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ABSTRACT

Coastal areas are susceptible to man-made disasters, such as oil spills, which not

only have a dreadful impact on the lives of coastal communities and businesses but also

have lasting and hazardous consequences. The United States coastal areas, especially

the Gulf of Mexico, have witnessed devastating oil spills of varied sizes and durations

that resulted in major economic and ecological losses. These disasters affected the oil,

housing, forestry, tourism, and fishing industries with overall costs exceeding billions

of dollars (Baade et al. (2007); Smith et al. (2011)). Extensive research has been

done with respect to oil spill simulation techniques, spatial optimization models, and

innovative strategies to deal with spill response and planning efforts. However, most

of the research done in those areas is done independently of each other, leaving a

conceptual void between them.

In the following work, this thesis presents a Spatial Decision Support System

(SDSS), which efficiently integrates the independent facets of spill modeling tech-

niques and spatial optimization to enable officials to investigate and explore the var-

ious options to clean up an offshore oil spill to make a more informed decision. This

thesis utilizes Blowout and Spill Occurrence Model (BLOSOM) developed by Sim

et al. (2015) to simulate hypothetical oil spill scenarios, followed by the Oil Spill

Cleanup and Operational Model (OSCOM) developed by Grubesic et al. (2017) to

spatially optimize the response efforts. The results of this combination are visualized

in the SDSS, featuring geographical maps, so the boat ramps from which the response

should be launched can be easily identified along with the amount of oil that hits the

shore thereby visualizing the intensity of the impact of the spill in the coastal areas

for various cleanup targets.
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Chapter 1

INTRODUCTION

The concept of viewing computers as not just mere calculators but as tools to

assist its users in making decisions began almost five decades ago when Gorry and

Scott Morton (1971) discussed a framework on Management Information Systems

which eventually drifted apart and evolved to be what we call today as the Decision

Support Systems (DSS). Moore and Chang (1980) have put an end to the confusion

and controversy on the term “DSS” by making its definition very clear. According

to them, decision refers to “ ...decision making in problem situations rather than

simply information retrieval, processing, or reporting...”; support refers to “...the

computer’s role in aiding rather than replacing the decision maker...”; and system

refers to “...the integrated nature of the overall approach, suggesting the wider context

of man, machine, and decision environments...”. DSS’s find their applications in many

fields for varying reasons and topics. However, the most common reason behind

their development is to explore and analyze a multitude of possibilities and outcomes

regarding a specific system. Once a user is aware of all the events that are likely to

occur, it becomes easy to make a decision given his/her limitations and restrictions.

The spatial decision support system built for this thesis focuses on oil spills and

the response strategies that can be applied to a spill scenario based on various factors.

Oil spills have deeply impacted the communities, businesses and other life forms in

the coastal areas of the United States of America over the past several decades. The

Ixtoc I oil spill of 1980, the Exxon Valdez spill of 1989, Mega Borg oil spill of 1990,

and the British Petroleum Deepwater Horizon spill of 2010 are some of the prominent

spills. The Deepwater Horizon spill alone ejected over 200 million gallons of crude
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oil into Gulf of Mexico (Cruz and Krausmann (2008); Graham et al. (2011)). These

disasters have affected several industries, including the oil and gas, housing, forestry,

tourism, and fishing industry. The overall costs have been estimated to be in terms

of billions of dollars (Baade et al. (2007); Smith et al. (2011)). Some spills may have

dangerous repercussions even after a long time because some amount of oil may still

remain unaffected, while others cause only short-term damages to the environment

but can be recovered soon (Muller and Stone (2001); Boruff et al. (2005); Jepson

(2007)). Most of the times, oil spills occur as a result of accidents due to high

marine traffic, and sometimes due to bad weather such as hurricanes or storms, but

sometimes they also occur as result of flawed designs and procedures employed in the

oil rig, as was the case in the Deepwater Horizon Oil Spill incident (Graham et al.

(2011)). According to Graham et al. (2011), 1) failing to plan effectively, (2) lack

of coordination between the state and the local government officials to deliver an

effective response, and (3) a lack of information and understanding concerning the

efficacy of dispersants or booms, etc. were the main reasons behind a poor response.

The entire process of contingency planning for oil spills usually involves three core

aspects: 1) strategic planning, and 2) tactical response, and 3) operational response

(Psaraftis and Ziogas (1985)). While strategic planning is primarily concerned with

where to locate the equipment and human resources for mounting a rapid and efficient

response to a spill, tactical response deals with the scenario after a spill occurs and

involves decisions concerned with the locations from where the equipment should be

dispatched and how long should it stay on the scene. It also deals with the optimal

set of equipment required for a spill (for example, skimmers, exclusion booms, etc.)

(Psaraftis and Ziogas (1985)).

There has been quite some research in areas which provide a more comprehensive

and multidimensional view of oil spill modeling and response efforts. For example, the
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Natural Resource Damage Assessment Model for Coastal and Marine Resources (NR-

DAM/CMR) (Grigalunas et al. (1988)) is a comprehensive suite which demonstrates

how oil disperses through the environment and damages the biological communities.

In the past, a mixed-integer dynamic optimization model for oil-spill response and

planning was developed by You and Leyffer (2011) to minimize the total response cost.

A comprehensive spill modeling package that can be used to predict the trajectory of a

pollutant in a body of water and how its physical and chemical properties change over

time (also known as weathering) called General NOAA Operational Modeling Envi-

ronment (GNOME) has been developed by the National Oceanic and Atmospheric

Association (Zelenke et al. (2012)). There have been many prominent works such as

MEDSLIK-II, a Lagrangian marine surface oil spill model for short-term forecasting

(De Dominicis et al. (2013)), Oil Spill Contingency and Response (OSCAR) (Aamo

et al. (1997)), MIKE from DHI Solutions (https://www.mikepoweredbydhi.com),

SIMAP (http://asascience.com/software/simap), an integrated oil spill impact model

system, etc.

On the other hand, there have been notable works which contributed significant

research in the area of tactical response (Belardo et al. (1984); Psaraftis and Ziogas

(1985); Iakovou et al. (1996)). However, the core weakness among the works is that

the research done so far have only taken the side of either oil spill modeling or spatial

optimization of the response efforts. There is very little work (Belardo and Harrald

(1992); Keramitsoglou et al. (2003); Zahra Pourvakhshouri and Mansor (2003); Pour-

vakhshouri et al. (2006); Liu and Wirtz (2007)) that has tied both those ends together

in the form a DSS. My contribution to this research would be implementing the facet

of tactical response in the form of a Spatial Decision Support System (SDSS) which

integrates spill modeling and spatial optimization that will aid the decision makers

in making informed decisions when a spill occurs.
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For this purpose, I make use of the oil spill modeling package Blowout and Spill

Occurrence Model (BLOSOM) (Sim et al. (2015)) to run simulations of oil spills

which generates data required for the spatial optimization model Oil Spill Cleanup

and Operational Model (OSCOM) (Grubesic et al. (2017)) which again generates data

required as an input to a mixed-integer programming solver, Gurobi (Gurobi Opti-

mization (2016)) which finally creates a log file, and a solution file for each day of

the spill. The required data is parsed and extracted from these files into several

other files for various cleanup targets, and given as an input to the SDSS. Since

all the shape files have geo-spatial data, the core visualization involves displaying

geographical maps obtained from openstreetmap.org (OpenStreetMap contributors

(2017)) displaying the oil spill with the help of a time slider, highlighting boat ramps

from where the response crews and equipment is sent out, and visualizing how deeply

different areas of the coastline have been affected with the help of an impact grid,

based on the duration and intensity of the blowout for various cleanup targets such

as 75%, 80%, 85%, 90%, and 95%. The cleanup targets here refer to the percentage

of oil recovered from the ocean after it has been ejected because of the blowout.

The remainder of this thesis is organized in the following manner. Chapter 2

summarizes other works in the areas of modeling techniques for oil spills, hurricanes

and other natural disasters; space time analysis of data; types of decision support

systems; and vulnerability indexing. Chapter 3 gives an overview of the system, its

architecture, data generation, description of the data, description of various compo-

nents of the system, and the visual analytic techniques utilized. Chapter 4 covers five

case studies exploring the use of the SDSS over a spill scenario occurring in the Gulf

of Mexico and the corresponding response strategies that could be employed. Finally,

in Chapter 5, the formal conclusion and future work are provided.

4



Chapter 2

RELATED WORK

2.1 Design of Decision Support Systems

As DSS’s play an important role in managerial arenas and change the outcomes

based on the decisions made by the end-users, it becomes imperative to focus on their

design aspects. Though i) the human interaction with the DSS; and ii) the scope of

the DSS being built are both pivotal, the ultimate goal in designing a DSS would

be to build a system which incorporates both of these facets in the most appropriate

way. Keen (1980) proposed a framework which stated that the design of an ideal

DSS should be “adaptive” i.e. a DSS can be “effective” and “final”, only when it

undergoes a process of evolution as a result of the adaptive dynamics between i) the

user - who propagates the requirements to the developer and learns from the system,

ii) the builder - the actual developer who builds the DSS, and iii) the system - which

is an integrated component that evolves from the user’s new requirements and the

developer-written code.

In a rationalized decision making environment, the data being aggregated for

the development of a DSS has to be comprehensive. In fact, it should incorporate

certain specific characteristics. Huber (1981) has elegantly organized information

requirements for a DSS into three categories namely (1) Basic Data; (2) Elaborating

Data; and (3) Performance Data.

“ ...

Basic Data

1. What are the alternatives? (e.g., Who are the possible suppliers?)
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2. What are the future conditions that might be encountered? (e.g., What are the

possible interest rates?)

3. What are the criteria to be used in evaluating alternatives? (e.g., Is overhead a

required component of the cost analysis? Is community reaction to be considered?)

Elaborating Data

4. What are the probabilities of the future conditions?

5. What are the relative importances of the various criteria?

Performance Data

6. What are the payoffs, or costs, associated with various outcomes?

7. What are the constraints on the payoffs or costs? (e.g., Is there a minimum rate

of return? Is there a budget limit?)

...(p. 5) ”.

In our system, the basic data is obtained from BLOSOM (Sim et al. (2015)),

boat ramps, and the impact grid datasets whereas elaborating data is generated with

the help of OSCOM (Grubesic et al. (2017)), and performance data is generated by

performing spatial join on the elaborating data and impact grid.

When it comes to the aspect of human-computer interaction, the most important

thing in building a DSS is its usability. In their paper on “Intelligent Decision Support

Systems” (Angehrn and Lüthi (1990)) have mentioned that their “. . . first design

principle is: Usability prior to functionality. . . p.19”. According to Angehrn and

Lüthi (1990), the development of a DSS has to be “user-centered”, and not “method-

and-data centered”. This means that the development should not focus on the solving

techniques first and then proceed to addition of user-friendly interfaces. Rather, it

should focus on creating an interactive modeling environment first, and the integration

of analytical methods should take place. In my work, the initial screen of the DSS

was built first, made interactive, and then the integration of the supporting models,
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and methods took place. Also, it has to be noted that the decision support systems

are not always accessed by just one individual. In fact, in scenarios where companies

are huge, decisions are taken by not just one but by a group of individuals who are

mostly the stakeholders of the company. Gray (1987) has come up with the idea

of “Group Decision Support Systems” (GDSS) which were designed specifically to

help groups of senior management or professionals to reach a general consensus. Our

system, which when confronted with a group of individuals belonging to the United

States naval or marine officers can be considered as a GDSS.

Now that we have a decision support system in hand, how do we know if it is

effective ? In other words, how can someone surely say that the system impacts

the decision maker in a positive way ? In order to answer these questions, Sharda

et al. (1988), have conducted an empirical study on 96 senior undergraduate students

who were studying a business policy course. They were split into teams of three. The

results of the study showed that the teams who were allowed to use the DSS performed

significantly well when compared to their non-DSS counterparts thus marking the

importance of the decision support systems. From this evidence, we assumed that

the SDSS built for this thesis helps influence the decision makers and enables them to

take decisions wisely when compared to deciding making decisions manually without

the help of my SDSS.

2.2 Decision Support Systems in Multi Criteria Decision Making

Consider three scenarios where: 1) a person wants to buy a car, 2) a person wants

to book a hotel room, and 3) a person has to layout a schedule for a football league.

In the first case, price, mileage, used or new, miles driven (if used), color, make, year,

number of doors, features, accessories, play a major role in deciding which car to buy.

In the second case, price, size of the room, air conditioning, number of beds, size of
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bed, user ratings, etc. play a key role. In the third case, a lot of factors come into

play of which few crucial ones are total number of weeks, specific days games can be

held, teams cannot play against themselves, number of games a team plays home and

on road, minimum number of games to be scheduled on a Friday, number of times a

team plays in a week, maximum number of games that can take place in a day, are

important. These entities which influence the decision are called decision variables or

constraints or criteria. As the number of these constraints or criteria increases, the

complexity of the decision making task or the objective increases. The objectives in

the above scenarios is 1) to buy a car, 2) to book a hotel room, and 3) to prepare a

schedule when the corresponding constraints are specified. Decision making in such

scenarios is usually termed as Multi Criteria Decision Making (MCDM).

Pajer et al. (2017); Dimara et al. (2018); Kostuk and Willoughby (2012) have

developed decision support systems for dealing with the decision making tasks of

buying a car, booking a hotel room, and designing a schedule for the Canadian Foot-

ball League (CFL) respectively. These DSS’s show how a multitude of alternatives

can arise while trying to achieve an objective and how the various constraints play

important roles in making a decision. Also, Kostuk and Willoughby (2012) incorpo-

rated mixed integer programming into their decision support system. In our system,

the main goal to be achieved is - “minimize the total dispatching time and cost of the

cleanup equipment” and the constraints are: 1) the cleanup capacity of the equip-

ment, 2) the amount of oil that can be cleaned by using the equipment which should

not exceed the total volume of the spill within the containment area of each site, 3)

a site is cleaned up only if a vessel is dispatched to its containment area, 4) the total

oil cleaned should match with the pre-specified cleanup target. This objective and

the set of constraints are mathematically formulated as a mixed integer programming

problem which forms the heart of OSCOM (Grubesic et al. (2017)).
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2.3 Spatial Decision Support Systems

The problems discussed so far (buying a car, booking a hotel room, etc.) do not

have a spatial dimension to them but when problems have a spatial dimension, they

become not only complex, but also involve multiple criteria to be considered before

making a decision. Per Densham (1991), a Spatial Decision Support Systems (SDSS)

conceptually is an integrated system of database management systems, analytical

models, graphical displays, and the expert knowledge of decision makers. An “easy-to-

understand” interface doesn’t necessarily be an “easy-to-use” and vice-versa. When

a high priority is imposed on usability or ease-of-use of the system, there could be

some compromises made on the functionality. Uran and Janssen (2003) suggests that

a SDSS should have a user-friendly interface and simultaneously be comprehensive

enough to cover a wide range of possible scenarios. In comparison to a conventional

DSS, Densham (1991) goes on to explain the specific characteristics that a SDSS

must provide which entail the following: 1) providing spatial input mechanisms, 2)

represent complex spatial relations, 3) inclusion of analytical techniques unique to

spatial analysis, and 4) provide output in spatial forms such as maps. Our system

is definitely a combination of these characteristics, and hence can be addressed as

a spatial decision support system. Densham (1991) suggests that, in assisting the

decision makers with complex spatial problems, the spatial decision support systems

must support a decision research process, and not merely a decision-making process.

The former refers to an environment, where the system empowers and enables deci-

sion maker in not only refining the definition, but also helps in generating alternate

solutions aiding the decision maker to investigate the trade offs between conflicting

objectives. The system developed for this thesis makes sure that it provides the

end-users with multiple clean up targets, where trade-offs among the number of boat
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ramps dispatched can be investigated visually, thereby making it easy to calculate

the operational costs. Also, Li et al. (2001) have suggested that, quantitative infor-

mation, when expressed visually in the form of maps, charts, and graphs exploits the

natural human ability to understand and detect the visual patterns.

The two crucial concepts that contribute to a successful SDSS were communicated

from the works of Halbich and Vostrovskỳ (2011); Uran and Janssen (2003); Wallace

and De Balogh (1985). The first concept talks about the structure and attributes

of the system while the second one talks about the user experience which eventu-

ally forms a base for a successful SDSS. The spatial data, spatio-temporal analysis,

knowledge database, and the way in which these are combined together, form the

components of the first concept. The second concept of user experience can be split

into two components such as the user interface, and the perceived usefulness of the

system as noted by Chang et al. (1997); Halbich and Vostrovskỳ (2011). It has to be

noted that the two concepts are not exclusive but rather dependent on each other.

For example, Uran and Janssen (2003) think that adding too much functionality to

the system has been found to show negative impacts on the user experience . Also,

uncertainty about the system renders the user experience negatively which adds to

the lack of success of the SDSS. There has been a great emphasis on the user interface

in the proposed architectures of the systems as it goes hand in hand with the ease of

use, and there by the user experience (Rizzoli and Young (1997); Densham (1991);

Wallace and De Balogh (1985)). The user interface should guide the user through the

decision process. For example, whether the next step is self-explanatory or not (Uran

and Janssen (2003)). Per Chang et al. (1997), the development phase of the user

interface must be carefully outlined; especially if the SDSS involves a combination

of multiple models and each of them requires input from the user. In our system,

the design and development of the user interface has been given utmost care and
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importance as it involves a combination of multiple models and sufficient care has

been taken such that it is easily understood to the targeted user.

According to Uran and Janssen (2003), uncertainty of the model output, and the

appropriateness of solving the decision question, are the major factors for DSS’s not

being widely accepted. For a given SDSS, the user might question the validity of

the simulator or even the underlying data driving the models. To alleviate those

uncertainties, it is always a wise choice to incorporate a tested and validated oil

spill model into the SDSS and the same holds good for spatial optimization models.

For example, Keramitsoglou et al. (2003) have used a third party oil spill model

into their SDSS. This incorporation of the oil spill enabled the users to be more

flexible in specifying accident scenarios for a specific type of spill. In our system,

we make use of BLOSOM which is a well tested and validated model, in order to

simulate spill scenarios. Hence the question of validity of the spill is nonexistent.

In some cases, the SDSS may get technically very robust and surpass the general

capabilities of the average user. Chang et al. (1997) have designed and developed

a GIS based decision support for chemical emergency preparedness and response in

urban environment. The final DSS was very comprehensive which integrated many

specific models to simulate various chemical emergency spills. Every sub-model has

its own input parameters and requires an extensive background in the areas related

to the sub-models. This creates a requirement that the user who wants to use the

system needs to have a very high level of understanding about all the models, and

the system itself. As Uran and Janssen (2003) noted, the drawback of these systems

happens to be that no matter how complex the system is, it is not optimal i.e., the

ease-of-use of the system for a specific purpose becomes hard as the functionality and

the complexity increases. Keramitsoglou et al. (2003) also mentions the SDSS’s have

been successful when they were designed and developed for the targeted user.
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There has been a vast amount of research in spatial decision support systems and

analytical DSS’s in general. However, I could not find much literature which had a

temporal aspect to it. Though Wang et al. (2017) has spoken about some methods

and ways that can serve the purpose of visualizing spatio-temporal data, applying

those concepts in a decision support system is hardly seen. In our system, we make

use of the slider and represent the spatio-temporal data over a course of time, there

by answering the question of when along with that of where.

Now that we added a spatial dimension to our decision making process, I searched

for literature which involved testing the effectiveness of SDSS. Similar to the work of

Sharda et al. (1988), I found out that there was a laboratory experiment conducted

by Crossland et al. (1995) to investigate the effects on decision-maker’s performance

when a Geographical Information System (GIS) was used as a SDSS. According to

Crossland et al. (1995), a SDSS is said to influence the decision maker positively if

1) the SDSS users reached a more accurate solution, or 2) attained a solution faster,

or a combination of these when compared to their non-SDSS counterparts. From

the results, it was clear that the subjects who used the SDSS were more efficient

and faster in reaching an accurate solution, mostly because 1) the SDSS provided

interactive, and colored graphical displays of information, than mere black and white

text, and 2) the information presented by the SDSS made it more easy to grasp the

problem to be solved. This evidence corroborates the effectiveness of our SDSS.

The process of effectively visualizing the geographical systems on maps commonly

known as Geovisualization was elaborated by MacEachren et al. (2004) where they

state that it is a process which helps to meet the scientific and the societal needs

by leveraging the data resources. In the area of crisis management, Geovisualization

plays an important role as it helps in assessing, integrating, and visualizing map-based

displays which contains multi-source geospatial information. Our system makes use of
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complex geo-spatial data which is obtained from multiple sources. Also, similar to the

architecture used by Kozal et al. (2004) in his DSS for drought assessment, our system

has data, information, knowledge, and presentation layers. The data layer consists of

all the shape files. The information layer, accesses this data and processes it in the

optimization module and thereby converting it into meaningful information. Later,

this information is used by the knowledge layer, which performs necessary actions

such as applying power transformations, file optimization, etc. The presentation

layer, makes use of the processed data and visualizes it to the end-user who will

then learn from the system. Though their architecture is similar to our system, the

naming of the layers however, varies in our case. Rao et al. (2007) have developed

a web-based GIS DSS for managing and planning the United States Department of

Agriculture (USDA)’s Conservation Reserve Program (CRP) which makes use of Java

servlets for handling requests from the clients and retrieves the required information,

and displays it to the user. The appreciable ideas of their system include the ability

to host the DSS on a web server, and making use of the Geographical Information

System (GIS). In our system, we went a bit further and incorporated javascript into

our system which essentially removes the need for java servlets which can still make

use of GIS, and makes it easy to be hosted on a web server.

2.4 DSS in Emergency Response

DSS have evolved and began to find their uses in the field of emergency response.

There have been some works in the past with respect to the development of decision

support systems exclusively in emergency management. However, it has to be noted

that the core component of the systems discussed in the following section is the

“simulation” modeling packages which predicts the course of the hazard.
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2.4.1 Efficient use of Simulation Modeling

Vescoukis et al. (2012) have developed a DSS to tackle the problem of crisis man-

agement, esp. in regard to forest fires. The similarities of this work with my system

include the use of geo-spatial datasets, and the use of simulation packages to predict

the fate of the hazard. However, their system does not deal with the response and

recovery of oil spills. Another research in this area was done by Wang et al. (2008)

who addressed one of the widely seen problem of evacuation during a fire emergency

in huge buildings. In their work, Wang et al. (2008) have developed a system which

makes use of a graph layout which takes from with the help of decision nodes located

at various points of interest in the building. This DSS however, makes use of the

probabilistic hazard model by Elms et al. (1984) to predict how the hazard (fire)

spreads.

Buildings are on land, but when it comes to oceanic environments, emergency

events most commonly faced by the United States Coast Guard (USCG) are the

Search and Rescue (SAR) operations. Once a person or a ship in the ocean goes

missing, the response teams are dispatched to spot them and save them; but in the

meanwhile, the location of the person or the ship would have changed drastically

due to the currents in the ocean. Also, this difference in the distance increases

during the times of hurricanes, or cyclones as the currents move more faster. Similar

to Wang et al. (2008), a DSS was developed by Guoxiang and Maofeng (2010) to

tackle the SAR operations effectively. Here, they make use of an Ocean Environment

Database which helps the system to predict the drift behavior based on various oceanic

factors. Another notable work in this area is by Zheng et al. (2010) where they

developed a “Service Oriented Architecture” based DSS which can assess short-term

risks from storms at the coastal area of Shanghai. For this system, they have used
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a “Hydrodynamic” model which is materialized by DHI Mike 21 software package

developed by Warren and Bach (1992) which was also used by Lin et al. (2008).

In our system, the fashion in which the oil spill (hazard) spreads, and drifts over

time in the ocean is modeled and visualized by the simulation package BLOSOM

which takes into account, a lot of factors such as the temperature, pressure, salinity,

winds, etc. at the spill site and then predicts the movement of the oil in the ocean.

Since, this computation happens beforehand, the OSCOM model knows exactly where

the oil is and hence makes it easy to find out the boat ramps from where response

can be mounted and dispatched.

2.4.2 Oil spill response and cleanup

One of the best works on oil spill response was that of Ventikos et al. (2004) in

which the authors talk about a decision-driven process by which one can effectively

tackle the problem of oil spill response by choosing the right kind of equipment for a

given spill. This way, dispatching unnecessary response equipment can be eliminated

there by saving time as well as huge costs in an operational environment. Ventikos

et al. (2004) go on to speak about oil spills as one of the facets of marine pollution.

Per Ventikos (2002), the strategic or tactical planning to minimize oil spillage can

be divided into two major parts: 1) preparedness; 2) control and recovery. Ventikos

et al. (2004) also note that the clean up operations themselves should be well planned

and done very cautiously as they can cause more damage than the spill itself because

of the use of heavy machinery in sensitive spill sites. It is not a good practice to

dispatch the same type of response for any type of a spill. Contingency planning is

a crucial feature and the type and quantity of oil spill are the salient factors that

should be considered when deciding what kind of equipment to be dispatched. As

Ventikos et al. (2004) mention, the very first environment-friendly action when a spill
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occurs is to stop the pollution at the source or origin. The following actions include

containment, and disposal. Tsocalis et al. (1994) have performed a survey on various

response methods for marine oil spill clean up and divided the clean up processes

into marine and shore operations. However, Ventikos et al. (2004) went a step further

and divided the clean up methods into 1) conventional clean up methods, and 2)

alternative/advanced cleanup methods. The conventional methods enlisted mechan-

ical methods, chemical methods. Vergetis (2002) further illustrates the mechanical

cleanup methods which consists of barriers/booms,skimmers, heavy oil skimmers,

skimmer vessels, and sorbent materials. The chemical methods include dispersants,

and other chemicals such as emulsion breakers, gelling agents, burning agents, neu-

tralizing agent, sinking agents, etc. The alternate/advanced cleanup methods include

bioremediation, in situ burning, and other advanced methods such as “cleanmag”

which uses magnetic materials there by resulting in high clean up. Ventikos et al.

(2004) state that since conventional methods are the most primarily used methods,

the selection of appropriate equipment must be decided based on 1) wave height; 2)

current velocity; and 3) viscosity of spilled oil.

In our system, the vessels dispatched from the boat ramps act as cleaners and

recover oil from the ocean. In other words, we do not focus on the type of machinery

used to recover the oil. Rather, we focus on the capacity of the vessel which specifies

how much oil can the vessel hold and this is shown as “vessel capacity” for each boat

ramp which is obtained from the boat ramps dataset. The idea here is that once the

vessels fill up their containers with oil to their capacity, they go back to the boat

ramp location (from where they were dispatched) by the end of the day and unload

the recovered oil.
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2.5 Vulnerability Indexing

Environmental Sensitivity Index (ESI), originally developed by Gundlach and

O. Hayes (1978) tells us how sensitive a specific region of a coastal area is against

an oil spill based on the value assigned to the region which is calculated based on

many factors including the types of shores such as exposed rocky lands, mixed sand

and gravel beaches, salt marshes and mangroves, etc. Getter et al. (1981) also made

a study in this aspect considering the distribution of protected and valuable, oil-

sensitive coastal fish and wildlife along the coastlines of Shelikof Strait (Alaska),

Puget Sound (Washington), and southeastern Florida which include marine mam-

mal haul-out, pupping areas, terrestrial mammal feeding areas, salmon and herring

streams, nesting beaches, etc. This type of index helps the officials in making deci-

sions as to predict the potential impact of oil along a shoreline and to allocate the

resources accordingly. However the index values were given mostly based on the aerial

surveys and hence introduced some error. Jensen et al. (1990) have eliminated this

error, with the help of remote-sensing data obtained from SPOT satellite imagery

and combined the ideas of Gundlach and O. Hayes (1978) and Getter et al. (1981) by

employing planimetric basemaps using Geographical Information System (GIS).

Later, Boruff et al. (2005) has pointed out that the erosion hazards occurring at

the coastal counties of the United States is not only due to the physical factors, but

also includes social, and economic factors. According to Boruff et al. (2005), the Gulf

Coast is a bit tricky as the erosion vulnerability here varies widely across counties.

In some counties, the physical vulnerability is high whereas across some other coun-

ties, socioeconomic vulnerability is high. Adding to the thought of including social

indicators in vulnerability indexing, Jepson (2007) has come up with the concept of

measuring vulnerability for the fishing communities of the Gulf Coast. According to
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him, the social indicators and measurements that deeply impact the vulnerability of a

fishing community include employment opportunities, and the community well-being.

Keeping in mind the socioeconomic and the natural/physical factors, de Andrade

et al. (2010) studied the coastal zone of the Brazilian state of Maranhão, especially

the Itaqui-Bacanga port Complex (IBC) as it is an area prone to oil spills and other

forms or marine pollution resulting from storage, cleaning, etc. In their study, not

only the geomorphological factors, but also income, education, and the dependence

on fishing of the local population were considered. Also, Garcia et al. (2013) came up

with an Oil Spill Hazard Index (OSHI) which is calculated based on the hydrocarbon

emissions from the maritime traffic along the whole Italian coastline and waters.

This index is an aggregation of 1) the hydrocarbons handled at ports, and 2) the

hydrocarbons in transit. The entire Italian coastline (8660 km) was divided into 335

coastal stretches and an OSHI value was given to them.

Per Aps et al. (2016), mapping 4,000 km of the Estonian shoreline and classifying it

according to the NOAAs ESI scheme would be time-consuming and expensive. Hence,

the Aps et al. (2016) have adapted the ESI maps to Estonias existing shoreline and

classified it geologically according to the new scheme (Orviku et al. (2010)) which

they named as Regional Environmental Sensitivity Index (RESI). According to this

new scheme, the Estonian shoreline divided the cliff into shores among sensitivity

classes ranging from 1 to 5, with most of them falling under class 5 implying that

they are the most difficult to clean up. Some examples of them being the mixed

sediments on the beach, and those regions that have no access from the land.

However, since our area of study is the Gulf of Mexico, we stuck to the ESI scheme

although the scheme itself does not play any role in the decision making process but

merely acts as an additional layer for the user to know how sensitive the region is.
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2.6 Effective Visualization

Now that we know how the oil moves when a spill occurs, the goal is to effectively

visualize the spilled oil. When oil is floating on water, it actually spreads over a vast

surface area and forms a layer which looks, darker if more oil parcels are concentrated,

or lighter if fewer parcels are concentrated in that area. After going through the works

of Malik et al. (2011), and Scheepens et al. (2011), we decided to use density estimated

heat maps to visualize the oil. One of the notable works which combines the concepts

of decision support and emergency response is the Run Watchers, developed by Konev

et al. (2014) who make use of simulation-based approaches to design protection plans

for effectively managing floods. However, in our system, we rely on the simulation

by BLOSOM to find out the best possible trajectory of the oil movement over the

course of the blowout for the given oceanic conditions. We do not interfere with the

simulation process at any point whatsoever.

Wang et al. (2017) speak about how huge datasets having spatial, and temporal

attributes can be visualized effectively. In their work, they talk about how interac-

tive and dynamic maps can visualize spatial data, and line charts, and animation

technology can visualize time-series data. Also, they go on to elaborate on how flow-

map methodologies illustrated by Robinson (1967), and Tobler (1987) can visualize

spatio-temporal data. In our system, the data generated is a combination of spatial

and temporal attributes hence, we use maps obtained from openstreetmap.org (Open-

StreetMap contributors (2017)) with the help of leaflet.js (https://leafletjs.com/)

making them interactive. For representing the flow of time of the spatial data, we

use a slider with which one can travel through the course of the blowout over time

and see how the oil drifts in the ocean. However, it has to be remembered that this

spatio-temporal data is obtained as a result of simulations run on BLOSOM.
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2.7 Decision Support Systems in Oil Spill Response

The early works of the application of the DSS to the problem of planning for oil

spills date back to 1992 when Belardo and Harrald (1992) have developed a GDSS for

effective planning and managing of the response activities required when catastrophic

natural disasters like earthquakes, and oil spills which pose a serious threat to the

society occur. Their work was done subsequently after the EXXON VALDEZ oil spill

in May 1989, hurricane Hugo in September 1989, and earthquake Loma Prieta in

October 1989. Belardo and Harrald (1992) have stated that the lack of preparedness,

and ineffective pre-crisis planning were the main factors that contributed to a failure

in the response efforts. They proposed a system which contains six components such

as 1) GDSS Interface, 2) Cue Evaluator, 3) Knowledge Base, 4) Scenario Manager,

5) Model Manager, and 6) Group Process Manager. This system was simultaneously

accessed by a group of individuals, after which some discussions and debates took

place, and they reached a general consensus thereby making sure that the decision is

taken in a collaborative way. Our system is not a group DSS but can be accessed by

a group of individuals (most likely the decision makers and other stakeholders) online

through a URL.

Another notable work in this area was done by Keramitsoglou et al. (2003) in

which the authors developed a DSS which focuses on the marine pollution caused by

oil spills in the Mediterranean Sea, esp. in the Region of Crete which is susceptible to

environmental damage from oil spills because of its ecological features , and econom-

ical activities that happen in that area. The DSS developed as a part of this work

involves detecting an oil slick with the help of ERS-1 satellite’s SAR imagery which

is later sent to an assessment module where the extent of emergency of the spill is

assessed and the resulting information forms the base for planning the response. The

20



movement and evolution of the oil spill are calculated and simulated by the General

NOAA Oil Modeling Environment (GNOME) developed by Beegle-Krause (2001)

based on the type, size, location of the spill, wind and sea current characteristics of

the spill location. In our system, we reduced the process of i) detecting the oil spill

from the satellite imagery; and ii) using a simulation package (GNOME) to assess the

extent of the spill into just one step by eliminating the need for a image processing

engine with the help of BLOSOM.

Zahra Pourvakhshouri and Mansor (2003) reviewed some of the decision support

systems which are related to oil spills and listed out some of the important character-

istics in them which include: 1) defining the present conditions of the environment,

2) identifying the conflicts or problems faced by the environment, and 3) introducing

alternative solutions. Our system has gone some steps further and apart from just

introducing the alternative solutions, it also showcases the intensity of the spill when

it hits the coastal areas with the help of an impact grid.

Speaking of impact grid, Pourvakhshouri et al. (2006) have developed a DSS in

which the main idea was to divide the 180 km coastline of the two states of Negeri

Sembilan and Melaka, in West Malaysia, into blocks of 10 x 10 km2 called “coastal

cells”. Each of those cells was ranked according to their corresponding human and

environment sensitivity based on the points from experts for criteria such as 1) coastal,

and physical characteristics; 2) biological, and ecological resources; 3) human health

and use; and 4) significant sites. Later, an overall score for each cell was calculated

which was termed as Coastal Prioritization Index. The underlying assumption of this

prioritization was that not every part of the coastline may be of equal importance

when it comes to emergency situations and hence when the oil hits the shore, only

those cells which have a high priority index or ranking would be cleaned up primarily.

However, in our system, we do not prioritize the coastline based on the risk resources
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and bias our cleanup. Rather, we focus more on the overall optimal cleanup of the

oil spill. Also, our coastline of 2700 km was divided into cells of 2 x 2 km2 that

resulted in 18,478 grid cells which collectively formed our impact grid. However, we

still employ the ESI in our SDSS to locate the regions with high and low ESI index,

based on the sequential color scheme chosen.

Liu and Wirtz (2007) have rightly mentioned that “...a golden rule of oil spill

contingency management is, therefore, to remove as much oil as possible from the sea

surface in order to minimize the onshore impact...”. In their work, they make use of a

second order fuzzy comprehensive evaluation (FCE) logic which when confronted with

a group of stakeholders via a group DSS would enable reaching a general consensus

thereby making the process of decision making easy. However, it has to be noted that

more emphasis in this work has been given to decision making at every step in the spill

mitigation process including not only the stakeholders, but also the environmentalists,

and the fishermen. This would delay the decision process, especially when a conflict

of decision occurs, and may result in a biased decision which favors the economical

growth ignoring the ecological degradation. In our system, this entire body of decision

making has been assimilated into the the OSCOM package that decides which boat

ramps should launch response and to which spill sites; to achieve maximum cleanup

of the spill, which was the golden rule of oil spill contingency management that Liu

and Wirtz (2007) were trying to achieve.

2.8 Design Requirements

After going through various works on DSS’s and SDSS’s discussed so far, and the

approaches the authors used, several drawbacks were identified and the challenge was

to design a SDSS which would not just show data on the screen but eliminate the

drawbacks observed and assist the decision makers in making a wise and informed de-
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cision when a blowout occurs. Finally, the requirements listed below were considered

pivotal during the entire development process of the SDSS.

Design Requirements:

1) BLOSOM shapefiles contain lots of rows each of which refers to an oil parcel. The

primary requirement was to show each of these parcels as points on the screen. The

same applies to the boat ramps data as well except that they were shown as stars

because they play an important role of recovering oil. For this, we used the map

obtained from openstreetmap.org with the help of leaflet.js and plotted the points on

the map.

2) Since the data had a temporal aspect to it, a major requirement was to show how

the data varied with time in both backward and forward directions. For this, a slider

was chosen as the tool.

3) Once Gurobi listed the cleaned parcels for each day, the aim was to differentiate

the cleaned parcels from the uncleaned ones. For this purpose, we used shades of

purple for uncleaned parcels and green for cleaned parcels.

4) The oil parcels belonged to different categories based on their presence in the ocean

(surfaced, sunk, beached, etc.). To filter only a desired category of oil parcels, a drop

down menu was added to the map.

5) The decision-maker was interested to know the boat ramps which were activated.

As boat ramps were already shown as stars, we had to differentiate the active ones

from the inactive ones and therefore, we used hollow stars for inactive ones and filled

stars for the active ones.

6) OSCOM performs spatial optimization on the boat ramps along with the oil parcels

data for a specified cleanup target which usually was 95% but the decision-makers

were curious to find out how does altering the cleanup target makes a difference in

the number of boat ramps dispatched and the amount of oil cleaned up. Hence, we
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ran OSCOM for clean up targets of 75%, 80%, 85%, 90%, and 95% and added a radio

button menu on the map so the user can choose the desired level of cleanup. We also

included an option of 0% cleanup in which no oil is cleaned to study the condition

where no oil is recovered.

7) Now, the user was curious to compare how one cleanup target was different from

the other. Since we had six cleanup targets, we replaced the one map we initially

had with four maps which were all identical. Using six maps would take up too much

space and does not preserve symmetry.

8) Another important requirement was to identify the coastal areas which were heav-

ily impacted due to the spill. When a large number of oil parcels gather in a region,

it is sometimes hard to differentiate the regions with heavy impact from that of low

impact. To solve this, we employed the impact grid that showed us various levels of

impact with the help of a sequential color scale.

9) After the impact grid was employed, the most important requirement was to com-

pare the level of impact for different cleanup targets. Since the impact grid was

initially given a sequential color scheme, the challenge was to visualize the difference

of impact between the four maps. This problem was solved by allowing the decision-

maker to choose one of the four maps as a baseline map with the help of a drop down

menu while others showed the difference of impact with the baseline. Now, the issue

here is that the difference with the baseline can be either positive or negative (for

example, if lesser cleanup target was compared with a higher cleanup target). To

solve this, a divergent color scheme with different colors was used for the other maps

which showed the positive and negative differences while the baseline map retained

its original sequential color scheme.
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10) Once the oil is beached at one particular region, the decision-maker was interested

in knowing how environmentally-sensitive is that region. To show this, a tile layer of

ESI dataset was added to all the four maps which used a sequential color scheme to

differentiate various sensitivity index values.

Finally, to make the system more user-friendly and free of clutter, options have

been provided to the users to toggle various elements and layers (on each of the four

maps) such as legends, impact grid, cleaned and uncleaned parcels, boat ramps, and

the ESI layer.
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Chapter 3

SYSTEM DESIGN

3.1 Overview

The goal of this Spatial Decision Support System is to assist the decision makers

in exploring the various possibilities which can arise when an oil spill occurs so that

they can make informed decisions on what kind of vessels, equipment and response

crews should be dispatched, in what quantity, and from which boat ramps, to opti-

mally reduce the operational costs while maintaining a high cleanup rate.

Figure 3.1: Overview of the proposed Spatial Decision Support System for Oil Spill
Response and Recovery

As shown in the Figure 3.1, the initial screen of the visualization is composed of

four different maps showing the coast of Gulf of Mexico which includes the coastline
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of Texas, Louisiana, Mississippi, and Florida. The main components of this decision

support system are: 1) slider, 2) cleanup target selector, 3) boat ramps, 4) Oil type

selector, 5) the oil parcels, 6) Baseline Map selector and 7) the impact grid.

3.2 Data Generation

At first, simulations are run on an integrated oil spill modeling package system

called Blowout and Spill Occurrence Model (BLOSOM) (Sim et al. (2015)) which is

designed to simulate offshore spills that occur in deep water and ultra-deep water

blowouts. This model generates the simulation statistics, and simulation values upon

adding a recorder to record the simulation at specified time intervals. This data is

generated in various formats which include .txt, .csv for statistics, and .shp, .txt, .csv

for values. For this system, we use the .shp (shape file) format.

For the simulations to run, important parameters like “Bathymety” and “Am-

bient” can be set by selecting the appropriate .tif bathymetry raster file, and .nc

(NetCDF) ambience file for that particular day or period. The former indicates the

depth of the water at a given point and the latter indicates the ambient conditions

of the ocean at that point of time. The blowout parameters, such as the duration

of the blowout, the location where it happens and the type of crude oil emitted and

their corresponding physical properties can also be set in the “Blowout” tab. The

values for diffusion, dispersion and weathering can be set in the “Advanced” tab.

This simulation’s name, the required fields to be recorded, the format of the output

files to be generated, etc. can be specified in the “Model” section. Once all the

required parameters are set, the simulator is run and the shape files are generated

in the designated folder. Each shape file that is generated is actually a collection of

files with the file name as a common prefix. These other files supporting the .shp

files have the extensions .dbf, .prj, and .shx. Then, spatial optimization model “Oil
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Spill Cleanup and Operational Model” (OSCOM) (Grubesic et al. (2017)) is used

whose main objective is to minimize the total time and cost spent in dispatching the

cleanup equipment. This objective is achieved against a set of constraints such as

1) the capacity limitation for cleanup equipment at each staging area, 2) limitations

on the amount of oil that can be removed by using cleanup equipment, which should

not exceed the total volume of the spill within the containment area of each site, 3)

a spill site should be cleaned up only if a vessel is sent to its containment area, 4)

the total amount of removed oil should achieve the pre-specified oil cleanup target,

etc. A cleanup target is usually a value expressed in percentage that specifies the

amount of oil recovered. For example, a 95% cleanup target indicates that 95% of the

entire oil that has been ejected into the ocean would be recovered by this model. This

model generates the model files (.lp format) considering the shape files generated by

the simulator, and the boat ramp shape files provided as inputs. Later, these model

files are sent to a mixed-integer programming solver Gurobi (Gurobi Optimization

(2016)) which will optimize the model files and generates a solution file, and a log

file in .txt format. The log file contains the entire log of the solving process, and the

solution file contains information which specifies the boat ramps dispatched and the

spill sites to which they have been dispatched. Also, the oil parcels which have been

cleaned up are also listed down in the solution file.
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Figure 3.2: Blosom’s simulation flow

3.3 Data Description

In the previous section 3.2 we spoke about how data is generated and what are

some key aspects of it. Here, we go in detail and explain the different attributes of

the main datasets used.

3.3.1 BLOSOM Data

BLOSOM usually generates data which has about 41 attributes. However, we are

primarily concerned with only few key attributes that are mandatory for the SDSS.

Those important attributes are listed down in the Table 3.1

In the above Table 3.1, ID of the parcel is always guaranteed to be unique for the

duration of the simulation, and the “STAT CODE” values 0, 1, 2, 3, and 4 indicate
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Short Name Long Name Data Type Units Description

CURR TIME Current Time string UTC
The last time that the parcel

had an active status.

PARCEL NUM Parcel Number int – ID of parcel

STATUS Status string – water column or surfaced or

beached or sunk

STAT CODE Status code int – Value ranging from 0 - 4

LONGITUDE Longitude double °E Longitude of parcel.

LATITUDE Latitude double °N Latitude of parcel.

Table 3.1: Key attributes of shapefiles generated by BLOSOM

water column, surfaced, beached, sunk, and out of bounds respectively wherein water

column refers to parcels active within the water column, surfaced refers to parcels

active on the surface of the water, beached refers to inactive parcels that collided with

dry land, sunk refers to inactive parcels that collided with the bathymetry layer, and

finally, out of bounds refers to inactive parcels that have drifted out of the boundaries

of the simulation.

3.3.2 Impact Grid Data

The impact grid dataset mainly comprises of 18478 polygons with each of them

having a unique ID. Other important attribute of this dataset is Total S which signifies

the number of datasets that fall under each polygon.

3.3.3 Boat Ramps Data

Similar to BLOSOM, even boat ramps dataset contains many attributes. This is

mainly because this dataset too has been aggregated by combining multiple datasets.
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Short Name Long Name Data Type Units Description

RampID Ramp ID int – Unique ID of the Boat Ramp

VesCap
Vessel

Capacity
double bbl Amount of oil the vessel can hold

EBcap
Exclusion Boom

Capacity
double bbl

Number of Exclusion Booms the

vessel can deploy

Table 3.2: Key attributes of the boat ramps dataset

The crucial attributes of the boat ramps dataset are listed down in the Table 3.2

3.4 Spatial Optimization and Data Solving

Once the shape files are generated from the simulation, they are sent as inputs to

the OSCOM model. This model generates the output in the form of a .lp model file

for each day of the simulation for a given cleanup target. These .lp model files are

again given as an input to a mixed-integer programming solver, Gurobi (Gurobi Op-

timization (2016)) in the same order in which they were generated, which creates

a log file (.txt), and a solution file (.txt) for each day of the simulation. Now that

we have the shape files, the .lp files, and the solution files available for each day, we

have sufficient data to find out how the oil parcels have drifted, from where was the

response launched, and what parcels have been cleaned by the equipment, for that

particular day. The work flow of this implementation is shown in the Figure 3.3

The crucial aspect that has to be observed here is that some of the oil that has been

spilled on Day 1 is cleaned by the dispatched response at the end of that day. Hence,

the cleaned parcels on day 1 are not present on the following day (day 2). This implies

that the shape files of the following day (day 2) should not contain the oil parcels that

have been cleaned or skimmed the previous day (day 1). Therefore, with the help

of the solution file generated by Gurobi, cleaned oil parcels are identified with their
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unique parcel numbers, and are removed from the shapefiles of the following day. For

this, a copy of the following day shapefiles is created with the suffix updated. Also,

to easily identify which oil parcels have been cleaned, a new copy of the current day’s

shapefiles is generated with an additional field ’Cleaned’ that is set to a value of 1 if

the corresponding oil parcel is cleaned, or 0 otherwise. These shape files are renamed

with the suffix ’ cleaned’. The same procedure is followed for all the shapefiles that

follow day 1. This process is depicted in the Figure 3.3
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Figure 3.3: Cumulative removal of Oil Parcels
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3.5 Data Processing

If the BLOSOM simulation is recorded at intervals less than 24 hours, say 4 hours,

then we have 6 sets of shape files for each day. If the interval is set to 2 hours, then

the simulation is recorded for every 2 hours and 12 sets of shape files are generated

for each day of the simulation. However, this is done only to study the movement

of oil parcels at every stage of the simulation and does not serve any purpose other

than giving the user a continuous moving effect of oil along with time. Since, this

intermediate oil is not cleaned until the slider reaches the 1st hour of the following

day, a “Cleaned” attribute is added to these shape files separately and the value is

set to 0 indicating that these parcels are not cleaned at that point of time and are

saved as new shape files with the suffix cleaned.

Once the data is solved and cleaned, and updated shape files are generated for

each day of the blowout for every cleanup target, only the cleaned shape files are put

into a directory. If, the simulation recording interval is 24 hours, then there won’t be

any intermediate files. Otherwise, if the interval is anything that is less than 24 hours,

all those shape files are merged, and converted into a .csv file which has only those

attributes that are required by the web application. This additional step of removing

unnecessary attributes makes the files less heavy and reduces the processing time

required by the web application. Since, there are five clean up targets, five .csv files

are generated, one for each of the clean up targets added as a suffix to those file

names. This is pictorially represented in the Figure 3.4. The optimization module

shown in the Figure 3.4 consists of all the processing that happens in the Figure 3.3.
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Figure 3.4: Work-flow of the final csv files generation
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3.6 System Architecture

Since all the shape files have geo-spatial data, the core visualization involves dis-

playing geographical maps (obtained from openstreetmap.org (OpenStreetMap con-

tributors (2017))) visualizing the oil spill with the help of a time slider, highlighting

boat ramps from where the response crews and equipment is sent out, and envisage

how deeply different areas of the coastline have been impacted (with the help of an

impact grid) based on the duration and intensity of the blowout.

Figure 3.5: Architecture of the SDSS
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The system designed and developed for this thesis is a combination of the user in-

teraction with the visual interface which draws its data from the optimization module

as shown in Figure 3.5. The user interaction comprises of all the actions performed

by the user on the visual interface such as moving the slider, zooming in and out,

choosing desired cleanup targets, choosing desired baseline map, choosing type of oil

parcels to be displayed, toggling legends, etc. The visual interface on the other hand

is a combination of several Javascript files coupled with HTML and CSS files with the

given data. The optimization module consists of BLOSOM and OSCOM as key play-

ers which simulate the spills, and spatially optimize the response efforts respectively

along with Gurobi which helps in solving the model files. All of the components and

their functions are described in the following Section 3.6.1

3.6.1 Visual Interface and User Interactions

After the application is loaded in the browser, the initial screen showing the Gulf

of Mexico on four dynamic maps obtained from Open Street Map (OSM) servers are

loaded. The user can adjust the zoom level to watch the oil particles more clearly. It

is possible to zoom in or zoom out based on the mouse rollover or with the help of

“+” and “-” symbols present on the map.

Slider: A time slider which enables the user to traverse the timeline of the blowout

is provided at the bottom of the screen in the center. When the user moves the slider

to a desired point of time, the position of all the oil parcels at that particular time

is visualized in the form of a density heat map. These oil parcels are visualized on a

day-to-day basis. It has to be noted that the difference between one time step of the

slider and the next symbolizes the duration of one day. Initially, the idea was to show

ticks on the slider to symbolize the beginning of each day but this is not a good idea
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because as the number of days of the simulation increases, the number of ticks on

the slider increase making it too cluttered thereby spoiling the visual appeal of the

slider. However, the time of the day is shown adjacent to the slider to avoid confusion.

Figure 3.6: Time slider which helps the user to navigate from 15th April through
28th May

Oil Type Selector: The user can select the type of oil parcels to view on the

screen with the help of the dropdown provided just beside the slider on the left side.

The data has five types of oil parcels namely “Water Column”, “Surfaced”, “Sunk”,

“Beached”, and “Out Of Bounds”. For example, when the user chooses “Water Col-

umn”, oil belonging to the other categories disappears leaving only the Water Column

parcels on the screen.

Figure 3.7: Helps to choose which type of spill parcels to display
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Cleanup Target Selector: There is a radio button menu at the bottom right

of each of the four maps which helps the user to compare and contrast how the spill

proceeds and impacts the shore for different cleanup targets. As of now, we show 75-

95% cleanup percentages along with 0% cleanup signifying no cleanup. For example,

the user can choose a clean up of 75% on map 1, 85% on map 2, 90% on map 3, and

95% on map 4. This way, different spill scenarios can be observed closely. The key

differences between each of those cleanup targets would be the number of boat ramps

from where the response has been dispatched, the amount of oil parcels cleaned, and

the impact of oil on the shore. The assumption here is that 95% cleanup cleans out

more oil than 90% cleanup, and 90% more than 85%, and so on.

Figure 3.8: Helps to choose a specific type of clean up target in one map thereby
enabling comparison with other maps

Oil Parcels Legend: To facilitate the user with the magnitude of density of the

oil parcels, a legend is placed at the bottom right of the screen showing various colors

and their corresponding percentage of proximity of the oil parcels. However, it has

to be noted that this proximity varies with the zoom level. For e.g., the particles

may look more cluttered when observed from a higher altitude, and hence a darker

shade is observed; but if the same oil is observed from a lower altitude, they appear

far apart in the ocean, and hence a lighter shade is given. To show oil that has been

cleaned,“green” color is used. This legend can be seen in the figure 3.9

39



Figure 3.9: Shows how the color varies with the density of the oil parcels

Impact Grid Legend: To help users in understanding the magnitude of the

number of oil parcels in each cell (polygon) of the impact grid (discussed later), a

legend is placed at the bottom right of the screen. This scale consists of a sequential

color scale with five classes which show five shades of Brown varying from a lighter

shade to a darker shade. Each color represents a color bin in which the count for a

given polygon falls when the dataset is divided at equal intervals. If there is no oil

present underneath a given polygon, a white transparent color is given to the polygon.

This legend can be seen in the figure 3.10

Figure 3.10: Shows how the color varies with the number of oil parcels under each
polygon
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Boat Ramp Legend: A legend is placed at the bottom right of the screen which

shows two stars of black color, one filled and one empty signifying active and inactive

boat ramps respectively. This can be seen in the figure 3.10

Figure 3.11: Filled black star represents an active boat ramp while the empty star
represents an inactive one

ESI Tile Layer In the system we developed, the ESI data is visualized in the form

of line segments along the shoreline of Gulf of Mexico and different sensitivity/index

values are shown with the help of a sequential color scale with ten classes of color

red. The higher the index value, the darker the shade. Similarly, the lower the value,

the lighter the shade. This would help the decision maker in prioritizing the areas to

which the response has to be dispatched and also helps in analyzing and determining

the kind of response to be dispatched depending on the type of shore. This, however

acts as an additional layer but not as a player in the decision making process. This

layer can be seen in the Figure 3.12
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Figure 3.12: ESI layer around Bay Saint Louis area showing shades of light red for
less sensitive areas and shades of dark red for more sensitive areas

Boat Ramps: Several boat ramps are located across the coastline of Gulf of

Mexico to serve the purpose of oil recovery and emergency response whenever a

blowout or an oil spill occurs. The rescue vessels sent out through these boat ramps

help in skimming the oil and water mixture and extracting as much oil as possible that

has been ejected during the course of the blowout. These boat ramps are visualized

as black hollow stars (initially) on the maps. They may later turn into a filled black

star indicating that the response has been dispatched from there. Also, when the

mouse is hovered over a boat ramp, its corresponding details are displayed to the

user as shown in the Figure 3.13
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Figure 3.13: Active boat ramps are shown as filled black stars while the inactive
ones are shown as hollow black stars. Details corresponding to those boat ramps are
displayed with the help of a tooltip

3.6.2 Boat Ramps Highlighting

For every day of the blowout, response crews and equipment is dispatched from

several boat ramps to clean the oil through various methods (Ventikos et al. (2004))

such as chemical methods like dispersants, and mechanical methods like skimmers,

exclusion booms, etc. Out of 1143 boat ramps considered for this system, only a

subset of boat ramps are participating in cleanup every day. The main aim here is

to visualize the boat ramps that are dispatching response. As mentioned previously,

a hollow black star represents a boat ramp which is inactive and a filled black star

indicates that the boat ramp is actively participating in cleaning the oil (3.13).Now,
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the question is “How to find this list of boat ramps that are activated?” The answer

to this lies in the solution file generated by Gurobi. Apart from the list of oil parcels

that have been cleaned, the solution file also includes a list of boat ramps which have

been activated on that day of the blowout. This file is parsed again, and a new file

with the fields “BoatRampID”, and “Date” is generated in a csv format. This file is

used by the web application to fetch the list of boat ramps activated on the day the

slider indicates and displays them in red color.

Impact Grid: The impact grid is an imaginary grid across the coast of the Gulf

of Mexico which is a combination of 18,478 polygons, which are mostly squares. Any

oil touching this grid is said to “impact” it i.e., oil has either hit the shore, or caused

some serious damage because it traveled to that location. As the oil keeps floating

and reaches the shore, some of the cells/polygons may contain more oil than the rest.

To visualize this difference in the concentration of oil present in that cell, a sequential

color scale with five classes (where each class denotes 20%) is chosen with the lightest

shade indicating 1-20% damage, and the darkest indicating 81-100% damage. This

impact grid is obtained from a set of shape files provided along with the BLOSOM.

Later, these shape files are converted into geojson format and displayed on the maps.

It has to be remembered that the impact grid coloring is cumulative i.e. if the

grid is impacted in a region say X, on Day 1 and never impacted at X again, the

impact grid continues to show that the region X has been impacted even on Day 10.

The purpose of this is to give the viewer an idea of all the regions that have been

impacted by the spill by the time the spill ends. If only the present day impact was

shown, previous days’ impact would disappear which may leave the viewer with the

assertion that the oil did not impact that region. Similarly, if a region X has been

44



impacted with the oil concentration P on Day 1, and if the same region X has been

impacted with a different concentration Q on some other day in the future, the re-

gion X is colored based on the latest value of the concentration, which in this case is Q.

Figure 3.14: Different colors of the impact grid showing the different concentrations
of the oil

3.6.3 Spatial Join for Impact Grid Analysis

Now that we have the impact grid, the goal is to find out which oil parcels fall

under what cells of the grid, and if there are any such parcels, another goal is to

calculate the number of such parcels under each of those cells. The impact grid is

a set of shape files whose geojson geometry consists of Polygons, whereas that of oil

parcels is Points. Essentially, the goal breaks down to the calculation of number of

points in a single polygon. For this, a spatial join of the polygon layer with the point

layer is performed in python using the python library “geopandas”. The resulting

join file is again a set of shape files which contains the polygons along with the points

that lie under them as separate rows. For example, let us say there are 11 points
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under one polygon “A”. Then we have 11 rows of “A” with each row consisting of

each of those 11 points respectively. Hence, it is required to simplify this set of shape

files to a format more easily accessible with just the “Polygon ID”s, “Date”, and the

“Count”. To achieve this objective, we parse the shape files, find out the number

of points under each polygon for a specific time, sort the whole file in the ascending

order of the polygon ids and write it to a new file after removing the duplicates. This

file contains three fields “Polygon ID”, “Date”, and “Count”. However, it has to be

noted that, the join performed is an inner join and hence the polygons which do not

contain any oil parcels at any point of time during the whole spill are not present in

this file since their count would be zero on every day of the blowout. Sometimes, it

so happens that on a given day, there could be more than one entry for a polygon

during different times of the day. Contrary to the assumption that the count of the

number of oil parcels increases before midnight, there would be situations where the

count was high during the beginning of the day but reduced by the end of the day.

This could happen due to a variety of factors including the water currents, oil being

sunk, or oil being evaporated. In these cases, we consider only the count of oil parcels

at the end of the day even if it is lesser than the count observed during earlier that

day.

3.6.4 Computation of the Impact Intensity

To compute the intensity of the spill at various locations of the grid, we need to

first calculate the highest impact occurring at any point of time during the entire

course of the spill i.e., the maximum number of oil spill parcels in any cell during the

entire blowout is taken from the file previously generated in Section 3.6.3 as Maximum

Impact. Similarly, the lowest impact is taken from the same file as Minimum Impact.
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If a cell is not impacted at all, i.e., if no oil reaches to that point, then the cell

is said to have “zero impact” and not considered. Then, the difference of Maximum

Impact and Minimum Impact is calculated which gives us the Overall Impact Range.

Overall Impact Range = Maximum Impact − Minimum Impact (3.1)

Sometimes, it so happens that the data is not uniformly or not even close to uni-

formly distributed. In such cases, we see a lot of data falling in one particular interval,

thus making the dataset highly skewed. In other words, it is sometimes possible that

a large number of oil parcels fall under some polygons while the other polygons have

only a very few of them. In such cases, we use the Box-Cox transformations explained

in Maciejewski et al. (2013) to make sure that the data is close to normality. The

choice of power in this case is usually 1
2
. However, depending on the dataset, it is

left to the discretion of the user to choose the power required. This can be 1
3
, 1

4
, and

so on if the data is positively skewed, and −1
2

, −1
3

, −1
4

, etc. if the data is negatively

skewed. If the data seems to be not so skewed, then the power would be simply 1.

Hence, Equation 3.1 is modified as:

OverallImpactRange = MaximumImpactλ −MinimumImpactλ (3.2)

where λ is the power chosen.

After the power is determined, the interval range is defined as:

ImpactRangeInterval =
MaximumImpactλ −MinimumImpactλ

Numberofclasses
(3.3)

where the term “Number of classes” signifies the number of classes chosen for the

sequential color scale. However, it has to be noted that the visualization consists of

four maps and if every map has its own impact range interval, then it would not make

up for an authentic inter-map comparison.
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Hence, to avoid this problem, we have standardized the impact range interval among

by computing it for all the maps. This is similar to Equation 3.1 except that the

maximum impact, and the minimum impact values here are the highest and least

values among all the four maps.

OverallImpactRange1−4 = MaximumImpact1−4 −MinimumImpact1−4 (3.4)

where OverallImpactRange1−4 is the overall impact range considering all the four

maps and the MaximumImpact1−4, and the MinimumImpact1−4 are the maximum

and minimum impact values among all the four maps respectively.

Baseline Map Selector: Sometimes there would be a requirement where one

would like to see the contrast between one map and the other three maps. For

instance, let us assume that Map 2 shows 95% cleanup whereas Maps 1,3, and 4 show

75%,80%, and 90% cleanups respectively. Now, how would one determine which

map achieved more cleanup in a desired section (a group of polygons) of the Impact

Grid? Though the underlying assumption is that the 95% cleanup yields maximum

oil removal, it has to be remembered that this assumption holds true with respect to

to the overall spill and does not pertain to a specific area in general. In other words,

95% cleanup would have removed less oil in one section of the impact grid compared

to the 75% cleanup but cleaned up a lot more oil elsewhere in the Gulf of Mexico.

To answer the question, we make use of the baseline map functionality, wherein one

desired map is chosen as a “Baseline” and the others highlight whether the clean up

is better or worse in a particular area by comparing the number of oil parcels in the

respective polygons. The drop-down menu used to select the baseline map is shown

in the Figure 3.15.
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Figure 3.15: Drop-down menu to select the desired map as the baseline map

The formula used to find out the difference in cleanup between the polygons is as

follows:

Cleanup Difference = BPC −RPC (3.5)

where BPC is the count of oil parcels in the polygon of the baseline map and RPC

stands for count of oil parcels in the polygon of the reference map.

Figure 3.16: Legend showing various colors assigned to corresponding cleanup dif-
ference coefficient

This difference is visualized with the help of a divergent color scale with seven

classes which ranges from a darker shade of blue to white and then to a darker shade

of red which can be seen in the figure 3.16. Also, to make the comparison more
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effective to the user, it has been made sure that the views of the reference maps are

changed per that of the baseline map. Also, if any of the other three maps is chosen

as the baseline, the corresponding difference is computed and the legend is updated.

Figure 3.17: Map 2 is the baseline Map and acts as a reference while the other three
maps highlight the cleanup differences based on a divergent color scale varying from
red to blue

Let us consider a scenario where Maps 1, 2, 3, and 4 show cleanups 75%, 95%,

85%, and 90% cleanups respectively. Now using the drop-down menu at the bottom

of the screen, Map 2 can be chosen as the baseline map and the other three maps

show the differences in cleanup in their respective polygons as shown in the figure

3.17. For example, if one of the cells in the baseline map has a count of 20 oil parcels,

and the same cell in any of the reference maps has only 5 oil parcels, it means that the

cleanup target chosen in that particular map has saved the shoreline from an impact

of 15 more oil parcels.
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Now, we can observe in the above figure that even though all of the the reference

maps have a cleanup target higher than the baseline map, there are some grid cells

with the shades of red color. This is because though the higher cleanup targets failed

to perform better than the low cleanup target chosen on the baseline map, they have

succeeded in performing much better cleanup resulting in more amount of oil recovery

in most of the other grid cells.
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Chapter 4

CASE STUDY

Our Spatial Decision Support System has been built to help the decision makers

in making informed decisions when an oil spill occurs. This system takes in the

data generated by BLOSOM simulator and uses it against the Boat Ramps dataset

in combination with the OSCOM model which would give the set of boat ramps

that can actively dispatch response equipment and thereby participate in oil cleanup.

These sets of activated boat ramps change with respect to the cleanup objective.

Here, the underlying assumption is that the greater the cleanup objective, more is

the number of active boat ramps. The spill continues to proceed with time, and the oil

keeps floating in the ocean and eventually hits some parts of the shoreline of the Gulf

of Mexico. To find out which parts of the shore have been “impacted” by the spill,

we use the “impact grid”. This not only gives the users a good idea of the impacted

areas but also enables them to understand the difference of the oil concentration in

each of those cells (or polygons) with respect to the other polygons. Finally, the user

would also be able to compare the different cleanups of the same scenario in one map

with the other maps on the screen.

In this section, I will be demonstrating how our SDSS helps the decision makers

to explore and analyze the various possible outcomes that arise when a spill occurs

by just adjusting the various parameters available on the screen. The collaborators

were mainly interested in combining the BLOSOM simulator with the OSCOM model

which not only brought together two separate entities, but also helped extensively in

making logical and beneficial decisions. One of the main goals here is to be able to

reduce the operational costs and other expenses while simultaneously maintaining a
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high cleanup rate. For the sake of convenience, this system considers only 75%, 80%,

85%, 90%, and 95% cleanup targets. However, other cleanup targets can also be

studied.

4.0.1 Spill Scenario Details

For this simulation, BLOSOM Version: 3.0.0 b37 was used. The simulation starts

on 16th March 2017 at 00:00:00 (hh:mm:ss) UTC and runs for 11 days. The coordi-

nates of the blowout are Lat/Long (WGS84): 30° N −88° E at a depth of -25 m. The

blowout diameter is 0.25 m and the blowout angle is 0° altitude, 90° aszimuth. The

total runtime of the blowout is 3 days. Here, it has to be noted that the “blowout

runtime” is the duration of the blowout alone after which there won’t be any blowout

occurring i.e. no oil would be ejected anymore whereas the “model runtime” specifies

how long the entire simulation lasts which includes how the ejected oil traveled in the

ocean even after the blowout stopped. “Random Walk” horizontal diffusion scheme

has been employed with a “Smagorinsky Coefficient” of 0.15. The entire simulation is

recorded at intervals of 24 hours which would generate output in the form of shapefiles

(.shp, .shx, .prj, .dbf).

4.1 Exploring the fate of the Spill

Initially, when provided with the system, the first activity of the decision-maker

is to explore is the trajectory of the oil spill and the fate of the oil from the day

the blowout started till the spill eventually hit the shore (or) most of it has been

recovered in such a way that the spill is of no serious threat to the environment and

the coastal communities. To study this movement of the oil spill, the decision-maker

starts moving the slider forward and backward. This gives the decision-maker a good

idea of how the spill advanced over time which can be seen in the Figure 4.1. In this

53



Figure, 80% cleanup is shown but can be changed to the desired cleanup target by

clicking on the corresponding radio button menu on the side. Also, on the overview

screen in the beginning, the decision-maker is shown with a lot of entities such as

boat ramps, impact grid, ESI tile layer, and the option to view only the cleaned or

the uncleaned parcels which he/she can choose to toggle them on/off if need be. The

purpose of this toggle feature would be to provide the user with much more clarity

and a better view than compared to the one when all the elements are turned on.

In the images shown in the later sections, elements that are not necessary to those

scenarios have been toggled off for the reader’s convenience.
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(a) Day 1 (b) Day 2

(c) Day 3 (d) Day 4

(e) Day 5 (f) Day 6

(g) Day 7 (h) Day 8

(i) Day 9 (j) Day 10

Figure 4.1: The above images show the trajectory of the oil spill over a period of
10 days

55



4.2 Exploring the Cleaned Parcels vs. Uncleaned Parcels for Different Cleanups

After looking at the “Oil Parcels” legend, the decision-maker will understand that

the green colored particles are the cleaned oil parcels from the previous day and the

purple shaded particles are the uncleaned parcels of the present day. To get a closer

look at the oil parcels, the decision-maker starts to roll the mouse button or hits the

“+” symbol on the map. After zooming in a few levels, the decision-maker observes

that the darker shade of the uncleaned parcels has been replaced by lighter shades of

purple as the zoom level increased, similar to a heat map, which in this case serves

the purpose of depicting the oil concentration/density in a given region. Also, the

decision-maker begins to realize that the entire slick of oil at a higher altitude is ac-

tually a collection of points at a deeper level.

Figure 4.2: An image showing how the number of cleaned oil parcels increases as
the cleanup target increases from Map 1 through Map 4 around the area surrounding
Dauphin Island
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Now, the decision-maker knows that the initial spill shown is the one with 95%

cleanup and would be inquisitive to find out how the oil slick at 75% cleanup is

different from that of the 95% one on day 9 of the spill. For this, the decision-maker

looks at any other map on the screen (preferably the one on the adjacent side) for

comparison and clicks on the radio-button menu on that particular map to choose

the desired cleanup after moving the slider to day 9. As soon as the decision-maker

chooses a cleanup target other than the one on the first map, a quick change in the

oil parcels is observed. This is because the data shown on the initial overview screen

is the one with 95% clean up target by default and when this changes to a different

cleanup target (say 75%), the new data is loaded onto the screen. Let us assume that

the decision-maker has a small area of interest in the ocean, or along the coastline

of the entire Gulf of Mexico, and would like to explore how the different cleanup

targets change. For demonstration purposes, let us consider the area surrounding

the Dauphin Island as the decision-maker’s area of interest. After comparing the

cleaned parcels versus the uncleaned parcels in both 75% and 95% cleanups as shown

in Figure 4.2, the decision-maker gets curious to know how the other cleanup targets

are different from the ones already chosen. For this, the decision-maker picks two

other maps and selects a cleanup target different than the ones already chosen. This

way, the decision-maker can compare four out of six cleanup targets that the system

offers simultaneously with the help of four different maps present on the screen.

Also, it has to be noted that sometimes, while comparing the cleaned oil in some

regions, it may look as if the lower cleanup targets performed better than the higher

ones. This is because OSCOM considers the entire oil as a whole and generates the

model files which is not necessarily in a spatially uniform manner. That’s why though

the higher cleanup targets do poor in some regions compared to the lower cleanup

targets, they do significantly better than them in most other regions.
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4.3 Exploring the Activated Boat Ramps

Once an oil spill is reported to the marine officials, the main environmental-friendly

goal and the very first action would be to stop the pollution at its source, Ventikos

et al. (2004). Therefore, the decision-maker would want to know the set of boat

ramps from where the response could be dispatched. It is not advisable to dispatch

equipment from all the locations. Though this would ideally clean up almost all the

oil, it falls heavy on the operational costs, and other expenses. Rather, it would be

a wise decision to send response from only a selected set of locations which ensures

that maximum oil is recovered (complete recovery is not practically possible). This

not only saves a ton of expenditure, but also saves a lot of man power involved in the

recovery process. Now, to visualize those boat ramp locations and the corresponding

details of the equipment present at those sites, we made the boat ramp locations

as “empty-black star”s and the activated boat ramp locations as “filled-black star”s

on the geographical maps, which would change their states depending upon whether

they have been activated or not for a particular day.
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Figure 4.3: An image showing 4,5,6, and 7 boat ramps activated for 75%, 80%, 85%,
and 95% cleanup targets respectively around the area surrounding Dauphin Island
along with the tool-tip that shows facts about a boat ramp upon hovering over it

The decision-maker moves the slider to the fifth day of the spill and finds out that

some of the stars have changed from their hollow state to a filled state and hovers over

them. Upon hovering, the decision-maker finds that a tool-tip is shown which displays

the information regarding the vessel capacity and the exclusion boom capacity of the

boat ramp. This way, not only the location of the boat ramp is known, but also

the facts about it are displayed. It is based upon these facts, one can estimate the

amount of expenditure required to operate them.

Now, the decision-maker would be interested to find out if there would be any

difference in the number of boat ramps dispatched when a different cleanup target is

considered on day 5. To know more about it, he chooses a different cleanup target in

any of the maps which are neighbors to the one being focused, and tries to compare

them side by side. This way, the decision-maker would weigh the trade-offs between

the cleanup targets and the number of boat ramps dispatched. Here, the hypothesis is
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that, in most cases, the number of boat ramps dispatched for response would increase

as the cleanup target increases. This is because more number of boat ramps are

required to recover more oil thereby achieving a better cleanup target. Just to avoid

cluttering, the decision-maker can turn on/off different elements such as the impact

grid, the oil parcels, and the ESI layer but keeping only the boat ramps visible. In the

above Figure 4.3, it can be clearly seen that when the decision-maker moves the slider

to day 5 of the simulation, four boat ramps have been activated for 75% clean up,

five for 80% cleanup, six for 85% cleanup, and seven for 95% cleanup targets. This

is one example which emphasizes the fact that the number of boat ramps dispatched

increases with increase in cleanup target. Other elements of the system have been

toggled off for better clarity as shown in the Figure 4.3

4.4 Exploring the Impact of the spill on the shore

The decision-maker’s next goal would be to find out where, and in what quantity

did the uncleaned oil make it to the shore eventually and thereby “impacting” it. The

entire coast of the Gulf of Mexico has been divided into 18478 polygons which formed

an imaginary layer called the “Impact Grid” which would help the decision-maker in

this process.

(a) Oil concentration on Day 9 of the

spill for 80% cleanup

(b) Oil concentration on Day 9 of the

spill for 95% cleanup

Figure 4.4: The combination of the above two images clearly shows us how higher
cleanup target (b) achieved better cleanup compared to its lower counterpart (a)
thereby reducing the oil concentration in the cells
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It comes to the notice of the decision-maker that the color of the impact grid

in certain regions changes upon dragging the slider to 9th day of the spill, as that

is when most of the oil starts to beach. After referring to the legend, the decision

maker would know what is the range of concentration of the oil in each of those

cells/regions. Since the impact scale is a sequential one, it is easy to understand that

the lighter shades of the color refers to lower concentration and the darker shades

represent higher concentrations of the oil. When the decision-maker looks at the 80%

cleanup, he/she sees a lot of cells in the darker shades in quite some polygons. Since

we hypothesize that 95% cleanup provides maximum cleanup, it implies that there are

lesser number of uncleaned oil parcels reaching the shore and hence the cells should

contain lesser concentration of oil than compared to the lower cleanup targets. To

verify this, the decision-maker changes the cleanup to 95% and finds out that the

darker shade from the cells has disappeared leaving behind only the lighter shade and

hence this hypothesis is proven correct with this evidence as shown in the Figure 4.4

4.5 Exploring the Difference in Impacts for Different Cleanups

The decision maker gets an idea of the region where the oil has impacted the

shore and in what concentration from the previous section 4.4. We also saw how the

decision maker compared the number of boat ramps activated for different cleanup

targets in the section 4.3. Combining these two thoughts, the decision-maker would

now be interested to compare how the oil concentration changes in the cells for dif-

ferent cleanup targets and would be interested in comparing them. For this purpose,

the decision-maker makes use of the “Baseline Map” feature which would essentially

let the decision maker choose one of the four maps on the screen to act as a reference

map with which the other neighboring maps can be compared.
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Let us suppose that the decision maker has chosen map 2 as the reference map.

Now, the next step would be to choose the cleanup target for this map which he/she

wants to act as the reference cleanup target. In other words, the decision-maker can

compare 95% cleanup with the other maps or can change it to 75, 80, 85, or 90 as

per his/her requirement. For example, consider a scenario where the decision maker

wants to find out how better the cleanup targets 80%,85%, and 95% have performed

over 75%. For this, the decision maker would choose any one map as a baseline map

from the drop-down menu at the bottom of the screen and would select the cleanup

target of 75%. All the neighboring maps would then be updated with different colors

on their respective impact grids depicting how better or worse the cleanup has been,

in those regions.

Figure 4.5: Scenario with Map 1, Map 2, Map 3, and Map 4 with 80%, 75%, 85%,
and 95% cleanup targets respectively with Map 2 as the baseline selected from the
drop-down below. The number of cells with light blue and dark blue shades in 95%
is greater than that of 85% which is in turn greater than 80% cleanups
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The decision-maker would then get an idea of the difference between cleanups upon

referring to the colors listed in the “Grid Difference” legend. Here, the hypothesis

is that higher cleanups would recover more oil from the ocean resulting in a better

cleanup. Therefore, higher the number of cells with shades of blue, higher is the

recovery in those regions and the lesser the number of cells with shades of red, lesser

is the recovery when compared to the baseline map. The scenario discussed so far

can be seen clearly in the Figure 4.5
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Chapter 5

DISCUSSION AND LIMITATIONS

The system developed for this thesis benefits decision-makers in different ways.

However, it has to be remembered that not every decision-maker thinks in a same way.

For example, a decision-maker who is more interested in saving the environment or

is concerned with the hazardous effects of the spill on the coastal communities would

want to achieve maximum cleanup possible and would choose the scenario which of-

fers the same. On the other hand, the decision-makers who are concerned with the

budget of the oil recovery operations, are more likely to settle for a scenario which

would be cost-effective while achieving a decent amount of cleanup and would mostly

prioritize the operations based on the sensitivity of the concerned coastal regions.

However, if a decision-maker is expecting the SDSS to show a cost estimate of the

overall operations would not be interested in using the system because it does not

support that requirement yet but it has to be noted that incorporating such models

into the system would be beneficial especially if the cost-estimates are accurate and

would save the decision-makers a lot of time in calculating the total expenses. This

incorporation would also make the SDSS a comprehensive system which not only

deals with the spill simulation, and recovery but also with the funds required thereby

covering a wide range of decision-makers. Finally, we can say that this coupling of

spill modeling (BLOSOM) with a spatial optimizer of tactical response efforts (OS-

COM) would greatly enhance the ways in which a spill is handled and mitigate its

hazardous effects to a great extent.
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Although the SDSS being discussed proves useful in achieving its desired objec-

tives, it still does come with some limitations. In a broad sense, we have seen that

OSCOM model (Grubesic et al. (2017)) identifies the ideal subset of boat ramps which

can dispatch response and achieve the desired cleanup. However, certain real-world

conditions such as the waves produced when these vessels go into the ocean to recover

the oil which can cause the oil to drift apart from its original location, the changes

in temperature due to different times of the day, etc. are not completely considered.

The drifting of oil results in a change of its locations ultimately leading us to com-

pute its new locations based on this offset from their original locations and calculate

the new set of boat ramps again. In most cases, this drifting is handled partially by

BLOSOM (Sim et al. (2015)) as it predicts the movement of the oil in the ocean for

the specified simulation parameters but does not handle this drift caused by vessels

sent out by OSCOM. Though different ambient files (.ncdf) are loaded for every day

of the simulation, the parameters specified in the blowout, model, and advanced tabs

of the simulator are not changed for every day of the simulation and stay the same

through out the blowout but this may not be the case in reality.

OSCOM currently supports interaction only with BLOSOM which restricts the

spatial optimization of oil recovery with other modeling tools such as GNOME (Beegle-

Krause (2001)) for instance. Also, the results of this model tend to vary significantly if

employed at different times of the year given the stochastic nature of Gulf of Mexico.

Spill response efforts which often include shoreline protection strategies to ensure the

safety of delicate ecosystems currently do not go in to the list of objectives considered

by OSCOM.
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When it comes to the SDSS, one of the compelling ideas was to develop the system

in 3D. The main drawback of this idea is that the coastal impacts of the spill may

not be properly visualized. For example, consider a scenario where the impacts of

the spill on the coastal areas are implemented as bars (instead of a 2D grid) whose

height increases with the increase in oil concentrations. While looking at an oblique

angle, the grid cell with highest amount of oil concentrations would have a tall bar

thereby overshadowing the grid cell behind it which has a low concentration. Also,

in scenarios where there is a data skew, very few bars would be tall leaving most of

the other bars short which would not form a proper visualization especially if there

are considerable differences between those shorer bars.

Another limitation was the addition of shapefiles into the SDSS. It is easy to

represent a shapefile as a tile layer if it is not required to be interactive to the user

but the Impact Grid layer for instance, has its grid cells to be colored based on the

baseline map selection, the cleanup target specified, and the day of the spill and this is

computed for four maps on the screen and hence cannot be represented as a tile layer

which limits the speed of the system when the impact grid is turned on. However,

the system runs smooth when the impact grid is turned off on all the maps as the

need of extra rendering by the browser is eliminated.
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Chapter 6

CONCLUSIONS AND FUTURE WORK

In this thesis, a spatial decision support system for oil spill response and recovery

for the spills has been presented. This SDSS allows the decision makers to explore a

wide variety of possible outcomes that can arise when an oil spill occurs in the Gulf Of

Mexico. This system helps in exploring and visualizing the movement of the oil spill

with the help of geographical maps with respect to change in space and time. The

system also enables the user to identify the set of boat ramps from which response

has to be dispatched. The system essentially gets its necessary data regarding the oil

spill from BLOSOM and becomes more powerful upon combining it with OSCOM.

There has been some notable research in the past in the area of spill modeling and

response modeling. However their support has been limited to their domain of either

spill modeling or response modeling. There is only a little literature which combines

both these facets together in a systematic approach. Our SDSS goes beyond the

limitations of the past works by integrating BLOSOM, which forms the heart of our

SDSS by providing the necessary shapefiles required to visualize the oil spill, and

OSCOM, that adds the cleanup capability to it. Given the expected percentage of oil

to be recovered as an input parameter, different scenarios with given cleanup targets

can be explored. Additionally, the SDSS helps the user to explore how the shoreline

is impacted with the help of an imaginary impact grid along the coast of Gulf of

Mexico.

In the case studies, the capabilities of our SDSS to to compare and analyze the

cleaned and uncleaned oil parcels, activated boat ramps, and different impacts on the

shoreline for different cleanup targets has been demonstrated. In our first case study,

67



we presented how the entire oil spill trajectory and the movement of oil over time and

space can be explored. In the second case study, we combined the cleanup capability

to the first one and explained how the number of cleaned parcels increase with the

increase in the cleanup target. In our third case study, we elaborated on how the

number of boat ramps selected for response dispatch increases with the increase in

the cleanup target. In our fourth case study, we went on to explain the importance of

impact grid by showcasing its power in detecting not only the areas with oil presence

but also its concentration by using a sequential color scale. Finally, we demonstrated

how the addition of cleanup target parameter can be applied to the impact grid by

keeping one map as a baseline map for reference and comparing the others with it

for different levels of cleanup. All these cases can be studied for every day of the

simulation thereby assisting the decision makers to make decisions at any point of

the time during the blowout.

Even though the spill data, boat ramps data, and impact grid datasets have been

put together and made into an interactive SDSS, it still has its own limitations. The

first limitation is the hypothetical nature of the oil spills. BLOSOM takes many

factors such as wind velocity, ocean currents, temperature, salinity, pressure, depth,

etc. into consideration to predict the further movement of the oil in the ocean. This

data is not real time. However, the argument here is that the spill movement produced

in the simulation is almost similar to the real world movement. The authenticity of

BLOSOM in this aspect can be confirmed by taking real world oil spill datasets

and comparing them with the results produced by BLOSOM for the same oceanic

conditions. Since oil spills of large magnitude are rare phenomena, it is difficult to

acquire datasets and do this comparison but for sure feasible. The second limitation

is the complexity of the shapefiles produced in the later versions of BLOSOM. As

complexity and the size of the shapefiles increases, the time taken by OSCOM to
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generate model files increases drastically which again leads to very high solving times

by the commercial solver. Sometimes, the model files ended up in sizes ranging in

tens of gigabytes which often resulted in lack of memory even on machines with 64

gigabytes of RAM. If not a memory crash, those model files took more than weeks to

be solved which is a very large wait time especially in the real world scenario because

the list of boat ramps from where response could be launched would be based on the

solution file generated by the solver and it is not a wise thing to wait for weeks to

dispatch response when a vast majority of resources are at risk. Third limitation is

the infeasibility of some spill simulations. This situation arises when a huge amount

of oil than usual is ejected into the ocean from the blowout well and spreads over vast

areas quickly due to various oceanic conditions. In such cases, it is almost impossible

to recover 95% of the oil that has been spilled which results in infeasible solutions

by the solver. However, in real-world scenarios, the recovery and response processes

have to be carried no matter the solution is infeasible or not. One workaround for

this would be to compromise with lesser clean up targets, say 90% or less whichever

proves feasible. Fourth limitation is a follow up of the third one where the oil that has

escaped or traveled too far from the clean up sites can be contained or deflected using

exclusion booms. For the same purpose, a model named “Exclusion Boom Allocation

Model” has been developed. A tight integration of this model with the OSCOM model

would most probably reduce the number of infeasible solutions or can at least contain

the oil before impacting the shoreline. Fifth limitation lies with the implementation

part of the SDSS. Most of the visualization, interaction, and computations happen in

the front-end i.e. in the browser. Though, lot of pre-processing of shapefiles, spatial

join files, boat ramp files, and impact grid files happens before the data is given to

the SDSS, still the Javascript engine of some browsers can handle only so much that

they can get slow or lag if the size of the datasets increases drastically. For instance,
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the impact grid dataset has around 18478 polygons in it which forms a huge part of

the browser’s memory heap. Upon removing the impacting grid from all the maps

using the check boxes, one can feel the difference in the smoothness of the SDSS.

Also, for every day of the simulation oil particles emitted would be in thousands, and

if this increases to tens of thousands or even worse hundreds of thousands, the system

would be really slow as most of the time would be spent in populating the oil parcels

on the screen. From these limitations, we can begin to identify the areas of future

work.

Future work for this thesis can be categorized into: 1) improvements to the models,

and 2) enhancements to the environment that combines and integrates them. Reduced

complexity in BLOSOM shapefiles would lead to relatively smaller model files and

ultimately shorter periods of time to solve. Also, by coming up with a heuristic in

the OSCOM model to generate model files which can aggregate the points in the

ocean could improve the solving times of the model files significantly. Also, this

would solve the problem of infeasible solutions and would not result in many memory

crash scenarios. It is always advisable to employ as many response equipment as

possible to mitigate the spread of oil and exclusion booms are one such type of

equipment. We strongly believe that the integration of EBAM model to the current

system would reduce the number of oil parcels eventually hitting the shore. Coming

to the enhancements to the SDSS, we can make sure that the user experience is never

compromised by achieving a smooth flow of the interface which could be a result

of smaller sized shapefiles, lesser number of oil parcels to be displayed per day that

is possible by proper aggregation of points, etc. Also, adding new features to the

interface such as having multiple tabs to view different scenarios of spills, and the

ability to do a comparison between two different spills,would allow the users to get a

better idea of the system.
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It has to be noted that BLOSOM is actually a probabilistic model which means

that multiple spills simulated with the same parameters are not always the same.

To study these differences, it would be a good practice to create an ensemble of

spills for the same set of parameters and represent it in the SDSS which helps us

to identify the upper and the lower bounds of the spread of the spill for the given

parameters. Finally, the system developed and presented in this thesis represents a

crucial combination of spill modeling and spatial optimization of response efforts as it

gives the users a holistic approach to tackle the problem of planning for oil recovery

and response efforts.
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APPENDIX A

IMPACT GRID DATA COMPUTATION
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The equation used to calculate the difference between the oil concentration of one
grid cell with its corresponding grid cell of the baseline map is:

Cleanup Difference = BPC −RPC (A.1)

Consider the following examples where CellA is the grid cell of the non-baseline map,
and CellAB is the same grid cell but of the baseline map. Having said that, consider
the following examples:

Negative Difference Group:
Say CellA = 20
CellAB = 11
Therefore the difference = 11-20 = -9

Say CellA = 12
CellAB = 5
Therefore the difference = 5-12 = -7

Say CellA = 24
CellAB = 6
Therefore the difference = 6-24 = -18

Say CellA = 32
CellAB = 2
Therefore the difference = 2-32 = -30

Positive Difference Group:
Say CellA = 3
CellAB = 5
Therefore the difference = 5-3 = 2

Say CellA = 3
CellAB = 12
Therefore the difference = 12-3 = 9

Say CellA = 3
CellAB = 24
Therefore the difference = 24-3 = 21

Say CellA = 1
CellAB = 20
Therefore the difference = 20-1 = 19

So if the difference is positive, it means that the baseline map has done worse or
the reference map has done better. On the other hand, if the difference is negative, it
means that the reference map has done worse than the baseline map or the baseline
map has done better than the reference map. As we are using a divergent color scheme
with three classes representing a positive difference, and three of them representing
negative difference, while the remaining one class represents no difference, we decided
to split the entire positive difference range into three equal intervals where each of
them shows the specific ranges where a given difference may lie. Similarly, for the
negative difference, we divided the entire negative difference range into three equal
intervals. However, since this difference changes with respect to the change in the
baseline map, we re-compute this difference and re-calibrate the legend based on the
new difference obtained.

On the third day of the simulation, these are the values for the polygon ID 8516,
14658, and 16815.
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Polygon ID CURR TIME Count Cleanup
8516 2017-Mar-19 00:10:00 8 75%
8516 2017-Mar-19 00:10:00 3 85%
8516 2017-Mar-19 00:10:00 2 95%

Table A.1: Polygon 8516 on Mar 19

Polygon ID CURR TIME Count Cleanup
14658 2017-Mar-19 00:10:00 27 75%
14658 2017-Mar-19 00:10:00 15 85%
14658 2017-Mar-19 00:10:00 7 95%

Table A.2: Polygon 14658 on Mar 19

Polygon ID CURR TIME Count Cleanup
16815 2017-Mar-19 00:10:00 24 75%
16815 2017-Mar-19 00:10:00 20 85%
16815 2017-Mar-19 00:10:00 3 95%

Table A.3: Polygon 16815 on Mar 19

From the above Tables A.1, A.2, and A.3 can see how the count of number of oil
parcels decreased as the cleanup target increases on March 19th.

On the sixth day of the simulation, these are the values for the polygon ID 11748,
14937, and 17558.

Polygon ID CURR TIME Count Cleanup
11748 2017-Mar-22 00:10:00 16 75%
11748 2017-Mar-22 00:10:00 13 85%
11748 2017-Mar-22 00:10:00 11 95%

Table A.4: Polygon 11748 on Mar 22

Polygon ID CURR TIME Count Cleanup
14937 2017-Mar-22 00:10:00 22 75%
14937 2017-Mar-22 00:10:00 15 85%
14937 2017-Mar-22 00:10:00 10 95%

Table A.5: Polygon 14937 on Mar 22
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Polygon ID CURR TIME Count Cleanup
17558 2017-Mar-22 00:10:00 4 75%
17558 2017-Mar-22 00:10:00 4 85%
17558 2017-Mar-22 00:10:00 3 95%

Table A.6: Polygon 17558 on Mar 22

From the above Tables A.4, and A.5, we can see how the count of number of oil
parcels decreased as the cleanup target increases on March 22nd. However, in Table
A.6, there is no change in cleanup from 75% to 85%. This is probably because the
cleanup is significant in other polygons.

On the ninth day of the simulation, these are the values for the polygon ID 9960,
12883, 13808, 10487, 14494, 15679, 9716, 16605 and 17136.

Polygon ID CURR TIME Count Cleanup
9960 2017-Mar-25 00:10:00 82 75%
9960 2017-Mar-25 00:10:00 74 85%
9960 2017-Mar-25 00:10:00 58 95%

Table A.7: Polygon 9960 on Mar 25

Polygon ID CURR TIME Count Cleanup
12883 2017-Mar-25 00:10:00 23 75%
12883 2017-Mar-25 00:10:00 19 85%
12883 2017-Mar-25 00:10:00 14 95%

Table A.8: Polygon 12883 on Mar 25

Polygon ID CURR TIME Count Cleanup
13808 2017-Mar-25 00:10:00 37 75%
13808 2017-Mar-25 00:10:00 28 85%
13808 2017-Mar-25 00:10:00 17 95%

Table A.9: Polygon 13808 on Mar 25

From the above Tables A.7, A.8, and A.9 we can observe that 95% target performs
much better than its 75%, and 85% competitors.

Polygon ID CURR TIME Count Cleanup
10487 2017-Mar-25 00:10:00 21 75%
10487 2017-Mar-25 00:10:00 21 85%
10487 2017-Mar-25 00:10:00 20 95%

Table A.10: Polygon 10487 on Mar 25
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In the Table A.10, we can see that 75%, and 85% have performed similarly but
95% has still outdone both of the other targets.

Polygon ID CURR TIME Count Cleanup
14494 2017-Mar-25 00:10:00 30 75%
14494 2017-Mar-25 00:10:00 40 85%
14494 2017-Mar-25 00:10:00 43 95%

Table A.11: Polygon 14494 on Mar 25

In the Table A.11, we can see that 75% has performed much better than 85%,
and 95%.

Polygon ID CURR TIME Count Cleanup
15679 2017-Mar-25 00:10:00 24 75%
15679 2017-Mar-25 00:10:00 32 85%
15679 2017-Mar-25 00:10:00 29 95%

Table A.12: Polygon 15679 on Mar 25

In the Table A.12, we can see that 75% has performed better than 85%, and 95%
but 95% has done better than 85%.

Polygon ID CURR TIME Count Cleanup
9716 2017-Mar-25 00:10:00 23 75%
9716 2017-Mar-25 00:10:00 16 85%
9716 2017-Mar-25 00:10:00 17 95%

Table A.13: Polygon 9716 on Mar 25

In the Table A.13, we can see that 85% has done better than 75%, and 95%.

Polygon ID CURR TIME Count Cleanup
16605 2017-Mar-25 00:10:00 49 75%
16605 2017-Mar-25 00:10:00 42 85%
16605 2017-Mar-25 00:10:00 49 95%

Table A.14: Polygon 16605 on Mar 25

In the Table A.14, we can see that 85% has done better than 75%, and 95% but
it has to be observed that 75%, and 95% have achieved the same amount of cleanup
in those cells.

82



Polygon ID CURR TIME Count Cleanup
17136 2017-Mar-25 00:10:00 4 75%
17136 2017-Mar-25 00:10:00 4 85%
17136 2017-Mar-25 00:10:00 4 95%

Table A.15: Polygon 17136 on Mar 25

In the Table A.15, we can see that all of 75%, 85%, and 95% have achieved same
amount of cleanup.

The discrepancies in the cleanup performance on March 25th arose because of the
non-uniformity in the spatial optimization of response efforts. In other words, we can
say that oil recovery need not be the uniform across all the cells of the grid. This
means that the usual assumption of 95% recovering more oil than 85%, and 85%
recovering more oil than 75% may not be always true. This is because even though
95% may not recover more oil than its counterparts in the Tables A.11, A.12, A.13,
A.14, and A.15 it has recovered way more oil in the Tables A.7, A.8, and A.9. From
this we can say that it is the overall amount of oil recovered by each cleanup target
on the whole that matters but not whether if the recovery is spatially uniform where
higher cleanup targets perform better than its lower counterparts in every cell of the
grid.

83


