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ABSTRACT

In this dissertation two kinds of strongly interacting fermionic systems were stud-

ied: cold atomic gases and nucleon systems. In the first part I report T = 0 diffusion

Monte Carlo results for the ground-state and vortex excitation of unpolarized spin-1/2

fermions in a two-dimensional disk. I investigate how vortex core structure properties

behave over the BEC-BCS crossover. The vortex excitation energy, density profiles,

and vortex core properties related to the current are calculated. A density suppression

at the vortex core on the BCS side of the crossover and a depleted core on the BEC

limit is found. Size-effect dependencies in the disk geometry were carefully studied.

In the second part of this dissertation I turn my attention to a very interesting prob-

lem in nuclear physics. In most simulations of nonrelativistic nuclear systems, the

wave functions are found by solving the many-body Schrödinger equations, and they

describe the quantum-mechanical amplitudes of the nucleonic degrees of freedom. In

those simulations the pionic contributions are encoded in nuclear potentials and elec-

troweak currents, and they determine the low-momentum behavior. By contrast, in

this work I present a novel quantum Monte Carlo formalism in which both relativistic

pions and nonrelativistic nucleons are explicitly included in the quantum-mechanical

states of the system. I report the renormalization of the nucleon mass as a function

of the momentum cutoff, an Euclidean time density correlation function that deals

with the short-time nucleon diffusion, and the pion cloud density and momentum

distributions. In the two nucleon sector the interaction of two static nucleons at large

distances reduces to the one-pion exchange potential, and I fit the low-energy con-

stants of the contact interactions to reproduce the binding energy of the deuteron

and two neutrons in finite volumes. I conclude by showing that the method can be

readily applied to light-nuclei.
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Chapter 1

INTRODUCTION

The many-body problem has attracted much attention since the dawn of physics.

There are two essential ingredients to this problem. First, we need many bodies

to be present: many atoms, many electrons, many nucleons, etc. Secondly, these

bodies must interact, otherwise the problem would be reduced to many one-body

problems. Fermions, such as electrons, protons and neutrons, compose all the usual

matter around us. The Fermi-Dirac statistics governs the behavior of a wide range of

systems: electrons in metals, nuclei, atoms, and even neutron stars. In this work, we

focus on two types of many-body problems concerning strongly interacting fermionic

systems: cold atomic gases and nucleon systems.

After the successful realization of the strongly interacting Fermi gases in three

dimensions (3D), much attention has been payed to Fermi systems that have even

stronger correlations, such as low-dimensional fermionic gases (Levinsen and Parish

(2015)). Two-dimensional (2D) systems are of particular interest, due to insights into

complex solid-state systems such as high-temperature superconductors and semicon-

ductor interfaces. Ultracold atomic gases are dilute systems in which the interparticle

interactions can be tuned via Feshbach resonances, leading to strongly interacting sys-

tems. This allows for the investigation of the crossover from BCS-type pairing to the

Bose regime of tightly bound dimers. The concept of a BCS-BEC crossover was first

applied to 2D Fermi gases by Randeria et al. (1989). Such mean-field calculations

can qualitatively describe either very large or very small pair sizes, corresponding to

the BCS or BEC limits, respectively. The intermediate regime is not expected to be

accurately described by a mean-field theory, especially at unitarity where the system
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lacks any perturbative expansion parameter. Hence, quantum Monte Carlo methods

are invaluable tools to calculate properties of cold fermionic gases over all BCS-BEC

crossover. In this work we studied properties of the ground-state and vortex excita-

tion of spin-1/2 fermions in a 2D disk (Madeira et al. (2017)). Further motivation

and a more comprehensive introduction to this problem is given in Chap. 3.

The second part of this dissertation deals with a very challenging problem in

nuclear physics: the development of a method capable of including explicit pionic

degrees of freedom in the frame of chiral effective field theory (EFT). Most Monte

Carlo simulations of nucleon systems only include nucleonic degrees of freedom, while

contributions from pions are implicitly included in the interaction potentials (Carlson

et al. (2015a)). We developed a novel formalism which allows us to explicitly include

contributions of the pion fields in Green’s function Monte Carlo (GFMC) simulations.

Our goal with this formalism is to be able investigate problems that are not acces-

sible to standard potential models where pions are included implicitly. Here we list

some possibilities that we plan to investigate in the future. One of these problems

is the scattering of pions by nucleons. The extraction of phase shifts from our simu-

lations is not trivial because we work with a box geometry, however formalism such

as the one of Bernard et al. (2008), developed for lattice QCD, may bridge the gap.

The effect of pions on A-body systems is also a problem of great interest. One advan-

tage of our formalism is that at leading order (LO) it already includes pion-mediated

three-body forces that only start to appear at next-to next-to leading order (NNLO)

in standard simulations (Epelbaum et al. (2011)). Finally, an example of nucleon sys-

tems that clearly requires explicit pionic degrees of freedom is the pion condensate,

which attracts the interest of both the nuclear physics and astrophysics communities.

The pion condensate is a conjectured state of neutron matter at extremely dense

regimes, such as the ones found in neutron stars. The condensate is characterized
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by the macroscopic occupation of one of the pion modes. The condensate manifests

itself as a neutron spin-density wave, where alternating layers of opposite spins are

located where the gradient of the pion field is maximum. Since we have explicit pion

degrees of freedom, we should be able to observe that the ground-state of the system,

in the pertinent density regime, corresponds to a macroscopic occupation of a single

pion mode.

In this dissertation we present an extension of our results presented in Madeira

et al. (2016, 2017, 2018). This work is structured as it follows. We start with the

quantum Monte Carlo methods, which are used in both cold gases and nucleon sys-

tems, in Chapter 2. We present the variational Monte Carlo (VMC) and diffusion

Monte Carlo (DMC) methods. Chapter 3 deals with 2D Fermi gases. After a brief

introduction on the BEC-BCS crossover and vortices in two-dimensional fermionic

systems, we present our methodology. We derive the wave functions we developed

to study the ground-state and vortex excitation in these systems. Finally, we report

our results. In Chapter 4 we introduce our formalism that allows for the inclusion of

explicit pion degrees of freedom in quantum Monte Carlo (QMC) simulations. We

present our formalism in the mold of chiral EFT, which includes expressions for the

Lagrangian and the pion field. We derive the Hamiltonians and wave functions for

A-nucleon systems, and we comment on technical aspects of the implementation. We

report our one- and two-nucleon results. Finally, we present our final remarks in

Chapter 5. In Appendix A we review the optimization algorithms used to determine

the variational parameters in the wave functions. In Appendix B we show how unbi-

ased estimators can be calculated in diffusion simulations. We list our conventions in

Appendix C.
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Chapter 2

QUANTUM MONTE CARLO METHODS

2.1 Monte Carlo methods

The core of a Monte Carlo simulation is the evaluation of multidimensional in-

tegrals by sampling the integrand statistically and averaging the sampled values

(Foulkes et al. (2001)). Suppose we define a 3N -dimensional vector,

R = (r1, r2, . . . , rN), (2.1)

where ri is the position of the i-th particle. Commonly, a particular R is called a

walker. If the probability density of finding the particles in the configuration R is

given by

P(R) > 0,∫
dRP(R) = 1, (2.2)

then let {Rm : m = 1,M} be a set of uncorrelated configurations distributed accord-

ingly to P(R). We define a random variable Zf by

Zf =
[f(R1) + f(R2) + · · ·+ f(RM)]

M
. (2.3)

The function f(R) is any reasonable function with mean µf and variance σ2
f given by

µf =

∫
dRf(R)P(R),

σ2
f =

∫
dR[f(R)− µf ]2P(R). (2.4)

For large enough M , Zf is normally distributed with mean µf and standard deviation

σf/
√
M . Thus, regardless of P(R), the mean value of a function of R will be a good
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estimator of the mean of that function with respect to P(R). Moreover, the standard

deviation will decrease as 1/
√
M , regardless of the dimension of the integral.

Suppose we want to evaluate an integral such as

I =

∫
dRg(R). (2.5)

We begin by introducing an “importance function” P(R) and cast the integral in the

form

I =

∫
dRf(R)P(R), (2.6)

where f(R) ≡ g(R)/P(R). The importance function is chosen such that it obeys

Eq. (2.2), hence it is a probability density. The value of I may be obtained by

drawing an infinite number of vectors from P(R),

I = lim
M→∞

{
1

M

M∑
m=1

f(Rm)

}
. (2.7)

A Monte Carlo estimate of I is obtained by a large, but finite, number of samples

drawn from P(R),

I ≈ 1

M

M∑
m=1

f(Rm). (2.8)

The variance σ2
f/M is

σ2
f

M
≈ 1

M(M − 1)

M∑
m=1

[
f(Rm)− 1

M

M∑
n=1

f(Rn)

]2

, (2.9)

leading to error bars of ±σf/
√
M on the computed value of I. A wise choice of P(R)

can significantly reduce the variance for a fixed number of samples.

2.1.1 The Metropolis algorithm

The method described in the previous section relies on evaluating multidimen-

sional integrals by sampling probability distributions in high-dimensional spaces.

5



Generally, normalizations of these distributions are unknown. The Metropolis re-

jection algorithm (Metropolis et al. (1953)) allows us to sample complex distributions

without knowledge of their normalizations. The Metropolis algorithm generates a

sequence of sampling points Rm, and it can be summarized as the following:

(1) Start the walker at a random position R.

(2) Make a trial move to a new position R’ chosen from a

probability density function T (R′ ← R).

(3) Accept the trial move to R’ with probability

A(R′ ← R) = min

(
1,
T (R← R′)P(R′)

T (R′ ← R)P(R)

)
, (2.10)

If the trial move is accepted, R’ becomes the next walker, otherwise

R is the next walker. If P(R) is high, points near R may occur many

times in the set of points making up the random walk.

(4) Return to step (2) and repeat.

To understand how this algorithm works, let us consider an enormous number of

walkers executing random walks according to the algorithm. The probability that a

walker at R is taken to dR′ in one move is dR′A(R′ ← R)T (R′ ← R), the average

number of walkers moving from dR→ dR′ in a single move is

dR′A(R′ ← R)T (R′ ← R)× n(R)dR. (2.11)

This must be balanced with the number moving from dR′ → dR,

dR′A(R′ ← R)T (R′ ← R)n(R)dR = dRA(R← R′)T (R← R′)n(R′)dR′. (2.12)

Hence, n(R) satisfies

n(R)

n(R′)
=
A(R← R′)T (R← R′)

A(R′ ← R)T (R′ ← R)
. (2.13)
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Since the ratio of acceptance probabilities are

A(R← R′)

A(R′ ← R)
=
T (R′ ← R)P(R)

T (R← R′)P(R′)
, (2.14)

then

n(R)

n(R′)
=
P(R)

P(R′)
. (2.15)

Therefore, the equilibrium walker density n(R) is proportional to P(R), and the

probability of finding any given walker in dR is P(R)dR, as required. A rigorous

derivation of the results presented in this section is given in Feller (1957), where

convergence of the method is also shown.

2.2 Variational Monte Carlo

The Variational Monte Carlo method is based on the variational principle, and the

Monte Carlo method is applied in the evaluation of the resulting multidimensional

integrals (Foulkes et al. (2001)). It relies on a trial wave function ΨT which should

mimic as many as possible properties of the true ground-state function Ψ0.

The expectation value of H, evaluated with a trial wave function ΨT , provides an

upper bound on the exact ground-state energy E0

EV =

∫
Ψ∗T (R)HΨT (R)dR∫
Ψ∗T (R)ΨT (R)dR

> E0, (2.16)

where R= (r1, r2, . . . , rN) is a 3N -dimensional vector with the coordinates of the N

particles. This property can be easily verified. Consider the expansion

ΨT =
∑
i

αiΨi, (2.17)

where {Ψi} are the eigenstates of H with eigenvalues {Ei}. The substitution of the

last expression in Eq. (2.16) shows that EV is an upper bound of the exact ground-

state energy.

7



The application of the Monte Carlo method in the evaluation of Eq. (2.16) is

accomplished by rewriting this equation in the form

EV =

∫
|ΨT (R)|2 [ΨT (R)−1HΨT (R)] dR∫

|ΨT (R)|2dR . (2.18)

The Metropolis algorithm then can be used to sample a set of points {Rm : m = 1,M}

from the configuration-space, with the probability density

P(R) =
|ΨT (R)|2∫
|ΨT (R)|2dR . (2.19)

We define a “local energy” EL(R) = ΨT (R)−1HΨT (R) and, at each of the points, it

is evaluated and its average energy accumulated

EV ≈
1

M

M∑
m=1

EL(Rm). (2.20)

The trial moves can be sampled from a Gaussian centered on the current position of

the walker and the variance is chosen such that the average acceptance probability is

≈ 50%. Expectation values of operators other than the Hamiltonian can be computed

in analogous ways.

2.3 Diffusion Monte Carlo

Diffusion Monte Carlo is a method for solving imaginary-time many-body

Schrödinger equation (Foulkes et al. (2001)),

−∂tΦ(R, t) = (H − ET )Φ(R, t), (2.21)

where t is real and it measures the progress in imaginary time, and ET is an energy

offset.
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In the integral form Eq. (2.21) is rewritten as

Φ(R, t+ τ) =

∫
G(R← R′, τ)Φ(R′, t)dR′, (2.22)

where

G(R← R′, τ) = 〈R| exp [−τ(H − ET )]|R′〉 (2.23)

is the Green’s function. For t > 0 it obeys the same equation as Φ(R, t),

−∂tG(R← R′, τ) = (H − ET )G(R← R′, τ), (2.24)

with the initial condition G(R ← R′, 0) = δ(R −R′). The Green’s function can be

expressed as

G(R← R′, τ) =
∑
i

Ψi(R) exp {−τ(Ei − ET )}Ψ∗i (R′), (2.25)

where {Ψi} and {Ei} are the complete set of eigenstates and eigenenergies of H,

respectively. As τ → ∞, the operator exp {−τ(Ei − ET )} projects out the lowest

eigenstate |Ψ0〉 that has non-zero overlap with an initial state |Φinit〉,

lim
τ→∞
〈R| exp [−τ(H − ET )]|Φinit〉 = lim

τ→∞

∫
G(R← R′, τ)Φinit(R

′)dR′

= lim
τ→∞

∑
i

Ψi(R) exp [−τ(Ei − ET )]〈Ψi|Φinit〉. (2.26)

By adjusting ET = E0, and taking the limit τ →∞, only the |Ψ0〉 state is projected,

since the higher energy states are all exponentially damped because their energies are

higher than E0.

If we neglect potential terms in Eq. (2.21), it simplifies to

∂tΦ0(R, t) =
~2

2m

N∑
i=1

∇2
iΦ0(R, t). (2.27)

The Green’s function for this problem is

G0(R← R′, τ) =
[ m

2π~2τ

]3N/2

exp

[
−m(R−R′)2

2~2τ

]
. (2.28)

9



If we consider the Hamiltonian with both kinetic and potential terms, the exact

Green’s function is known only for a few special cases. The Trotter-Suzuki formula

can be used to obtain an approximation of the Green’s function. For two operators

A and B,

e−τ(A+B) = e−τB/2e−τAe−τB/2 +O(τ 3). (2.29)

If A = T , where T is the kinetic energy operator, and B = V − ET , V being the

potential energy operator, we have

G(R← R′, τ) = 〈R|e−τ(T+V−ET )|R′〉

≈ e−τ [V (R)−ET ]/2〈R|e−τT |R′〉e−τ [V (R′)−ET ]/2. (2.30)

The approximate Green’s function for small τ is therefore

G(R← R′, τ) = G0(R← R′, τ) exp [−τ [V (R) + V (R′)− 2ET ]/2], (2.31)

and the error is proportional to τ 3. The exponential

P = exp [−τ [V (R) + V (R′)− 2ET ]/2] (2.32)

is a time-dependent reweighting of the Green’s function. This change of normalization

is incorporated in the calculations by using the branching algorithm, in which P

determines the number of surviving walkers in each step. The procedure is:

(1) If P < 1 the walker continues its evolution with probability P .

(2) If P > 1 the walker continues and, in addition, a new walker is

created in the same position with probability P − 1.

One way the number Mnew of walkers evolving to the next step at a given position

can be coded as

Mnew = INT(P + ξ), (2.33)

where INT is the integer part of a real number and ξ is a random number drawn from

a uniform distribution in the interval [0,1]. The energy offset ET is used to control
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the population of walkers. By adjusting ET , the total number of walkers fluctuates

around a desirable value.

The ground-state energy can be calculated by the mixed estimate

〈H〉mix =
〈ΨT |H|Φ(t→∞)〉
〈ΨT |Φ(t→∞)〉 = E0

〈ΨT |Φ(t→∞)〉
〈ΨT |Φ(t→∞)〉 = E0. (2.34)

In Sec. 4.8 we show the changes to the DMC algorithm so that it can be used in

systems with spin/isospin degrees of freedom.

2.3.1 Importance sampling

The simple DMC algorithm described so far is spectacularly inefficient. The main

reason is that P from Eq. (2.32) may fluctuate wildly between steps. This difficulty

is overcome by carrying out an importance-sampling transformation using a trial

wave function ΨT (R). Let us multiply Eq. (2.21) by ΨT (R) and introduce f(R, t) =

Φ(R, t)ΨT (R). After some manipulations,

−∂f(R, t) = −1

2
∇2f(R, t) +∇ · [vD(R)f(R, t)] + [EL(R)− ET ]f(R, t), (2.35)

where ∇ = (∇1, . . . ,∇N), vD(R) is the 3N -dimensional drift velocity,

vD(R) = ∇ ln |ΨT (R)| = ΨT (R)−1∇ΨT (R). (2.36)

The integral equation becomes

f(R, t+ τ) =

∫
G̃(R← R′, τ)f(R′, t)dR′, (2.37)

where

G̃(R← R′, τ) ≡ ΨT (R)G(R← R′, τ)ΨT (R′)−1. (2.38)
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The short-time approximation to G̃(R← R′, τ) is

G̃(R← R′, τ) ≈ Gd(R← R′, τ)Gb(R← R′, τ), (2.39)

where

Gd(R← R′, τ) = (2πτ)−3N/2 exp

[
− [R−R′ − τvD(R′)]2

2τ

]
,

Gb(R← R′, τ) = exp {−τ [EL(R) + EL(R′)− 2ET ]/2} . (2.40)

Eq. (2.40) is a typical implementation of importance sampling, however other related

methods can be used to sample Eq. (2.38). Importance sampling has several conse-

quences. The density of walkers is increased (decreased) where ΨT is large (small),

because vD(R) carries the walkers along in the direction of increasing |ΨT |. Moreover,

the exponent in the reweighting term contains the local energy, instead of the poten-

tial. This is crucial because, for a good trial wave function, the local energy is close

to the ground-state energy and approximately constant, thus diminishing population

fluctuations.

Importance sampling is also extremely helpful in fulfilling the fixed-node con-

straint. Whenever a walker approaches the nodal surface, the drift velocity grows

and pushes it away. Despite that, in the event of a walker crossing the nodal surface,

the walker is eliminated.

Note that the trial wave function ΨT (R) is used in three different ways: approx-

imation of the ground-state in the VMC calculation, importance function, and for

avoiding the sign problem as we will see in the next section.

2.3.2 The fixed-node approximation

So far we have assumed that the wave function is positive everywhere, which is

not true for fermions due to the antisymmetry requirement. Unfortunately, DMC will

12



be stable only for positive distributions. For example, the denominator of a matrix

element such as the mixed energy contains the sum
∑Ns

i=1 PiΨT (Ri). If the path of

sample i has crossed nodes of ΨT an odd number of times, the contribution to the

sum will be negative. For large times, the contributions of the negative paths cancel

almost completely the contributions of the paths that have not crossed the nodes (or

crossed an even number of times). The signal dies out exponentially compared to the

noise.

Fixed-node DMC (Anderson (1975)) is an alternative method to overcome the

sign problem. A trial many-body wave function is chosen and used to define a trial

many-body nodal surface. In a three-dimensional system with N fermions, the wave

function depends on 3N variables and the trial nodal surface is a (3N−1)-dimensional

surface. If a walker in a proposed move crosses the nodal surface, it is deleted.

The fixed-node DMC algorithm then produces the lowest-energy state given the

nodal surface. Therefore, fixed-node DMC may be regarded as a variational method

that gives exact results provided that the nodal surface is exact.

2.3.3 Extrapolated estimators

Expectations of quantities that do not commute with the Hamiltonian can be

calculated using a combination of mixed and variational estimators (Foulkes et al.

(2001)),

〈Φ|S|Φ〉 ≈ 2〈Φ|S|ΨT 〉 − 〈ΨT |S|ΨT 〉+O
[
(Φ−ΨT )2

]
, (2.41)

where S is the operator related to some physical quantity of interest. For nonnegative

quantities, for example the density, another possibility is

〈Φ|S|Φ〉 ≈ 〈Φ|S|ΨT 〉2
〈ΨT |S|ΨT 〉

+O
[
(Φ−ΨT )2

]
. (2.42)

Such combinations of VMC and DMC estimators are called extrapolated estimators.
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2.3.4 Forward walking

The direct calculation of the expectation value of an operator S(R) other than

the Hamiltonian (or an operator that commutes with H) from Φ0(R) corresponds to

a matrix element which is usually called a “mixed estimator”,

〈S(R)〉m =
〈ΨT (R)|S(R)|Φ0(R)〉
〈ΨT (R)|Φ0(R)〉 . (2.43)

There are several methods to compute expectation values of quantities, such as the

density, that do not commute with H. One of them is the extrapolation method

where the results of diffusion and variational simulations are combined, see Sec. 2.3.3.

However, the accuracy of the extrapolation method relies on the quality of the trial

wave function. Moreover, even in the case of accurate trial wave functions, the bias

of the extrapolated estimator is difficult to evaluate. One alternative is the forward

walking method, which is discussed in detail in Casulleras and Boronat (1995). This

method relies on the calculation of the asymptotic offspring of walkers coming from

the branching term to compute the exact estimator,

〈S(R)〉e =
〈Φ0(R)|S(R)|Φ0(R)〉
〈Φ0(R)|Φ0(R)〉 . (2.44)

A more detailed discussion of forward walking and unbiased estimators is presented

in Appendix B.

2.4 QMC on parallel computers

Monte Carlo calculations are intrinsically parallel. The calculations performed on

each walker are independent, and may be carried out in parallel. QMC calculations

are very suitable for parallel architecture machines, which offer orders of magnitude

more computational power.

14



The most common paradigm used in QMC on massively parallel processors is

the “master-slave”, with one processor orchestrating the whole simulation. In VMC

simulations, the argument for using parallel computers is even more compelling. Each

process independently runs a simulation and accumulates its own set of observables; at

the end of the run the master processor gathers and averages the results. The situation

is similar in DMC and GFMC simulations, however some inter-process communication

is required during the simulation to control the population of walkers and perform

the load balance between processes.

Our code, in the computational sense, is very similar to an auxiliary field diffusion

Monte Carlo (AFDMC) code developed together with our collaborators. The AFDMC

code has been successfully used to calculate properties of a plethora of systems: nu-

clear matter, neutron matter, and medium-mass nuclei (see Carlson et al. (2015a)

and references therein). Although heavy load-balancing is involved, the AFDMC

code shows strong scaling up to 96,000 cores on Edison at National Energy Research

Scientific Computing Center (NERSC) - Edison is a Cray XC30, with a peak perfor-

mance of 2.57 petaflops/sec, 133,824 compute cores, 357 terabytes of memory, and

7.56 petabytes of disk. In Fig. 2.1 (Stefano Gandolfi, private communication, 2018)

we show the time it takes to propagate for 100 steps 96,000 configurations of 28

nucleons in a box with a number density of 0.16 fm−3.
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Figure 2.1: Scaling of the AFDMC code obtained on the Cray XC30 machine at

NERSC. The inset shows the efficiency as a function of the number of cores, which

is higher than 98% for 96,000 cores.
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Chapter 3

TWO-DIMENSIONAL FERMI GASES

3.1 Introduction

The study of cold Fermi gases has proven to be a very rich research field, and the

investigation of low-dimensional systems has become an active area in this context

(Giorgini et al. (2008); Bloch et al. (2008)). Particularly, the two-dimensional Fermi

gas has attracted much interest recently. It was the object of several theoretical

investigations (Randeria et al. (1989, 1990); Petrov et al. (2003); Martikainen and

Törmä (2005); Tempere et al. (2007); Zhang et al. (2008)), but its experimental

realization using a highly anisotropic potential, see Fig. 3.1, was a milestone in the

study of these systems (Martiyanov et al. (2010)).

Figure 3.1: The experiment of Martiyanov et al. (2010) consisted in a degenerate

gas of fermionic atoms which move in two dimensions, while the motion in the third

dimension is “frozen” by tight confinement and low temperature. The gas is confined

in a optical potential, in the antinodes of a standing optical wave. The isolated clouds

of atoms are shown in red, and the standing-wave intensity in purple. Each disk has

a radius of approximately 70 µm, while the separation between them is of ≈ 5.3 µm.
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Many other studies have been carried out since (Orel et al. (2011); Makhalov

et al. (2014)). Quantum Monte Carlo methods were successfully employed to compute

several properties of the BEC-BCS crossover. These methods include diffusion Monte

Carlo (Bertaina and Giorgini (2011); Galea et al. (2016)), auxiliary-field quantum

Monte Carlo (Shi et al. (2015)), and lattice Monte Carlo (Anderson and Drut (2015);

Rammelmüller et al. (2016); Luo et al. (2016)). The fact that a fully attractive

potential in 2D always supports a bound state, and the ability to vary the interaction

strength over the entire BEC-BCS crossover regime offers rich possibilities for the

study of these systems.

The presence of quantized vortices is an indication of a superfluid state in both

Bose and Fermi systems. In three-dimensional systems, much progress has been made

(Bulgac and Yu (2003); Sensarma et al. (2006); Simonucci et al. (2013); Madeira

et al. (2016)), including the observation of vortex lattices in a strongly interacting

rotating Fermi gas of 6Li (Zwierlein et al. (2005)). With the recent progress on the

2D Fermi gases, it seems natural to also extend the theoretical study of vortices to

these systems. Interest is further augmented in 2D, where a Berezinksii-Kosterlitz-

Thouless transition (Berezinsky (1971); Kosterlitz and Thouless (1972)) could take

place at finite temperatures, and pairs of vortices and antivortices would eventually

condense to form a square lattice (Botelho and Sá de Melo (2006)).

We are interested in how the properties of a vortex change over the BEC-BCS

crossover. Experiments in 3D systems show that the vortex core properties change

over the crossover. A theoretical investigation of 2D systems seems pertinent, so that

the results can be compared with experiments once they become available.

In this work we focus on ultracold atomic Fermi gases, but it is noteworthy that

a duality is expected between neutron matter and superfluid atomic Fermi gases. In

3D, both ultracold atomic gases and low-density neutron matter exhibit pairing gaps
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of the order of the Fermi energy (Carlson et al. (2013)). In dilute cold gases systems,

the effective range re between atoms is nearly zero, and the diluteness guarantees that

the scattering length a is much larger than the interparticle spacing r0
1. Comparison

with other systems is meaningful if they also obey a� r0 � re. The scattering length

of neutron matter, ann ∼ −18.5 fm, is much larger than the interparticle distance and

the effective range, rnne ∼ 2.7 fm, such that |rnne /ann| ≈ 0.15. However, only at very

low-densities the effective range is much smaller than the interparticle distance. If

we neglect the effects of a finite effective range in the neutron-neutron interaction,

cold atoms and neutron matter are universal in the sense that properties depend

on the product kFa. Unlike the Fermi atom gases, the possibility of microscopically

tuning interactions of neutron-matter is not available. However, we can study neutron

pairing by looking at the BCS side of the crossover (Gezerlis and Carlson (2008,

2010)). Vortex properties are also of significant interest in neutron matter (De Blasio

and Elgarøy (1999); Yu and Bulgac (2003)) because a significant part of the matter in

rotating neutron stars is superfluid, and vortices are expected to appear. Moreover,

phases called nuclear pasta, where neutrons are restricted to 1D or 2D configurations,

are predicted in neutron stars (Ravenhall et al. (1983); Yu and Bulgac (2003)).

We report properties of a single vortex in a 2D Fermi gas. We considered the

ground-state to be a disk with hard walls and total angular momentum zero, and

the vortex excitation corresponds to each fermion pair having angular momentum

~. Hopefully, our results will motivate experiments to increase our understanding of

vortices in 2D Fermi gases.

This chapter is structured as it follows. In Sec. 3.2 we introduce the methodology

employed. In Sec. 3.2.1 we discuss aspects of finite-size fermionic systems, we briefly

introduce 2D scattering in Sec. 3.2.2, and Sec. 3.2.3 is devoted to the wave functions

1For 6Li, kF ∼ 1 µm−1, while the order of magnitude of the range is ∼ Å.
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employed for the bulk, disk, and vortex systems. Finally, the results are presented in

Sec 3.3 and a summary of the work is given in Chapter 5.

3.2 Methods

Previous simulations of vortices in 3D bosonic systems, such as 4He, have often

employed a periodic array of counter-rotating vortices, which enables the usage of

periodic boundary conditions. In the 4He calculations of Sadd et al. (1997), the

simulation cell consisted of 300 particles in four counter-rotating vortices. If we had

employed a similar methodology, we would need the same number of fermion pairs,

i.e., a system with 600 fermions. There are simulations of fermionic systems that

have been performed with this number of particles, but the variance required for a

detailed optimization is beyond the scope of this work. Instead, we considered a disk

geometry similar to the one used in Ortiz and Ceperley (1995) for DMC simulations

of the vortex core structure properties in 4He.

3.2.1 Finite-size systems

We are interested in the interacting many-body problem, but it is useful to first

consider the non interacting case. In this section we compare the energy of finite-size

2D systems to the results in the thermodynamic limit.

First let us consider the case of N fermions in a square of side L with periodic

boundary conditions. The single-particle states are plane waves ψkn(r) = eikn·r/L,

with wave vector

kn =
2π

L
(nxx̂+ nyŷ). (3.1)

The eigenenergies are En = ~2k2
n/2m, where m is the mass of the fermion. At T = 0,

all states with energy up to the Fermi energy εF = ~2k2
F/2m, where kF is the Fermi
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wave number, are occupied. A shell structure arises from the fact that different

combinations of nx and ny in Eq. (3.1) yield the same |kn|. The closed shells occur

at total particle number N = (2, 10, 18, 26, 42, 50, 58, · · · ). The free-gas energy of a

finite system with N fermions, Ebulk
FG (N), is readily calculated by filling the lowest

energy states described by Eq. (3.1). In the thermodynamic limit, which corresponds

to N,L→∞ and n = N/L2 held constant, the energy per particle of the free-gas is

EFG = εF/2 and kF =
√

2πn.

Now let us consider the case of N fermions in a disk of radius R with a hard wall

boundary condition, i.e., the wave function must vanish at R. The single-particle

states are

ψνp(ρ, ϕ) = NνpJν
(
jνp
R ρ

)
eiνϕ, (3.2)

where (ρ, ϕ) are the usual polar coordinates, Nνp is a normalization constant, Jν are

Bessel functions of the first kind, and jνp is the p-th zero of Jν . The quantum number

ν can take the values 0,±1,±2, · · · and p = 1, 2, · · · . The corresponding eigenenergies

are

Eνp =
~2

2m

(
jνp
R

)2

. (3.3)

This system also presents a shell structure, due to the energy degeneracy of single-

particles states with the same |ν|, with shell closures at total particle number N =

(2, 6, 10, 12, 16, 20, 24, 28, 30, 34, · · · ). Notice that the energy levels of the bulk system

are much more degenerate than the ones of the disk. In practice this means that

more shells are needed to describe a disk with a given N . The free-gas energy for

the disk, Edisk
FG (N), can be calculated analogously to the bulk case using the energy

levels of Eq. (3.3). The thermodynamic limit for this case corresponds to R → ∞

with n = N/(πR2) held constant, and EFG and kF go to the same expressions as the

bulk ones.
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The comparison between the free-gas energy of finite systems in the bulk case and

in the disk geometry is not immediate due to the presence of hard walls in the latter.

In order to compare the free-gas energy in both geometries, we define

Edisk
0 (N) = Edisk

FG (N)− λs
2

√
n

πN
, (3.4)

in which we separated the total energy Edisk
FG (N) into a bulk component, Edisk

0 (N), and

a surface term, the second term on the RHS. For further discussions on the functional

form of the surface term, see Sec. 3.3.1. Figure 3.2 shows Ebulk
FG (N) and Edisk

0 (N), with

λs = 17.5 EFGk
−1
F , at the same density. The value of λs, within a 0.2% error, was

determined by fitting the data for 10 6 N 6 226 to the functional form of Eq. (3.4).
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Figure 3.2: Free-gas energy for finite-size systems as a function of the number of

particles N , where the dotted lines are drawn to guide the eye. The (red) closed

circles denote the energy of the bulk system, Ebulk
FG (N), and the (green) open circles

indicate the bulk energy component in the disk geometry, Edisk
0 (N), as defined in

Eq. (3.4). Local minima in Ebulk
FG (N) correspond to shell closures.

The disk presents a considerably higher free-gas energy, if compared to the bulk

system, due to the presence of hard walls, but the difference between them is rapidly

suppressed as we increase the particle number.
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3.2.2 Scattering in 2D

Two-body scattering by a finite-range potential V (r) in 2D is described by the

Schrödinger equation. We separate the solutions into radial R(r) and angular P (φ)

parts, the latter being a constant for s-wave scattering. The two-body equation for

an azimuthally symmetric (s-wave) solution is[
−~2∇2

2mr

+ V (r)

]
u(r) =

~2k2

2mr

u(r), (3.5)

where mr is the reduced mass of the system, and ~2k2/2mr is the scattering energy.

The scattering length a and effective range reff can be easily determined from the

k → 0 solution of Eq. (3.5), u0(r), and its asymptotic form y0. We choose the

solution

y0(r) = − ln
(r
a

)
, (3.6)

and we match u0 and y0, and their derivatives, outside the range of the potential.

In 2D, the low-energy phase shifts δ(k), a, and effective range reff , are related by

(Khuri et al. (2009))

cot δ(k) ≈ 2

π

[
ln

(
ka

2

)
+ γ

]
+
k2r2

eff

4
, (3.7)

where γ = 0.577 . . . is the Euler-Mascheroni constant, and the effective range is

defined as (Adhikari et al. (1986))

r2
eff = 4

∫ ∞
0

(y2
0(r)− u2

0(r))r dr. (3.8)

Equation (3.7) is often called the shape-independent approximation because it guar-

antees that a broad range of well-chosen potentials can be constructed to describe

low-energy scattering.
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We consider the modified Poschl-Teller potential

V (r) = −v0
~2

mr

µ2

cosh2(µr)
, (3.9)

where v0 and µ can be tuned to reproduce the desired a and reff .

Bound-states occur for purely attractive potentials for any strength in 2D. If we

continually increase the depth of V (r), a will eventually reach zero, and then it

diverges to +∞ when a new bound-state is created. The binding energy of the pair

is given by

εb = − 4~2

ma2e2γ
. (3.10)

We chose values of v0 and µ such that only one bound-state is present, and kF reff is

held constant at 0.006 (Galea et al. (2016)). This choice guarantees that the systems

studied in this work are in the dilute regime, since r0 � reff , where r0 = 1/
√
πn is of

order of the interparticle spacing.

The Hamiltonian of the two-component Fermi gas is given by

H = − ~2

2m

 N↑∑
i=1

∇2
i +

N↓∑
i=j′

∇2
j′

+
∑
i,j′

V (rij′), (3.11)

with N = N↑ + N↓, and V (rij′) given by Eq. (3.9). The DMC method projects the

lowest energy state of H from an initial state ψT , obtained from variational Monte

Carlo simulations, see Sec. (2.3).

We carefully optimized the trial wave function ψT , since it is used in three ways: an

approximation of the ground-state in the VMC calculations, as an importance func-

tion, and to give the nodal surface for the fixed-node approximation. The variational

parameters in Eqs. (3.18), (3.21), and (3.23) were determined using the stochastic

reconfiguration method (Casula et al. (2004)), see Appendix A.1. Expectation values

of operators that do not commute with the Hamiltonian, for example the current and

density, were calculated using extrapolated estimators, Eq. (2.41).
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3.2.3 Wave functions

The BCS wave function, which describes pairing explicitly, has been successfully

used in a variety of strongly interacting Fermi gases systems, such as: 3D (Carlson

et al. (2003)) and 2D (Galea et al. (2016)) bulk systems, vortices in the unitary regime

(Madeira et al. (2016)), two-component mixtures (Gezerlis et al. (2009); Gandolfi

(2014)), and many other systems. This wave function, projected to a fixed number

of particles N (half with spin-up and half with spin-down), can be written as the

antisymmetrized product (Leggett (1975); Bouchaud, J.P. et al. (1988))

ψBCS(R, S) = A[φ(r1, s1, r2, s2)φ(r3, s3, r4, s4) . . . φ(rN−1, sN−1, rN , sN)], (3.12)

where R is a vector containing the particle positions ri, S stands for the spins si, and

φ is the pairing function, which is given by

φ(r, s, r′, s′) = φ̃(r, r′) [〈s s′| ↑ ↓〉 − 〈s s′| ↓ ↑〉] , (3.13)

where we have explicitly included the spin part to impose singlet pairing. The as-

sumed expressions for φ̃ depend on the system being studied (see Secs. 3.2.3, 3.2.3,

and 3.2.3). Since neither the Hamiltonian or any operators in the quantities we cal-

culate flip the spins, the results are equivalent to viewing spin-up and spin-down

as distinguishable particles. Thus, we adopt hereafter the convention of primed in-

dexes to denote spin-down particles and unprimed ones to refer to spin-up particles.

Equation (3.12) reduces to

ψBCS(R, S) = A[φ(r1, s1, r1′ , s1′)φ(r2, s2, r2′ , s2′) . . . φ(rN/2, sN/2, rN/2′ , sN/2′)],

(3.14)

where the antisymmetrization is over spin-up and/or spin-down particles only. This

wave function can be calculated efficiently as a determinant (Gandolfi et al. (2009)).
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In addition to fully paired systems, it is also possible to simulate systems with

unpaired particles (Carlson et al. (2003)), described by single particle states Φ(r). For

q pairs, u spin-up, and d spin-down unpaired single particles states, N = 2q + u+ d,

we can rewrite Eq. (3.14) as

ψBCS(R, S) = A[φ(r1, s1, r1′ , s1′) · · ·φ(rq, sq, rq′ , sq′)Φ1↑(rq+1) · · ·Φu↑(rq+u)

Φ1↓(r(q+1)′) · · ·Φd↓(r(q+d)′)]. (3.15)

We also included a two-body Jastrow factor f(rij′), rij′ = |ri−rj′|, which accounts

for correlations between antiparallel spins. It is obtained from solutions of the two-

body Schröedinger equation[
−~2∇2

2mr

+ V (r)

]
f(r < d) = λf(r < d), (3.16)

with the boundary conditions f(r > d) = 1 and f ′(r = d) = 0, where d is a variational

parameter, and λ is adjusted so that f(r) is nodeless. The total trial wave function

is written as

ψT(R, S) =
∏
i,j′

f(rij′)ψBCS(R, S). (3.17)

Bulk system

The assumed form of the pairing function for the bulk case is the same as Carlson

et al. (2003),

φ̃bulk(r, r′) =
nc∑
n=1

αne
ikn·(r−r′) + β̃(|r − r′|), (3.18)

where αn are variational parameters, and contributions from momentum states up to

a level nc are included.
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Contributions with n > nc are included through the β̃ function given by

β̃(r) =


β(r) + β(L− r)− 2β(L/2) for r 6 L/2

0 for r > L/2

(3.19)

with

β(r) = [1 + cbr][1− e−dbr]e
−br

dbr
, (3.20)

where r = |r− r′| and b, c, and d are variational parameters. This functional form of

β(r) describes the short-distance correlation of particles with antiparallel spins. We

consider b = 0.5 kF , d = 5, and c is adjusted so that ∂β̃/∂r = 0 at r = 0.

Disk

The pairing function for the disk geometry is constructed using the single-particle

orbitals of Eq. (3.2). Each pair consists of one single-particle orbital coupled with

its time-reversed state. This ansatz has been used before in the 3D system (Madeira

et al. (2016)), a cylinder with hard walls, and the form presented here is analogous to

that one if we disregard the z components. We supposed the pairing function to be

φ̃disk(r, r′) =
nc∑
n=1

α̃nN 2
νpJν

(
jνp
R ρ

)
Jν

(
jνp
R ρ′

)
eiν(ϕ−ϕ′) + β̄(r, r′), (3.21)

where the α̃n are variational parameters, and n is a label for the disk shells, such

that different states with the same energy are associated with the same variational

parameter, as in the plane wave expansion of Eq. (3.18).

In principle the single-particle orbitals in Eq. (3.21) form a complete set. To speed

convergence, we introduce a cutoff and we assume that higher momenta contributions
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are described by the β̄ function. It is similar to β̃ employed in the bulk system, but

we modify it to ensure the hard wall boundary condition is met,

β̄(r, r′) =


N 2

01J0

(
j01ρ
R

)
J0

(
j01ρ′

R

)
×

[β(r) + β(2R− r)− 2β(R)] for r 6 R

0 for r > R

(3.22)

and β has the same expression as the bulk case, Eq. (3.20).

Vortex

The vortex excitation is accomplished by considering pairing orbitals which are eigen-

states of Lz with eigenvalues ±~. This is achieved by coupling single-particle states

with angular quantum numbers differing by one. In this case we used pairing orbitals

of the form

φ̃vortex(r, r′) =
nc∑
n=1

ᾱnNνpNν−1;p

{
Jν

(
jνp
R ρ

)
Jν−1

(
jν−1;p

R ρ′
)
ei(νϕ−(ν−1)ϕ′)

+ Jν

(
jνp
R ρ′

)
Jν−1

(
jν−1;p

R ρ

)
ei(νϕ

′−(ν−1)ϕ)

}
, (3.23)

where n is a label for the vortex shells, and ᾱ are variational parameters. The largest

contribution is assumed to be from states with the same quantum number p for the

radial part (Madeira et al. (2016)). Equation (3.23) is symmetric under interchange

of the prime and unprimed coordinates, as required for singlet pairing.

The β̄ function of Eq. (3.22) is not suited to describe the vortex state because it is

an eigenstate of Lz with angular momentum zero. We tried different functional forms

that had the desired angular momentum eigenvalue, but none of them resulted in a

significant lower total energy. Thus, we chose to employ only the terms in Eq. (3.23).

As before, the functions in the absence of cutoff form a complete set.
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3.3 Results

This section is structured as it follows. Sec. 3.3.1 contains the ground-state en-

ergies in the disk geometry and discussions of size-effects. In Sec. 3.3.2 we present

the vortex excitation energy. The determination of the crossover region is done in

Sec. 3.3.3. Density profiles of the vortex and ground-state systems are shown in

Sec. 3.3.4. Properties of the vortex core are discussed in Sec. 3.3.5.

We define the interaction strength η ≡ ln(kFa). Large values of η correspond

to the BCS side of the crossover, while small η are on the BEC side. We probed

0.0 6 η 6 1.5, which encompasses the crossover region (see Sec. 3.3.3). For all

systems the number density is n = N/(πR2), and kF =
√

2N/R.

3.3.1 Ground-state energy and size-effects

We used the pairing function of Eq. (3.18), and N = 26, to calculate the ground-

state energy per particle of the bulk systems. Our results (see Table 3.1) are in

agreement with previous DMC calculations (Galea et al. (2016)).

Previous DMC simulations of 2D Fermi gases found that N = 26 is well suited to

simulate bulk properties of systems in the region studied here (Galea et al. (2016)).

However, the disk geometry presents more intricate size-dependent effects. We inves-

tigated how the ground-state energy depends on the disk radius R. In the thermo-

dynamic limit, R → ∞, the energy per particle should go to the bulk value. Since

our system has hard walls, the energy has a dependence on the “surface” of the disk.

Including this surface term, the energy per particle can be fit to

Edisk(R) = E0 +
λs

2πR , (3.24)

where E0 and λs are constants related to the bulk and surface terms.
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Table 3.1: Comparison between the ground-state energy per particle of the bulk

(Ebulk) and disk systems as a function of the interaction strength η. The parameters

E0 and λs, see Eq. (3.24), are related to our assumption of the functional form of the

ground-state energy per particle in the disk geometry.

η Ebulk [EFG] E0 [EFG] λs [EFGk
−1
F ]

0.00 -2.3740(3) -2.32(3) 6(2)

0.25 -1.3316(3) -1.31(3) 8(2)

0.50 -0.6766(2) -0.65(2) 8(1)

0.75 -0.2562(2) -0.25(2) 11(1)

1.00 0.0233(2) 0.03(1) 11(1)

1.25 0.2149(2) 0.22(2) 12(1)

1.50 0.3523(2) 0.34(1) 13(1)

A few words about Eq. (3.24) are in order. The relation between the thermody-

namic properties of a confined fluid and the shape of the container where it is confined

has been an active field of study. Our choice was inspired by functional forms (see

for example König et al. (2004)) where, aside from the constant term, thermodynam-

ical properties are expressed as functions of the various curvatures of the container.

The next correction to this functional form of the energy per particle would include

a term proportional to R−2. We found that the inclusion of such a term does not

significantly improve our description of the ground-state energy.

In order to determine the number of particles necessary to simulate systems in

the disk geometry, with controllable size effects, we performed simulations with 26 6

N 6 70, and all particles paired, i.e., only even values of N .
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The dependence of E0 with the system size was investigated by fitting our data

using Eq. (3.24) for different intervals of R or, equivalently, different intervals of N .

We found that fitting the data for 58 6 N 6 70 resulted in a good agreement between

Ebulk and E0, that is, we were able to separate the bulk portion of the energy from the

hard wall contribution in the disk geometry. The resulting parameters of the fitting

procedure are summarized in Table 3.1, and Fig. 3.3 shows the energy per particle as

a function of R for all interaction strengths studied in this work.
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Figure 3.3: Ground-state energy per particle Edisk as a function of the disk radius R

for several interaction strengths. The curves correspond to the assumed functional

form of Eq. (3.24), with the parameters given in Table 3.1. Error bars are smaller

than the symbols.
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The E0 values agree with the bulk energies within the error bars, except for η = 0

and η = 0.5 (however the differences between the values are less than 2% and 4%,

respectively). As it can be seen in Table 3.1, the typical uncertainty in E0 is of order

0.01 EF , independent of the interaction strength. Thus the relative error can be quite

large for systems where the absolute value of the bulk energy is small, as it is observed

for η = 1.0. This is an improvement if compared to a similar DMC calculation in 3D

(Madeira et al. (2016)) which used the same procedure to calculate the ground-state

energy per particle of a unitary Fermi gas, where the discrepancy between the result

and the known bulk value was ≈ 30%.

We point out that this method is not intended to be a precise calculation of the

bulk energy of these systems. Instead, it is a way for us to determine the minimum

number of particles needed to simulate systems in the disk geometry with controllable

size effects. If we had naively assumed that the same number of particles used in bulk

calculations would suffice, N = 26, then we simply could not rely on the results. In

our simulations with 26 6 N 6 38 the discrepancies between E0 and Ebulk were

as large as 50%, and in some cases the uncertainty in λs was bigger than the value

itself. Results with 58 6 N 6 70 are much more well-behaved, and they are within

computational capabilities.

It is also noteworthy to mention that the energy contribution of the surface term,

due to the presence of hard walls, is more significant for the BCS side than in the BEC

limit (see the λs values in Table 3.1). This is expected, since the largest energy con-

tribution in the BEC side should be from the binding energy of the pairs, Eq. (3.10),

and they are smaller than the BCS pairs so that surface effects are smaller. One of

our goals is to obtain the vortex excitation energy, which is the difference between

the vortex and the ground-state energies. Since both systems have hard walls, we

expect that the surface effects will tend to cancel.
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3.3.2 Vortex excitation energy

The energy per particle of the vortex system is obtained using the pairing functions

of Eq. (3.23). The vortex excitation energy is given by the difference between the

energy of the vortex and ground-state systems, for the same number of particles. We

performed simulations with 58 6 N 6 70 and averaged the results.

In Fig. 3.4 we show the vortex excitation energy per particle as a function of the

interaction strength. The energy necessary to excite the system to a vortex state

increases as we move from the BCS to the BEC limit. The inset shows the vortex

and ground-state energies per particle for η = 1.5, although the other interaction

strengths display the same qualitative behavior.
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Figure 3.4: Vortex excitation energy per particle Eexc as a function of the interaction

strength η. The inset shows the ground-state (squares) and vortex (triangles) energies

per particle as a function of the number of particles N for η = 1.5.

3.3.3 Crossover region

In 2D, the BCS limit corresponds to kFa � 1 and the BEC limit to kFa � 1,

however unlike 3D where the unitarity is signaled by the addition of a two-body bound
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state, there is no equivalent effect with two-body sector in 2D. Nevertheless, we can

determine the interaction strength for which we can add a pair to the system with

zero energy cost (note that the chemical potential is not zero for the unitary gas in

3D). The chemical potential µ can be estimated as

µ =
∂E

∂N

∣∣∣∣∣
Even N

, (3.25)

for each interaction strength, where the even number condition implies that all par-

ticles are paired. For each value of η we used a finite difference formula to evaluate

Eq. (3.25), for 58 6 N 6 70 (see Fig. 3.5).

We found that µ = 0 at η ≈ 0.90 for the ground-state of the disk. Previous

DMC simulations of 2D bulk systems (Galea et al. (2016)) found that the chemical

potential changes sign at η ≈ 0.65. Although the results differ, most probably due to

the different geometry employed in this work, it is safe to assume that the interaction

strength interval 0 6 η 6 1.5 encompasses the BEC-BCS crossover region. The

chemical potential of the vortex state is higher than the ground-state, as expected,

thus µ = 0 is at a smaller interaction strength, η ≈ 0.85.

3.3.4 Density profile

We calculated the density profile D(ρ) along the radial direction ρ for both the

vortex and ground-state systems. The normalization is such that∫
D(ρ)d2r = 1, (3.26)

where the integral is performed over the area of the disk. The results are obtained

using the extrapolation procedure of Eq. (2.41), which combines both VMC and DMC

runs. It is noteworthy to point out that, although the densities observed in VMC and

DMC simulations differ, they are much closer than previous results in 3D (Madeira
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Figure 3.5: Chemical potential of the ground-state (triangles) and vortex (circles) as a

function of the interaction strength. The chemical potential changes sign at η ≈ 0.90

for the ground-state, and η ≈ 0.85 for the vortex state. In the inset we show the total

energy as a function of the number of particles for the ground-state of η = 1.5. Other

interaction strengths with positive (negative) µ have positive (negative) slopes.

et al. (2016)). In that calculation it was needed to explicitly include a one-body term

in the wave function to maximize the density overlap between DMC and VMC runs,

whereas in this work no such term was employed.

Figure 3.6 shows the density profile of both the vortex and ground-state systems

for N = 70 and η = 1.5. The oscillations in the density profiles are much more

pronounced than in a similar DMC calculation of a unitary Fermi gas in 3D (Madeira

et al. (2016)). In this 3D calculation a cylindrical geometry was employed, with hard

walls and periodic boundary conditions along the axis of the cylinder. The density

profiles were obtained by averaging the results over the z direction of the axis of the

cylinder, we therefore expect more fluctuations in 2D where the particles are confined

to a plane. For the ground-state, the density oscillations are surface effects. They
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are present in both the interacting and non-interacting systems, as it can be seen in

Fig. 3.6.
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Figure 3.6: Density profile along the radial direction ρ of the vortex (red squares)

and ground-state (green circles) for N = 70 and η = 1.5. Although there is a density

suppression at the vortex core of ≈ 30%, the density is non-zero at the center of the

disk. We also plot the analytical result for the ground-state density of the free- gas

in a disk (blue curve), which presents oscillations due to the presence of hard-walls.

In Fig. 3.7 we show the density profiles of the other interaction strengths studied

in this work, 0 6 η 6 1.25. We found that the density depletion at the vortex core

goes from ≈ 30% at η = 1.5 to a completely depleted core at η 6 0.25.

The regions close to the walls exhibit a characteristic behavior due to the hard wall

condition we imposed, as it can be seen in Figs. 3.6 and 3.7. In order to estimate the

number of particles outside this region, we can define the particle number a distance

R from the center of the disk as

N (R) = N

∫ 2π

0

dϕ

∫ R

0

dρ ρ D(ρ). (3.27)

For the case of Figs. 3.6 and 3.7 where N = 70, if we set R ∼ 8 k−1
F , N is approxi-

mately between 40 and 45 for the ground-state, and between 35 and 40 for the vortex
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Figure 3.7: Density profile along the radial direction ρ of the vortex (red squares) and

ground-state (green circles) for N = 70 and 0 6 η 6 1.25. It is interesting to observe

that the density at the vortex core diminishes as we go from the BCS to the BEC

limit, and at η 6 0.25 the core is completely depleted. This can be understood if we

consider the pair sizes, which correspond to a few k−1
F in the BCS side, and tightly

bound molecules in BEC limit. Thus, in the BCS side, one of the fermions in a pair

can be near ρ = 0 while the center of mass of the pair rotates around the axis. The

same is not possible in the BEC limit of tightly bound pairs, hence the depleted core.

systems. Hence the number of particles in this regime is larger than the usual value

of N = 26 employed in bulk systems (Galea et al. (2016)).

Additionally, we performed simulations of the vortex systems with an odd number

of particles, i.e., one unpaired particle was added to a fully paired system, Eq. (3.15)

with q = 34, u = 1, and d = 0. We set its angular momentum to zero, Eq. (3.2)

with ν = 0 and p = 1. In the BEC limit we observed a non-vanishing density at the

center of the disk, which suggests that the unpaired particle fills the empty vortex core

region. On the other hand, in the BCS limit the density close to the wall increased,

while the density at the origin was unchanged. We chose a qualitative discussion of
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this phenomenon because the required variance for a detailed optimization is beyond

the scope of this work. Future calculations should include quantities such as the one-

body density matrix, which may contribute to an accurate quantitative approach.

3.3.5 Vortex core size

The probability current density operator can be written as

J(r) =
1

2N

N∑
j=1

[
vjδ

2(r − rj) + δ2(r − rj)vj
]
, (3.28)

where the velocity operator is vj = pj/m → −i~∇j/m. We are interested in the

angular component as a function of the radial coordinate, Jϕ(ρ), because the position

of its maximum can be used as an estimate of the vortex core size, Jmax ≡ Jϕ(ρ = ξ).

We followed the extrapolation procedure of Eq. (2.41). Figure 3.8 shows Jϕ(ρ)

for N = 70 and 0 6 η 6 1.5. The maximum of the current increases as we go from

the BCS to the BEC limit, its value at the BEC side, η = 0, being more than twice

Jmax at the BCS side, η = 1.5. The position of the maximum is between ξ = 1.7

and 1.8 k−1
F at the BCS side of the crossover, i.e., 0.75 6 η 6 1.5; at the BEC side,

η = 0.25 and 0.5, ξ ∼ 1.6 k−1
F . The case η = 0 moves away from the trend of a

smaller core as we go from the BCS to the BEC limit, with ξ = 2.0 k−1
F . It is unclear

if ξ or Jmax depend on the disk radius R, because the R values are closely spaced for

58 6 N 6 70, and no significant difference was observed in the maximum as we varied

N . Nevertheless, the relative results contribute to understanding how the vortex core

evolves over the BEC-BCS crossover.

The wave function that we employed for the vortex state is an eigenstate of the

total angular momentum operator. Since this operator commutes with the Hamilto-

nian, the diffusion procedure does not change the eigenvalue of the state. In addition,

the calculation of the probability current density operator allowed us to verify that
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Figure 3.8: Angular component of the probability current Jϕ as a function of the

radial coordinate ρ for several interaction strengths η. The position of its maximum

provides an estimate of the vortex core size.

the vortex corresponds to a N~/2 total angular momentum state in a straightforward

way. The angular momentum can be written as

L = m

∫
(r × J)d2r, (3.29)

and the component of interest is

Lz = 2πm

∫
ρ2Jϕ(ρ)dρ. (3.30)

In our definition of the probability current density operator, we divide by the number

of particles N , see Eq. (3.28). Thus, the evaluation of Lz using Eq. (3.30) should

yield ~/2. We verified that, for all interaction strengths, this is in agreement with

our simulations.
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Chapter 4

QUANTUM MONTE CARLO FOR DYNAMICAL PIONS AND NUCLEONS

Modern nuclear theory is characterized by a series of attempts to rigorously bridge

the gap between quarks and gluons, the degrees of freedom of quantum chromody-

namics (QCD), and the confined phase in which massive particles such as mesons

and baryons can be regarded as the constituents of matter. Nuclear effective field

theories (EFTs) are employed to connect QCD to low-energy nuclear observables.

EFTs exploit the separation between the “hard” (M , typically the nucleon mass)

and “soft” (Q, typically the exchanged momentum) momentum scales. The active

degrees of freedom at soft scales are hadrons whose interactions are consistent with

QCD. Effective potentials and currents are derived in a systematic expansion in Q/M

from the most general Lagrangian constrained by the QCD symmetries. Chiral-EFT,

which is best suited to describe processes characterized by Q ' mπ, exploits the

(approximate) chiral symmetry of QCD and its pattern of spontaneous symmetry

breaking to derive consistent nuclear potentials and currents, and to estimate their

uncertainties (Epelbaum et al. (2009); Machleidt and Entem (2011)).

Potentials and electroweak currents derived within chiral-EFT are the main in-

put to “ab-initio” many-body methods that are aimed at solving the many-body

Schrödinger equation associated with the nuclear Hamiltonian (Barrett et al. (2013);

Epelbaum et al. (2011); Hagen et al. (2014); Hergert et al. (2016); Carbone et al.

(2013); Carlson et al. (2015b)). These schemes rely on the assumption that processes

like the one meson exchange are well approximated by an instantaneous interaction,

and that the meson degrees of freedom can be integrated out and their contribu-

tion is encoded in nuclear potentials and electroweak currents, determining their low-
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momentum behavior. Not much attention has been devoted so far to the development

of techniques capable of including mesonic degrees of freedom in these many-body

calculations. There are several reasons for this choice. The main one is that effects

arising from not assuming an instantaneous interaction are believed to be unessential

for the derivation of nuclear potentials. Without such assumption, many-body inter-

actions would automatically be generated already at leading order when integrating

out the meson fields. The fact that, when neglecting dynamical effects in the me-

son fields, three- and many-body interactions appear at next-to-next-to leading order

(N2LO) suggests that such effects can be considered to be sub-leading at any order.

However, such assumptions have never been rigorously tested in ab-initio scheme for

a many-nucleon system.

Most of the progress to account for explicit pions into nuclear EFT has been made

so far by using lattice methods. Whilst the inclusion of pion fields into the Lagrangians

is straightforward, dynamical pions bring noise and sign problems in lattice Monte

Carlo calculations (Hjorth-Jensen et al. (2017)). One alternative approach is to use

static pion auxiliary fields (Borasoy et al. (2007); Lee (2009)), where time derivatives

are neglected, and thus pions couple to nucleons only through spatial derivatives.

Since these pion fields are instantaneous, this eliminates the self-energy diagrams

responsible for mass renormalization.

It is noteworthy to point out that there is a condensed matter analog to the axial-

vector coupling between one nucleon and the pions, the polaron (Feynman (1955)).

However, the coupling between the electron and the phonons is scalar, and the bosonic

degrees of freedom can be integrated out explicitly. Quantum Monte Carlo methods

have been successful at tackling both problems (Carlson and Schmidt (1992)).

In this dissertation, we devise a QMC framework in which both relativistic pions

and nonrelativistic nucleons are explicitly included in the quantum-mechanical states
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of the system. From a given order chiral-EFT Lagrangian, the corresponding Hamil-

tonian is derived, and the pion fields are expressed in the Schrödinger representation.

The nuclear structure problem is written in terms of the modes of the relativistic pion

field, and of the position and spin-isospin degrees of freedom of the nucleons. QMC

techniques are employed to accurately solve the corresponding Schrödinger equation,

which is equivalent to summing all Feynman diagrams originating from a given or-

der of the chiral-EFT Lagrangian. Resummation techniques are already employed

in chiral-EFT. The nucleon-nucleon (NN) system at low angular momenta is charac-

terized by a shallow bound state, the deuteron, and large scattering lengths, which

prevents the applicability of standard chiral perturbation theory. Weinberg suggested

to use perturbation theory to calculate the irreducible diagrams defining the NN po-

tential, and apply it in a scattering equation to obtain the NN amplitude (Weinberg

(1990)). Solving the scattering equation corresponds to summing all diagrams with

purely nucleonic intermediate states (Machleidt and Entem (2011)). Diagrammatic

resummation in chiral-EFT is also needed to describe resonances in pion-pion scat-

tering that cannot be obtained in perturbation theory to any finite order (Nieves and

Arriola (2000)).

Before moving to larger systems, there are several non-trivial questions arising

when including pions in a QMC calculation, that need to be addressed already for

the one and two nucleon cases. One of the major issues is the assessment of finite size

effects, since our calculations are necessarily limited to nucleons and pions lying in a

box of side L with periodic boundary conditions. This naturally introduces a infrared

cutoff dependence which, together with the ultraviolet cutoff we employ, affects the

pion-nucleon interaction.

In the single-nucleon sector, we study the energy-shift of the nucleon mass as

a function of the momentum cutoff. We also compute the pion cloud density and
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momentum distributions. In the NN sector, we first verified that our results for two

static nucleons correctly reduce to the one-pion exchange potential at sufficiently large

separation distance. We then fit the low-energy constants associated to the contact

terms of the leading-order (LO) chiral-EFT Lagrangian to describe the deuteron and

two neutrons in a finite volume.

This chapter is a summary of our formalism, and the steps used to derive it,

that allows for the inclusion of explicit pion degrees of freedom in quantum Monte

Carlo simulations of nucleon systems. In Sec. 4.1, after a brief introduction on chiral

effective field theory, we derive the leading order chiral Lagrangian, in which only

nucleons and pions degrees of freedom are included, in the heavy baryon framework.

Expressions for the pion field and related quantities are provided in Sec. 4.2. In

Sec. 4.3 we derive expressions for the Hamiltonians and wave functions needed for

A-nucleon simulations. Sec. 4.4 includes a lowest order nonrelativistic calculation of

the self-energy of the nucleon in a box, and analytical expressions for pion derivatives.

The one pion exchange potential is derived in Sec. 4.5. Physical two nucleon systems,

namely the deuteron and two neutrons, are studied in Sec. 4.6. In Sec. 4.7 we comment

on technical aspects of the implementation of one- and two-body operators, as well

as the basis employed in our code. Finally, the results are presented in Sec. 4.9 and

an outlook of the work is given in Chapter 5.

4.1 Chiral effective field theory

In this section we follow the treatment of Machleidt and Entem (2011) to show how

nuclear forces emerge from low-energy quantum chromodynamics via chiral effective

field theory. One of the major open problems in nuclear physics is how to construct a

nucleon-nucleon (NN) interaction potential from first principles. The first attempts

were based on Yukawa’s seminal idea of a description based on pion exchanges. While
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the one pion exchange (OPE) turned out to be useful in explaining NN scattering data

and deuteron properties, multi-pion exchange could not be resolved in a satisfactory

way. Hence the “pion theories” of the 1950’s were deemed failures, but the reason

is understood today: pion dynamics is constrained by chiral symmetry, which was

unknown at the time.

A major breakthrough occurred when the concept of an EFT was applied to low-

energy QCD. Weinberg suggested that one has to write the most general Lagrangian

consistent with the assumed symmetry principles, in particular the broken chiral

symmetry of QCD. At low energy, the effective degrees of freedom are pions and

nucleons, rather than quarks and gluons. Heavy mesons and nucleon resonances are

“integrated out”.

QCD is the theory of strong interactions. It is part of the Standard Model of

particle physics and it deals with quarks, gluons, and their interactions. One crucial

step for the development of an EFT is the identification of a separation of scales.

In the hadron spectrum there is a large gap between the masses of pions and vector

mesons, such as the ρ(770). So the soft scale is set by the pion mass, Q ∼ mπ, and

the rho mass sets the hard (breaking) scale, Λχ ∼ mρ. This suggests an expansion in

terms of Q/Λχ. To make sure that this EFT is not just another phenomenology, there

must be a proper link with QCD, which is established by having the EFT observe all

relevant symmetries of the underlying theory.

The EFT procedure can be summarized as:

1. Identify soft and hard scales, and the appropriate degrees of freedom for low-

energy nuclear physics

2. Identify the relevant symmetries of low-energy QCD (and if and how they are

broken)
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3. Write down the most general Lagrangian consistent with 1 and 2.

4. Design a low-momentum expansion that can distinguish between more and less

important contributions.

5. Guided by 4, calculate the Feynman diagrams for the problem to the desired

accuracy.

4.1.1 Symmetries of low-energy QCD

The QCD Lagrangian is

LQCD = q̄(iγµDµ −M)q − 1

4
Gµν,aGµνa , (4.1)

with the gauge-covariant derivative,

Dµ = ∂µ − ig
λa
2
Aµ,a, (4.2)

and the gluon field strength tensor,

Gµν,a = ∂µAν,a − ∂νAµ,a + gfabcAµ,bAν,c, (4.3)

where q stands for the quark fields, M is the quark mass matrix, g is the strong

coupling constant, Aµ,a are the gluon fields, the λa are the Gell-Mann matrices and

the fabc are the structure constants of the SU(3)color Lie algebra (a, b, c = 1, ..., 8).

The masses of the up (u), down (d), and strange (s) quarks are

mu = 2.5± 0.8MeV,

md = 5.0± 0.9MeV,

ms = 101± 25MeV, (4.4)

45



which are small if compared to a typical hadronic scale (low-mass hadrons which are

not Goldstone bosons), mρ ≈ 1 GeV. So let us look at the QCD Lagrangian in the

limit of vanishing quark masses,

L0
QCD = q̄iγµDµq −

1

4
Gµν,aGµνa . (4.5)

We define the right- and left-handed quark fields, corresponding to spin and momen-

tum aligned and antialigned,

qR = PRq, qL = PLq, (4.6)

with the projectors,

PR =
1

2
(1 + γ5), PL =

1

2
(1− γ5). (4.7)

We can rewrite the Lagrangian as

L0
QCD = q̄Riγ

µDµqR + q̄Liγ
µDµqL −

1

4
Gµν,aGµνa . (4.8)

If we restrict ourselves to up and down quarks only, we see that L0
QCD is invariant

under the global unitary transformations

qR =

uR
dR

 7→ gRqR = exp
(
−iΘR

i

τi
2

)uR
dR

 , (4.9)

and

qL =

uL
dL

 7→ gLqL = exp
(
−iΘL

i

τi
2

)uL
dL

 , (4.10)

where the τi (i = 1, 2, 3) are the usual Pauli matrices with the commutation relations

[τi
2
,
τj
2

]
= iεijk

τk
2
, (4.11)
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and gR and gL are elements of SU(2)R and SU(2)L, respectively. The conclusion is

that right- and left-handed components of massless quarks do not mix. This is the

SU(2)R × SU(2)L symmetry, also known as chiral symmetry.

Noether’s theorem implies the existence of conserved currents, three right-handed,

Rµ
i = q̄Rγ

µ τi
2
qR with ∂µR

µ
i = 0, (4.12)

and three left-handed,

Lµi = q̄Lγ
µ τi

2
qL with ∂µL

µ
i = 0. (4.13)

It is useful to consider some linear combinations; three vector-currents

V µ
i = Rµ

i + Lµi = q̄γµ
τi
2
q with ∂µV

µ
i = 0, (4.14)

and three axial-vector currents,

Aµi = Rµ
i − Lµi = q̄γµγ5

τi
2
q with ∂µA

µ
i = 0, (4.15)

which are named after the fact that they transform under parity as vector and axial-

vector current densities, respectively. The vector transformations are

q =

u
d

 7→ exp
(
−iΘV

i

τi
2

)u
d

 , (4.16)

which represent isospin rotations. Therefore, invariance under vector transformations

can be associated with isospin symmetry.

There are six conserved charges,

QR
i =

∫
d3xR0

i =

∫
d3xq†R(t,x)

τi
2
qR(t,x), with

dQR
i

dt
= 0, (4.17)

and

QL
i =

∫
d3xL0

i =

∫
d3xq†L(t,x)

τi
2
qL(t,x), with

dQL
i

dt
= 0. (4.18)
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Alternatively,

QV
i =

∫
d3xV 0

i =

∫
d3xq†(t,x)

τi
2
q(t,x), with

dQV
i

dt
= 0, (4.19)

and

QA
i =

∫
d3xA0

i =

∫
d3xq†(t,x)γ5

τi
2
q(t,x), with

dQA
i

dt
= 0. (4.20)

4.1.2 Explicit symmetry breaking

The mass term in the QCD Lagrangian, Eq. (4.1), breaks chiral symmetry explic-

itly. Let us write M for the two-flavor case,

M =

mu 0

0 md

 =
1

2
(mu +md)

1 0

0 1

+
1

2
(mu −md)

1 0

0 −1


=

1

2
(mu +md)1 +

1

2
(mu −md)τ3. (4.21)

The first term in the last equation is invariant under SU(2)V , i.e. isospin symmetry,

and the second term vanishes for mu = md. Thus, isospin is an exact symmetry if

the up and down quarks have the same masses. However, both terms break chiral

symmetry. Since mu and md are much smaller than the typical hadronic mass scale of

∼ 1 GeV, the explicit chiral symmetry breaking due to non-vanishing quark masses

is very small.

4.1.3 Spontaneous symmetry breaking

A continuous symmetry is said to be spontaneously broken if a symmetry of the

Lagrangian is not realized in the ground-state of the system. There is evidence that

the approximate chiral symmetry of the QCD Lagrangian is spontaneously broken,

which comes from the hadron spectrum. The QA
i of Eq. (4.20), a conserved quantity,

commutes with the Hamiltonian and it has negative parity, thus one would naively
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assume that for any hadron of positive parity there must be a negative one as well.

However, these “parity doublets” are not observed in nature.

A spontaneously broken global symmetry implies the existence of massless Gold-

stone bosons, with the quantum numbers of the broken generators. The broken

generators are the QA
i of Eq. (4.20), which are pseudoscalar. The Goldstone bosons

are identified with the isospin triplet of the pseudoscalar pions. The pion masses are

not exactly zero because the masses of u and d quarks do not vanish either (explicit

symmetry breaking), but this explains why pions are so light. In pions we see a

remarkable example of both spontaneous and explicit symmetry breaking.

4.1.4 Chiral effective Lagrangian

Now we build the Lagrangian consistent with the broken symmetries discussed in

the previous sections. The relevant degrees of freedom are nucleons and pions (Gold-

stone bosons). Since interactions of Goldstone bosons must vanish at zero momentum

transfer and in the chiral limit mπ → 0, the low-energy expansion of the Lagrangian

is arranged in powers of derivatives and pion masses. The effective Lagrangian can

formally be written as

Leff = Lππ + LπN + · · · , (4.22)

where Lππ accounts for the dynamics between pions, LπN deals with the interactions

of pions and a nucleon, and the ellipsis denotes terms with pions with two or more

nucleons. In turn, each Lagrangian can be organized as

Lππ = L(2)
ππ + L(4)

ππ + · · ·

LπN = L(1)
πN + L(2)

πN + · · · ,

where the superscript denotes the chiral dimension (number of derivatives or pion

mass).
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We introduce the SU(2) matrix

U = 1 +
i

fπ
τ · π − 1

2f 2
π

π2 + · · · , (4.23)

where fπ is the pion decay constant. The coefficient of the linear term was chosen to

produce the desired kinetic term in the pion-pion Lagrangian, and the coefficient of

the quadratic term enforces that U is unitary, at second order in the pion fields. The

leading order (LO) Lagrangian is given by

L(2)
ππ =

f 2
π

4
tr
[
∂µU∂

µU † +m2
π(U + U †)

]
. (4.24)

Since Goldstone bosons can interact only when they carry momentum, the interaction

between pions comes in powers of ∂µU . Only even powers of mπ are present because

of Lorentz invariance. The U field transforms under global chiral rotations as

U 7→ gLUg
†
R. (4.25)

Since under global chiral rotations gR and gL do not depend on space-time, ∂µU

transforms in the same way as U does, hence the first term in Eq. (4.24) is chiral

invariant. The second term breaks chiral symmetry explicitly, with the coefficient

chosen to reproduce the correct mass term. Inserting U and keeping terms with only

two pion fields yields

L(2)
ππ =

1

2
∂µπ · ∂µπ −

1

2
m2
ππ

2 +O(π4), (4.26)

where we dropped the constant f 2
πm

2
π.

The LO relativistic πN Lagrangian is

L(1)
πN = Ψ̄

(
iγµDµ −MN +

gA
2
γµγ5uµ

)
Ψ, (4.27)

where the chirally covariant derivative is Dµ = ∂µ + Γµ, Γµ = [ξ†, ∂µξ], and uµ =

i
{
ξ†, ∂µξ

}
with

ξ =
√
U = 1 +

i

2fπ
τ · π − 1

8f 2
π

π2 + · · · (4.28)
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Using the identity (a · τ )(b · τ ) = (a · b)1 + iτ · (a× b), we have

Γµ =
i

4f 2
π

τ · (π × ∂µπ) +O(π4), (4.29)

and

uµ = − 1

fπ
τ · ∂µπ +O(π3). (4.30)

The πN Lagrangian of Eq. 4.27 can be cast more explicitly as

L(1)
πN = Ψ̄

(
iγµ∂µ −MN −

1

4f 2
π

γµτ · (π × ∂µπ)− gA
2fπ

γµγ5τ · ∂µπ + · · ·
)

Ψ. (4.31)

The term proportional to gA/2fπ is the axial-vector coupling of one pion to a nucleon,

and the term proportional to 1/4f 2
π is the so-called Weinberg-Tomozawa coupling.

Finally, the LO NN Lagrangian is

L(0)
NN = −1

2
CS(N̄N)(N̄N)− 1

2
CT (N̄σiN)(N̄σiN). (4.32)

4.1.5 Heavy baryon formalism

The relativistic treatment of baryons in chiral perturbation theory leads to prob-

lems, mainly because the time-derivative of a relativistic baryon field gives a factor

of E ≈ M (M being the baryon mass), which is not small as compared to the chiral

breaking scale Λχ ≈ 1 GeV. A solution is to treat baryons as heavy static sources,

the so-called extreme nonrelativistic limit, because the momentum transfers between

baryons and pions is small if compared to the baryon mass. Here we follow the treat-

ment of G̊ardestig et al. (2007). The Lagrangian of Eq. (4.27) can easily be cast in

the form

L = Ψ̄(iγµDµ −MN + γ0G)Ψ, (4.33)

with

G =

A B

C D

 , (4.34)
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with A − D being 2x2 matices. In our case B = −C and A = −D, but we carry

out the general procedure. A heavy fermion implies that it is essentially static, and

we can expand its four-momenta around its large mass. We write pµ in terms of the

four-velocity vµ and a residual fermion momentum lµ,

pµ = mvµ + lµ, (4.35)

where lµ � m and v2 = 1. For an on-shell fermion (p2 = m2), we have 2mv ·l+l2 = 0.

We split the fermion field into large and small components, H and h respectively,

Ψ = e−imv·c(H + h), (4.36)

where /vH = H and /vh = −h. We assume, without loss of generality, that vµ =

(1, 0, 0, 0), such that /v = γ0. Equation (4.33) now reads

L = (H† h†)

 iD0 + A −iσ · ~D +B

−iσ · ~D + C 2m+ iD0 +D


H
h

 . (4.37)

The mixing between upper and lower components is avoided by defining a new small

component field h′,

h = h′ − (2m+ iD0 +D)−1(−iσ · ~D + C)H,

h† = h′† −H†(−iσ · ~D +B)(2m+ iD0 +D)−1. (4.38)

Now, the Lagrangian is block-diagonal,

L = H†
(
iD0 + A− (−iσ · ~D +B)

1

2m+ iD0 +D
(−iσ · ~D + C)

)
H

+h′†(2m+ iD0 +D)h′. (4.39)

After integrating out the small components, only the H fields remain (G̊ardestig

et al. (2007)). Then we expand this term assuming iDµ, G� 2m, that is, in powers
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of (iD0 + D)/2m. The first two orders (inverse power of MN) of the heavy fermions

Lagrangian are

L(0)
HF = H†(iD0 + A)H (4.40)

L(1)
HF = − 1

2MN

H†(−iσ · ~D +B)(−iσ · ~D + C)H. (4.41)

We use Eq. (4.40) to treat the πN Lagrangian of Eq. (4.31) non-relativistically, and

we include the ππ and NN Lagrangians of Eqs. (4.26) and (4.32). Finally, the heavy

baryon leading order chiral Lagrangian in which only nucleons and pions degrees of

freedom are included reads (Machleidt and Entem (2011))

L0 =
1

2
∂µπi∂

µπi −
1

2
m2
ππiπi +N †

[
i∂0 +

∇2

2M0

− 1

4f 2
π

εijkτiπj∂0πk −M0

]
N

− gA
2fπ

N †τiσ
j∂jπiN −

1

2
CS(N †N)(N †N)− 1

2
CT (N †σiN)(N †σiN) . (4.42)

Note that, although the nucleon kinetic energy appears at next to leading order (it

comes from Eq. (4.41)), it has been promoted to the leading order, to allow the usage

of quantum Monte Carlo algorithms. For convenience, let us split the Lagrangian

into

Lππ =
1

2
∂µπi∂

µπi −
1

2
m2
ππiπi

LπNN = N †
[
− gA

2fπ
τiσ

j∂jπi −
1

4f 2
π

εijkτiπj∂0πk

]
N

LNN = N †
[
i∂0 +

∇2

2M0

−M0

]
N − 1

2
CS(N †N)(N †N)

−1

2
CT (N †σiN)(N †σiN). (4.43)

The conjugate fields are given by

ΠN =
∂L

∂(∂0N)
= iN †

ΠN† =
∂L

∂(∂0N †)
= 0

Πk =
∂L

∂(∂0πk)
= ∂0πk −

1

4f 2
π

εijkπjN
†τiN . (4.44)
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The Hamiltonian density is obtained as

H = ΠN∂0N + Πk∂0πk − L

=
1

2
∂0πk∂0πk +

1

2
∂iπk∂iπk +

1

2
m2
ππkπk +

gA
2fπ

N †τiσ
j∂jπiN −N †

[ ∇2

2M0

−M0

]
N

+
1

2
CS(N †N)(N †N) +

1

2
CT (N †σiN)(N †σiN). (4.45)

Note that the natural variables of the Hamiltonian density are the fields and their

conjugate momenta. Therefore, we need to express ∂0πk in terms of Πk,

∂0πk = Πk +
1

4f 2
π

εijkπjN
†τiN, (4.46)

and,

(∂0πk)
2 = Π2

k +
1

2f 2
π

εijkπjΠkN
†τiN +

1

16f 4
π

εijkπjN
†τiNεlmkπmN

†τlN

= Π2
k +

1

2f 2
π

εijkπjΠkN
†τiN +

1

16f 4
π

πjN
†τiN

[
πjN

†τiN − πiN †τjN
]
, (4.47)

where we used the property εijkεilm = δjlδkm − δjmδkl.

The Hamiltonian density can be written as a sum of three terms,

Hππ =
1

2
ΠkΠk +

1

2
∂iπk∂iπk +

1

2
m2
ππkπk,

HπN =
1

4f 2
π

εijkπjΠkN
†τiN +

1

32f 4
π

πjN
†τiN

[
πjN

†τiN − πiN †τjN
]

+
gA
2fπ

N †τiσ
j∂jπiN,

HNN = N †
[
− ∇

2

2M0

+M0

]
N +

1

2
CS(N †N)(N †N) +

1

2
CT (N †σiN)(N †σiN). (4.48)

The term proportional to 1/f 4
π is higher order, thus we drop it. Note that the Hamil-

tonian is a constant of motion and we can conveniently write the three contributions

above at x0 = t = 0. The pion-field term is given by

Hππ =

∫
d3x

1

2

[
Π2
i (x) + (∇πi(x))2 +m2

ππ
2
i (x)

]
, (4.49)
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where the standard conventions adopted for the gradient are given in Appendix C.

The pion-nucleon interaction Hamiltonian reads

HπN =

∫
d3x

[
gA
2fπ

N †(x)τiσ
j∂jπi(x)N(x) +

1

4f 2
π

εijkπj(x)Πk(x)N †(x)τiN(x)

]
.

(4.50)

The first term is the axial-vector pion-nucleon coupling, and the second (referred to

as the Weinberg-Tomozawa term) is the contact interaction with two factors of the

pion field interacting with the nucleon at a single point (Scherer (2010)). The nucleon

Hamiltonian is given by

HNN =

∫
d3x
[
N †(x)

(
− ∇

2

2M0

+M0

)
N(x) +

1

2
CSN

†(x)N(x)N †(x)N(x)+

1

2
CTN

†(x)σiN(x)N †(x)σiN(x)
]
, (4.51)

where CS and CT are two low-energy constants (LEC) that have to be fitted against

two-nucleon properties.

Up to this point everything in this chapter is well known in chiral EFT. In the

following sections we present our contributions, that is, a formulation of chiral EFT

in a way appropriate for quantum Monte Carlo methods.

4.2 Pion fields in the Schrödinger picture

4.2.1 The formalism

We work in the Schrödinger picture, where the pion fields and their conjugate

momenta are time independent, and obey the canonical commutation relations,

[πi(x), πj(y)] = [Πi(x),Πj(y)] = 0,

[πi(x),Πj(y)] = iδijδ
(3)(x− y). (4.52)
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Let us perform a plane-wave expansion in a box of size L with periodic boundary

conditions, implying that the allowed momenta are discretized,

k =
2π

L
(nx, ny, nz), with ni = 0,±1,±2, . . . (4.53)

This discretization introduces an infrared cutoff on the three-momentum of the pions,

proportional to the inverse of the size of the box. To avoid infinities, the theory is

regularized introducing an ultraviolet cutoff for the three-momentum of the pions,

such that k ≡ |k| ≤ kc. The Fourier expansions read

πi(x) =
1√
L3

∑
k

πike
ik·x,

Πi(x) =
1√
L3

∑
k

Πike
ik·x . (4.54)

Since the fields are hermitian, the mode operators are such that π†ik = πi−k and

Π†ik = Πi−k. The canonical commutation relations of Eq. (4.52) imply

[πik, πjk′ ] = [Πik,Πjk′ ] = 0,

[πik,Πjk′ ] = iδijδk−k′ . (4.55)

When expressed in terms of the pion modes, the free pion Hamiltonian of Eq. (4.49)

describes a collection of harmonic oscillators with frequencies ωk =
√
k2 +m2

π,

Hππ =
∑
k

∑
i

[
1

2
Π2
ik +

1

2
ω2
kπ

2
ik

]
. (4.56)

The latter can be quantized by defining the creation and annihilation operators,

aik =
1√
2ωk

(ωkπik + iΠik)

a†ik =
1√
2ωk

(ωkπ
†
ik − iΠ†ik) , (4.57)

which are independent for each mode, and satisfy the canonical commutation rela-

tions,

[aik, a
†
jq] = δijδkq . (4.58)
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Using Eq. (4.57) to express πik and Πik in Eq. (4.54) in terms of the creation and

annihilation operators, we recover the usual expansion for the pion field operator and

its conjugate momentum,

πi(r) =
1√
2L3

∑
k

1√
ωk

[
aike

ik·r + a†ike
−ik·r

]
,

Πi(r) =
−i√
2L3

∑
k

√
ωk

[
aike

ik·r − a†ike−ik·r
]
, (4.59)

where ωk =
√
k2 +m2

π. We perform the unitary transformation,

a†ik =
1√
2

(
c†ik + is†ik

)
,

a†i−k =
1√
2

(
c†ik − is†ik

)
, (4.60)

where the k values on the right hand side of the equations are chosen typically so

that k is included and −k is not. Specifically, if kz 6= 0 then kz > 0; if kz = 0

and ky 6= 0 then ky > 0; and if kz = ky = 0 then kx > 0. The single k = 0 mode

does not couple to the nucleons through the axial-vector coupling, but it does couple

to them via the Weinberg-Tomozawa term. With these definitions, the operators

satisfy the canonical commutation relations [a, a†] = 1, and all operators with different

arguments commute. The field operator and its conjugate momentum can be written

as

πi(r) =
1√

2mπL3
(c†i0 + ci0)

+

√
2

L3

∑
k

′ 1√
2ωk

[
(c†ik + cik) cos(k · r) + (s†ik + sik) sin(k · r)

]
,

Πi(r) = i

√
mπ

2L3
(c†i0 − ci0)

+

√
2

L3

∑
k

′
i

√
ωk
2

[
(c†ik − cik) cos(k · r) + (s†ik − sik) sin(k · r)

]
,(4.61)

where hereafter we adopt the convention of a primed sum to indicate that it is over

the set of k described above. We employ the usual harmonic oscillator definitions,
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x = (a+ a†)/
√

2ω and p = i
√
ω/2(a†− a), to write the c and s operators in terms of

the field amplitude operators in whose eigenspace we work,

πcik =
1√
2ωk

(c†ik + cik), πsik =
1√
2ωk

(s†ik + sik),

Πc
ik = i

√
ωk
2

(c+
ik − cik), Πs

ik = i

√
ωk
2

(s+
ik − sik), (4.62)

so that

πi(r) =
πci0√
L3

+

√
2

L3

∑
k

′
[πcik cos(k · r) + πsik sin(k · r)] ,

Πi(r) =
Πc
i0√
L3

+

√
2

L3

∑
k

′
[Πc

ik cos(k · r) + Πs
ik sin(k · r)] . (4.63)

Now it should be clear that the fields π and Π obey the canonical commutation

relations. We use [παjk,Π
β
jk′ ] = iδα,βδk,k′δj,j′ , to calculate

[πi(r),Πi(r
′)] =

2i

L3

∑
k

′
cos(k · r) cos(k · r′) + sin(k · r) sin(k · r′)

=
i

L3

∑
k

′
(cos(k · (r + r′)) + cos(k · (r − r′))

− cos(k · (r + r′)) + cos(k · (r − r′)))

=
2i

L3

∑
k

′
cos(k · (r − r′))

=
i

L3

∑
k

exp[ik · (r − r′)] −−−→
kc→∞

iδ(3)(r − r′), (4.64)

where we have omitted the unwanted indexes.

The pion Hamiltonian of Eq. (4.56) becomes

Hππ =
∑
k

′∑
i

[
1

2
Πc 2
ik +

1

2
Πs 2
ik +

1

2
(k2 +m2

π)(πc 2
ik + πs 2

ik )

]
. (4.65)

In our simulations, in exact analogy to working in the position operator eigenstates

of the usual harmonic oscillator, we work in the eigenbasis of the mode amplitude

operators, πc,sik . Wave functions which are the overlaps of our states with this basis,
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represent the states. The momentum operators conjugate to πc,sik are the generators of

translations of these amplitudes, and therefore when operating on a state represented

in this basis, they give the derivative of the wave function in the usual way,

Πc,s
ik → −i

∂

∂πc,sik
. (4.66)

Using the latter relation, the free pion Hamiltonian operating on the state becomes

the differential operator

Hππ =
∑
k

′∑
i

[
−1

2

∂2

∂πc 2
ik

− 1

2

∂2

∂πs 2
ik

+
1

2
(k2 +m2

π)(πc 2
ik + πs 2

ik )

]
, (4.67)

operating on the wave function.

The ground-state wave function for the pion modes is analogous to that describing

the positions of a collection of quantum harmonic oscillators,

Ψ0(πc,s) = exp

[
−
∑
k

′∑
i

ωk
2

(πc 2
ik + πs 2

ik )

]
. (4.68)

where we use the symbol πc,s to denote the full set of πcik and πsik. When pion-nucleon

interactions are accounted for in the Hamiltonian, the solution of the Schrödinger

equation is no longer in closed form. We will employ QMC methods to tackle this

problem when one and two nucleons are present in the system under study.

4.2.2 Pion density

We define

ψi(r) =
1√
L3

∑
k

aike
ik·r, (4.69)

which has the commutation relations[
ψi(r), ψ†i (r

′)
]

=
1

L3

∑
k

eik·(r−r
′). (4.70)

In the limit of infinite ultraviolet cutoff, this expression tends to δ(3)(r − r′), as

prescribed by the canonical commutation relations. For a finite cutoff kc, the delta
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function will be smeared over a volume proportional to k−3
c . The corresponding

Cartesian component pion density operator is defined as

ρi(r) = ψ†i (r)ψi(r). (4.71)

To compute the expression above we must change the sums over k to the primed

sums using half of the k values,

∑
k

a†ke
−ik·r =

∑
k

′
(a†ke

−ik·r + a†−ke
ik·r)

=
1√
2

∑
k

′ [
(c†k + is†k)e−ik·r + (c†k − is†k)eik·r

]
,∑

k′

ak′e
ik′·r =

∑
k′

′
(ak′e

ik′·r + a−k′e
−ik′·r)

=
1√
2

∑
k′

′ [
(ck′ − isk′)eik

′·r + (ck′ + isk′)e
−ik′·r

]
. (4.72)

Hence,

ρi(r) =
1

2L3

∑
k,k′

′ [
(c†k + is†k)e−ik·r + (c†k − is†k)eik·r

]
×[

(ck′ − isk′)eik
′·r + (ck′ + isk′)e

−ik′·r
]

=
1

2L3

∑
k,k′

′
[4c†kck′ cos(k · r) cos(k′ · r) + 4s†kck′ sin(k · r) cos(k′ · r)

+4c†ksk′ cos(k · r) sin(k′ · r) + 4s†ksk′ sin(k · r) sin(k′ · r)]. (4.73)

So the cartesian component pion density operator is

ρi(r) =
2

L3

∑
k,k′

′
[c†kck′ cos(k · r) cos(k′ · r) + s†kck′ sin(k · r) cos(k′ · r)

+c†ksk′ cos(k · r) sin(k′ · r) + s†ksk′ sin(k · r) sin(k′ · r)]. (4.74)
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The density can be resolved for the different charge states,

ρπ+(r) =

[
ψ†x(r)− iψ†y(r)√

2

][
ψx(r) + iψy(r)√

2

]
,

ρπ−(r) =

[
ψ†x(r) + iψ†y(r)√

2

][
ψx(r)− iψy(r)√

2

]
,

ρπ0(r) = ψ†z(r)ψz(r) . (4.75)

The corresponding operators are

ρπ+(r) =
1

2

[
ψ†x(r)ψx(r) + iψ†x(r)ψy(r)− iψ†y(r)ψx(r) + ψ†y(r)ψy(r)

]
,

ρπ−(r) =
1

2

[
ψ†x(r)ψx(r)− iψ†x(r)ψy(r) + iψ†y(r)ψx(r) + ψ†y(r)ψy(r)

]
, (4.76)

with

ψ†x(r)ψy(r) =
2

L3

∑
k,k′

′
[c†xkcyk′ cos(k · r) cos(k′ · r) + s†xkcyk′ sin(k · r) cos(k′ · r)

+c†xksyk′ cos(k · r) sin(k′ · r) + s†xksyk′ sin(k · r) sin(k′ · r)],

ψ†y(r)ψx(r) =
2

L3

∑
k,k′

′
[c†ykcxk′ cos(k · r) cos(k′ · r) + s†ykcxk′ sin(k · r) cos(k′ · r)

+c†yksxk′ cos(k · r) sin(k′ · r) + s†yksxk′ sin(k · r) sin(k′ · r)].(4.77)

The elements we need to calculate are

α†ikβjq =

√
ωk
2

(
παik −

1

ωk

∂

∂παik

)√
ωq
2

(
πβjq +

1

ωq

∂

∂πβjq

)

=
1

2

√
ωkωq

(
παikπ

β
jq +

παik
ωq

∂

∂πβjq
−
πβjq
ωk

∂

∂παik
− 1

ωk
δαik;βjq −

1

ωkωq

∂2

∂παik∂π
β
jq

)
,

(4.78)

with the (abusive) notation α, β = c, s, and i, j = x, y, z. Notice that the expres-

sion above includes mixed derivatives in the pion coordinates. Alternatively, we can

integrate by parts to calculate only the elements

〈πc,s|βjq|ψT 〉 =

√
ωq
2

(
πβjq +

1

ωq

∂

∂πβjq

)
〈πc,s|ψT 〉. (4.79)
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The dot product with (αik|ψT 〉)† = 〈ψT |α†ik gives the elements needed for the density

calculation,(
〈ψT |α†ik

)
(βjq|ψT 〉) =

∫
dπc,s〈ψT |πc,s〉

√
ωk
2

(
παik −

1

ωk

∂

∂παik

)
×
√
ωq
2

(
πβjq +

1

ωq

∂

∂πβjq

)
〈πc,s|ψT 〉. (4.80)

4.2.3 Number of pions

The Hamiltonian describing the pions is that of a harmonic oscillator. Excitations

of the pion field correspond to pion production. For each pion mode k, α, i we have

Ek,α,i = ωk

(
Nk,α,i +

1

2

)
, (4.81)

whereNk,α,i is the number of pions. In the absence of coupling, all harmonic oscillators

are in their respective ground-state and N = 0. So we can calculate how many pions

are in a given mode by computing

Nk,α,i =
1

ωk

[
−1

2

∂2

∂πα2
ik

+
1

2
ω2πα2

ik

]
− 1

2
. (4.82)

4.2.4 Charge conservation

Unlike standard Green’s function Monte Carlo (GFMC) calculations (Carlson

et al. (2015b)), the sum of the nucleon charges in our QMC simulations,

QN =
A∑
i=1

(1 + τ iz)

2
, (4.83)

is not conserved configuration by configuration. This is due to the fact that the total

charge of the system includes that of the charged pions,

Q = QN +Qπ, (4.84)

with Qπ ≡ (N+ −N−). The charged pion number operators are defined as

N± =
∑
k

a†±ka±k, (4.85)
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where the creation and annihilation operators – see Appendix C for our conventions

on the fields associated with charged pions – are given by

a†±k =
1√
2

[
a†xk ∓ ia†yk

]
,

a±k =
1√
2

[axk ± iayk] . (4.86)

while for the neutral pion,

a0k = azk . (4.87)

The pion-charge is evaluated expressing the Cartesian isospin creation and annihila-

tion operators in terms of the modes of the pion field. It simplifies some expressions

to combine the isospin components into vectors in the usual way and define the pion

mode amplitudes and their conjugate momenta as the isospin vectors,

Πc,s
k = Πc,s

xkx̂+ Πc,s
ykŷ + Πc,s

zk ẑ,

πc,sk = πc,sxkx̂+ πc,syk ŷ + πc,szk ẑ. (4.88)

The pion charge operator becomes

Qπ = −ẑ ·
∑
k

′
[πck ×Πc

k + πsk ×Πs
k] , (4.89)

or as a differential operator on a wave function,

Qπ = i
∑
k

′
[
πcxk

∂

∂πcyk
− πcyk

∂

∂πcxk
+ πsxk

∂

∂πsyk
− πsyk

∂

∂πsxk

]
. (4.90)

4.2.5 Perturbation theory

In this section we are interested in the first-order old-fashioned perturbation theory

ground-state of a nucleon fixed at the origin. The interaction only couples to states

with a single pion, hence the ground-state is

|O〉 = |0〉+
∑
m6=0

|m〉〈m|V |0〉
E0 − Em

+ ... (4.91)
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and we wish to calculate the expected value of (one Cartesian component of) the pion

density operator

〈ρi(r)〉 =
〈O|ρi(r)|O〉
〈O|O〉 . (4.92)

The interaction can only create a single pion in the intermediate state. The density

operator does not change the number of pions, so the lowest order surviving term in

the numerator is second order in the interaction. The next-order perturbation term

contributes to the density at higher order. In the denominator, the normalization

change is also second order in the interaction. Since the numerator is already second

order, we can drop the normalization change, and take the denominator to be 1. Let

us start with the numerator,(
〈0|+

∑
m′ 6=0

〈0|V |m′〉〈m′|
E0 − Em′

)
ρi(r)

(
|0〉+

∑
m6=0

|m〉〈m|V |0〉
E0 − Em

)
. (4.93)

The action of V on the vacuum is given by

V |0〉 =
gA
2fπ

√
2

L3

∑
k

′
σ · kτi(πsik cos(k · x)− πcik sin(k · x))|0〉. (4.94)

We use Eq. (4.62) and

c†ik =
1√
2

(a†ik + a†i−k),

s†ik =
1

i
√

2
(a†ik − a†i−k),

cik =
1√
2

(aik + ai−k),

sik = − 1

i
√

2
(aik − ai−k), (4.95)

to write the π amplitudes in term of the creation/destruction operators,
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V |0〉 =
gA
2fπ

√
2

L3

∑
k

′
σ · kτi

1√
2ωk

1√
2

[
(−i(a†ik − a†i−k)

+i(aik − ai−k)) cos(k · x)− (a†ik + a†i−k + aik + ai−k) sin(k · x)

]
|0〉

=
gA
2fπ

√
2

L3

∑
k

′
σ · kτi

1

2
√
ωk

[
(−i cos(k · x)− sin(k · x))|k〉

+(i cos(k · x)− sin(k · x))| − k〉
]

=
gA
2fπ

√
2

L3

∑
k

′
σ · kτi

1

2
√
ωk

[
ie−ik·x|k〉 − ieik·x| − k〉

]

=
gA
2fπ

√
2

L3

∑
k

σ · kτi
i

2
√
ωk
e−ik·x|k〉. (4.96)

Now let us calculate

∑
m 6=0

(
1

E0 − Em

)
|m〉〈m|V |0〉 =

=
∑
m6=0

(
1

E0 − Em

)
|m〉〈m| gA

2fπ

√
2

L3

∑
k

σ · kτi
i

2
√
ωk
e−ik·x|k〉 =

=
gA
2fπ

√
2

L3

∑
k 6=0

σ · kτi
i

2ωk3/2
e−ik·x|k〉, (4.97)

where we used E0 − Ek = ωk. Similarly,

∑
m′ 6=0

(
1

E0 − Em′

)
〈0|V |m′〉〈m′| = gA

2fπ

√
2

L3

∑
k 6=0

σ · kτi
(−i)

2ωk3/2
eik·x〈k|, (4.98)

Finally, we set the position of the nucleon to the origin, x = 0, and we evaluate

〈ρi〉 =

(∑
m′ 6=0

〈0|V |m′〉〈m′|
E0 − Em′

)(
1

L3

∑
k

∑
k′

a†ike
−ik·raik′e

ik′·r

)(∑
m 6=0

|m〉〈m|V |0〉
E0 − Em

)

=

(
gA
2fπ

√
2

L3

)2
1

L3

∑
k,k′

σ · kσ · k′ τ 2
i︸︷︷︸

=1

e−i(k−k
′)·r

4ω
3/2
k ω

3/2
k′

. (4.99)
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The result becomes

〈ρi〉 =

(
gA
2fπ

√
2

L3

)2
1

4L3

∑
kk′

σ · k
ω

3/2
k

σ · k′

ω
′3/2
k

ei(k
′−k)·r

=

(
gA
2fπ

√
2

L3

)2
1

4L3

∣∣∣∣∣∑
k

ke−ik·r

ω
3/2
k

∣∣∣∣∣
2

. (4.100)

Dropping the k = 0 term that gives zero contribution, and combining the −k and k

terms, we find

〈ρi〉 =

(
gA
2fπ

√
2

L3

)2
1

4L3

∣∣∣∣∣∑
k

′k2 sin(k · r)

ω
3/2
k

∣∣∣∣∣
2

=

(
gA
2fπ

√
2

L3

)2
1

L3

∣∣∣∣∣∑
k

′k sin(k · r)

ω
3/2
k

∣∣∣∣∣
2

. (4.101)

4.3 QMC Hamiltonian and wave functions

With our periodic box and the pion momentum cutoff, we now have a finite number

of degrees of freedom, and can now use real-space quantum Monte Carlo methods to

solve for the ground and low lying excited state properties of A nucleons. Our goal

here is to be able to adapt variational Monte Carlo (VMC), GFMC, and Auxiliary

field diffusion Monte Carlo (AFDMC) (Schmidt and Fantoni (1999)) methods to

include the pion degrees of freedom. We therefore need to write our Hamiltonian in

the A nucleon sector along with the pion fields, find good initial variational trial wave

functions, and describe how we include the additional terms in the propagators. Note

that, at variance with nuclear lattice approaches (Lee (2009)), we adopt a continuum

representation for the eigenstates of the position operator.

4.3.1 The quantum Monte Carlo Hamiltonian

We write the pion operators using Eq. (4.88) and the momentum operator con-

jugate to the particle position operator, ri, as Pi. Since the number of nucleons is
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conserved, the Hamiltonian for the sector with A nucleons and the pion field can be

written down immediately,

H = HN +Hππ +HAV +HWT ,

HN =
A∑
i=1

[
P 2
i

2MP

+MP + βKP
2
i + δM

]
+

A∑
i<j

δR0(ri − rj)[Cs + CTσi · σj],

Hππ =
1

2

∑
k

′ [
|Πc

k|2 + ω2
k|πck|2 + |Πs

k|2 + ω2
k|πsk|2

]
,

HAV =
A∑
i=1

gA
2fπ

√
2

L3

∑
k

′
{σi · k [τi · πsk cos(k · ri)− τi · πck sin(k · ri)]} ,

HWT =
A∑
i=1

1

2f 2
πL

3
τi ·
[∑

k

′
cos(k · ri)πck ×

∑
q

′
cos(q · ri)Πc

q

+
∑
k

′
cos(k · ri)πck ×

∑
q

′
sin(q · ri)Πs

q

+
∑
k

′
sin(k · ri)πsk ×

∑
q

′
cos(q · ri)Πc

q

+
∑
k

′
sin(k · ri)πsk ×

∑
q

′
sin(q · ri)Πs

q

]
, (4.102)

where the sums over i and j are over the nucleons, MP is the physical nucleon mass,

and δR0(ri−rj) is a smeared out delta function for the contact term which we take to

be the same form as that used in local chiral EFT potentials (Gezerlis et al. (2014)),

δR0(r) =
1

πΓ(3/4)R3
0

exp
[
−(|r|/R0)4

]
, (4.103)

where Γ is the gamma function, and R0 = 1.2 fm. We are aware that there may

be shortcomings in employing the regulator of Eq. (4.103) (Kaplan et al. (1996);

Nogga et al. (2005)). However they are mitigated by the fact we focus on deuteron

properties, which has a relatively small d-wave component, and we employ fixed pion

masses. This regulator choice will be thoroughly analyzed, and might be revisited,

for larger nuclei. The low-energy constants CS and CT need to be adjusted to agree
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with experiment. We fit the deuteron and the neutron-neutron scattering length in

section 4.9.5. There are, of course, many other possible choices for the contact term.

Notice that we have two distinct mass counter terms in HN . We call βK the kinetic

mass counter term and δM the rest mass counter term. The values are not simply

related because we are employing a cutoff on the three-momentum of the pion modes

that explicitly breaks Lorentz invariance. The kinetic energy bare mass is given by

MP

1+2βKMP
, while the bare rest mass is MP + δM .

Our resulting field theory Hamiltonian is in the same form as the Hamiltonian of

a nonrelativistic many-body quantum system, and all standard methods for such a

system can be applied.

In this work we will sometimes neglect the Weinberg-Tomozawa HWT term in

our initial QMC calculations. In general we have found that it is small enough to

be included perturbatively. This term is known to be relevant only in the isovector

channel, and the s-wave πN scattering length is relatively small (Robilotta and Wilkin

(1978); Weinberg (1992)).

4.3.2 Trial wave functions

Analogously to standard real-space QMC methods, we first construct an accu-

rate ground state trial wave function for the Hamiltonian. In GFMC or AFDMC

methods, the trial function performs the dual role of lowering the statistical errors

and constraining the path integral to control the fermion sign or phase problem. For

small numbers of nucleons where the fermion sign/phase problem is under control,

our QMC methods will give exact results within statistical errors independent of the

trial function. A good trial function in that case keeps the statistical errors small.
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Standard GFMC and AFDMC methods use the position eigenbasis for the nucle-

ons. Here we add to this nucleon basis the eigenbasis of the pion mode amplitudes,

and write our trial wave functions to be

ΨT (R, S,Π) = 〈RSΠ|ΨT 〉, (4.104)

where R represents the 3A coordinates of the nucleons, Π represents the 3Nk pion

mode amplitudes, and S the spin-isospin of the nucleons.

If we assume the pion motion is significantly faster than the nucleons, then a

Born-Oppenheimer approximation where we initially neglect the nucleon mass can

guide our construction of a trial wave function for the full dynamical system. We

therefore initially analyze the problem without the nucleon kinetic energy and the

Weinberg-Tomozawa terms in the Hamiltonian, assuming that they are smaller than

the axial-vector pion-nucleon terms. Defining

Bc
k ≡

√
2

L3

gA
fπ

A∑
i=1

τi sin(k · ri)σi · k,

Bs
k ≡ −

√
2

L3

gA
fπ

A∑
i=1

τi cos(k · ri)σi · k, (4.105)

allows us to complete the squares in these terms of the Hamiltonian, yielding

Hππ +HAV =
1

2

∑
k

′ [
|Πc

k|2 + ω2
k|π̃ck|2 + |Πs

k|2 + ω2
k|π̃sk|2

− 1

4ω2
k

(
|Bc

k|2 + |Bs
k|2
)]

(4.106)

with π̃c,sk ≡ πc,sik −Bc,s
k /2ω

2
k.

The π̃c,sk operators do not commute because of the nucleon spin-isospin operators

contained in Bc,s
k . If instead these spin-isospin operators were c-numbers, we could

immediately write the ground-state wave function for the pions. This suggests taking

the form for trial wave function to be

〈RSΠ|ΨT 〉 = 〈RSΠ| exp

[
−
∑
k

′ωk
2

(|π̃ck|2 + |π̃sk|2)

]
|Φ〉 . (4.107)
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where |Φ〉 is an A nucleon model state. Writing in terms of the original pion coordi-

nates, this wave function becomes

〈RSΠ|ΨT 〉 = 〈RSΠ| exp

−∑
k

′

ωk
2

(|πck|2 + |πsk|2) +
αk
2ωk

(πck ·Bc
k + πsk ·Bs

k)

−1

4
ωkα

2
kG

2
k

A∑
i<j

τi · τjσi · kσj · k cos(k · rij)
]}
|Φ〉 . (4.108)

where rij = ri − rj,

Gk =
1

ω2
k

gA
fπ

√
2

L3
, (4.109)

and we drop terms that only contribute to the overall normalization. We have also

introduced the variational parameters αk, which rescale the coupling for different

momenta.

Eq. (4.108) is the standard form we will take for our trial functions. The two-body

terms do not contain pion amplitudes; they look like two-body correlations typically

included in variational calculations, and therefore they could be replaced or modified

with other correlation forms that may be more convenient for calculations. The pion-

nucleon correlation terms look very much like the AFDMC propagators, as it would

be expected from the fact that the auxiliary fields in AFDMC can be thought of as

replacing the real pion fields.

4.4 One nucleon

4.4.1 Lowest order self energy from nonrelativistic pion nucleon Hamiltonian

To estimate the magnitude of the mass counter terms, we first calculate these terms

in perturbation theory. These should agree with our full Monte Carlo calculations for

a weak coupling and when the cutoff is small. In this calculation we consider only the

lowest order interaction term, represented by the diagram of Fig. 4.1. First, we need
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p

q

pp − q

1

Figure 4.1: Diagram for the lowest order self-energy Σ(E,p).

to compute the propagators for the nucleon and the pions (harmonic oscillators). The

nonrelativistic propagator for the nucleon of mass M is

G(r − r′, t− t′) = −iT 〈0|N(r, t)N †(r′, t′)|0〉

= −iθ(t− t′) 1

L3

∑
p

eip·(r−r
′)e−i

p2

2M
(t−t′). (4.110)

Writing the Fourier transform as

G(r − r′, t− t′) =
1

L3

∑
p

dω

2π
eip·(r−r

′)−iω(t−t′)G(p, ω), (4.111)

yields

G(p, ω) = −i
∫ ∞
−∞

dtΘ(t)e
i

(
ω− p2

2M

)
t−ηt

= −i
∫ ∞

0

dte
i

(
ω− p2

2M
+iη

)
t

=
1

ω − p2

2M
+ iη

, (4.112)

where the −ηt with η a positive infinitesimal is added to converge the integral at

the upper limit. The harmonic oscillator propagator needed for an oscillator with

frequency ω0 and mass m = 1 is

GHO(t− t′) = −iT 〈0|x(t)x(t′)|0〉 = −iT 〈0|a(t) + a†(t)√
2ω0

a(t′) + a†(t′)√
2ω0

|0〉

= −i 1

2ω0

[
Θ(t− t′)e−iω0(t−t′) + Θ(t′ − t)e−iω0(t′−t)

]
= − i

2ω0

e−iω0|t−t′|. (4.113)
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Fourier transforming in time yields

GHO(ω) = − i

2ω0

[∫ ∞
0

dtei(ω−ω0+iη)t +

∫ 0

−∞
dtei(ω+ω0−iη)t

]
=

1

2ω0

[
1

ω − ω0 + iη
− 1

ω + ω0 − iη

]
=

1

ω2 − ω2
0 + iη

. (4.114)

Equations (4.112) and (4.114), together with standard Feynman diagram rules

(Fetter and Walecka (2003)), provide an expression for the self-energy,

Σ(E,p) = −i3
(
gA
2fπ

)2 ∫ ∞
−∞

dω

2π

1

L3

∑
q

q2

(E − ω − |p−q|2
2M

+ iη)

1

(ω2 − ω2
q + iη)

,

(4.115)

where the factor of 3 comes from τ 1 · τ 2 (or the 3 types of hermitian pions), and

ω2
q = q2 +m2

π. The ω integral has poles at E−|p−q|2/2M+ iη and ±ωq∓ iη. We can

chose the integration contour along a semicircle in either half plane, a counterclockwise

contour that encloses −wq + iη or a clockwise with wq − iη. The self-energy is given

by

Σ(E,p) = −3

2

(
gA
2fπ

)2
1

L3

∑
q

q2(
E − |p−q|2

2M
− ωq

)
ωq
. (4.116)

The single-nucleon spectrum is dictated by the pole of the Green’s function,

E =

(
1

2MP

+ βK

)
p2 +Mp + δM + Σ(E,p) . (4.117)

We must adjust βK and δM so that at small momentum, E = MP + p2

2MP
, or

βKp
2 + δM + Σ

(
MP +

p2

2MP

,p

)
= 0 . (4.118)

Expanding in powers of p, we find,

0 = δM − 3

2

(
gA
2fπ

)2
1

L3

∑
q

q2

ωqDq

, (4.119)
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0 = βK + βK
3

2

(
gA
2fπ

)2
1

L3

∑
q

q2

ωqD2
q

−
(

1

MP

+ 2βK

)2
1

2

(
gA
2fπ

)2
1

L3

∑
q

q4

ωqD3
q

,

(4.120)

where

Dq = δM +

(
1

2MP

+ βK

)
q2 + ωq . (4.121)

Solving these self consistently gives the lowest order values of δM and βK . We see

from the form above, that the kinetic mass renormalization is small.

4.4.2 Pion derivatives

The trial wave functions contain terms which are exponentials with arguments

that are linear in the pion field amplitudes and contain nucleon operators. We wish

to take derivatives with respect to the pion field amplitudes. These exponentials have

the form

exp

(
π1

∑
i

O
(1)
i + π2

∑
i

O
(2)
i + ...

)
(4.122)

where πj are the different pion field amplitudes (we use j below as a label for the

momentum, Cartesian component and sine/cosine mode, for brevity, in this section

only), and O
(1)
i is the particular linear combination of the σiατiβ terms for nucleon i

that π1 couples to. The O
(1)
i , O

(2)
i , ..., terms which act on the same particle do not

commute, but the terms which act on different particles do commute. We can write

this exponential as a product of exponentials for each nucleon as

exp

(∑
j

πjO
(j)
i

)
. (4.123)
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Defining this single nucleon exponential as eO, with real pion fields, O is Hermitian.

We want to calculate a derivative ∂eO/∂x, where x is one of the pion field amplitudes.

If we write eO = [eO/N ]N , then we have,

∂eO

∂x
=

(
∂eO/N

∂x

)
eO/N . . . eO/N︸ ︷︷ ︸

N−1 times

+eO/N
(
∂eO/N

∂x

)
eO/N . . . eO/N︸ ︷︷ ︸

N−2 times

+ . . .

+ eO/N . . . eO/N︸ ︷︷ ︸
N−1 times

(
∂eO/N

∂x

)

=
N−1∑
j=0

eO(N−j−1)/N

(
∂eO/N

∂x

)
eOj/N . (4.124)

In the limit N →∞ the summation goes to an integral, and we make the substitution

α = j/N ,

∂

∂x
eO =

∫ 1

0

dαeO(1−α)∂O

∂x
eOα. (4.125)

Since O is Hermitian, we have O|n〉 = λn|n〉, with |n〉 orthonormal,

∂

∂x
eO =

∑
nm

∫ 1

0

dα|n〉eλn(1−α)〈n|∂O
∂x
|m〉eλmα〈m| =

∑
nm

|n〉e
λm − eλn
λm − λn

〈n|∂O
∂x
|m〉〈m| .

(4.126)

For the diagonal or degenerate case, where m = n or λm = λn, eλm−eλn
λm−λn → eλn .

Because O is linear in x, the laplacian does not contain terms with ∂2O/∂x2,

hence:

∂2

∂x2
eO = 2

∑
nml

∫ 1

0

dβ

∫ 1−β

0

dα|n〉eλn(1−α−β)〈n|∂O
∂x
|m〉eλmα〈m|∂O

∂x
|l〉eλlβ〈l| =

= 2
∑
nml

|n〉〈n|∂O
∂x
|m〉〈m|∂O

∂x
|l〉〈l|fnml, (4.127)
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fnml =



eλn

2
, if λn = λm = λl

eλl−eλm
(λl−λm)(λm−λn)

+ eλl−eλn
(λl−λn)(λn−λm)

if λn 6= λm 6= λl

eλl+eλn (λn−λl−1)
(λl−λn)2

if λn = λm 6= λl

eλm+eλn (λn−λm−1)
(λm−λn)2

if λn = λl 6= λm

eλn+eλm (λm−λn−1)
(λm−λn)2

if λm = λl 6= λn

(4.128)

For mixed derivatives the result is similar,

∂2

∂x∂y
eO =

∑
nml

∫ 1

0

dβ

∫ 1−β

0

dα

[
|n〉eλn(1−α−β)〈n|∂O

∂x
|m〉eλmα〈m|∂O

∂y
|l〉eλlβ〈l|

+|n〉eλn(1−α−β)〈n|∂O
∂y
|m〉eλmα〈m|∂O

∂x
|l〉eλlβ〈l|

]

=
∑
nml

[
|n〉〈n|∂O

∂x
|m〉〈m|∂O

∂y
|l〉〈l|+ |n〉〈n|∂O

∂y
|m〉〈m|∂O

∂x
|l〉〈l|

]
fnml.(4.129)

Notice that the result agrees with the second derivative of Eq. (4.127) if we take

x = y.

4.5 Two fixed nucleons

4.5.1 Implementation

We can write the wave function as

ψT (πck,π
s
k,xn, s1, s2) = 〈s1s2|ψHOeO1eO2eO12|φ〉, (4.130)

with

ψHO = exp

[∑
k

′
−
√
k2 +m2

π

2

{
πc2k + πs2k

}]
,

(4.131)
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O12 =
∑
k

′
−
√
k2 +m2

π

2

1

4
α2
kG

2
k

(
2τ 1 · τ 2 cos(k · (x1 − x2))

∑
i,j

σ1
i kiσ

2
jkj

)
,

O1 =
∑
k

′
−
√
k2 +m2

π

2
αkGkk · σ1

[
− sin(k · x1)πck · τ 1 + cos(k · x1)πsk · τ 1

]
,

O2 =
∑
k

′
−
√
k2 +m2

π

2
αkGkk · σ2

[
− sin(k · x2)πck · τ 2 + cos(k · x2)πsk · τ 2

]
.

(4.132)

Notice that ψHOe
O1eO2eO12 is symmetric under the exchange of 1↔ 2, and O12 does

not depend on the pion coordinates. Hence, the pion derivatives are

∂ψT
∂πk

= 〈s1s2|
∂ψHO
∂πk

eO1eO2eO12|φ〉

+〈s1s2|ψHO
(
∂eO1

∂πk
eO2 + eO1

∂eO2

∂πk

)
eO12 |φ〉, (4.133)

and

∂2ψT
∂π2

k

= 〈s1s2|
∂2ψHO
∂π2

k

eO1eO2eO12 |φ〉+ 2〈s1s2|
∂ψHO
∂πk

∂eO1

∂πk
eO2eO12 |φ〉

+2〈s1s2|
∂ψHO
∂πk

eO1
∂eO2

∂πk
eO12|φ〉+ 〈s1s2|ψHO

∂2eO1

∂π2
k

eO2eO12 |φ〉

+2〈s1s2|ψHO
∂eO1

∂πk

∂eO2

∂πk
eO12|φ〉+ 〈s1s2|ψHOeO1

∂2eO2

∂π2
k

eO12|φ〉. (4.134)

We want to implement the wave function of Eq. (4.130) efficiently. The eO1 and

eO2 can be written as 4x4 matrices, but the term eO12 is, in principle, a 16x16 matrix.

Let us write eO12 as

eO12 = exp
[
(σ1 · ←→A · σ2)(τ 1 · τ 2)

]
, (4.135)

with
←→
A being a real symmetric tensor,

Aαβ =
∑
k

′
−
√
k2 +m2

π

2

1

4
α2
kG

2
k (2 cos(k · (x1 − x2))kαkβ) . (4.136)
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The real eigenvalues λn and the real eigenvectors |n〉 are such that A|n〉 = λn|n〉,

hence

σ1 · ←→A · σ2 =
∑
α,β

σ1
αAαβσ

2
β =

∑
α,β,n

σ1
αλn〈α|n〉〈n|β〉σ2

β

=
∑
n

λn

(∑
α

σ1
α〈α|n〉

)(∑
β

〈n|β〉σ2
β

)
. (4.137)

Notice that 〈n|β〉 = 〈β|n〉 because the eigenvectors are real, thus we can define a

rotated basis where

σ′i =
∑
α

σα〈α|i〉, (4.138)

and the σ′i obey the usual commutation relations. In this primed basis,

σ1 · ←→A · σ2 =
∑
n

λnσ
1
n
′
σ2
n
′ ≡
∑
n

λnSn, (4.139)

where we defined Sn ≡ σ1
n
′
σ2
n
′
. These operators commute,

[Sx, Sy] = σ1
x
′
σ2
x
′
σ1
y
′
σ2
y
′ − σ1

y
′
σ2
y
′
σ1
x
′
σ2
x
′
= iσ1

z
′
iσ2
z
′ − (−iσ1

z
′
)(−iσ2

z
′
) = 0, (4.140)

and similarly for cyclic permutations. Because they commute, we can write

eO12 = exp
[
(σ1 · ←→A · σ2)(τ 1 · τ 2)

]
=
∏
i

exp
[
(λiSi)(τ

1 · τ 2)
]
. (4.141)

Now we want to linearize the exponentials, that is,

eλiSi(τ
1·τ2) = Ai1 +Bi(τ

1 · τ 2) + CiSi +DiSi(τ
1 · τ 2). (4.142)

We use the fact that the isospin singlet (triplet) is an eigenstate of τ 1 · τ 2 with

eigenvalue -3 (1) to get the equations

eλiSi = cosh(λi) + Si sinh(λi) = Ai +Bi + (Ci +Di)Si

e−3λiSi = cosh(3λi)− Si sinh(3λi) = Ai − 3Bi + (Ci − 3Di)Si. (4.143)
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Solving for the coefficients yields

Ai =
1

4
[3 cosh(λi) + cosh(3λi)] , (4.144)

Bi =
1

4
[cosh(λi)− cosh(3λi)] ,

Ci =
1

4
[3 sinh(λi)− sinh(3λi)] ,

Di =
1

4
[sinh(λi) + sinh(3λi)] .

Finally,

eO12 = eλxSx(τ1·τ2)eλySy(τ1·τ2)eλzSz(τ1·τ2)

=
∏
i

(
Ai1 +Bi(τ

1 · τ 2) + CiSi +DiSi(τ
1 · τ 2)

)
. (4.145)

All the operators listed in the equation above can be written as 4x4 matrices.

4.5.2 One pion exchange

π

N

N

N

N

Figure 4.2: One pion exchange diagram.

As mentioned above, the long-range behavior of the nuclear force is due to the one-

pion exchange, Fig. 4.2. It arises from tree-level diagrams with four external nucleons

and an off-shell pion. The matrix element is given by the usual Feynman rules (and

recalling that a derivative acting on a scalar field with incoming momentum q gives

∂iφ = −iqiφ), so we have the matrix element (Savage (1999))
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M = N̄
gA√
2fπ

σiτaqiN
iδab

q2 −m2
π + iε

N̄
−gA√

2fπ
σjτ bqjN

= i

(
gA√
2fπ

)2

N̄σiτaNN̄σjτaN
qiqj

q2 +m2
π

= −iVπ(q), (4.146)

with gA = 1.25 and fπ = 132 MeV. This is more commonly written as

Vπ(k) = −
(

gA√
2fπ

)2

(τ 1 · τ 2)
(σ1 · k)(σ2 · k)

k2 +m2
π

. (4.147)

The spatial potential is recovered from the momentum space potential Vπ(k) via a

Fourier transform,

Vπ(r) =

∫
d3k

(2π)3
eik·rVπ(k) = −

(
gA√
2fπ

)2

(τ 1 · τ 2)

∫
d3k

(2π)3
eik·r

(σ1 · k)(σ2 · k)

k2 +m2
π

=

(
gA√
2fπ

)2

(τ 1 · τ 2)(σ1 · ∇)(σ2 · ∇)

∫
d3k

(2π)3
eik·r

1

k2 +m2
π

. (4.148)

Starting with the integral,

I(r) =

∫
d3k

(2π)3
eik·r

1

k2 +m2
π

=
1

4π2

∫ ∞
0

dkk2

∫ 1

−1

d cos θeikr cos θ 1

k2 +m2
π

=
1

2π2r

∫ ∞
0

dk sin(kr)
k

k2 +m2
π

= − i

8π2r

∫ ∞
−∞

dk
k

k2 +m2
π

(eikr − e−iqr)

=
1

4πr
e−mπr, (4.149)

where we used Cauchy’s residue theorem in the last step. Hence,

Vπ(r) =
1

4π

(
gA√
2fπ

)2

(τ 1 · τ 2)(σ1 · ∇)(σ2 · ∇)
1

r
e−mπr. (4.150)

Now we have to evaluate the partial derivatives acting on I(r). Let us begin with

∂i∂j

(
e−mr

r

)
=

e−mr∂i∂j

(
1

r

)
+ ∂ie

−mr∂j

(
1

r

)
+ ∂je

−mr∂i

(
1

r

)
+

1

r
∂i∂je

−mr. (4.151)
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Next, we evaluate the two possible cases. For i 6= j,

∂i∂j

(
e−mr

r

)
= e−mr

3r̂ir̂j

r3
+ e−mr2m

r̂ir̂j

r2
+ e−mrm

r̂ir̂j

r2
+ e−mrm2 r̂

ir̂j

r
. (4.152)

And for i = j,

∂i∂i

(
e−mr

r

)
= e−mr

3r̂ir̂i

r3
− δij
r3

+ e−mr2m
r̂ir̂j

r2
+ e−mrm

r̂ir̂j

r2
+ e−mrm2 r̂

ir̂j

r

−m
r2
δij. (4.153)

So far we ignored the singularity at the origin. For r → 0, e−mr → 1. If we integrate

around the origin,∫
sphere

radius R→0

d3r σ1 · ∇σ2 · ∇
1

r
=

∫
d3r∇ ·

[
σ1σ2 · ∇

1

r

]
=

=

∫
Surface

dS r̂ · σ1σ2 · r̂
(−1

r2

)
= −

∫
dΩ σ1 · r̂ σ2 · r̂

= −
∫
d cos θ

∫
dϕ(σ1x sin θ cosϕ+ σ1y sin θ sinϕ+ σ1z cos θ)×

(σ2x sin θ cosϕ+ σ2y sin θ sinϕ+ σ2z cos θ)

= −
∫
d cos θ(π sin2 θ[σ1xσ2x + σ1yσ2y] + 2πσ1zσ2z cos2 θ)

= −4π

3
σ1 · σ2, (4.154)

where we used ∇1/r = −r̂/r2. Hence,

∂i∂j

(
e−mr

r

)
=
m2
π

3

e−mπr

r

[
(3r̂ir̂j − δij)

(
1 +

3

mπr
+

3

(mπr)2

)
+ δij

]
−4π

3
δijδ

3(r). (4.155)

Finally, the result is

Vπ(r) =
m2
π

12π

(
gA√
2fπ

)2

(τ 1 · τ 2)([
(3r̂ · σ1r̂ · σ2 − σ1 · σ2)

(
1 +

3

mπr
+

3

(mπr)2

)
+ σ1 · σ2

]
e−mπr

r

−4π

3
σ1 · σ2δ3(r)

)
. (4.156)
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4.6 Two nucleons

4.6.1 Nucleon model states

To complete our trial wave functions, we need to construct good trial nuclear

model states, |Φ〉 of Eq. (4.108). We again are guided by previous experience with

GFMC and AFDMC calculations. The trial functions there are typically built from

operator correlated linear combinations of antisymmetric products of single-particle

orbitals. For example, in nuclear matter the trial function is a Jastrow product of

pair-wise operator correlations operating on a Slater determinant of orbitals. Here we

will begin by assuming that the pion-nucleon correlations and the associated terms

in Eq. (4.108) will include the long-range correlations.

Initially, we build our nuclear model state in the same way. However, we include

only short-range operator correlations; the remaining terms in Eq. (4.108) will include

long-range correlations. For the calculations described here, we need to construct

model states for one- and two-nucleon systems. Since a single nucleon only interacts

with the pion field, its model state |Φ〉 in Eq. (4.108) is a spin-isospin state, i.e. proton

up, proton down, neutron up, neutron down, with no spatial dependence.

Two nucleons in our Hamiltonian interact via pion exchange and from the short

range smeared-out contact interactions. A reasonably good trial wave function for

s-shell nuclei that contains the major correlations can be constructed with a Jastrow

operator product multiplying an antisymmetric product of spin-isospin states. The

Jastrow factors go to zero exponentially to properly match the separation energy of

one nucleon. At short range, the Jastrow factors solve the two-body Schrödinger

equation.

Quantum Monte Carlo simulations have been very successful at describing prop-

erties of nuclei and other nucleon systems (Carlson et al. (2015a)). Usually, in these
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simulations, the nucleon-nucleon interactions are modeled by one of two choices of

potentials classes. There are phenomenological potentials, such as the AV18 potential

(and related AV6’) (Wiringa et al. (1995)), and, in the past few years, chiral effec-

tive field theory interactions have been employed in QMC simulations (Tews et al.

(2013); Gezerlis et al. (2013, 2014); Roggero et al. (2014); Lynn et al. (2017)). Both

approaches include pionic degrees of freedom implicitly. The AV18 potential, for ex-

ample, includes a charge-dependent Yukawa potential with a short-range cutoff for

the one-pion exchange potential (OPEP), and in the intermediate range there are

terms that account for two-pion exchange. Chiral effective field theory, similarly,

includes pion-exchange terms. Some terms in these interaction potentials are built

assuming static nucleons (which is not the case for the momentum-dependent terms,

clearly), and the pion contributions are integrated out. The inclusion of pions in

QMC simulations allows us to go beyond this approximation.

Chiral effective field theory

For the calculation of two nucleon trial wave functions we chose a chiral potential, at

leading order (LO), of the form specified in Gezerlis et al. (2014). We do not include

any of the OPE terms present in Gezerlis et al. (2014), since our formalism already

accounts for this piece of the interaction. The pair interaction can be written in the

usual operator form

V (r) = vc(r)1 + vτ (r)τ
1 · τ 2 + vσ(r)σ1 · σ2

+ vστ (r)(τ
1 · τ 2)(σ1 · σ2) + vt(r)t12 + vtτ (r)(τ

1 · τ 2)t12, (4.157)

where t12 is the usual tensor operator,

t12 = 3σ1 · r̂12σ
2 · r̂12 − σ1 · σ2, (4.158)
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and the radial functions vi(r) are fully specified in Gezerlis et al. (2014). In this work,

we are interested in the contact terms,

CSδR0(r)1,

CT δR0(r)σ
1 · σ2, (4.159)

which are present in vc(r) and vσ(r), respectively, and we take CS and CT to be

tunable constants. The δR0 are smeared delta functions,

δR0(r) =
1

πΓ(3/4)R3
0

exp
[
−(r/R0)4

]
, (4.160)

where Γ is the gamma function, and R0 = 1.2 fm.

AV6’

The AV6’ potential is a reprojection of the AV18 potential (Wiringa et al. (1995))

that preserves the binding energy of the deuteron, Ed=2.225 MeV. It also has the

same form as Eq. (4.157), but with different radial functions.

4.6.2 The deuteron

A first step towards writing the trial wave function of the deuteron in the presence

of explicit pions is to write the exact wave function for the deuteron in free space. The

deuteron state is a total angular momentum 1 state, J = 1. It has even parity, and it

has a quadrupole moment so there are both s and d state orbital angular momenta.

Since the parity is even, it cannot have odd orbital angular momenta. Historically,

the quadrupole moment indicated the presence of the tensor force, to mix s and d

states. The tensor force is zero for singlets, so the spin state is S = 1. The total

wave function has to be antisymmetric, so it must be in an isospin singlet state. In

practical terms, this means we can work in the isospin singlet space and just replace
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the τ 1 · τ 2 operator with −3. Later, when we do more complicated nuclei, we will

need to deal with the isospin explicitly. The three possible spin states for the two

particles are the usual triplet states |S MS〉,

|1 1〉 = | ↑↑〉,

|1 0〉 =
1√
2

(| ↑↓〉+ | ↓↑〉),

|1 − 1〉 = | ↓↓〉. (4.161)

We can get a build a J = 1 state by:

• coupling an L = 0 state to an S = 1 state,

• coupling an L = 1 or 2 state to an S = 1 state.

Parity tells us that the L = 1 state is not part of the ground-state. The deuteron

has a triply degenerate ground-state for the three MJ values corresponding to J = 1.

For convenience, let us calculate the MJ = 1 state. Whenever coupling two angular

momenta j1 6= 0 and j2 = 0, then the Clebsch-Gordon coefficient is simply δJ,j1δMJ ,m1 ,

thus

〈J = 1, M = 1, L = 0, S = 1|L = 0, ML = 0, S = 1, MS = 1〉 = 1. (4.162)

For the L = 2 states, we need to look at the table corresponding to coupling an angular

momentum 2 to 1, and the column where J = 1 and MJ = +1. The coefficients are

the following,

〈J = 1,MJ = 1, L = 2, S = 1|L = 2,ML = 2, S = 1,MS = −1〉 =

√
3

5
,

〈J = 1,MJ = 1, L = 2, S = 1|L = 2,ML = 1, S = 1,MS = 0〉 = −
√

3

10
,

〈J = 1,MJ = 1, L = 2, S = 1|L = 2,ML = 0, S = 1,MS = 1〉 =

√
1

10
. (4.163)
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We can construct the following L = 0 and L = 2 states, which have good J = 1 and

MJ = 1,

|L = 0〉 ≡ |l = 0,m = 0, S = 1,MS = 1〉

|L = 2〉 ≡
√

3

5
|l = 2,m = 2, S = 1,MS = −1〉

−
√

3

10
|l = 2,m = 1, S = 1,MS = 0〉

+

√
1

10
|l = 2,m = 0, S = 1,MS = 1〉, (4.164)

such that the overlap of the angular part with the position eigenbasis gives the usual

spherical harmonics, 〈r̂|lm〉 = Ylm(r̂). These states are called the spin spherical

harmonics. The deuteron wave function is therefore

|ψ〉d = f0(r)|L = 0〉+ f2(r)|L = 2〉, (4.165)

where f0(r) and f2(r) are functions that we need to determine, and r is the position

operator. Since all the spin states are spin triplets, the σ1 · σ2 operated on these

states gives 1. Let us do a brute force calculation of the tensor operator on the spin

state |1 1〉,
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σ1xxσ2xx|1 1〉 = x2| ↓↓〉 = x2|1 − 1〉

σ1xxσ2yy|1 1〉 = ixy| ↓↓〉 = ixy|1 − 1〉

σ1xxσ2zz|1 1〉 = xz| ↓↑〉

σ1yyσ2xx|1 1〉 = ixy| ↓↓〉 = ixy|1 − 1〉

σ1yyσ2yy|1 1〉 = −y2| ↓↓〉 = −y2|1 − 1〉

σ1yyσ2zz|1 1〉 = iyz| ↓↑〉

σ1zzσ2xx|1 1〉 = xz| ↑↓〉

σ1zzσ2yy|1 1〉 = iyz| ↑↓〉

σ1zzσ2zz|1 1〉 = z2| ↑↑〉 = z2|1 1〉, (4.166)

which gives

t12|1 1〉 =
3z2 − r2

r2
|1 1〉+

√
2

3z(x+ iy)

r2
|1 0〉+

3(x+ iy)2

r2
|1 − 1〉, (4.167)

or

Y00t12(r̂)|1 1〉 =
1

2
√
π

(
3z2 − r2

r2
|1 1〉+

√
2

3z(x+ iy)

r2
|1 0〉+

3(x+ iy)2

r2
|1 − 1〉

)
.

(4.168)

The spherical harmonics Y2m can be written as

Y22(x, y, z) = 〈r̂|l = 2 m = 2〉 =
1

4

√
15

2π

(x+ iy)2

r2
,

Y21(x, y, z) = 〈r̂|l = 2 m = 1〉 = −1

2

√
15

2π

(x+ iy)z

r2
,

Y20(x, y, z) = 〈r̂|l = 2 m = 0〉 =
1

4

√
5

π

(2z2 − x2 − y2)

r2
. (4.169)

Therefore, operating with the tensor operator on the |L = 0〉 spin spherical harmonic

is just

t12|L = 0〉 =
√

8|L = 2〉. (4.170)

86



From this identity, notice that the deuteron wave function can be written as

|ψ〉d =

(
f0(r) +

1√
8
f2(r)t12

)
|L = 0〉, (4.171)

which is the operator Jastrow form. To complete the analysis, we need to work out

what the tensor operator does when it operates on state |L = 2〉. This can be done

by brute force, but instead notice that

t12|L = 2〉 = t12

(
1√
8
t12|L = 0〉

)
=
t212√

8
|L = 0〉. (4.172)

On the triplet state, σ1 · σ2 is 1, so we can write t212 on this state as

t212 = (3σ1 · r̂σ2 · r̂ − 1)2 = 9(σ1 · r̂)2(σ2 · r̂)2 + 1− 6(σ1 · r̂)(σ2 · r̂)

= 8− 2t12, (4.173)

where we used the identity (a · σ)(b · σ) = (a · b)1 + i(a× b) · σ. Hence, on triplet

states, we have

t12|L = 2〉 =
1√
8

(8− 2t12)|L = 0〉 =
√

8|L = 0〉 − 2|L = 2〉. (4.174)

The deuteron Hamiltonian can be written in terms of the relative coordinates in

the usual way as

H = − ~2

2mr

∇2 + ṽc(r) + ṽt(r)t, (4.175)

where t is the tensor operator, mr is the reduced mass, and since σ1 · σ2 = 1 and

τ1 · τ2 = -3, the potentials in terms of the original v6 pieces are

ṽc(r) = vc(r) + vσ(r)− 3vτ (r)− 3vστ (r),

ṽt(r) = vt(r)− 3vtτ (r). (4.176)
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Substituting the wave function and H into the Schröedinger equation, and using

∇2 =
1

r

∂2

∂r2
r − l(l + 1)

r2
, (4.177)

gives the coupled equations for f0 and f2. We define

rf0(r) ≡ F0(r),

rf2(r) ≡ F2(r), (4.178)

and the coupled equations are

− ~2

2mr

F ′′0(r) + ṽc(r)F0(r) +
√

8ṽt(r)F2(r) = EF0(r),

− ~2

2mr

F ′′2(r) +
3~2

mrr2
F2(r) + (ṽc(r)− 2ṽt(r))F2(r) +

√
8ṽt(r)F0(r) = EF2(r).

(4.179)

These equations can be integrated to give the ground-state wave function of the

deuteron.

4.6.3 Two neutrons

The case of two neutrons corresponds to the uncoupled channel T = 1, S = 0.

We start with the state |0〉n ≡ (|n ↑;n ↓〉 − |n ↓;n ↑〉)/
√

2, and the wave function is

|ψ〉nn = fn0 (r)|0〉n. (4.180)

Since τ 1 · τ 2 = 1 and σ1 · σ2 = −3, we have the central potential,

ṽnc (r) = vc(r) + vτ (r)− 3vσ(r)− 3vστ (r), (4.181)

and the equation we need to solve is

− ~2

2mr

F ′′
n
0 (r) + ṽnc (r)F n

0 (r) = EF n
0 (r). (4.182)
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4.6.4 Deuteron and two neutrons with pions

For the short range interaction here, we use

H2N
NN =

2∑
i=1

[
P 2
i

2MP

+MP + βKP
2
i + δM

]
+ CSδR0(r12) + CT δR0(r12)σ12 (4.183)

and we take CS and CT to be tunable constants.

The wave function for the deuteron and for two neutrons is Eq. (4.108) using the

model state |Φ〉 given by |ψ〉d,nn. When solving the corresponding differential Eqs.

(4.179) and (4.182), we only retain the contact contributions of the leading-order local

chiral potential of Gezerlis et al. (2014). The correlations arising from the one-pion

exchange term are dynamically generated when summing over the pion modes.

4.6.5 Two nucleons in a box

Secs. 4.6.2 and 4.6.3 deal with the deuteron and two neutrons in free space. In

order to compute the energy of those systems in the box we performed a “numerical

experiment” using a well-established phenomenological pairwise interaction. We used

a numerically stable version of the Lanczos algorithm (Lanczos (1950)) to solve for the

energy of the deuteron and two neutrons in a box using the AV6’ potential (Wiringa

et al. (1995)). Previous numerical solutions are available for two neutrons in a finite

volume (Klos et al. (2016)), and the differences between our results and those are

negligible. The necessary inputs for the algorithm are a nxn Hermitian matrix, in

our case the Hamiltonian H with a AV6’ interaction, an initial state, and a number of

iterations m. The output is a matrix V with orthonormal columns, and a tridiagonal

real symmetric matrix T = V †AV of size mxm. If m = n, then V is unitary and

H = V TV †. The algorithm can be summarized as

1. Begin with a normalized state, we choose |v1〉 = | ↑↑〉
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2. Initial step

(a) |w′1〉 = H|v1〉

(b) α1 = 〈w′1|v1〉

(c) |w1〉 = |w′1〉 − α1|v1〉

3. For j = 2, · · · ,m

(a) βj =
√
〈wj−1|wj−1〉

(b) |vj〉 = |wj−1〉/βj

(c) |w′j〉 = H|vj〉

(d) αj = 〈w′j|vj〉

(e) |wj〉 = |w′j〉 − αj|vj〉 − βj|vj−1〉

4. V is the matrix with columns |v1〉, · · · , |vm〉, and T is

T =



α1 β2

β2 α2 β3

β3 α3
. . .

. . . . . . βm−1

βm−1 αm−1 βm

βm αm


. (4.184)

The deuteron (or two neutrons) ground-state energy is the lowest eigenvalue of the

tridiagonal matrix T . We use fast Fourier transforms to calculate the kinetic energy

efficiently, and the cubic group irreducible representation that corresponds to the

angular momentum channels in the periodic box.
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4.7 Operators

4.7.1 Basis

In our code we chose to represent each particle state by a pair of bits, with the

right bit being the spin and the left bit representing the isospin. Spin up (down)

corresponds to 0 (1), and a proton (neutron) is represented by 0 (1). For example, a

proton with spin up is 0 (00) and a neutron with spin down is 3 (11).

When we are dealing with two particles, the rightmost bit pair represents particle

1, and the two leftmost bits deal with particle 2. For example,

3 = 0011 = 00︸︷︷︸
particle 2

11︸︷︷︸
particle 1

→ p ↑ n ↓,

4 = 0100 = 01︸︷︷︸
particle 2

00︸︷︷︸
particle 1

→ p ↓ p ↑ . (4.185)

The generalization to A particles is straightforward, we just add pairs of bits to the

left until we have 2A bits. There are 4A possible states, represented by integers in

the interval [0,4A − 1].

In order to show more concrete examples, let us present the model states of the

deuteron and two neutrons, which correspond to determining the 16 entries of the

φ array for the two cases. The deuteron corresponds to the isospin singlet, (|p n〉 −

|n p〉)/
√

2. We need to write the states of Eq. (4.161) in the same basis used in the

code,

| ↑ ↑〉 → |p ↑ n ↑〉 − |n ↑ p ↑〉 → φ(8) = 1, φ(2) = −1,

| ↓ ↓〉 → |p ↓ n ↓〉 − |n ↓ p ↓〉 → φ(13) = 1, φ(7) = −1,

| ↑ ↓〉 → |p ↑ n ↓〉 − |n ↑ p ↓〉 → φ(12) = 1, φ(6) = −1,

| ↓ ↑〉 → |p ↓ n ↑〉 − |n ↓ p ↑〉 → φ(9) = 1, φ(3) = −1. (4.186)
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Notice that the entries that do not appear in the equation above (0,1,4,5,10,11,14,15)

have either two protons or two neutrons. The two neutrons system is in the T = 1,

S = 0 channel. In our basis this corresponds to the model state φ(14) = 1 and

φ(11) = −1.

4.7.2 One nucleon

For one nucleon the operators are implemented as 4x4 matrices.

σxφ =



0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0





φp↑

φp↓

φn↑

φn↓


=



φp↓

φp↑

φn↓

φn↑


(4.187)

σyφ =



0 −i 0 0

i 0 0 0

0 0 0 −i

0 0 i 0





φp↑

φp↓

φn↑

φn↓


=



−iφp↓

iφp↑

−iφn↓

iφn↑


(4.188)

σzφ =



1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1





φp↑

φp↓

φn↑

φn↓


=



φp↑

−φp↓

φn↑

−φn↓


(4.189)

τxφ =



0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0





φp↑

φp↓

φn↑

φn↓


=



φn↑

φn↓

φp↑

φp↓


(4.190)
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τyφ =



0 0 −i 0

0 0 0 −i

i 0 0 0

0 i 0 0





φp↑

φp↓

φn↑

φn↓


=



−iφn↑

−iφn↓

iφp↑

iφp↓


(4.191)

τzφ =



1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1





φp↑

φp↓

φn↑

φn↓


=



φp↑

φp↓

−φn↑

−φn↓


(4.192)

4.7.3 Two nucleons

One-body operators

When we have two nucleons a straightforward way is to consider the operators to

be 16x16 matrices. For example, a one-body operator such as σz acting on particle 1

is

σ1
z =



σz 0 0 0

0 σz 0 0

0 0 σz 0

0 0 0 σz


(4.193)

while the same operator acting on particle 2 is given by
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σ2
z =

m00 0 0 0 m01 0 0 0 m02 0 0 0 m03 0 0 0

0 m00 0 0 0 m01 0 0 0 m02 0 0 0 m03 0 0

0 0 m00 0 0 0 m01 0 0 0 m02 0 0 0 m03 0

0 0 0 m00 0 0 0 m01 0 0 0 m02 0 0 0 m03

m10 0 0 0 m11 0 0 0 m12 0 0 0 m13 0 0 0

0 m10 0 0 0 m11 0 0 0 m12 0 0 0 m13 0 0

0 0 m10 0 0 0 m11 0 0 0 m12 0 0 0 m13 0

0 0 0 m10 0 0 0 m11 0 0 0 m12 0 0 0 m13

m20 0 0 0 m21 0 0 0 m22 0 0 0 m23 0 0 0

0 m20 0 0 0 m21 0 0 0 m22 0 0 0 m23 0 0

0 0 m20 0 0 0 m21 0 0 0 m22 0 0 0 m23 0

0 0 0 m20 0 0 0 m21 0 0 0 m22 0 0 0 m23

m30 0 0 0 m31 0 0 0 m32 0 0 0 m33 0 0 0

0 m30 0 0 0 m31 0 0 0 m32 0 0 0 m33 0 0

0 0 m30 0 0 0 m31 0 0 0 m32 0 0 0 m33 0

0 0 0 m30 0 0 0 m31 0 0 0 m32 0 0 0 m33


where mij are the entries of the corresponding one particle 4x4 matrix.

In both cases, the matrices are sparse. A more efficient procedure comes from

the realization that a one-body operator acting on a given particle can, at most,

change that particle’s state into a combination of only four states (proton/neutron

↑/↓). This way the operators can be represented by 4x4 matrices, but we have to

select the relevant states to construct the 4x1 array that is operated on, as well as

the 4 elements of the 4Ax1 array with all the amplitudes that will change.
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Two-body operators

In general, two-body operators are represented by 16x16 matrices, but there are

special cases where a simpler description is sufficient. That is the case of τ 1 · τ 2,

which corresponds to twice the exchange minus the original state,

τ 1 · τ 2|t2 s2 t1 s1〉 = 2|t1 s2 t2 s1〉 − |t2 s2 t1 s1〉, (4.194)

where ti corresponds to the isospin of particle i, and si the spin (unchanged).

4.8 Green’s function Monte Carlo

When introducing the diffusion Monte Carlo algorithm in Sec. 2.3 we assumed

that the only degrees of freedom were the positions of the particles. The Green’s

function Monte Carlo method used for the nuclear field theory is similar to the DMC

algorithm, with the main difference being that it allows spin- and isospin-dependent

interactions, and it includes explicit summations over spin and isospin components.

Just like DMC, the GFMC method projects out of a trial wave function |ΨT 〉 the

lowest eigenstate |Φ0〉 of the Hamiltonian H with non-zero overlap with |ΨT 〉,

|Φ0〉 ∝ lim
τ→∞

exp [−(H − ET )τ ] |ΨT 〉, (4.195)

where ET controls the normalization. A repeated application of a short-time propa-

gator is used as in the diffusion Monte Carlo method. Inserting a sequence of com-

pleteness relations between each short-time propagator, and using the abbreviated

notation of Eq. (4.104), where R stands for all spatial coordinates and Π for all pion

coordinates,

〈RNSNΠN |Φ0〉 =
∑
S0

· · ·
∑
SN−1

∫
d3R0d

3Π0 · · · d3RN−1d
3ΠN−1(

N−1∏
i=0

〈Ri+1Si+1Πi+1| exp [−(H − ET )δτ ] |RiSiΠi〉
)
〈R0S0Π0|ΨT 〉, (4.196)
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where the summations are over the 4A spin-isospin states of the A-nucleon system.

Monte Carlo techniques are used to sample the Ri and Πi in the propagation at

each imaginary time-step. For a detailed description of the algorithm, the reader is

referred to the review of Carlson et al. (2015a) and references therein.

For the remainder of this section we writeR as an abbreviation for the RSΠ. Since

we consider two versions of the Hamiltonian (including and omitting the Weinberg-

Tomozawa term, see Sec. 4.3), we need to consider two distinct versions of the prop-

agator, namely:

Gav(R′,R) = 〈R′| exp [−(H − ET )δτ ] |R〉 ≈

〈R′| exp [−δτVπ/2] exp [−δτHππ] exp [−δτT ] exp [−δτVπ/2] exp [δτET ] |R〉,

(4.197)

and

G(R′,R) = 〈R′| exp [−(H − ET )δτ ] |R〉 ≈ 〈R′| (1− δτVWT ) exp [−δτVπ/2]

× exp [−δτHππ] exp [−δτT ] exp [−δτVπ/2] exp [δτET ] |R〉. (4.198)

4.8.1 Propagators

Kinetic energy

The Euclidean time propagator associated with the non-relativistic kinetic energy of

the nucleons T gives rise to a free diffusion process described by the propagator:

GT (R′,R) = 〈R′| exp [−Tδτ ] |R〉 =

[
1

λ3π3/2

]A
exp

[
−(R−R′)2

λ2

]
, (4.199)

with λ =
√

2~2δτ/m.
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Free harmonic oscillator

Each harmonic oscillator of frequency ω in the Hamiltonian also gives rise to a prop-

agator that can be exactly evaluated,

GHO(π′′, π′) =

(
ω

2π sinh(ωδτ)

)1/2

× exp

[
− ω

2 sinh(ωδτ)

(
(π′′2 + π′2) cosh(ωδτ)− 2π′π′′

)]
. (4.200)

The importance sampled version of this Green’s function is (Kalos and Schmidt

(1997))

G̃HO(π′′, π′) =
ψ0(π′′)

ψ0(π′)
exp

[
ωδτ

2

]
GHO(π′′, π′), (4.201)

where ψ0 is the wave function for the ground-state of the harmonic oscillator, and we

have introduced the trial energy of the harmonic oscillator EHO
T = ω/2. Expanding

the equation above we have

G̃HO(π′′, π′) =

(
ω

π(1− e−2ωδτ )

)1/2

exp

[
−ω(π′′ − e−ωδτπ′)2

1− e−2ωδτ

]
, (4.202)

which is a Gaussian centered at e−ωδτπ′ with variance (1− e−2ωδτ )/(2ω). Notice that

for δτ →∞ we have G̃(π′′, π′)→ ψ2
0(π′′), and for δτ → 0 we recover the free particle

propagator. ForN free harmonic oscillators, the importance sampled Green’s function

is just the product of one dimensional Green’s functions of the form of Eq. (4.202).

Weinberg-Tomozawa term

The propagator of Eq. (4.198) contains pion derivatives. As a first-order approxi-

mation, we act with the pion derivatives present in VWT on the propagator for the

harmonic oscillators G̃HO. This procedure omits possible terms rising from the com-

mutators, and is analogous to the one used to implement spin-orbit propagator used in

97



other quantum Monte Carlo methods for many-nucleon systems (Sarsa et al. (2003)).

We consider only the linear part of the Weinberg-Tomozawa propagator,

(1− δτ VWT ) e−δτH0 . (4.203)

We operate with the derivatives on the free-propagator, and the result is

δτ VWT = − iδτ

2f 2
πL

3
εijkτi

∑
q,q′

[
cos(q · r) cos(q′ · r)πcqj

(−2ωq′)

1− e−2ωq′δτ
(πcq′k

′′ − e−ωq′δτπcq′k
′)

+ cos(q · r) sin(q′ · r)πcqj
(−2ωq′)

1− e−2ωq′δτ
(πsq′k

′′ − e−ωq′δτπsq′k
′)

+ sin(q · r) cos(q′ · r)πsqj
(−2ωq′)

1− e−2ωq′δτ
(πcq′k

′′ − e−ωq′δτπcq′k
′)

+ sin(q · r) sin(q′ · r)πsqj
(−2ωq′)

1− e−2ωq′δτ
(πsq′k

′′ − e−ωq′δτπsq′k
′)

]
. (4.204)

Pairwise interaction

For the two nucleon systems we need to compute the exponential of Eq. (4.157), which

would involve, in principle, the computation of 16x16 matrices. Instead, we linearize

the exponential in order to be able to work with only 4x4 operators. We wish to

calculate

exp(−[vc + vσσ
1 · σ2 + vtt12 + vττ

1 · τ 2 + vσττ
1 · τ 2σ1 · σ2 + vtτ t12τ

1 · τ 2]δτ)

= pc + pσσ
1 · σ2 + ptt12 + pττ

1 · τ 2 + pσττ
1 · τ 2σ1 · σ2 + ptτ t12τ

1 · τ 2. (4.205)

A simple way to derive the form for the p functions is to work in the eigenbasis of

the v6 operators. If we rotate the coordinates so that the z axis is along r̂, then the

eigenbasis is trivially found to be the standard singlet and triplet sets in the spins

and isospins. The σ1 · σ2 and τ 1 · τ 2 have eigenvalues 1 in the corresponding triplet

states and eigenvalue -3 in the singlet. The tensor has eigenvalue 2 in the MS = ±1

triplet spin states, and -4 in the m = 0 triplet state, while the tensor has eigenvalue 0

98



in the singlet. Evaluating Eq. (4.205) in each of the eigenstates gives 6 independent

equations. We evaluate them in the order

state 1 T = 1, S = 1, |MS| = 1,

state 2 T = 1, S = 1, MS = 0,

state 3 T = 0, S = 1, |MS| = 1,

state 4 T = 0, S = 1, MS = 0,

state 5 T = 1, S = 0,

state 6 T = 0, S = 0 . (4.206)

We define

e1 = e−(vc+vσ+2vt+vτ+vστ+2vtτ )δτ ,

e2 = e−(vc+vσ−4vt+vτ+vστ−4vtτ )δτ ,

e3 = e−(vc+vσ+2vt−3vτ−3vστ−6vtτ )δτ ,

e4 = e−(vc+vσ−4vt−3vτ−3vστ+12vtτ )δτ ,

e5 = e−(vc−3vσ+vτ−3vστ )δτ ,

e6 = e−(vc−3vσ−3vτ+9vστ )δτ , (4.207)

and we need to solve

e1 = pc + pσ + 2pt + pτ + pστ + 2ptτ

e2 = pc + pσ − 4pt + pτ + pστ − 4ptτ

e3 = pc + pσ + 2pt − 3pτ − 3pστ − 6ptτ

e4 = pc + pσ − 4pt − 3pτ − 3pστ + 12ptτ

e5 = pc − 3pσ + pτ − 3pστ

e6 = pc − 3pσ − 3pτ + 9pστ . (4.208)
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This is the matrix equation,

e1

e2

e3

e4

e5

e6


=



1 1 2 1 1 2

1 1 −4 1 1 −4

1 1 2 −3 −3 −6

1 1 −4 −3 −3 12

1 −3 0 1 −3 0

1 −3 0 −3 9 0





pc

pσ

pt

pτ

pστ

ptτ


. (4.209)

The matrix inversion can be done analytically to give

pc

pσ

pt

pτ

pστ

ptτ


=

1

48



18 9 6 3 9 3

6 3 2 1 −9 −3

6 −6 2 −2 0 0

6 3 −6 −3 3 −3

2 1 −2 −1 −3 3

2 −2 −2 2 0 0





e1

e2

e3

e4

e5

e6


. (4.210)

The result is

pc = (6e1 + 3e2 + 2e3 + e4 + 3e5 + e6)/16

pσ = (6e1 + 3e2 + 2e3 + e4 − 9e5 − 3e6)/48

pt = (3e1 − 3e2 + e3 − e4)/24

pτ = (2e1 + e2 − 2e3 − e4 + e5 − e6)/16

pστ = (2e1 + e2 − 2e3 − e4 − 3e5 + 3e6)/48

ptτ = (e1 − e2 − e3 + e4)/24 . (4.211)
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4.8.2 Diffusion constant

The effective mass of nucleon can be obtained by looking at its diffusion. First,

let us consider the 1D diffusion of (classical) particles that are initially at the origin,

C(x, 0) = δ(x). The diffusion equation,

∂C(x, τ)

∂τ
= D

∂2C(x, τ)

∂x2
(4.212)

has the normalized solution

C(x, τ) =
1√

4πDτ
exp

[
− x2

4Dτ

]
. (4.213)

If we multiply the diffusion equation by x2 and integrate all over space we have

∂

∂τ

∫ +∞

−∞
dx x2C(x, τ) = D

∫ +∞

−∞
dx x2∂

2C(x, τ)

∂x2
,

∂

∂τ
〈x2(τ)〉 = 2D,

〈x2(τ)〉 = 2Dτ + constant. (4.214)

Generalizing the result to three dimensions yields 〈r2(τ)〉 = 6Dτ + constant. Thus,

the mass of the nucleon m is related to the slope α of the graph 〈r2(τ)〉 vs τ through

mc2 =
3(~c)2

α
. (4.215)

4.9 Results

All the results are obtained considering a cell in momentum space, in which the

sums over the k wave vectors are limited by the spherical cutoff ωsc =
√
k2
c +m2

π,

where

4πk3
c

3
=

(
2π

L

)3

Nk, (4.216)

Nk being the number of k vectors in the unprimed sums. The number of wave

vectors, in the primed sums, in each of the first 10 shells is (1,3,6,4,3,12,12,6,15,12,12).
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When k has no zero components there are 6 pion coordinates associated with each

k, corresponding to the sine and cosine components of the three Cartesian isospin

coordinates. We set the pion mass to the average of the masses of the neutral and

charged pions, mπ = (mπ0 + 2mπ±)/3 = 138.04 MeV. For the nucleon physical mass

we used MP = 938.92 MeV, the average of the inverses of the proton and neutron

masses, 2/MP = 1/Mproton + 1/Mneutron.

It is worth noting that for one nucleon there is no node-crossing, because no

fermion exchange occurs with only one fermion. For the two nucleon case the node-

crossing is also zero. We expect s-shell nuclei to have a mild fermion sign or phase

problem, as occurs in potential models. Whenever energies are computed, both the

full propagator and the propagator omitting the Weinberg-Tomozawa term are used.

For all other estimators we have limited ourselves to the latter case only.

4.9.1 Mass renormalization

Since our choice for the momentum cutoff is not Lorentz invariant, the two mass

counter terms appearing in the Hamiltonians, βK and δM , are not simply related.

The kinetic mass counter term coefficient βK is determined by requiring that the

nucleon diffuses with the physical mass MP = 938.92 MeV for long imaginary-times,

and δM is set so that the ground state energy of one nucleon is also the physical mass

MP .

In order to determine βK , let us consider the diffusion of (classical) particles that

are initially at the origin, C(r = 0, τ = 0) = δ(3)(r). The solution for the diffusion

equation

∂C(r, τ)

∂τ
=
∇2

2MK

C(r, τ) (4.217)
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is a Gaussian centered at the origin and with variance τ/MK . Multiplying the diffusion

equation by r2 and integrating over r, we get for the mean square displacement

〈r2(τ)〉 = 3τ/MK and the kinetic mass of the nucleon can be computed from the

slope of 〈r2(τ)〉.

In Fig. 4.3 we plot the mean square displacement as a function of the imaginary

time for a cutoff of ωsc ' 449 MeV, and also the curve we would expect from a diffusion

given by Eq. (4.199) with the physical mass MP . A linear fit to the functional form

we propose yields masses that differ by ∼ 2 MeV at most from the physical mass, for

every cutoff we considered. Thus, in our simulations we set the kinetic mass counter

term to zero βK = 0, in agreement with our nonrelativistic calculation reported in

Sec. 4.4.1 which shows this correction is small.
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Figure 4.3: Mean square displacement 〈r2〉 as a function of the imaginary-time τ . The

(blue) curve stands for a particle diffusing according to Eq. (4.199) with the mass set

as the physical mass, M = MP . The (red) circles are the GFMC results for ωsc ' 449

MeV.

The rest mass counter term δM is calculated by requiring that the total energy

of a single nucleon interacting with the pion field is equal to the physical mass of the
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nucleon. We investigated the full single-nucleon Hamiltonian and the one without

the Weinberg-Tomozawa term, using the corresponding propagators. We summarize

our results in Fig. 4.4 that are obtained for L = 10 fm. The difference between the

mass counter terms is ' 4.7 MeV for the largest cutoff considered, order 0.5% of the

total rest mass. Given the simplification in the computational procedures, such small

energy difference suggests that it is quite safe to propagate the configurations using

the axial-vector coupling only, and to include the Weinberg-Tomozawa contribution

to the energy perturbatively.
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Figure 4.4: Rest mass counter term as a function of the cutoff ωsc . The (blue) open

circles are the results with the full one-nucleon Hamiltonian Eq. (4.102). The (red)

closed circles are the results neglecting the Weinberg-Tomozawa terms HWT .

We also investigated the dependence of our results on the simulation box size. We

varied the side of the box L = 5, 10, 15 fm, and we compared the results for the

rest mass counter term, neglecting the Weinberg-Tomozawa term H1N
WT. In Fig. 4.5 it

is possible to see that the counter term calculated with L = 5 fm deviates from the

other values for the smallest cutoff considered. However, the difference between the

results obtained with L = 10 and 15 fm is ' 0.5% of MP at most. Therefore, in order
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to speed up the calculations, we chose L = 10 fm for all the calculations presented in

the remainder of this work. As an example, for ωsc ∼ 449 MeV, the box with L = 15

fm requires more than 3 times the number of k vectors. In Fig. 4.5 we also show

our lowest order nonrelativistic results for the rest mass counter term, described in

Sec. 4.4.1. The results differ, at most, by 0.4% of MP .
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Figure 4.5: The rest mass counter term as a function of the cutoff for L = 5, 10, 15

fm, (blue) triangles, (green) circles, (red) squares, respectively. The closed symbols

represent GFMC results obtained discarding HWT in Eq. (4.102) in the one-nucleon

Hamiltonian. The open symbols stand for the lowest-order nonrelativistic rest mass

calculated with Eq. (4.119).

4.9.2 Euclidean time density correlation function

The Euclidean time density correlation function (Fetter and Walecka (2003)),

defined as

D(r) =
〈ΨT |ρ(r)e−(H−ET )δτρ(0)|Ψ0〉

〈ΨT |Ψ0〉
, (4.218)
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accounts for the nucleon displacement in between diffusion steps. In Fig. 4.6 we

compare our results with the free-particle propagator of Eq. (4.199), where we set

M = MP , with those obtained from D(r), assuming that the latter is a function of

only r = |r|, which is true for large enough systems. The fact that in the short-time

limit the nucleon is diffusing with a constant related to MP is consistent with our

findings reported in Sec. 4.9.1.
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Figure 4.6: Euclidean time density correlation as a function of the displacement for

a cutoff ωsc ' 449 MeV. The red circles correspond to the GFMC results, while the

blue curve stands for Eq. (4.199) evaluated at M = MP .

4.9.3 The pion cloud

One of the most interesting properties that can be computed within the formal-

ism presented in this paper are those of the virtual pions surrounding the nucleons.

Although this might in principle contain some dynamical information, at present we

limit ourselves to analyze static properties.

An interesting quantity to analyze is the ground-state momentum distribution of

the pion cloud for the different charged states nα(k). Since we the sum of Eq. (4.54)
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are written in such a way that k is included and −k is not, this is best represented

by the expectation value of

Nik = a†αkaαk + a†α−kaα−k, (4.219)

with the creation and annihilation operators for a pion in a given charge state are given

in Eqs. (4.86–4.87). We computed the momentum distributions and radial densities

of the pion cloud using the forward walking procedure described in Appendix B in

order to avoid the bias due to the trial wave function. We considered a box with

L=10 fm, and the model state |Φ〉 of Eq. (4.108) corresponding to a spin-up proton.

In the limit L → ∞, nα(k) should be a function of k = |k| alone. Already for

L=10 fm we found minimal differences among the modes with the same k, hence

in Fig. 4.7 we show the pion momentum distribution as a function of k, only. The

normalization is chosen such that Nα = L3
∑

i nα(ki)gi, where Nα is the total number

of pions of charge α, and gi is the multiplicity of the i-th shell. An interesting feature

is that the distribution of π+ is approximately twice the one of π0. This follows from

the structure of the axial-vector coupling, which involves

τiπi =
1

2
τ+(πx − iπy) +

1

2
τ−(πx + iπy) + τzπ0, (4.220)

with τ± = (τx± iτy) being the isospin raising and lowering operators, and π0 = πz. If

we suppose that the cartesian πi are produced in the same amount, then we expect

twice as many π0 than π+. Since we are looking at a one proton state, the production

of π− is much smaller compared to that of π+ and π0. Conversely, if the baryon is a

neutron, we get analogous results with the distributions of π+ and π− interchanged.

Although increasing the cutoff increases the total pion production, the number of

pions at low-momenta appears to be cutoff independent.

The pion densities, whose off-diagonal components are related to the momentum

distributions through a Fourier transform, can also be resolved for different charge
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Figure 4.7: Momentum distribution for the different charge states, for systems with

different shell numbers, n = 5 corresponds to a cutoff ωsc ' 327 MeV, and n = 10

to ωsc ' 449 MeV. The different symbols correspond to π+, π0, and π− for n = 5,

(purple) open circles, (cyan) triangles, and (yellow) open squares, respectively; and

π+, π0, and π− for n = 10, (red) crosses, (green) solid squares, and (blue) pluses,

respectively.

states, as in Eq. (4.75). The results for the density are displayed in Fig. (4.8) for a

spin-up proton as model state – we did not plot the n = 5 density for π− because it

is negligible in the scale of the Figure. In analogy to nα(k), the production of π− is

heavily suppressed. If the model state is a neutron, we, of course, get identical results

with the densities of π+ and π− interchanged.

4.9.4 One pion exchange

As mentioned above, the long-range behavior of the nuclear force is due to the

one-pion exchange. It arises from tree-level diagrams with four external nucleons and

an off-shell pion. At lowest order in perturbation theory, the potential arising from
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Figure 4.8: Pion density for the different charge states as a function of x coordinate
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curves correspond to π+, π0, and π− for n = 10, red long-dash, green dot dash, and

solid (blue), respectively; and π+, π0 for n = 5, purple dot short-dash, and cyan

double-dot dash, respectively.

two static nucleons is

VOPE(q) = −
(
gA
2fπ

)2
(σ1 · q)(σ2 · q)

q2 +m2
π

τ1 · τ2, (4.221)

where q is the transferred momentum. The coordinate-space potential is recovered

from VOPE(q) via a Fourier transform. In order to make a meaningful comparison we

need to compute the one-pion exchange potential keeping into account the geometry

and the cutoff of the simulation cell we use.

In Eq. (4.106) the last term on the RHS of the fixed nucleon Hamiltonian contains

contributions of the self-energy of the nucleons and the one-pion exchange potential,
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in which we are interested. Keeping only terms that involve the coupling between the

two nucleons,

VOPE(r) = − 1

L3

g2
A

2f 2
π

τ1 · τ2

∑
k

′
(σ1 · k)(σ2 · k)

× cos(k · r)

ω2
k

, (4.222)

which is consistent with Eq. (4.221).

The instantaneous one-pion exchange potential neglects terms where two or more

pions are exchanged and the vertices are in different time orders. These commuta-

tor terms contribute even for fixed nucleons. However they become unimportant for

large nucleon separations. We studied the interaction between two fixed nucleons as a

function of the inter-particle distance r in the T = 1 and S = 0 and T = 0 and S = 1

channels. We used VMC calculations and checked that they were accurate by per-

forming GFMC calculations at a few separations. Our VMC results, represented by

the points in Fig. 4.9, are obtained by subtracting the nucleon self-interaction terms

from the ground-state expectation value of Hππ +HAV for two different spherical cut-

offs. For comparison, we also show the curves corresponding to the one-pion exchange

potential of Eq. (4.222) for the same cutoff employed in the VMC calculations. As

expected, the VMC results agree with the one-pion exchange potential at sufficiently

large distances, r & 3.0 fm. The differences at smaller distances are from multiple

pion-exchange contributions, which are automatically included in the VMC calcula-

tions. This is one of the key features of explicitly including the modes of the pion

field, which is absent in conventional nuclear many-body theory approaches, in which

multiple pion-exchange potentials have to be explicitly included in the Hamiltonian.
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Figure 4.9: One-pion exchange potential for two nucleons a distance r apart along the

x-axis in the T = 1 and S = 0 channel (upper panel) and T = 0 and S = 1 channel

(lower panel). The points (VMC) correspond to our variational results, where the

full red circles denote n = 5 (ωsc ' 327 MeV) and open blue circles stand for n = 10

(ωsc ' 449 MeV). The curves (OPE) correspond to the one-pion exchange potential

of Eq. (4.222) with the same cutoff as the VMC calculations.

4.9.5 Two nucleons

We need to fix the low-energy constants CS and CT associated to the contact

terms entering H2N
NN of Eq. (4.183). These should be either fitted to experiment or to

QCD. Instead of fitting to experiment, we take the expedient step of fitting to results

of a potential model that has been fit to experiments. Since our calculations rely on a

111



periodic box, we fit CS and CT to reproduce the ground state results of the Argonne

v′6 (AV6P) potential (Wiringa et al. (1995)) for the deuteron and two-neutrons in a

periodic box. Note that a possible way of direct fit to experiments would involve the

Lüscher method (Lüscher (1991)). The energy spectrum of a system of two particles

in a box with periodic boundary conditions, for box sizes greater than the interaction

range, and for energies below the inelastic threshold, is determined by the scattering

phases at these energies. The Lüscher method can be used to compute the energy

levels given the scattering phases or, conversely, to calculate the scattering phases if

the energy spectrum is known.

As a first step, we developed a numerically stable version of the Lanczos algorithm

(Lanczos (1950)) to solve for the energy of the deuteron and two neutrons in a periodic

box using the AV6P potential and a plane wave basis. By imposing periodic boundary

conditions, the continuum version of the AV6P potential, which has the operator

structure of Eq. (4.157), is modified to include periodic images from the surrounding

boxes,

VNN(r12)→
∑
n

V (r12 + Ln), (4.223)

where n = (nx, ny, nz) with ni integers numbers. The self potential energy term of the

periodic images is included. We proved that for L ≥ 10 fm one image in each direction

is sufficient to obtain periodic solutions since the AV6P interaction is at most of one

pion exchange range. In panel (a) and (b) of Fig. 4.10 we plot the binding energy of

the deuteron and two neutrons, respectively as a function of the box side. For L < 25

fm, the deuteron energies are much lower than the value for the system in free space.

However, for L ≥ 25 fm the agreement between finite periodic box results and the

continuum is remarkably good.

We then tune CS and CT in the GFMC simulations with explicit pions to reproduce

the energies of both two nucleon systems. We do not include the Weinberg-Tomozawa
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Figure 4.10: Binding energy of the deuteron (a) and two neutrons (b) in a box. The

symbols correspond to the energy calculated using the Lanczos algorithm with the

AV6’ potential. The dashed line corresponds to the binding energy of the deuteron

in free space using the AV6’ potential.

term, as the one-nucleon results suggest it will provide a small contribution for the

momentum cutoffs we employed. Based on the results of Fig. 4.10, we performed

the explicit-pion calculations only for 25 ≤ L ≤ 35 fm. The pion nucleon axial-

vector coupling in our formalism is already periodic, hence only the contact terms of

Eq. (4.183) should in principle be modified as in Eq. (4.223). Since those terms are

short-ranged compared to the one-pion exchange potential, for 25 ≤ L ≤ 35 fm we

find that we do not require the potential from the surrounding boxes.

The fitted values of CS and CT for different box sizes and cutoffs are reported

in Tab. 4.1. We are aware that the cutoffs we used are very low compared to those

typically used in other chiral EFT formulations. This choice is by no means due to an

intrinsic limitation of the method, but to the extent of the computational effort that

we deemed reasonable to obtain these demonstrative results. It is worth mentioning

that the chiral potential of Gezerlis et al. (2014) at LO gives a deuteron binding

energy of Ed = −2.02 MeV, which considerably differs from the experimental value
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-2.23 MeV. Hence, one of the reasons for the difference between the values of CS and

CT that we found and the ones reported in Gezerlis et al. (2014) for the LO potential

can be attributed to this difference in the fitted deuteron energy. Additional reasons

for this difference are the finite volume of the box, and the momentum cutoff that

we employ. Finally, subleading multiple pion-exchange contributions, fully accounted

for in our calculations, appear at NLO in the standard power counting of the chiral

interaction.

Table 4.1: Contact parameters for different box sizes, L=25, 30, and 35 fm, as a

function of the cutoff ωsc . The ωsc are given in MeV, while CS and CT are in fm2.

L= 25 fm L= 30 fm L= 35 fm

n ωsc CS CT ωsc CS CT ωsc CS CT

1 150.06 -3.342 -0.185 146.49 -3.333 -0.197 144.30 -3.331 -0.196

2 160.61 -3.409 -0.140 154.06 -3.372 -0.165 149.98 -3.354 -0.176

3 166.05 -3.444 -0.121 158.02 -3.395 -0.149 152.97 -3.368 -0.165

4 169.68 -3.474 -0.109 160.67 -3.412 -0.137 154.99 -3.379 -0.157

5 181.85 -3.579 -0.085 169.67 -3.466 -0.108 161.88 -3.415 -0.134

6 177.08 -3.512 -0.100 167.61 -3.437 -0.120

7 180.40 -3.521 -0.094 170.19 -3.457 -0.110

8 176.06 -3.485 -0.108

9 180.28 -3.501 -0.101

10 184.20 -3.533 -0.097
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Chapter 5

FINAL REMARKS

We have investigated several properties of vortices in 2D Fermi gases over the BEC-

BCS crossover region. We dedicated a considerable portion of this work to carefully

understand and control size effects in the disk geometry, since it is very convenient

for simulating a single vortex. Given that we were interested in the evolution of the

properties in the BEC-BCS crossover, determining the crossover region was important

to verify that the interaction strengths studied in this work span the crossover.

The vortex excitation energies and the density profiles are quantities that can be

compared with experiments, once they become available. Interestingly, the observed

density depletion of the vortex core goes from ≈ 30% at the BCS side, η = 1.5, to

an empty core for η 6 0.25, at the BEC limit. In 3D, Bogoliubov-de Gennes theory

has been used to calculate the density suppression at the vortex core throughout the

BEC-BCS crossover (Bulgac and Yu (2003); Sensarma et al. (2006); Simonucci et al.

(2013)). Also, determining the probability current was essential to investigate the

changes in the vortex core throughout the crossover region.

Similar calculations in 3D could be compared to our findings. A pseudogap phe-

nomena occurring in 2D and 3D Fermi gases can be related in a universal way through

a variable that spans the BEC-BCS crossover (Marsiglio et al. (2015)). Further stud-

ies are necessary to determine if this universality holds for other quantities, such as

the density and the probability current density per particle. This would provide a

very clean way of comparing 2D and 3D results.
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In 3D the interplay between experiments, theory, and simulations led to rapid ad-

vances in our comprehension of cold Fermi gases. Hopefully, our results will motivate

experiments to increase our understanding of vortices in 2D Fermi gases.

In the second part of this dissertation we describe a promising scheme to explicitly

include pion fields in a quantum Monte Carlo calculation of a one- and two-nucleon

systems. This approach can be readily extended to larger nuclei, consistently with the

limits of application of the underlying GFMC (or AFDMC) techniques. One impor-

tant remark to be made is that, since pion fields are bosonic, no further contribution

to the fermion sign/phase problem is introduced.

The first application to the one-nucleon system is meant to verify the consistency

of the method itself. In particular we analyzed finite-size effects, and the extent of

the differences due to the choice of the initial Lagrangian. We first studied the renor-

malization of the nucleon mass with a Hamiltonian in which the coupling between the

nucleons and the pion fields is described by an axial-vector interaction. A consistency

check against first-order diagrammatic calculation of the self-energy of the nucleon

has been successfully carried out. We tried to assess the importance of including

the Weinberg-Tomozawa coupling in the interaction. Although this term appears at

leading order in the chiral expansion, we showed that its effect in the renormalization

of the nucleon mass is much smaller than that of the axial-vector coupling. One inter-

esting possibility opened by our method is the direct study of the pion distribution.

In the one-nucleon sector, we analyzed the momentum and density distributions of

the pion cloud surrounding the nucleon. Although many details are still missing, this

can be thought of as a first step towards the calculation of the single-nucleon elec-

troweak form factors. Standard chiral-EFT calculations fail to describe the proton

and nucleon form factors for momentum transfers beyond Q2 ∼ 0.1 GeV2 (Kubis and

Meissner (2001)). The inclusion of vector mesons sensibly improve the agreement
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with data (Scherer (2010)). Within our explicit-pion QMC framework, we plan to

assess whether the resummation of important higher-order contributions can mimic

their inclusion.

Turning to the two-body problem, the correct asymptotic behavior of the potential

between two static nucleons was verified. As expected, the short/intermediate range

part of the potential differs from the OPE expression, due to multiple-pion exchange,

automatically included in our formalism. The low-energy constants of the contact

terms in the Hamiltonian were determined by fitting exact diagonalization results

on the binding energy of the two-body problem (pn and nn) in a finite box. This

is a necessary step towards the simulations of light nuclei within the explicit-pion

formalism. In this paper we employed a sharp spherical momentum cutoff. The

dependence of results on the specific choice of the regularization will be explored in

future works.

As previously mentioned, the extension of the calculations to larger systems (and

in particular A=3,4 nuclei) is straightforward, aside for the larger computational cost.

Work along this direction is currently in progress.
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Quantum Monte Carlo methods rely on a trial wave function which should mimic
as many as possible properties of the true ground-state wave function. The trial wave
function is used in three different ways in QMC simulations: as an approximation of
the ground-state in VMC calculations, as an importance function when importance
sampling is performed in DMC simulations, and also as the nodal surface for the
fixed-node approximation. Thus, it is clear that a careful optimization of the wave
functions is required to produce accurate results, and also to reduce their variance.

The wave functions presented in this work have many variational parameters, so
that a brute-force search for a set of parameters that minimizes the variational energy
of the system is not feasible. In the following sections we introduce two methods which
can be used to find optimal values for the variational parameters.

A.1 Stochastic reconfiguration

The Stochastic Reconfiguration (SR) method (Casula et al. (2004)) allows us
to minimize the energy expectation value of a variational wave function containing
many variational parameters in an arbitrary functional form. We assume that the
wave function Ψ has p variational parameters {α0

k}k=1,··· ,p and we seek the solution
of the linear system,

p∑
k=0

sj,k∆αk = 〈Ψ|Ok(ΛI −H)|Ψ〉, (A.1)

where the operators Ok are defined on each N particle configuration x = {r1, · · · , rN}
as the logarithmic derivatives with respect to the parameters αk,

Ok(x) =
∂

∂αk
ln Ψ(x) for k > 0. (A.2)

The operator Ok=0 is the identity, equal to 1 independent of the configuration. The
(p+ 1)× (p+ 1) matrix sk,j is given by

sj,k =
〈Ψ|OjOk|Ψ〉
〈Ψ|Ψ〉 , (A.3)

and it is calculated at each iteration through standard variational Monte Carlo sam-
pling; the single iteration constitutes a small simulation referred hereafter as bin.
After each bin, the wave function parameters are iteratively updated,

αk → αk +
∆αk
∆α0

. (A.4)

The method is convergent to an energy minimum for large enough Λ.
SR is similar to a standard steepest descent (SD) calculation, where the expecta-

tion value of the energy,

E(αk) =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 (A.5)
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is optimized by iteratively changing the αk according to the derivatives of the energy
(generalized forces fk),

fk = − ∂E
∂αk

= − 〈Ψ|OkH+HOk+(∂αkH)|Ψ〉
〈Ψ|Ψ〉 + 2 〈Ψ|Ok|Ψ〉〈Ψ|H|Ψ〉〈Ψ|Ψ〉2

αk → αk + ∆tfk. (A.6)

The small time step ∆t can be taken as a suitable fixed value, or it can be determined
at each iteration by minimizing the energy expectation value. Notice that we have
assumed that the variational parameters may also appear in the Hamiltonian. The
variation of the total energy ∆E at each step is negative for small enough ∆t,

∆E = −∆t
∑
i

f 2
i +O(∆t2), (A.7)

thus the method certainly converges at the minimum when all the forces vanish.
In the following we will show that similar considerations hold for the SR method.

Indeed, by eliminating the equation with k = 0 from the linear system (Eq. A.1), the
SR iteration can be written in a form similar to SD,

αi → αi + ∆t
∑
k

s−1
i,kfk, (A.8)

where s is the reduced p× p matrix,

sj,k = sj,k − sj,0s0,k (A.9)

and ∆t is given by

∆t =
1

2

(
Λ− 〈Ψ|H|Ψ〉〈Ψ|Ψ〉 −

∑
k>0

∆αksk,0

) . (A.10)

Thus the value of ∆t changes during the simulation, and it remains small for large
enough energy shift Λ. However, the analogy with the SD method shows that an
energy minimum is reached when ∆t is sufficiently small and constant between iter-
ations. The energy variation for a small change of the parameters is

∆E = −∆t
∑
i,j

s−1
i,j fifj. (A.11)

The above term is always negative because s and s−1 are positive definite; s being an
overlap matrix with all positive eigenvalues.

A condition for the stability of the SR, or SD, is that at each iteration the new
parameters α′ are close to the old α according to a distance. The most important
difference between SR and SD is the definition of this distance. For SD we use the
Cartesian metric,

∆α =
∑
k

|α′k − αk|2. (A.12)
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Instead the SR uses the physical Hilbert space metric of the wave function Ψ,

∆α =
∑
i,j

si,j(α
′
i − αi)(α′j − αj), (A.13)

namely the square distance between the two normalized wave functions corresponding
to two different sets of parameters {α′k} and {αk}. The most convenient change of
the variational parameters minimizes the functional ∆E + Λ∆α, where ∆E is the
linear change in the energy ∆E = −∑i fi(α

′
i − αi); and Λ is a Lagrange multiplier

that allows a stable minimization of Ψ (with small change ∆α). Finally, the iteration
is obtained from Eq. (A.8).

The advantage of SR over SD is that sometimes a small change of the variational
parameters correspond to a large change of the wave function, and SD takes into
account this effect by using the Hilbert space metric of the wave function Ψ. A weak
tolerance criterion ε ' 10−3 provides a very stable algorithm even when the dimension
of the variational space is large.

Instead of setting the constant Λ, we choose to determine ∆t by verifying the
stability and convergence of the algorithm at fixed ∆t. The simulation is stable
whenever 1/∆t > Λcut, where Λcut is strongly dependent on the wave function.

Our aim is to conduct simulations with small bins, so many iterations can be
performed. However, in the Monte Carlo framework the forces fk are determined
with some statistical noise, and there is an optimal value for the bin length which
guarantees fast convergence and unbiased forces.

A.2 Linear method

A.2.1 Overview

We first introduce the normalized wave function (Toulouse and Umrigar (2007))

|Ψ̄(p)〉 =
|Ψ(p)〉√
〈Ψ(p)|Ψ(p)〉

. (A.14)

Then we expand this normalized wave function to first order in the parameters p,
around the current parameters p0,

|Ψ̄lin(p)〉 = |Ψ0〉+
N∑
i=1

∆pi|Ψ̄i〉, (A.15)

where the wave function at p = p0 is simply |Ψ̄(p0)〉 = |Ψ̄0〉 = |Ψ0〉 (chosen to be
normalized to 1), and for i > 1, |Ψ̄i〉 are the derivatives of |Ψ̄(p)〉 that are orthogonal
to |Ψ0〉,

|Ψ̄i〉 =
∂|Ψ̄(p)〉
∂pi

∣∣∣∣∣
p=p0

= |Ψi〉 − S0i|Ψ0〉. (A.16)
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In order for |Ψ̄i〉 to be orthogonal to |Ψ0〉, we must have S0i = 〈Ψ0|Ψi〉:

〈Ψ0|Ψ̄i〉 = 〈Ψ0|Ψi〉 − S0i〈Ψ0|Ψ0〉 = 〈Ψ0|Ψi〉 − S0i = 0. (A.17)

We want to minimize the energy, up to linear order, with respect to the parameters
p,

Elin = min
p
Elin(p), (A.18)

where

Elin(p) =
〈Ψ̄lin(p)|H|Ψ̄lin(p)〉
〈Ψ̄lin(p)|Ψ̄lin(p)〉 . (A.19)

This leads to the stationary condition of the associated Lagrange function,

∇p

[
〈Ψ̄lin(p)|H|Ψ̄lin(p)〉 − Elin〈Ψ̄lin(p)|Ψ̄lin(p)〉

]
= 0, (A.20)

where Elin acts as a Lagrange multiplier for the normalization condition. Eq. (A.20)
leads to the generalized eigenvalue equation:

H̄ ·∆p = ElinS̄ ·∆p, (A.21)

where H̄ is the matrix of the Hamiltonian H in the (N + 1)-dimensional basis of
the current normalized wave function and its derivatives

{
|Ψ̄0〉, |Ψ̄1〉, . . . , |Ψ̄N〉

}
, with

elements H̄ij = 〈Ψ̄i|H|Ψ̄j〉; S̄ is the overlap matrix of this (N + 1)-dimensional basis,
with elements S̄ij = 〈Ψ̄i|Ψ̄j〉 (note that, because of the orthogonality of the derivatives
with respect to |Ψ0〉, S̄00 = 1 and S̄i0 = S̄0i = 0, for i > 1); ∆p is the (N + 1)-
dimensional vector of parameter variations with ∆p0 = 1.

The linear method consists of solving the generalized eigenvalue equation of
Eq. (A.21) for the lowest (physically reasonable) eigenvalue, and associated eigenvec-
tor ∆p̄.

A.2.2 Overlap and Hamiltonian matrices

The elements of the symmetric overlap matrix S̄ are

S̄00 = 1, (A.22)

and, for i, j > 0,

S̄i0 = S̄0j = 0, (A.23)

and

S̄ij =

〈
Ψi(R)

Ψ0(R)

Ψj(R)

Ψ0(R)

〉
−
〈

Ψi(R)

Ψ0(R)

〉〈
Ψj(R)

Ψ0(R)

〉
. (A.24)
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The elements of the Hamiltonian matrix H̄ are

H̄00 = 〈EL(R)〉, (A.25)

and, for i, j > 0,

H̄i0 =

〈
Ψi(R)

Ψ0(R)
EL(R)

〉
−
〈

Ψi(R)

Ψ0(R)

〉
〈EL(R)〉, (A.26)

H̄0j =

〈
Ψj(R)

Ψ0(R)
EL(R)

〉
−
〈

Ψj(R)

Ψ0(R)

〉
〈EL(R)〉+ 〈EL,j(R)〉, (A.27)

and

H̄ij =

〈
Ψi(R)

Ψ0(R)

Ψj(R)

Ψ0(R)
EL(R)

〉
−
〈

Ψi(R)

Ψ0(R)

〉〈
Ψj(R)

Ψ0(R)
EL(R)

〉

−
〈

Ψj(R)

Ψ0(R)

〉〈
Ψi(R)

Ψ0(R)
EL(R)

〉
+

〈
Ψi(R)

Ψ0(R)

〉〈
Ψj(R)

Ψ0(R)

〉
〈EL(R)〉

+

〈
Ψi(R)

Ψ0(R)
EL,j(R)

〉
−
〈

Ψi(R)

Ψ0(R)

〉
〈EL,j(R)〉. (A.28)

A.2.3 Stabilization

We stabilize the linear method by adding a positive constant, adiag > 0, to the
diagonal of H̄ except for the first element,

H̄ij → H̄ij + adiagδij(1− δi0). (A.29)

Also, there is an arbitrariness in the previously described procedure. We have
found the parameter variations ∆p̄ from the expansion of the wave function |Ψ̄(p)〉
of Eq. (A.14), but another choice of normalization would lead to different parameter
variations. Consider a differently normalized wave function

| ¯̄Ψ(p)〉 = N(p)|Ψ̄(p)〉, (A.30)

with N(p0) = 1, which leaves the normalization at p = p0 unchanged (| ¯̄Ψ(p0)〉 =
|Ψ0〉). The derivatives are

| ¯̄Ψi〉 =
∂| ¯̄Ψ(p)〉
∂pi

∣∣∣∣∣
p=p0

= |Ψ̄i〉+Ni|Ψ0〉, (A.31)

where

Ni =
∂N(p)

∂pi

∣∣∣∣∣
p=p0

, (A.32)
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i.e., their projections onto the current wave function depend on the normalization.
The first-order expansion of this new wave function is

| ¯̄Ψlin(p)〉 = |Ψ0〉+
N∑
i=1

∆pi| ¯̄Ψi〉, (A.33)

which leads to different optimal parameter variations ∆¯̄p. The two wave functions,
|Ψ̄lin(p)〉 and | ¯̄Ψlin(p)〉, lie on the same variational space. Therefore, they must be
proportional after minimization of the energy, which implies that ∆p̄ and ∆¯̄p are
related by a uniform rescaling,

∆¯̄p =
∆p̄

1−∑N
i=1Ni∆p̄i

. (A.34)

An arbitrary choice of normalization does not necessarily give good parameter varia-
tions. A good one is to choose each derivative | ¯̄Ψi〉 orthogonal to a linear combination
of |Ψ0〉 and |Ψ̄lin〉, that is〈

ξΨ0 + (1− ξ) Ψ̄lin

||Ψ̄lin||

〉
= 0, (A.35)

where ξ is a constant between 0 and 1. Hence

Ni = −
(1− ξ)∑nonlin

j ∆p̄jS̄ij

(1− ξ) + ξ
√

1 +
∑nonlin

j,k ∆p̄j∆p̄kS̄jk

. (A.36)

We verified that the method is stable for ξ = 1/2.

A.2.4 Heuristic procedure

The constant adiag introduced in Eq. (A.29) heavily influences the behavior of the
algorithm. For large values of adiag, the method becomes equivalent to the steepest
descent, and for small values of adiag, the algorithm becomes unstable. We adopt a
heuristic procedure described in Contessi et al. (2017) which has proven to be very
robust. For a given value of adiag we solve Eq. (A.21). If the linear variation of the
wave function is small,

|Ψ̄lin
T (p)|2

|Ψ̄T (p0)|2 = 1 +
N∑

i,j=1

S̄ij∆pi∆pj 6 δ, (A.37)

then a short correlated run is performed in which the energy expectation value

E(p) ≡ 〈Ψ̄T (p)|H|Ψ̄T (p)〉
〈Ψ̄T (p)|Ψ̄T (p)〉 (A.38)
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is estimated along with the full variation of the wave function for a set of possible
values of adiag (≈ 100 values). The optimal adiag is chosen such it minimizes E(p)
with the constraint:

|Ψ̄T (p̄)|2
|Ψ̄T (p0)|2 6 δ. (A.39)

We verified that δ = 0.2 guarantees a fast and stable convergence.
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APPENDIX B

FORWARD WALKING
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The DMC algorithm solves Eq. (2.21) stochastically and, after an iterative process,
the asymptotic solution is obtained Ψ(R, t→∞) = Φ0(R). The direct calculation of
an operator S(R) from Φ0(R) corresponds to the mixed estimator

〈S(R)〉m =

∫
dRΨT (R)S(R)Φ0(R)∫
dRΨT (R)Φ0(R)

, (B.1)

which is exact only when S commutes with the Hamiltonian H (so that Φ0(R) is an
eigenfunction of S).

There are several methods to compute expectation values of quantities that do
not commute with H, and one of them is the extrapolation method. In this method,
the “pure” (exact) estimator,

〈S(R)〉p =

∫
dRΦ0(R)S(R)Φ0(R)∫
dRΦ0(R)Φ0(R)

, (B.2)

is approximated by

〈S(R)〉e = 2〈S(R)〉m − 〈S(R)〉v, (B.3)

where

〈S(R)〉v =

∫
dRΨT (R)S(R)ΨT (R)∫
dRΨT (R)ΨT (R)

(B.4)

is the variational estimator of S. The accuracy of the extrapolation method relies
completely on the trial wave function. Moreover, even in the case of accurate trial
wave functions, the bias of the extrapolated estimator is difficult to be calculated. For
these reasons several algorithms that overcome these restrictions have been proposed.
Here we describe a method called forward walking, which is discussed in detail in
Casulleras and Boronat (1995).

The pure estimator of Eq. (B.2) can be rewritten as

〈S(R)〉p =

∫
dRΦ0(R)S(R) Φ0(R)

ΨT (R)
ΨT (R)∫

dRΦ0(R) Φ0(R)
ΨT (R)

ΨT (R)
. (B.5)

The quantity Φ0(R)/ΨT (R) is related to the asymptotic offspring of the R walker
(Casulleras and Boronat (1995)). If each walker Ri is assigned a weight W (Ri),
proportional to its number of descendants, then Eq. (B.5) becomes

〈S(R)〉p =

∑
i

S(Ri)W (Ri)∑
i

W (Ri)
, (B.6)

where the summations run over all walkers and all times in the asymptotic regime.
In order to evaluate Eq. (B.6), an algorithm that calculates S(Ri) and weights pro-
portional to its future progeny must be introduced.
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The algorithm we implemented, which is described in Casulleras and Boronat
(1995), is the following. The set of walkers {Ri} and the values that the operator S
takes on them {Si} evolve after one time step according to

{Ri} → {R′i},
{Si} → {S ′i}, (B.7)

while the number of walkers changes from N to N ′. In order to sample the pure
estimator, an auxiliary variable {Pi} is introduced for each walker, with an evolution
law

{Pi} → {P ′i} = {p(R′i)× S ′i}+

{
p(R′i)

p(Ri)
× P t

i

}
, (B.8)

where p is the weight associated with the branching factor, Eq. (2.40), and {P t
i } is the

old set {Pi} “transported” to the new set. The values of {Pi} are initialized to zero at
the beginning of the run. After M addition steps, we get the set {Pi} corresponding
to Nf walkers. The pure estimator is given by

〈S(R)〉p =
1

MN

Nf∑
i

{Pi}, (B.9)

where N is a normalization constant related to the weights p in Eq. (B.8).
The transport operation in Eq. (B.8) accounts for the replication of S(R) contri-

bution. In order to ensure that we are in the asymptotic regime where Φ0(R)/ΨT (R)
is related to the offspring of the R walker, the series is continued for a while only
with the reweighting law

{Pi} → {P ′i} =

{
p(R′i)

p(Ri)
P t
i

}
. (B.10)

Since our calculations are divided in blocks, we use the evolution law of Eq. (B.8) in
the first half of the block, and Eq. (B.10) in the second half. We choose the block
length as to minimize the variance of {Pi}.

136



APPENDIX C

CONVENTIONS
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In this appendix we list our conventions related to the explicit pion formalism,
Chapter 4. We use units such that ~ = c = 1. The contravariant space-time and
momentum four-vector are given by

xµ = (t, ~x) , pµ = (E, ~p). (C.1)

Greek indices µ, ν etc. run over the four space-time coordinate labels 0, 1, 2, 3, with
x0 = t the time coordinate. Latin indices i, j, k, and so on run over the three space
coordinate labels 1, 2, 3. The metric gµν = gµν with g00 = 1, gii = −1. The covariant
versions of the above-mentioned vectors are

xµ = gµνx
ν = (t,−~x) , pµ = gµνp

ν = (E,−~p) (C.2)

where summation over repeated indices is always understood; also

x2 = xµx
µ = t2 − ~x2 , p2 = pµp

µ = E2 − ~p2 (C.3)

While for an ordinary three-vector we have, in general, ~x = (x1, x2, x3), there is
caution in place with the (three-dimensional) gradient operator which is defined to
be

~∇ = (∂1, ∂2, ∂3) (C.4)

with

∂i =
∂

∂xi
= − ∂

∂xi
= −∂i (C.5)

The Levi-Civita tensor is

εijk =


+1 if (i, j, k) even permutation of (1,2,3)

−1 if odd permuation

0 otherwise

(C.6)

Note that εijk = −εijk and for the cross product εijkvjuk = [~v×~u]i, εijkvjuk = [~v×~u]i.
The charged and neutral pion field operators are defined as

π±(x) =
1√
2

[πx(x)± iπy(x)]

π0(x) = πz(x), (C.7)

so that π+,0,− creates a π+,0,− or annihilates a π−,0,+.
The spin 1/2 and isospin 1/2 operators of the nucleons are defined as s = σ/2

and t = τ/2, where σ and τ are the Pauli matrices operating in spin and isospin
space, respectively. The Pauli matrices are

σ1 =

(
0 1
1 0

)
; σ2 =

(
0 −i
i 0

)
; σ3 =

(
1 0
0 −1

)
. (C.8)

Notice that for isospin components it does not make sense to distinguish between
upper and lower indices, thus upper and lower subscripts have the same meaning.
The proton and neutron states are defined as:

|p〉 =

(
1
0

)
; |n〉 =

(
0
1

)
. (C.9)
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The operator τ · π is

τ · π = τxπx + τyπy + τzπz

=
1

2
(τx + iτy)(πx − iπy) +

1

2
(τx − iτy)(πx + iπy) + τzπz

=
1

2
τ+(πx − iπy) +

1

2
τ−(πx + iπy) + τzπ0, (C.10)

where we can identify (πx−iπy)/
√

2 with the annihilation of a π+ (or with the creation

of a π−) and (πx + iπy)/
√

2 with the annihilation of a π− (or with the creation of a
π+).
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