression of galP was increased to compensate the PTS deficiency in the precursor 

strain of KJ122 due to adaptive evolution for increased glucose to succinate bioconversion. 

However, the exact genetic mechanism remains uncharacterized (17). We hypothesized that these 

two mutations are responsible for enhanced galP expression that leads to higher glucose-succinate 

conversion. To test this, we reconstructed succinate producing E. coli XW01 derived from a 

previously ldhA) 

(16) and then tested of effect of the deletion of galR, galS or both on succinate production. In the 

strain XW01, pflB and ldhA were deleted to eliminate competing fermentation pathways for ethanol 

and D-lactate, respectively. The ptsI gene was deleted to disrupt PTS for increased levels of PEP, 

a precursor for succinate (16). In addition, pck expression was enhanced with an upstream 

mutation (pck::pck*; G to A at position - 64 relative to the ATG start codon) (16, 17). Fermentation 

of XW01 in glucose resulted in a succinate titer of 28 g l-1 after 96 h (Figure 2.3A). Interestingly, 

single deletion of either galR or galS decreased the succinate titer at 96 h to 24 g l-1 and 9 g l-1, 

respectively (Figure 2.3B and 2.3C). Deletion of both galR and galS enhanced production, 

increasing the titer from 28 g l-1 to 46 g l-1 after 96 h and from 62 g l-1 to 71 g l-1 after 144 h (Figure 

2.3D). Overall productivity, specific growth rate, and titer were all increased when both galR and 

galS were deleted, but all decreased by inactivation of either galR or galS (Figure 2.3). This result 

supports that galRS inactivation was the causative mutations leading to increased galP expression 

in KJ122.  

For the evolved strains, both XW055 and LP001 reverted galR back to the wild-type sequence 

during adaptive evolution while CM001 gained a nonsynonymous mutation in galP (A392D) (Figure 

2.1C). AS1600a that was evolved independently in another group also was reported to have point 

mutation in galP (G236D) (23). Given the results of single deletions of galR and galS regarding 

their effect on succinate production (Figure 2.3), the restored galR in LP001 and XW055 will 

potentially decrease galP levels, which is supported by the defective performance of glucose 

fermentation (Table 2.2). Similarly, as shown in Table 2.2 and the previous report (23), CM001 and 
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AS1600a also showed decreased both glucose utilization and succinate production, suggesting 

these two point mutations probably negatively influence GalP function. It is plausible that decreased 

levels or activities of GalP are the underlying mechanism for enhanced xylose utilization by 

adaptive evolution. 

Confirmation of the inhibiting role of galP on xylose fermentation in succinate production 

E. coli biocatalysts

To test if GalP represses xylose fermentation and also to directly prove that the inactivation of 

GalP is the causative mechanism for xylose adaption in KJ122, we deleted galP in KJ122 and 

compared the resulting strain AG055 to KJ122, CM001 and LP001 in terms of their fermentation 

performance using mono- and co-sugar conditions (Table 2.2). With xylose as a substrate, AG055 

produced 70 g l-1 succinate after 96 hours, approximately 14-fold that of KJ122 (Table 2.2). This 

was comparable to the titer of the evolved strains XW055, CM001, and LP001 in the same period 

of time, producing 76 g l-1, 80 g l-1, and 77 g l-1, respectively (Table 2.2). This demonstrated that 

inactivation/repression of galP was primarily responsible for the observed phenotype in the evolved 

strain. With a mixture of glucose and xylose as substrate, titer and productivit y increased by 

approximately 25% in AG055 compared to KJ122 (Table 2.2). However, when glucose was used 

as the sole carbon source, similar to evolved strains AG055 had decreased succinate production 

(Table 2.2). This is consistent with the finding that GalP is a major glucose transporter in KJ122 

which has a disrupted PTS (17). To directly test the repressive effect of galP on xylose fermentation,

wild-type galP was cloned into a plasmid pTrc99A and galP expression was induced by 10 µM 

IPTG in AG055 to test the effect on xylose fermentation. Induced expression of galP resulted in a 

3-day lag for AG055 before any succinate production and a 3-fold decrease in succinate titer after 

96 hours (Figure 2.4).  

Transcriptomic changes caused by galP inactivation 

To understand the transcriptomic changes upon galP inactivation, we isolated RNAs for both 

galP) in early exponential growth during xylose fermentation and used 

RNA sequencing to quantify transcriptomic differences. There were 17 genes downregulated and 

75 genes upregulated at least 2-fold in AG055 compared to KJ122 (Table 2.3). First, it is noticeable 
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that many catabolic genes, especially for secondary sugars such as xylose, arabinose, ribose and 

galactose are upregulated upon galP inactivation (Table 2.3). The xylose (xylAB, xylFGH, xylE and 

xylR), arabinose (araBAD, araFGH and araC), ribose (rbsDACB, rbsK and rbsR), and galactose 

(mglBAC and galETKM) catabolic genes were upregulated 2.2, 2.0, 5.5, and 2.4-fold on average 

estimated by relative ratio of transcripts per million (TPM) (Figure 2.5). Second, many 

transcriptional changes facilitating succinate fermentative production were observed including 

genes involved in the anaplerotic reaction, the reductive branch of TCA cycle, succinate transport 

and high-sugar osmotic stress tolerance (Figure 2.5). In particular, there was a 3.5-fold increase in 

the expression of pck that encodes PEP carboxykinase known to be crucial for conserving energy 

in succinate production (17), while the competing carboxylation enzyme, ppc, was downregulated 

by 2-fold. This resulted in an increase in the ratio of TPM of pck over ppc from 1.5 to 8.5 in AG055. 

The transcripts of fumarate reductase, catalyzing the conversion of fumarate to succinate 

production (encoded by frdABCD) was upregulated 2.5-fold as well. These changes may benefit 

xylose to succinate fermentative conversion by enhancing xylose catabolism and carbon flux to 

succinate through the TCA cycle (Figure 2.5). 

GalP represses xylose catabolism in wild-type E. coli 

To test if the negative regulatory effect of galP is a common scenario not only specific to 

succinate producers, we deleted galP in wild-type E. coli W (ATCC 9637) and compared the 

resulting strain GK501 to wild-type strain for their xylose fermentation performance. Inactivation of 

galP enhanced the initial xylose consumption rate (0-24 h) by 140%, suggesting that the repressive 

effect of galP is commonly present in wild-type E. coli (Figure 2.6A). Cell growth of GK501 was also 

increased compared to wild-type with 66% more biomass at 24 hours (Figure 2.6A). As a 

complementary test, galP expression was induced from a plasmid in wild-type E. coli W to test the 

effect on xylose fermentation. Induced expression of galP resulted in much slower growth and

xylose utilization with only approximately half biomass accumulated for 24 and 48 hours compared 

to the empty vector control (Figure 2.6B). 

Discussion 



  57 

Characterization of microbial control mechanisms for sugar preference will help engineering 

efficient sugar co-utilization, which is desired for lignocellulose microbial conversion. In this work, 

we discovered a novel mechanism that natively represses xylose fermentation through a galactose 

permease, GalP. The reverse engineering of xylose adaptation mechanisms for multiple 

experimental evolutionary trajectories of an E. coli succinate production strain revealed that a set 

of convergent causative mutations disrupting galP enhanced xylose fermentation. The 

transcriptomic analysis suggests that the improved fermentation is likely due to the increased 

expression of the genes involved in secondary sugar catabolism and succinate fermentative 

production. 

Succinate, a C4-dicarboxylic acid with a multi-billion dollar market, can be used to make many 

commodity chemicals in plastics and solvents (25). Many efforts have been made to both isolate 

and engineer biocatalysts for succinate production with varying success (26). A series of efficient 

E. coli strains, such as KJ73 and KJ122, have been engineered using a combination of metabolic 

evolutions and chromosomal deletions of competing pathways, ultimately producing succinate at a 

high titer (85 g l-1), yield (0.9 g g-1), and productivity (0.8 g l-1 h-1) from glucose (21, 27). In these 

strains, GalP was found to be more abundant (a 20-fold increase at transcriptional levels) compared 

to wild-type strain and serve as the dominant glucose transporter in evolved strains (17). However, 

the mutations increasing galP expression remain elusive until this reported work: inactivation of 

both galR and galS is required for increased GalP activities serving an effective glucose uptake 

system in the PTS deficient background (Figure 2.1 and 2.3). Six defined chromosomal 

ldhA galR galS) in wild-type E. coli ATCC8739 without any 

experimental adaptation yielded efficient succinate production with a titer at 71 g l -1, a yield at 1.0 

g g-1, a productivity at 0.50 g/ l-1 h-1 for 6-day simple batch fermentations (Figure 2.3).  

GalR and GalS are homologous dimeric repressors of the galactose regulon in E. coli (28). 

Genes encoding the ATP-dependent galactose transport system mglBAC, the Leloir pathway 

operon galETKM, and the galactose:proton symporter galP are repressed by GalR and GalS, and 

meanwhile activated by the presence of CRP bound with cAMP (24, 29). Our data suggest the 

presence of either GalR or GalS was sufficient to repress galP at some degree, leading to low 
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glucose consumption (Figure 2.3), which agrees with the evolved mechanism to restore only one 

copy of repressors, galR, in LP001 and XW055 (Figure 2.1). The restored galR is due to the 

removal of IS1 element which was strongly selected for higher fitness during xylose adaptation. In 

general, IS elements increase genome dynamics and cause genome rearrangements, which could 

be beneficial for cells to adapt to new environments (30). 

A GalP mutation (G236D) was previously identified using a similar approach, but the exact 

working mechanism is unclear (23). Although it is possible that galP 

mutation making GalP an efficient xylose transporter, the strain with a complete galP deletion in 

the same background (KJ122) showed very similar fermentation performance compared to the 

strain with galP (G236D) mutation (Table 2.2) (23). In addition, the glucose transport function of 

GalP (G236D) is also disrupted (23), which is also similar to the strain with the galP deletion and 

all other three evolved strains (Table 2.2). Characterization of the convergent genetic basis for 

three independently evolved strains f -of-

galP is likely the convergent mechanism for this quick xylose adaptation. This strategy 

of investigating parallel evolutionary trajectories is very effective to comprehensively understand 

underlying molecular mechanisms for the improved phenotypes.  

Besides CCR occurring at the transcriptional level, the activities of some sugar transporters 

can be biochemically regulated through protein-protein interactions to achieve the control of sugar 

utilization preference (8, 31-33). Different from this type of biochemical regulation, the galP-induced 

repression seems to modulate global transcriptional regulation of many catabolic genes for 

secondary sugars as characterized by the RNA sequencing (Figure 2.5). The exact mechanism is 

still elusive, but global regulators such as CRP and Cra in control of secondary sugar catabolism 

may play a role in this process since many relevant catabolic genes are transcriptionally changed 

due to deletion of galP.  

 Transcriptomic data also suggests that there are beneficial changes for succinate production 

when galP is deleted. First, expression differences were observed in ppc and pck which encode 

two anaplerotic enzymes catalyzing carboxylation of PEP to form oxaloacetate (Figure 2.5). 

Compared to Ppc, Pck was found to conserve energy (generating one net ATP) and increased pck
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expression enhanced succinate production in E. coli (16, 17). The relative ratio of pck to ppc 

transcripts between KJ122 and its galP deletion mutant was changed from 1.5:1 to 8.5:1, 

presumably conserving more energy during the conversion of PEP to oxaloacetate. Modulating the 

relative abundance of Pck and Ppc has been shown to enhance glucose to succinate conversion 

(34). Similarly, overexpression of pck in combination with a ppc inactivation was needed to 

effectively convert xylose to succinate (35, 36). The net energy gained from utilization of xylose is 

less than that of glucose (37). The distribution of metabolic flux between these two enzymes to 

maximize energy conservation could be important for xylose to succinate conversion. The need for 

conservation of energy for xylose to succinate conversion is further supported by a recent finding 

that inactivation of xylFGH (an energy intensive xylose transporter) enhances xylose to succinate 

conversion (38). Second, the expression of fumarase and fumarate reductase genes was increased 

upon galP inactivation, which would enhance carbon flux in the reductive branch of TCA cycle. 

Third, upregulation of a betaine ABC transporter, proVWX, was also observed upon galP 

inactivation. Osmotic stress is present in fermentation with 10% (w/v) sugar and previous evidence 

has shown that addition of the osmolyte betaine to AM1 mineral salts media can significantly 

increase production metrics (39). Thus, enhanced import of betaine could also play a role in 

enhancing productivity in AM1 mineral salts medium during succinate production by reducing 

osmotic stress.  

Inactivation of the PTS has been widely used as an engineering strategy in bacteria to increase 

metabolic flux downstream of PEP and relieve carbon catabolite repression for a variety of 

products, but results in a deficiency in glucose uptake and utilization (12, 13, 15, 19). In many 

studies, galP was overexpressed to compensate the PTS defectiveness and enhance substrate 

uptake (13, 40). However, these strains are not often tested for xylose or glucose-xylose 

fermentation yet, and reported strains may be sub-optimally designed for conversion of sugar 

mixtures derived from lignocellulose because of the repressive effect of galP, especially under a 

galP overexpression scenario. Although galP inactivation can increase xylose and co-sugar 

utilization, glucose consumption remains low in these strains due to the defective PTS. Thus, 
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further work may look into the use of heterologous glucose transporters presumably without 

repressive effect on secondary sugars, such as Glf from Zymomonas mobilis (41). 

 

Materials and Methods 

Strains, plasmids and Cultivation Conditions 

All strains and plasmids used in this work are listed in Table 2.1. The plasmid encoding galP

was constructed by assemble the fragment containing the native ribosomal binding sit e, coding 

region and terminator of galP with the backbone of pTrc99A at the multiple cloning site using the 

circular polymerase extension cloning (CPEC) method (42). Primers for plasmid construction are 

listed in Table 2.4. The constructed plasmid was verified using Sanger sequencing. For strain 

construction, all manipulations were done in Luria Broth (10 g l-1 Difco tryptone, 5 g l-1 yeast extract, 

and 5 g l-1 NaCl) at 30°C, 37°C, or 39°C as needed with rotation at 180 rpm when in liquid culture. 

During genetic manipu -red recombinase 

expression.100 mg l-1 ampicillin, and/or 50 mg l-1 chloramphenicol were supplemented as needed.

Genetic Methods                                                                                                               

-red recombinase based two-step recombination 

method as previously described (21, 43, 44). Briefly, strains transformed with pKD46 were grown

in LB media supplemented with 5% arabinose (w/v) to an OD ~0.3 - 0.5 before being washed with 

ice-cold water and electroporated with a linear DNA fragment with homology to the region of 

interest. The DNA fragment used in the first-step integration was made by amplifying the cat-sacB

cassette from pXW1 (44) with 50 bp of homology to the target gene. The second-step integration 

was performed using linear fragments generated using fusion PCR (45) with 500 bp homology at 

each end. Chloramphenicol resistance and colony PCR were used to select the successful clones 

for the first step integration. For the second step integration, counter selection was performed in 

media supplemented with 10% (w/v) sucrose. Gene deletion then was verified using colony PCR. 

Primers for generation for all cassettes are listed in Table 2.4.  

Fermentation 



  61 

Pre-inoculum for fermentation was generated by transferring cells freshly grown on AM1 

mineral salts (46) agar plates supplemented with 2% glucose into a 250 ml flask containing 100 ml 

AM1 media supplemented with the appropriate sugar (2% w/v) and incubating for approximately 

18 hours (37ºC, 120 rpms). All batch fermentations were performed using AM1 mineral salts media 

supplemented with the appropriate concentrations of sugar in fermentation vessels with 300 ml 

working volume as previously described (21). 100 mM potassium bicarbonate was included in the 

fermentation medium for succinate fermentative production (21). Co-sugar fermentation was 

performed using 5% glucose and 5% xylose (w/v). An initial inoculum of 0.022 g cell dry wt (CDW) 

l-1 (0.05 as OD550nm) was used for all fermentation tests. 100 mg l -1 

-D-1-thiogalactopyranoside (IPTG) were included if fermentation used the strains with plasmids. 

Fermentations were performed at 37°C and pH was controlled at 7.0 by automatic addition of base 

solution (2.4 M potassium carbonate and 1.2 M potassium hydroxide) as previously described (16, 

21). 

Laboratory Evolution 

The strain KJ122 was consecutively transferred 10 times (~60 generations) during 

approximately logarithmic growth into new fermentation vessels with fresh AM1 medium 

supplemented with 10% xylose and 100mM potassium bicarbonate. An initial inoculum of 0.022 g 

CDW l-1 was used for all transfers. This was performed for two independent trajectories until xylose 

utilization became stable (~10 transfers for each trajectory). The final population was saved as in 

a cryogenic tube (-80 °C) and individual isolates were re-fermented to confirm stability of the 

phenotype. CM001 and LP001 were selected from each evolved population for further investigation 

along with another previously evolved strain XW055 (22). 

Genome sequencing and variant calling 

Genomic DNAs were extracted from KJ122 and all evolved strains (CM001, LP001, XW055) 

using the Promega Wizard genomic DNA purification kit according to manufacturer instructions. 

Purified DNAs were fragmented to an average size of 500bp and libraries were generated with a 

TruSeq DNA sample preparation kit (Illumina). Sample preparation and paired-end sequencing was 

performed with technical duplicates using an Illumina MiSeq (2 x 300 bp) by the DNASU 
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Sequencing Core at Arizona State University. Reads were trimmed with Trim Galore 

(https://github.com/FelixKrueger/TrimGalore), aligned to the Escherichia coli ATCC 8739 reference 

genome using BWA (47). Sequencing duplicates were removed with Picard 

(https://github.com/broadinstitute/picard), and variants were called using GATK HaplotypeCaller 

(48). Duplications, deletions, and other sequence junctions were called using CNVnator (49) and 

breseq (50). 

Transcriptomic profiling by RNA sequencing 

Strains KJ122 and AG055 were grown to an OD ~0.7 under 10% xylose (w/v) fermentation 

conditions and had total RNA extracted using a Qiagen RNAeasy kit according to the manufacturer 

instructions. Two pools (2 biological replicates for each pool) of total RNAs for each strain were 

prepared by combining equal amounts of RNA for each replicate. Samples were depleted of 

ribosomal RNA using a RiboZero kit (Illumina). Random hexamer priming was used to generate 

cDNA and libraries were prepared using a Nextera library prep kit (Illumina). Sample preparation 

and sequencing using an Illumina NextSeq (2x150bp) was performed by the DNASU Sequencing 

Core at Arizona State University. Reads were trimmed with Trim Galore, aligned to an Escherichia 

coli ATCC 8739 reference using STAR (51) and had differential gene expression analysis 

performed using edgeR (52). 

Analyses  

Sugars and organic acids in fermentation broth were measured by high-performance liquid 

chromatography (HPLC) using an Aminex® HPX-87H column (Bio-Rad) and 4 mM sulfuric acid as 

the mobile phase, as previously described (44). Cell dry weight was calculated from the measured 

optical density at 550 nm (0.44 g cell dry weight l-1 when OD550nm is 1.0).  
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Table 2.1. Strains and plasmids used in Chapter 2 
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Table 2.2. Fermentation parameters KJ122 and its derived strains in AM1 
supplemented with indicated carbon sources after 96 hours 
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Functional 
categories 

Downregulated 
genes 

        
Upregulated 
genes   

Carbon 
metabolic 
genes pck ygcE ydjI
 maa dmlA  lpxL agp sucD ykgEFG 

 glgC ppc  frdA,B,D aspA rbsK rbsD 
        
Regulator for 
carbon utilization   cstA araC rbsR  
        
Sugar and acid 
transporters   xylH yqcE glpT yedE 
    rbsABC mglBC btsT dcuA 
        
Amino acid 
metabolism nepI lysA  ilvN mtr ansB pepE 
 asd   fucO trpE oppB  
        
Regulatory function unrelated to 
carbon metabolism     
 ada yihI  yrbL ygiM nuoHM rpoE 
    ychH caiF   
        
Other 
unrelated 
functions mutM truC  proVWX (betaine uptake)  

 yqcC alkB alkA ssuABCDE pspE    

 
phoE 
(porins)  (sulfonate-sulfur utilization)  

    abgA,ybcF, ylbF, fdrA, allCD   

    (allantoin/nitrogen catabolism)  
    ompW, ompF (porins) uspF 
    aslA cutC pstA ydeM 
        
Unclassified ydjO yigI  ucpA preAT ydeP ybhG 
 gspG   ybhF ybhR ybhQ ylbE 
        ybaE       

Table 2.3. Differentially expressed genes with greater than a 2-fold change in 
expression and a false discovery rate (FDR) < 0.1. 
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Table 2.4. Primers used in Chapter 2 
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  Figure 2.1. KJ122 was adapted for xylose fermentation by serial transfers of 
cultures in AM1 supplemented with 10% (w/v) xylose. This adaptive laboratory 
evolution was performed independently two times, from which A) LP001 and B) 
CM001 were isolated. Used xylose was determined for each transfer during 
fermentation. C) Primary convergent mutations were characterized using 
genome sequencing for CM001, LP001 and XW055, a previously evolved strain 
(24). In comparison to these three strains, a previously evolved and 
characterized strain AS1600a (30) was also summarized. D) Schematic drawing 
of the transcriptional repression of galP by both GalR and GalS. Inactivation of 
galS was by an adenine insertion at the position 231 in galS ORF, whereas 
inactivation of galR was by an IS1 element inserted at the position 261 in galR 
ORF. The given size does not reflect real proportions 
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Figure 2.2. KJ122 was adapted for xylose fermentation by serial transfers of cultures in 
AM1 supplemented with 10% (w/v) xylose. This adaptive laboratory evolution was 
performed independently two times, from which A) LP001 and B) CM001 were 
isolated. Adaptive evolution increased biomass for both evolutionary trajectories.  
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Figure 2.3. Fermentation of a rationally designed succinate producer A) XW01 
and its derivatives with inactivation of B) galR, C) galS, and D) galRS in AM1 
medium supplemented with 10% glucose (w/v). Symbols for all: biomass (open 
circle), glucose (filled square), succinate (filled triangle). 
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Figure 2.4. Fermentation of AG055 transformed 
with A) an empty vector pTrc99A  or B) a 
plasmid encoding GalP in AM 1 medium 
containing 10% (w/v) xylose and 10 M IPTG . 
Symbols for all: biomass (open circle; dotted 
lines), xylose (filled circle ; solid lines), succinate 
(filled triangle ; solid lines).
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Figure 2.5. Differential expression analysis of relevant pathways relevant to 
succinate bioproduction in AG055. The genome-wide expression of AG055 
is compared to KJ122 and relative fold change is expressed using a Log2 
scale. Abbreviations: F-6-P, -D-fructose-6-phosphate ; G-3-P, D-
glyceraldehyde-3-phosphate; X-5-P, xylose-5-phosphate; Xu-5-P, xylulose-
5-phosphate; Ru-5-P, ribulose-5-phosphate ; R-5-P, ribose-5-phosphate; S-
7-P, sedoheptulose-7-phosphate; E-4-P, erythrose-4-phosphate; PEP, 
phosphoenolpyruvate; OAA, oxaloacetate; Pyr, pyruvate; Ac-CoA, acetyl-
CoA; Ace-P, acetyl phosphate; Suc-CoA, succinyl-CoA; PTS, 
phosphotransferase system.



  72

 

  

Figure 2.6. Effect of galP in wild-type background on xylose fermentation using 
AM1 medium supplemented with 10% xylose (w/v). A) wild-type E. coli W (solid 
lines) and GK501 (E. coli galP; dotted lines). B) E. coli W with empty vector 
pTrc99A (solid lines) and with a plasmid encoding GalP (dotted line). 10 M IPTG 
was used to induce galP expression. Symbols for all: biomass (circle), xylose 
(triangle). 
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CHAPTER 3 

DIRECTED EVOLUTION TO RELEASE GLUCOSE INHIBITION OF GLF FOR LOW-ENERGY 

IMPORT OF LIGNOCELLULOSIC SUGARS 

Abstract 

Cellular import of D-xylose, the second most abundant sugar in lignocellulosic biomass, has 

been evidenced to be an energetic burden using the native transport systems of multiple bacterial 

biocatalysts. The glucose facilitator of Zymomonas mobilis, glf, is capable of high velocity xylose 

uniport, but is known to be inhibited by D-glucose, potentially limiting the utility of this transporter 

in sugar mixtures derived from lignocellulose. In this work we developed an E. coli transport 

deficient platform strain that is incapable of glucose catabolism (Glc -) for the screening of glucose 

resistant variants of Glf. Using this platform, we isolate variants by enrichment derived from both 

random and rational mutagenesis with a 60-210% increase in the D-xylose consumption rate in co-

sugar medium, demonstrating the utility of this approach. Mutations relieving glucose repression 

from this approach are diverse and include previously described mutations such as a conserved 

asparagine of sugar porters in TM8, as well as novel point mutations that target residues specific 

to glucose coordination, cause subtle changes in TM12, and more. Furthermore, fermentation of 

these variants in a Glc+ background demonstrates that these mutations do not inactivate glucose 

import but appear to increase the preference for xylose in co-sugar fermentation. These findings 

suggest that these transporters may be energy-conservative alternatives to the native transport 

systems of many bacterial biocatalysts for fermentation of lignocellulose-derived sugars. 

Importance 

Glucose and xylose are the two most prevalent sugars in lignocellulosic biomass, a renewable 

carbon feedstock that can potentially be used for bioconversion to valuable compounds. Xylose 

transport, one of the first steps in xylose catabolism, is known to often be catalyzed by transporters 

that unnecessarily expend ATP and/or are inhibited by glucose. This work develops a multitude of 

variants of a glucose facilitator, glf, for xylose uniport that has been relieved of glucose inhibition. 

The use of this transport system theoretically allows an E. coli biocatalyst to reduce xylose 
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catabolism ATP expenditures by 50% during consumption of glucose-xylose mixtures reminiscent 

of lignocellulose hydrolysate. Additionally, mutations gained that confer this phenotype provide 

interesting insights into the similarity of structure/function mechanisms of the MFS sugar porters.  

Introduction 

Bioconversion of lignocellulose represents a renewable production route for many petroleum 

derived chemicals that does not compete with food crop production. However, the utilization of 

lignocellulose by microbes is limited by both the toxicity and sugar composition of lignocellulose 

biomass following chemical pretreatment strategies (1). Independent of feedstock, this sugar 

composition mainly consists of glucose and xylose, and co-consumption of these sugars impose 

challenges for D-xylose uptake systems and microbial regulatory pathways through carbon 

catabolite repression (CCR) for a broad range of biocatalysts (2-4). This results in sequential and 

mechanistically sub-optimal utilization of these sugars, which ultimately decreases important 

production metrics such as titer, productivity and yield (5). Recent findings in our lab discovered 

mutations in a xylose transcriptional activator, XylR, which essentially eliminates CCR for co-

utilization of glucose/xylose sugar mixtures and is transferrable to multiple production backgrounds 

(6). Thus, circumventing energy expenditures and glucose inhibition during D-xylose uptake is one 

of the major remaining challenges in utilizing lignocellulose sugars. 

Transport of D-xylose in bacteria is generally catalyzed by either primary or secondary active 

transporters, which results in unnecessary energy consumption. In E. coli the cell has two major 

xylose uptake systems that can be induced by xylose, XylFGH and XylE (7-9). XylFGH is a high 

affinity ATP-binding cassette transporter (ABC) which hydrolyzes ATP for substrate import and is 

known to be the main importer of xylose under fermentation conditions (8, 10, 11). XylE is a low 

affinity xylose:H+ symporter and although more energy efficient it appears to catalyze much less of 

the physiologically relevant transport (7, 11). Following import, xylose is isomerized and 

phosphorylated before proceeding into the pentose phosphate pathway. Utilization of this native 

transport system however has been shown to approximately double the amount of ATP spent on 

substrate uptake relative to other efficient sugar uptake systems, such as glucose import (10, 12). 
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Since ATP is limited under microaerobic fermentation conditions due to inactivation of oxidative 

phosphorylation, this deprives the biocatalyst of energy, decreasing biomass and specific growth 

rates (10). This has been shown to be particularly problematic in biocatalysts with pathways that 

have been engineered to remove side products (e.g. acetate) which help to increase ATP yields. 

For instance, xylose to lactate conversion in E. coli has been shown to be inhibited due to the low 

ATP/xylose molar yield (0.67) of the pathway using XylFGH (11, 13). Inactivation of XylFGH 

immediately improves fermentative production, and by performing adaptive laboratory evolution 

(ALE) the cells activate a new transport system which presumably does not use ATP for import 

(13). Other fermentation products, such as succinate, have low a ATP yield which require energy 

conserving mechanisms in the pathway to even facilitate production from glucose (14). Thus 

mutations that increase ATP conservation, such as activation of the phosphoenolpyruvate 

carboxykinase, pck, through both direct and indirect methods have been shown to enhance both 

xylose and glucose-xylose to succinate conversion (14-16).  The previous strategy of inactivating 

XylFGH coupled to ALE has been used to enhance xylose to succinate conversion as well, although 

the exact transport mechanism of these newly activated transporters remains unknown (17). More 

ideal would be the incorporation of a xylose uniporter to catalyze uptake without expending cellular 

energy, although these types of transporters appear to be rare in bacteria. 

Some organisms such as Zymomonas mobilis and many eukaryotes have uniporters from the 

Major Facilitator Superfamily (MFS) which catalyze facilitated diffusion of monosaccharides (18). 

These transporters belong to the same family as many bacterial sugar symporters such as XylE 

and contain 12 transmembrane spans (TMS) that potentially recognize sugars at the C-terminal 

domain and facilitate translocation by a rocking mechanism in the N-terminal domain (19, 20). The 

substrate spectra of a broad range of eukaryotic uniporters has been characterized (21), however 

many of these transporters have low transport kinetics for xylose, are difficult to express in bacterial 

hosts, and are in general inhibited by glucose (19, 21, 22). The kinetics of these transporters have 

previously been improved in work by Young et al. who enhanced xylose uptake of multiple 

importers by modifying residues in a G-G/F-XXX- G motif that is widely conserved among sugars 
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porters (SP) in the MFS (22). In particular, this elucidated the importance of hydrophobic residues 

in this motif and found that a G-G/F-XX-F-G motif was particularly enriched in uniporters that 

effectively translocated xylose (22). However, these transporters still were inhibited by glucose. 

This inhibition results in sequential sugar utilization and decreased production metrics for multiple 

biocatalysts in glucose-xylose mixtures, and thus has been the target of protein engineering 

techniques (9, 23, 24).

The glucose facilitator, glf, of Z. mobilis is a desirable candidate to replace the native bacterial 

xylose import system since it has been functionally expressed in E. coli, already has the G-G/F-

XX-F-G motif associated with xylose uptake, and has a high velocity for xylose import (18, 25). 

Additionally, previous work has found that mutations Glf-A18T and Glf-V275F can be used to 

enhance pentose import, suggesting that the specificity for xylose can be easily modified (26). 

However, like other MFS uniporters, it too is inhibited by glucose (27, 28). Previous work has found 

that structural interactions in TMS4-8 may be important in preventing efficient xylose and glucose-

xylose co-utilization in this protein (28). Recent work has elucidated a high resolution of structure 

of XylE bound to both xylose and glucose (29). Within this structure, residues involved in 

coordination of the 6-hydroxymethyl group of glucose that are not involved with xylose coordination 

were found that reside with TM5, TM8, and TM10 (29). Additionally work by Farwick et al. and 

others have found mutations in TM5 and a conserved asparagine in TM8 that are important for 

releasing glucose inhibition of fungal xylose uniporters potentially by altering the binding pocket 

near the 6-hydroxymethyl group of D-glucose (30). However, many of these mutants have not often 

been tested under relevant fermentation conditions, or with biocatalysts that are relieved from 

catabolite repression (28, 30, 31). This may result in sub-optimal performance, thus emphasizing 

the importance of an optimized catabolic pathway released from CCR in the optimization of sugar 

porters for xylose uptake.

To create a bacterial xylose uniporter released from glucose inhibition we first created a 

platform strain to facilitate effective screening. We thus inactivated the known glucose and xylose 

transport systems in a strain relieved from CCR (xylR::xylR*). By further inactivating glucose 
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catabolism (-glk) we created a strain with a selective advantage for xylose transport that is relieved 

from glucose inhibition. We then created multiple transporter libraries both by random mutagenesis 

and by targeting residues involved in glucose coordination with site saturation mutagenesis. By 

performing a pooled enrichment, we isolated 10 transporter variants that enhance xylose utilization 

under co-sugar fermentation conditions. We then find two potentially distinct mechanisms by which 

cells are relieved from glucose repression and that these alterations enhance xylose transport 

preference in mutant transporters. 

Results 

Construction of a screening platform for glucose resistant glf 

To create a strain background to facilitate rapid identification of glucose resistant Glf variants, 

we sought to create a glucose and xylose transport deficient strain that would only be able to 

catabolize xylose, as has been done previously in yeast (30). We began by using a xylose 

specialist, AF11A, derived from E. coli ATCC 9637 that had been developed in previous work by 

our lab (publication pending). This strain has the major glucose uptake systems inactivated 

ptsI ptsG galP), resulting in almost no glucose consumption over 96h in a 10% (w/v) glucose 

fermentation even while catabolic pathways are present. Additionally, this strain has point 

mutations in xylR (xylR*) which relieves the cell from CCR of xylose in the presence of glucose. 

We further developed this strain by inactivating known xylose importers xylFGH, xylE, and the 

arabinose importer, araE. Inactivation of xylFGH decreased the initial xylose consumption rate (0-

24h) by ~50% (Figure 3.1A). By inactivating xylE in this background, we further decreased the 

xylose consumption rate to ~25% the parent strain (Figure 3.1A). Finally, inactivation of araE in this 

background decreased initial xylose consumption to ~8% of the parent strain (Figure 3.1A). 

Although inactivation of these transporters provided a strong selective pressure for efficient xylose 

transport, we found that additional xylose transporters facilitated uptake after 24h. To attempt to 

identify these transporters, we inactivated other potential xylose importers, araFGH and gatC. 

Fermentation of this strain, EG29, using xylose or arabinose as a carbon source resulted in no 

change in xylose uptake and demonstrated that there are uncharacterized pentose transporters 
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that facilitate a significant amount of sugar uptake, especially for arabinose (Figure 3.1). We then 

inactivated glucose kinase in this strain to prevent catabolism of glucose for transporters acting 

preferentially on this sugar. By fermenting this strain, EG51A, in the presence and absence of 

glucose while overexpressing glf, we find that overexpression of glf results in complementation of 

the xylose utilization rates to be equivalent to AF11A (Figure 3.2). However, xylose 

transport/catabolism catalyzed by Glf is almost completely inactive in the presence of glucose, and 

thus cells consume a similar amount of xylose as those carrying an empty vector (Figure 3.2). In 

the absence of glucose, cells have a greater than 2-fold increase in biomass at 24 h, thus we 

determined this co-sugar fermentation to be an ideal selective condition for enrichment (Figure 3.2).

Identification of Glf variants resistant to glucose 

To create variants of Glf, we took a two pronged approach employing both random and site 

directed mutagenesis. For random mutagenesis, two different variant pools of ~12,000 variants 

were created using error prone PCR (ePCR). To create a site saturation mutagenesis library, we 

specifically targeted sites that either were involved in the coordination of glucose, but not xylose in 

the XylE crystal structure. By performing a an alignment of XylE, and Glf using the Clustal Omega 

algorithm (32) and constructing a homology model of Glf we selected residues that corresponded 

to glucose coordinating residues Q175, F383, and G388 in XylE in Glf (A165, F374, and G379)

(Figure 3.3). We also chose I172 in between the glucose binding residues I171 and Q175 (in XylE) 

due to the finding that mutation of this corresponding residue was capable of releasing glucose 

repression in multiple yeast uniporters (30, 33). This resulted in targeting V162 in Glf as well for 

site saturation mutagenesis (Figure 3.3). We also constructed and tested two variants that had 

been previously identified to enhance pentose utilization, Glf-A18T and Glf-V275F (26). Following 

the creation of these mutant constructs we pooled all site saturation mutagenesis constructs into a 

single tube at equimolar amounts to create a pool.  Each pool was then transformed into EG51A to 

at least 5x coverage and immediately transferred from plates into fermentation media 

supplemented with a mixture of glucose and xylose. By transferring these fermentation cultures 

into a new vessel with fresh media every ~24h we enriched for mutants that could transport xylose 
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in the presence of glucose. This resulted in the identificat ion of 10 unique variants after enrichment, 

in addition to the previously described mutants (Figure 3.4A). We retransformed these variants into 

EG51A to eliminate potential beneficial mutations gained during enrichment and fermented them 

in the same media used for enrichment. Of these, nine variants demonstrated enhanced xylose 

utilization by 60-210% in the presence of glucose, suggesting glucose inhibition was relieved 

(Figure 3.4B). GK14, GK3 and GK7 appeared to have the highest xylose consumption rate in the 

presence of glucose with ~190-210% increases in consumption compared to wildtype Glf (Figure 

3.4B). GK2 and SM1 had the lowest increase in xylose utilization rate, with only a 60-80% increase 

in utilization between 0 24h (Figure 3.4B). Variants A18T, V275F, and GK6 did not release Glf 

from glucose inhibition, and thus were not analyzed further (Figure 3.4B). 

Glf variants have enhanced preference for xylose transport 

To test if the in-vivo substrate preference of these transporters was altered we tested each 

variant in EG29 to permit simultaneous consumption of glucose and xylose in a co-sugar 

fermentation. Simply expressing wildtype Glf in the transport deficient strain greatly increased both 

glucose and xylose utilization, indicating that the transporter still does actively transport xylose

during glucose import (Figure 3.4C). However, cells expressing Glf variants had an increased 

xylose utilization rate relative to a strain expressing the wildtype Glf, ranging from a 22% - 74% 

increase (Figure 3.4C). Of these GK14 and SM1 had the lowest increases in xylose utilization of 

approximately 20%. The best performing variants corresponded to SM3 and GK8 for total xylose 

utilization in 24h, with an increase of approximately 70% each (Figure 3.4C). Additionally, the 

substrate preference of these transporters appeared to be altered. Cells expressing wildtype Glf 

consumed on average approximately 0.7 g xylose per g glucose (Figure 3.5). All variants had 

increased this ratio to be between 0.9 - 1.4 g xylose per g glucose. The lowest of these was SM1

who only had a 0.9 g xylose per g glucose ratio (Figure 3.5). This suggests that SM1 is only partially 

relieved of glucose inhibition of xylose transport, as was seen previously (Figure 3.4B). Other 

mutants such as GK1 and GK4 also had lower sugar preference for xylose, suggesting incomplete 

release for glucose inhibition or sub-optimal xylose transport kinetics (Figure 3.5). Variants GK14, 
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GK2, GK3, GK7, GK8, and SM3 all appeared to have the greatest relief from glucose inhibition with 

a 1.3  1.4 g xylose per g glucose ratio (Figure 3.5). According to these fermentation results and 

structural investigations, we determined GK3, SM3, and GK8 to be the most ideal xylose uniporters 

to investigate further since they maintain high preference and kinetics for xylose and are composed 

of only 1-3 amino acid changes.  

Structural locations of amino acid mutations suggest multiple mechanisms of overcoming 

glucose inhibition 

To gain more information on the potential structural consequences of these mutations, we 

constructed a homology model of Glf. Since the crystal structure of XylE was recently solved with 

both glucose and xylose bound and has a high degree of identity to Glf (~43%) we selected this 

structure as a template (PDB ID: 4GBY). The structure of Glf appears to consist of twelve TMS, 

two extracellular helices (EC), five intracellular helices (IC), in addition to one kinked region of TM1 

that may reside on the extracellular side (TM1e) (Figure 3.6A). Similar to XylE most putative sugar 

coordinating residues are located in the C-terminal region of the transporter. However, variants 

released from repression were found to have a wide range of mutations with no clear bias for 

enrichment of mutations in the N- or C-terminal domain (Figure 3.6B). We investigated if mutations 

in TM helices that are known to coordinate the 6-hydroxymethyl group of D-glucose in XylE are 

enriched in the nine variants. These include TM5, TM8, and TM10. Variants in these locations 

account for 66.6% of variants suggesting that this region is important. Mutations in TM5 and TM8 

were the most prevalent with 44.4% and 33.3% of variants having mutations in these features, 

respectively (Figure 3.6B). Notably, almost all residue contacts in XylE for xylose or glucose 

recognition are conserved between XylE and Glf (Figure 3.6C). The only exception is Q175 (A165 

for Glf) which is potentially capable of forming a hydrogen bond with the 6-hydroxyl group of glucose 

in XylE (Figure 3.3). Mutant SM3 has a mutation in A165 (A165M), which is predicted to extend 

directly into the sugar coordinating pocket near the 6-hydroxymethyl group of glucose. Since this 

is a larger side chain than alanine, this may potentially hinder glucose from preferentially entering 

the binding pocket. Besides SM3 multiple other mutants were isolated with mutations that 
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potentially alter the size or structure of the binding pocket. Among the many mutations in GK7 is a 

mutation in a phenylalanine (F374S) that is involved in glucose coordination and is structurally 

conserved in Glf (Figure 3.3 and 3.7). Additionally, two variants (GK1 and GK8) had mutations in 

both a conserved asparagine residue in TM8 of sugar porters (N316 S/D) and a C-terminal lysine 

(K458 R/I) residue. This asparagine presumably protrudes into the binding pocket and although 

not directly involved in binding, has been shown to alter sugar substrate specificity in multiple 

transporters. Similarly to previous reports, the N316 side chain of Glf appears to extend into the 

translocation pocket near the 6-hydroymethyl coordinating region of glucose in our model, and thus 

mutations in this residue may alter the size or structure of the pocket (30) (Figure 3.7). The C-

terminal lysine residue however appears to be positioned directly below the cytoplasmic extending 

junction between TM8 and TM9 which may be indicative of an interaction between this residue and 

residues in TM8-9. It is not clear if these two mutations are needed however to permit release of 

glucose repression. Other mutants had less obvious mutations that may be involved in interactions 

difficult to predict. GK2 had a mutation in TM8 (G313S) that is homologous to a described mutation 

in Glut1 (G314S) known to cause decreased glucose transport without affecting cation permeability 

(34) (Figure 3.8). Based on our model, this residue extends towards TM5 near the binding cavity

(Figure 3.7). SM1 was isolated with mutation (V162G) that is positioned similarly in TM5 extending 

towards TM8 (Figure 3.3 and 3.7). These two variants may also potentially affect the size or 

structure of the translocation pocket. The L445I mutation in GK3 is possibly one of the most subtle 

mutations with no obvious structural consequences. On the basis of the homology model, this 

residue points outward from the protein core on TM12 and does not have any obvious interactions 

that may be disrupted by a mutation to isoleucine (Figure 3.7). No known mutations affecting 

glucose transport have been described for any of the variations in GK4. The likely causative 

mutations of these variants seem to point to two main potential mechanisms 1) alteration of the 

translocation pore, particularly in the area around residues coordinating the 6-hyroxymethyl group 

of D-glucose or 2) unknown interactions in the C-terminus (Figure 3.7). 

Effects of Glf on co-sugar to succinate conversion 
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Our lab previously created AG055, a strain capable of presumably conserving energy during 

xylose to succinate fermentation (Chapter 2). This ATP conservation results in an increase in 

fermentative production using glucose/xylose mixtures as a substrate as well. However, it is 

unknown if additional ATP conservation may further increase succinate titer and yield by 

decreasing the need for generation of unwanted side products, such as acetate. Thus, we 

fermented AG055 overexpressing an empty vector, wildtype Glf or variant GK3 for 120h. AG055 

overexpressing GK3 has an approximately 24h lag in growth and production compared to the other 

strains (Figure 3.9). This may be due to a sub-optimal xylose utilization pathway, as GK3 may 

preferentially transport xylose but release of catabolite repression is incomplete in this strain, as it 

does not possess xylR*. After 120h the titer and yield of all strains is approximately comparable 

(Figure 3.9).  

Discussion 

For effective lignocellulose bioconversion, biocatalysts need to be able to efficiently transport 

and utilize the main sugars present in woody biomass, glucose and xylose. Previous work has 

largely focused on the issue of CCR, which now has multiple robust solutions, while ignoring issues 

in energetic expenditures during the uptake of xylose using ABC transporters like XylFGH (1, 3). 

Although the use of xylose uniporters would be more efficient, these proteins are known to be 

inhibited by glucose thus constraining the effectiveness of overexpression of heterologous 

transporters in co-sugar mixtures. In this work, we sought to create a glucose-resistant xylose 

facilitator, Glf, to overcome sub-optimal transport mechanisms in the presence of sugar mixtures. 

By deleting all known glucose/xylose uptake proteins and inactivating glucose kinase, we were able 

to create a strain that confers a selective growth advantage for xylose transporters resistant to 

glucose. This resulted in the isolation of nine Glf variants that were at least partially released from 

glucose inhibition and had an enhanced preference for xylose uptake compared to the wildtype 

protein. This is likely due to alterations in the sugar translocation pocket that are responsible for 

coordinating the 6-hydroxymethyl group of D-glucose, although it appears other more complex 

mechanisms may also be present. These findings suggest that these proteins may be useful for 
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incorporation into strain engineering strategies to help conserve ATP during lignocellulose 

bioconversion. 

In general, many MFS transporters are known to be inhibited by glucose, including the E. coli 

xylose symporter XylE (21, 29). Previous work has looked at releasing this inhibition mainly in 

eukaryotic transporters in fungi, since it is known that xylose catabolism can be bottlenecked by 

transport in these organisms (35, 36). Our work finds that many of the residues used to release 

glucose inhibition in these eukaryotic uniporters also works to release inhibition in Glf, suggesting 

broadly conserved mechanisms of inhibition. For instance, in fungal MFS transporters Gxs1 (from 

Candida intermedia), Gal2, Hxt7, Hxt5, Hxt11, and Hxt3, mutation of the conserved asparagine in 

TM8 (Glf-N316) has been observed to release glucose inhibition, with varying success (24, 30, 33, 

37). Similar to our observation, this residue has been predicted to release glucose inhibition in 

variants GK1 and GK8 by potentially altering the structure of the sugar coordinating pocket, 

especially near the 6-hydroxymethl group of D-glucose. We also find that Glf-V162G partially 

releases glucose repression, a discovery that is corroborated by findings that mutations in the 

corresponding residue in the Gxs1, Gal2, Hxt7 and Hxt5 results in a similar effect (30, 33). This 

work also finds that a mutation of Glf-A165M, which is normally a glucose coordinating residue in 

other proteins (such as XylE) can be used to release glucose inhibition while maintaining high 

xylose utilization efficiency in vivo. Other mutations we find that may have a role in releasing 

glucose inhibition mainly seem to be located in a hotspot of TM5, TM8 and TM10, all of which are 

potentially involved in disruption of the coordination of the 6-hydroxymethyl group of glucose 

(Figure 3.3, 3.6, and 3.7). This seems to suggest that disruption of the interactions coordinating the 

unique molecular side chain of D-glucose relative to D-xylose is a common mechanism to release 

glucose inhibition. Other mutants are still present however that do not appear to have a direct role 

in this mechanism such as GK3 (Glf-L445I). Work by Li et al has observed that truncation of the C-

terminal region of Gxs1 can decrease glucose inhibition and can be combined with a mutation of 

the conserved asparagine in TM8 for an additive effect (33). This may further suggest that there at 
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two distinct mechanisms which can release glucose inhibition, or that this subtle mutation might be 

capable of creating more drastic structural changes than may be predicted.  

It has been observed that incorporation of these mutations only enhances co-utilization 

significantly when strains have been released from CCR, emphasizing the importance of this quality 

in a testing strain (31). Utilization of a strain free from CCR allowed us to probe the efficacy of these 

transporter variants without being constrained by metabolic regulation. This allowed us to discover 

that multiple of these transporters such as GK14, GK2, GK3, GK7, GK8, and SM3 actually prefer 

xylose to glucose now when given the option for consumption. Another interesting finding is that 

none of these mutations disrupt glucose utilization. A matter of fact, all of the mutants except GK14

appear to retain relatively wildtype glucose utilization rates. This finding further provides evidence 

that the mechanism of glucose inhibition is independent of transport function. This is corroborated 

by findings by Young et al that eliminating glucose transport but enabling xylose transport does not 

simply release glucose inhibition in Gxs1 (22). This is also observed in XylE, which is inhibited by 

glucose even though it does not actively transport the molecule (29). Farwick et al was able to show 

however that by changing the conserved aspargine in TM8 to a phenylalanine, glucose transport 

can be blocked presumably by hindering entrance in the binding pocket while still releasing glucose 

inhibition (30). One interesting idea might introduce a mutation of N316F into mutant GK3 to attempt 

to decouple glucose and xylose transport and thus create a more specific xylose uniporter.  

Since it is known that ATP conservation during microaerobic fermentation of xylose is important 

for efficient bioproduction (11, 13), we tried to overexpress one mutant transport (GK3) in an 

optimized succinate producer, AG055, to attempt to increase production. However, this strain 

already gained a mutation that activated energy conserving pathways, making it unc lear whether 

ATP conservation is still a metabolic bottleneck. Our results suggest that ATP conservation may 

not be a bottleneck anymore in this strain, but also that strains may require a xylR* mutation to 

effectively use these glucose-resistant uniporters. This is due to the 24h lag that is observed upon 

overexpression of GK3, possibly due to a lack of adequate expression of xylose catabolism genes 

(Figure 3.9). Also, these cells still retain a native copy of XylFGH, which may interfere with energy 
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conservation depending on the amount of xylose that is taken up by the transporter. More ideal to 

test our hypothesis may be to overexpress these mutant transporters in the precursor strain KJ122 

with a xylFGH inactivation and xylR* mutation to eliminate influence of XylFGH on energy 

conservation and enable efficient co-utilization.  

In conclusion, this work describes multiple variants of Glf that represent effective bacterial 

xylose uniporters that can be used in the presence of mixed sugars, similar to lignocel lulose 

hydrolysate. The exact causative mutations of some mutants such as GK1, GK2, GK7, GK8 and 

GK14 remain unknown, however we hypothesize that many of them may be involved with mutations 

that alter the structure of TM5, TM8, and TM10 coordinating the 6-hydroxymethyl group of glucose. 

Future directions may improve this work by combining mutations found in this work, especially 

those targeting potentially distinct mechanisms (e.g. N316 and L445). Additionally , this work could 

be expanded to further characterize the single point mutations required to release glucose inhibition 

in some of these variants, and to further characterize the molecular mechanisms which lead to 

glucose inhibition of MFS transporters. 

Materials and Methods 

Strains and Media 

All strains used in this work are listed in Table 3.1. All genetic manipulations were performed 

by growing cells in Luria Broth (10 g l-1 Difco tryptone, 5 g l-1 yeast extract, and 5 g l-1 NaCl). Cells 

in liquid culture were grown at 30°C, 37°C, or 39°C with rotation at 180 rpm. During genetic 

manipulations, 5% arabinose (w/v) was added to induce recombination and ampicillin (100 mg l -1), 

chloramphenicol (50 mg l-1), or kanamycin (50 mg l-1) were supplemented as needed. 

Genetic Methods 

Gene inactivation was performed using either one-step inactivation or two-step recombination 

as previously described (38, 39). After cells were transformed with pKD46, 10-12 colonies were 

inoculated into 25 ml activation media incubated until OD550 reached 0.3-0.5. Cells were washed 

three times with nanopure water before being electroporated with ~100 ng of linear DNA for 
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integration into the region of interest. Linear DNA for integration was amplified from pKD4 for 

primary integration (FRT-kan-FRT) or pXW01 (cat-sacB) for secondary integration. All linear DNA 

fragments were flanked by 50 bp of homology to the region of interest. The kan cassette was 

remove from integrated cells by transformation with pCP20. The cat-sacB cassette was removed 

by repeating the integration with a linear fragment created using Fusion PCR to encode ~1 kb of 

homology to the flanking regions (40). Cells were then incubated in LB supplemented with 10% 

(w/v) sucrose to select for positive integrations. All genetic manipulations were verified using colony 

PCR. All primers can be found in Table 3.2. 

Plasmid variant pool construction and enrichment 

Circular polymerase extension cloning (CPEC) (41) was used to create all plasmids in Table 

1. All primers used are in Table 2. The glf gene was amplified from Zymomonas mobilis CP4 with 

~20 bp homology overhangs for a linearized pTrc99a backbone. To mutagenize glf we performed 

error-prone PCR using the GeneMorph II (Agilent), according to the manufacturer instructions to 

create two separate libraries (~20,000 variants) with low (0-3 mutations/kb) and medium (4-7 

mutations/kb) mutation frequencies. To generate mutants for site saturation mutagenesis, we used 

Fusion PCR to generate NNK variants at codons that corresponded to Glf162, 165, 332, and 374. 

Glf variants relieved of glucose inhibition were enriched by transforming one of the three plasmid 

variant pools (low, medium, NNK) into EG51A and fermenting in TB2 (publication in preparation) 

supplemented with 6.6% glucose (w/v) and 3.4% xylose (w/v). Fermenting cells were transferred 

into fresh media every ~24h for approximately 20 generations before being plated onto LB agar 

supplemented with ampicillin and isolated for individual colonies. Plasmid was isolated from these 

variants and Sanger sequencing used to confirm unique variants. All unique variants were 

retransformed into selected strains for further testing. 

Fermentation 

Colonies were incubated for ~18 h under microaerobic conditions (gassed with argon) on LB 

agar before being transferred into 100 ml LB in supplemented with 100 mM MOPS in 250 ml flasks. 
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These seed flasks were incubated for ~18h before being transferred into 300 ml AM1 (single sugar 

fermentation) (42) or TB2 (co-sugar fermentation), supplemented with 10% total (w/v) of the 

appropriate sugar(s) in 500 ml fermentation vessels (37°C, 150 rpm). When performing co-sugar 

fermentations a ratio of 6.6% glucose and 3.4% xylose was used. Initial inoculum for fermentation 

was always OD550 = 0.05. All fermentations had pH controlled at 7.0 with automatic additions of 6M 

potassium hydroxide.

Homology modeling and structural analysis 

Homology models of Glf were constructed using SWISS-MODEL (43) with the crystal 

structures of XylE bound to glucose (PDB ID= 4GBZ) or xylose (PDB ID= 4GBY) as template. 

Structures were viewed and edited using the Chimera software suite (44). The location of predicted 

structural features was overlaid onto an Clustal Omega alignment of Glf and XylE. Visualizations 

of the alignment similarity and identity were generated using the Multiple Alignment Show tool from 

the Sequence Manipulation Suite (http://www.bioinformatics.org/sms2/).  

Analysis 

Quantification of sugars was performed using high-performance liquid chromatography (HPLC) 

using an Ultimate3000 equipped with an Aminex HPX-87H column (Bio-Rad). As described 

previously (6), we used 4mM sulfuric acid as mobile phase at a flow rate of 0.4 ml minute-1. Optical 

density was quantified using a Beckman Coulter DU 730 spectrophotometer.  
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Table 3.1. Strains and plasmids used in Chapter 3 
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Table 3.2. Primers used in Chapter 3 
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Figure 3.1. Construction of a screening platform deficient in both glucose and xylose 
transport. A) Xylose consumption rates of AF11 and its derivatives engineered by 
consecutive inactivation of known and putative xylose transporters during the initial 24 
hours fermentation. Fermentation of AF11 (solid lines with filled symbols) and EG29 
(dotted lines with open symbols) using AM1 media supplemented with B) 100 g/L xylose 
or C) 50 g/L arabinose. Symbols for all: OD550nm (circle), xylose (triangle), arabinose 
(square). 
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Figure 3.2. Xylose transport of Glf is inhibited by glucose. Fermentation of EG51A 
(EG29 glk -) transformed with empty vector (EV) pTrc99A (triangle symbols; black 
lines) or pTrcGlf (square symbols; blue lines) using AM1 media containing 34 g/L 
xylose only (solid lines and filled symbols) or sugar mixtures (dotted lines and 
open symbols) containing 66 g/L glucose and 34 g/L xylose, as well as 10 µM 
IPTG to induce glf expression. A) Cell optical density (OD550nm), and B) xylose 
concentrations were determined. 
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Figure 3.3. Glucose coordination of Glf. Contacts forming 
hydrogen bonds (residues in sky blue) or hydrophobic contacts 
(residues in salmon) with D-glucose (black) according to the XylE 
crystal structure (PDB ID: 4GBZ) are displayed in the image. All 
glucose coordinating sites except A165 are conserved in the D-
glucose binding pocket of XylE. Residues V162, A165, F374 and 
G379 were selected for site saturation mutagenesis to potentially 
disrupt glucose coordination are in aquamarine.  
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Figure 3.4. A) Glf variants isolated after fermentation enrichment in TB2 
supplemented with 6.6% glucose and 3.4% xylose (w/v). Sugar consumption rate 
(0-24 h) of B) EG51A or C) EG29 overexpressing Glf variants fermented in TB2 
supplemented with 6.6% glucose and 3.4% xylose was evaluated(w/v). 
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Figure 3.5. Ratio of sugars consumed between 0-24h of sugar transport 
deficient E. coli (EG29) expressing Glf variants fermented in TB2 
supplemented with 6.6% glucose and 3.4% xylose (w/v). 
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Figure 3.6. Structural information for mutagenesis of Glf. A) A homology model of Glf 
depicts a similar structural organization to XylE consisting of 12 TMS, 2 periplasmic 
helices (PH), and 5 intracellular helices (IH). B) Positional distributions of point 
mutations from identified positive Glf variants among the structural components in the 
homology model. C) Protein sequence alignment of Glf and XylE using Clustal Omega 

ighlighted. 
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Figure 3.7. Predicted or causative mutations of variants that enhance 
xylose consumption in glucose/xylose mixtures. 
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Figure 3.8. Protein alignment of Glut1 and Glf using Clustal Omega 
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Figure 3.9. Fermentation of AG055 in TB2 supplemented with 6.6% glucose 
3.4% xylose and 100mM potassium bicarbonate overexpressing either A) an 
empty vector B) pETG1 or C) pGK ), xylose ( ), 
and succinate ( ) were measured over time and D) titer and yield were 
compared at 120h. 
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CHAPTER 4 

BIOPROSPECTING OF NATIVE EFFLUX PUMPS TO ENHANCE FURFURAL TOLERANCE IN 

ETHANOLOGENIC ESCHERICHIA COLI

Abstract 

Efficient microbial conversion of lignocellulose into valuable products is often hindered by the 

presence of furfural, a dehydration product of xylose in hemicellulose sugar syrups derived from 

woody biomass. For a cost-effective lignocellulose microbial conversion, robust biocatalysts are 

needed that can tolerate toxic inhibitors while maintaining optimal metabolic activities. A 

comprehensive plasmid-based library encoding native multidrug resistance (MDR) efflux pumps, 

porins and select exporters from Escherichia coli was screened for furfural tolerance in an 

ethanologenic E. coli. Small multidrug resistance (SMR) pumps, such as SugE and MdtJI, as well 

as a lactate/glycolate:H+ symporter LldP, conferred furfural tolerance in liquid culture tests. 

Expression of theses SMR pumps potentially increased furfural efflux and cellular viability upon 

furfural assault, suggesting novel activities for SMR pumps as furfural efflux proteins. Furthermore, 

induced expression of mdtJI in the presence of furfural and 5-hydroxymethylfurfural enhanced 

ethanol fermentative production of LY180, further demonstrating the applications of these pumps. 

This work described an effective approach to identify useful efflux systems with desired activities 

for non-native toxic chemicals and provides a platform to further enhance furfural efflux by protein 

engineering and mutagenesis. 

Importance 

Lignocellulosic biomass, especially agricultural residues, represents an important potential 

feedstock for microbial production of renewable fuels and chemicals. During the deconstruction of 

hemicellulose by thermochemical processes, side products such as furan aldehydes are generated 

which inhibit cell growth and production, limiting cost-effective lignocellulose conversion. Here, we 

developed a new approach to increase cellular resistance by identifying MDR pumps with putative 

efflux activities for furan aldehydes. The developed plasmid library and screening methods may 

facilitate new discoveries of MDR pumps for diverse toxic chemicals important for microbial 

conversion. 
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Introduction 

Lignocellulose represents one of the most abundant carbon resources on the planet, with an 

estimated net photosynthetic productivity of 155 billion tons per year in the biosphere (1). Since 50-

70% of lignocellulose dry weight is composed of fermentable sugars, the abundance and low cost 

of lignocellulose has made it an attractive renewable feedstock for bioconversion (2-4), although 

multiple bioprocessing barriers currently impede its cost effective conversion. Most of the utilizable 

monosaccharides of lignocellulose are locked up in recalcitrant structures such a cellulose and 

hemicellulose which need to be denatured and depolymerized prior to fermentation. Chemical 

pretreatment of lignocellulose to release fermentable sugars is an essential process of t ypical 

lignocellulosic biorefineries (5), but cost-effective pretreatment strategies (e.g. dilute acid 

hydrolysis) are known to release multiple inhibitors into the resulting broth (3, 6). Inhibitors released 

during this process include furan-aldehydes (e.g. furfural, 5-hydroxymethylfurfural), small organic 

acids, and soluble aromatics which have a broad range of toxicity for multiple biocatalysts (7-9). To 

reduce additional costs to the pretreatment unit process, it is desirable to engineer robust 

biocatalysts that can tolerate relevant concentrations of these inhibitors. Of the inhibitors produced 

during this process, furfural (a dehydration product of pentoses) is particularly important due to its 

abundance in hemicellulose hydrolysates, strong cytotoxicity, and the unique property to potentiate 

the toxicity of other side-products (10-12).  

Although the exact mechanism of furfural toxicity remains elusive, it is thought to be 

multifaceted (9, 10). Some evidenced toxicity mechanisms include co-factor starvation during 

furfural reduction to the less toxic furfuryl alcohol (13-15), membrane damage (16) and DNA 

damage due to oxidative stress (17-19). Thus, previous work on engineering microbial tolerance to 

furan aldehydes has focused on the use of alternative oxidoreductases (20-22), increasing the 

cellular pool of NADPH (14, 23), altering membrane properties (24), and enhancing DNA repair 

systems (25, 26) as the main mechanisms among other general strategies for increasing stress 

tolerance (9, 27). However, many of these beneficial traits do not have a simple cumulative synergy 

(9, 28), thus making further combinatorial optimization of furfural resistance traits a challenging 

task.  
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Microbial efflux is an important mechanism utilized by many bacteria to acquire antimicrobial 

resistance (29, 30), heavy metal tolerance (31, 32), and recently enhanced tolerance for renewable 

chemical production (33, 34). Engineering microbial efflux systems represents a novel route to 

reduce cytotoxicity of hydrophobic molecules like furfural (Log Kow= 0.41) and may have a positive 

epistatic interaction with other tolerance traits due to a distinct working mechanism. However, no 

exporters or efflux pumps have been described with activity for furfural. Multidrug resistance (MDR) 

efflux pumps are a group of active transporters that that include proteins from the major facilitator 

superfamily (MFS), small multidrug resistance (SMR), resistance-nodulation-cell division (RND), 

ATP-binding cassette (ABC), and multidrug and toxin extrusion (MATE) families (35, 36). Each of 

these families are known for their ability to expel a broad range of lipophilic compounds such as 

antimicrobial agents and solvents (32, 36, 37).  

Despite the great potential of MDR pumps in industrial applications, only some members from 

RND and ABC families have been thoroughly investigated as tools for improving tolerance to 

renewable fuels and/or chemicals in heterologous systems (33, 34, 38). In this work, we 

comprehensively screened a library containing all known native MDR efflux pumps, porins, and 

other selected transporters in E. coli for their ability to enhance furfural tolerance. Using a two-step 

screening method we discovered two SMR transporters (sugE and mdtJI) and one lactate/glycolate 

permease (lldP) which conferred tolerance to furfural. Increased expression of these SMR genes

can enhance furfural tolerance and thus ethanol fermentative production in an ethanolgenic E. coli. 

Furthermore, furfural tolerance conferred by the SMR pump is evidenced to be due to its efflux 

activity. 

Results 

Screening and identification of native export systems in E. coli to enhance furfural tolerance

A small plasmid library (n = 103) encoding all reported MDR pumps, selected exporters of 

interest (defined or putative exporters for various substrates based on EcoCyc database (39)), and 

porins from E. coli was constructed based on the ASKA plasmid collection which includes 

presumably all single ORFs from E. coli K-12 (40) (Figure 4.1A). For multi-component transporters, 

individual genes were added on the existing ASKA plasmid in the same manner using c ircular 
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polymerase extension cloning (CPEC) method (41). Plasmids were individually transformed into 

ethanologenic E. coli LY180 and a two-step screening process was employed to identify candidates 

that confer furfural tolerance during fermentative growth (Figure 4.1B).  

As the first step, a plate-based assay was used to thoroughly evaluate all individual members from 

the constructed plasmid library for their abilities to confer furfural tolerance by comparing visible 

differences in colony size upon exposure to 0.9 gL-1 furfural. Cells with higher furfural tolerance will 

grow faster and thus yield a larger colony size (Figure 4.1C). LY180 with empty vector or a plasmid 

encoding pntAB (14) was used as a negative and a positive control, respectively (Figure 4.1C). 

Two concentrations of inducer -D-1-thiogalactopyranoside (IPTG) were used to test the 

effect of these candidate genes under different expressional levels since there is a known trade-off 

between the beneficial effect of membrane proteins and cytotoxicity associated wit h their 

overexpression (42). Similar to the positive control, the colony size of strains with constructs 

encoding two SMR pumps (sugE and mdtJI), two glycolate/lactate permeases (glcA and lldP) and 

two RND pumps (acrA and acrEF-tolC) were larger than that of the strain with the empty vector 

4.1A). Enhanced growth was not observed when 

acrA, acrEF-tolC, or glcA 

constructs. 

As the second step of the screening process, LY180 transformed with the empty vector 

pCA24N or the potential positive constructs was grown in liquid cultures using AM1 mineral salt 

 is known that 

gelling agents for solid media can contain variable elemental contaminants that can potentially 

effect transcriptional activity (43), this second assay is more representative of relevant fermentation 

growth conditions. Induced expression of sugE, mdtJI, and lldP  IPTG increased cell 

growth after 48 hours in the presence of 1.0 g L-1 furfural by ~4-5 fold compared to the empty vector 

control (Figure 4. sugE conferred a minor 

increase in cell growth (Figure 4.2C). The increased IPTG concentration possibly resulted in 

cytotoxicity associated with membrane protein overexpression and thus offset the beneficial effect. 

In addition, increased IPTG concentrations were observed to influence cellular furfural sens itivity 
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even for the cells with empty vector (Figure 4.2C), which was consistent with previous results (44). 

Constructs from the ASKA collection have short stretches of artificial sequences at both the N- and 

C-terminus (Figure 4.2A). Although some scattered evidence suggests that these artificial 

sequences may not disrupt the localization and function of membrane proteins (40), we cloned the 

wild-type ORFs of positive candidate genes sugE, mdtJI and lldP omitting the artificial sequences 

into a pTrc99A (different replication origin and antibiotic resistance from pCA24N) to test the 

potential influence of ASKA artificial sequences and plasmid backbone. Induced expression of 

native sugE, mdtJI, and lldP 

of furfural after 48h by approximately 3.4, 5.4, and 5.3-fold, respectively (Figure 4.2D). Similar to 

the ASKA-

much smaller beneficial effects for SMR pumps or even a negative effect for LldP compared to 

4.2D and 4.2E), suggesting that optimal beneficial effects require 

suitable expression levels for these transporter genes due to known trade-off (34). Cells with 

plasmids pTrc99A and pCA24N showed different baseline furfural sensitivity likely due to different 

copy numbers and antibiotics used in the medium (Figure 4.2). 

Since overexpression of lldP was more toxic than sugE and lldP under different culture 

conditions (Figure 4.2E and 4.3) and wild-type sugE had a consistently smaller beneficial effect 

than mdtJI (Figure 4.2D and 4.2E), mdtJI was selected for further investigation. 

Induced expression of mdtJI shortens fermentation lag phase caused by furan aldehydes 

To investigate if increased expression of mdtJI could enhance ethanolgenic fermentation under 

furfural stress, we fermented LY180 containing empty vector or the plasmid encoding wild-type 

mdtJI with IPTG induction at 1  in the presence or absence of 1.25 g L-1 furfural. Without furfural, 

there was essentially no difference between cells with and without mdtJI in terms of cell growth and 

4.4). With furfural, the increased 

expression of mdtJI led to significant biomass production after 72 hours, whereas cells with the 

empty vector took 96 hours to accumulate significant biomass (Figure 4.4A). Thus, overexpression 

of mdtJI shortened the furfural-induced lag phase by approximately 24 hours. Due to the decreased 

lag time, productivity was higher over 96 h in mdtJI overexpressing cells at 0.42 g L-1 h-1, in 
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comparison to 0.19 g L-1 h-1 in the empty vector control (Figure 4.4B). Since many genetic traits that 

enhance furfural tolerance also enhance tolerance to 5-hydroxymethylfurfural (HMF) (15, 45), 

another important inhibitor derived from lignocellulose, we tested if induced expression of mdtJI

increased tolerance to this chemical as well. Similarly, overexpression of mdtJI enhanced ethanol 

productivity and decreased fermentation lag time when exposed to 1.75 g L-1 HMF (Figure 4.5).  

Functional overexpression of mdtJI enhances survival under furfural stress and furfural 

extracellular accumulation 

To test if the tolerance phenotype was actually due to efflux activity of MdtJI, we disrupted its 

transport function by introducing a previously described point mutation (E19Q) into mdtI, This 

disrupts the conserved glutamate residue at position 19 of MdtI that is essential for proton-coupled 

transport activity of the heterodimer MdtJI transporter (46). It was reported that disruption of this 

conserved glutamate residue in E. coli native SMR pumps yielded stable mutants with severely 

hindered transporter activity (46-49). Introducing this mutation into mdtJI eliminated the furfural 

tolerance phenotype, suggesting the transporter activity is involved in enhanced furfural tolerance 

(Figure 4.6A). We then hypothesized that the efflux activities of MdtJI may increase cell viability 

upon furfural exposure. Cells were incubated at toxic concentrations of furfural and their viabilities 

were measured over time. Induced expression of wild-type mdtJI increased the cell viability during 

48 and 72 hours of incubation, with a 4.5-fold and 2.6-fold increase in colony viable counts, 

respectively (Figure 4.6B). Induced mdtJI mutant (E19Q in mdtI) did no increase cell viability upon 

furfural exposure (Figure 4.6B). This increase in viability caused by MdtJI is likely due to a decrease 

in intracellular furfural if mdtJI functions as a furfural efflux pump. To further test this hypothesis, 

cells with empty vector or plasmids encoding wild-type MdtJI and its E19Q mutant were incubated 

with furfural and the extracellular furfural concentrations were measure at different time intervals. 

The main metabolic route for furfural in E. coli is to be reduced to furfuryl alcohol by native furfural 

reductases (45). To prevent any furfural-induced changes in proteome that may interfere with our 

assay, chloramphenicol was added to stop protein synthesis before furfural exposure. If furfural 

enters at the same rates for different cells, the same reduction rates will be observed because the 

native furfural reductases such as YqhD (50) and FucO (20) should be at equivalent levels due to 
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the addition of chloramphenicol. If furfural efflux pumps are active, slower furfural reduction rates 

will be observed as more furfural will be expelled and accumulated in the medium. Over 60-min 

incubation time, furfural reduction is slower for cells with induced expression of wild-type mdtJI. 

After sixty minutes incubation, the reduced amount of furfural in the broth was 225% greater in cells 

with an empty vector compared to those overexpressing wild-type mdtJI (Figure 4.6C). Consistent 

with all previous results, no significant difference was found in extracellular furfural reduction 

experiments between the empty vector and plasmid containing mdtJI E19Q (Figure 4.6).  

Chromosomal integration of mdtJI enhances furfural tolerance and potential synergy of 

mdtJI and other beneficial genetic traits

Since plasmid-based expression is not economically desirable at the industrial scale due to 

genetic instability, metabolic burden, and the costly requirement of antibiotics and inducers (51-

53), we integrated mdtJI into the frdBC locus in LY180 to develop a plasmid-free system. The frdBC 

genes are already deleted in LY180 and mdtJI expression will theoretically be active under the 

promoter of the frdABCD operon, which is known to be upregulated under fermentation conditions 

(54, 55). This also sought to remove any influence that the plasmid, antibiotic, or inducer may have 

on furfural tolerance. The integrated strain, YR105, was then assessed for furfural tolerance using 

the same liquid assay for plasmid-based tests. After 48 h, YR105 demonstrated a 5.7-fold increase 

in biomass compared to LY180 upon furfural stress (Figure 4.7A). We then tested to see if mdtJI 

could be combined with other known furfural tolerance genes, using a previously developed 

furfural-tolerant ethanologenic E. coli XW129 containing three beneficial genetic traits (deletion of 

yqhD, overexpression of fucO and ucpA) (28). Induced expression of mdtJI increased biomass 

after 48h in the presence of 1.75 g L-1 furfural by 50% compared to an empty vector control (Figure 

4.7B). A similar improvement of cell growth was observed during fermentation, especially at 48 h 

(Figure 4.8). However, the improvement of cell growth at small degree did not significantly improve 

ethanol production (Figure 4.8), suggesting that further improvement of efflux activity may be 

needed to achieve a significant synergy for furfural tolerance.   

Discussion 
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In this work, we comprehensively interrogated a plasmid library of all known E. coli MDR efflux 

pumps as well as other selected exporters and porins for their abilities to enhance tolerance to 

furfural using a two-step screening process. Two SMR pumps (mdtJI and sugE) and one 

glycolate/lactate permease (lldP) were identified to enhance furfural tolerance in an ethanologenic 

E. coli strain. We further demonstrate that the transport function of SMR pump MdtJI is required for 

enhanced furfural tolerance and its increased expression shortens the lag time for ethanol 

fermentative production during batch fermentations.  

Researchers have performed a variety of genome-scale screening methods to identify furfural-

resistant genetic traits. For example, genomic libraries from different bacteria and metagenomic 

libraries have been constructed and screened that led to the discovery genes such as thyA that 

confer furfural tolerance to E. coli (25, 26). MDR pumps and other membrane proteins were rarely 

identified as positive traits at least partially because their beneficial effect is sensitive to the 

expression level, and often eliminated when the expression level is high as observed for this work 

(Figure 4.2). However, most reported work employed the screening methods with high copy 

plasmids and high induction conditions (25, 26). Careful evaluation of transporter genes with 

different expression levels may yield new candidates for microbial tolerance engineering. 

The SMR family is a group of small (~100 amino acids) inner membrane transporters that in E. 

coli has four members, SugE, EmrE, MdtJ, and MdtI (56). Of these, EmrE and SugE are thought 

to form functional homodimers and MdtJI a heterodimer to enhance tolerance to a number of 

lipophilic, quaternary ammonium compounds (QACs), and cationic drugs (57, 58). The SMR pumps 

are proposed to be H+/substrate alternating access antiporters (59) and their efflux activity is 

dependent on a conserved glutamate residue (E14 of EmrE, E19 in MdtI) (47, 48). The introduction 

of a well-studied point mutation (E19Q) (46, 49) in mdtI disrupted transport mechanism and thus 

the furfural tolerance phenotype, indicating that transport is necessary for the furfural tolerance 

phenotype. Besides sharing several of the substrates with other SMR pumps, MdtJI is also an 

evidenced H+/spermidine antiporter in E. coli (46). This is important in the context of furfural 

resistance, as it has been discovered previously that import and supplementation of polyamines 

such as putrescene enhances furfural tolerance (44). Although it is possible that the enhanced 
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furfural tolerance phenotype is due to polyamine transporter activity of MdtJI, it is unlikely to be the 

main mechanism. This is evidenced by the observation that sugE overexpression enhanced furfural 

tolerance as well (Figure 4.2), and was not found to have polyamine transport activities (46). In 

addition, the extracellular concentration of furfural was increased in cells overexpressing mdtJI, 

suggesting that MdtJI is actively transporting furfural out of the cytoplasm to confer the tolerance 

(Figure 4.6). In addition, recent work has also found that upregulation of mdtJI may confer tolerance 

to ionic liquids, suggesting that SMR pumps may be useful for tolerance to different toxic chemical 

associated with lignocellulose conversion (60). It is plausible that furfural (uncharged, hydrophobic) 

is not the preferred substrate for SMR proteins (QACs and cationic chemicals as defined 

substrates). Improvement of the activities of SMR pumps towards furfural by mutagenesis will 

further enhance the furfural tolerance of biocatalysts. 

The lactate permease family is a group of inner membrane transporters (~550aa) that is known 

to consist of LldP and GlcA in E. coli (61). Induced lldP overexpression enhanced furfural tolerance 

to a similar extent as sugE or mdtJI (Figure 4.2). However, lldP overexpression was more toxic to 

the cells than sugE or mdtJI (Figure 4.3). Overexpression of membrane proteins can overwhelm 

membrane translocation machinery and quickly dilute essential membrane proteins being 

integrated into the membrane (62). The increased toxicity of LldP is most likely due to its 4-fold 

larger size than SMR transporters, thus interfering with membrane translocation machinery at a 

higher degree. 

We demonstrate here that the increased expression of native SMR enhanced tolerance to 

furfural. Interestingly, the microarray data of the same ethanologenic strain upon furfural exposure 

in the previous reports (14, 50) shows no significant change in expression of sugE, mdtJI, and lldP 

upon exposure to furfural (less than 2-fold changes). This suggests that the MDR pumps or other 

exporters are able to transport non-native toxic chemicals due to the promiscuous substrate 

specificity although the transcriptional 

Indeed, the bioprospecting strategy presented here may be broadly applicable to a wide range of 

non-native inhibitors, and this plasmid library can be expanded to other microbial exporters and 
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even metagenomic libraries. Other biocatalysts may benefit from similar investigations for other 

industrially relevant chemicals.  

Materials and Methods 

Strains and Cultivation 

All strains used in this work listed in Table 4.1. During strain construction, transformation and 

genetic manipulations were performed in Luria Broth (10 g L-1 Difco tryptone, 5 g L-1 Difco tryptone, 

and 5 g L-1 NaCl) at 30°C, 37°C, or 39°C as needed and with rotation at 180 rpm when in liquid 

culture. During chromosomal integration experiments, 5% (w/v) arabinose and 10% (w/v) sucrose 

-red recombinase induction from pKD46 and counterselection of sacB negative 

strains, respectively. Ampicillin (100 mg L-1) and/or chloramphenicol (50 mg L-1) were 

supplemented if selection was needed.  

Strain, Plasmid and Library Construction 

-red recombinase-mediated two-step method was used as previously described (63, 64) to 

integrate mdtJI into frdBC locus in LY180. Briefly, a cat-sacB counter-selection cassette from 

pXW001 (64) and mdtJI from E. coli LY180 flanked with 50 bp of homology to the frdBC gene locus 

were amplified by PCR using the primers in Table 4.2. This cat-sacB fragment was integrated into 

the frdBC locus and validated by colony PCR before being subjected to a second round of 

integration. After integration of the mdtJI cassette, the cells were incubated in media supplemented 

with 10% (w/v) sucrose to enrich for the correct clones (sacB negative). The final positive clones 

were verified by colony PCR and Sanger sequencing.  

To construct a plasmid library containing target genes, single ORF plasmids were isolated from the 

previously constructed ASKA collection (40). For multi-component transporters, genes were 

assembled into the ASKA vector backbone pCA24N in approximately the same fashion as all single 

ORF plasmids using the circular polymerase extension cloning (CPEC) method (65), with assembly 

specifications included in the primer description (Table 4.2). Positive hits identified from the 

screening process were re-cloned into EcoRI/XbaI sites of pTrc99A using conventional cloning 

method. LY180 genomic DNAs were used as PCR template to get native ribosomal binding sites, 

coding sequences and terminator regions without ASKA artificial sequences. The plasmid encoding 
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mdtJI (E19Q) was made by site-specific mutagenesis using overlapping PCR extension. All 

constructed plasmids were verified using Sanger sequencing.  

Two-step Screening Process  

All library constructs including empty vector control were transformed individually into 

ethanolgenic E. coli LY180 (50). These transformants were streaked to form individual colonies on 

AM1 2% (w/v) xylose agar plates supplemented with 0.9 g L-1

transformant was compared to empty vector control independently at least twice. Only if the colony 

size of transformants was consistently larger than that of empty control, they were scored as 

positive candidates for the plate-based assay and further tested using liquid a culture test.   

Testing furfural toxicity in liquid cultures was the second-step screening process and was 

performed as previously described (20). Tube cultures (13 mm by 100 mm) contain 4.0 mL of AM1 

medium with 50 g L-1 xylose, 50 mg L-1 chloramphenicol for pCA24N-based constructs or 12.5 mg 

L-1 ampicillin for pTrc99A-based constructs, various concentrations of furfural, and 10 or 100 µM 

IPTG. An initial inoculum of 44 mg dry cell weight (dcw) L-1 (0.1 as OD550) was used for all liquid 

assays and optical density of cultures was measured at 550 nm after incubation for 48 h with 120 

rpm shaking speed at 37°C.  

Fermentation 

Fresh colonies were grown microaerobically on AM1 agar plates (66) supplemented with 2% 

xylose (w/v) and antibiotics in a container filled with argon gas, and then were transferred into 100 

mL AM1 2% xylose (w/v) medium with antibiotics in a 250mL flask. After growth at 37°C 120 rpm 

for approximately 16 h, this culture was used as the seed inoculum for fermentation. Fermentation 

was performed in 500 mL fermentation vessels containing 300 mL AM1 medium supplemented 

with 10% xylose (w/v) (37°C, 120 rpm) as previously described (20, 45, 50). Fermentations were 

maintained at pH 7.0 by the automatic addition of 2.0 M potassium hydroxide and an initial inoculum 

of 44 mg dcw L-1 (0.1 as OD550) was used for all fermentations. Furfural or HMF were added at the 

beginning of the fermentati -1 ampicillin was included in both 

seed cultures and batch fermentations. 
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Analysis 

All quantification of xylose and ethanol was performed using high performance liquid 

chromatography (HPLC) as previously described (64, 67). More specifically, compounds were 

separated and quantified with an UltiMate3000 (Thermo Fisher) using an Aminex HPX-87H column 

(Bio-Rad) and 4 mM sulfuric acid as the mobile phase. Furfural was quantified us ing a described 

UV absorbance method on a Beckman Coulter DU 730 spectrophotometer (68).

Cell Viability Assay 

Cells were grown on AM1 2% xylose ampicillin agar plates before being transferred into 100 

mL AM1 2% xylose medium supplemented with 10 -1 ampicillin and 

incubated for 16 hours. 6.6 mg cells were harvested from this liquid culture and was then 

resuspended in 30 mL fresh AM1 2% xylose supplemented with 3.5 g L-1 

12.5 mg L-1 ampicillin in a sealed glass tube (16 x 150mm). This culture was then incubated at 37°C 

120 rpm for 72 h with viable cell counts being performed at selected intervals using AM1 2% xylose 

plates.  

Furfural accumulation 

Cells were grown microaerobically on AM1 2% xylose ampicil lin agar plates before being 

-1

ampicillin. After 16 hour incubation at 37°C 120 rpm, 50 mg L-1 chloramphenicol was added and 

cells were incubated for an additional 1.5 hours to stop protein synthesis. 2.2 mg cells were 

harvested from this culture by centrifugation and resuspended in AM1 2% xylose medium 

supplemented with 12.5 mg L-1 ampicillin, 50 mg L-1 chloramphenicol, and 3.5 g L-1 furfural. At 

designated intervals, supernatants were collected and extracellular furfural concentrations were 

measured. 
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Figures 
  

Strain/Plasmid Relevant characteristics Reference 
Strains     
LY180 frdBC::(Zm frg celYEc FRT) ldhA::(Zm frg casABKo) 

adhE::(Zm frg estZPp FRT) ackA::FRT rrlE::(pdc 
adhA adhB FRT)  mgsA::FRT 

(50) 

YR105 LY180 frdBC::mdtJI This study 
XW129 yqhD ackA::PyadC fucO-ucpA (28) 
Top10F' F´{lacIq, Tn10(TetR)} mcrA mrr-hsdRMS-mcrBC) 

lacZ lacX74 recA1 ara ara leu) 
7697 galU galK rpsL (StrR) endA1 nupG 

 

Plasmids     
pKD46 bla,  (Red recombinase) (69) 
pTrc99A Ptrc, bla, lacI

q
 (70) 

pTrc99A-sugE sugE cloned into pTrc99A This study 
pTrc99A-mdtJI mdtJI cloned into pTrc99A This study 
pTrc99A-lldP lldP cloned into pTrc99A This study 
pTrc99A-
mdtJIE19Q 

mdtJI (mdtIE19Q) cloned into pTrc99A This study 

pCA24N Empty vector for ASKA collection; PT5-lac, cat, lacI
q
 (40) 

pCA24N-emrKY emrKY cloned into pCA24N This study 
pCA24N-emrAB emrAB cloned into pCA24N This study 
pCA24N-macAB macAB cloned into pCA24N This study 
pCA24N-mdtJI mdtJI cloned into pCA24N This study 
pCA24N-aaeAB aaeAB cloned into pCA24N This study 
pCA24N-cusBA cusBA cloned into pCA24N This study 
pCA24N-mdtEF mdtEF cloned into pCA24N This study 
pCA24N-acrAB acrAB cloned into  pCA24N This study 
pCA24N-acrAD acrAD cloned into  pCA24N This study 
pCA24N-acrEF acrEF cloned into  pCA24N This study 
pCA24N-mdtAB mdtAB cloned into pCA24N This study 
pCA24N-mdtABC mdtABC cloned into pCA24N This study 
pCA24N-acrAB-
tolC 

acrAB-tolC cloned into pCA24N This study 

pCA24N-acrAD-
tolC 

acrAD-tolC cloned into pCA24N This study 

pCA24N-acrEF-
tolC 

acrEF-tolC into pCA24N This study 

pCA24N-mdtH acrAB-tolC into pCA24N This study 
pCA24N-mdtEF-
tolC 

acrAD-tolC into pCA24N This study 

pCA24N-slp slp into pCA24N This study 
ASKA Plasmids Indicated genes in Fig. 1A cloned into pCA24N (40) 

Table 4.1: Bacterial strains and plasmids used in this study 
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Primer Sequence

pCA24n CPEC cloning 5' GGGTCGACCTGCAGCCAA

5' TTAGCGGCCGCATAGGC
5' TTGGCTGCAGGTCGACCC
5' TCAGAACTCCATCTGGATTTGTTC

5' GTCGACCCTTAGCGGCCGC
5' GCTGCAGGTCGACCCTTAGCG
5' CTGCAGCCAAGCTTAATTAGCTGAGC

emrKY ASKA cloning 5' GCCTATGCGGCCGCTAACAACATTATTTCGCATAATGGACAACTTTAATGAGAGGATCTCACCATCACCATC

emrAB ASKA cloning 5' GCCTATGCGGCCGCTAACTAACGCTGGCTAATCCAGAGGTGCGTGTGATGAGAGGATCTCACCATCACCATC

macAB ASKA cloning 5' GCCTATGCGGCCGCTAAGATTGGTGAGGCCAAACCAGGAGCTGCACAATGAGAGGATCTCACCATCACCATC

mdtJI ASKA cloning 5' GCCTATGCGGCCGCTAATTAAAATAATTCTCTTGCAGGAGAAGGACAATGAGAGGATCTCACCATCACCATC

aaeAB ASKA cloning 5' CATCGCCTGCGTGAGTTTGGTTAATCACGATGGGTATTTTCTCCATTGCTAACCAACATATTC
cusBA ASKA cloning 5' GAAAGTGCTACCCATGCGCATTGAGGGAATAACCAATGATTGAATGGATTATTCGTCGCTCGG

mdtEF ASKA cloning 5' GCCTATGCGGCCGCTAACAATAACGTTGCAGGCTTAAGGGGACTTTCATGAGAGGATCTCACCATCACCATC

acrAB ASKA cloning 5' GCCTATGCGGCCGCTAACTTAAACAGGAGCCGTTAAGACATGAGAGGATCTCACCATCACCATC

acrAD ASKA cloning 5' GCCTATGCGGCCGCTAACGATACGCAGAAACACGAGGTCCTCTTTTAATGAGAGGATCTCACCATCACCATC
acrEF ASKA cloning 5' GCCTATGCGGCCGCTAAAGATACTGCATCGAAGTAAGGTAATCTGACATGAGAGGATCTCACCATCACCATC

mdtABC ASKA cloning 5' CGAATACGCGAAAAAAGGAGCACGCTCCTGATGAGAGGATCTCACCATCACCATC
5' CGCTAAGGGTCGACCTGCAGCGCTTTGCCCGTCATGAAGAGGAGGCGTAAATGAGAG 
GATCTCACCATCACCATC
5' GGAGTCCAAGCTCAGCTAATTAAGCGCCGCATAGGCTCGGTTACC

tripartite tolC ASKA cloning 5' CTAAATACTGCTTCACCACAAGGAATGCAAATGAGAGGATCTCACCATCACCATC
5' GCATTCCTTGTGGTGAAGCAGTATTTAGGCTGCAGGTCGACCCTTAG
5' CTGCAGCCAAGCTTAATTAGCTGAGCTTGGACTCCCTAAATACTGCTTCACCACAAGGAATGC 
AAATGAGAGGATCTCACCATCACCATC
5' GGCGTGCTTGCTGATAAACTT (for sequencing)

sugE pTrc99a cloning 5' CGTACGAATTCTGCAAACGCCTCTTTTCACCG
5' ACACTCTAGACCGCGACTACCTGTGGATACTC

lldP pTrc99a cloning 5' CGTACGAATTCGATGAGCAACAGACTCATTACACG
5' GAGATCTAGAAGTTGCATCGCCAGTTGGC

mdtJI pTrc99a cloning 5' CGTACGAATTCACTTTGGTTTCGCTGAATTAAGC
5' ACACTCTAGAAACTGTCGCAAAAATAATGTTCAAACG

for cat-sacB integration 5' AGCGGATGCAGCCGATAAGGCGGAAGCAGCCAATAAGAAGGAGAAGGCGATCGAGTGTGACGGAAGATCA
5' ATACCGGTTCGTCAGAACGCTTTGGATTTGGATTGATCATCTCAGGCTCCTTAGCCATTTGCCTGCTTTT

for mdtJI integration 5' AAACGCGTTTACGGTGGCGAAGCGGATGCAGCCGATAAGGCGGAAGCAGCACTTTGGTTTCGCTGAATTA
5' ATACCGGTTCGTCAGAACGCTTTGGATTTGGATTAATCATCTCAGGCTCCCAACTGTCGCAAAAATAATG
5' TATCTACCGTACGCCGGAAC
5' AGCAAATGTGGAGCAAGAGG

Table 4.2: Primers used in this study 
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Figure 4.1. Screening procedure and identified positive candidate transporters. A) 
List of genes tested. Positive plasmids identified in the plate-based screen with 10 
M IPTG induction are indicated in bold. The genes are underscored if the plate-

based results are still positive with 100 M IPTG induction. Candidates are displayed 
with boxes if the following liquid culture screen results are positive. *Cassettes were 
assembled manually in the same manner as single ORF plasmids in ASKA 
collection. B) Ethanologenic E.coli LY180 was transformed with individual members 
of a plasmid library encoding MDR pumps, porins and exporters of interest, and then 
subjected to two screens under furfural stress conditions. C) Plate based screening 
was scored according to an empty vector control (negative control) and a known 
furfural resistance trait (overexpression of pntAB) (positive control). Strains 
displaying larger colonies in two independent tests were scored positive 
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Figure 4.2. Identified genes confer furfural tolerance to LY180. A) Schematic 
drawing of a typical construct in ASKA collection shows artificial N and C-
terminal sequences. The given size does not reflect real proportions. The optical 
density at 550 nm of LY180 with the positive ASKA plasmids after 48 hours 
growth in AM1 medium containing 5% xylose (w/v) and 1.0 g liter-1  furfural in the 

wild-type 
candidate genes, the constructed pTrc99A-based plasmids were transformed 
into LY180 and the optical density at 550 nm of LY180 with native genes were 
measured after 48 hours growth in AM1 medium containing 5% xylose (w/v) and 
1.25 g liter-1  

different plasmids and antibiotics influenced furfural sensitivity of LY180. 
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Figure 4.3. Effects of overexpression of sugE, mdtJI and 
lldP on cell growth using LB medium. The cultures were 
grown in 25 mL LB broth supplemented with 50 mg L-1 
ampicillin with the starting OD is 0.1 in shake flasks at 37 
C° and overexpression of tested genes were induced by 
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Figure 4.4. Induced expression of mdtJI in LY180 increases furfural resistance 
during ethanol fermentation. Batch fermentations were conducted in pH-controlled 
vessels in the absence and presence of 1.25 g liter-1 furfural. Expression of mdtJI 
from pTrc99A-mdtJI 
the empty vector (EV) controls (pTrc99A; solid lines) using LY180 as the host.  A) 
Cell growth indicated by OD550nm. B) ethanol production was measured by HPLC 
and compared to controls without furfural. 



  125 

 
 

  

Figure 4.5. Induced expression of mdtJI in LY180 increases 5-hydroxylmethyl 
furfural (5-HMF) resistance during ethanol fermentation. Batch fermentations 
were conducted in pH-controlled vessels in the absence and presence of 1.75 g 
liter-1 5-HMF. Expression of mdtJI from pTrc99A-mdtJI 
IPTG (dotted lines) was compared to the empty vector (EV) controls (pTrc99A; 
solid lines) using LY180 as the host.  A) Cell growth indicated by OD550nm. B) 
ethanol production was measured by HPLC. 
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Figure 4.6. Comparison of wild-type MdtJI and its nonfunctional mutant (E19Q in 
mdtI) in terms of furfural resistance, survival ability under furfural stress and 
potential furfural export. A) Growth of LY180 transformed with indicated plasmids 
after 48 h in AM1 medium containing 5% xylose, 1.25 g L-1 furfural, and 10 M 
IPTG. B) viabilities upon furfural exposure (3.5 g L-1) were measured by colony 
forming unit, and C) extracellular furfural were evaluated upon exposure to furfural 
(3.5 g L-1). 
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Figure 4.7. The chromosomal integration of mdtJI and potential 
synergy confer furfural resistance. A) Growth of LY180 and YR105 
(LY180 frdBC::mdtJI) after 48 h in AM1 medium containing 5% 
xylose and 1.0 g L-1 furfural. B) Growth of XW129 transformed with 
either empty vector pTrc99A or plasmid encoding mdtJI after 48 h 
in AM1 medium containing 5% xylose, 1.75 g L-1 furfural and 10 M 
IPTG.. 
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Figure 4.8. Induced expression of mdtJI in XW129 increases furfural resistance 
during ethanol fermentation. Batch fermentations were conducted in pH-
controlled vessels in the absence and presence of 1.75 g liter-1 furfural. 
Expression of mdtJI from pTrc99A-mdtJI 
lines) was compared to the empty vector (EV) controls (pTrc99A; solid lines) 
using XW129 as the host.  A) Cell growth indicated by OD550nm. B) xylose 
and ethanol in fermentation broth were measured by HPLC. 
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CHAPTER 5 

CHEMICAL SIMILARITY SEARCHING USING THE SIGNATURE MOLECULAR DESCRIPTOR 

IDENTIFIES A NETWORK OF NATIVE MALATE EXPORTERS IN ESCHERICHIA COLI 

Abstract 

Identification of transporters of valuable end-products is essential to metabolic engineering 

efforts for biocatalysis of renewable chemicals, especially as production parameters increase. The 

identification of transport proteins for various metabolites is an arduous task however, often 

involving manual combing of literature/biological databases, and performing genetic screens. One 

way to rationally identify transport proteins of a desired function is to target proteins with chemically 

similar substrates in genetic screens, as many transporters are known to exhibit substrate 

promiscuity. In this work, we prospected for malate exporters using a cheminformatics approach in 

a previously developed Escherichia coli L-malate biocatalyst, XZ658. To do this, we first took a 

traditional approach and inactivated dcuABC to demonstrate that the major L-malate uptake system 

only contributes minimally to efflux. Using the Signature molecular descriptor to compare chemical 

similarity to our target molecule, we found citrate, tartrate, and succinate to be the most similar 

known transportable C3-C7 di- or tricarboxylate metabolites to malate in E. coli. Inactivating known 

transporters of these compounds in addition to dcuABC revealed that ttdT and citT decrease 

extracellular malate titer after 48h by 56% and 65%, respectively. Inactivation of dcuA, citT, and 

ttdT decreased malate titer, growth rate, and resulted in a swollen cell physiology, suggesting these 

transporters form a malate exporter network. Although export of malate does not appear to be an 

immediate bottleneck in this biocatalyst based on biochemical analysis, this work demonstrates the 

utility of chemical similarity methods to hasten identification of transporters capable of efflux of 

target products of metabolism.  

Importance 

With the advent of synthetic biology, incorporation of metabolic pathways leading to a diverse 

non-native product portfolio has outpaced our ability to identify cellular export systems for 

molecules of interest. Transporter promiscuity however often permits the export of products from 

biocatalysts, but as production parameters increase, the probability of an export -based bottleneck 
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also increases. This work investigates if comparison of target compound similarity coupled to 

biological database mining can be used to identify transporters with export activity for a non-natural 

accumulation product of E. coli, L-malate. We find that annotated transporters for metabolites with 

similar molecular signatures to L-malate have promiscuous transport activity for malate export, 

demonstrating the utility of this approach. Additionally, we show that the major uptake system of L-

malate is not the same as export, implying that a literature search may have led to only partial 

identification of transporters catalyzing export in this case. 

Introduction 

Over the last decade technological advances in the field of synthetic biology have permitted 

rapid and complex modification of metabolic pathways in a wide variety of hosts. Tools such as 

multiplex automated genome engineering (1) and CRISPR-based genome editing (2) now permit 

high-throughput genome manipulations, the biological effects of which being quantifiable using 

(3, 4). Additionally, computational tools and metabolic models have been 

developed to probe biochemical pathways in silico, permitting optimization of metabolic flux (5), 

design of heterologous biosynthetic pathways (6), and more with less experimental cost. Utilizing 

a combination of these tools, it is now possible to create biocatalysts capable of a diverse product 

portfolio and quickly optimize metabolic pathways for enhanced production of many target 

molecules. However, many of these valuable products are not normally overproduced by the 

desired host, leading to various potential shortcomings in the native host machinery for optimal 

production metrics. 

One of these potential genetic shortcomings is a lack of transport systems for efficient export 

of the non-native products to the extracellular space. Native transport systems can facilitate product 

export at low production metrics, but the kinetics and/or expression may be sub-optimal at 

economically relevant metrics. Thus, export has been previously observed as a bottleneck for the 

bioproduction of non-native products, and engineering export systems has enhanced production 

metrics for multiple compound classes including biofuels (7-9), diamines (10), amino acids (11, 12), 

and C4 dicarboxylic acids (13-15). Although elucidation of bioproduct transporters is important to 

enhance rational metabolic engineering strategies, it remains a relatively understudied area due to 
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difficulties in rationally predicting transport activity and designing genetic screens. However, since 

many transporters exhibit substrate promiscuity for chemically similar substrates, it may be possible 

to identify transporters by choosing genetic targets based on ligand similarity to the target molecule.

Chemical similarity searching has been widely applied to elucidate molecules of similar 

biological activity to target compounds in the pharmaceutical industry (16, 17). This similarity 

searching is performed by using a molecular descriptor to transform structural and chemical 

information of a compound into a quantifiable format which can then be compared to a database of 

compounds transformed in the same manner. Although there are a multitude of potential 

descriptors to represent chemicals, fingerprint methods have been shown to yield biologically 

meaningful results for prediction of enzyme-substrate promiscuity (18), and thus are of interest in 

predicting transporter promiscuity. The Signature molecular descriptor (19) is a fingerprint method 

that has previously been successfully used to design and characterize small molecule protein 

inhibitors (20) (21), polymers (22), as well as to investigate the potential 

for substrate promiscuity of enzymes (23). Thus, this descriptor may be useful in predicting 

transporter promiscuity for a cheminformatics-based targeted genetic screen. 

L-malate is a C4-dicarboxylate that has been identified by the Department of Energy as a 

compound with a multibillion dollar market that can be renewably derived using biomass sugars 

(24). For many hosts, L-malate is a non-native metabolic end-product and thus may be subject to 

export bottlenecks. Although multiple biocatalysts have been engineered for L-malate production 

(14, 25-27), high titer formation has only been achieved in multiple hosts after overexpression of a 

fungal L-malate exporter, MAE1p (13, 14). In E. coli, multiple transporters have been characterized 

to be responsible for promiscuous uptake, exchange and export of C4-dicarboxylates under 

microaerobic conditions, however no L-malate exporters have been identified. These often 

promiscuous carriers include proteins from the Dicarboxylate uptake (Dcu), Dicarboxylate uptake 

C (DcuC), Divalent anion-sodium symporter (DASS), Auxin efflux carrier (AEC), Tripartite ATP-

independent periplasmic (TRAP), Acetate uptake transporter (AceTr), and Dicarboxylate/amino 

acid cation symporter (DAACS) families (28). Of these, Dcu transporters are responsible for L-

malate uptake during malate respiration (29), and are postulated to contribute to export via a 
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reversal of the uptake mechanism (28, 30, 31). Thus, these transporters represent targets for a 

traditional literature based genetic screen to discover the malate export system.  

In this work, we used a reverse genetics approach to characterize the L-malate export system 

of Escherichia coli using an engineered L-malate producer. To begin we inactivated the major 

microaerobic L-malate uptake system (dcuABC) to demonstrate that the uptake system is not solely 

responsible for L-malate export. Thus five other candidate L-malate exporters were chosen by 

evaluating chemical similarity of malate to other transported metabolites. By inactivating 

transporters of compounds with similar molecular fingerprints to malate, DcuA, CitT, and TtdT were 

characterized to play a role in the malate export system, and inactivation of all three transporters 

led to reductions in extracellular malate. We further demonstrate that L-malate export does not 

appear to be a bottleneck for malate production in this host. 

Results 

Identification of candidate genes for native malate export. 

 To assess the role that the major anaerobic malate importers play in L-malate export, the 

genes dcuA, dcuB, and dcuC were inactivated both individually and in combination in the L-malate 

biocatalyst XZ658 (25). Inactivation of these three genes resulted in an ~20% decrease in 

extracellular malate production after 48 h, and a decrease in biomass in the first 48 h (Figure 5.1). 

This suggests that DcuA, DcuB, and DcuC only contribute minimally to malate export, and that a 

reversal of uptake may not be the main mechanism for malate export. Thus, we decided to use 

chemical similarity searching to select new candidates for our reverse genetics approach.  

To generate a new list of candidate exporters, we prospected for transporters capable (or 

predicted) of having catalytic activity for metabolites that are the most chemically similar to malate. 

We chose to use the Signature molecular descriptor for chemical comparisons (19) and developed 

a pipeline to compare all transportable C3-C7 di- or tricarboxylate metabolites to malate, according 

to the Transporter Classification Database (TCDB) (32). This analysis found citrate, tartrate and 

succinate to be the most similar compounds to malate with E. coli transporters using this descriptor 

(Figure 5.2). Of these, citrate had a similarity of 95.5%, tartrate 95.4% and succinate 91.8%. Other 

compounds such as isocitrate had a higher similarity to malate, but no known E. coli transporters 
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(Figure 5.2A). By allowing transporters with unknown substrates to inherit the substrates of E. coli 

proteins in the same TCDB family we found nine transporters that had known/inherited catalytic 

activity for the top three metabolites, including dcuA, dcuB, dcuC, dcuD, dauA, dctA, ybhI, citT, and 

ttdT (Figure 5.2B). Expression and transport of C4-dicarboxylates by dctA is not active under 

microaerobic conditions, and it was therefore removed from the target list (33). We then inactivated

the remaining transporters in this list (citT, ttdT, ybhI, dauA, and dcuD) in a dcuABC knockout 

background. An additional succinate transporter, satP, was discovered and incorporated into the 

TCDB after our initial evaluation, but for experimental purposes was not included in our analysis 

(34).

DcuA, CitT, and TtdT contribute to malate export. 

To first discern which member of DcuA, DcuB, and DcuC was responsible for the 20% decrease 

in the malate titer seen initially (Figure 5.1), we inactivated each gene individually in XZ658. After 

48 h only DcuA resulted in a 23% decrease in malate titer, approximately equivalent to GK153 

(Figure 5.3). We then proceeded to inactivate all candidate malate exporters individually in GK153 

and fermented all strains. This demonstrated that inactivation of citT or ttdT resulted in 56% and 

65% decreases of extracellular malate titer after 48h compared to XZ658, respectively (Figure 5.3). 

However, most of this deficiency recovered by 96h, suggesting that additional malate exporters 

were still present (Figure 5.4). All other candidate malate exporters exhibited no significant 

difference in malate production compared to GK153 (Figure 5.3 and 5.4). To investigate which 

transporter had the greatest physiological relevance, all potential combinations of dcuA, citT, and 

ttdT inactivations were evaluated. All individual inactivations presented deficient phenotypes at 48 

h suggesting each transporter contributes to malate export (Figure 5.5A). However, inactivation of 

ttdT, dcuA, or citT resulted in a 31%, 18%, and 10% decrease in titer at 96h, respectively, 

suggesting ttdT is most important for achieving final malate titer. Furthermore, simultaneous 

inactivation of dcuA and ttdT was found to generate a deficient phenotype similar to the triple 

knockout (GK1TC), with a 73% decrease in titer (Figure 5.5B). This is greater than the titer 

decrease attributed to the individual inactivation of either dcuA or ttdT, suggesting that there is a 

synergistic relationship between these two transporters. Individual inactivation of citT only 
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presented deficient phenotypes at 48h (Figure 5.5A), suggesting that it may only be important for 

early growth/production. These results demonstrate that relevant exporters for malate may follow 

a hierarchy from greatest to lowest impact of ttdT > dcuA > citT.  

Transport deficient mutants have defects consistent with export deficient cells.  

To further understand the effects of transporter inactivation in GK1TC, we fermented this strain 

and compared the cell physiology, growth, and intracellular metabolite profile to XZ658. This 

transporter deficient mutant was found to have a large decrease in growth rate under microaerobic 

conditions and a 50% decrease in maximum biomass accumulation after 96 h (Figure 5.6A and B). 

However, this growth deficiency was not observed during aerobic growth in rich or minimal media 

(Figure 5.7), when metabolism favors pyruvate accumulation. We hypothesized that this deficiency 

may be due to an accumulation of malate which may be capable of altering metabolic flux to less 

desirable fermentation end-products under anaerobic conditions, such as citrate, isocitrate, and 

pyruvate (Figure 5.6C). To better understand the metabolic changes upon inactivation of these 

transporters, we extracted and quantified intracellular metabolites of both XZ658 and GK1TC at 48 

h. We found that intracellular malate concentrations were equivalent between the two strains, 

however an ~2-fold increase in the concentration of pyruvate, citrate, and isocitrate could be 

observed in the transport deficient cells (Figure 5.6D). During fermentation, transporter deficient 

cells were also observed to have an enlarged phenotype at 48 h, corresponding to an 

approximately 50% increase in cell length relative to XZ658 (Figure 5.8). This increase in cell size 

also corresponded to a decrease in cell viability (Figure 5.8). To investigate if these putative malate 

exporters could be applied to enhance malate production in XZ658, we overexpressed each of 

them individually on a plasmid construct in XZ658. Overexpression of each transporter individually 

did not improve L-malate titer, productivity or yield in XZ658 when fermenting in NBS supplemented 

with 5% (w/v) glucose (Figure 5.9). 

Discussion 

In this work, we originally prospected for the L-malate exporter in E. coli by taking a limited 

literature-based reverse genetics approach and targeting active importers of malate under 

microaerobic conditions. This essentially investigated if a reversal of the malate uptake reaction 
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was the main mechanism of export. We found that this only identified dcuA as a putative malate 

exporter. A cheminformatics approach of selecting candidates based on chemical similarity to the 

target compound was effective in finding other transporters, citT and ttdT. A triple mutant of dcuA, 

citT, and ttdT was found to be growth deficient under microaerobic conditions, had decreased 

extracellular malate, and had altered cell physiology. Furthermore, it appeared that potentially 

intracellular malate may be being shuttled to other metabolic end-products in these transport 

deficient cells, suggesting that accumulation of malate may be toxic to these cells. This all suggests 

that these transporters function as malate export proteins in E. coli. 

Of the Dcu and DcuC family proteins, only DcuA was found to have significant catalytic activity 

for malate export. This protein is known to catalyze the electroneutral exchange of L-malate, 

fumarate, succinate and aspartate by antiport of succinate from the cytoplasm, but has been shown 

to be capable of proton mediated uptake as well in the absence of a counter-substrate (29, 35). 

Interestingly, DcuB is a paralog of DcuA known to share these same transportable substrates, 

however only DcuB and DcuC are responsible for physiologically relevant succinate export (15). 

Since dcuA is known to be constitutively expressed (36), this difference in substrate specificity is 

hypothesized to not be due to differences in expression. Likewise, we find in our work that DcuA is 

capable of putative malate export, but not DcuB, further suggesting that these two proteins have 

significant differences in substrate specificity. We do not believe this is due to glucose repression 

of dcuB (36), as previous work has observed that both DcuB and DcuC are functionally active in 

glucose fermentation conditions with a C4 dicarboxylate production strain (15).  

CitT and TtdT are both proteins belonging to the DASS protein family, a group known to be 

capable of transport of multiple organic di- and tricarboxylate substrates. More specifically, CitT 

has been shown to function as a citrate/succinate antiporter during citrate fermentation, and can 

potentially use citrate or fumarate as alternative counter-substrates (37). TtdT has been described 

as a L-tartrate/succinate antiporter, but can potentially use fumarate or succinate as counter-

substrates as well (38). This work demonstrates that CitT and TtdT both likely function in L-malate 

export during glucose fermentation, although the mechanism of export remains uncharacterized. 

CitT, TtdT, YbhI and SOT1 (a spinach 2-oxoglutarate:malate translocator), form a cluster within the 
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DASS family and maintain a sequence identity >33% between each other (37). SOT1 has been 

characterized to catalyze exchange of 2-oxoglutarate for stromal malate, succinate, 2-oxoglutarate, 

or fumarate from the inner membrane of chloroplasts (39, 40), further supporting that these 

transporters may all function in malate export. Although YbhI had no evidenced role in malate 

export and has no evidenced di-/tricarboxylate substrates, this may be due to a lack of expression.  

In the malate producer XZ658, dcuA, citT, and ttdT all appear to play a functional role in malate 

export. Our combinatorial deletions suggest that malate export is mainly performed by ttdT and 

dcuA, while citT is of lesser importance. Although engineering export of L-malate has previously 

been demonstrated to be an effective strategy for increasing production in fungi (13, 14), we 

observed no improvement in production while overexpressing dcuA, citT, or ttdT. This suggests 

that either the L-malate transport system of E. coli is sufficient for current production metrics, or 

there is a limitation of counter ions for antiport. However, it is notable that  cells are capable of 

maintaining ~45% final titer (144 h) even with inactivated transport systems. This might suggest 

that there are still multiple other promiscuous transporters for L-malate in E. coli and that export 

may not be the immediate bottleneck. 

For metabolic engineering, the use of chemical similarity searching provides another tool to 

help elucidate enzymes with promiscuity for desired substrates. We demonstrate here that 

annotated transport function for the most chemically similar substrates to malate reveals citT and 

ttdT to be top candidates for a genetic screen, and that these candidates have activity for the target 

compound. One limitation of this approach for transporter discovery however is that the tested 

substrates during enzyme characterization of transporters are often few and of a relatively narrow 

chemical space (18). This emphasizes the importance of using algorithms to intelligently select 

substrates that will maximize information gained on enzyme versatility during characterization. 

Additionally, this approach may also be further improved by incorporating sequence data to allow 

comparisons of both chemical and sequence similarity of a global dataset to the desired organism 

proteome.   
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Materials and Methods 

Strains, and Cultivation Conditions 

All strains used in this work are listed in Table 5.1. A previously engineered Escherichia coli

malate producer, XZ658 (25), was used for genetic manipulations.  For strain construction, all 

manipulations were done in Luria Broth (10 gL-1 Difco tryptone, 5 gL-1 yeast extract, and 5 gL-1

NaCl) at 30°C, 37°C, or 39°C with rotation at 180rpm when in liquid culture. During genetic 

manipulations, 5% arabinose (w/v) was added and ampicillin (100 mg L-1), kanamycin (50 mg L-1), 

and/or chloramphenicol (50 mg L-1) were supplemented as needed. 

Genetic Methods 

Gene inactivation was performed as previously described using Red recombinase technology 

and either two-step recombination (41) or one step inactivation (42). Chromosomal integration was 

performed using PCR products amplified to encode either a cat-sacB counter selection cassette 

from pXW1(43) or a FRT-kan-FRT casette from pKD4 flanked with 50bp of homology to the target 

gene of interest. Primers for the generation of all inactivation fragments and plasmid constructs can 

be found in Table 5.2. For plasmid construction, circular polymerase extension cloning (CPEC) (44)

was used to generate complete plasmids from linear PCR products using a pTrc99a vector 

backbone. All plasmids had the insert sequence verified using Sanger sequencing. Chemical 

cells. 

Chemical similarity comparisons 

To compare compound similarity to malate, we used the Signature molecular descriptor. 

Generating a molecular signature decomposes each metabolite into a vector of atomic signatures. 

These atomic signatures are a representation of the subgraph of each atom and all of its connected 

bonds/atoms up to a predefined dis (19, 45). Thus the vector for comparison is a count of 

the occurrences of each atomic signature (both h=0 and h=1) within the molecule. We retrieved all 

data from the Transporter Classification Database (32) and extracted all substrate:transporter pairs 

where the substrate contained a substructure of a C3-C7 backbone and two or three terminal 

carboxyl groups (excluding malate). If a transporter in TCDB had listed unknown substrates or a 
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molecule class substrate related to our target substrates (e.g. dicarboxylates), we used transporter 

accession numbers to allow the transporter to inherit all substrates of E. coli transporters within the 

same family. This metabolite list then had their signature vectors compared to malate and similarity 

scored using a cosine similarity score. We considered the top three most similar metabolites (with

designated substrates for an E. coli transporter) to be our top hits and used the transporters linked 

to these metabolites as new targets for putative malate exporters.

Fermentation 

Fresh colonies grown microaerobically on NBS (New Brunswick Scientific) mineral salts (47)

agar supplemented with 2% glucose (w/v) were transferred into 100 mL NBS 2% glucose (w/v) in 

a 250 mL flask. After growth for approximately 16 h (37°C, 120 rpm), this culture was used as the 

seed inoculum for fermentation. Fermentation was performed in continuously stirred 500 mL 

fermentation vessels containing 300mL NBS supplemented with 5% glucose (w/v), 100 mM 

potassium bicarbonate, and 10 mM sodium acetate (37°C, 120rpm). An initial inoculum of 0.1 OD550

was used for all fermentations. Medium pH was maintained at 7.0 during fermentation by automatic 

additions of base (2.4M potassium carbonate and 1.2M potassium hydroxide). 

Light Microscopy 

During fermentation, 1.25mL of cells from the bioreactor were extracted and centrifuged for 5 

minutes at 7,000 x g. The resulting pellet was resuspended in approximately 100 

supernatant and a drop transferred onto the surface of a glass slide. Cells were covered with a 22 

x 22-mm glass cover slip before being viewed with a Axioskop microscope (Carl Zeiss, Thornwood, 

NY) using differential interference contrast optics (Plan-Neofluar 100 ; 1.3-numerical-aperture oil 

immersion objective lens and 1.4-numerical-aperture oil immersion condenser lens). Scale bars 

were added prior to taking images using a Hamamatsu C3200-07 video camera coupled to an 

analog camera control unit (Hamamatsu Photonic Systems Corporation, Bridgewater, NJ) and an 

Argus 10 image processor digitally enhanced the contrast in real time. Using ImageJ, a scale bar 

was calibrated to the original scale bar and bacteria in random fields of multiple samples from each 

culture were selected for cell measurements of length and width (n =100 cells). 

Viable cell counts 
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To determine viable cell counts 1.0 ml of fermentation broth was extracted over the course of 

fermentation and normalized to an OD = 0.1 before being subjected to a 10-fold serial dilution in 

Luria broth. Serially diluted cells were plated on LB and incubated for 24 h at 37°C prior to being 

manually counted. To account for difference in cell size influencing optical density, cells density 

and diameter were evaluated using a Multisizer 3 particle counter (Beckman Coulter). Duplicates

of XZ658 and GK1TC were normalized to an OD0 = 0.6 

each normalized sample was diluted in 10 mL of ISOTON® II Diluent (Beckman Coulter) and cell 

density and average cell diameter w . 

Intracellular Extraction

To quantify intracellular metabolites, we used a modified version of a previously described 

protocol (48). Briefly, 1 OD of cells was extracted from the fermentation and centrifuged at 7,000 x 

g for 5 minutes at 4°C. The supernatant was removed and cells were washed once with 1 ml of 1X 

phosphate buffered saline before being resuspended in a methanol-water mixture (80/20) chilled 

at -80°C and mixed vigorously. After 30 minutes of incubation at -80°C the mixture was centrifuged 

at 7,000 x g for 10 minutes and the soluble fraction was transferred into a new tube. We then 

resuspended the pellet in another 500  methanol-water mixture and incubated for 15 minutes at 

80°C before the cells were centrifuged at 7,000 x g for 10 minutes. The remaining soluble fraction 

was then transferred to the same tube used previously and dried prior to GC-MS analysis. 

HPLC 

All quantification of glucose and organic acids was performed using high performance liquid 

chromatography (HPLC), as previously described (43). More specifically, compounds were 

separated and quantified with an UltiMate3000 (Thermo Fisher) using an Aminex HPX-87H column 

(Bio-Rad) and 4mM sulfuric acid as the mobile phase. 

GC-MS 

For quantification of intracellular metabolites we used GC-MS and followed the general 

procedures for the Agilent Fiehn GC-MS Metabolomics RTL library (51, 52), with minor changes 

incorporated to improve detection sensitivity. A solution of myristic acid-d27 ( ) from the Fiehn 

GC/MS Metabolomics Standards Kit was added as an internal standard for retention time locking. 
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For the derivatization process, the samples were first oximated by adding 3 -

methylhydroxylamine hydrochloride solution (in pyridine) at 30oC for 90 min. The samples were 

then derivatized using 7 -methyl-n-trimethylsilyltrifluoroacetamine with 1% 

chlorotrimethylsilane (MSTFA+1% TMCS) at 37 oC for 30 min. Subsequently, the solution was 

gently vortexed and transferred to a GC-MS glass vial for analysis. 

GC-MS experiments were performed on an Agilent 7820 GC-5977 MSD system (Agilent

Technologies, Santa Clara, CA) by injecting prepared samples in the splitless mode. 

Helium was used as the carrier gas. The separation of metabolites was achieved using an Agilent

DB5-MS+10m Duraguard Capillary Column (30 m . The column temperature 

was maintained at 60 oC for 1.00 min, then increased at a rate of 10 oC/min to 325 oC, and held at 

this temperature for 10 min. Mass spectral signals were recorded after a 4.90 min solvent delay.    
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Figures 

  

F´lacIq, Tn10(TetR) -
hsdRMS-

 recA1 
7697 galU galK rpsL 
(StrR) endA1 nupG 

cat-sacB cassette with the sacB 
native terminator cloned into a 
modified vector pLOI4162 

Ptrc bla oriR rrnB lacIq 

Table 5.1. Strains and plasmids used in Chapter 5 
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Table 5.2. Primers used in Chapter 5 
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dcuA dcuB dcuC) 
using 5% (w/v) glucose in NBS mineral salts medium. A) Cell optical density 
(OD550nm), and B) L-malate concentrations were determined. Error bars 
represent SEM with at least three independent experiments. 
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Figure 5.2. Chemical similarity of all C3-C7 di- or tricarboxylate substrates in TCDB with 
known transporters compared to malate using the Signature Molecular Descriptor. A) 
Grey circles indicate substrates with no known E. coli transporter. Similarity based on 
pairwise distances between the chemical signatures of malate and all indicated 
chemicals is shown at each note with values of >95% (asterisk), 95-90% (circle), 90-85% 
(square), and 85%> (diamond) (Detailed data in Table S1). The length of solid lines also 
represents the relative similarity to malate. Abbreviations: MAL (malate), ISC (isocitrate), 
CIT (citrate), MLO (malonate), TAR (tartrate), TRC (tricarballylate), CTM (citramalate), 
ACO (trans-aconiate), SUC (succinate), OAA (oxaloacetate), ASP (aspartate), GAL 
(galactarate), AKG (2-oxoglutarate), URS (ureidosuccinate), NAG (N-acetylglutamate), 
GLU (glutamate), GLT (glutarate), 2-OX (2-oxoadipate), MSC (mesaconate), FUM 
(fumarate), and ADI (adipate). B) Candidate malate exporters selected based on 
substrate similarity to malate using Signature Molecular Descriptor and information from 
the previous literature. Three di/tri-carboxylates most similar to malate are highlighted in 
bold. 
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Figure 5.3. Extracellular malate titer of strains fermented in NBS/5% glucose 
measured at 48 h with gene knockouts corresponding to indicated transporters. 
Abbreviations: Suc (succinate), Cit (citrate), and Tar (tartrate). *Transport activity 
inferred from transporter family member from TCDB. 
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Figure 5.4. Extracellular malate titer of strains fermented in NBS/5% glucose 
measured at 96 h with gene knockouts corresponding to indicated 
transporters. Abbreviations: Suc (succinate), Cit (citrate), and Tar (tartrate). 
*Transport activity inferred from transporter family member from TCDB. 
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Figure 5,5. Extracellular malate titer of strains fermented in NBS 
medium supplemented with 5% (w/v) glucose measured at A) 48 h 
and B) 96 h with gene knockouts corresponding to indicated 
transporters. Abbreviations: Mal (malate). 
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Figure 5,6. Extracellular malate concentrations and significantly changed 
intrace dcuA citT 

ttdT). Cells were fermented in NBS medium supplemented with 5% glucose. A) 
Cell optical density (OD550nm), B) L-malate concentrations were determined. 
C) The relative change of intracellular metabolites between GK1TC and XZ658 
was determined by GC-MS for cell extractions. Error bars represent SEM with at 
least three independent experiments 
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Figure 5,7. dcuA citT 
ttdT) under non-fermentative conditions. A) Shake flasks at 200 rpm in LB 

media under aerobic conditions, B) Shake flasks at 200 rpm in NBS media 
supplemented with 2% glucose under aerobic conditions. 



  155 

  

Figure 5,8. The morphological and viability changes of strains XZ658, and 
GK1TC (XZ65 dcuA citT ttdT) under fermentative conditions. A) 
micrographs of XZ658 (top) and GK1TC (bottom). B) The cell width, C) 
length and D) diameter was estimated by counting >100 cells on micrograph 
images and diameter readout from a cell counter. D) Viability of XZ658 and 
GK1TC was measured by counting colony forming units (CFU) per mL on 
LB agar plate with a serial dilution. The different cell numbers per OD were 
normalized using a cell counter.   
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Figure 5,9. Malate titer at 144 h of XZ658 fermented 
in NBS supplemented with 5% glucose and 10 µM 
IPTG overexpression either dcuA, citT or ttdT    
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CHAPTER 6 
CONCLUSIONS AND FUTURE DIRECTIONS 

Conclusions  

A commercially successful lignocellulose conversion requires cost-effectiveness at all steps: 

liberating sugars, converting sugars into target products at high titer, yield and productivity, and 

downstream product recovery. There have been a lot of developments in pretreatment technologies 

and metabolic engineering strategies for sugar co-utilization and microbial robustness in the past 

few decades (1). In spite of so many research efforts, challenges such as sugar utilization, 

degradation recalcitrance, product toxicity, and lignocellulosic toxicity still remain at different 

degrees, thereby limiting further commercial developments. 

Metabolic engineering strategies targeting membrane transport mechanisms for enhancing 

lignocellulose conversion have been scarce in literature, however multiple potential transporter 

bottlenecks exist. First, an abundant sugar in lignocellulosic biomass, xylose, is inefficiently 

transported in most bacterial biocatalysts. This results in a decrease in the energy budget which 

can be detrimental under microaerobic production conditions (2-6). Second, inhibitors such as 

furfural in lignocellulose hydrolysate impose cellular toxicity (1, 5, 7). Although cellular efflux has 

been identified as an important way that many bacteria survive other cytotoxic molecules, such as 

antibiotics, lignocellulose inhibitor efflux systems have not been identified (8). Third, engineering 

efflux of target products has shown to increase production metrics, however identification of efflux 

transporters is notoriously difficult. My work contributed to this field by investigating potential 

transporter mediated solutions for enhancing lignocellulosic bioconversion. By rationally attempting 

to probe 1) routes for efficient xylose uptake 2) inhibitor efflux solutions and 3) methods for 

identifying product exporters, this work has helped lead to the following conclusions. 

Energy can be conserved by engineering native and heterologous sugar transporter 

systems 

Although ATP yield has been shown to be decreased under xylose fermentation conditions due 

to inefficient transport mechanisms, very few robust solutions have been implemented to improve 
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this (2). The main solution has been to inactivate XylFGH and/or allow adaptive laboratory evolution 

to naturally edit the genome to enhance ATP conservation (3, 4). Although this previously identified 

a mutation in galP that enhanced xylose to succinate conversion, the authors previously attributed 

this to enhanced xylose transport affinity by GalP (9). In Chapter 2, I have shown that this 

conclusion is incorrect, and that the true mechanism enhancing xylose to succinate conversion in 

KJ122 is repression of GalP. I have further shown that inactivation of GalP likely enhances the ATP 

yield by modulating expression of the anaplerotic enzymes (Ppc and Pck) and shifts carbon flux 

towards Pck to enhance ATP conservation upon conversion of PEP to OAA. I demonstrate that the 

transcriptomic changes upon inactivation of GalP have implications not only for xylose to succinate 

conversion, but also for xylose catabolism in general. This further suggests that utilization of GalP 

in PTS- strains for lignocellulose bioconversion may be a non-ideal method to enhance glucose 

utilization, and suggests that heterologous transporters without unknown regulatory mechanisms 

may be more ideal. However, this does not necessarily fix the issue of ABC catalyzed ATP 

utilization during xylose import. In Chapter 3, I attempt to provide a robust solution for this issue 

by engineering a sugar facilitator, Glf, to create an energy efficient xylose uptake system. I rationally 

created variants of a sugar facilitator, Glf, that are resistant to glucose inhibition to circumvent 

issues of substrate inhibition of uniporters in industrially relevant sugar mixtures. I further show that 

many of these mutant transporters maintain wildtype transport efficiency for glucose and xylose in 

vivo, but have shifted sugar preference to prefer xylose over glucose. The causative mutations for 

relieving glucose repression appear to be diverse, but suggest that there may be multiple ways to 

release glucose inhibition and that these mechanisms may be widely conserved with other MFS 

sugar porters. These transporters may serve as an engineering tool to enhance ATP conservation 

during glucose-xylose fermentation without sacrificing production metrics associated with glucose 

repression. 

SMR transporters can function for furfural efflux to enhance furan aldehyde tolerance 

Pretreatment of lignocellulose is known to generate multiple inhibitory compounds including 

furan aldehydes, aromatics, and organic acids (1, 7). The inhibitory effects of furfural are known to 
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be particularly detrimental to biocatalysts however due to the ability to potentiate the toxicity of 

other chemicals (10). Although multiple cytosolic enzymes have been engineered to enhance 

furfural tolerance by targeting toxicity mechanisms, no work yet has found a transporter to efflux 

this chemical from the cytoplasm (1). However, furfural is a relatively hydrophobic compound and 

MDR transporters are known to efflux a broad range of lipophilic compounds, suggesting these 

transporters may be prospective candidates (8, 11). In Chapter 4, I focused on screening a library 

of MDR transporters to discover potential furfural efflux proteins. From this work I found that 

overexpression two SMRs (sugE, mdtJI), and one lactate permease (lldP) enhance furfural 

tolerance under xylose fermentation conditions. I further demonstrated that MdtJI can be used to 

enhance xylose to ethanol conversion in the presence of furfural under relevant production 

conditions. Furthermore, I show that this enhanced tolerance appears to be due to an increase in 

the viable cell population during furfural stress, likely due to decreased intracellular stress. This 

decrease in intracellular stress is mediated by functional MdtJI transport activity and appears to be 

likely due to MdtJI catalyzed furfural efflux. This work ascribes a novel function to SMR transporters, 

and suggests that directed evolution of these transporters may be useful for enhancing tolerance 

to furan aldehydes or other inhibitors. 

Promiscuous transport systems can be effectively identified using a cheminformatics 

approach 

As stated previously, identification of transporter efflux systems is difficult using many currently 

available selection methods. Incorporation of these transporters into metabolic engineering 

regimes has been shown to enhance target product titer, productivity and yield, making 

advancement of these methods an important target for enhancing lignocellulose bioproduction (12). 

One particularly striking example has been the incorporation of efflux transporters into fungi to 

enhance L-malate production (13). E. coli has been engineered for L-malate production, however 

no known malate exporters have been discovered in this organism (14). To elucidate the native 

malate efflux system of E. coli, in Chapter 5 I used a cheminformatics approach to identify 

transporters of chemicals similar to L-malate to investigate if these transporters had promiscuous 
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activity for the target molecule. Using this approach, I identified that citrate and tartrate are the two 

most similar known di-/tricarboxylic acids that are transported in E. coli to L-malate, and inactivation 

of these transporters decreases malate production in XZ658.  This work identified that DcuA, CitT, 

and TtdT have a role in malate efflux, and demonstrated that malate efflux does not appear to be 

the current production bottleneck for XZ658. This makes sense, as work in my Appendix A

demonstrated that the current bottleneck for production of L-malate appears to be relief of allosteric 

inhibition by NADH in citrate synthase, which results in a 90% increase in titer.  However, this work 

demonstrated that using chemical similarity methods to prospect for target molecule transporters 

based on the concept of transporter promiscuity is a viable approach to rationally identify efflux 

systems. 

Future directions 

My thesis investigated multiple membrane transport associated challenges in converting 

lignocellulose to valuable products. The field of transporter engineering in general is still relatively 

nascent and a lot of fundamental transporter:substrate interactions have yet to be characterized. 

That being said, multiple intriguing questions have yet to be addressed in the future. 

In Chapter 2, I demonstrate that GalP has unknown interactions that appear to affect 

transcriptional regulation of multiple gene clusters. However, the nature of these interactions 

remain unknown and may be indicative of an unknown functional domain in sugar porters from the 

MFS. Many of the upregulated gene clusters include operons that were upregulated by the 

presence of cAMP, such as the ara, xyl, gal, and rbs operons. Another protein CstA, a carbon 

starvation regulator upregulated by cAMP and CRP, is also upregulated ~8 fold in the galP 

inactivation mutant. Thus it may be interesting to investigate the intracellular cAMP levels of both 

KJ122 and AG055, as this may be a signaling molecule affected by galP inactivation. Similarly, it 

might be interesting to investigate if this mechanism is transport dependent or if it is independent 

of this function. The mutations found thus far that enhance xylose utilization are in either a glycine 

residue (G236) that is predicted to be located on the cytoplasmic side between two intracellular 

helical (ICH) domains or an alanine (A392) in approximately the middle of TM11.  By disrupting the 
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conserved proton coupling aspartate residue between XylE and GalP (GalP D32), we could

presumably decipher whether this phenomena is dependent on transport  mediated by GalP. 

In Chapter 3, I created Glf variants resistant to glucose that appear to have at least two separate 

mechanisms for relieving glucose inhibition: 1) by disrupting coordination of the 6-hydroxymethyl 

group of glucose and 2) by altering unknown interactions in TM12. One interesting future direction 

may be to combine mutations in the best performing mutants of each mechanism, namely mutant 

GK3 and GK8. This may aid in further reducing glucose inhibition of xylose and further enhance 

the utility of these variants as xylose uniporters. I also show that variant Glf proteins work for 

enhancing transport preference towards xylose import, but I do not show an effective demonstration 

of how increased ATP conservation from transport can benefit bioproduction. Although I attempted 

to express variant Glf proteins in AG055, this only resulted in a possible slight increase in yield and 

titer (Figure 3.9). This may be due to the presence of XylFGH still on the chromosome that may be 

capable of masking the beneficial effects. The growth of AG055 expressing Glf variant GK3 is also 

decreased compared to an empty vector or wildtype Glf (Figure 3.9). This may be indicative that 

catabolite repression is still partially present in this strain and xylR* integration is needed to 

elucidate the functional benefit of these transporters. Additionally, it may be difficult to prove the 

efficacy of these transporters in a mono-culture since the presence of glucose should enhance the 

ATP supply of the biocatalyst. However, our lab has previously developed orthogonal sugar 

specialist strains that can be co-cultured to effectively ferment glucose-xylose mixtures. Utilization 

of these transporters in a xylose fermenting specialist may be able to improve the fermentation 

capabilities of these strains, as we have previously seen that a large excess of xylose specialists 

is needed to be able to compete for resources against the glucose specialist during co-sugar 

fermentation. This may be due in part to the energy burden that the xylose specialist faces in 

addition to inhibition of native xylose uptake systems (e.g. XylE) by glucose. Thus, inactivation of 

XylFGH and incorporation of a Glf variant into a xylose specialist may prove effective to increase 

co-culture fermentation robustness. 
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Although I focused on engineering Glf in Chapter 3 as an ideal xylose transporter, this is not 

the only potential route to create an energy efficient xylose import mechanism. Another interesting 

possibility would be to create a PTS transport system for xylose. Since the PTS couples 

dephosphorylation of PEP to concomitant uptake and phosphorylation of hexose sugars, this could 

potentially be exploited to catabolize pentose sugars while only utilizing one ATP-equivalent for 

pentose uptake. However, pentose sugars like xylose and arabinose often go through an 

isomerization step prior to phosphorylation (15). In order for a system like this to potentially exist, 

isomerization would need to happen post-phosphorylation of the pentose sugar to integrate the 

molecule into normal pentose metabolism. There are reports of arabinose-5-phosphate (16) and 

ribose-5-phosphate isomerases (17), although there is no evidence of these being used to create 

an alternative mechanism for utilizing xylose/arabinose through the Pentose Phosphate Pathway 

as described. If utilization of this pathway could be demonstrated, it would be interesting to see if 

PTS transporters which have been shown to have activity for pentose sugars (such as gatC) could 

be utilized for xylose/arabinose uptake and catabolism (18). Mutations in the glucose PTS 

transporter, ptsG, have also been shown to confer activity for pentose sugars, such as ribose, 

making these ideal templates to potentially further tune PTS transporter specificity to pentose 

transport (19). 

In Chapter 4, I show that a transporter library derived from the ASKA collection of E. coli ORFs 

is effective in isolating furfural resistance transporters. However, the ASKA library is known to have 

an artificial sequence at both the N- and C-terminus that may potentially affect transporter activity. 

In my own work, I have noticed that this does occasionally affect transport activity. For instance, I 

attempted to complement glucose uptake (PTS- alaE) deficient strains using 

constructs from within this library at one point, however complementation was unsuccessful. Sub-

cloning the exact same sequence into a new plasmid while omitting the artificial N- and C-terminal 

sequences however successfully complemented this phenotype. This demonstrates that some 

transporters within this library may lead to the generation of false-positives, suggesting that this 

library is only sub-optimal. A more ideal library would omit these sequences, as well as expand into 
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other families of endogenous and heterologous MDR transporters. For instance, the 

Drug/Metabolite Transporter (DMT) superfamily includes the SMR transporters, but also 26 other 

families of transporters. Some of these include probable or verified drug exporters that look similar 

to SMRs but with a variable number of transmembrane spanning regions. This includes 

transporters such as the Bacterial/Archael Transporters (BAT) and other variations of the SMR 

family (SMR2, SMR3). Likewise, the library could benefit from the inclusion of other verified MDR 

transporters from other organisms, such as the SMR transporter Mmr from Mycobacterium 

tuberculosis or YkkCD from Bacillus subtilis (11). Additionally, this work could be expanded to 

attempt to characterize the residues in SMR transporters that control specificity. Ideally , using a 

small MDR transporter like a SMR would be easier to saturate with protein engineering techniques 

to potentially enhance and broaden the efflux activity of these transporters.  These efforts would 

allow a more comprehensive screening of transporters for desired compounds and ensure that only 

the best template is used for further enzyme engineering efforts.  
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APPENDIX 

RELEASING ALLOSTERIC REGULATION OF CITRATE SYNTHASE ENHANCES L-MALATE   
PRODUCTION IN ESCHERICHIA COLI 

 
Abstract 

Malic acid is a C4-dicarboxylic acid currently produced from petroleum with applications in food 

industries and it has the potential to be produced as a value-added platform chemical from biomass 

instead of petroleum. Escherichia coli strain XZ658 was previously developed for L-malic acid 

production using the reductive branch of the tricarboxylic acid (TCA) cycle. Here, we identified the 

allosteric regulation of citrate synthase as the main metabolic constraint for malate production in E. 

coli and deregulation of this allosteric control significantly increased product titer, yield and 

productivity. By inactivating lactate export systems to further reduce side product lactate, we have 

achieved unprecedented yield (1.2 g malate g-1 glucose) for malate production, further 

demonstrating the carbon-fixation capacity of the anaplerotic enzyme for fermentative production.  

Importance 

Diverse industrial chemicals can be produced from renewable feedstocks by metabolically 

engineered microbes. However, low production metrics of engineered microbes often limit 

commercialization. Allosteric regulation of key enzymes is a primary mechanism to control cellular 

metabolic processes, thereby representing potential regulatory constraints for fermentative 

microbial production, especially for nonnative fermentation products. Our results suggest releasing 

allosteric regulation of citrate synthase in E. coli as an important approach to optimize fermentative 

production of chemicals from the reductive branch of the TCA cycle. 

Introduction 

Microbial conversion of renewable feedstocks, such as lignocellulosic biomass, into fuels and 

chemicals through fermentation-based manufacturing processes is a desirable alternative to 

petrochemicals (1-3). The top 12 value-added chemicals derived from biomass with the potential 

to replace petrochemicals were identified by the Department of Energy (4). 1, 4-C4 dicarboxylates 

such as succinate, fumarate, L-malate and L-aspartate are among these identified top commodity 

chemicals with a multibillion dollar market value (4-6). Currently, the major routes to produce these 
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compounds are still based on the petrochemical platform (5, 6). Although there are many examples 

in scientific literature regarding metabolic engineering of microbes to produce many valuable 

renewable chemicals including 1, 4-C4 dicarboxylates, the low production performance (titer, yield

and productivity) remains a significant barrier for large-scale production in a cost-effective manner 

(2, 7, 8). 

1, 4-C4 dicarboxylates such as succinate and L-malate are central metabolites without 

significant cellular toxicity even at high concentrations. Microbial production of these compounds 

has a high theoretical yield due to the carbon-fixation step of the anaplerotic enzyme (Ppc or Pck) 

during their biosynthesis as illustrated in Fig. 1. For example, the maximal theoretical yields for 

succinate and malate are 1.12 and 1.49 g per g glucose, respectively (9-11). A wide range of 

microorganisms including Aspergillus flavus (12), Aspergillus oryzae (13, 14), Zygosaccharomyces 

rouxii (15), Saccharomyces cerevisiae (16-18), Aureobasidium pullulans (19), Rhizopus delemar 

(20, 21), Thermobifida fusca (22), and E. coli (11, 23) were developed to produce malate using 

aerobic or microaerobic processes. Although high titers (100 g liter-1 or higher) have been achieved 

after production process optimization in fungal hosts such as A. oryzae (14) and A. pullulans (19), 

the yields remain much lower than the theoretical maximum, with the highest reported value being 

only 69% of theoretical maximum (14). Thus the carbon fixation capacity of the anaplerotic enzyme 

is not fully exploited yet in these microorganisms. 

Homo-malate fermentation is a redox-balanced process with net ATP generation if 

phosphoenolpyruvate (PEP) carboxykinase (Pck) is used instead of native PEP carboxylase (Ppc) 

(Figure 7.1) (11, 24). Production of each malate molecule requires the fixation of one CO2/HCO3
-

meanwhile preserving all glucose carbons, thereby yielding up to 2 moles of malate per mole of 

glucose (Figure 7.1). We successfully engineered E. coli for malate production using a precursor 

strain with increased PCK activity and multiple deliberate gene delet ions to funnel metabolic flux 

into malate (11). However, the slow growth, low yield of cell mass and low production metrics 

suggest that intrinsic metabolic constraints limit malate production under oxygen-limiting 

fermentative conditions. 
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Here, we hypothesize that accumulated intracellular metabolites and cofactors such as PEP 

and NADH allosterically inhibit important central metabolic pathways, thereby limiting cell growth 

and fermentative malate production. We investigated the impact of allosteric regulation associated 

with malate production, focusing on three main allosteric regulatory sites involved in metabolic 

pathways of C4 dicarboxylates production: 6-phosphofructokinase (Pfk) (25), lipoamide 

dehydrogenase (Lpd) (26, 27), and citrate synthase (GltA) (28). Pfk catalyzes the irreversible 

phosphorylation of fructose 6-phosphate at an early step in glycolysis (29). Lpd is the main 

component of the pyruvate dehydrogenase complex that catalyzes the decarboxylation of pyruvate 

to form acetyl-CoA (30). GltA catalyzes the formation of citrate from oxaloacetate and acetyl-CoA 

-ketoglutarate, a precursor 

important for amino acid biosynthesis (31, 32). In E. coli, PEP is a negative allosteric regulator for 

Pfk (25) and high intracellular levels of NADH strongly inhibits the activities of  Lpd (26, 27) and 

GltA (28). This allosteric inhibition can be mitigated by replacing these native enzymes with 

heterologous isozymes or mutants that are resistant to inhibition (26, 33-35).  

In this study, we identified GltA as a major allosteric regulation site for malate production and 

mitigation of this allosteric inhibition in a previously engineered malate producer increased malate 

titer and yield by 90% and 40%, respectively. Further deletions of lactate permeases decreased 

side product accumulation and led to a yield at 1.2 g g-1 (80% of the theoretical maximum).  

Results 

Overexpression of the mutants resistant to allosteric regulation in a malate-producing E. 

coli strain 

The genes encoding pfkA, lpd and gltA variants resistant to allosteric inhibition were cloned 

into pTrc99A with their native ribosomal binding sites and terminator regions (Table 7.1). The 

missense mutations of T125S in PfkA and E354K in Lpd were used to release the allosteric 

regulation of 6-phosphofructokinase and pyruvate dehydrogenase in a previously engineered 

malate producer XZ658 (11). There are two types of bacterial citrate synthases with distinct subunit 

arrangements and allosteric regulatory properties: the type I enzymes in Gram-positive bacteria 

and archaea; type II enzymes in Gram-negative bacteria (31, 32). NADH strongly inhibits the type 
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II citrate synthase in E. coli but has no effect on type I enzymes (28, 31, 33). To release allosteric 

inhibition of citrate synthase, two different types of variants that are insensitive to NADH inhibition 

were used: i) the mutant of E. coli citrate synthase (GltA R163L) (33) and ii) citrate synthase genes 

citZ from Bacillus subtilis and Bacillus licheniformis (35). Two concentrations of IPTG (0 and 0.1 

mM) were used to test the effect of induced expression of target genes on malate production. 

Overexpression of pfkA and lpd mutants had essentially no impact on malate production (Table 

7.2). In contrast, induced expression of either the gltA mutant or citZ from Bacillus strains increased 

malate titer and yield ranging from 40 to 55% and 45 to 60%, respectively. Even without induction, 

the leaky expression of these variant genes led to increased malate titers and yields (Table 7.2). 

This increase of malate production is correlated to the enhanced biomass yield and sugar 

consumption (Table 7.2). Titers of side products, especially the main side product D-lactate, are 

similar to the control strain with empty vector and more sugar conversion into malate led to an 

increase in malate yield (~ 1.0 g malate g-1 glucose used) (Table 2).   

Chromosomal integration of citrate synthase variants to enhance malate production 

Plasmid-based systems have several disadvantages in large-scale microbial production, such 

as genetic instability, performance inconsistency, metabolic burden and the requirement of 

antibiotics and inducers (40-42). We integrated citZ from both Bacillus strains into the frdBC locus 

on the chromosome since the frdBC operon was already deleted in the malate producing strain 

XZ658 (11) and the upstream promoter is active under anaerobic fermentation conditions (43, 44). 

GltA R163L was not used for chromosomal integration due to potential homologous recombination 

to restore the mutation and cause undefined genetic changes. Integrations of both Bacillus citZ

increased cell growth, biomass yield and malate production metrics (Table 7.3). The integration of 

B. subtilis citZ yielded the strain JB02 that produced 42 g liter-1 with a product yield of 1.1 g g-1

glucose by a simple batch fermentation. Compared to the precursor strain XZ658, this genetic 

modification increased the titer, yield, and productivity by 90%, 40%, and 90%, respectively (Table 

7.3). In addition, the replacement of native gltA with B. licheniformis citZ in XZ658 also showed 

similar positive effect, suggesting that type II citrate synthase is able to functionally replace native 

type I enzyme without noticeable growth defectiveness under fermentation conditions (Table 7.3).
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Allosteric regulation of citrate synthase in E. coli was found to limit cell growth in an ethanol 

producer (35) -ketoglutarate, 

an important precursor for amino acid biosynthesis (35). We similarly hypothesized that NADH 

accumulation caused by inefficient malate production inhibited citrate synthase, and thereby limited 

-ketoglutarate that stunts cell growth. To directly test this hypothesis, 30 

-ketoglutarate were supplemented in the medium for XZ658 fermentation, 

respectively. Both chemicals enhanced cell growth, leading to ~50% increase of malate titer and 

glucose consumption (Table 7. -ketoglutarate did not increase malate yield 

because of the increased amount of side products. Addition of citrate had no significant impact for 

JB01 (XZ658 frdBC::citZB. licheniformis) fermentation, suggesting that citZ integration and addition of 

citrate may share a common working mechanism to improve malate production (Table 7.3). 

Inactivation of lactate permeases to decrease lactate accumulation 

Although lactate dehydrogenase gene, ldhA, was deleted in XZ658, uncharacterized reduction 

of pyruvate led to lactate accumulation that uses ~30% glucose (11). The genes encoding the 

enzymes involved in lactate metabolism including Dld (D-lactate dehydrogenase)(45), LldD 

(encoding L-lactate dehydrogenase)(46), YbiC (putative alpha-keto acid  dehydrogenase) (47), 

YkgEFG (predicted lactate-related catabolism) (48) were deleted separately, but none of these 

genetic modifications essentially decreased lactate accumulation relative to XZ658 (data not 

shown).  

To direct more carbon flux towards malate production, we inactivated lactate export systems 

in XZ658 as an alternative approach to prevent lactate accumulation. There are three known 

transporters potentially involved in lactate export: LldP, GlcA and FocA (49, 50). The focA gene

was already deleted in the malate producing strain XZ658 (10, 11). Chromosomal inactivation of 

both lldp and glcA in JB02 yielded the strain AS55. Interestingly, inactivation of both known lactate 

transporters did not completely block lactate accumulation, suggesting the presence of an unknown 

lactate export system in E. coli. Lactate titer was reduced by 35% and the malate yield reached 1.2 

g g-1 (1.6 mol mol-1) in AS55. This yield is higher than previously reported results in A. oryzae (14)
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and other fungal strains (12, 17-23). This high yield shows the potential of the anaplerotic enzyme 

to fix carbon and increase total carbon conversion efficiency.  

Discussion 

The CO2 fixation step of the anaplerotic enzyme prior to the reductive branch of the TCA cycle 

(Figure 7.1) has been proposed to have high potential for carbon assimilation in terms of pathway 

kinetics and overall low energy cost (51). L-malate production takes advantage of this carbon-fixing 

step to achieve a higher yield (1.49 g g-1; 2.0 mol mol-1) than many other fermentation products, 

such as ethanol (0.51 g g-1) and lactate (1.0 g g-1). However, metabolic constraints limit malate 

production and high yields have not been achieved in the previous reports (11, 13, 14, 17-19, 23, 

52). In this study, we discovered that the allosteric regulation of citrate synthase inhibited malate 

fermentative production and cell growth in E. coli and introduction of citrate synthase variants 

insensitive to NADH inhibition significantly improved malate production. 

There are four putative metabolic routes to produce malate: 1) oxaloacetate reduction 

catalyzed by malate dehydrogenase in the reductive branch of TCA cycle; 2) pyruvate carboxylation 

by malic enzymes; 3) the oxidative branch of TCA cycle; and 4) the glyoxylate shunt with co-

production of succinate (Figure 7.1). The first route has the best kinetics and thermodynamic 

advantages (51, 53). The second route using malic enzyme to fix CO2 is limited by unfavorable 

thermodynamics and kinetics (54-56). Route 3 and 4 are not redox-balanced and produce multiple 

side-products, thereby leading to low product yields. In E. coli, the native PEP carboxylation step 

employs PEP carboxylase in a  process that loses the energy contained in PEP with the release of 

inorganic phosphate, which limits net ATP generation during anaerobic fermentation (11). Some 

bacteria living in bovine rumen such as Actinobacillus succinogenes (57-59) and adapted E. coli

for succinate fermentative production (24) use an alternative carboxylase, Pck. Use of Pck as the 

anaplerotic enzyme conserves energy in PEP by generating ATP during the PEP carboxlyation 

step (Fig. 1). This Pck-based malate production should theoretically maximize carbon yield and 

achieve a homo-malate fermentative production. Fungal malate-producing strains such as S. 

cerevisiae (17), A. oryzae (14) and A. pullulans (19) use pyruvate carboxylase to convert pyruvate 

and bicarbonate into oxaloacetate with the cost of ATP. Therefore, there is no net ATP generated 
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for the glucose to malate conversion in these fungal strains. Moreover,  the production procedures 

using these fungal strains require oxygen to provide energy for cellular growth, thereby further 

decreasing malate yield due to carbons lost in side products and biomass. In addition, CaCO3 was 

used to maintain pH and provide a CO2 source for fungal malate production (13, 14, 16, 17, 19), 

which will lead to gypsum accumulation during downstream processes, a potential disposal 

challenge for organic acid fermentative production (60). The engineered malate-producing E. coli

strain directly adds carbons from bicarbonate into the malate carbon skeleton without the 

requirement for CaCO3. If the issues associated with allosteric regulation, enzyme kinetic 

properties, side-product accumulation and product export are further addressed, this Pck-based 

malate production pathway has the potential to achieve a yield close to theoretical maximum under 

oxygen-limiting conditions. 

Allosteric regulation of key enzymes is one of the primary mechanisms that control complex 

cascades of cellular metabolic processes. Identification and deregulation of these biochemical 

controls have been found to be effective in improving microbial production, especially for nonnative 

fermentation products such as amino acids and aromatic compounds (61-63). Releasing allosteric 

regulation of citrate synthase in XZ658 not only increased cell growth but also enhanced malate 

production metrics on a per cell basis (Table 3). The increased malate production is not from the 

enhanced glyoxylate shunt pathway because succinate production in the modified strains (JB01, 

JB02 and JB03) is still negligible (< 1g liter-1) compared to the increased malate production (~15-

20 g liter-1). The released allosteric regulation presumably increases intracellular levels of citrate 

-ketoglutarate that are important for amino acid biosynthesis and other physiological 

processes. This hypothesis was further supported by the chemical supplementation experiments 

-ketoglutarate also improved fermentative cell growth and malate 

production. A similar observation was made in an ethanologenic E. coli KO11 (35). Releasing 

allosteric regulation of citrate synthase in KO11 improved fermentative cell growth and ethanol 

production when cells used xylose as the sole carbon source (35). During sugar fermentation to 

generate different products NADH molecules produced during glycolysis need to be reoxidized by 

fermentative pathways to achieve redox balance. Inefficient NADH oxidation steps at fermentation 
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pathways, for example, OAA reduction by malate dehydrogenase (Fig. 1), will lead to the 

accumulation of NADH, thereby representing a potential bottleneck to different fermentative 

producing strains.  

D-lactate is the main side product for our malate-producing strain. Our previous results 

indicated that lactate is likely derived from pyruvate through an unknown metabolic route (11). 

Attempts to inactivate putative lactate metabolic enzymes including Dld, LldD, YbiC and YkgEFG 

did not decrease lactate accumulation. To mitigate the lactate accumulation by targeting its export, 

two known lactate transporters (GlcA and LldP) were inactivated and lactate concentration was 

decreased by only 35% in the resulting strain AS55. Surprisingly, the majority of lactate is st ill able 

to cross cellular membranes without these two lactate transporters, suggesting the presence of an 

unknown lactate export system in E. coli. If carbon flux from this lactate pathway (~20% sugars) is 

re-directed to produce malate, the malate yield can be further increased close to ~1.4 g/g (>90% 

of theoretical maximum). However, our incomplete understanding of microbial product export limits 

the effectiveness of this strategy to minimize side-product accumulation. The strain AS55 has a 

lower growth rate and biomass yield, thereby leading to a lower malate titer compared to its 

precursor strain JB02 (Table 7.3). It is plausible that lactate production facilitates cell growth by 

oxidizing abundant reducing power generated by glycolysis to maintain redox  balance. Further 

laboratory adaptation may be helpful to improve cell growth and malate titer.  

Materials and Methods 

Bacterial strains and plasmids  

Strains and plasmids used in this study are listed in Table 7.1. XZ658 was kindly provided by 

Dr. Lonnie (11). Other strains were constructed using either 

one-step inactivation (36) or two-step integration as previously described (37, 38). To express 

heterologous or mutant genes resistant to allosteric regulation, the ribosomal binding sites, the 

open reading frames and terminator regions were cloned into pTrc99A under the control of the 

-D-1-thiogalactopyranoside (IPTG) inducible trc promoter. The construction details such 

as used restriction sites are described in Table 7.1. 

Media and growth conditions 
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During strain construction, cultures were grown aerobically at 30 C, 37 C, or 39 C in Luria-

Bertani broth as needed. NBS (New Brunswick Scientific) mineral salts medium supplemented with 

50 g liter-1 glucose, 10 mM acetate and 100 mM potassium bicarbonate was used in batch 

fermentation as previously described (11). Ampicillin (50 mg liter-1), kanamycin (50 mg liter-1), or 

chloramphenicol (40 mg liter-1) were added as needed. 

Genetic methods 

Red recombinase technology was employed to perform seamless chromosomal deletion and 

gene replacement as previously described (37). The DNA fragments used for the first-step 

integration were obtained by PCR to amplify the cat-sacB cassette from plasmid pXW1 and primers 

provided 50 bp or longer homologous sequences to facilitate homologous recombination. The DNA 

fragments used for the second-step integration containing homologous regions (~500 bp flanking 

sequence on each side) were assembled by fusion PCR (39). Point mutations in target genes were 

also introduced using fusion PCR (39) with the relevant primers listed in Table 7.1. During strain 

construction, 5% (w/v) arabinose and -Red 

recombinase synthesis and for sacB counterselection, respectively. Positive clones from genetic 

manipulation were verified by colony PCR and Sanger sequencing of the PCR-amplified target 

regions.  

Fermentation 

All batch fermentations were performed using NBS (New Brunswick Scientific) mineral salts 

medium supplemented with 50 g liter-1 glucose, 100 mM potassium bicarbonate and 10 mM sodium 

acetate in small fermentation vessels with 300 ml as the working volume as previously described 

(11). Pre-inoculum for fermentations was started by transferring fresh colonies from NBS 2% 

glucose (w/v) plates into a shake flask (100 ml NBS medium, 2% glucose). After 16 h (37ºC, 120 

rpm), this culture was diluted into a fermentation vessel containing 300 ml NBS medium (5% 

glucose, 100 mM potassium bicarbonate, 10 mM acetate) to provide an inoculum of 0.044 g cell 

dry wt (CDW) liter-1 (an optical density value of 0.05) and batch fermentations were performed for 

144 h. Batch fermentations of strains with plasmids were operated in a similar manner with the 

supplementation of 50 mg liter-1 ampicillin and 0.1 mM IPTG to induce the expression of tested 
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genes. All fermentations were maintained at pH 7.0 by the automatic addition of base solution (2.4 

M potassium carbonate and 1.2 M potassium hydroxide) as previously described (11). 

Analyses  

Glucose and organic acids in fermentation broth were measured by high-performance liquid 

chromatography (HPLC) using an Aminex® HPX-87H column (Bio-Rad) and 4 mM sulfuric acid as 

the mobile phase (11). Cell dry weight was derived from the measured optical density at 550 nm. 

Experimental data represent an average of three or more measurements with standard deviations.
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Figures 
 
 
 
 
 
 

                    Relevant characteristics Reference 

Strains
 

KJ073 E.coli ATCC 8739 ldhA, ackA, adhE, focA-pflB 

mgsA, poxB; adapted and engineered for 
succinate production 

(10)

XZ658 KJ073 frdBC sfcA maeB fumB fumAC; 
engineered for L-malate production 

(11) 

JB01 XZ658 frdBC::citZB. licheniformis This study 

JB02 XZ658 frdBC::citZB. subtilis This study 

JB03 XZ658 gltA:: citZB. licheniformis This study 

JB04 XZ658 glcA::citZB. subtilis This study 

GX01 XZ658 dld::FRT This study 

GX02 XZ658 lldD::FRT This study 

GX03 XZ658 ybiC::FRT This study 

GX04 XZ658 ykgEFG::FRT This study 

AS55 JB02 glcA::FRT lldP::FRT This study 

Plasmids 
  

pTrc99A Ptrc bla oriR rrnB lacIq (64) 
pKD46 bla,  (Red recombinase) (36) 
pKD4 bla, FRT-kan-FRT (36) 
pPfkA T125S E. coli pfkA ORF with T125S (A to T nucleotide 

change) point mutation and its 50 bp upstream 
sequence cloned into between KpnI and XbaI sites 
in pTrc99A 

This study 

pLpd E354K E. coli lpd ORF with E354K (G to A nucleotide 
change) point mutation and its 50 bp upstream 
sequence cloned into between EcoRI and XbaI sites 
in pTrc99A 

This study 

pGltA R163L E. coli gltA ORF with R163L (G to T nucleotide 
change) point mutation and its 50 bp upstream 
sequence cloned into between EcoRI and XbaI sites 
in pTrc99A 

This study 

Table 7.1: Strains, plasmids and primers used in this work 
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pCitZB. licheniformis B. licheniformis citZ ORF and its 50 bp upstream 
sequence cloned into between BamHI and SalI in 
pTrc99A 

This study 

PcitZB. subtilis B. subtilis citZ ORF and its 50 bp upstream 
sequence into between BamHI and SalI in pTrc99A 

This study 

PXW1 The cat-sacB cassette with the sacB native 
terminator cloned into a modified vector pLOI4162 
(37) 

(38) 

Primers 
  

pfkA T125A 
cloning

CGACGGTACCCAAGAAGACTTCCGGCAACAG 
ATGGTCTAGAGTTGAGGGATTAAAAAGGCGG 

This study 

 
CCGTGCATCGGTCTGCCGGGCTCTATCGACAA
CGACATC

 

 
CCTTTGATGTCGTTGTCGATAGAGCCCGGCAGA
CCGATG 

 

Lpd E354K 
cloning CGTACGAATTCGAAAGACGACGGGTATGACCG 

GTGTTCTAGACGACTGGAAAGGTAAATTACAGA
CG 

This study 

 ATCGCCTATACCAAACCAGAAGTTG 
CAACTTCTGGTTTGGTATAGGCGAT 

 

gltA R163L 
cloning

CGTACGAATTCGTTCCGGCAGTCTTACGC 

GTGTTCTAGAGTTCAGCCATATAAAAAGAACCC
GC 

This study 

 GCCGCGTTCCTCCTGCTGTCGA 
TCGACAGCAGGAGGAACGCGGC 

 

citZB. subtilis cloning  
AGAAGTGGGATCCTGGGGGAGAGAAATACTTG
C  

TTAATGGGTCGACTCGGGTTGTTTGGTACGTTT 

This study 

   

citZB. licheniformis 
cloning GAAGTGGGATCCCAACATGCGTTGTTTTTGCTC

C 

TTAATGGGTCGACACATTTGTTTCCCCCGTTTG 

This study 
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frdBC::cat-sacB 
integration 

AGCGGATGCAGCCGATAAGGCGGAAGCAGCC
AATAAGAAGGAGAAGGCGATCGAGTGTGACGG
AAGATCA

ATACCGGTTCGTCAGAACGCTTTGGATTTGGA
TTGATCATCTCAGGCTCCTTAGCCATTTGCCTG
CTTTT 

This Study 

 TATCTACCGTACGCCGGAAC (used for 
sequencing) 

AGCAAATGTGGAGCAAGAGG (used for 
sequencing) 

 

frdBC::citZB. 

licheniformis and 
frdBC::citZB. subtilis 
integrations 

AATAAGAAGGAGAAGGCGAATGACAGCGACAC
GCGGTC 

A
TTGATCATCTCAGGCTCCTTAGGCTCTTTCTTCA
ATCGGAACGAA 

This study 

gltA::cat-sacB 5'AAATTTAAGTTCCGGCAGTCTTACGCAATAAG
GCGCTAAGGAGACCTTAATCGAGTGTGACGGA
AGATCA 
5'CCCGCCATATGAACGGCGGGTTAAAATATTTA
CAACTTAGCAATCAACCATTAGCCATTTGCCTG
CTTTT 

This study 

gltA::citZB. licheniformis

and gltA::citZB. 

subtilis integrations 

5'AAATTTAAGTTCCGGCAGTCTTACGCAATAAG
GCGCTAAGGAGACCTTAAATGACAGCGACACG
CGGTC 
5'CCGCTCTATTAAAGGCGGGTCCGGAAAGTAA
ACGGCTTAGCAATCAATCATTAGGCTCTTTCTTC
AATCGGAACGAA 

This study 

dld::FRT TGATATTTTTTCGCC
ACCACAAGGAGTGGAAAGTGTAGGCTGGAGCT
GCTTC 

TTCGGATGGCGATA
CTCTGCCATCCGTAATTTCATATGAATATCCTCC
TTAGT 

This study 

lldD::FRT GAGCATAATGAGC
ATTCGAGGGAGAAAAACGCGTGTAGGCTGGAG
CTGCTTC 

GGGAGAGGGTTAG
GGGGAGGGGGCGCAAACGACATATGAATATCC
TCCTTAGT 

This study 

ybiC::FRT CAACAAACACATAA
CATAAACAGGAGTTAACCGTGTAGGCTGGAGCT
GCTTC 

This study 
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GTTTGCCCGTCCGC
CACTGGACGGGCTTTTTTCATATGAATATCCTC
CTTAGT 

ykgEFG::FRT ATAAATGGGCATG
AAGTAATGGAGTATTAGTTGTGTAGGCTGGAGC
TGCTTC 

CTTCAGGTTTATGTC
CAGACTTCATATCTCTCCATATGAATATCCTCCT
TAGT 

This study 

 glcA::FRT AAGCATATAAAGATA
ATAAGAGACTGAACAATGTGTAGGCTGGAGCTG
CTTC 

GATGATATTAACGA
TCATCCGGCATTATTGATCATATGAATATCCTCC
TTAGT 

This study 

lldP::FRT CAACAGACTCATTA
CACGATGTGCGTGGACTCCAGGAGACCTGCAG
TGTAGGCTGGAGCTGCTTC 

CTCGTCTGACAGG
CGTCTGGGTAAAACAATCACATATGAATATCCT
CCTTAGT 

This study 
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Fermentation products 
(g liter-1) d 

Plasmids 

Maximum 
Cell mass 
(g liter-1) 

Glucose 
used (g) 

Malate 
yield (g 
g-1) c Mal Lac Pyr  Ace  For 

pTrc99Aa 0.80 ± 0.10 28 ± 4 0.72 20 ± 3 8.4 ± 1 3.3 ± 0.7 0.86 ± 0.2 1.5 ± 0.1 

pTrc99Ab 0.75 ± 0.09 29 ± 1 0.69 20 ± 2 8.5 ± 0.6 2.0 ± 0.1 0.51 ± 0.2 1.4 ± 0.3 

pPfkA T125Sa 0.84 ± 0.09 29 ± 2 0.76 22 ± 2 10 ± 2 2.2 ± 0.7 0.99 ± 0.1 1.5 ± 0.1 

pPfkA T125Sb 0.70 ± 0.2 31 ± 4 0.74 23 ± 2 9 ± 2 2.0 ± 0.1 0.81 ± 0.1 1.2 ± 0.1 

pLpd E354Ka 0.70 ± 0.2 24 ± 1 0.75 18 ± 2 8.2 ± 0.7 1.8 ± 0.4 0.92 ± 0.2 1.4 ± 0.2

pLpd E354Kb 0.80 ± 0.2 25 ± 3 0.8 20 ± 2 7 ± 2 2.2 ± 0.1 1.1 ± 0.6 1.4 ± 0.7 

pGltA R163La 1.1 ± 0.1 35 ± 3 0.74 26 ± 4 10 ± 3 3.6 ± 0.6 1.2 ± 0.4 2.3 ± 0.2 

pGltA R163Lb 0.88 ± 0.1 29 ± 2 1.0 29 ± 3 7.2 ± 0.4 3 ± 1 1.0 ± 0.4 2.1 ± 0.3 

pCitZB. subtilis
a 0.70 ± 0.09 25 ± 2 1.0 26 ± 1 6.1 ± 0.9 2.5 ± 0.1 0.4 ± 0.1 1.4 ± 0.1 

pCitZB. subtilis
b 0.92 ± 0.09 27 ± 4 1.0 28 ± 2 8.1 ± 1 2.9 ± 0.6 0.5 ± 0.1 1.4 ± 0.1 

PcitZB. licheniformis
a 0.97 ± 0.09 26 ± 5 1.0 26 ± 1 8.6 ± 0.2 3.4 ± 0.8 0.6 ± 0.1 1.6 ± 0.1 

PcitZB. licheniformis
b 0.90 ± 0.09 28 ± 3 1.1 31 ± 3 8.7 ± 0.5 3.7 ± 0.4 0.6 ± 0.1 1.4 ± 0.1 

        

Table 7.2. Effects of different plasmids on malate production in XZ658 

a 

50 g liter-1 glucose and 100 mM potassium bicarbonate for 144 hours (37 C, pH 7.0). 
b candidate genes. 
c Yield was calculated as g malate produced per g glucose consumed. 
d All data at 144 hours were shown here and SD were included. Abbreviations: Mal, malate; Lac, 

lactate; Pyr, pyruvate; Ace, acetate; For, formate.  
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Table 7.3.  Effects of chromosomal integrations and chemical supplementations on malate 
production 

Fermentation products (g liter-1) a, b

Strains 

Genotypes or 
added 
chemicals 

Glucose 
used (g) 

Maximum 
cell mass 
(g liter-1) 

Malate 
yield 
(g g-1) Mal Lac Pyr Ace For 

XZ658 Precursor 
strain 

28 ± 1 0.84 ± 0.2 0.78 22 ± 1 7.8 ± 0.5 3.0 ± 0.8 0.5 ± 0.1 1.5 ± 0.3 

JB01 XZ658 
frdBC::citZB. 

licheniformis 

38 ± 4 0.97 ± 0.04 0.95 36 ± 2 8.9 ± 1 3.2 ± 0.9 0.9 ± 0.4 3.0 ± 0.8

JB02 XZ658 
frdBC::CitZB. 

subtilis 

37 ± 2 0.95 ± 0.04 1.1 42 ± 2 11 ± 1 2.3 ± 0.2 0.5 ± 0.1 1.8 ± 0.2 

JB03  XZ658 
gltA::citZB. 

licheniformis 

35 ± 1 1.2 ± 0.04 1.1 37 ± 3 11 ± 1 2.3 ± 0.2 0.5 ± 0.1 1.8 ± 0.2 

AS55 glcA 
lldP 

29 ± 1 0.92 ± 0.04 1.2 34 ± 1 5.1 ± 0.5 1.1 ± 0.2 0.9 ± 0.1 2.0 ± 0.3 

XZ658c citrate 32 ± 5 1.0 ± 0.09 1 31 ± 2 10 ± 1 3.8 ± 0.7 1.5 ± 0.3 1.8 ± 0.6

XZ658 c -ketoglutarate 45 ± 1 1.4 ± 0.2 0.73 33 ± 2 12 ± 1 4.8 ± 0.7 0.6 ± 0.3 2.8 ± 0.2

JB01c citrate 40 ± 3 1.1 ± 0.2 0.95 38 ± 1 11 ± 1 4.4 ± 0.4 1.3 ± 0.2 1.4 ± 0.4

 
a Yield was calculated as g malate produced per g glucose consumed. 

b Fermentations were carried out in a 500 ml fleaker with 300 ml NBS mineral salts 

medium with 5% glucose, 10 mM acetate, and 100 mM potassium bicarbonate (37 C, pH 

7.0, 150 rpm). Acetate was added to improve cell growth. Abbreviations: Mal, malate; 

Fum, fumarate; Suc, succinate; Pyr, pyruvate; Lac, D-lactate; Ace, acetate. 

c -ketoglutarate. 
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  Figure 7.1. Potential metabolic allosteric regulation for malate production. The reductive 
branch of TCA cycle was engineered to accumulate malate as the sole fermentation 
product by deleting genes encoding fumarases (fumB and fumAC), fumarate reductase 
(frdABCD), and malic enzymes (maeB and sfcA). A redox-balanced malate-producing 
pathway converts one molecule of glucose into two molecules of malate. Some 
intermediate steps in glycolysis are not shown for clarity and simplicity. The malate-
producing strain contains spontaneous mutations in pck and ptsI that were important to 
enhance carbon flow in the reductive branch of TCA cycle (11). Three potential allosteric 
regulation sites are indicated in gray boxes: 6-phosphofructokinase, pyruvate 
dehydrogenase, and citrate synthase encoded by pfkA, aceEF-lpd and gltA, respectively. 

- -ketoglutarate; acetyl-CoA, acetyl-
Coenzyme A. 
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