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ABSTRACT

Since the seminal work of Turán, the forbidden subgraph problem has been among the

central questions in extremal graph theory. Let ex(n;F ) be the smallest number m

such that any graph on n vertices with m edges contains F as a subgraph. Then the

forbidden subgraph problem asks to find ex(n;F ) for various graphs F . The question

can be further generalized by asking for the extreme values of other graph parameters

like minimum degree, maximum degree, or connectivity. We call this type of question

a Turán-type problem. In this thesis, we will study Turán-type problems and their

variants for graphs and hypergraphs.

Chapter 2 contains a Turán-type problem for cycles in dense graphs. The main

result in this chapter gives a tight bound for the minimum degree of a graph which

guarantees existence of disjoint cycles in the case of dense graphs. This, in particular,

answers in the affirmative a question of Faudree, Gould, Jacobson and Magnant in

the case of dense graphs.

In Chapter 3, similar problems for trees are investigated. Recently, Faudree,

Gould, Jacobson and West studied the minimum degree conditions for the existence

of certain spanning caterpillars. They proved certain bounds that guarantee existence

of spanning caterpillars. The main result in Chapter 3 significantly improves their

result and answers one of their questions by proving a tight minimum degree bound

for the existence of such structures.

Chapter 4 includes another Turán-type problem for loose paths of length three in

a 3-graph. As a corollary, an upper bound for the multi-color Ramsey number for the

loose path of length three in a 3-graph is achieved.
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Chapter 1

INTRODUCTION

Extremal problems are at the very heart of graph theory. The basic question in

extremal graph theory asks for density conditions of a host graph which guarantee

existence of a certain subgraph. Turán’s work (Turán, 1941), which is now called the

Turán Theorem, gave birth to a large body of work in extremal graph theory. The

forbidden subgraph problem, which is also known as the Turán problem, is as follows:

Let ex(n;F ) be the smallest number m such that any graph on n vertices with m

edges contains F as a subgraph. Then the forbidden subgraph problem asks to find

ex(n;F ) for various graphs F .

The Turán problem can be extended by imposing additional conditions on the

host graph. For example, we can consider host graphs which satisfy a certain min-

imum degree condition or a maximum degree condition or are, for example, highly

connected. (See (Füredi, 1991), (Keevash, 2011) for general surveys of this area.)

This thesis contains some results on certain Turán-type problems for simple undi-

rected graphs and 3-uniform hypergraph.

In Chapter 1, we introduce necessary concepts and definitions. Since we rely on

Szemerédi’s Regularity Lemma and some probabilistic method tools, we dedicate two

sections of Chapter 1 to the Szemerédi’s Regularity Lemma and Chernoff bound. The

regularity lemma will be the key tool used in Chapter 2 to prove our main results

and Chernoff bound will be used in Chapter 3.

In Chapter 2, we investigate families of vertex disjoint even cycles which are such

that the sum of the sizes of those cycles is at least 2 times the minimum degree of

the host graph. One of the motivations for this research is the following conjecture
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of Faudree, Gould, Jacobson and Magnant (Faudree et al., 2016) on cycle spectra.

Conjecture 1.0.1. Let Se = {|C| : C is an even cycle contained in G} and So =

{|C| : C is an odd cycle contained in G}. If G is 2-connected graph, then δ(G) =

d ≥ 3 implies that |Se| ≥ d− 1, and, if, in addition G is not bipartite, then it implies

that |So| ≥ d.

In (Faudree et al., 2016), Conjecture 1.0.1 was confirmed for d = 3. The result

proven in Chapter 2 gives an additional evidence for the conjecture as we prove it in

the case of dense graphs which are sufficiently large. The main result of Chapter 2 is

the following theorem.

Theorem 1.0.2. For every 0 < α < 1
2
, there is a natural number N = N(α) such

that the following holds. For any n1, ..., nl ∈ Z+ such that
∑l

i=1 ni = δ(G) and ni ≥ 2

for all i ∈ [l], every 2-connected graph G of order n ≥ N and αn ≤ δ(G) < n/2 − 1

contains C where C is a disjoint union of C2n1 , . . . , C2nl or G is one of the graphs

from Example 2.1.3 and n1 = n2 = δ or G is a subgraph of the graph from Example

2.1.4 and ni = 2 for every i.

In addition to answering Conjecture 1.0.1 for dense graphs, Theorem 1.0.2 gives

the following corollary which can be viewed as a generalization of the Erdős-Faudree

conjecture to the case when the minimum degree of the host graph is smaller than

n/2.

Corollary 1.0.3. For every 0 < α < 1
2
, there is a natural number N = N(α) such

that the following holds. Every 2-connected graph G of order n ∈ Z and minimum

degree δ ∈ Z such that n ≥ N , αn ≤ δ < n/2 − 1, and δ + n is even contains δ/2

disjoint cycles on four vertices.

In Chapter 3, we consider a problem on spanning p-caterpillars. A p-caterpillar is

a tree such that the graph induced by its internal vertices is a path and every internal
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vertex has exactly p leaves. Our research in Chapter 3 is motivated by the recent

work of Faudree, Gould, Jacobson and West (Faudree et al., 2017). In (Faudree et al.,

2017), the authors proved a couple of results about dominating paths. Another way

of thinking about a spanning p-caterpillar is that it gives a very special dominating

path in the host graph. The following theorem was proved in (Faudree et al., 2017).

Theorem 1.0.4. (Faudree et al., 2017) For p ∈ Z+ there exists n0 such that for

every n ∈ (p+ 1)Z such that n ≥ n0 the following holds. If G is a graph on n vertices

such that δ(G) ≥
(

1− p
(p+1)2

)
n, then G contains a spanning p-caterpillar.

One of the open problems from (Faudree et al., 2017) asks about the sharpness of

the minimum degree condition in Theorem 1.0.4, even in the case p = 1. In Chapter

3, we give a sharp bound for the minimum degree condition not only for the case

p = 1 but for any p ∈ Z+. Specifically, we prove the following theorem and show that

the minimum degree can not be, in general, improved.

Theorem 1.0.5. For p ∈ Z+, there exists n0 such that for every n ∈ (p + 1)Z with

n ≥ n0 the following holds. If G is a graph on n vertices such that

δ(G) ≥


n
2

if n/(p+ 1) is even

n+1
2

if n/(p+ 1) is odd and p > 2

n−1
2

if n/(p+ 1) is odd and p ≤ 2

then G contains a spanning p-caterpillar.

In Chapter 4, we again study paths but, this time, in 3-uniform hypergraphs. The

structure we investigate in Chapter 4 is a loose path of length three in a 3-uniform

graph, denoted by P . We first obtain a Turán-type result for P , which is formally

stated as follows:

Theorem 1.0.6. Let H = (V,E) be a connected 3-graph with |H| = n ≥ 7 and

∆(H) ≥ n− 2. If ||H|| > 3n− 8 then either H contains P or a critical vertex.
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By applying this result, we obtain our second main result of Chapter 4. Given a

(hyper)graph F , the multicolor Ramsey number R(F ; r) is the least integer n such

that every r-coloring of the edges of complete graph of order n yields a monochromatic

copy of F . Our second contribution in Chapter 4 is the following bound for R(P ; r).

Theorem 1.0.7. r + 6 ≤ R(P ; r) ≤ 2r for r ≥ 6.

This result improves the result on the following theorem of  Luczak and Polcyn.

Theorem 1.0.8. ( Luczak and Polcyn, 2017)

R(P ; r) ≤ 2r +
√

18r + 1 + 2 for r ∈ N.

After our work was submitted for a publication, Polcyn and  Luczak ( Luczak and

Polcyn, 2018) obtained another result which minimally improves the bound from

Theorem 1.0.8 and shows that the upper bound is at most λ0r + 7
√
r where λ0 =

1.97466.. .

In Chapter 5, we briefly review a list of our own results provided in the thesis and

also suggest some research topics which we want to pursue in the future.

The results of this thesis has been presented in the papers (Yie et al., 2018; Yie,

2017; Yie and Czygrinow, 2017).

1.1 Basic Definitions

The number of elements of a set X is denoted by |X|. If |Y | = r then we say that

Y is an r-set and if furthermore Y ⊂ X then Y is an r−subset of X. Given a set X,

we denote by P(X) the power-set of X. A graph G is an ordered pair (V,E) where V

is a finite set, called the vertex set and denoted by V (G), and E is a set of 2−subsets

of V , called the edge set and denoted by E(G). The order of G is the number of

vertices in G, which is denoted by |G|, so |G| = |V (G)|. The size of G is the number
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of edges in G, which is denoted by ||G|| or e(G) , so ||G|| = e(G) = |E(G)|. For two,

not necessarily disjoint, sets U,W ⊆ V (G), we will use e(U,W ) = ||U,W || to denote

the number of edges in G with one endpoint in U , another in W .

An edge {x, y} is said to join the vertices x and y and is denoted by xy. Thus xy

and yx denote the same edge. We also say that x any y are adjacent vertices and the

vertex x is incident with the edge {x, y}.

We say that G′ = (V ′, E ′) is a subgraph of G = (V,E) if V ′ ⊂ V and E ′ ⊂ E. In

this case, we write G′ ⊂ G. If G′ contains all edges of G that join two vertices in V ′

then G′ is said to be the subgraph induced or spanned by V ′ and is denoted by G[V ′].

Thus, a subgraph G′ of G is an induced subgraph if G′ = G[V (G′)]. If V ′ = V , then

G′ is said to be a spanning subgraph of G.

There are a few simple methods to construct new graphs from old ones. If W ⊂

V (G), then G−W means G[V \W ]. Similarly, if E ′ ⊂ E(G) then G′ = G−E ′ means

G′ = (V (G), E(G) \E ′). If W = {w}, E ′ = {xy}, then the notation can be simplified

to G− w, G− xy.

The term independent will be used along with vertices and edges. A set of vertices

is independent if no two vertices of it are adjacent. A set of edges is independent if no

two edges share a common vertex. A set of independent edges in a graph G is called

a matching of G.

The set of vertices adjacent to a vertex x ∈ V , the neighborhood of x, is denoted

by N(v). Also x ∼ y means that the vertex x is adjacent to y, i.e xy, x ∼ y have the

same meaning. For U ⊂ V (G), we say N(U) = ∪v∈UNG(v) the neighborhood of set

U . The degree of x is d(x) = |N(x)|. If we want to emphasize that the underlying

graph is G, then we write NG(v) and dG(v). The minimum degree of the vertices of a

graph G is denoted by δ(G) and the maximum degree by ∆(G). A similar convention

will be applied for other functions depending on an underlying graph. A vertex of
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degree 0 is said to be an isolated vertex.

If V (G) = {v1, v2, . . . , vn} then (d(vi))
n
i=1 is a degree sequence of G. Usually, we

order the vertices in such a way that the degree sequence obtained in this way is

monotone increasing or monotone decreasing, for example, δ(G) = d(v1) ≤ · · · ≤

d(vn) = ∆(G).

A path is a graph P of the form

V (P ) = {v0, v1, . . . , vl}, E(P ) = {v0v1, v1v2, . . . , vl−1vl}.

This path P is usually denoted by v0v1 . . . vl. The vertices v0 and vl are the endvertices

of P and l = e(P ) is the length of P . There are several notions closely related to

a path. A walk W in a graph is an alternating sequence of vertices and edges, say

v0, e1, v1, e2, . . . , el, vl where ei = vi−1vi, 0 < i ≤ l. With respect to the terminology

above, W is also denoted by v0v1 . . . vl. If a walk W = v0v1 . . . vl is such that l ≥ 3,

v0 = vl, and the vertices vi, 0 < i < l, are distinct from each other and v0, then W

is said to be a cycle. For simplicity this cycle is denoted by v1v2 . . . vl. To emphasize

the length of a path and cycle, we use notations Pl, Cl for a path of length l and a

cycle of length l, respectively.

A graph is connected if, for every partition of its vertex into two non-empty

subsets X and Y , there is an edge e such that both of e ∩ X and e ∩ Y are non-

empty. A maximal connected subgraph is said to be a component of a graph. The

connectivity(or vertex-connectivity) of a graph G, denoted by κ(G), is the minimum

number of vertices whose removal results in a disconnected graph or in the trivial

graph. For k ≥ 2, we say that a graph G is k-connected if either G is a complete

graph Kk+1 or else it contains at least k + 2 vertices and for any subset W ∈ V (G)

such that |W | ≤ k − 1, G−W is still connected.

Along with the notions of connectedness and cycle, we will need the concept of a
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tree. A tree is a connected graph that does not contain a cycle.

A graph G is called an r-partite graph with vertex classes V1, V2, . . . , Vr if V =

V (G) is the disjoint union of V1, V2, . . . , Vr and for any edge e ∈ E(G), there exists

i, j ∈ [r] such that i 6= j and both of e ∩ Vi and e ∩ Vj are non-empty. The most

interesting case is r = 2, and in this case, G is also called a bipartite graph. It is

easily seen that every bipartite graph has no odd cycle and the converse is also true.

To emphasize the two disjoint vertex subsets of a bipartite graph, we say that a graph

G is a bipartite graph with bipartition V1, V2 or with vertex classes V1, V2.

By definition, a graph does not contain a loop, an edge joining a vertex to itself;

neither does it contain multiple edges, that is, several edges joining the same two

vertices.

Finally, we will introduce hypergraphs. A hypergraph is a pair (V,E) such that

V ∩ E = ∅ and E is a subset of P(V ). If for every e ∈ E(H), |e| = k, then we call

H a k-uniform hypergraph or a k-graph. Almost all concepts introduced for graphs

directly extend to k-uniform hypergraphs.

Hypergraphs will only be used in Chapter 4 where we will prove some results

on 3-uniform hypergraphs. Hence some necessary definitions for hypergraphs will be

arranged in Chapter 4.

1.2 The Regularity Lemma

Szemerédi’s Regularity Lemma is one of the most powerful tools in extremal graph

theory. In this section we will give a brief overview of the lemma.

The origin of the Regularity Lemma can be found in Szemerédi’s paper (Sze-

merédi, 1975a) which contains a proof of Erdős-Turán conjecture about arithmetic

progressions in dense subsets of integers. In (Szemerédi, 1975b), the lemma appeared

in its current form.
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Roughly speaking, the lemma claims that the vertex set of every graph can be

partitioned into a constant number of almost equal classes such that most pairs of

classes are regular, in the sense that the number of edges between two subsets of the

classes is proportional to the total number of edges between two subsets, provided

that the subsets are not too small. In order to formulate the lemma precisely, we

need some definitions and notation. (Bollobás, 2013)

Given a graph G = (V,E) and a pair (X, Y ) of disjoint non-empty subsets of V ,

we write d(X, Y ) = dG(X, Y ) = e(X,Y )
|X||Y | for the density of the X − Y edges of G. Call

(X, Y ) an ε−regular pair if

|d(U, V )− d(X, Y )| < ε,

whenever U ⊂ X, V ⊂ Y are such that |U | ≥ ε|X| > 0, |V | ≥ ε|Y | > 0.

A partition P = (Vi)
t
i=0 of the vertex set V is said to be an equitable partition

with exceptional class V0 if |V1| = |V2| = · · · = |Vt|. Finally, an ε-regular-partition

is an equitable partition (Vi)
t
i=0 such that the exceptional class V0 has at most ε|V |

vertices and, with the exception of at most εt2 pairs, the pairs (Vi, Vj), 1 ≤ i ≤ j ≤ t,

are ε-regular.

Lemma 1.2.1 (Regularity Lemma,(Szemerédi, 1975b)). For every ε > 0,m > 0 there

exist N := N(ε,m) and M := M(ε,m) such that every graph on at least N vertices

has an ε−regular partition {V0, V1, ..., Vt} such that m ≤ t ≤M .

There are numerous reformulations of the regularity lemma. Here, we give two

representative variations.

Lemma 1.2.2 (Regularity Lemma - alternative form 1). For every ε > 0,m > 0

there exist M := M(ε,m) such that for every graph G = (V,E) there is a partition

V = ∪ti=1Vi such that m ≤ t ≤ M , |V1| ≤ |V2| ≤ · · · ≤ |Vt| ≤ |V1| + 1 and, with the

exception of at most εt2 pairs, the pairs (Vi, Vj), 1 ≤ i ≤ j ≤ t, are ε-regular.
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Lemma 1.2.3 (Regularity Lemma - alternative form 2(degree form)). For every

ε > 0 there exist M := M(ε,m) such that if G = (V,E) is any graph and d ∈ [0, 1]

is any real number, then there is a equitable partition V = ∪ti=1Vi with the exception

set V0 such that t ≤M, |V0| ≤ ε|V |, |V1| = · · · = |Vt| ≤ dε|V |e and there is a subgraph

G′ ⊂ G with the following properties:

• dG′(v) > dG(v)− (d+ ε)|V | for all v ∈ V ,

• e(G′(Vi)) = 0 for all i ≥ 1.

• all pairs G′(Vi, Vj)(1 ≤ i ≤ j ≤ t) are ε-regular, each with a density either 0 or

a greater than d.

We end up this section with introducing a useful fact, called the Slicing Lemma,

which will be used in Chapter 2.

Lemma 1.2.4 (Slicing Lemma). (Komlós and Simonovits, 1996). Let (U, V ) be

an ε-regular pair with density δ, and for some λ > ε, let U ′ ⊂ U, V ′ ⊂ V with

|U ′| ≥ λ|U |, |V ′| ≥ λ|V |. Then (U ′, V ′) is an ε′-regular pair of density δ′ where

ε′ = max{ ε
λ
, 2ε} and δ′ ≥ δ − ε.

1.3 Probabilistic Methods

A probability space is a triple (Ω,Σ,P) where Ω is a set, Σ is a σ-field of subsets

of Ω, P is a non-negative measure on Σ and P (Ω) = 1. A real valued random

variable(r.v.) X is a measurable real-valued function on Ω. If A is an event in some

sample space, then P(A) denotes the probability of A. If X is a random variable such

that Ω(X) is a discrete set, then the expectation of X is defined as follows:

E(X) = xP(X = x).
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Theorem 1.3.1 (Markov’s Inequality). (Alon and Spencer, 2004) Let X be a non-

negative random variable. Then for any positive real λ > 0,

P(X ≥ λ) ≤ E(X)

λ
.

Now, we recall the linearity of expectations. Let X1, . . . , Xn be random variables,

c1, . . . , cn ∈ R, and X =
∑n

i=1 ciXi. Linearity of expectation states that

E(X) =
n∑
i=1

ciE(Xi).

After the expectation the most vital statistic for a random variable X is the

variance, denoted by V ar[X]. It is defined by

V ar(X) = E((X − E(X))2).

Our next lemma, Chebyshev’s Inequality can be easily derived from Markov’s in-

equality.

Theorem 1.3.2 (Chebyshev’s Inequality). (Alon and Spencer, 2004) Let X be a

random variable. Then for any positive real λ > 0,

P(|X − E(X)| ≥ λ) ≤ V ar(X)

λ2
.

In same cases, the bound from the above theorem can be improved significantly.

This is done in Chernoff bound.

There are many different forms of Chernoff bounds, each tuned to slightly different

assumptions. We only provide the statement of the bound for the simple case of a

sum of independent Bernoulli trials, i.e. the case in which each random variable only

takes the values 0 or 1. For example, this corresponds to the case of tossing unfair

coins, each with its own probability of heads, and counting the total number of heads.
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Definition 1.3.3. Consider n discrete random variables X1, . . . , Xn. We say that

X1, X2, . . . , Xn are independent if

P(X1 = x1, . . . , Xn = xn) = P(X1 = x1)P(X2 = x2) . . .P(Xn = xn),

for all xi, . . . , xn.

Theorem 1.3.4 (Chernoff Bound - Bernoulli trials). (Chernoff, 1952) Let X =∑n
i=1Xi where Xi = 1 with probability pi and Xi = 0 with probability 1 − pi, and

all Xi are independent. Let µ = E(X) =
∑n

i=1 pi. Then for all δ > 0,

1. P(X ≥ (1 + δ)µ) ≤ e−
δ2

2+δ
µ.

2. P(X ≤ (1− δ)µ) ≤ e−
µδ2

2 .

Following simple and useful bound can be obtained by combining upper and lower

tails in Theorem 1.3.4 with the setting δ ∈ (0, 1).

Corollary 1.3.5. With X and X1, . . . , Xn defined as in Theorem 1.3.4 and µ =

E(X), for all 0 < δ < 1,

P(|X − µ| ≥ δµ) ≤ 2e
−µδ2

3 .
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Chapter 2

EVEN CYCLES IN DENSE GRAPHS

2.1 Introduction

Throughout this chapter we discuss simple undirected graphs, and the basic graph

notations we use here are already described in Section 1.1.

For a graph G we use c(G) to denote the circumference of G, oc(G) (ec(G)) to

denote the length of the longest odd (even) cycle in G. If G is a graph of minimum

degree d, then c(G) ≥ d which is best possible. However, additional assumptions

on the connectivity of G usually lead to better bounds for c(G) or ec(G) and oc(G).

For example, Dirac’s theorem states that if G is a 2-connected graph on n vertices,

then c(G) ≥ min{n, 2δ(G)}. Voss and Zuluaga (Voss and Zuluaga, 1977) proved the

corresponding results for ec(G) and oc(G).

Theorem 2.1.1. (Voss and Zuluaga, 1977) Let G be a 2-connected graph on n ≥

2δ(G) vertices. Then ec(G) ≥ 2δ(G) and oc(G) ≥ 2δ(G)− 1.

Dirac’s Theorem gave birth to a large body of research centered around determin-

ing the length of the longest cycle in a graph satisfying certain conditions; we direct

the interested reader to, e.g., (West et al., 2001). Indeed, one could even search for

graphs which contain cycles of all possible lengths. Such graphs are called pancyclic,

and they, too, are well studied (see, e.g., (Bondy, 1971; Bondy and Simonovits, 1974;

Bondy and Vince, 1998; Brandt et al., 1998)). Bondy observed that in many cases a

minimum degree which implies the existence of a spanning cycle also implies that the

graph is pancyclic. For example, it follows from the result in (Bondy, 1971) that if G
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is a graph on n vertices with minimum degree at least n/2 then G is either pancyclic

or G = Kn/2,n/2. It’s natural to ask if analogous statements are true for graphs with

smaller minimum degree. In (Gould et al., 2002), Gould et. al. proved the following

result.

Theorem 2.1.2. (Gould et al., 2002) For every α > 0 there is K such that if G is

graph on n > 45Kα−4 vertices with δ(G) ≥ αn, then G contains cycles of every even

length from [4, ec(G)−K] and every odd length from [K, oc(G)−K].

Nikiforov and Shelp (Nikiforov and Schelp, 2006) proved that if G is a graph

on n vertices with δ(G) ≥ αn, then G contains cycles of every even lengths from

[4, δ(G) + 1] as well as cycles of odd lengths from [2k − 1, δ(G) + 1] where k = d1/αe

unless G is one of standard counterexamples.

Faudree, Gould, Jacobson and Magnant (Faudree et al., 2016) made a conjecture

which motivates our work in Chapter 2. We recall it.

Conjecture 1.0.1. Let Se = {|C| : C is an even cycle contained in G} and So =

{|C| : C is an odd cycle contained in G}. If G is 2-connected graph, then δ(G) =

d ≥ 3 implies that |Se| ≥ d− 1, and, if, in addition G is not bipartite, then it implies

that |So| ≥ d.

Another line of research which motivates our work comes from problems on 2-

factors. Erdős and Faudree conjectured that every graph on 4n vertices with minimum

degree at least 2n contains a 2-factor consisting of n
4

copies of C4, cycle on four vertices.

This was proved by Wang in (Wang, 2010). A special case of El-Zahar’s conjecture

states that any graph G on 2n vertices with minimum degree at least n contains any

2-factor consisting of even cycles C2n1 , . . . , C2nl such that n =
∑
ni. It’s natural to

ask if analogous statements can be proved in the case when the minimum degree of

G is smaller. As we will show, this is true to some extent. We will prove that for
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almost all values of n1, . . . , nl such that
∑
ni = δ(G), G indeed contains C where C is

the union of disjoint cycles C2n1 , C2n2 , . . . , C2nl . There are however two obstructions,

of which one is well-known, when G is a graph on n vertices with minimum degree

which satisfies αn < δ(G) < (n− 1)/2.

Example 2.1.3. Let l ≥ 2 , q ≥ 4 be even. We first construct graph H on l(q −

2) + 3 vertices as follows. Let V1, . . . , Vl be disjoint sets each of size q − 2 such that

H[Vi] = Kq−2 and let u1, u2, u3 be three distinct vertices and let vui ∈ E(H) for every

v ∈ V (H) \ {u1, u2, u3} and every i = 1, 2, 3. Finally let Gk be obtained from H by

adding exactly k out of three possible edges between vertices from {u1, u2, u3}. Then

κ(Gk) = 3, δ(Gk) = q but Gk does not contain two disjoint copies of Cq. Indeed, any

copy of Cq in Gk contains at least two vertices from {u1, u2, u3}.

In addition to the obstruction from Example 2.1.3, another one arises when G is

very close to being a complete bipartite graph.

Example 2.1.4. Let q = 2k for some k ∈ Z+ and let U, V be disjoint and such that

|U | = q − 1, |V | = n − q + 1 where n − q + 1 is even. Now G[U, V ] = Kq−1,n−q+1,

G[U ] ⊂ Kq−1 and G[V ] is a perfect matching. Then G is a 2-connected graph on n

vertices with δ(G) = q which doesn’t have q/2 disjoint copies of C4. Indeed, if there

are q/2 disjoint copies of C4, then at least one must contain at least three vertices

from V which is not possible.

We recall the main result of this chapter.

Theorem 1.0.2. For every 0 < α < 1
2
, there is a natural number N = N(α) such

that the following holds. For any n1, ..., nl ∈ Z+ such that
∑l

i=1 ni = δ(G) and ni ≥ 2

for all i ∈ [l], every 2-connected graph G of order n ≥ N and αn ≤ δ(G) < n/2 − 1

contains C where C is a disjoint union of C2n1 , . . . , C2nl or G is one of the graphs
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from Example 2.1.3 and n1 = n2 = δ or G is a subgraph of the graph from Example

2.1.4 and ni = 2 for every i.

Figure 2.1: Example 2.1.3

Figure 2.2: Example 2.1.4

As a corollary, we have the following fact which answers a question of Gould et.

al. in the case of dense graphs.
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Corollary 2.1.5. For every 0 < α < 1
2
, there is a natural number M = M(α)

such that the following holds. Every 2-connected graph G of order n ≥ M and∑
v∈V (G) d(v) ≥ αn2 contains a cycle of length 2m for every m ∈ {2, . . . , δ(G)}.

In addition, the following generalization of the Erdős-Faudree conjecture follows

from Theorem 1.0.2.

Corollary 2.1.6. For every 0 < α < 1
2
, there is a natural number M = M(α) such

that the following holds. Every 2-connected graph G of order n ∈ Z and minimum

degree δ ∈ Z such that n ≥ N , αn ≤ δ < n/2 − 1, and δ + n is even, contains δ/2

disjoint cycles on four vertices.

Indeed, then n− δ + 1 is odd and so it’s not possible to end up in Example 2.1.4.

The proof of Theorem 1.0.2 uses the regularity method. The obstruction from

Example 2.1.3 appears in the proof of the non-extremal case and the obstruction from

Example 2.1.4 comes up when dealing with the extremal case. The proof is divided

into several sections. In Section 2.2, we review Szemerédi’s celebrated Regularity

Lemma, as well as a special case of the well-known Blow-Up Lemma which is of

particular use to us. In Section 2.3, we make use of regularity and results from

(Czygrinow and Kierstead, 2002) to find cycles of many different lengths. Following

this, we consider several cases depending on the structure of the reduced graph, and

whether or not the graph is near what we call the extremal graph. The non-extremal

cases are proven in Section 2.4 and Section 2.5, while the extremal cases follow in

Section 2.6. The combination of these proves Theorem 1.0.2 for every sufficiently

large graph.

16



2.2 The Blow-Up lemma

In section 1.2, we introduce some basic definitions and notations for regularity

Lemma. In this section, we see more definitions, notations and some auxiliary facts

for another important lemma, called Blow-up lemma.

The pair (U, V ) is called (ε, δ)−super-regular if it is both ε−regular and further-

more

|N(u) ∩ V | ≥ δ|V | for all u ∈ U, |N(v) ∩ U | ≥ δ|U | for all v ∈ V.

In addition to the regularity lemma, we will need a few well-known facts about ε-

regular pairs (see, e.g., (Komlós and Simonovits, 1996)) and the blow-up lemma of

Komlós, Sárkozy and Szemerédi from (Komlós et al., 1997). Further, it is not difficult

to see that an ε-regular pair of density δ contains a large (ε′, δ′)-super-regular pair for

some δ′, ε′.

Lemma 2.2.1. Let 0 < ε < δ/3 < 1/3 and let (U, V ) be an ε−regular pair with density

δ. Then there exist A′ ⊂ A and B′ ⊂ B with |A′| ≥ (1− ε)|A| and |B′| ≥ (1− ε)|B|

such that (A′, B′) is a (2ε, δ − 3ε)−super-regular pair.

Let 0 < ε � δ < 1. For an ε-regular partition {V0, V1, . . . , Vt} of G we will

consider the reduced graph (or cluster graph) of G, RG = Rε,d(V0, V1, . . . , Vt) where

V (RG) = {V1, . . . , Vt} and ViVj ∈ E(RG) if (Vi, Vj) is ε-regular with density at least

d. When clear for the context, we will omit the subscript, writing R for the cluster

graph at hand.

Finally, we conclude this section with the statement of a special case of the blow-up

lemma.

Lemma 2.2.2 (Blow-Up Lemma, (Komlós et al., 1997)). Given d > 0,∆ > 0 and

ρ > 0 there exists ε > 0 and η > 0 such that the following holds. Let S = (W1,W2)
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be an (ε, d)-super-regular pair with |W1| = n1 and |W2| = n2. If T is a bipartite

graph with bipartition A1, A2, with maximum degree at most ∆, and T is embeddable

into the complete bipartite graph Kn1,n2, then it is also embeddable into S. Moreover,

for all ηni sized subsets A′i ⊂ Ai and functions fi : A′i →
(
Wi

ρni

)
, i = 1, 2, T can be

embedded into S so that the image of each ai ∈ A′i is in the set fi(ai).

2.3 Preliminaries

In this section, we prove a few auxiliary facts which will be useful in the main

argument. Let V0, V1, . . . , Vt be an ε-regular partition.

Lemma 2.3.1. Let ∆ ≥ 1 and let 0 < ε � δ � 1/∆ be such that 10ε∆ ≤ δ. Let H

be graph on {V1, . . . , Vq} where |Vi| = l with ViVj ∈ E(H) if (Vi, Vj) is ε-regular with

density at least δ, and assume that H has maximum degree ∆. Let ε′ = 5∆ε, δ′ = δ/2

. Then for any i ∈ [t] there exist sets V ′i ⊂ Vi such that |V ′i | ≥ (1− ε′)l and (V ′i , V
′
j )

is (ε′, δ′)-super-regular for every ViVj ∈ E(H).

Proof. Note that E(H) can be decomposed into ∆+1 matchings and so Lemma 2.3.1

follows directly from Lemma 2.2.1 and Lemma 1.2.4.

An n-ladder, denoted by Ln is a balanced bipartite graph with vertex sets A =

{a1, ..., an} and B = {b1, ..., bn} such that {ai, bj} is an edge if and only if |i− j| ≤ 1.

We refer to the edges aibi as rungs and the edges {a1, b1}, {an, bn} as the first and

last rung respectively. Let Ln1 , Ln2 be two ladders with n1 ≤ n2 and {a1, b1}, {a′1, b′1}

be the first rung of Ln1 , Ln2 , respectively. If there exist a1 − a′1 path P1, b1 − b′1

path P2 such that P̊1 ∩ P̊2 = ∅, (P̊1 ∪ P̊2) ∩ (L1 ∪ L2) = ∅, |P̊1| + |P̊2| = 2k then we

call Ln1 ∪ Ln2 ∪ P1 ∪ P2 an (n1 + n2, k)−weak ladder. Obviously, an n−ladder is an

(n, 0)−weak ladder.

We have following useful lemmas.
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Figure 2.3: Weak ladder

Lemma 2.3.2. Let 2 ≤ n1 ≤ · · · ≤ nl ∈ Z+ and let n =
∑l

i=1 ni. If G contains a

(n′, k)−weak ladder for some n′, k ∈ N such that n′ ≥ n+ k, then G contains disjoint

cycles C2n1 , C2n2 , . . . , C2nl.

Proof. If k = 0 then (n′, 0)-weak ladder is actually an Ln′ where n′ ≥ n then it is

trivial that G contains disjoint cycles C2n1 , C2n2 , . . . , C2nl . So we may assume that

k ≥ 1. Suppose G contains an (n′, k)−weak ladder L and L consists of two ladders

La1 , La2 such that a1 + a2 = n′ and disjoint paths P,Q such that |P̊1| + |P̊2| = 2k.

Let N = {ni : i ∈ [l]} and choose N ′ ⊂ N such that
∑

x∈N ′ x < a1 and a1 −
∑

x∈N ′ x

is as small as possible. Let t := a1−
∑

x∈N ′ x > 0. By the construction of N ′, for any

y ∈ N \N ′, y > t. If t ≤ k then

a2 = n′ − a1 = n′ − (t+
∑
x∈N ′

x) ≥ n′ − k −
∑
x∈N ′

x ≥ n−
∑
x∈N ′

x =
∑

x∈N\N ′
x,

which implies that La2 contains remaining cycles. Hence we may assume that t ≥ k+1

and so for any y ∈ N \ N ′, y ≥ t + 1 ≥ k + 2. If there exists y ∈ N \ N ′ such that

y ≤ k+ t+ 1, then the sub weak-ladder consisting of the last t rungs of La1 , the first

rung of La2 , and P,Q contains C2y. In addition,

n−
∑

x∈N ′∪{y}

x ≤ n− (a1 − t+ y) ≤ (n′ − k)− a1 − 1 ≤ a2 − k − 1,

so La2−1 contains remaining cycles. Otherwise, let y = k + t + c where c ≥ 2, then

the sub weak-ladder consisting of the last t rungs of La1 , first c rungs of La2 and P,Q

contains C2y, and we have

n−
∑

x∈N ′∪{y}

= n− (a1 − t+ y) ≤ (n′ − k)− a1 − k − c ≤ a2 − k − c,
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so La2−c contains the remaining cycles.

For the proof of Theorem 2.4.2, 2.5.1, our plan is to seek a (n′, r)-weak ladder

such that n′ ≥ δ + r in G, and then applying Lemma 2.3.2 to obtain disjoint cycles.

In some situations, it is not possible to obtain neither a Lδ(G) nor a weak ladder of

enough size to apply Lemma 2.3.2, the followings are useful for the cases.

Lemma 2.3.3. Let 2 ≤ n1 ≤ · · · ≤ nl ∈ Z+ and n =
∑l

i=1 ni. If G contains a

(n, 1)−weak ladder and there exists i ∈ [l] such that ni > 2 then G contains disjoint

cycles C2n1 , C2n2 , . . . , C2nl.

Proof. We argue by induction on n. Since n ≥ 3, (n, 1)-weak ladder contains C2n,

we may assume that l ≥ 2 and therefore, n ≥ 5. If n = 5 then n1 = 2, n2 = 3

and then it is easy to see that G contains C4, C6. Now, assume for an inductive case

that n ≥ 6 and let the weak ladder contain La1 , La2 and disjoint paths P,Q which

connects La1 , La2 with |P̊1|+ |P̊2| = 2 where a1 + a2 = n, a1 ≤ a2. Note that a2 ≥ n1.

If a2 = n1 then l = 2, a1 = n2 then La2 contains C2n1 and La1 contains C2n2 . Hence

we may assume that n1 ≤ a2 − 1. If n1 = 2 then the first n1 rungs of La2 contains

C2n1 and since there exists i ∈ [l] \ {1} such that ni > 2 by the induction hypothesis

the remaining (n− n1, 1)-weak ladder contains C2n2 , . . . , C2nl . Hence we may assume

that n1 > 2, i.e, for any i ∈ [l], ni > 2. Since n1 ≤ a2 − 1, the first n1 rungs of

La2 contains C2n1 and by the induction hypothesis, (n− n1, 1)-weak ladder contains

C2n2 , . . . , C2nl .

Corollary 2.3.4. Let r ∈ [2]. Let 2 ≤ n1 ≤ · · · ≤ nl ∈ Z+ and let n =
∑l

i=1 ni.

Suppose that G contains a (n′, k)−weak ladder such that n′ ≥ n−r, k ≥ r, n ≥ 6k+12

and a disjoint ladder Ln′′ where n′′ ≥ n/3. If G does not contain disjoint cycles

C2n1 , C2n2 , . . . , C2nl, then l = 2 and bn+1−r
2
c ≤ n1 ≤ n

2
≤ n2 ≤ dn+r−1

2
e.
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Proof. Suppose G contains an (n′, k)−weak ladder L and L consists of two ladders

La1 , La2 such that a1 + a2 = n′ and disjoint paths P,Q such that |P̊1| + |P̊2| = 2k.

Let N = {ni : i ∈ [l]} and let N0 = {ni ∈ N : ni ≤ k + r − 1}. Note that n′ + k ≥ n.

If there exists N ′ ⊂ N such that k + r ≤
∑

x∈N ′ x ≤
n
3

then Ln′′ contains disjoint

C2x for all x ∈ N ′, and then by Lemma 2.3.2, (n′, k)-weak ladder contains remaining

cycles. Note that
∑

x∈N0
x ≤ n

3
. Indeed, if

∑
x∈N0

x > n/3, then there exists N ′0 ⊂ N0

such that k + r ≤ (n/3 + 1)− (k + r − 1) ≤
∑

x∈N ′0
x ≤ n/3

If |N \ N0| ≥ 3 then there exists x ∈ N \ N0 such that k + r ≤ x ≤ n
3
. If

|N \N0| = 1, say N \N0 = {y}, then we are done as well.

Finally suppose N \ N0 = {y1, y2} and without loss of generality y1 ≤ y2. Since∑
x∈N0

≤ n/3, Ln′′ contains C2x for all x ∈ N0. If y1 ≤ a2−1 then C2y1 ⊆ Ly1 ⊆ La2−1

and the (n′−y1, k)-weak-ladder obtained by deleting Ly1 contains C2y2 . Suppose that

y1 ≥ a1 + 1 + r, say y1 = a1 + 1 + t, t ≥ r. Let s := max{0, t−k}. We have two cases.

• Let s = 0. Since y1 ≤ a1 + 1 + k, (a1 + 1, k)-weak ladder consisting of La1 and

the first rung of La2 contains C2y1 . Moreover,

y2 ≤ n− (a1 + 1 + r) ≤ n′ + r − (a1 + 1 + r) = n′ − a1 − 1 = a2 − 1,

La2−1 contains C2y2 .

• Let s > 0. Since y1 = a1 + 1 + k + s, (a1 + 1 + s, k)-weak ladder consisting of

La1 and the first s+ 1 rung of La2 contains C2y1 . Moreover,

y2 = n−(a1+1+k+s) ≤ n′+r−(a1+1+r+s) ≤ (n′−a1)−(1+s) ≤ a2−(1+s),

La2−1−s contains C2y2 .

Thus a2 ≤ y1 ≤ a1 + r and the argument also works for y2, so we obtain

a2 ≤ y1, y2 ≤ a1 + r.
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Moreover, if there exists y ∈ N0, then Ln′′ contains C2y and y1 +y2 ≤ n−y ≤ n−2 ≤

n′ = a1 + a2, and then y1 = a1, y2 = a2, which implies that Lai contains C2yi for

i ∈ [2]. Therefore, a1 ≤ a2 ≤ n1 ≤ n2 ≤ a1 + r ≤ a1 + 2, which implies that

bn+ 1− r
2

c ≤ n1 ≤
n

2
≤ n2 ≤ d

n+ r − 1

2
e.

We will next show that in special situations it is easy to find a weak ladder. To

prove our next lemma we will need the following theorem of Posa (Posa, 1962).

Theorem 2.3.5. (Posa, 1962) [L.Posa] Let G be a graph on n ≥ 3 vertices. If for

every positive integer k < n−1
2
, |{v : dG(v) ≤ k}| < k and if, for odd n, |{v : dG(v) ≤

n−1
2
}| ≤ n−1

2
, then G is Hamiltonian.

First, we will address the case of almost complete graph.

Lemma 2.3.6. Let τ ∈ (0, 1/10), n ≥ 100
τ

. Let G = (V,E) be a graph of order n such

that there exists V ′ ⊂ V such that |V ′| ≥ (1−τ)n and for any w ∈ V \V ′, |N(w)∩V ′| ≥

4τ |V ′| where V ′ = {v ∈ V : |N(v) ∩ V ′| ≥ (1 − τ)|V ′|}. Let u1, v1, u2, v2 ∈ V . Then

following holds:

1. G contains a ladder Ln1 in G[V \{u1, v1, u2, v2, z}] having x1y1, x2y2 as its first,

last rung where x1 ∈ N(u1), y1 ∈ N(v1), z ∈ N(u1) ∩ N(x1), x2 ∈ N(u2), y2 ∈

N(v2) and n1 ≥ bn−5
2
c.

2. Let x ∈ N(u1), y ∈ N(v1) be such that xy ∈ E. G contains Lbn−2
2
c in G[V \

{u1, v1}] having xy as its first rung.

3. Let x ∈ N(u1) and y ∈ N(v1) be such that xy ∈ E. For any z ∈ N(u1) ∩N(x),

G contains Lbn−3
2
c in G[V \ {u1, v1, z}] having x, y as its first rung.
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4. Let x ∈ N(u1)∩N(v1). G contains Lbn−1
2
c in G[V \ {u1}] having xv1 as its first

rung.

5. G contains a Hamilton path P having u1, v1 as its end vertices.

We call the vertex z in case 1,3 the parity vertex.

Proof. We will only prove part (1) as the other parts are very similar. Fix u1, v1, u2, v2.

Let V ′′ = V \ V ′. Since |N(u1) ∩ V ′|, |N(v1) ∩ V ′| ≥ 4τ |V ′| > 3τn, there exists

x1 ∈ N(u1)∩V ′, y1 ∈ N(v1)∩V ′ such that x1y1 ∈ E and the same is true for vertices

u2, v2. Let e1 = x1y1, e2 = x2y2. Moreover, since |N(u1) ∩N(x1)| ≥ 3τn > 8, we can

choose z ∈ N(u1) ∩N(x1) which is different than any other vertex already chosen.

Now, let G′ = G[V \ {u1, v1, u2, v2, x1, y1, x2, y2, z}] and redefine V ′ := V ′ ∩

V (G′), V ′′ := V ′′ ∩ V (G′). For any w ∈ V ′′, |N(w) ∩ V ′| ≥ 3τn − 9 > τn ≥ |V ′′|, so

there exists a matching M1 ∈ E(V ′′, V ′) saturating V ′′. Note that |M1| ≤ |V ′′| ≤ τn.

Let G′′ = G[V ′ \ V (M1)]. Since

δ(G′′) ≥ (1− τ)2n− (2τn+ 9) > (1− 5τ)n >
n

2
>
|G′′|

2
,

G′′ is Hamiltonian, so there exists a matching of size b |G
′′|

2
c in G′′, say M2. Let

M = M1 ∪M2 and define the auxiliary graph H = (M,E ′) with the vertex set M

and the edge set E ′ as follows: Let e′ = x′y′, e′′ = x′′y′′ ∈ M . If e′, e′′ ∈ M1 then

e′e′′ /∈ E ′. Otherwise, e′e′′ ∈ E ′ if G[e′, e′′] contains a matching of size 2.

If e ∈ M1 then dH(e) ≥ |NH(e) ∩M2| > τn, and for any other e ∈ M , dH(e) ≥

|NH(e) ∩M2| ≥ (1
2
− 3τ)n > |H|

2
. Since |M1| ≤ τn, by Theorem 2.3.5, H contains a

Hamiltonian cycle C, say C := u1 . . . un′ where n′ = bn−9
2
c.

Since dH(e1), dH(e2) > |H|
2

, there exists i ∈ [n′] such that ui ∈ N(e1), ui+1 ∈ N(e2)

then e1uiCui+1e2, gives a ladder Ln1 having e1, e2 as a first, last rung where n1 ≥

n′ + 2 ≥ bn−5
2
c.
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We call the graph satisfying the condition in Lemma 2.3.6, τ -complete graph and

the vertex set V ′ the major set and V ′′ the minor set.

Fact 2.3.7. If G is τ -complete then for any subset U of the minor set, G[V \ U ] is

still τ -complete.

Moreover,

Corollary 2.3.8. Let τ ∈ (0, 10). Let G = (V,E) be a graph and X1 ⊂ V,X2 ⊂ V be

two disjoint vertex subsets such that G[X], G[Y ] are τ -complete and |X1|, |X2| ≥ 100
τ

.

Suppose that there exist u1u2, v1v2 ∈ E(X1, X2). Then G[X1 ∪ X2] contains (n′, 2)-

weak ladder where n′ ≥ b |X1|
2
c + b |X2|

2
c − 2. Furthermore, if u1v1 ∈ E or u2v2 ∈ E

then G[X1 ∪X2] contains (n′, 1)-weak ladder where n′ ≥ b |X1|
2
c+ b |X2|

2
c − 1.

Proof. For i ∈ [2], by Lemma 2.3.6 (2), G[Xi] contains Lb |Xi|−2

2
c having xiyi as its

first rung where xi ∈ N(ui), yi ∈ N(vi). By attaching two ladders with u1u2, v1v2, we

obtain a (n′, 2)-weak ladder where n′ ≥ b |X1|
2
c+ b |X2|

2
c − 2 and the ”Furthermore” is

obvious.

Next, we will address the case of almost complete bipartite graph.

Lemma 2.3.9. Let τ ∈ (0, 1
100

). Let G = (X, Y,E) be a bipartite graph with biparti-

tion X, Y such that n = |X| = |Y | and τn ≥ 100. Suppose that |X ′|, |Y ′| ≥ (1− τ)n

where X ′ = {x ∈ X : |N(x)∩Y ′| ≥ (1− τ)n}, Y ′ = {y ∈ Y : |N(y)∩X ′| ≥ (1− τ)n},

and for any x ∈ X \ X ′, y ∈ Y \ Y ′, |N(x) ∩ Y ′| ≥ 4τn, |N(y) ∩ X ′| ≥ 4τn. Let

e1, e2, e3, e4 be such that for any ei, i ∈ [4], |ei ∩ (X ′ ∪ Y ′)| ≥ 1. Then G contains Ln

having ei as its f(i)th rung where f(1) = 1 and for any i ∈ [3], 0 < f(i+1)−f(i) ≤ 3.

Furthermore, if |ei ∩ (X ′ ∪ Y ′)| = 2 then we have |f(i+ 1)− f(i)| ≤ 2.

Proof. Let V ′ = X ′∪Y ′, V ′′ = X ′′∪Y ′′. Let i ∈ [3]. If |ei∩(X ′∪Y ′)| = 2 then we can

choose e ∈ E(X ′, Y ′) such that G[e, ei] ∼= K2,2 and G[e, ei+1] ∼= K2,2. Otherwise, we
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can choose e′, e′′ ∈ E(X ′, Y ′) such that G[ei, e
′], G[e′, e′′], G[e′′, ei+1] ∼= K2,2. Hence we

obtain a Lq where q ≤ 10 having having ei as its f(i)th rung such that f : [4] → [q]

satisfies the condition in the lemma.

Now, let X ′ = X ′\V (Lq), Y
′ = Y ′\V (Lq), X

′′ = X ′′\V (Lq), Y
′′ = Y ′′\V (Lq) and

X = X ′ ∪X ′′, Y = Y ′ ∪ Y ′′, V = X ∪ Y . For any x ∈ X ′′, since |N(x) ∩ Y ′| ≥ 3τn >

|X ′′|, there exists a matching MX′′ saturating X ′′. Similarly, there exists matching

MY ′′ saturating Y ′′.

Let M1 = MX′′ ∪ MY ′′ and G′ = G[V \ V (M1)]. For each e = xiyi ∈ M1, we

can pick x′i, x
′′
i ∈ N(yi) ∩ X ′, y′i, y′′i ∈ N(xi) ∩ Y ′, so that all vertices are distinct

and x′iy
′
i, x
′′
i y
′′
i ∈ E. This is possible because |N(yi) ∩ X ′| > 3τn ≥ 3|MX′′ | and

|N(xi)∩Y ′| > 3τn ≥ 3|MY ′′|. Then G[{xi, yi, x′i, x′′i , y′i, y′′i }] contains a 3-ladder, which

we will denote by Li. We have |X ′′|+ |Y ′′| = m 3-ladders each containing exactly one

vertex from X ′′ ∪ Y ′′.

Let X ′′′ = X ′ \ (∪i∈[m]Li), Y
′′′ = Y ′ \ (∪i∈[m]Li). Then |Y ′′′| = |X ′′′| ≥ (1− 3τ)n−

q > n/2. For any x ∈ X ′′′,

|N(x) ∩ Y ′′′| ≥ |Y ′′′| − τn− |(V (M̄1) ∩ Y ′′′|

> |Y ′′′| − 4τn

> (1− 8τ)|Y ′′′| > |Y
′′′|

2
,

so there exists a matching M2 saturating X ′′′. Define the auxiliary graph H as follows.

For every Li, consider vertex vLi and let

V (H) = {vLi : i ∈ [m]} ∪ {e : e ∈M2}.

For e = aibi, e
′ = ajbj ∈ M2, ee′ ∈ E(H) if G[{ai, aj}, {bi, bj}] = K2,2 and for

vLi ∈ V (H), e = ajbj ∈ M2, vLie ∈ E(H) if aj ∈ N(y′i) ∩N(y′′i ), bj ∈ N(x′i) ∩N(x′′i ).

Then δ(H) ≥ |H| − 10τn > |H|/2 and then H is Hamiltonian, which gives a desired

ladder Ln by attaching Lq as its first q rungs.

25



Similarly, we also have another lemma for the case that G is almost complete

bipartite, but the sizes of the sets in the bipartition differ.

Lemma 2.3.10. Let τ ∈ (0, 1
100

) and C ∈ R be such that τC ≤ 1
300

. Let G = (X, Y,E)

be a bipartite graph with bipartition X, Y such that n = |Y | ≤ |X| ≤ Cn and τn ≥

100. Suppose that |Y ′| ≥ (1− τ)n where Y ′ = {y ∈ Y : |N(y)∩X| ≥ (1− τ)|X|}, for

any x ∈ X, |N(x)∩Y ′| ≥ (1− τ)|Y ′|. and for any y ∈ Y \Y ′, |N(y)∩X| ≥ 4τ |X|. Let

e1, e2, e3, e4 be such that for any ei, i ∈ [4], |ei ∩ (X ′ ∪ Y ′)| ≥ 1. Then G contains Ln

having ei as its f(i)th rung where f(1) = 1 and for any i ∈ [3], 0 < f(i+1)−f(i) ≤ 3.

Furthermore, if |ei ∩ (X ′ ∪ Y ′)| = 2 then we have |f(i+ 1)− f(i)| ≤ 2.

Proof. The proof is basically similar as the proof of Lemma 2.3.9. So with the

same way, we obtain Lq containing e1, e2, e3, e4 in desired positions and let X =

X \ V (Lq), Y
′ = Y ′ \ V (Lq), Y

′′ = (Y \ Y ′) \ V (Lq) and V = X ∪ Y ′ ∪ Y ′′. For any

y ∈ Y ′′, since |N(y) ∩X| ≥ 3τ |X| > |Y ′′|, there exists a matching M saturating Y ′′.

Let G′ = G[V \ V (M)]. For each e = xiyi ∈ M , we can pick x′i, x
′′
i ∈ N(yi),

y′i, y
′′
i ∈ N(xi)∩Y ′, so that all vertices are distinct and x′iy

′
i, x
′′
i y
′′
i ∈ E. This is possible

because |N(yi)∩X ′| > 3τ |X| ≥ 3|M | and for any xi, x
′
i, x
′′
i , |NG′(xi)∩ Y ′|, |NG′(x

′
i)∩

Y ′|, |NG′(x
′′
i ) ∩ Y ′| > (1 − τ)n > (1

2
+ 3τ)n. Then G[{xi, yi, x′i, x′′i , y′i, y′′i }] contains a

3-ladder, which we will denote by Li. We have |Y ′′| = m 3-ladders each containing

exactly one vertex from Y ′′.

Let Y ′′′ = Y ′ \ (∪i∈[m]Li) and choose X ′′′ ⊂ X \ (∪i∈[m]Li) such that |X ′′′| = |Y ′′′|.

Then |Y ′′′| = |X ′′′| ≥ (1− 3τ)n− q > n/2. For any x ∈ X ′′′,

|N(x) ∩ Y ′′′| ≥ |Y ′′′| − τn− |(V (M̄1) ∩ Y ′′′|

> |Y ′′′| − 4τn

> (1− 8τ)|Y ′′′| > |Y
′′′|

2
,
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so there exists a matching M2 saturating X ′′′. Define the auxiliary graph H as follows.

For every Li, consider vertex vLi and let

V (H) = {vLi : i ∈ [m]} ∪ {e : e ∈M2}.

For e = aibi, e
′ = ajbj ∈ M2, ee′ ∈ E(H) if G[{ai, aj}, {bi, bj}] = K2,2 and for

vLi ∈ V (H), e = ajbj ∈ M2, vLie ∈ E(H) if aj ∈ N(y′i) ∩N(y′′i ), bj ∈ N(x′i) ∩N(x′′i ).

Then δ(H) ≥ |H|−20Cτn > |H|/2 and then H is Hamiltonian, which gives a desired

ladder Ln by attaching Lq as its first q rungs.

A T-graph is graph obtained from two disjoint paths P1 = v1, . . . , vm and P2 =

w1, . . . , wl by adding an edge w1vi for some i = 1, . . . ,m. In (Czygrinow and Kier-

stead, 2002), it is shown that if P = V1, . . . , V2s is a path consisting of pairwise-disjoint

sets Vi such that |V1| = l − 1, |V2s−1| = l + 1, |Vi| = l for every other i, and in which

(Vi, Vi+1) is (ε, δ)-super regular for suitably chosen ε and δ, then G [
⋃
Vi] contains a

spanning ladder. We will use this result in one part of our argument but in many

other places the following, much weaker statement will suffice.

Lemma 2.3.11. There exist 0 < ε, 10
√
ε < d < 1, and l0 such that the following

holds. Let P = V1, . . . , Vr be a path consisting of pairwise-disjoint sets Vi such that

|Vi| = l ≥ l0 and in which (Vi, Vi+1) is (ε, d)-super regular. In addition, let x1 ∈

V1, x2 ∈ V2. Then G [
⋃
Vi \ {x1, x2}] contains a ladder L such that the first rung of

L is in N(x1) ∩ V2, N(x2) ∩ V1 and |L| ≥ (1− 5
√
ε/d)rl.

Proof. We will construct L in a step by step fashion. Initially, let L := ∅ and let

k ∈ [2]. We have |N(xk) ∩ V3−k| ≥ dl > εl and so there exist x′1, x
′
2 such that x′k ∈

N(xk), x
′
1x
′
2 ∈ E and |N(x′k)∩Vk \L| ≥ dl− 1 ≥ 2

√
εl. For the general step, suppose

x1 ∈ V1, x2 ∈ V2 are the endpoints of L and |N(xk)∩V3−k\L| ≥ 2
√
εl. Let Uk := Vk\L

and suppose |Uk| ≥ 5
√
εl/d. Then, by Lemma 1.2.4, (Uk, N(xk) ∩ V3−k \ L) is

√
ε-

regular with density at least d/2. Thus all but at most
√
εl vertices v ∈ N(xk)∩V3−k\L
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have |N(v) ∩ Uk| ≥ (d
2
−
√
ε)|Uk| ≥ 2

√
εl + 1. Since |N(xk) ∩ V3−k \ L| ≥ 2

√
εl, there

are Ak ⊂ N(xk) ∩ V3−k \ L such that |Ak| ≥
√
εl and every vertex v ∈ Ak has

|N(v) ∩ Uk| ≥ 2
√
εl + 1. Hence there exist x′1 ∈ A1, x

′
2 ∈ A2 such that x′1x

′
2 ∈ E

and |N(x′k) ∩ Vk \ (L ∪ {xk})| ≥ 2
√
εl and we can add one more rung to L from

V1 × V2. To move from (V1, V2) to (V3, V4) suppose L ends in x1 ∈ V1, x2 ∈ V2. Pick

x′1 ∈ N(x1) ∩ V2 \ L so that |N(x2) ∩N(x′1) ∩ V3| ≥ 2
√
εl. Note that |N(x2) ∩ V3| ≥

dl, |N(x1) ∩ V2 \ L| ≥ 2
√
εl and so x′1 can be found in the same way as above. Next

find x′2, x3 ∈ N(x2) ∩N(x′1) ∩ V3 such that |N(x′2) ∩N(x3) ∩ V4| > 0, and finally let

x4 ∈ N(x′2) ∩N(x3) ∩ V4. Then x3x4 ∈ E, x3 ∈ N(x2) ∩N(x′1) ∩ V3, x4 ∈ N(x′2) ∩ V4

and |N(x3) ∩ (V4 \ {x4})|, |N(x4) ∩ (V3 \ {x′2, x3})| ≥ dl − 2 ≥ 2
√
εl.

We will need the following observation.

Fact 2.3.12. Let G be a 2-connected graph on n vertices such that δ(G) ≥ αn, n > 10
α2

and let U1, U2 be two disjoin sets such that |Ui| ≥ 2. Then there exist two disjoint

U1 − U2 paths P1, P2 such that |P1|+ |P2| ≤ 10
α

.

Proof. Let P1, P2 be two U1−U2 paths such that |P1|+ |P2| is the smallest. Without

loss of generality, |P1| ≤ |P2|. Note that both paths are induced subgraphs and

suppose P2 := v1 . . . vl, l > 5/α. Let A = {v3i : i ∈ [ l
3
]}. If for any x, y ∈ A,

|N(x) ∩N(y)| ≤ 1 then

| ∪v∈A N(v) ∩ (V \ V (P2))| ≥
|A|∑
i=0

max{(αn− 2− i), 0} > n,

a contradiction. Hence there exist two vertices x, y in P2 such that distP2(x, y) > 2

and |NG(x)∩NG(y)| ≥ 2. Then NG(x)∩NG(y)∩ (V \V (P1)) = ∅ or we get a shorter

U1−U2. Thus |NG(x)∩NG(y)∩V (P1)| ≥ 2 and we again get shorter disjoint U1−U2

paths.
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In our last fact in the introductory section we will show that a component in a

graph either contain two disjoint paths of total length much bigger than its minimum

degree or the component has a very specific structure.

Theorem 2.3.13. Let C be a component in a graph G which satisfies |C| ≥ 2δ(G).

If G[C] does not contain a Hamiltonian path then either there exist a path P1 such

that for any v ∈ V (C)\V (P1), N(v) ⊂ V (P1) or there exists two disjoint paths P1, P2

such that |V (P1)|+ |V (P2)| > 3δ(G).

Proof. Let P1 be a maximum path in C, say P1 = v1, . . . , vr. If P1 is a Hamiltonian

path or G[V (C)\V (P1)] is independent then we are done. Thus we may assume that

there exists a path in G[V (C)\V (P1)], say P2 = u1, . . . , us such that s ≥ 2. Let

A = {i : vi ∈ N(v1) ∩ V (P1)}, A− = {i− 1 : i ∈ A},

B = {i : vi ∈ N(vr) ∩ V (P1)}, B+ = {i+ 1 : i ∈ B}.

If G[V (P1)] contains a cycle of length at least |V (P1)| − 1 then it gives a longer path

by attaching P2 to the cycle. Therefore,

A− ∩B+ = ∅,

which implies that

|A− ∪B+| ≥ 2δ(G).

By the maximality of P2,

N(u1) ⊂ V (P2) ∪ V (P1).

By the maximality of P1,

N(u1) ∩ (A− ∪B+) = ∅.

Therefore,

δ(G) ≤ d(u1) ≤ r − 2δ(G) + s− 1,
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which implies that

|V (P1)|+ |V (P2)| = r + s ≥ 3δ(G) + 1.

2.4 The first non-extremal case

In this section we will address the case when G is non-extremal and αn ≤ δ(G) ≤

(1/2− γ)n for some α, γ > 0. For the clarity, we define β−extremal as follows.

Definition 2.4.1. Let G be a graph with δ(G) = δ. We call that G is β-extremal if

there exists a set B ⊂ V (G) such that |B| ≥ (1− δ/n− β)n and all but at most 4βn

vertices v ∈ B have |N(v) ∩B| ≤ βn.

Then the main theorem in this section follows.

Theorem 2.4.2. Let α, γ ∈ (0, 1
2
) and let β > 0 be such that β < ( α

400
)2 ≤ 1

640000
.

Then there exists N(α, γ) ∈ N such that for all n ≥ N the following holds. For

every 2-connected graph G on n vertices with αn ≤ δ(G) ≤ (1/2 − γ)n which is not

β-extremal and every n1, . . . , nl ≥ 2 such that
∑
ni = δ

(i) G contains disjoint cycles C2n1 , C2n2 , . . . , C2nl or

(ii) δ is even, n1 = n2 = δ
2

and G is one a graph from Example 2.1.3.

Proof. Fix constants d1 := min{ α6

1010
, γ

10
, β2}, d2 := d1

2
and let ε1, ε2, ε3 be such that

ε1 < 300ε1 < ε2 < ε
1/4
2 < ε3

10
< 10ε3 < d2. Applying Lemma 1.2.1 with parameters

ε1 and m, we obtain our necessary N = N(ε1,m),M = M(ε1,m). Let N(α) =

max{N, d100M
αε3
e} and let G be an arbitrary graph with |G| = n ≥ N(α) and δ =

δ(G) ≥ αn. By Lemma 1.2.1 and some standard computations, we can obtain an
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ε1-regular partition {V0, V1, ..., Vt} of G with t ∈ [m,M ], |V0| ≤ ε1n and such that

there are at most ε1t pairs of indexes {i, j} ∈
(

[t]
2

)
such that (Vi, Vj) is not ε1-regular.

Let l := |Vi| for i ≥ 1 and note that

(1− ε1)
n

t
≤ l ≤ n

t
.

Now, let R be the cluster graph with threshold d1, that is, given {V0, V1, ..., Vt} as

above, V (R) = {V1, . . . , Vt} and E(R) = {ViVj : (Vi, Vj) is ε1-regular with d(Vi, Vj) ≥

d1}. In view of the definition of ε1 and d1 we have the following,

δ(R) ≥ (δ/n− 2d1)t.

Lemma 2.4.3. Let C be a component in R which contains a T-graph H with |H| ≥

(2δ/n+ ε3)t. Then G contains a (n′, r)−weak ladder where n′ ≥ δ + r.

Proof. Since ∆(H) ≤ 3, by Lemma 2.3.1 applied to H there exist subsets V ′i ⊆ Vi for

every Vi ∈ V (H) such that (V ′i , V
′
j ) is (ε2, d2)-super-regular for every ViVj ∈ H and

|V ′i | ≥ (1− ε2)l.

Let P = U ′1, . . . , U
′
s, Q = U ′i ,W

′
1, . . . ,W

′
r denote the two paths forming H. Note

that if i+ r ≥ (2δ/n+ ε3), then G[
⋃i
j=1 U

′
j ∪
⋃r
j=1W

′
j ] contains a ladder on m vertices

where

m ≥ (2δ/n+ ε3)(1− ε2)(1− ε1)n ≥ 2δ.

Otherwise, let x ∈ U ′i+1, y ∈ U ′i+2. There is an x, z-path P on r + 1 vertices for some

z ∈ W ′
r−1 and a y, w-path Q on r + 1 vertices for some w ∈ W ′

r−2 which is disjoint

from P . By Lemma 2.3.11, there is a ladder L′ on (i+r)(1−ε2)(1−5
√
ε2/d2)l vertices

in G[U ′1 ∪ · · ·U ′i ∪W ′
1 ∪ . . .W ′

r] which ends at z′ ∈ N(z) ∩W ′
r and w′ ∈ N(w) ∩W ′

r−1

and a ladder L′′ on (s− i)(1− ε2)(1− 5
√
ε2/d2)l vertices in G[U ′i+2 ∪ U ′s] which ends

at x′ ∈ N(x) ∩ U ′i+2 and y′ ∈ N(y) ∩ U ′i+3 such that L ∩ (P ∪ Q), L′ ∩ (P ∪ Q) = ∅.
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Then |L′| + |L′′| ≥ (2δ/n + ε3)t(1 − ε2)(1 − 5
√
ε2/d2)l ≥ 2δ + ε3n

2
, |P | = |Q| = r + 1

and ε3n
4
− (r + 1) ≥ 0. Thus L1 ∪ P ′ ∪ Q′ ∪ L2 contains a (n′, r + 1)−weak ladder

where P ′ = x′Pz′, Q′ = y′Qw′ and n′ − (r + 1) ≥ δ.

Lemma 2.4.4. Let C be a component in R and suppose |C| ≥ (2δ/n + ε3)t. Then

either there is a T-graph H such that |H| ≥ (2δ/n+ ε3)t, or there is a set I ⊂ V (C)

such that |I| ≥ |C| − (δ/n+ 8d1)t and ||R[I]|| = 0.

Proof. Let P1 = V1, . . . , Vs be a path of maximum length in C and subject to this

is such that ||R[V (C) \ V (P1)]|| is maximum. By Theorem 2.3.13 we may assume

that s < (2δ/n + ε3)t and that for any W ∈ V (C)\V (P1), N(W ) ⊂ V (P1) (i.e.

||R[V (C) \ V (P1)]|| = 0). Let W ∈ V (C)\V (P1) be arbitrary and let

W = {i ∈ [s] : Vi ∈ N(W )},

W+ = {i ∈ [s] : i− 1 ∈ W , i+ 1 ∈ W},

W++ = {i ∈ [s] : i ∈ W , i− 1, i− 2 /∈ W}.

Since P1 is a longest path, W ∩W+ = ∅.

In addition, note that |W+| + |W++| + 1 = |NR(W )|. As a result, if |W+| =

(δ/n− Cd1)t, C ≥ 7 then |W++| ≥ (C − 2)d1t. But then,

|V (P1)| ≥ 2|W+|+ 3|W++|

≥ 2(δ/n− Cd1)t+ 3 · (C − 2)d1t

≥ (2δ/n+ (C − 6)d1)t > 2(δ/n+ ε3)t > |V (P1)|.

Thus we may assume that |W+| > (δ/n−7d1)t. Let I := {Vi|i ∈ W+}∪(V (R)\V (P1)).

Then |I| ≥ |C| − (|V (P1)| − |W+|) ≥ |C| − (δ/n + 8d1)t. We will show that I is

an independent set in R. Clearly V (C) \ V (P1) is independent. Suppose there is

W ′ ∈ V (C)\V (P1) such that for some i ∈ W+, Vi ∈ NR(W ′). Let P ′1 be obtained
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from P1 by exchanging Vi with W and note that the length of P ′1 is equal to the

length of P1 but ||R[V (C) \V (P ′1)]|| 6= 0 contradicting the choice of P1. Now suppose

ViVj ∈ R for some i, j ∈ W+, with i < j. Then P ′1 := VsP1Vj+1WVi+1P1VjViP1V1 is a

longer path.

In the following lemma, we show that for graphs whose reduced graphs are con-

nected, either the graph contains a δ-weak ladder, hence it includes the claimed

number of cycle lengths, or again it is very nearly our extremal structure.

Lemma 2.4.5. If R is connected, then either G contains a (n′, r)−weak ladder where

n′ ≥ δ+ r, or there exists a set V ′ ⊂ V such that |V ′| ≥ (1− δ/n− β)n, such that all

but at most 4βn vertices v ∈ V ′ have |NG′(v)| ≤ βn where G′ = G[V ′].

Proof. Since 2δ/n+ε3 ≤ 2(1/2−γ)+ε3 ≤ 1, By Claim 2.4.4 and Claim 2.4.3, we may

assume that there is I ⊂ V (R) such that |I| ≥ |C| − (δ/n+ 8d1)t = (1− δ/n− 8d1)t

and ||R[I]|| = 0. Let V ′ = ∪X∈IX. Then

|V ′| = l|I| ≥ l(1− δ/n− 8d1)t ≥ (1− δ/n− 9d1)n ≥ (1− δ/n− β)n.

Let W = {w ∈ V ′ : |NV ′(w)| ≥
√
d1n}. We claim that |W | < 4

√
d1n ≤ 4βn. Suppose

otherwise. Then we have

||G[V ′]|| ≥ 4
√
d1n ·

√
d1n

2
= 2d1n

2.

which implies that there is at least one edge in R[I]. Indeed, there are at most

ε1t
2l2 ≤ ε1n

2 edges in irregular pairs, at most d1t
2l2 ≤ d1n

2 edges in pairs (A,B) with

d(A,B) ≤ d1, and at most t
(
l
2

)
< ε1n

2 edges in
⋃
i≥1G[Vi].

Thus from Lemma 2.4.5 we are either done or there is a set V ′ ⊂ V such that

|V ′| ≥ (1−α−β)n, such that all but at most 4βn vertices v ∈ V ′ have |NG′(v)| ≤ βn.

The latter case will be addressed in the section which contains the extremal case.
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However, we are not done yet with the non-extremal case because R can be dis-

connected. Indeed, it is this part of the argument which requires careful analysis and

uses the fact that G is 2-connected. We will split the proof into lemmas based on

the nature of components in R and will assume in the rest of the section that R is

disconnected.

Lemma 2.4.6. If R is disconnected and contains a component C which is not bipartite

and a component C ′ such that |C ′| > (δ/n + 3d1)t then G contains a (n′, r)−weak

ladder for some n′ ≥ δ + r.

Proof. Note that C and C ′ can be the same component. Let C,C ′ be two components

such that |C|+ |C ′| ≥ (2δ/n+ d1)t and suppose C in not bipartite path. Then there

exist path P = V1, . . . , Vs in C and Q = U1, . . . , Ur in C ′ such that |P | + |Q| ≥

(2δ/n+ d1)t. In addition, C contains an odd cycle B.

Let P̄ be obtained from P be applying Lemma 2.3.1 and let Q̄ be obtained from Q

by applying Lemma 2.3.1 and let V ′1 , . . . , V
′
s , U

′
1, . . . , U

′
r denote the modified clusters.

Let U1 :=
⋃
V ∈P̄ V , U2 :=

⋃
V ∈Q̄ V . Since G is 2-connected, from Fact 2.3.12, there

exist two disjoint U1−U2 paths Q1, Q2 in G such that |Q1|+ |Q2| ≤ 10
α

. Let {xk, yk} =

(V (Q1)∪V (Q2))∩Uk. We will extend Q1, Q2 to paths Q′1, Q
′
2, so that Q′1∩Q′2 = ∅, the

endpoints of Q′1 are in U ′1, V ′1 , the endpoints of Q′2 are in U ′2, V ′2 and |Q′1| = |Q′2| ≤ K

for some constant K which depends on α only. For C ′ we simply find short paths from

x2, y2 to U ′1, U ′2, that is, let x′2 ∈ U ′1, y′2 ∈ U ′2 and find paths S1, S2 so that S1∩S2 = ∅,

S1 is an x′2, x2-path, S2 is a y′2, y2-path, |Si| ≤ r and ||S1|−|S2|| ≤ 1. Let S ′i := Si∪Qi.

Note that |S ′i| ≤ r+ 10
α

but the paths can have different lengths. Let R1 be a path in

G[C] on at most |C| vertices from x1 to a vertex x′1 ∈ V ′1 which does not intersect S ′1.

Note that for every V ∈ C, |V ∩ (S ′1∪S ′2∪R1)| is a constant and so if (V,W ) is (ε, d)-

super-regular then (V \ (S ′1 ∪ S ′2 ∪R1),W \ (S ′1 ∪ S ′2 ∪R1)) is (2ε, d/2)-super-regular.
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Consequently, using the fact that C contains an odd cycle, it is possible to find a

path R2 from y2 to a vertex y′2 ∈ V2 so that |R2| ≤ |C|, R2 ∩ (S ′1 ∪ S ′2 ∪R1) = ∅, and

|R1|+|S ′1|, |R2|+|S ′2| have the same parity. If |R1|+|S ′1| > |R2|+|S ′2|, then use (V ′1 , V
′

2)

to extend R2 so that the equality holds. Let Q′1, Q
′
2 be the resulting paths. Note that

|Q′1|+ |Q′2| is constant and since |P |+ |Q| ≥ (2δ/n+ d1)t we can find two ladders Ln1

in G[P ], Ln2 in G[Q] such that n1 + n2 ≥ δ + d1n/4, (L1 ∪ L2) ∩ (Q′1 ∪Q′2) = ∅ and

such that Li ends in N(x′i), N(y′i).

Next we will address the case when all components are bipartite.

Lemma 2.4.7. If R is disconnected and every component is bipartite, then G contains

either Lδ or a (n′, r)−weak ladder for some n′, r such that n′ ≥ δ + r.

Proof. Let ξ := 20d1/α
2, τ := 20

√
d1/α

2 and let q be the number of components

in R and let D be a component in R. Then D is bipartite and so |D| ≥ 2δ(R) ≥

2(δ/n− 2d1)t. Thus, in particular, q ≤ 1/(2(δ/n− 2d1)) ≤ n/δ.

For a component D in R, if |D| ≥ (2δ/n+ ε3)t, then by Lemma 2.4.4 and Lemma

2.4.3, we may assume that there is an independent set I ⊂ V (D) such that |I| ≥

|D| − (δ/n + 8d1)t. Suppose components are D1, D2, . . . , Dq and Di has bipartition

Ai, Bi such that |Ai| ≤ |Bi|. Then, we have

(δ/n− 2d1)t ≤ |Ai| ≤ (δ/n+ 8d1)t

and |Bi| ≥ (δ/n − 2d1)t. Let Xi :=
⋃
W∈AiW,Yi :=

⋃
W∈BiW and Gi := G[Xi, Yi].

Then

δ − 3d1n ≤ |Xi| ≤ δ + 8d1n

and

δ − 3d1n ≤ |Yi|.
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In addition, since Bi is independent in R, ||Gi|| = e(Xi, Yi) ≥ δ|Yi|−2d1n
2 ≥ |Xi||Yi|−

10d1n
2 ≥ (1− ξ)|Xi||Yi|.

Let X ′i := {x ∈ Xi||NG(x) ∩ Yi| ≥ (1 −
√
ξ)|Yi|} and note that |X ′i| ≥ (1 −

√
ξ)|Xi| ≥ 2δ

3
. Similarly let Y ′i := {y ∈ Yi||NG(y)∩Xi| ≥ (1−

√
ξ)|Xi|} and note that

|Y ′i | ≥ (1−
√
ξ)|Yi| ≥ 2δ

3
. Let G′ := G[X ′i, Y

′
i ] and note that for every vertex x ∈ X ′i,

|NG(x) ∩ Y ′i | ≥ (1− 2
√
ξ)|Y ′i |, (2.1)

and the corresponding statement is true for vertices in Y ′i .

Let V ′0 := V0∪
⋃
i((Xi \X ′i)∪ (Yi \Y ′i )) and note that |V ′0 | ≤ (2

√
ξ+ ε1)n ≤ 3

√
ξn.

Then for every vertex v ∈ V ′0 we have |NG(v) ∩ (V (G) \ V ′0)| ≥ δ/2. Thus, since the

number of components is at most n/δ, for every v ∈ V ′0 there is i ∈ [q] such that

|NG(v) ∩X ′i|+ |NG(v) ∩ Y ′i | ≥ δ2/(2n) and we assign v to Y ′i (X ′i) if |NG(v) ∩X ′i| ≥

δ2/(4n) (|NG(v) ∩ Y ′i | ≥ δ2/(4n)) so that every v is assigned to exactly one set. Let

X ′′i , (Y ′′i ) denote the set of vertices assigned to X ′i (Y ′i ) and let V ′i := X ′i∪X ′′i ∪Y ′i ∪Y ′′i .

First assume that there exists i such that min{|X ′i ∪ X ′′i |, |Y ′i ∪ Y ′′i |} ≥ δ. If

|X ′i|, |Y ′i | ≤ δ then by removing some vertices from X ′′i ∪ Y ′′i , we get |X ′i ∪ X ′′i | =

|Y ′i ∪ Y ′′i | = δ and by Lemma 2.3.9, we obtain Lδ. If |X ′i| > δ then choose Zi ⊂ X ′i

such that |Zi| = δ and then for every vertex y ∈ Y ′i ,

|NG(y) ∩ Zi| ≥ |Zi| − 2
√
ξ|X ′i| ≥ (1− 2 · 2

α

√
ξ)|Zi| ≥ (1− τ)δ,

If |Y ′i | > δ then the same is true for vertices x ∈ X ′i. Hence if |X ′i|, |Y ′i | ≥ δ then we

can choose Zi ⊂ X ′i,Wi ⊂ Y ′i such that |Zi| = |Wi| = δ and for any x ∈ Zi, y ∈ Wi,

|N(x) ∩Wi|, |N(y) ∩ Zi| ≥ (1− γ)δ, so by Lemma 2.3.9, G contains Lδ. Since |Y ′i | ≤
2
α
|X ′i ∪X ′′i |, τ · 2

α
≤ 1

300
, if |X ′i| < δ, |Y ′i | ≥ δ then by Lemma 2.3.10, G[X ′i ∪X ′′i , Y ′i ]

contains Lδ.

Now, we may assume that min{|X ′i ∪X ′′i |, |Y ′i ∪ Y ′′i |} < δ for all i ∈ [q].
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Claim 2.4.8. Let i ∈ [q]. If there exists j ∈ [q] such that there exists Zi ∈

{X ′i, Y ′i }, Zj ∈ {X ′j ∪ X ′′j , Y ′j ∪ Y ′′j } such that E(Zi, Zj) has a matching of size 2,

then G contains a (n′, r) weak ladder such that n′ − r ≥ δ.

Proof. Without loss of generality, let i = 1, j = 2 and Z1 = X ′1, Z2 = X ′2 ∪X ′′2 . Let

u1u2, v1v2 ∈ E(X ′1, X
′
2 ∪X ′′2 ). For i ∈ [2], choose ei such that ui ∈ ei and ei ∩ Y ′1 6= ∅,

e′i such that vi ∈ e′i and e′i ∩ Y ′2 6= ∅. For i ∈ [2], by Lemma 2.3.10, G[X ′i ∪X ′′i ∪ Y ′i ]

contains Lt having ei, e
′
i are in its first 4 rungs where t ≥ 2δ

3
. By attaching these

two ladders with u1u2, v1v2, we obtain a (n′, r)-weak ladder such that r ≤ 10 and

n′ − r ≥ (2t− 10)− 10 ≥ 4δ
3
− 20 ≥ δ.

Claim 2.4.9. If there exists i ∈ [q] such that ||G[X ′i ∪X ′′i ]||+ ||G[Y ′i ∪ Y ′′i ]|| ≥ 2 then

G contains a (n′, r)−weak ladder for some n′ ≥ δ + r.

Proof. Let j 6= i and recall that V ′i = X ′i∪X ′′i ∪Y ′i ∪Y ′′i , V ′j = X ′j∪X ′′j ∪Y ′j ∪Y ′′j . Since

G is 2-connected there are disjoint V ′i − V ′j -paths P,Q such that |P |+ |Q| ≤ 10
α

from

Fact 2.3.12. Let {x1} = V (P ) ∩ V ′i , {x2} = V (Q) ∩ V ′i and {y1} = V (P ) ∩ V ′j , {y2} =

V (Q) ∩ V ′j .

Let z1z2 ∈ E(G[X ′i ∪X ′′i ]) ∪ E(G[Y ′i ∪ Y ′′i ]) be such that |{z1, z2} ∩ {x1, x2}| ≤ 1,

which is possible since ||G[X ′i ∪X ′′i ]||+ ||G[Y ′i ∪ Y ′′i ]|| ≥ 2. We remove some vertices

in X ′′i ∪Y ′′i \{x1, x2, z1, z2} and some vertices in X ′′j ∪Y ′′j \{y1, y2} so that |X ′i∪X ′′i | =

|Y ′i ∪ Y ′′i |, |X ′j ∪X ′′j | = |Y ′j ∪ Y ′′j |.

For any x ∈ {x1, x2, z1, z2}, if x ∈ X ′i ∪X ′′i (Y ′i ∪ Y ′′i ) choose x′ ∈ N(x) ∩ Y ′i (X ′i),

say e(x) = {x, x′}, then we have E0 = ∪x∈{x1,x2,z1,z2}e(x) such that |E0| ≤ 4 and for

any e ∈ E0, |e∩(X ′i∪Y ′i )| ≥ 1. Similarly, for any y ∈ {y1, y2}, if y ∈ X ′j∪X ′′j (Y ′j ∪Y ′′j )

choose y′ ∈ N(y) ∩ Y ′j (X ′j), say e(y) = {y, y′}, then we have E ′0 = ∪y∈{y1,y2}e(y) such

that |E ′0| = 2 and for any e ∈ E ′0, |e ∩ (X ′j ∪ Y ′j )| ≥ 1. Then by Lemma 2.3.9, there

exist ladders L|X′i∪X′′i | in G[V ′i ] and L|X′j∪X′′j | in G[V ′j ] such that E0, E
′
0 are in those first
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10 rungs. Since |X ′i ∪X ′′i |+ |X ′j ∪X ′′j | ≥ 4δ
3

, and 20 + 5
α
< δ

6
, we obtain (n′, r)−weak

ladder such that n′ ≥ 4δ
3
− 20, r ≤ 20 + 10

α
and so n′− r ≥ 4δ

3
− 10

α
− 40 ≥ δ+ δ

3
− 30

α
≥

δ.(∵ n ≥ 90
α2 .)

Now, we choose i ∈ [q] such that min{|X ′i ∪X ′′i |, |Y ′i ∪ Y ′′i |} is maximum and we

redistribute vertices from Vj, for j ∈ [q] \ {i} as follows. Without loss of generality,

let |X ′i ∪X ′′i | < δ. If there exists v ∈ V ′j such that |N(v)∩Y ′i | ≥ 4τ |Yi|′ then we move

it to X ′′i until |X ′i ∪X ′′i | = δ. We apply the same process to Y ′i ∪ Y ′′i if |Y ′i ∪ Y ′′i | < δ.

After the redistribution, if min{|X ′i ∪ X ′′i |, |Y ′i ∪ Y ′′i |} = δ then again Lemma 2.3.9

and Lemma 2.3.10 imply existence of Lδ. Thus assume |X ′i| + |X ′′i | is less than δ

after redistribution. Since ||G[Y ′i ∪ Y ′′i ]|| ≤ 1, at least |Y ′i | − 2 vertices y ∈ Y ′i have

a neighbor in V (G) \ V ′i . Therefore for some j 6= i and Z ′j ∈ {X ′j ∪ X ′′j , Yj ∪ Y ′′j },

|EG(Y ′i , Z
′
j)| ≥ (|Y ′i | − 2)/(2q − 2) ≥ δ|Y ′i |/(3n). If there is a matching of size two

in G[Y ′i , Z
′
j], then by Claim 2.4.8, we obtain a (n′, r)-weak-ladder with n′ ≥ δ + r.

Otherwise, there is a vertex z ∈ Z ′j such that |NG(z) ∩ Y ′i | ≥ 4τ |Y ′i | and then we can

move z to X ′′i .

Finally, we will prove the case when all the components are small.

Lemma 2.4.10. If every component D of R satisfies |D| ≤ (δ/n+3d1)t then either G

contains disjoint cycles C2n1 , C2n2 , . . . , C2nl for every n1, . . . , nl ≥ 2 such that
∑
ni =

δ or δ is even, n1 = n2 = δ
2

and G is one of the graphs from Example 2.1.3.

Proof. Let ξ = 6d1/α, τ := 100d1
α2 . Note that 3

√
ξ ≤ τ ≤ α

40
< 1

40
. Since d1 < γ/2,

there are at least three components. Indeed, otherwise

|V | ≤ 2(δ/n+ 3d1)n+ ε1n = 2δ + (3d1 + ε1)n ≤ n− (2γ − 3d1 − ε1) < n.

Let q be a number of components. Let VD =
⋃
X∈DX and let GD = G[VD]. Note
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that αn/2 ≤ δ − 3d1n ≤ |VD| ≤ δ + 3d1n ≤ 2δ and we have

|EG(VD, V \ VD)| ≤ |D|n
t
d1n+ ε1n

2 ≤ 2d1δn.

Thus

|E(GD)| ≥ δ|VD|
2
− 2d1δn ≥

(
|VD|

2

)
− 4d1δn ≥ (1− ξ)

(
|VD|

2

)
.

Let V ′D = {v ∈ VD||NG(v)∩VD| ≥ (1−
√
ξ)|VD|} and note that |V ′D| ≥ (1−2

√
ξ)|VD| ≥

(1− 3
√
ξ)δ and for any v ∈ V ′D,

|NG(v) ∩ V ′D| ≥ (1− 3
√
ξ)|V ′D| ≥ (1− τ)|V ′D|.

Move vertices from VD \ V ′D to V0 to obtain V ′0 . We have |V ′0 | ≤ (ε1 + 2
√
ξ)n ≤ 3

√
ξn

and |V ′D| ≥ (1 − 2
√
ξ)|VD| ≥ (1 − 3

√
ξ)δ. Now we redistribute vertices from V ′0 as

follows. Add v from V ′0 to V ′′D if |N(v) ∩ V ′D| ≥ 4τ |V ′D|. Since |V ′0 | ≤ 3
√
ξn ≤ δ/3

and the number of components is at most n/(δ − 3d1n) ≤ 2n/δ, so for every v ∈ V ′0 ,

there exists a component D such that |N(v) ∩ V ′D| ≥ α
3
δ ≥ α

6
|V ′D| ≥ 4τ |V ′D|. Let

V ∗D := V ′D ∪ V ′′D. Note that |V ′′D| ≤ 3
√
ξn ≤ τ |V ′D|, which says |V ′D| ≥ (1 − τ)|V ∗D|.

Hence for any component D, G[V ∗D] is τ -complete.

Claim 2.4.11. If D1, D2 are two components and there is a matching of size four

between V ∗D1
and V ∗D2

, then G contains disjoint cycles C2n1 , C2n2 , . . . , C2nl for every

n1, . . . , nl ≥ 2 such that
∑
ni = δ.

Proof. Let D be a component which is different than D1 and D2. By Fact 2.3.12,

there exist two V ∗D − (V ∗D1
∪ V ∗D2

)-paths P,Q which can contain vertices from at most

two edges in the matching. Let u, v ∈ (V (P ) ∪ V (Q)) ∩ V ∗D, x, y ∈ (V (P ) ∪ V (Q)) ∩

(V ∗D1
∪ V ∗D2

) and let x′y′, x′′y′′ be two independent edges in E(V ∗D1
, V ∗D2

) such that

{x′, y′, x′′, y′′} ∩ {x, y} = ∅. Then we have two cases:

• x, y are in a same component, without loss of generality, let x, y ∈ V ∗D1
. By ap-

plying Lemma 2.3.6 to each component, we obtain a ladder in each component.

39



If n1 is such that n1 > |V ∗D|−7 then C2ni can be obtained by attaching a ladder

in G[VD∗] and some first rungs in a ladder in G[V ∗D1
] with P,Q and a parity

vertex(if necessary) in G[V ∗D]. If n2 is such that n2 > |V ∗D2
| − 7 then C2ni can

be obtained by attaching a ladder in G[VD2∗] and some last rungs in a ladder

in G[V ∗D1
] with x′x′′, y′y′′. Moreover, remaining small cycles can be obtained in

a ladder remained in G[V ∗D1
]. Otherwise, the case is trivial.

• Let x ∈ V ∗D1
, y ∈ V ∗D2

. Since there is a matching of size four between V ∗D1
and

V ∗D2
, there is a matching x′′′y′′′ in E(V ∗D1

, V ∗D2
) or remaining two matching e1, e2

are such that x ∈ e1, y ∈ e2, say e1 = xy′′′, e2 = x′′′y. In both case, we obtain

a ladder starting at N(u), N(v) in G[V (D∗)]. In the first sub-case, we choose a

ladder starting at N(x), N(x′) ending at N(x′′), N(x′′′) in G[V ∗D1
] and a ladder

starting at N(y), N(y′) ending at N(y′′), N(y′′′) in G[V ∗D2
]. By attaching those

three ladders with using parity vertex in an appropriate manner, we obtain

a desired structure containing disjoint cycles. In the other case, we choose

a ladder starting at at N(x), N(x′′′) ending at N(x′), N(x′′) in G[V ∗D1
] and a

ladder starting at N(y), N(y′′′) ending at N(y′), N(y′′) in G[V ∗D2
]. Similarly, we

are done by attaching those three ladders.

By Claim 2.4.11, we may assume that for any i, j ∈ [q], E(V ∗Di , V
∗
Dj

) has a matching

of at most 3. Then we have another claim which is useful for the arguments follow.

Claim 2.4.12. Let D be a component. For any X ⊂ V \ VD∗, if |{v ∈ VD∗ :

N(v) ∩X 6= ∅}| ≥ |VD∗ |
2

then there exists x ∈ X such that |N(v) ∩ V ′D| ≥ 4τ |V ′D|.

Proof. Let X is a subset of V \ VD∗ and assume that |{v ∈ VD∗ : N(v) ∩X 6= ∅}| ≥
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|VD∗ |
2

. Then there exists i ∈ [q] and Y ⊂ V ∗Di such that

|{v ∈ VD∗ : N(v) ∩ Y 6= ∅}| ≥ |VD
∗|

2
· 1

q
≥ α|VD∗|

2
.

So, there exists v ∈ Y such that

|N(v) ∩ VD∗| ≥
α|VD∗ |

6
,

which implies that

|N(v) ∩ VD′ | ≥ 4τ |V ′D|.

Claim 2.4.13. Let D∗1, D
∗
2 be two components. If there exist two distinct vertices

x, y ∈ V ∗D1
such that |N(x)∩V ′D2

|, |N(y)∩V ′D2
| ≥ 4τ |V ′D2

|, then there exists a (n′, r)−

weak ladder where r ∈ {1, 2}, n′ + r = b
|V ∗D1

|+|V ∗D2
|

2
c.

Proof. Since |N(x) ∩ V ′D2
|, |N(y) ∩ V ′D2

| > τ |V ′D2
|, there is x′ ∈ N(x) ∩ V ′D2

, so there

exists y′ ∈ N(y) ∩ V ′D2
such that x′y′ ∈ E. If |V ∗D1

| is even, then by Lemma 2.3.6 (2),

G[V ∗D2
] contains a ladder L

b
|V ∗
D2
|

2
c

having x′y′ as its first rung and G[V ∗D1
] contains a

ladder L |V ∗
D1
|

2
−1

starting at N(x), N(y). By attaching those two ladder with xx′, yy′,

we obtain a (n′, 1)- weak ladder where n′ =
|V ∗D1

|
2
− 1 + b

|V ∗D2
|

2
c = b

|V ∗D1
|+|V ∗D2

|
2

c − 1.

Now, suppose that |V ∗D1
| is odd. If {x, y} ∩ V ′′D1

6= ∅, without loss of generality,

x ∈ V ′′D1
, then by Fact 2.3.7, G[V ∗D1

\{x}] is τ -complete. Since |N(x)∩V ′D2
| ≥ 4τ |V ′D2

|,

G[V ∗D2
∪ {x}] is τ -complete. Since there exists x′′ ∈ V ∗D1

∩N(x) such that x′′ 6= y, by

Lemma 2.3.6 (2), there exists a L |V ∗
D1
|−1

2
−1

the first rung e1 = v1v2 of which is such

that v1 ∈ N(x′′), v2 ∈ N(y) in G[V ∗D1
\ {x}], and there exists a L

b
|V ∗
D2
|+1

2
c−1

the first

rung e2 = v′1v
′
2 of which is such that v′1 ∈ N(x), v′2 ∈ N(y′) in G[V ∗D2

∪ {x}], so by

attaching two ladders with xx′′ and yy′, we obtain a (b
|V ∗D1

|+|V ∗D2
|

2
c−2, 2)-weak ladder.

If {x, y} ⊂ V ′D1
then there exists z ∈ N(x) ∩ N(y) ∩ V ∗D1

. Since x′, y′ ∈ V ′D2
, there
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exists z′ ∈ N(x′) ∩N(y′) ∩ V ∗D2
. By Lemma 2.3.6 (4), there exists a L |V ∗

D1
|−1

2

the first

rung of which is zy in G[V ∗D1
\ {x}], and there exists a L

b
|V ∗
D2
|−1

2
c

the first rung of

which is z′y′ in G[V ∗D2
\ {x′}]. By attaching two ladders with xx′, yy′, we obtain a

(b
|V ∗D1

|+|V ∗D2
|

2
c − 1, 1)-weak ladder.

Claim 2.4.14. If D∗1, D
∗
2 are two components such that |V ∗D1

|+ |V ∗D2
| ≥ 2K + 1, then

there exists a (n′, c)− weak ladder where n′ ≥ K − 2, 2 ≤ c ≤ 7
α

.

Proof. We can always delete a vertex from V ∗D1
and so we may assume that |V ∗D1

| +

|V ∗D2
| = 2K + 1. Then exactly one of the terms |V ∗Di | is odd, and we have b

|V ∗D1
|

2
c +

b
|V ∗D2

|
2
c = K. By Fact 2.3.12, there exist two disjoint path P,Q between V ∗D1

, V ∗D2

such that |V (P )| + |V (Q)| ≤ 10
α

. Let xi be the endpoints of P and yi be the ends

of Q where xi, yi ∈ V ∗Di , i ∈ [2]. If |V (P )| + |V (Q)| is even then by applying Lemma

2.3.6 (2), we obtain a L
b
|V ∗
D1
|−2

2
c

in G[V ∗D1
] and L

b
|D∗2 |−2

2
c

in G[V ∗D2
] which start at

N(x1), N(y1), N(x2), N(y2), respectively. By attaching these ladders, we obtain a

(n′, c)−weak ladder where n′ = b
|V ∗D1

|−2

2
c+ b

|V ∗D2
|−2

2
c ≥ K − 2 and 2 ≤ c ≤ 4+ 10

α

2
≤ 6

α
.

Otherwise, assume that |V (P )| + |V (Q)| is odd. If |V ∗Di | is odd then |V ∗D3−i| is even,

and we apply Lemma 2.3.6 (3) to G[V ∗Di ] and Lemma 2.3.6 (2) to G[V ∗D3−i]. Then by

attaching those two ladders, we obtain a (n′, c)-weak ladder where n′ ≥ K − 2 and

3 ≤ c ≤ 5+ 10
α

2
≤ 7

α
.

Now, we move vertices between components to obtain, if possible, components of

larger size. Let D be a component and suppose |V ∗D| ≤ δ. Then every vertex v ∈ V ′D

has a neighbor in V \ V ∗D. Thus |E(V ′D, V \ V ∗D)| ≥ |V ′D|. If there is a matching of size

8n/δ, then for some component F 6= D there is a matching of size four between V ′D

and V ∗F , and we are done by Claim 2.4.11. Hence there is a vertex v ∈ V \ V ∗D such

that |N(v) ∩ V ∗D| > δ|V ′D|/8n, so |N(v) ∩ V ′D| ≥ 4τ |V ′D|, then we can move v to V ′′D.

Thus we may assume that there is a component D such that |V ∗D| ≥ δ+1. We will now
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move vertices between components. To avoid introducing new notation, we will use

D∗i to refer to the ith component after moving vertices from and to D∗i . Move vertices

so that after renumbering of components we have |V ∗D1
| ≥ |V ∗D2

| ≥ · · · ≥ |V ∗Dq | and for

any k ∈ [q],
∑k

i=1 |V ∗Di | is as big as possible and subject to this, for any i, j ∈ [q]\{1},

|E(V ∗D1
, V ∗Di)| ≤ |E(V ∗D1

, V ∗Dj)| where i < j. Note that if i < j and |V ∗Di | = |V
∗
Dj
| then

|E(V ∗D1
, V ∗Di)| ≤ |E(V ∗D1

, V ∗Dj)|. If |V ∗D1
| ≥ δ+14d1n then we stop moving any vertices.

Hence the natural first case is that |V ∗D1
| ≥ δ + 11d1n. Since q − 1 ≥ 2, there exists

i ∈ [q] \ {1} such that at most 7d1n vertices in the original V ∗Di were moved to V ∗D1
,

G[V ∗Di ] is 2τ -complete and

|V ∗D1
|+ |V ∗Di | ≥ (δ + 11d1n) + (δ − 10d1n) = 2δ + d1n.

By Claim 2.4.14, G[V ∗D1
∪ V ∗D2

] contains a (n′, c)-weak ladder where n′ ≥ δ + d1n
2
− 2,

2 ≤ c ≤ 7
α

. Since d1n
2
≥ 8

α
≥ 7

α
+ 2, by Lemma 2.3.2, G[V ∗D1

∪V ∗D2
] contains all disjoint

cycles. So we may assume that all possible moves terminate and

δ + 11d1n > |V ∗D1
| ≥ |VD∗2 | ≥ · · · ≥ |VD∗q |.

Note that for any i ∈ [3], j ∈ [q] such that j > i, there is no v ∈ V ∗Dj such that

|N(v) ∩ V ′Di | ≥ δ|V ′Di |/(16n), since otherwise, v can be moved to V ′′Di . There are at

most (q−1) ·14d1n vertices in each original components moved to other components,

but since (q − 1) · 14d1n ≤ 50d1n
α

, for i ≥ 2, G[V ∗Di ] is 2τ -complete, because τ ≥ 100d1
α2 .

We will continue the analysis based on the size of V ∗D1
. Suppose |V ∗D1

| = δ + c1

where c1 ≥ 1.

Claim 2.4.15. If |V ∗D1
| = δ + 1 then for any u, v ∈ V ∗D1

, N(u) ∩N(v) ∩ V ∗D1
6= ∅.

Proof. Suppose not and let u, v ∈ V ∗D1
be such that N(u) ∩ N(v) ∩ V ∗D1

= ∅. Then

for any x ∈ V ∗D1
\ {u, v}, |N(x) ∩ {u, v}| ≤ 1, so |N(x) ∩ V ∗D1

| ≤ |V ∗D1
| − 2 = δ − 1,
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therefore

|E(V ∗D1
, V \ V ∗D1

)| ≥ |V ∗D1
| − 2 ≥

|V ∗D1
|

2
,

by Claim 2.4.12, there exists z ∈ V \V ∗D1
which can be moved to V ∗D1

, a contradiction.

First, we consider the case that |V ∗D2
| ≥ δ. By Fact 2.3.12, there are V ∗D1

−V ∗D2
paths

P1, P2 such that |V (P1)|+ |V (P2)| ≤ 10
α

. Denote by ui, vi the endpoints of Pi such that

ui ∈ V ∗D1
, vi ∈ V ∗D2

. Since |V ∗D3
∩ (V (P1)∪V (P2)| ≤ 10

α
, G[V ∗D3

\ (V (P1)∪V (P2))] is 2τ -

complete (because τ |V ∗D3
| ≥ τ · δ

2
≥ 20

α
), so by Lemma 2.3.6, G[V ∗D3

\ (V (P1)∪V (P2))]

contains a Ln′′ where n′ ≥ δ
3
.

Since |V ∗D1
|+|V ∗D2

| ≥ 2δ+1, by Claim 2.4.14, G[V ∗D1
∪V ∗D2

∪V (P1)∪V (P2)] contains

a (δ− 2, k)-weak ladder where k ≥ 2. By Corollary 2.3.4, we may assume that either

n1 = b δ
2
c, n2 = d δ

2
e or n1 = b δ−1

2
c, n2 = d δ+1

2
e. If n1 = b δ

2
c, n2 = d δ

2
e then G[V ∗D1

]

contains C2n2 and G[V ∗D2
] contains C2n1 . Otherwise, let n1 = b δ−1

2
c, n2 = d δ+1

2
e. If

δ is odd then G[V ∗D1
] contains C2n2 and G[V ∗D2

] contains C2n1 , so let δ be even. If

u1u2 ∈ E then by Lemma 2.3.6 (5), G[V ∗D2
∪ {u1, u2}] contains C2n2 and by Lemma

2.3.6 (2), G[V ∗D1
\ {u1, u2}] contains C2n1 . If u1u2 /∈ E then by Claim 2.4.15, there

exists u3 ∈ N(u1) ∩ N(u2) ∩ V ∗D1
, and then G[V ∗D2

∪ {u1, u2, u3}] contains C2n2 and

G[V ∗D1
\ {u1, u2, u3}] contains C2n1 .

Now, we assume that |V ∗D2
| < δ, so let |V ∗D2

| = δ − c2 where c2 ≥ 1. By Claim

2.4.11, |E(V ∗D1
, V ∗D2

)| ≤ 3|V ∗D2
|, and so

|E(V ∗D2
, V \ (V ∗D1

∪ V ∗D2
))| ≥ (c2 + 1− 3)|V ∗D2

| ≥ (c2 − 2)|V ∗D2
|.

By Claim 2.4.12, |E(V ∗D2
, V \ (V ∗D1

∪ V ∗D2
))| <

|V ∗D2
|

2
, so c2 ∈ [2] and there exist two

distinct vertices x, y ∈ V ∗D1
such that |N(x)∩ V ∗D2

|+ |N(y)∩ V ∗D2
| ≥

3|V ∗D2
|

2
. It implies

that |N(x)∩N(y)∩V ∗D2
| ≥

|V ∗D2
|

2
and |N(x)∩V ′D2

|, |N(y)∩V ′D2
| ≥ 4τ |V ′D2

|. By Claim

2.4.13, there exists a (n′, k)− weak ladder such that k ∈ [2] and n′+k ≥ b
|V ∗D1

|+|V ∗D2
|

2
c.
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We have two cases.

• Case 1: c1 ≥ c2. Note that |V ∗D1
| + |V ∗D2

| = (δ + c1) + (δ − c2) ≥ 2δ. Hence

G[V ∗D1
∪ V ∗D2

] contains either a (δ − 1, 1)-weak ladder or (δ − 2, 2)-weak-ladder.

Since G[V ∗D3
] contains Ln′′ where n′′ ≥ δ

3
, by Corollary 2.3.4, it suffices to show

that G contains disjoint C2b δ
2
c,C2d δ

2
e or disjoint C2b δ−1

2
c,C2d δ+1

2
e. We can choose

Z ⊂ {x, y} so that G[V ∗D1
\ Z] contains C2b δ

2
c and G[V ∗D2

∪ Z] contains C2d δ
2
e.

Since N(x) ∩ N(y) ∩ V ∗D2
6= ∅, we can choose Z ⊂ N(x) ∩ N(y) ∩ V ∗D2

so that

G[V ∗D1
∪ Z] contains C2d δ+1

2
e and G[V ∗D2

\ Z] contains C2b δ−1
2
c.

• Case 2: c1 < c2. Then c1 = 1, c2 = 2. Since |E(V ∗D2
, V \ (V ∗D1

∪ V ∗D2
))| <

|V ∗D2
|

2
,

|E(V ∗D2
, V ∗D1

)| ≥
5|V ∗D2

|
2

, so again by Claim 2.4.11, there exist x, y, z ∈ V ∗D1
such

that E(V ∗D2
, V ∗D1

) = E(V ∗D2
, {x, y, z}) and for any u ∈ {x, y, z}, |E(V ∗D2

, {u})| ≥
|V ∗D2

|
2

. Note that G[V ∗D1
∪V ∗D2

] contains a (n′, 1)-weak ladder where n′ ≥ δ−2 and

G[V ∗D3
] contains Ln′′ where n′′ = b

|V ∗D3
|

2
c. If there exists ni such that 2 < ni ≤ n′′

then G[V ∗D3
] contains C2ni , and by Lemma 2.3.2, G[V ∗D1

∪V ∗D2
] contains remaining

disjoint cycles. If for every i, ni = 2, then G obviously contains all C2ni for

i ∈ [l].

Hence we may assume that l = 2 and |V ∗D3
| < 2n1 ≤ 2n2.

Claim 2.4.16. For any i, j ∈ [q] \ {1}, the size of a maximum matching in

E(V ∗Di , V
∗
Dj

) is at most one.

Proof. Suppose to a contrary that there exist i, j ∈ [q]\{1} such that E(V ∗Di , V
∗
Dj

)

contains a matching of size at least two. If 2 /∈ {i, j} then by Corollary 2.3.8,

G[V ∗Di∪V
∗
Dj

] contains a (n′, 2)−weak ladder where n′ ≥ b
|D∗Vi |

2
c+b

|D∗Vj |
2
c−2 ≥ 3δ

4
,

and then C2n2 ⊂ G[V ∗D1
∪ V ∗D2

], C2n1 ⊂ G[V ∗Di ∪ V
∗
Dj

]. Otherwise, without loss of

generality, i = 2, j > 2. Let e1, e2 be two indepdent edges in E(V ∗D2
, V ∗Dj). Let
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x′ ∈ N(x)∩V ′D2
, y′ ∈ N(y)∩V ′D2

such that x′y′ ∈ E and {x′, y′}∩ (e1 ∪ e2) = ∅.

Then G[V ∗D1
∪ {x′, y′}] contains C2n1 . Since G[V ∗D2

\ {x′, y′}] is 2τ -complete,

G[V ∗D2
∪ V ∗Dj \ {x

′, y′}] contains C2n2 .

If |V ∗D3
| ≤ δ − 4, then by Claim 2.4.12, |E(V ∗D3

, V ∗D1
∪ V ∗D2

)| >
9|V ∗D3

|
2

and then

|E(V ∗D3
, V ∗D2

)| ≥
3|V ∗D3

|
2

, and we are done by Corollary 2.3.8. So we may assume

that |V ∗D3
| ∈ {δ − 2, δ − 3} which leads to two sub-cases.

– |V ∗D3
| = δ − 3. By Claim 2.4.12, |E(V ∗D3

, V ∗D1
∪ V ∗D2

)| >
7|V ∗D3

|
2

. By Claim

2.4.11, |E(V ∗D3
, V ∗D1

)| ≤ 3|V ∗D3
|, so by Claim 2.4.16, there exists w ∈ V ∗D2

such that
|V ∗D3

|
2

< |E(V ∗D2
, V ∗D3

)| = |E({w}, V ∗D3
)| ≤ |V ∗D3

|.Hence |E(V ∗D3
, V ∗D1

)| >
5|V ∗D3

|
2

, and then there exist x1, y1 ∈ V ∗D1
such that |N(x1) ∩ V ∗D3

|, |N(y1) ∩

V ∗D3
| >

|V ∗D3
|

2
. In addition, there is a vertex z ∈ V ∗D1

\ {x1, y1} such that

|N(z)∩V ∗D3
| >

|V ∗D3
|

2
. Choose z′ ∈ N(z)∩N(w)∩V ∗D3

. Then G[V ∗D2
∪{z, z′}]

contains C2n1 and G[V ∗D1
∪ V ∗D3

\ {z, z′}] contains C2n2 .

– |V ∗D3
| = δ − 2. Note that we may assume

n1 = bδ
2
c, n2 = dδ

2
e,

as otherwise 2n1 ≤ δ− 2, and G[V ∗D3
] contains C2n1 , G[V ∗D1

∪ V ∗D2
] contains

C2n2 .

Claim 2.4.17. For any i ∈ [q]\{1} such that |V ∗Di| = δ−2, |E(V ∗D1
, V ∗Di)| ≥

5|VDi |
2

and E(V ∗D1
, V ∗Di) = E({x, y, z}, V ∗Di).

Proof. Let i ∈ [q] \ {1} be such that |V ∗Di | = δ − 2. Since |V ∗Di | = |V
∗
D2
|, by

the redistribution process,

|E(V ∗D1
, V ∗Di)| ≥ |E(V ∗D1

, V ∗D2
)| ≥

5|V ∗D2
|

2
=

5|V ∗Di |
2

.
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There exists x1, y1, z1 ∈ V ∗D1
such that E(V ∗D1

, V ∗Di) = E({x1, y1, z1}, V ∗Di)

and |N(x1)∩V ∗Di |, |N(y1)∩V ∗Di |, |N(z1)∩V ∗Di | ≥
|V ∗Di |

2
, so |N(x1∩V ′Di)|, |N(y1∩

V ′Di)|, |N(z1∩V ′Di)| ≥ 4τ |V ′Di |, and then for any U ⊂ {x1, y1, z1}, G[U∪V ∗Di ]

is τ -complete. If {x1, y1, z1} 6= {x, y, z}, w.l.o.g, z1 /∈ {x, y, z}, then

G[{y1, z1}∪V ∗Di ] contains C2n1 and G[V ∗D2
∪V ∗D1

\{y1, z1}] contains C2n2 .

Claim 2.4.18. For any i ∈ [q] \ {1}, |V ∗D1
| = δ − 2.

Proof. Suppose not and choose i ∈ [q] \ {1} such that |V ∗Di | ≤ δ − 3, and

subject to this, i is the smallest, i.e, for any i′ ∈ [i− 1] \ {1}, |V ∗D′i | = δ− 2.

Note that i ≥ 4. First, assume that there exists i1, i2 ∈ [i−1]\{1} such that

there exists y1 ∈ V ∗Di1 , y2 ∈ V ∗Di2 such that |N(y1)∩V ∗Di |, |N(y2)∩V ∗Di | > 0.

Let Q be a N(y1)−N(y2) path in G[V ∗Di ]. Since |V ∗Di1 |, |V
∗
Di2
| = δ − 2, by

Fact 2.4.17,

|E(V ∗Di1 , {x, y, z})|, |E(V ∗Di2 , {x, y, z})| ≥
5(δ − 2)

2
.

Choose x′ ∈ N(x) ∩ VD∗i1 such that x′y1 ∈ E and x′′ ∈ N(x) ∩ VD∗i2 such

that x′′ 6= y2. Then G[{x} ∪ {x′, y1} ∪ V (Q) ∪ VDi2 ] contains C2n1 and

G[V ∗D1
∪ V ∗Di1 \ {x, x

′, y1}] contains C2n2 . Hence |E(V ∗D1
, V ∗Di)| ≥

5|V ∗Di |
2

and

there exists i′ ∈ [i−1]\{1} such that |E(V ∗Di′ , V
∗
Di

)| ≥
|V ∗Di |

2
and then there

exists V ∗Di −V
∗
Di′

path Q such that V (Q̊) ⊂ V ∗D1
and |V (Q̊)∩{x, y, z}| = 1.

Similarly, we can find C2n1 in G[V ∗Di′ ∪ V
∗
Di
∪ V (Q)] and C2n2 in G[V ∗D1

∪

V ∗Dj \ V (Q)] where j ∈ {2, 3} \ {i′}.

Finally, suppose there exists i, j(> i) ∈ [q]\{1} such that E(V ∗Di , V
∗
Dj

) 6= ∅.

Let e∗ ∈ E(V ∗Di , V
∗
Dj

). By Claim 2.4.17, |N(x) ∩ V ∗Di|, |N(x) ∩ V ∗Dj | ≥
δ−2

2
,

so we can choose x′ ∈ (N(x) ∩ V ∗Di) \ e
∗, x′′ ∈ (N(x) ∩ V ∗Dj) \ e

∗. Then

G[V ∗Di∪V
∗
Dj
∪{x}] contains C2n2 and G[V ∗D1

\{x}] contains C2n1 . Therefore,

47



for any i, j ∈ [q] \ {i}, E(V ∗Di , V
∗
Dj

) = ∅, which implies that G is a graph

from Example 2.1.3.

We can now finish the proof. If R is connected then by Lemma 2.4.5, 2.3.2, G

contains cycles C2n1 , . . . , C2nl or there exists a set V ′ ⊂ V with |V ′| ≥ (1− δ/n−β)n,

such that all but at most 4βn vertices v ∈ V ′ have |NG′(v)| ≤ βn where G′ = G[V ′].

If R is disconnected and there is a component which is non-bipartite, then we are

done by Lemma 2.4.6,2.4.10, and 2.3.2, and if all components are bipartite, then G

has C2n1 , . . . , C2nl by Lemma 2.4.7, 2.3.2.

2.5 The second non-extremal case

In this section we will show that if G is non-extremal and δ(G) ≥ (1/2− γ)n for

small enough γ, then G contains disjoint cycles C2n1 , . . . , C2nl .

Theorem 2.5.1. There exists γ > 0 and N such that for every 2-connected graph

G on n ≥ N vertices with (1/2 − γ)n ≤ δ(G) < n/2 − 1, G contains disjoint cycles

C2n1 , . . . , C2nl for every n1, . . . , nl where ni ≥ 2 and n1 + · · · + nl = δ(G) or G is

β-extremal for some β = β(γ) such that β → 0 as γ → 0. In addition, if G is not

β-extremal and n/2− 1 ≤ δ(G) ≤ n/2, then G contains a cycle on 2δ(G) vertices.

Proof. We will use the same strategy as in the proof of Theorem 2.4.2. The first part

of the proof is very similar to an argument from (Czygrinow and Kierstead, 2002)

and we only outline the main idea. Consider the reduced graph R as in the proof of

Theorem 2.4.2.

First suppose R is connected. We will use the procedure from (Czygrinow and

Kierstead, 2002) to show that either G has a ladder on at least n − 1 vertices or G
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is β-extremal. Since R is connected and δ(R) ≥ (δ/n − 2d1)t ≥ (1/2 − 2γ)t, there

is a path in R, P = U1V1, . . . , UsVs where s ≥ (1/2 − 3γ)t. As in (Czygrinow and

Kierstead, 2002) we move one vertex from U1 to Us, and the clusters in R which are not

on P to V0 so that |V0| ≤ 7γn and redistribute vertices from V0 using the following

procedure from (Czygrinow and Kierstead, 2002). Let ξ, σ be two constants. The

procedure is executed twice with different values of ξ and σ. Distribute two vertices

at a time and assign them to Ui, Vj so that for every i, |Ui| − |Vi| is constant, the

number of vertices assigned to Ui and Vj is at most O(ξn/k), and if x is assigned to

Ui (Vj), then |NG(x) ∩ Vi| ≥ σn/k (|NG(x) ∩ Uj| ≥ σn/k). Let Q denote the set of

clusters X such that ξn/k vertices have been assigned to X. We have |Q| ≤ 7γk/ξ.

For X ∈ {Ui, Vi}, let X∗ be such that {X∗, X} = {Ui, Vi}. For a vertex z let

Nz = {X ∈ V (P ) \Q||NG(z) ∩X∗| ≥ σn/k} and N∗z = {X∗|X ∈ Nz}.

Take x, y from V0, and choose X, Y such that X,X∗, Y, Y ∗ are not in Q, and either

N∗x ∩ Ny 6= ∅ or N∗x ∩ Ny = ∅ but ∃X∈Nx,Y ∈Ny |EG(X, Y )| ≥ 2σn2/k2. The argument

from (Czygrinow and Kierstead, 2002) shows that either G has a ladder on 2bn/2c

vertices or the algorithm fails. We will show that if it fails, then G is β-extremal for

some β > 0. Since |Q| ≤ 7γk/ξ and |V0| ≤ 7γn, using the fact that δ(G) ≥ (1/2−γ)n,

we have |Nx| ≥
(

1
2
− 10γ

ξ

)
k. If N∗x ∩ Ny 6= ∅, then we assign x to X ∈ Nx and y to

X∗ for some X such that X∗ ∈ N∗x ∩Ny. Otherwise N∗x ∩Ny = ∅ (and so Nx and Ny

are almost identical). If there is X ∈ Nx and Y ∈ Ny such that |E(X, Y )| ≥ 2σn2/k2,

then assign x to X, y to Y and a vertex y′ ∈ Y such that |NG(y)∩X| ≥ σn/k to X∗.

Otherwise G is β-extremal for some β > 0.

We can now assume that R is disconnected so it has two components D1, D2.

Although slightly different arguments will be needed, we will reuse some parts of

the proof of Lemma 2.4.10. As in the proof of Theorem 2.4.2, we have δ(R) ≥

(δ/n − 2d1)t ≥ (1/2 − 3d1)t. We set ξ := 12d1, τ = 400d1 and for a component D
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define V ′D = {v||NG(v)∩VD| ≥ (1−
√
ξ)|VD|} where VD is the set of vertices in clusters

from D. As in the case of the proof of Lemma 2.4.10, we have |E(GD)| ≥ (1−ξ)
(|VD|

2

)
and similarly we also have |VD \ V ′D| ≤ 2

√
ξ|VD|. We move vertices from VD \ V ′D to

V0 and redistribute them to obtain V ′′D consisting of those vertices v ∈ V0 for which

|NG(v) ∩ V ′D| ≥ δ
6
≥ τ |V ′D|, and set V ∗D := V ′D ∪ V ′′D. We have V ∗D1

∪ V ∗D2
= V (G) and

G[V ∗D1
], G[V ∗D2

] are τ -complete. By Lemma 2.3.6 (2), G[V ∗D1
] contains L

b
|V ∗
D1
|

2
c

and

G[V ∗D2
] contains L

b
|V ∗
D2
|

2
c
.

Since δ < n
2
− 1, n = 2δ + K where K ≥ 3. If δ is odd then there exists i ∈ [l]

such that ni > 2. If δ is even, i.e, 4|2δ, and for any i ∈ [l], ni = 2 then G contains

disjoint cycles C2n1 , C2n2 , . . . , C2nl . Indeed, if |V ∗D1
| = 4t+ b, |V ∗D2

| = 4t′+ b′ such that

b+b′ > K, b, b′ < 4 then b+b′ ≥ K+4 ≥ 7, so b = 4 or b′ = 4, a contradiction. Hence

by Lemma 2.3.2 and 2.3.3, it suffices to show that G contains either (δ + 2, 2)-weak

ladder or (δ, 1)-weak ladder. Since G is 2-connected, there is a matching of size two

in G[V ∗D1
, V ∗D2

].

Claim 2.5.2. If there exists a matching consisting of u1u2, v1v2 ∈ E(V ∗D1
, V ∗D2

) such

that N(u1)∩N(v1)∩V ∗D1
6= ∅ and N(u2)∩N(v2)∩V ∗D2

6= ∅ then G[V ∗D1
∪V ∗D2

] contains

(n′, 1)-weak ladder where n′ ≥ b
|V ∗D1

|−1

2
c+ b

|V ∗D2
|−1

2
c.

Proof. For i ∈ [2], choose zi ∈ N(ui) ∩ N(vi). By Lemma 2.3.6 (4), G[V ∗Di \ {ui}]

contains L
b
|V ∗
Di
|−1

2
c

having zivi as its first rung. By attaching these two ladders with

u1u2, v1v2, we obtain a desired weak ladder.

Claim 2.5.3. If |V ∗D1
| ≤ δ then there exists a matching consisting of u1u2, v1v2 ∈

E(V ∗D1
, V ∗D2

) such that u1v1 ∈ E.

Proof. Let I be a maximum independent set in G[V ∗D1
]. If G[V ∗D1

] is complete then it

is trivial, so we may assume |I| ≥ 2. Choose u1 ∈ I, v1 ∈ V ∗D1
\ I such that u1v1 ∈ E.
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Since |I| ≥ 2, |N(u1) ∩ V ∗D1
| ≤ |V ∗D1

| − 2 ≤ δ − 2, which implies that

|N(u1) ∩ V ∗D2
| ≥ 2.

Since |N(v1) ∩ V ∗D2
| ≥ 1, we can choose v2 ∈ N(v1) ∩ V ∗D2

and u2 ∈ N(u1) ∩ V ∗D2
such

that u2 6= v2.

Claim 2.5.4. If |V ∗D1
|, |V ∗D2

| ≤ δ + 8 then there exists a matching consisting of

{u1, u2}, {v1, v2} ∈ E(V ∗D1
, V ∗D2

) such that one of the following holds.

• N(u1) ∩N(v1) 6= ∅ and N(u2) ∩N(v2) 6= ∅.

• u1v1 ∈ E or u2v2 ∈ E.

Proof. Suppose that for any two independent edges u1u2, v1v2 ∈ E(V ∗D1
, V ∗D2

) , the first

condition does not hold. Choose u1u2, v1v2 ∈ E(V ∗D1
, V ∗D2

). If u1v1 ∈ E or u2v2 ∈ E

then the second condition holds, so we may assume that u1v1 /∈ E and u2v2 /∈ E.

Without loss of generality, N(u1)∩N(v1) = ∅. Then |N(u1)∩V ∗D1
|+ |N(v1)∩V ∗D1

| ≤

|V ∗D1
| − 2, and then

|N(u1) ∩ V ∗D2
|+ |N(v1) ∩ V ∗D2

| ≥ 2δ − (|V ∗D1
| − 2) ≥ δ − 6 ≥ (1− τ)|V ∗D2

|.

Without loss of generality, |N(v1)∩V ∗D2
| ≥ |N(u1)∩V ∗D2

|, so |N(v1)∩V ∗D2
| ≥

(1−τ)|V ∗D2
|

2
.

If |N(u1) ∩ V ∗D2
| > τ |V ∗D2

| then there exists u′2 ∈ N(u1) ∩ V ′D2
, since |N(u′2) ∩ V ′D2

| ≥

(1− τ)|V ′D2
| there exists v′2 ∈ N(u′2) ∩N(v1) ∩ V ′D2

, so {u1, v1}, {u′2, v′2} are such that

the second condition holds. Otherwise, assume that |N(u1) ∩ V ∗D2
| ≤ τ |V ∗D2

|. Note

that |N(u2) ∩ V ′D2
| ≥ 4τ |V ∗D2

|. Since |N(v1) ∩ V ∗D2
| ≥ (1 − 2τ)|V ∗D2

|, there exists

v′2 ∈ N(v1) ∩ N(u2) ∩ V ∗D2
, so {u1, v1}, {u2, v

′
2} are such that the second condition

holds.

Without loss of generality |V ∗D1
| ≤ |V ∗D2

|. If |V ∗D1
| ≤ δ then by Claim 2.5.3 and

Corollary 2.3.8, G contains (δ, 1)-weak ladder. Hence we may assume that |V ∗D1
| ≥
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δ + 1. If |V ∗D2
| ≥ δ + 9 then |V ∗D1

| + |V ∗D2
| ≥ 2δ + 10, and then by Corollary 2.3.8, G

contains (n′, 2)-weak ladder where

n′ ≥ b
|V ∗D1
|

2
c+ b

|V ∗D2
|

2
c − 2 ≥ δ + 2.

Hence δ+1 ≤ |V ∗D1
| ≤ |V ∗D2

| ≤ δ+8. By Claim 2.5.4, there exists a matching consisting

of u1u2, v1v2 ∈ E(V ∗D1
, V ∗D2

) such that one of the conditions from Claim 2.5.4 holds. If

N(u1)∩N(v1) 6= ∅ and N(u2)∩N(v2) 6= ∅ then by Claim 2.5.2, G contains (n′, 1)-weak

ladder where n′ ≥ b
|V ∗D1

|−1

2
c+b

|V ∗D2
|−1

2
c ≥ δ. Otherwise, u1v1 ∈ E or u2v2 ∈ E, then by

Corollary 2.3.8, G contains (n′, 1)-weak ladder where n′ ≥ b
|V ∗D1

|
2
c+b

|V ∗D2
|

2
c−1 ≥ δ.

2.6 Extremal Case

In this section we will prove the extremal case.

Theorem 2.6.1. Let 0 < α < 1
2

be given and β be such that β < ( α
400

)2 ≤ 1
640000

. If G

is a graph on n vertices with minimum degree δ ≥ αn which is β-extremal, then either

G contains Lδ or G is a subgraph of the graph from Example 2.1.4. Moreover, in the

case when G is a subgraph of the graph from Example 2.1.4, for every n1, . . . , nl ≥ 2

such that
∑
ni = δ, G contains disjoint cycles C2n1 , C2n2 , . . . , C2nl if ni ≥ 3 for at

least one i.

Proof. Recall that G is β-extremal if the exists a set B ⊂ V (G) such that |B| ≥

(1 − δ/n − β)n and all but at most 4βn vertices v ∈ B have |N(v) ∩ B| ≤ βn. Let

A = V (G)\B and note that δ − βn ≤ |A| ≤ δ + βn, because for some w ∈ B,

|N(w) ∩ A| ≥ δ − βn. Let C := {v ∈ B : |N(v) ∩ B| > βn}, A1 := A,B1 := B \ C.

Then |B1| ≥ n− δ − 5βn and |C| ≤ 4βn. Consequently, we have

|E(A1, B1)| ≥ (δ − 5βn)|B1| ≥ (δ − 5βn)(n− δ − 5βn) ≥ δn− δ2 − 5βn2. (2.2)

We have the following claim.
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Claim 2.6.2. There are at most
√
βn vertices v in A1 such that |N(v) ∩ B1| <

n− δ − 6
√
βn.

Proof. Suppose not. Then

|E(A1, B1)| < (n− δ − 6
√
βn) ·

√
βn+ (n− δ + βn)(δ + βn−

√
βn) ≤ δn− δ2 − 5βn2.

This contradicts (2.2).

Let γ := 6
√
β and move those vertices v ∈ A1 to C for which |N(v) ∩ B1| <

n−δ−6
√
βn. Let A2 := A1\C, B2 := B1. Then, by Claim 2.6.2, |A2| ≥ δ−(β+

√
β)n,

|B2| ≥ n− δ − 5βn and,

|C| ≤ (4β +
√
β)n < 2

√
βn. (2.3)

In addition, for every v ∈ A2, |N(v) ∩ B2| ≥ n − δ − 6
√
βn and for every vertex

v ∈ B2, |N(v) ∩ A2| ≥ δ − (β +
√
β)n.

We now partition C = A′2 ∪ B′2 as follows. Add v to A′2 if |N(v) ∩ B2| ≥ γn, and

add it to B′2 if |N(v)∩A2| ≥ γn and min{|A2 ∪A′2|, |B2 ∪B′2|} is as large as possible.

Without loss of generality assume |A2 ∪ A′2| ≤ |B2 ∪B′2|. We have two cases.

Case (i) |A2 ∪ A′2| ≥ δ.

For any v ∈ A′2, |N(v) ∩ B2| ≥ γn > |C| ≥ |A′2|. Therefore, there exists matching

M ∈ E(A′2, B2) which saturates A′2. Note that q := |M | = |A′2| ≤ |C| < 2
√
βn.

For every {xi, yi} ∈ M , we can pick x′i, x
′′
i ∈ A2, y

′
i, y
′′
i ∈ B2 \ V (M) all distinct, so

that {x′i, y′i} ∈ E, {x′′i , y′′i } ∈ E and x′i, x
′′
i ∈ N(yi), y

′
i, y
′′
i ∈ N(xi). Note that this is

possible because |N(xi)∩B2| ≥ 6
√
βn > 3|M |. Then G[{xi, yi, x′i, x′′i , y′i, y′′i }] contains

a 3-ladder, which we will denote by Li. Note that |
⋃
i≤q V (Li)| = 3|M | < 6

√
βn. We

repeat the same process to find p 3-ladders Lj for each vertex from B′2. We have

p+ q = |C| < 2
√
βn 3-ladders, each containing exactly one vertex from C. Note that

|A2 \
⋃p+q
i= V (Li)| ≤ |B2 \

⋃p+q
i=1 V (Li)|.
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For every v ∈ A2 \
⋃p+q
i=1 V (Li), |N(v) ∩ (B2 − (

⋃p+q
i=1 V (Li)))| ≥ n − δ − 18

√
βn

and for every v ∈ B2 \
⋃p+q
i=1 V (Li), |N(v) ∩ A2| ≥ δ − 18

√
βn. Therefore there

exists a matching M ′ = {{ai, bi} : i = 1, . . . , |A2 − ∪p+qi=1V (Li)|} which saturates

A2 −
⋃p+q
i=1 V (Li). Define the auxiliary graph H as follows. For every Li consider

vertex VLi and let

V (H) = {vLi : i ∈ [p+ q]} ∪ {e : e ∈M ′}.

For e = aibi, e
′ = ajbj ∈ M ′, ee′ ∈ E(H) if G[{ai, aj}, {bi, bj}] = K2,2 and for

vLi ∈ V (H), e = ajbj ∈ M ′, vLie ∈ E(H) if aj ∈ N(y′i) ∩N(y′′i ), bj ∈ N(x′i) ∩N(x′′i ).

Then δ(H) ≥ |H|−100
√
βn > |H|

2
, H contains a Hamilton cycle, which gives, in turn,

a (|A2|+ |A′2|)-ladder in G.

Case (ii) |A2 ∪ A′2| = δ −K for some 0 < K ≤ β +
√
βn < 2

√
βn.

Note that for every vertex v ∈ B2∪B′2, K ≤ |N(v)∩(B2∪B′2)| < (γ+2
√
β)n. Indeed,

if v ∈ B2, then |N(v) ∩ (B2 ∪ B′2)| ≤ βn + |B′2| and if v ∈ B′2, then |N(v) ∩ (B2 ∪

B′2)| < γn+ |B′2| as otherwise we would move v to A′2. Thus, in particular, for every

v ∈ B2 ∪B′2, |N(v) ∩ A2| ≥ 9|A2|/10. In addition, |A2 ∪ A′2| ≤ |B2 ∪B′2| − 2K − 2.

Let Q be a maximum triple matching in G[B2∪B′2] and Q′ be a maximum double

matching in G[B2 ∪B′2 \ V (Q)].

Claim 2.6.3. If |Q|+ |Q′| ≥ K and |Q′| ≤ 2, then G contains Lδ.

Proof. Without loss of generality, let |Q| = K−2 and |Q′| = 2. For i ∈ [K−2], let xi

denote the center of the ith star in the triple matching and let x′i, y
′
i, z
′
i be its leaves in

G[B2 ∪ B′2]. Let xK−1, xK be the centers of the stars in the double matching and let

{x′K−1, y
′
K−1}, {x′K , y′K} denote the sets of leaves. Let S := {x1, . . . , xK} and note that

|S∪A2∪A′2| = δ. For every z, w ∈ B2∪B′2, |N(w)∩N(z)∩A2| ≥ 4|A2|/5. Therefore,

for any i ∈ [K − 2], there exists yi ∈ N(y′i)∩N(x′i)∩A2 and zi ∈ N(z′i)∩N(x′i)∩A2,

i.e G[{xi, x′i, yi, y′i, zi, z′i}] forms 3-ladder and for j ∈ {K − 1, K}, there exists yj ∈
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N(x′j)∩N(y′j)∩A2, so G[xj, x
′
j, yj, y

′
j] forms a 2-ladder, say Lj. As similar as we did in

the case (i), we define auxiliary graph H such that V (H) consists of K − 2 3-ladders,

2 2-ladders and 3-ladders wrapping remaining vertices in A′2 ∪ B′2 and matchings

in E(A2, B2) saturating remaining vertices in A2. For the definition of E(H), only

difference with what did in case (i) is for vLK−1
, vLK . For e = ab ∈M ,j ∈ {K−1, K},

vLje ∈ E(H) if yjb, ay
′
j ∈ E. Then dH(vLK−1

), dH(vLK ) > |H|
2

and H − \{vLK−1
, vLK}

has a Hamilton cycle and then we obtain a Hamilton path in H which has vLK−1
, vLK

as its two ends. It implies that G contains Lδ.

Claim 2.6.4. If K ≥ 3 then |Q| ≥ K.

Proof. Suppose not. Then every vertex v ∈ (B2 ∪ B′2)\V (Q) has at least K − 2

neighbors in V (Q). Hence

|E(V (Q), (B2 ∪B′2)\V (Q))| ≥ (K − 2)|(B2 ∪B′2)\V (Q)|

> (K − 2)(|(B2 ∪B′2)| − 4K)

= (K − 2)(n− δ − 3K)

> (K − 2)(n− δ − 6
√
βn) > Kn/5.

Since for every v ∈ B2 ∪B′2, |N(v) ∩ (B2 ∪B′2)| < (γ + 2
√
β)n,

|E(V (Q), (B2 ∪B′2)\V (Q)) < 4K(γ + 2
√
β)n = 32K

√
βn.

By combining these two inequalities, we obtain

β > (
1

160
)2,

which is a contradiction to β < 1
640000

.

By Claim 2.6.4 and 2.6.3, we may assume that K ≤ 2. Assume that K = 2. By

Claim 2.6.3, |Q|+ |Q′| ≤ 1 and then every vertex v ∈ (B2 ∪B′2)\(V (Q) ∪ V (Q′)) has
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at least K−1 neighbors in V (Q)∪V (Q′). By the same calculation as we did in Claim

2.6.4, we will run into a contradiction.

Finally, suppose that K = 1, i.e, |A2 ∪ A′2| = δ − 1 and δ(G[B2 ∪ B′2]) ≥ 1. By

Claim 2.6.3, ∆(G[B2∪B′2]) ≤ 1, which implies that G[B2∪B′2] is a perfect matching,

so |B2 ∪ B′2| is even. Hence G is a subgraph of the graph from Example 2.1.4. To

prove the ”Moreover” part, we proceed as follows. Let v1v
′
1, v2v

′
2 ∈ E(G[B2 ∪ B′2]).

We have |N(v1) ∩N(v2) ∩ A2| ≥ 4|A2|/5 and |N(v′1) ∩N(v′2) ∩ A2| ≥ 4|A2|/5. Thus

there is a copy of C6 containing v1v
′
1, v2v

′
2, say C6 : x1v1v

′
1x
′
1v2v

′
2x1 where x1, x

′
1 ∈ A2.

Similarly, G[A2∪A′2∪B2∪B′2 \V (C6)] contains Lδ−3 such that z1 ∈ N(x1)∩B2, z
′
1 ∈

N(v1) ∩ A2 and z1z
′
1 is the first rung of Lδ−3. Let nl ≥ 3. Then the C6 with first

nl − 3 rung contains C2nl and remaining Lδ−3−(nl−3) = Lδ−nl contains disjoint cycles

C2n1 , . . . , C2nl−1
.

2.7 Final comments

Proof of Corollary 2.1.5. Let G be a graph on n ≥ N(α/8) vertices such that ||G|| ≥

αn2. If δ(G) ≥ n/2, then G is pancyclic. If n/2 − 1 > δ(G) ≥ αn/8, then Theorem

1.0.2 implies that G contains all even cycles of length 4, . . . , 2δ(G). If δ(G) ≥ n/2−1,

then G contains all cycle if lengths 4, . . . , 2δ(G)− 2 by Theorem 1.0.2 and a cycle on

2δ(G) vertices by Theorem 2.4.2, Theorem 2.6.1 and Theorem 2.5.1.

Otherwise, by Mader’s theorem, G contains a subgraphH which is αn/4-connected.

If |H| ≤ 2δ(H) then H is pancyclic by Bondy’s theorem and we are done since

|H| ≥ αn/4 ≥ 2δ(G). If δ(H) ≤ |H|/2, then by Theorem 1.0.2, H contains all even

cycles 4, . . . , 2δ(H) and δ(H) ≥ αn/4 ≥ δ(G).
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Chapter 3

BALANCED SPANNING CATERPILLAR

3.1 Introduction

Every connected graph contains a spanning tree, yet quite often it is desirable to

find a spanning tree which satisfies certain additional conditions. There are many

results giving sufficient minimum degree conditions for graphs to contain very special

spanning trees. For example, Dirac’s theorem from (Dirac, 1952) states that any

graph on n ≥ 3 vertices with minimum degree at least (n−1)/2 has a spanning path.

In (Win, 1975), S. Win generalized this fact and proved the following theorem.

Theorem 3.1.1. Let k ≥ 2 and let G be a graph on n vertices such that
∑

x∈I d(x) ≥

n − 1 for every independent set I of size k. Then G contains a spanning tree of

maximum degree at most k.

In particular, if the minimum degree of G is at least (n− 1)/k, then G contains a

spanning tree of maximum degree at most k. In fact, as showed in (Czygrinow et al.,

2001), the degree condition from Theorem 3.1.1 implies that either G has a spanning

caterpillar of maximum degree at most k or G belongs to a special exceptional class.

We refer the reader to (Ozeki and Yamashita, 2011) for a comprehensive survey of

spanning trees.

Another way of thinking about caterpillars is by looking at domination problems.

A set S ⊆ V is a dominating set in a graph G = (V,E) if every vertex in V \ S

has a neighbor in S. A dominating set S is called a connected dominating set if, in

addition, G[S] is connected. In the special case when G[S] contains a path, we say
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that G has a dominating path. In (Broersma, 1988), Broersma proved a result on

cycles passing within a specified distance of a vertex and stated an analogous result

for paths from which, as one of the corollaries, we get the following fact.

Theorem 3.1.2. If G is a k-connected graph on n vertices such that δ(G) > n−k
k+2
−1,

then G contains a dominating path.

In particular, if G is connected then δ(G) > n−1
3
−1 implies that G has a spanning

caterpillar. In this paper we will be concerned with a minimum degree condition that

implies existence of spanning balanced caterpillar.

A p-caterpillar is a tree such that the graph induced by its internal vertices is a

path and every internal vertex has exactly p leaves. The spine of a caterpillar is the

graph induced by its internal vertices. The length of a caterpillar is the length of its

spine. We recall Theorem 1.0.4, which gives the motivation of the research in this

chapter.

Figure 3.1: 2-caterpillar

Theorem 1.0.4. (Faudree et al., 2017) For p ∈ Z+ there exists n0 such that for

every n ∈ (p+ 1)Z such that n ≥ n0 the following holds. If G is a graph on n vertices

such that δ(G) ≥
(

1− p
(p+1)2

)
n, then G contains a spanning p-caterpillar.

The authors of (Faudree et al., 2017) ask for the tight minimum degree condition

which implies that G has a spanning 1-caterpillar. In addition, they ask for a tight

minimum degree condition which gives a nearly balanced p-caterpillar (every vertex

on the spine has p or p+1 leaf neighbors). We will settle the first problem and answer
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the second question in the case when n is divisible by p + 1. In this chapter we will

substantially improve the minimum degree bound from Theorem 1.0.4 and give a tight

minimum degree condition which guarantees existence of a spanning p−caterpillar.

We recall the main result of this chapter.

Theorem 1.0.5. For p ∈ Z+, there exists n0 such that for every n ∈ (p + 1)Z with

n ≥ n0 the following holds. If G is a graph on n vertices such that

δ(G) ≥


n
2

if n/(p+ 1) is even

n+1
2

if n/(p+ 1) is odd and p > 2

n−1
2

if n/(p+ 1) is odd and p ≤ 2

then G contains a spanning p-caterpillar.

It’s not difficult to see that the minimum degree condition in Theorem 1.0.5 is

best possible.

Example 3.1.3. First note that Kn/2 ∪ Kn/2 in the case n is even and K(n−1)/2 ∪

K(n+1)/2 in the case n is odd have no spanning caterpillars. Thus the degree condition

in the case p ≤ 2 is tight. Now suppose p ≥ 3. Let n/(p + 1) be even. Then n/2 is

an integer. Consider Kn/2−1,n/2+1. Clearly n/(2(p + 1)) of spine vertices must be in

one of the partite sets, because the spine is a path and its maximum independent set

is of size n/(2(p+ 1)), but then the two partite sets must have the same size. Another

example is Kn/2 ∪Kn/2. Now, suppose n/(p+ 1) equals 2k+ 1 for some k ∈ Z+. If n

is even, then consider Kn/2,n/2. Clearly one of the partite sets must have k + 1 spine

vertices and so the other set must contain (k+ 1)(p+ 1)− 1 = n+p−1
2

> n/2 as p > 1.

If n is odd then consider K(n−1)/2,(n+1)/2. Now, k + 1 of the spine vertices must be

in the partite set of size (n − 1)/2. Consequently, the other set must have at least

n+p−1
2

> (n+ 1)/2 as p > 2.
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We will prove Theorem 1.0.5 using the absorbing method from (Rödl et al., 2006).

In this method, we first analyze the non-extremal case and then address two extremal

cases, when G is ”close to” 2Kbn/2c or Kbn/2c,dn/2e.

Throughout this chapter we discuss simple undirected graphs, and the notation

we use here is already described in Section 1.1. We say that a graph G is β-extremal

if either V (G) contains a set W such that |W | ≥ (1/2 − β)n and ||G[W ]|| ≤ βn2 or

if V (G) can be partitioned into sets V1, V2 so that |Vi| ≥ (1/2− β)n for i = 1, 2 and

||V1, V2|| ≤ βn2. In addition, the following notation and terminology will be used. A

u, v-caterpillar is a p-caterpillar where the first vertex in the spine is u and the last

is v.

The rest of Chapter 3 is structured as follows. In Section 3.2 we prove the ab-

sorbing lemma which is the key to handle the non-extremal case. In Section 3.3 we

prove the non-extremal case and in Section 3.4 we address the extremal cases.

3.2 Absorbing Lemma

In this section we will prove an absorbing lemma and a few additional facts which

are used in the next section to complete the proof in the case a graph is not extremal.

We will start with the following observation.

Lemma 3.2.1. For 1/8 > β > 0 there is α > 0 and n0 such that the following

holds. If G is a graph on n ≥ n0 vertices such that δ(G) ≥ (1/2− β2)n which is not

β-extremal, then for any (not necessarily distinct) vertices u, v ∈ G, ||N(u), N(v)|| ≥

β2n2/32.

Proof. We have ||G[N(u)]|| > βn2 from the definition of a β-extremal graph. Now

suppose u, v are two distinct vertices. If βn/2 ≤ |N(u) ∩ N(v)| ≤ (1/2 − β/2)n,

then |N(u) ∪ N(v)| ≥ 2(1/2 − β2)n − (1/2 − β/2)n ≥ (1/2 + β/4)n. Thus every
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vertex x ∈ N(u) ∩N(v) has at least βn/8 neighbors in N(u) ∪N(v). Consequently,

||N(v), N(u)|| ≥ β2n2/32. If |N(u) ∩ N(v)| < βn/2, then |N(v) \ N(u)| ≥ (1/2 −

2β/3)n. Thus, since G is not β-extremal ||N(u), N(v)|| ≥ β2n2/32. If |N(u)∩N(v)| ≥

(1/2− β/2)n, then ||G[N(u) ∩N(v)]|| ≥ βn2.

Our next objective is to establish the following connecting lemma.

Lemma 3.2.2 (Connecting Lemma). For 1/8 > β > 0 there is α > 0 and n0 such that

the following holds. If G is a graph on n ≥ n0 vertices such that δ(G) ≥ (1/2− β2)n

which is not β-extremal, then for any two vertices u, v ∈ G there are at least αn4p+2

u, v-caterpillars of length three in G.

Proof. Let u, v be two distinct vertices. By Lemma 3.2.1, ||N(u), N(v)|| ≥ β2n2/32.

Let {x, y} ∈ E(N(u), N(v)). Since each vertex in {x, y, u, v} has degree at least

(1/2−β2)n, the number of different p-caterpillars with spine u, x, y, v is at least γn4p

for some γ > 0. Thus the total number of u, v-caterpillars of length three in G is at

least αn4p+2 for some α > 0 which depends on β only.

We will be connecting through a small subset of V (G) called a reservoir set.

Lemma 3.2.3 (Reservoir Set). For 1/64 > β > 0 and β4 > γ > 0 there is n0 such

that if G is a graph on n ≥ n0 vertices satisfying δ(G) ≥ (1/2 − β2)n which is not

β-extremal then there is a set Z ⊂ V (G) such that the following holds:

(i) |Z| = (γ ± γ2)n;

(ii) For every v ∈ V , |N(v) ∩ Z| ≥ (1/2− 2β2)γn;

(iii) For every u, v ∈ V , ||N(u) ∩ Z,N(v) ∩ Z|| ≥ β6γ2n2/4.

Proof. Let Z be a set obtained by selecting every vertex from V independently with

probability p := γ. By Theorem 1.3.4, with probability 1 − o(1), the following facts

hold:
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(a) (γ − γ2)n ≤ |Z| ≤ (γ + γ2)n ;

(b) For every vertex v, |N(v) ∩ Z| ≥ (1/2− 2β2)γn.

To prove the third part let u, v ∈ V and let Xu,v := {w ∈ N(u)||N(w) ∩N(v)| ≥

β3n}. Since G is not β-extremal by Lemma 3.2.1, ||N(u), N(v)|| ≥ β2n2/32. Thus

|Xu,v| ≥ β3n. Indeed, if |Xu,v| < β3n, then ||N(u), N(v)|| < 2β3n2 < β2n2/32.

Consequently, by Chernoff’s inequality, with probability 1 − o(1/n2), |Xu,v ∩ Z| ≥

β3γn/2. Thus with probability 1−o(1) for every u, v, |Xu,v| ≥ β3γn/2. Let u ∈ V be

arbitrary and let w ∈ V be such that |N(w) ∩ N(u)| ≥ β3n. Then with probability

at least 1 − o(1/n2), |N(w) ∩ N(u) ∩ Z| ≥ β3γn/2. Thus with probability at least

1− o(1), we have

||N(u) ∩ Z,N(v) ∩ Z|| ≥ β6γ2n2/4

for every u, v. Therefore there is a set Z such that (i)-(iii) hold.

We will continue with our proof of the absorbing lemma. We shall assume that

0 < β < 1/64, G = (V,E) is a graph on n vertices where n is sufficiently large which

is not β-extremal and which satisfies δ(G) ≥ (n − 1)/2. In addition, we will use an

auxiliary constant τ such that 0 < τ < β
10

.

Lemma 3.2.4. Let u, v be two vertices in G such that |N(u) ∩N(v)| ≥ 2τn. Then,

at least one of the following conditions holds.

(1) At least τn vertices x ∈ N(u) ∩N(v) are such that |N(x) ∩N(u)| ≥ τ 2n.

(2) All but at most 3τn vertices x ∈ N(v) satisfy |N(x) ∩N(v)| ≥ τ 3n.

Proof. First suppose that |N(v) \ N(u)| < 2τn + 2. Since G is not β-extremal,

||G[N(v) ∩ N(u)]|| ≥ βn2 and so the first condition holds. Thus we may assume

that |N(v) \N(u)| ≥ 2τn + 2. Since |N(u) ∪N(v)| > (1/2 + 2τ)n + 1, every vertex
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x ∈ N(v) ∩ N(u) has at least 2τn neighbors in N(u) ∪ N(v). Thus all but at most

τn vertices in N(v) ∩N(u) have at least (2τ − τ 2) > τ 3n neighbors in N(v).

Now, suppose the first condition fails and we claim that all but at most 2τn

vertices x ∈ N(v) \N(u) satisfy |N(x) ∩N(v)| ≥ τ 3n. Let A := {x ∈ N(u) ∩N(v) :

|N(x) ∩N(u)| < τ 2n} and note that |A| ≥ τn. Therefore,

||A,N(v) \N(u)|| ≥ |A|(|N(v) \N(u)| − τ 2n) ≥ (1− τ)|A||N(v) \N(u)|.

Let B := {y ∈ N(v) \ N(u) : |N(y) ∩ A| < τ 2|A|} then τ 2|B||A| + (|N(v) \ N(u)| −

|B|)|A| > ||A,N(v) \ N(u)||. Hence τ 2|B||A| + (|N(v) \ N(u)| − |B|)|A| > (1 −

τ)|A||N(v) \ N(u)| and so |B| < τ |N(v) \ N(u)|/(1 − τ 2) < 2τn. For every vertex

x ∈ (N(v) \N(u)) \B,

|N(x) ∩N(v)| ≥ |N(x) ∩ A| ≥ τ 2|A| ≥ τ 3n,

which completes the proof.

Lemma 3.2.5. Let T be a set of p+1 vertices in G. Then there exists a vertex x ∈ T

such that for every y ∈ T , ||N(x), N(y)|| ≥ τ 4n2.

Proof. Suppose there is a vertex v ∈ T such that condition (2) in Lemma 3.2.4 is

satisfied. Let x := v and take y ∈ T . If |N(y) ∩N(x)| ≥ 5τn, then ||N(x), N(y)|| ≥
1
2
· (2τ 4n2). If |N(y)∩N(x)| < 5τn, then since G is not β-extremal, ||N(x), N(y)|| ≥

τ 4n2. Therefore, we may assume that there is no such v in T . Let x be an arbitrary

vertex in T . Take y ∈ T . If |N(x) ∩ N(y)| ≥ 2τn, then by Lemma 3.2.4 (with

u := x, v := y), ||N(x), N(y)|| ≥ τ 3n2/2. If |N(x)∩N(y)| < 2γn, then since G is not

β-extremal, ||N(x), N(y)|| ≥ γ4n2.

We say that an x, y-caterpillar P absorbs a set T of size p + 1, if G[V (P ) ∪ T ]

contains an x, y-caterpillar on |V (P )| + p + 1 vertices. Let Mq(T ) denote the set of
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caterpillars of order q which absorb T . A caterpillar P is called γ−absorbing if P

absorbs every subset W ⊂ V \V (P ) with |W | ∈ (p+1)Z and |W | ≤ γn. We will now

prove our main lemma from which the absorbing lemma follows by using the deletion

method.

Lemma 3.2.6. Let p ∈ Z+. For every β > 0 there is n0 and α > 0 such that the

following holds. If G is a graph on n ≥ n0 vertices which is not β-extremal and such

that δ(G) ≥ (n− 1)/2 and T ⊂ V (G), |T | = p+ 1, then

|Mq(T )| ≥ αnq

where q = (3p+ 2)(p+ 1).

Proof. Let T = {x, y1, . . . , yp} and in view of Lemma 3.2.5 suppose that for ev-

ery i, ||N(x), N(yi)|| ≥ τ 4n2. We will construct a caterpillar P which absorbs T .

The counting fact follows easily from the way the construction works. To construct

the caterpillar we will proceed in a few steps, selecting distinct vertices which have

not been previously selected in each step. First take vi ∈ N(yi) so that v1, . . . , vp

are distinct and |N(vi) ∩ N(x)| ≥ τ 5n. Now let ui ∈ N(vi) ∩ N(x) be such that

u1, . . . , up are distinct. Let x1x2 be an edge in N(x). Use Lemma 3.2.2, to find

vi, vi+1 caterpillars with spines Pi for 2 ≤ i ≤ p − 1, all vertices distinct, and let

P := v2P2v3 . . . vp−1Pp−1vp. Use Lemma 3.2.2 to find a v2, x2-caterpillar and denote

its spine by Q2 and a v1, x1-caterpillar with spine Q1. Let Q := v1Q1x1x2Q2v2Pvp.

Then Q is a v1, vp-path. Disregard selected vertices not on Q. For every vertex vi

select p − 1 distinct neighbors, so that together with ui they give p leaves attached

to vi. For x1, x2 select p distinct neighbors and let S be the set containing all the

vertices on Q, u1, . . . , up, and all the remaining neighbors. Then G[S] contains a

v1, vp- caterpillar of length 3p+ 1 which contains (3p+ 2)(p+ 1) vertices. In addition,

G[S ∪ T ] contains a v1, vp-caterpillar of length 3p + 2 obtained as follows. Insert x
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between x1 and x2 in the spine Q, make u1, . . . , up the neighbors of x, and let yi

replace ui in the set of spikes of vi. By Lemma 3.2.2 and in view of the construction,

the number of such sets S is at least αn(3p+2)(p+1) for some α > 0 which depends on

β and p only.

Lemma 3.2.7. (Absorbing Lemma) Let p ∈ Z+, q = (3p + 2)(p + 1), β > 0 and

α > 0 be such that Lemma 3.2.6 holds. For any δ < α/10q, there is n0 such that the

following holds. If G is a graph on n ≥ n0 vertices which is not β-extremal and such

that δ(G) ≥ (n − 1)/2 then there is a caterpillar Pabs in G on at most δn vertices

which is δ2-absorbing.

Proof. Let n0 be such that Lemma 3.2.6 holds with α. Let G be a graph on n ≥ n0

vertices which is not β−extremal and such that δ(G) ≥ (n− 1)/2.

Let F be a family obtained by selecting every set from
(
V
q

)
independently with

probability µ := δn/3q
(
n
q

)
. By Theorem 1.3.4, with probability 1− o(1),

|F| ≤ 2µ

(
n

q

)
= 2δn/3q

Now, let T be a set of size p + 1. Again by Theorem 1.3.4, with probability 1 −

o(1/np+1),

|Mq(T ) ∩ F| ≥ 1

2
µαnq > 3δ2n.

The expected number of pairs {S1, S2} such that S1, S2 ∈ F and S1 ∩S2 6= ∅ is at

most
(
n
q

)
µ · q

(
n
q−1

)
µ ≤ δ2n and so by Theorem 1.3.1, with probability at least 1/2, the

number of such pairs is at most 2δ2n. Therefore, with positive probability, there exists

a family F such that |F| ≤ 2δn/3q, for every set T of size p+ 1, |Mq(T )∩F| > 3δ2n,

and the number of {S1, S2} such that S1, S2 ∈ F and S1∩S2 6= ∅ is at most 2δ2n. Let

F ′ be obtained from F by deleting all intersecting sets and sets that do not absorb

any T . Then |F ′| ≤ 2δn/3q, and for every set T of size p + 1, |Mq(T ) ∩ F ′| > δ2n.
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For each S ∈ F ′, G[S] contains a caterpillar on q vertices, so by using the minimum

degree condition and Lemma 3.2.2, we can connect the endpoints of these caterpillars

to obtain a new caterpillar Pabs. We also have that

|Pabs| ≤ |F ′| · q + 2|F ′| · p < |F ′| · (3q/2) ≤ δn.

To show that Pabs is δ2−absorbing, consider W ⊂ V \V (Pabs) such that (p+1)||W |

and |W | ≤ δ2n. W = {W1, ...,Wm} be an arbitrary partition of W into sets of size

p+ 1. We have that |Mq(Wi) ∩ F ′| > δ2n for every i ∈ [m]. Therefore, there exists a

matching betweenW and F ′ so that every Wi ∈ W is paired with some Si ∈Mq(Wi).

This implies that Pabs absorbs W and the proof is complete.

3.3 Non-extremal case

In this section we will finish proving the non-extremal case. The argument uses a

similar approach as the proof of a corresponding fact in (Czygrinow and Molla, 2014).

Let p ∈ Z+, q = (3p+ 2)(p+ 1) and let ξ, β be such that 0 < ξ < 1/(4p+ 5), 0 <

β < min{( ξ
30p

)2, ( ξ
96

)2}. Now, let α > 0, n0 ∈ N be such that Lemma 3.2.7 holds. Let

δ, γ > 0 be such that δ < min{( β
300

)2, α
10q
}, γ < δ2

4
and C be such that C > 80(p+1)

δγβ3 . Let

n > max{n0,
4C·2(1+δ)C

δ3
} and G be a graph on n vertices which is not β−extremal and

of minimum degree at least (n− 1)/2. Let Pabs be the absorbing caterpillar obtained

in the previous section and let Z be the reservoir set from Lemma 3.2.3 applied with

γ which is less than β4 because γ < δ2

4
< β4.

Claim 3.3.1. Let P1, P2 be disjoint caterpillars in G such that |Z ∩ V (P1)|, |Z ∩

V (P2)| < β3γn
4

and the endpoints of P1 and P2 are not in Z. Then there is a caterpillar

P containing V (P1) ∪ V (P2) which has at most 2(p+ 1) additional vertices in Z and

such that its endpoints are not in Z.

Proof. Let u1, u2 be the endpoints of P1, P2, respectively. Since β3

2
< 1/2 − 2β2 and
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|(N(u1) ∩ Z) ∩ (V (P1) ∪ V (P2))| · |(N(u2) ∩ Z) ∩ (V (P1) ∪ V (P2))| < β6γ2n2/16, by

Lemma 3.2.3, there exists x1 ∈ (N(u1) ∩ Z) − (V (P1) ∪ V (P2)), x2 ∈ (N(u2) ∩ Z) −

(V (P1) ∪ V (P2)) such that {x1, x2} ∈ E(G). Then we can construct new caterpillar

P using {u1, x1}, {x1, x2}, {u2, x2} ∈ E(G) and adding p vertices from N(x1) ∩ Z −

(V (P1) ∪ V (P2)) and another p vertices from N(x2) ∩ Z − (V (P1) ∪ V (P2)) as leaf

vertices of x1, x2.

Now, let G′ := G[V \(Z∪V (Pabs)] and let P be a longest caterpillar in G′. Starting

with P we will extend P iteratively, adding at least δC/2 vertices by using at most

10(p + 1) vertices from Z in each step, until the number of vertices left is at most

δ2n
2

. Since the number of iterations is at most 2n/(δC), and so the number of vertices

used to construct P in Z is at most 2n
δC
· 10(p+ 1) < β3γ

4
n, by Claim 3.3.1, the process

can be completed. Moreover, Pabs can be connected with P using Z and the number

of remaining vertices which are not on the caterpillar is at most |Z|+ δ2n
2
≤ δ2n and

so they can be absorbed by Pabs. For the general step, let W := V (G′) \ V (P ) and

suppose |W | > δ2n
2

. We partition P into l blocks B1, . . . , Bl of consecutive caterpillars

so that C ≤ |Bi| ≤ (1 + δ)C.

Claim 3.3.2. If ||G[W ]|| ≥ γ|W |2, then there is a caterpillar in G[W ] with at least

γ|W | − p vertices.

Proof. G[W ] contains a subgraph H such that δ(H) > γ|W |. Let Q be a longest

caterpillar in H. If |Q| ≤ γ|W | − p, then each endpoint of Q has a neighbor x ∈

V (H) \Q, and every vertex not on Q has at least p neighbors outside Q.

Case 1. ||G[W ]|| ≥ γ|W |2.

By Claim 3.3.2 there is a caterpillar Q in G[W ] on at least δC/2 vertices. Since

Q ∩ Z, P ∩ Z = ∅, by Claim 3.3.1, we can construct a caterpillar containing both of

them.
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Case 2. There is a block Bi such that ||Bi,W || ≥
(

1
2

+ δ
)
|Bi||W |.

Let W ′ := {w ∈ W ||N(w) ∩ Bi| ≥
(

1
2

+ δ
2

)
|Bi|}. Then |W ′| ≥ δ|W | ≥ δ3n

2
. Consider

H := G[W ′, Bi]. Since there are less than 2(1+δ)C subsets of Bi of size
(

1
2

+ δ
2

)
|Bi|

, there is a set X ⊂ Bi such that |X| =
(

1
2

+ δ
2

)
|Bi| and for at least |W ′|/2(1+δ)C

vertices w ∈ W ′, X ⊆ N(w)∩Bi. Since |W ′|
2(1+δ)C

≥ 2C ≥ (1
2

+ δ
2
)|Bi|, H contains KD,D

where D =
(

1
2

+ δ
2

)
|Bi| which in turn contains a caterpillar on 2D − p > (1

2
+ δ

2
)|Bi|

vertices. By Claim 3.3.1, using at most 4(p + 1) vertices in Z we can connect the

endpoints of this caterpillar with the endpoints of Bi−1 and Bi+1.

Case 3. For every block Bi, ||Bi,W || <
(

1
2

+ δ
)
|Bi||W |.

Since we are not in Case 1,
∑

v∈W |N(v) ∩W | < 2γ|W |2 and so
∑

v∈W |N(v) ∩ P | >

(1/2− δ − 2γ)n|W | − 2γ|W |2, so

||P,W || ≥
(

1

2
− 2δ

)
n|W |.

A block B is called good if ||B,W || ≥
(

1
2
− 2
√
δ
)
|W ||B|. Let q denote the number

of good blocks. We have q ≥ (1− 3
√
δ) n

C
as otherwise

||P,W || ≤ q

(
1

2
+ δ

)
(1 + δ)C|W |+ (l − q)

(
1

2
− 2
√
δ

)
(1 + δ)C|W |

which is less than
(

1
2
− 2δ

)
n|W |. Using the same argument as in Case 2, for a good

block Bi we can find set Ci ⊂ Bi and Di ⊆ W such that G[Ci, Di] = K|Ci|,|Di|, |Ci| =(
1
2
− 3
√
δ
)
C and |Di| ≥ C. Let U :=

⋃
(Bi \Ci) where the union is taken over good

blocks. We have

|U | ≥ (1− 3
√
δ)
n

C
· C −

(
1

2
− 3
√
δ

)
C
n

C
=
n

2
.

Thus, since G is not β-extremal, ||G[U ]|| ≥ βn2, and so there exist two good blocks

Bs, Bt with s < t such that ||G[(Bs \ Cs) ∪ (Bt \ Ct)]|| ≥ βC2/2. Thus by Claim

3.3.2 G[(Bs \ Cs) ∪ (Bt \ Ct)] contains a caterpillar S on βC/4 vertices. In addition
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G[Cs ∪ Ct,W ] contains two disjoint caterpillars S1, S2, each on (1− 7
√
δ)C vertices.

Thus |S ∪ Ss ∪ St| − |Bs ∪ Bt| ≥ 2(1− 7
√
δ)C + βC

4
− 2(1 + δ)C ≥ δC. By using at

most 10(p+ 1) vertices in Z, we can connect the endpoint of Bs−1 to the endpoint of

S ∩Bs, connect the endpoint of S ∩Bt to the endpoint of Bt−1, connect the endpoint

of Bs+1 to the endpoint of S1, and connect the endpoint of S1 to the endpoint of S2.

Finally, by connecting the endpoint of S2 to the endpoint of Bt+1, we form a longer

caterpillar having more than at least δC vertices than previous caterpillar. �

3.4 Extremal case

In this section we will address the extremal cases. First we will deal the the case

when vertices of G can be partitioned into two sets V1, V2 such that ||V1, V2|| ≤ βn2

and so, G is close to a union of two complete graphs and then we address the case

when G has a large almost independent set.

We will start with the following lemma.

Lemma 3.4.1. Let p ∈ Z+. For any ξ < 1/(4p + 5) there is n0 ∈ N such that

the following holds. Let H be a graph on n ≥ n0 vertices such that (p + 1)||H| and

δ(H) ≥ (1 − ξ)n. Let x, y ∈ V (H). Then there is a spanning p-caterpillar in H

connecting x and y.

Proof. Let P be a longest p−caterpillar in G connecting x and y. Let S = (x =

)u1 . . . uq(= y) denote the spine of P and let C[i] denote the set of spikes of ui.

For any two u, v ∈ G, |N(u) ∩ N(v)| ≥ (1 − 2ξ)n and so q ≥ (1 − 2ξ)n/(p + 1).

Indeed, if q < (1− 2ξ)n/(p + 1) then |V (P )| < (1− 2ξ)n and then there exists u′1 ∈

(N(u1)∩N(u2))\V (P ), |N(u′1)−V (P )| ≥ (1− ξ)n− (1−2ξ)n > p. If V (P ) = V (H)

then we are done, so assume that there exists {v′, y1, ..., yp} ⊂ V (H) \ V (P ). Since

d(v′) ≥ (1 − ξ)n there exists i ∈ [q] such that ui, ui+1 ∈ N(v′). Otherwise, since
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ξ < 1/(4p+ 5),

(1− ξ)n ≤ d(v′) ≤ (n− q/2) ≤ (1− 1− 2ξ

2(p+ 1)
)n ≤ (1− 1− ξ

4(p+ 1)
)n < (1− ξ)n,

a contradiction. Moreover, there are p distinct vertices f1, ..., fp ∈ [q] \ {i, i+ 1} such

that for each j ∈ [p] , |N(v′) ∩ C[fj]| > 0 and fjyj ∈ E(H), which gives us the

caterpillar P ′ such that V (P ′) = V (P ) ∪ {v′, y1, ..., vp} and P ′ still connects x and

y.

A p-star is a star which has exactly p leaves.

Lemma 3.4.2. Let p ∈ Z+. There is β > 0 and n0 such that if G is a graph on

n ≥ n0 vertices such that (p+1)|n, δ(G) ≥ n−1
2

, and for some partition V1, V2 of V (G)

with |Vi| ≥ (1/2− β)n, ||G[V1, V2]|| ≤ βn2, then G contains a spanning p-caterpillar.

Proof. Let ξ and β be such that 0 < ξ < 1/(4p + 5) and 0 < β ≤ ( ξ
30p

)2. Let

Wi := {v ∈ Vi : |N(v) ∩ Vi| < (1/2 − 5
√
β)n}. We have

∑
v∈Vi |N(v) ∩ Vi| ≥

(1/4− β/2)n(n− 1)− βn2 ≥ (1/4− 2β)n2 and

∑
v∈Vi

|N(v) ∩ Vi| < |Wi|(1/2− 5
√
β)n+ (|Vi| − |Wi|)|Vi|

and so |Wi| ≤
√
βn−1. In addition, for every v ∈ Wi, |N(v)∩ (V3−i \W3−i)| ≥ 4

√
βn.

Let Ui := Vi \Wi and Xi := W3−i. Then

• for every v ∈ Ui, |N(v) ∩ Ui| ≥ (1/2− 6
√
β)n,

• for every v ∈ Xi, |N(v) ∩ Ui| ≥ 4
√
βn.

Without loss of generality, suppose |U1∪X1| ≤ |U2∪X2|. Then for every v ∈ U1∪

X1, |N(v)∩(U2∪X2)| ≥ 1. Let ri := |Ui∪Xi| mod (p+1). Since very vertex in U1∪X1

has at least one neighbor in U2 ∪ X2, we pick r1 vertices u1, . . . , ur1 in U1 ∪ X1 and

choose one neighbor in U2∪X2 for each. Note that clearly these neighbors do not need
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to be distinct. Let w1, . . . , wl denote distinct vertices in U2 ∪X2 chosen in this way.

We have l ≤ p and each wi was chosen by at most r1 ≤ p vertices. We will construct a

spanning caterpillar by starting with (U1∪X1)\{u1, . . . , ur1}. Since |X1| ≤
√
βn−1,

there is a matching from X1\{u1, . . . , ur1} to U1\{u1, . . . , ur1}. The matching can be

easily extended to a caterpillar P in G[(U1∪X1)\{u1, . . . , ur1}] on at most 2(p+1)
√
βn

vertices. Let b be the starting point of P . Let G′ = G[(U1∪X1)\({u1, . . . , ur1}∪V (P ))

and b′ ∈ N(b)∩ V (G′). Since δ(G′) ≥ (1/2− (8 + 2p)
√
β)n ≥ (1−ξ)n

2
≥ (1− ξ)|G′|, by

Lemma 3.4.1 G′ contains a spanning p−caterpillar P ′ starting at b′.

Denote by x the another starting point of P ′, i.e P ′ is b′, x-caterpillar. Now, pick

y ∈ N(x) ∩ (U2 ∪ X2). If y ∈ X2 then construct a star Y0 centered at y such that

Y0 ⊂ (X2 ∪ Y2) \ {w1, . . . , wl} and choose y′ ∈ N(y) ∩ (U2 \ ({w1, . . . , wl} ∪ Y0)),

otherwise y′ = y. We will now construct a caterpillar in G[U2∪X2∪{u1, . . . , ur1}]. If

ai denotes the number of vertices which choose wi, then select p− ai neighbors of wi

in U2∪X2 \{y, w1, . . . , wl}, all vertices distinct for different values of i. Let Si denote

the p-star with center at wi. Note that y can be among w1, . . . , wl but it cannot be

among the remaining vertices of S1, . . . , Sl. Since |X2| ≤
√
βn, there is a matching

from X2 \ ({y, y′} ∪ Y0 ∪
⋃
i∈[l] Si) to U2 \ ({y, y′} ∪ Y0 ∪

⋃
i∈[l] Si). The matching and

S1, ..., Sl also can be extended to a caterpillar P ′′ in G[X2∪U2∪{u1, . . . , ur1}]. Denote

by y′′ the other endpoint of the spine of P ′′ and let y′′′ ∈ (N(y′′) \ (V (P ′′)∪Y0))∩U2.

Let G′′ = G[U2 ∪X2 \ (V (P ′′) ∪ {w1, . . . , wl})]. Since δ(G′′) ≥ (1 − ξ)|G′′|, again by

Lemma 3.4.1, there exists a spanning p-caterpillar P ′′′ connecting y′ and y′′′. Then

we get a spanning p-caterpillar of G by linking P ′, P ′′ and P ′′′.

We will now proceed to prove the other extremal case. We have the following

lemma.

Lemma 3.4.3. Let p ∈ Z+. For any ξ < 1/(4p + 5) there is n0 ∈ N such that
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the following holds. Let H = (A1, A2) be a bipartite graph on n ≥ n0 vertices with

(p+ 1)|n such that |A1| = |A2| = n
2

if n/(p+ 1) is even and |A2| = n+p−1
2

if n/(p+ 1)

is odd. Suppose that for any v ∈ Ai, d(v) ≥ (1 − ξ)|A3−i|. For any x ∈ A1, there

exists a spanning p-caterpillar starting at x in H.

Proof. First suppose n/(p + 1) is even. Let Bi be an arbitrary set of n/(2(p + 1))

vertices in Ai such that x ∈ B1. For any vertex v ∈ Bi and any set C ⊆ A3−i of size

n/(2(p+ 1)), |N(v)∩C| ≥ |C| − ξn > |C|/2. Consequently, by Hall’s theorem, there

is a set of pairwise disjoint p-stars with centers in Bi and leaves in A3−i \ B3−i. In

addition, G[B1, B2] has a Hamilton cycle and so a spanning path which starts at x.

The path, in connection with stars, gives a p-caterpillar starting at x. Now suppose

|A2| = n+p−1
2

. Let B2 be a subset of A2 of size (n − p − 1)/(2(p + 1)) and let B1 be

a subset of A1 of size (n + p + 1)/(2(p + 1)). Note that |Bi|p = |A3−i| − |B3−i|. As

before, by Hall’s theorem there are pairwise disjoint p-stars with centers in Bi and

leaves in A3−i \B3−i and G[B1, B2] has a spanning path.

Lemma 3.4.4. Let p ∈ Z+. There is β > 0 and n0 such that if G is a graph on

n ≥ n0 vertices such that (p + 1)|n, for some set S of V (G) with |S| ≥ (1/2 − β)n,

||G[S]|| ≤ βn2, and

δ(G) ≥


n
2

if n/(p+ 1) is even

n+1
2

if n/(p+ 1) is odd and p > 2

n−1
2

if n/(p+ 1) is odd and p ≤ 2

then G contains a spanning p-caterpillar.

Proof. Let ξ and β be such that 0 < ξ < 1/(4p+5) and 0 < β ≤ min{( ξ
96

)2, ( ξ
10+3p

)2}.

We may assume that |S| ≤ n/2. Let U1 := S and U2 := V \ S. We have

||G[U1, U2]|| ≥ (1/2− β)n2/2− 2βn2 ≥ (1− 10β)|U1||U2|.
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Let Wi := {u ∈ Ui||N(u) ∩ U3−i| ≤ (1− 10
√
β)|U3−i|}. Then

||G[U1, U2]|| ≤ |W1||U2|(1− 10
√
β) + (|U1| − |W1|)|U2|

and so |W1| ≤
√
β|U1| and similarly |W2| ≤

√
β|U2|.

We define s to be n/2 when n/(p+ 1) is even and (n− p+ 1)/2 when n/(p+ 1) is

odd. Let W := W1 ∪W2. Distribute vertices from W to X1, X2 so that the following

holds.

(a) If x ∈ Xi, then |N(x) ∩ U3−i| ≥ 10
√
βn.

(b) |min{|X1 ∪ (U1 \W1)|, |X2 ∪ (U2 \W2)|} − s| is the least possible.

If the quantity in the second condition is positive, we further move vertices from

Ui \Wi to X3−i which satisfy (a) to make |min{|X1∪ (U1 \W1)|, |X2∪ (U2 \W2)|}−s|

as small as possible. Let Yi := Xi ∪ (Ui \Wi) and suppose |Y1| ≤ |Y2|.

First, assume that |Y1| = s. Since for each v ∈ W1 ∪ W2, d(v) ≥ 10
√
βn >

|W1|+ |W2|, there is a matching M such that for any e ∈M , |e∩W1|+ |e∩W2| = 1.

Then we extend this matching to p−caterpillar P so that for any e ∈M , e ∩Wi is a

vertex of spike. Let G′ = G[V \ V (P )] = (V ′, E ′) and note that V ′ ∩W = ∅. Let x

be a last vertex of P and x′ ∈ N(x) ∩ V ′. Let Y ′i = Yi ∩ V ′. For any v ∈ Y ′i ,

|N(v) ∩ Y ′3−i| ≥ (1− 10
√
β)|U3−i| − 3p

√
β|U3−i| ≥ (1− ξ)|Y ′3−i|.

By Lemma 3.4.3, there exists a spanning caterpillar P ′ starting at x′ of G′, then we

get a spanning caterpillar of G by attaching P to P ′.

Now, we assume that |Y1| 6= s. If |Y1| > s then n/(p + 1) is odd and since

|Y1| ≤ |Y2|, p ≥ 3,i.e δ(G) ≥ n+1
2
. We have δ(G[Y2]) ≥ δ(G) − |Y1| ≥ 1. If |Y1| < s

(and so |Y1| < n/2), then δ(G[Y2]) ≥ δ(G)− |Y1| ≥ 1.

In the first case we proceed as follows. Let l = n+p−1
2
− |Y1|. Since |Y1| > n−p+1

2
,

l < p − 1. If there is a vertex y ∈ Y2 such that |N(y) ∩ Y2| ≥ p − 1, then pick p − l
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neighbors of y from Y1, l from Y2 to form a p star S centered at y and let x be one

more neighbor of y in Y2. Deleting x and all vertices in S gives Y ′1 , Y
′

2 such that

|Y ′i | = n−p−1
2

, and so by Lemma 3.4.3 there is a spanning p-caterpillar in G[Y ′1 , Y
′

2 ]

starting at x. If no such vertex exists, then ∆(G[Y2]) ≤ p − 2. Since δ(G[Y2]) ≥ 1,

there is a matching in G[Y2] of size at least n/2(p−1)(> p+1). Let y ∈ Y2 be arbitrary

and let x be a neighbor of y in Y2. Let M = {a1b1, . . . , albl} be a matching in G[Y2]

such that x, y /∈ V (M). We construct caterpillar Q as follows. Start with x and pick

p neighbors of x in Y1. We will use y as a vertex on spine of Q. Pick a neighbor new

vertex y′ ∈ N(y)∩Y1 and a a′1 ∈ N(a1)∩Y1. Note that ∆(G[Y1]) ≤ 20
√
βn as we can’t

move any vertices from Y1 and so any two vertices in Y1 have at least n/4 common

neighbors in Y2 \ V (M). Select one such unused vertex z which gives a y, a1-path of

length four which will be added to the spine of Q. Now select p neighbors from the

opposite set for each vertices except a1. In the case of a1, pick p−1 neighbors from Y1

and make b1 one of the spikes. Now continue to add additional vertices. Then Q has

2l+ 2 spine vertices in Y2, 2l spine vertices in Y1 and |V (Q)∩ Y2| = (2 + 2l) + 2lp+ l,

|V (Q)∩ Y1| = (2l+ 2)p+ 2l− l. This concludes the construction of Q. Let x′ be one

new neighbor of al in Y1. Note that |Y2\V (Q)| = n−p+1
2

+ l−(2+2l+2lp+ l) = n′+p−1
2

where n′ = n − (4l + 2)(p + 1) = |V − V (Q)|. Thus by Lemma 3.4.3 we can extend

Q to get a spanning caterpillar in G.

In the second case, we have δ(G[Y2]) ≥ s − |Y1| ≥ 1 and because no vertex can

be moved from Y2 to Y1, ∆(G[Y2]) ≤ 20
√
βn. Let M be a maximum matching in

G[Y2] and suppose |M | < s − |Y1|. Then the number of edges in G[Y2] incident to

V (M) is at most 40
√
βn|M | < 40

√
βn(s − |Y1|), but ||G[Y2]|| ≥ |Y2|

2
(s − |Y1|), and

|Y2| ≥ 80
√
βn.

The rest of the argument is similar to the previous case. For every y ∈ Y2, we have

|N(y)∩Y1| ≥ (1/2−20
√
β)n. Let M = {a1b1, . . . , aqbq}. We move b1, . . . , bq from Y2 to
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Y1 so that after moving |Y1| = s. Note that |Y1| = |Y2| or |Y1| = n−p+1
2

, |Y2| = n+p−1
2

.

Then we extend this matching to a p−caterpillar P so that for any i ∈ [q], bi is a

spike in P . Let G′ = G[V \ V (P )] = (V ′, E ′). Let x be the last vertex of P in Y2 and

x′ ∈ N(x) ∩ V ′. Let Y ′i = Yi ∩ V ′. For any v ∈ Y ′i , since q ≤ 4
√
βn,

|N(v) ∩ Y ′3−i| ≥ (1/2− 24
√
β)n ≥ (1− ξ)|Y ′3−i|,

By Lemma 3.4.3, there exists a spanning caterpillar P ′ starting at x′ of G′, then we

get a spanning caterpillar of G by attaching P to P ′.
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Chapter 4

TURÁN-TYPE RESULT AND MULTI-COLOR RAMSEY NUMBER FOR A

LOOSE 3 UNIFORM PATH OF LENGTH 3

4.1 Introduction

One of the most important problems in combinatorics and graph theory is deter-

mining or estimating the Ramsey numbers. In contrast to the graph case, there are

few known results about the Ramsey numbers of hypergraphs. We denote by R(F ; r)

the least integer n such that in every coloring of the edges of complete graph of order

n by r colors there is a monochromatic copy of F .

The r-uniform loose cycle Cr
n is the r-graph with vertex set {v1, v2, . . . , vn(r−1)}

and with the set of n edges ei = {v1, . . . , vr}+ i(r − 1), i = 0, 1, . . . , n− 1, where we

use mod n(r− 1) arithmetic and adding a number t to a set H = {v1, . . . , vr} means

a shift, i.e. the set obtained by adding t to subscripts of each element of H. Similarly,

the r-uniform loose path P r
n is the r-graph with vertex set {v1, v2, . . . , vn(r−1)+1} and

with the set of n edges ei = {v1, . . . , vr}+ i(r − 1), i = 0, 1, . . . , n− 1. The complete

r-graph Kr
n is a r-graph on n vertices in which every r−element subset of the vertex

set forms an edge.

It was proved in (Haxell et al., 2006) that R(P 3
n ; 2) and R(C3

n; 2) are asymptotically

equal to 5n
2

. Subsequently, Omidi and Shahsiah in (Omidi and Shahsiah, 2014) proved

that

Theorem 4.1.1. (Omidi and Shahsiah, 2014)

R(P 3
n ; 2) = R(C3

n; 2) + 1 = d5n+ 1

2
e.
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Gyárfás and Raeisi (Gyárfás and Raeisi, 2012) found the values of R(P k
n ; 2) and

R(Ck
n; 2) for n ≤ 4 and k ≥ 3. They also determined the 3-color Ramsey number of

C3
3 ,

Theorem 4.1.2. (Gyárfás and Raeisi, 2012)

R(C3
3 ; 3) = 8.

Recently, Jackowska, Polcyn, Ruciński (Ruciński et al., 2017) determined the

r−color Ramsey number for P := P 3
3 and showed the following.

Theorem 4.1.3. (Ruciński et al., 2017)

R(P ; r) = r + 6 for r ∈ [7].

As a part of their argument, they also determined the Turán graph for P and

proved an useful lemma which we will use in our proof. Denote by ex(n;P ), Ex(n;P )

the Turán number and graph for P , respectively.

Theorem 4.1.4. (Jackowska et al., 2016)

ex(n;P ) =



(
n
3

)
and Ex(n;P ) = {K3

n} for n ≤ 6

20 and Ex(n;P ) = {K3
6 ∪K3

1} for n = 7(
n−1

2

)
and Ex(n;P ) = {S3

n} for n ≥ 8

where V (S3
n) = [n], E(S3

n) = {e ∈
(
S3
n
3

)
: 1 ∈ e}.

Lemma 4.1.5. (Ruciński et al., 2017) If H is a connected P -free 3-graph with n ≥ 7

vertices and H ⊃ C3
3 , then

|E(H)| ≤ 3n− 8.

Subsequently, Polcyn, Ruciński extended the result from (Polcyn, 2017; Polcyn

and Ruciński, 2017) by showing that the formula also holds in the case r ∈ {8, 9, 10}.
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Theorem 4.1.6. (Polcyn, 2017; Polcyn and Ruciński, 2017)

R(P ; r) = r + 6 for r ∈ [10].

Moreover,  Luczak and Polcyn showed the general upper bound of multi-color

Ramsey number for P . We recall the result of  Luczak and Polcyn.

Theorem 1.0.8. ( Luczak and Polcyn, 2017)

R(P ; r) ≤ 2r +
√

18r + 1 + 2 for r ∈ N.

In this chapter, we will prove better bounds for R(P, r) by analyzing critical

vertices which we define in the following section. We recall the other main result of

this chapter.

Theorem 1.0.7. r + 6 ≤ R(P ; r) ≤ 2r for r ≥ 6.

After the paper was submitted Polcyn and  Luczak ( Luczak and Polcyn, 2018)

minimally improved the bound and showed that the upper bound is at most λ0r+7
√
r

where λ0 = 1.97466.. .

Since we mainly handle 3-graphs in this chapter, there are some notations which

are not described in Chapter 1 but we use in this chapter.

Given a 3-graph H = (V,E), the neighborhood of {u, v} ∈
(
V
2

)
, i.e. the set of

vertices form an edge with {u, v} is denoted by NH({u, v}) or N({u, v}) for short , the

neighborhood of v ∈ V , i.e. the set of pairs of vertices form an edge with v is denoted

by NH(v) or N(v) for short, and the union of all pairs in N(v) is denoted by V (N(v)).

For any A,B,C ⊂ V , E(A,B,C) = {e = {a, b, c} ∈ E|a ∈ A, b ∈ B, c ∈ C}, and

e(A,B,C) = |E(A,B,C)|. For any r-edge coloring, let Hi be the 3-graph colored by

color i ∈ [r].

The rest of Chapter 4 is organized as follows. In Section 4.2, we state the definition

of a critical vertex, Theorem 1.0.6 and give some corollaries. In Section 4.3, we prove
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Theorem 1.0.7 by making use of theorems stated in Section 1.0.6. In Section 4.4, we

present a proof of Theorem 1.0.6.

4.2 k-centric Turán number

In this section, we define the k-centric Turán number for P and state the main

result of the paper. First, we define critical vertex.

Definition 4.2.1. Let H = (V,E) be a 3-graph. If there exists v ∈ V and a non

empty set Dv ⊂ V \{v} such that

∀u ∈ Dv,d(u) > 0

E(Dv, V, V ) = E({v}, Dv, Dv),e({v}, Dv, Dv) ≥ |Dv| ≥ 4,

then by choosing Dv as big as possible, we call v a critical vertex with the subordi-

nate set Dv and we call |Dv| the size of v. If there exists u ∈ V − Dv such that

e({v}, {u}, V ) > 0 then we call such u a trivial vertex of v.

Now, we employ the concept of center to classify P -free 3-graph having critical

vertices.

Definition 4.2.2. Let H = (V,E) be a P -free 3-graph with |H| = n. Let C be

a set of critical vertices in H. If C 6= ∅ then we call v ∈ C the center of H if

|Dv| = maxu∈C |Du| , and H is called the k-centric Turán graph for P if |Dv| = n−k.

Note two simple facts:

Fact 4.2.3. If u ∈ Dv for some v ∈ V then

d(u) ≤ |Dv| − 1.

Fact 4.2.4. If v is a critical vertex of H with the subordinate set Dv then for any

v′ ∈ Dv , v′ is not a critical vertex. Moreover, for any two critical vertices c1, c2,

Dc1 ∩Dc2 = ∅.
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Proof. Suppose that v′ is a critical vertex with Dv′ . Since v′ ∈ Dv, D
′
v ⊂ Dv ∪ {v}

and every edge containing v′ must contain v. Since e({v′}, Dv′ , Dv′) ≥ |Dv′|, there

exists e′′ ∈ E({v′}, Dv′ , Dv′) such that v /∈ e′′, a contradiction.

Let c1, c2 be arbitrary two critical vertices. We may assume that c1 /∈ Dc2 , c2 /∈

Dc1 . Now, if there exists u ∈ Dc1 ∩ Dc2 then, without loss of generality, there is

u′ ∈ Dc1 such that {u, u′, c1} ∈ E(H). Since c1 /∈ Dc2 , it is a contradiction to the fact

that u ∈ Dc2 .

Theorem 1.0.6 is one of the main results in Chapter 4. For this theorem, we clarify

the notion of connectivity of a hypergraph.

Definition 4.2.5. A hypergraph H is connected if for any two vertices u, v ∈ V (H)

there exists a sequence of edges P = e1...es such that u ∈ e1, v ∈ es and for any

i ∈ [s− 1], |ei ∩ ei+1| > 0.

We recall Theorem 1.0.6.

Theorem 1.0.6. Let H = (V,E) be a connected 3-graph with |H| = n ≥ 7 and

∆(H) ≥ n− 2. If ||H|| > 3n− 8 then either H contains P or a critical vertex.

Corollary 4.2.6. Let H = (V,E) be a P -free 3-graph with |H| = n. If H has no

critical vertex, then for any S ⊂ V ,

∑
u∈S

d(u) ≤ max{|S|(n− 3), 9n− 24, 10|S|}.

Proof. If ∆(H) ≤ max{n− 3, 10} then it is obvious, so we may assume that ∆(H) >

max{n − 3, 10}, and so |H| ≥ 7. If H is connected, then by Theorem 1.0.6, ||H|| ≤

3n− 8, and therefore,

∑
u∈S

d(u) ≤ 3||H|| ≤ 9n− 24.
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Hence we may assume that H is disconnected and let V =
⋃
i Vi where each H[Vi] is

a component. If for all i, ∆(H[Vi]) ≤ max{10, |Vi| − 3}, then we are done, so there

exists H[Vi] such that ∆(H[Vi]) > max{10, |Vi| − 3}.

Suppose the inequality is not true and choose S ⊂ V such that S is a counter

example, and subject to this, |S| is as small as possible. If H has a component Vi

such that ∆(H[Vi]) ≤ max{10, |Vi| − 3}, then by the choice of S, S ∩ Vi = ∅.

Hence for any Vi such that Vi ∩ S 6= ∅, ∆(H[Vi]) > max{10, |Vi| − 3}, so |Vi| ≥ 7

and by Theorem 1.0.6, ||H[Vi]|| ≤ 3|Vi| − 8. Therefore,

∑
u∈S

d(u) ≤ 3(
∑
i

(3|Hi| − 8)) ≤ 9n− 24,

a contradiction.

We have the following lemma.

Lemma 4.2.7. Let H = (V,E) be a P -free 3-graph and let v be a critical vertex

with subordinate set Dv. If there exists a trivial vertex u of v, then either H[{u} ∪

V (N(u))] ⊂ K3
4 or there exists another trivial vertex u′ such that

E({u, u′}, V, V ) ⊂ E({u}, {u′}, V −Dv).

The proof of this lemma appears in section 4.4 and it yields the following lemma.

Lemma 4.2.8. Let H = (V,E) be a P -free 3-graph. Let C be the set of critical

vertices. For any v ∈ C, denote by Dv the subordinate set of v and let D = ∪v∈CDv.

Then H ′ = H[V −D] = (V ′, E ′) does not contain a critical vertex.

Proof. If C is empty then the statement is vacuously true. Suppose for a contrary

that H ′ has a critical vertex, say u. By the construction, u /∈ C. If there is no v ∈ C

such that e({u}, {v}, V ) > 0, then u is a critical vertex of H, a contradiction. So
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we may assume that there is v ∈ C such that e({u}, {v}, V ) > 0, i.e u is a trivial

vertex of v in H. Lemma 4.2.7 implies that either H[{u} ∪ N(u)] ⊂ K3
4 or there

is u′ ∈ V ′ such that E({u}, V ′, V ′) = E({u}, {u′}, V − Dv). If H[{u} ∪ N(u)] ⊂

K3
4 , then |Du| ≤ 3, a contradiction to that u is a critical vertex of H ′. Otherwise,

e({u}, Du, Du) = e({u}, {u′}, Du) ≤ |Du| − 1, which is also a contradiction to that u

is a critical vertex of H ′.

4.3 Proof of Theorem 1.0.7

The proof of Theorem 1.0.7 entirely relies on Theorem 1.0.6. We start with one

lemma.

Lemma 4.3.1. Let H be a k−centric Turán graph for P with |H| = n ≥ 22 and

k ≥ 2. Denote by c the center of H. For any S ⊂ V − {c} such that |S| ≥ n
2
,

∑
u∈S

d(u) ≤ |S|(n− 3).

Proof. Let S be an arbitrary subset of V − {c} such that |S| ≥ n
2
. If |Dc| = n− k ≥

n− 6 then by Fact 4.2.3, every vertex in Dc has degree at most n− k − 1 and every

vertex but c in V −Dc has degree at most
(

5
2

)
, and therefore,

∑
u∈S

d(u) ≤ |S| ·max{10, (n− k − 1)} ≤ |S|(n− 3).

Thus we may assume |Dc| ≤ n− 7, i.e k ≥ 7.

Denote by C the set of critical vertices and let C ′ = C−{c}. For any v ∈ C, denote

by Dv the subordinate set of v. Set D := ∪v∈CDv, H
′ := H[V − D]. Lemma 4.2.8

implies that H ′ does not contain a critical vertex. Set k2 := |V −D|, k1 :=
∑

v∈C′ |Dv|.

By Fact 4.2.4, k1 = | ∪v∈C′ Dv|, and so,

k = k1 + k2.
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Note that for any t ≤ n,

t|S| ≥ nt

2
>

(
t

2

)
.

Note that if n− k = q, then for any u ∈ C ′, |Du| ≤ q, and so,∑
u∈C′
|{{x, y} ∈ N(u) : {x, y} ⊂ Du}| ≤ k1/q ·

(
q

2

)
=
k1(q − 1)

2
.

Set S1 := S ∩D, S2 := S − S1. Note that∑
v∈S

d(v) ≤ |S1|(|Dc| − 1) +
∑

u∈S∩C′
|N(u) ∩Du|+

∑
u∈S2

dH′(u).

By Corollary 4.2.6,∑
u∈S2

dH′(u) ≤ max{|S2|(k2 − 3), 9k2 − 24, 10|S2|}.

Case 1. max{|S2|(k2 − 3), 9k2 − 24, 10|S2|} = 9k2 − 24.

Note that (k2 − 2)|S| ≥ 11(k2 − 2) ≥ 9k2 − 24. Thus∑
v∈S

d(v) ≤ |S1|(n− k − 1) +

(
k1

2

)
+ 9k2 − 24

≤ |S|(n− 3)− |S|(k1 + k2 − 2) +

(
k1

2

)
+ 9k2 − 24

≤ |S|(n− 3)− |S|k1 +

(
k1

2

)
≤ |S|(n− 3).

Case 2. max{|S2|(k2 − 3), 9k2 − 24, 10|S2|} = |S2|(k2 − 3).

Note that k2 − 3 ≥ 10, |S2| ≥ 9. If n − k ≤ k2 − 2, then
∑

u∈C′ |N(u) ∩Du| ≤ k1k2
2

,

and then∑
v∈S

d(v) ≤ |S1|(n− k − 1) +
k1k2

2
+ |S2|(k2 − 3)

≤ |S|(n− 3)− |S|(k1 + k2 − 2) +
k1k2

2
+ |S2|(k2 − 3)

≤ |S|(n− 3)− (|S|k1 −
k1k2

2
)− (|S|(k2 − 2)− |S2|(k2 − 3))

≤ |S|(n− 3).
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Otherwise,

∑
v∈S

d(v) ≤ |S1|(n− k − 1) +

(
k1

2

)
+ |S2|(k2 − 3)

= |S|(n− k − 1)− |S2|(n− k − 1) +

(
k1

2

)
+ |S2|(k2 − 3)

≤ |S|(n− k − 1) +

(
k1

2

)
≤ |S|(n− 3)− k1n

2
+

(
k1

2

)
≤ |S|(n− 3).

Case 3. max{|S2|(k2 − 3), 9k2 − 24, 10|S2|} = 10|S2|.

If n− k ≤ 10 then
∑

u∈C′ |N(u) ∩Du| ≤ 5k1, and then

∑
v∈S

d(v) ≤ |S1|(n− k − 1) + 5k1 + 10|S2|

= |S|(n− 3)− |S2|(n− 3)− |S1|(k − 2) + 5k1 + 10|S2|

≤ |S|(n− 3)− (|S2|(n− 13) + |S1|(n− 12)− 5k1)

= |S|(n− 3)− (|S|(n− 12)− |S2| − 5k1)

≤ |S|(n− 3)− (10|S| − |S2| − 5k1)

≤ |S|(n− 3)− (5(n− k1)− |S2|)

≤ |S|(n− 3)− (n− k1 − |S2|)

≤ |S|(n− 3).
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Otherwise, ∑
v∈S

d(v) ≤ |S1|(|Dc| − 1) +
∑
u∈C′
|N(u) ∩Du|+

∑
u∈S2

dH′(u)

≤ |S|(n− k − 1)− |S2|(n− k − 1) +

(
k1

2

)
+ 10|S2|

≤ |S|(n− 3)− |S|(k − 2) +

(
k1

2

)
≤ |S|(n− 3).

Now we prove Theorem 1.0.7.

Proof of Theorem 1.0.7. We argue by induction on r. The base step follows imme-

diately from Theorem 4.1.6. So we may assume that r ≥ 11 and let n = 2r ≥ 22.

Suppose to the contrary that there exists a r-coloring of K3
n which does not contain a

monochromatic P . If one of the colors is the subgraph of S3
n, then we remove the cen-

ter of this S3
n together with all its incident edges, and then we get an r−1-coloring of

K3
n−1, hence we get a monochromatic P by induction hypothesis. So we may assume

that there is no 1-centric Turán graph for P .

Let H = (V,E) be such a r-coloring of K3
n. For any i ∈ [r], let Hi = (V,Ei) where

Ei = {e ∈ E : e is colored by color i}. Let

R1 = {i ∈ [r] : Hi has a critical vertex },

R2 = {i ∈ [r] : Hi has no critical vertex }.

Define S ⊆ V as follows:

S = {v ∈ V : v is not the center for any Hi, i ∈ R1}.

Since |R1| ≤ r,

|S| ≥ n− r = r =
n

2
≥ 11.
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By Corollary 4.2.6 and Lemma 4.3.1,

∑
i∈[r]

∑
v∈S

dHi(v) ≤ r · |S|(n− 3),

where dHi(v) is the degree of v in Hi. Therefore, there exists c ∈ S such that(
n− 1

2

)
=
∑
i∈[r]

dHi(c) ≤ r(n− 3) =
n

2
· (n− 3) <

(
n− 1

2

)
,

a contradiction.

4.4 Proof of Theorem 1.0.6

In this section, we present the proof of Theorem 1.0.6. Defining following auxiliary

graph is our first step.

Definition 4.4.1. Let H = (V,E) be a 3-graph. Fix v ∈ V and define a graph

G = (V ′, E ′) as V ′ = V − {v} and E ′ = {{x, y} ∈
(
V ′

2

)
: {v, x, y} ∈ E}. We call this

G the derived graph with v on V ′.

An useful observation follows:

Observation 4.4.2. Let H = (V,E) be a P -free 3-graph. Fix v ∈ V and let G =

(V ′, E ′) be the derived graph with v on V ′. Let e be an edge in H such that v /∈ e.

Then there exists no pair of edges e′, e′′ ∈ E ′ such that

e′ ∩ e′′ = ∅

|e′ ∩ e| = 1,e′′ ∩ e = ∅.

To avoid confusion, for any u ∈ V ′, U ⊂ V ′, we denote by NG(u) neighborhood

of u in G and NG(U) = ∪u∈UNG(u). In a similar way, let dG(u) = |NG(u)|, dG(U) =

|NG(U)|. We will show two lemmas which develop Observation 4.4.2.
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Figure 4.1: Observation 4.4.2

Lemma 4.4.3. Let H = (V,E) be a P -free 3-graph. Fix v ∈ V and let G = (V ′, E ′)

be the derived graph with v on V ′. Let e be an edge in E such that v /∈ e. If

NG(e)− e 6= ∅, then for any x ∈ NG(e)− e,

||G[V ′ − e− x]|| = 0.

Proof. Suppose not. Then there exist x ∈ NG(e)− e and e′′ ∈ E(G[V ′ − e− x]). Let

e′ = {x, y} ∈ E ′ where y ∈ e. Then

e′ ∩ e′′ = ∅, |e′ ∩ e| = |{y}| = 1, e′′ ∩ e = ∅,

a contradiction to Observation 4.4.2.

Now we prove Lemma 4.2.7 briefly. Before proving the lemma we need to recall

vertex cover. A vertex cover of a graph is a set of vertices such that each edge of the

graph is incident to at least one vertex from the set. Given a graph G = (V,E), the

size of a minimum vertex cover of G is denoted by τ(G).

Fact 4.4.4. Let G be a graph. If ||G|| ≥ |G|, then τ(G) > 1.

Proof of Lemma 4.2.7. Let G be a derived graph with v on V ′ and Dv is a subordinate

set of v. Let C be the component of G such that u ∈ C. Since u is a trivial vertex,

dG(u) ≥ 1. If there is no edge e′ ∈ E such that v /∈ e′ and e′ ∩C 6= ∅, then Dv ∪C is

a subordinate set, a contradiction. So let e′ ∈ E be such that v /∈ e′ and e′ ∩ C 6= ∅.
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If |NG(e′) − e′| ≥ 1, then since τ(G[Dv]) > 1, by Lemma 4.4.3, H contains a P ,

a contradiction. Hence we may assume that NG(e′) ⊂ e′, and so |C| ∈ {2, 3}. If

|C| = 3, then e′ = C and then H[{v} ∪ V (N(u))] ⊂ K3
4 . If |C| = 2, then dG(u) = 1,

say NG(u) = {u′}, and then {u, u′} ⊂ e′, therefore,

E({u, u′}, V, V ) ⊂ E({u}, {u′}, V −Dv).

By Lemma 4.1.5, our argument will be based on the assumption that H is also

C3
3−free and we have the lemma developing the assumption. Here is an observation

for that H is C3
3 -free.

Observation 4.4.5. Let H = (V,E) be a C3
3 -free 3-graph with |H| = n. Fix v ∈ V

and let G = (V ′, E ′) be the derived graph with v on V ′. Let e be an edge in E such

that v /∈ e. There exists no pair of edges e′, e′′ ∈ E ′ such that

e′ ∩ e′′ = ∅, |e′ ∩ e|, |e′′ ∩ e| = 1.

Figure 4.2: Observation 4.4.5

Lemma 4.4.6. Let H = (V,E) be a connected P,C3
3 -free 3-graph. Fix v ∈ V and

let G = (V ′, E ′) be the derived graph with v on V ′ where V ′ = V − {v}. Let E ′′ =
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{e ∈ E : v /∈ e}. For any e ∈ E ′′ such that NG(e) − e 6= ∅, the set of edges in

E(G) \ E(G[e]) forms an intersecting family.

Proof. Suppose by the way of contradiction that there exists e ∈ E ′′ and e1, e2 ∈

E(G) \ E(G[e]) such that e1 ∩ e2 = ∅. Note that |e1 ∩ e|, |e2 ∩ e| ≤ 1 and by

Observation 4.4.2,

|e1 ∩ e| = |e2 ∩ e|.

If |e1 ∩ e| = |e2 ∩ e| = 1 then by Observation 4.4.5, H contains C3
3 . Hence we may

assume that |e1 ∩ e| = |e2 ∩ e| = 0. Then there exists x ∈ NG(e)− e, i ∈ [2] such that

x /∈ ei, which implies that

ei ∈ E(G[V ′ − e− x]),

a contradiction to Lemma 4.4.3.

Finally, we recall the result in (Keevash et al., 2006).

Theorem 4.4.7. (Keevash et al., 2006) If H is a k-graph on n vertices with no P k
2

where k ≥ 3, then ||H|| ≤
(
n
k−2

)
.

Especially,

Fact 4.4.8. For n ≥ 1, ex(n;P 3
2 ) ≤ n.

Now we prove Theorem 1.0.6.

Proof of Theorem 1.0.6. If H ⊃ C3
3 , then Lemma 4.1.5 implies that

||H|| ≤ 3n− 8.

Therefore, we may assume that H is C3
3 -free.
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Now we choose v ∈ V so that dH(v) is maximum and define the derived graph Gv

with v on V ′ and denote by E ′′ the set of edges in E which does not contain v. By

the choice of v and the given condition,

||G|| = ∆(H) ≥ n− 2 ≥ 5.

Let I = {u ∈ V ′ : dG(u) = 0} and we classify vertices in V ′ as follows: For any

u ∈ V ′, denote by C(u) the component of G containing u.

• D2 = {u ∈ V ′ : |C(u)| = 2}.

• D3 = {u ∈ V ′ : |C(u)| = 3}.

• D = {u ∈ V ′ : |C(u)| ≥ 4}.

Let |I| = t0, |D2| = 2t2, |D3| = 3t3, |D| = t. For i ∈ [t2], denote by pi a component of

G[D2]. For j ∈ [t3], denote by Cj a component of G[D3].

Lemma 4.4.6 is the key of the proof. We have a following claim which is for the

case that Lemma 4.4.6 is applied.

Claim 4.4.9. If there exists e ∈ E ′′ such that NG(e)− e 6= ∅ then ||H|| ≤ 2n− 2.

Proof. By Lemma 4.4.6, the set of edges in E(G) \ E(G[e]) forms an intersecting

family, and therefore, the set of edges in E(G) \ E(G[e]) forms a star or a triangle.

• The set of edges in E(G) \ E(G[e]) forms a K3. Then |V (K3) ∩ e| = 1, so

|V (K3) ∪ e| = 5. Since |V ′| ≥ 6, I = V ′ \ (V (K3) ∪ e) 6= ∅. Since ||G|| ≥ 5,

||G[e]|| ≥ 2, so G[V (K3) ∪ e] is connected. Since H is connected, there exists

e′ ∈ E ′′ such that e′ ∩ I 6= ∅ and (V (K3)∪ e)∩ e′ 6= ∅. Then NG(e′)− e′ 6= ∅. If

|e∩e′| ≥ 1 then the set of edges in E(G)\E(G[e′]) does not form an intersecting

family, a contradiction to Lemma 4.4.6. If |e ∩ e′| = 0 then there exists an
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e′′ ∈ E(G) such that |e′′ ∩ e| = |e′′ ∩ e′| = 1, and then e, e′, e′′ ∪ {v} forms a P ,

a contradiction.

• The set of edges in E(G) \E(G[e]) forms a star. Let c be the center of the star.

First, assume that G is a star. Since ||G|| ≥ |V ′| − 1,

G ∼= K1,|V ′|−1.

If there is e′′ ∈ E ′′ such that c ∈ e′′, then d(c) ≥ dG(c) + 1 = |V ′| > |V ′| − 1 =

d(v), a contradiction to the choice of v. Hence for any e′′ ∈ E ′′, c /∈ e′′. If there

exists P 3
2 ∈ H[V ′ − {c}], say {v1, v2, v3}, {v3, v4, v5}, then it forms a P with

{v, c, v5}. By Fact 4.4.8

|E ′′| ≤ |V ′| − 1.

Therefore,

||H|| = ||G||+ |E ′′| ≤ (|V ′| − 1) + (|V ′| − 1) = 2n− 4 < 2n− 2.

Hence we may assume that G is not a star, which implies that there exists

e′ ∈ E(G[e]) such that c /∈ e′. If t2 6= 0 then t2 = 1, t3 = 0 , p1 ⊂ e and

G[D] is a star, then ||G|| = t − 1 + 1 = t ≤ |V ′| − 2t2 = |V ′| − 2 = n − 3,

a contradiction. Hence t2 = 0. If t3 6= 0 then t > 0 or t3 ≥ 2, but then the

set of edges in E(G) \ E(G[e]) can not be a star, hence t3 = 0. Moreover,

|V ′| − 1 ≤ ||G|| ≤ (t− 1) + 3 = |V ′| − t0 − 1 + 3, which implies that

t0 ≤ 3.

Note that if there exists e′′ ∈ E ′′ such that |e′′ ∩ e′| ≤ 1, then the set of edges

in E(G) \E(G[e′′]) does not form an intersecting family. If there exists e′′ ∈ E ′′

such that |e′′ ∩ e′| = 1, then NG(e′′)− e′′ 6= ∅, a contradiction to Lemma 4.4.6.

So we see that for any e′′ ∈ E ′′, |e′′∩ e′| ∈ {0, 2}. Now, assume that there exists
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e′′ ∈ E ′′ such that e′′ ∩ e′ = ∅. If e′′ * I then e′′ ∩D 6= ∅, so NG(e′′) − e′′ 6= ∅,

a contradiction. Hence e′′ ⊂ I, so e′′ = I and t0 = 3. Since H is connected,

there is e′′′ ∈ E ′′ such that e′′′ ∩ e′′ 6= ∅ and e′′′ ∩D 6= ∅. If |e′′′ ∩ e′′| = 2 then

NG(e′′′)− e′′′ 6= ∅ and |e′′′ ∩ e′| ≤ 1, so the set of edges in E(G) \E(G[e′′′]) does

not form a intersecting family, if |e′′′ ∩ e′′| = 1 then there is x ∈ e′′′ ∩ D such

that NG(x)− e′′′ 6= ∅, say y ∈ NG(x)− e′′′, and then e′′′, e′′, {v, x, y} forms a P ,

a contradiction. Hence we may assume that for any e′′ ∈ E ′′,

e′ ⊂ e′′.

It implies that

|E ′′| ≤ n− 3.

Therefore,

||H|| = |E ′′|+ ||G|| ≤ n− 3 + n+ 1 = 2n− 2.

�

To finish the proof, we need the following.

Claim 4.4.10. If for any e ∈ E ′′, NG(e)− e = ∅ then ||H|| < 3n− 8.

Proof. Note that for any e ∈ E ′′, e∩D = ∅. If ||G[D]|| ≥ |D|, then D is a sub-ordinate

set, so ||G[D]|| ≤ |D|−1, and then t0 + t2 = 0. Hence E ′′ ⊂ {Ci : i ∈ [t3]}. Therefore,

||H|| = ||G||+ |E ′′| ≤ 3t3 + (t− 1) + t3 < 3n− 8.

�

This completes the proof of the theorem.
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Chapter 5

CONCLUSIONS

The aim of this thesis is to provide optimal conditions for some Turán type problems

in extremal graph theory.

We conclude by giving an overview of the results provided in this thesis and

suggesting possible future research.

5.1 Brief Summary of Results

This section includes a brief list of the main results in this thesis.

5.1.1 Even cycles in dense graphs

In Theorem 1.0.2, the following result is proved.

For every 0 < α < 1
2
, there is a natural number N = N(α) such that the following

holds. For any n1, ..., nl ∈ Z+ such that
∑l

i=1 ni = δ(G) and ni ≥ 2 for all i ∈ [l],

every 2-connected graph G of order n ≥ N and αn ≤ δ(G) < n/2 − 1 contains C

where C is a disjoint union of C2n1 , . . . , C2nl or G is one of the graphs from Example

2.1.3 and n1 = n2 = δ or G is a subgraph of the graph from Example 2.1.4 and ni = 2

for every i.

5.1.2 Balanced spanning caterpillar

In Theorem 1.0.5, the following result is proved.

For p ∈ Z+, there exists n0 such that for every n ∈ (p + 1)Z with n ≥ n0 the

93



following holds. If G is a graph on n vertices such that

δ(G) ≥


n
2

if n/(p+ 1) is even

n+1
2

if n/(p+ 1) is odd and p > 2

n−1
2

if n/(p+ 1) is odd and p ≤ 2

then G contains a spanning p-caterpillar. This result is sharp.

5.1.3 Turán-type result and multi-color Ramsey number for a loose 3 uniform path

of length 3

In Theorem 1.0.7, the following result is proved. For any r ≥ 6,

r + 6 ≤ R(P 3
3 ; r) ≤ 2r.

5.2 Future Research

Since we showed that the condition for the result in Chapter 3 is best possible,

our proposal for future research only discusses topics from Chapter 2 and 4.

In Chapter 2, we only investigated spectrum of even cycles. But Conjecture 1.0.1

which was our original motivation can be approached using similar methods in the

case of edd cycles. Hence it is natural to consider the odd case of Conjecture 1.0.1

in the case of that a graph is dense and its order is sufficiently large for future

research. We believe that using the framework of Chapter 2, with some additional

considerations, the following theorem can be established. Nevertheless the details of

a possible argument are left as future work.

Theorem 5.2.1. (Yie and Czygrinow, 2018) For every 0 < α < 1
2
, there is a nat-

ural number N = N(α) such that the following holds. If G is 2-connected graph

such that G is not bipartite and |G| ≥ N , then |So| ≥ δ(G) where So = {|C| :

C is an odd cycle contained in G}.
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Our auxiliary results, Lemma 2.4.7, 2.3.6, 2.3.9, 2.3.10, 2.4.3 in Chapter 2 would

give us a framework for the proof of Theorem 5.2.1.

Although our result in Chapter 4 has been minimally improved by Polcyn and

 Luczak, the bound seems to leave a lot of room for improvement. We conjecture that

the correct answer is as follow.

Conjecture 5.2.2. R(P 3
3 ; r) = r + 6 for r ≥ 3.

The limitation of application of Theorem 1.0.6 comes from the maximum degree

condition of Theorem 1.0.6. Hence the following theorem should be our next goal.

Theorem 5.2.3. (Yie, 2018) Let H = (V,E) be a 3-uniform hypergraph with |H| =

n ≥ 7. If H is connected and ||H|| > max{3n− 8, ∆(H)(n−∆(H))
2

,∆(H)(n− 2∆(H))},

then H contains either P 3
3 or a critical vertex.
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