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ABSTRACT 

 Mathematical modeling and decision-making within the healthcare industry 

have given means to quantitatively evaluate the impact of decisions into diagnosis, 

screening, and treatment of diseases. In this work, we look into a specific, yet very 

important disease, the Alzheimer. In the United States, Alzheimer’s Disease (AD) is the 

6th leading cause of death. Diagnosis of AD cannot be confidently confirmed until after 

death. This has prompted the importance of early diagnosis of AD, based upon symptoms 

of cognitive decline. A symptom of early cognitive decline and indicator of AD is Mild 

Cognitive Impairment (MCI). In addition to this qualitative test, Biomarker tests have been 

proposed in the medical field including p-Tau, FDG-PET, and hippocampal. These tests 

can be administered to patients as early detectors of AD thus improving patients’ life 

quality and potentially reducing the costs of the health structure. Preliminary work has been 

conducted in the development of a Sequential Tree Based Classifier (STC), which helps 

medical providers predict if a patient will contract AD or not, by sequentially testing these 

biomarker tests. The STC model, however, has its limitations and the need for a more 

complex, robust model is needed. In fact, STC assumes a general linear model as the status 

of the patient based upon the tests results. We take a simulation perspective and try to 

define a more complex model that represents the patient evolution in time.  

Specifically, this thesis focuses on the formulation of a Markov Chain model that 

is complex and robust. This Markov Chain model emulates the evolution of MCI patients 

based upon doctor visits and the sequential administration of biomarker tests.  Data 

provided to create this Markov Chain model were collected by the Alzheimer’s Disease 
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Neuroimaging Initiative1 (ADNI) database. The data lacked detailed information of the 

sequential administration of the biomarker tests and therefore, different analytical 

approaches were tried and conducted in order to calibrate the model. The resulting Markov 

Chain model provided the capability to conduct experiments regarding different parameters 

of the Markov Chain and yielded different results of patients that contracted AD and those 

that did not, leading to important insights into effect of thresholds and sequence on patient 

prediction capability as well as health costs reduction.  

 

   

 

 

 

 

 

 

 

 

 

 

                                                 
1 The data in this thesis was provided from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

database (adni.loni.usc.edu). ADNI investigators did not contribute to any analysis or writing of this thesis. 

A list of the ADNI investigators can be found at: http://adni.loni.usc.edu/about/governance/principal-

investigators/ . 



iii 

 

ACKNOWLEDGEMENTS 

I would like to thank my Committee Chair, Dr. Giulia Pedrielli. Her patience and help 

throughout this research was much appreciated. It has been a privilege to learn and work 

with her. I also want to thank my Co-Chair, Dr. Jing Li, for allowing me to consult on this 

project that she owns. Additionally, I want to thank and acknowledge the help I have 

received from students, Bing Si and Logan Mathesen. Both helped me throughout this 

research by answering questions about data interpretation, code explanation, and aided in 

developing necessary code. I further want to thank my committee member Dr. Teresa Wu 

for her time and assistance.  I lastly, would like to thank my family for their support and 

encouragement.  

 

This Thesis was able to be conducted due to the funding by the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and 

DOD ADNI (Department of Defense award number W81XWH-12-2-0012). This funding 

has provided the data collection and ability to share data. ADNI is funded by the National 

Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and 

through generous contributions from the following: AbbVie, Alzheimer’s Association; 

Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; 

Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan 

Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd 

and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen 

Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson 



iv 

 

Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; 

Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis 

Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda 

Pharmaceutical Company; and Transition Therapeutics. In Canada, ADNI’s funds are 

provided by the Canadian Institute of Health Research. The Foundation for the National 

Institutes of Health (www.fnih.org) facilitates private sector contributions. Northern 

California Institute for Research and Education is the grantee organization and the study is 

organized by the Alzheimer’s Therapeutic Research Institute at the University of Southern 

California. ADNI data are distributed by the Laboratory for Neuro Imaging at the 

University of Southern California. 

 

 

 

 

 

 

 

 

 

 

 



v 

 

TABLE OF CONTENTS 

                                   

Page 

LIST OF TABLES ................................................................................................................. vii 

LIST OF FIGURES .............................................................................................................. viii 

CHAPTER  

1 CHAPTER 1: INTRODUCTION ............................................................................... 1 

1.1 Alzheimer’s Disease Background ........................................................................... 1 

1.2 Preliminary Work (STC)......................................................................................... 3 

1.3 STC Challenges ...................................................................................................... 4 

2 CHAPTER 2: LITERATURE REVIEW .................................................................... 4 

2.1 Introduction ............................................................................................................. 4 

2.2 Decision Making in Healthcare .............................................................................. 5 

2.3 Markov Chain Modeling in Healthcare .................................................................. 7 

3 CHAPTER 3: METHODOLOGY ............................................................................ 10 

3.1 Method Overview ................................................................................................. 10                                                                                                             

3.2 Data Description ................................................................................................... 11 

3.3 Markov Chain Formulation................................................................................... 12 

 3.3.1  Assumptions ................................................................................................ 12 

 3.3.2  States ........................................................................................................... 12 

 3.3.3 Transition Matrix and Diagram ................................................................... 14 

3.4 Estimation of Markov Chain Parameters .............................................................. 16 



vi 

 

CHAPTER                                                                                                                      Page 

 

 3.4.1 Estimation Techniques Introduction ............................................................ 16 

 3.4.1.a Data Normalization ...................................................................... 16 

3.4.1.b Bayes' Formulation ....................................................................... 17 

3.4.1.c Input Modeling  ............................................................................. 17 

3.4.1.d Conditional Probabilities .............................................................. 19 

3.4.1.e Empirical Cumulative Distribution Function (ECDF) .................. 20 

 3.4.2 Results Introduction ..................................................................................... 25 

3.4.2.a Transition Probabilities ................................................................. 25 

3.4.2.b Markov Chain Calculations .......................................................... 26 

4 CHAPTER 4: NUMERICAL RESULTS ................................................................. 28 

4.1 Introduction ........................................................................................................... 28 

4.1.1 Simulation Background ................................................................................ 29 

4.1.2 Markov Chain Model Verification................................................................ 29 

4.2 Experiments .......................................................................................................... 32 

4.2.1 Tightening AD Threshold ............................................................................. 33 

4.2.1.a Experiment 1 Data Comparison .................................................... 34 

4.2.2 Fixed Test Sequences .................................................................................... 37 

4.2.2.a Experiment 2 Data Comparison .................................................... 39 

5 CHAPTER 5: CONCLUSIONS AND FUTURE WORK ........................................ 42 

REFERENCES ................................................................................................................. 45 

 

 



vii 

 

LIST OF TABLES 

 

 

Table Page 

Table 1 ADNI Data Framework ....................................................................................... 11 

Table 2 Marginal Density of FDG-PET|AD ..................................................................... 18 

Table 3 Marginal Density of p-Tau|AD ............................................................................ 18 

Table 4 Density of FDG-PET ........................................................................................... 19 

Table 5 Density of p-Tau .................................................................................................. 19 

Table 6 p-Tau Thresholds and Outcomes ......................................................................... 21 

Table 7 FDG-PET Thresholds and Outcomes .................................................................. 21 

Table 8 Hippo Thresholds and Outcomes ......................................................................... 22 

Table 9 Intervals for Each Test ......................................................................................... 22 

Table 10 Two Different Transition Probabilities for p-Tau and FDG-PET Tests ............ 25          

Table 11 Reorganization of Transition Matrix Framework .............................................. 26 

Table 12 Transient and Absorbent States of Markov Chain ............................................. 27 

Table 13 Sample Transition Path from Simulation Code ................................................. 30 

Table 14 State Reference .................................................................................................. 30 

Table 15 F-test Results...................................................................................................... 31 

Table 16 p-Tau Thresholds and Outcomes ....................................................................... 33 

Table 17 FDG-PET Thresholds and Outcomes ................................................................ 33 

Table 18 Hippo Thresholds and Outcomes ....................................................................... 33                                                                

Table 19 Outcome Comparison ........................................................................................ 36 

Table 20 Totaled Fixed Test Sequence Classification Probabilities ................................. 39 



viii 

 

LIST OF FIGURES 

 

Figure Page 

Figure 1 Transition Diagram for HIV/AIDS Progression................................................... 9 

Figure 2 African American Transition Matrix .................................................................... 9 

Figure 3 Caucasian American Transition Matrix ................................................................ 9 

Figure 4 Method Overview ............................................................................................... 10 

Figure 5 Transition Matrix of Markov Chain Model ........................................................ 14 

Figure 6 Transition Diagram of Markov Chain Model ..................................................... 15 

Figure 7 ECDF Graph of p-Tau and FDG-PET Tests ...................................................... 23 

Figure 8 Transition Matrix Results ................................................................................... 25 

Figure 9 Reorganized Transition Matrix........................................................................... 27 

Figure 10 Markov Chain Model Absorbtion Probabilities ............................................... 28 

Figure 11 Expected # of Time Periods in Transient State Prior to Absorbtion ................ 28 

Figure 12 Calculated Simulation Absorbtion Probabilities .............................................. 31 

Figure 13 Transition Matrix for Adjusted AD Thresholds ............................................... 34 

Figure 14 Absorbtion Probabilities for Adjusted AD Thresholds .................................... 34 

Figure 15 Expected # of Time Periods in Transient States Before Absorption State from 

New AD Thresholds ......................................................................................................... 34 

Figure 16 Absorbtion Probabilities for All Fixed Test Sequences ................................... 38 

Figure 17 Expected Time Periods in Transient States for All Fixed Test Sequences ...... 38 

Figure 18 Paired Expected Time Period Sequences ......................................................... 41 

file:///C:/Users/ytsai/Google%20Drive/USA/ASU/2018%20Spring/%5b0403%5dWND_Thesis_draft_rev_gp_v2.docx%23_Toc510646829


1 

 

CHAPTER 1: INTRODUCTION  

1.1 Alzheimer’s Disease Background 

Alzheimer’s Disease (AD) is a neurodegenerative disease that impacts an individual’s 

memory, language, and reasoning.  AD, as of 2012, has affected more than 35 million 

individuals across the world and within the United States has affected over 5 million 

individuals [1].  The spread of the disease has led to prioritize research of preventing AD 

[2]. AD cannot be definitively diagnosed until after death and thus can only be likely 

diagnosed [2]. Therefore, individuals are first diagnosed with symptoms of dementia or 

most noticeably diagnosed as Mild Cognitive Impairment (MCI). Dementia and MCI are 

the first indicators of cognitive decline [2,3].  

The National Institute on Aging-Alzheimer’s Association (NIA-AA) has conducted 

and recommended research into criteria for MCI to AD conversion that incorporate the use 

of the following biomarkers: P-tau- phosphorylate tau level measured by cerebrospinal 

fluid (CSF), FDG- measured by an FDG-PET scan, and Hippo- hippocampal volume 

measured by an MRI [3, 4]. In the Journal of Alzheimer’s Disease an international panel 

of experts came together to declare that the identification and detection of AD risk factors 

are important in AD prevention [5].  Utilizing these biomarkers to accurately predict the 

conversion of MCI to AD can help with the early detection of AD. 

There have been studies using biomarkers to predict the conversion from MCI to AD 

[3]. However, these past studies have had limitations as their prediction accuracy has been 

unsuitable and the costs associated to these biomarkers as well as the time required for 

diagnosis results in a long period of time with effects on patients’ quality of life and 
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financial inefficiencies for the medical structures. One of the issues causing the 

aforementioned inefficiencies resides in the common approach to propose a single model 

for all patients. In fact, the single model assumption may result into challenges due to the 

inherent differences between patients due to, for example, physical and genetic 

characteristics.  Additionally, another limitation during these studies, is that most use 

classification techniques, and, as such, require all the test results to be known in order to 

apply any technique. In other words, these techniques are not able to embed the decision 

of which biomarker to test at which time. A classification model groups a set of interested 

subjects, such as patients into different classes based upon certain attributes [18].  

Therefore, a classification model will map an input attribute (a new individual/patient), 

into its class label (output) [6]. In these studies, the creation of a classification model 

allowed researchers to group individuals into a class of converters and non-converters with 

inaccuracies discussed in [3]. Furthermore, having all biomarkers measured at once, is 

difficult to do because at medical institutions there are constraints that include: the 

necessary resources such as personnel and tests, not enough time to conduct these tests, 

and the high associated costs administering these biomarker tests. Lastly, another limitation 

was that these biomarkers predicted conversions of MCI to AD on a numerical scale, 

meaning there is a hard cutoff for measurements to establish if a patient is in the “positive” 

or “negative” side of the biomarker measurement. This also allows classification decisions 

to be susceptible to measurement errors and unwanted bias [4]. A new model has been 

developed to combat these limitations.  
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1.2 Preliminary Work (STC) 

Si et al. in [3] proposed for the first time the Sequential Tree-Based Classifier 

(STC). The STC was designed to improve the prediction of conversion of MCI to AD and 

classify patients with their likelihood of conversions: High-Risk (HR), Low-Risk (LR), and 

inconclusive. To categorize these conversions, two biomarker cutoffs were proposed 

allowing to separate High-Risk (HR) and Low-Risk (LR) patients. In order to perform such 

prediction, the STC approach considers the biomarker values, the sequence at which the 

tests were taken, additional covariates that characterize patients such as age, sex and MCI 

outcome. Applied to each patient, the STC produces a personalized judgment of how the 

patient should be categorized by producing a personalized pair of thresholds [4]. 

Specifically, these thresholds are generated assuming that the biomarker value X is a linear 

function of the covariates and the true (unknown) class of the patient (i.e., converter/non-

converter). The model used in [3] is: 

 

𝑋𝑖 = 𝛽0,𝑖 + 𝛽𝑦,𝑖𝑌 + 𝛽𝑧,𝑖
𝑇 𝑍 + 𝜀~𝑁(0, 𝜎2)                                                                          (1)                 

                                                                                                                                   

Where 𝑋𝑖 is the type of biomarker test, 𝑍 identifies the risk factors within a sub cohort of 

patients (i.e. gender, age, etc.), 𝑌 determines the type of patient outcome, if 𝑌 = 1, the 

patient converts from MCI to AD and if 𝑌 = 0 then the patient does not. Within this 

outcome, the biomarkers cutoffs for HR and LR will further classify patients based upon 

how likely they will convert from MCI to AD. The formulation allows to compare several 

test sequences, thus determining, in turn the optimal sequence that maximizes the accuracy 
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in the classification of the patient while controlling the overall testing costs. Once the 

cutoffs are established the patients will be classified as either HR if they exceed the upper 

cutoff, LR if they are below the lower cutoff, and inconclusive if they do not fall above or 

below a certain cutoff. Biomarkers will no longer need to be tested once the patients have 

been classified as HR or LR, but if the patients are classified as inconclusive, then they 

must be tested for the next biomarker in the sequence. This sequence will continue until all 

biomarkers are tested for the inconclusive patients.  

1.3 STC Challenges 

Due to this preliminary work there exists challenges. This type of model is 

generalized and takes the assumption that there is a linear relationship between the response 

variable 𝑋𝑖 and its factors 𝑌 and 𝑍. The STC does not consider the dependency and 

interaction among the biomarker tests. This can impact the response variable, 𝑋𝑖. The 

response can result as nonlinear, inconsistent standard deviation due to different values of 

the covariates (𝑌 and 𝑍), skewed responses, and non-normally distributed errors [7]. Due 

to the current setup of the STC model, the sequence is fixed, meaning all patients must go 

through the same sequence. In the following literature reviews, the purpose for modeling 

healthcare diseases such as AD will be highlighted.  

CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

 The healthcare industry has vast opportunities for applying decision making models 

such as STC. The following literature review was written to determine the current 

applications for Medical Decision Making (MDM) as well as determine how a specific 
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type of modeling known as Markov Chains (MC) can be utilized in healthcare. The first 

section discusses how Operations Research methodologies can be applied to decision 

making. The second section walks through the Markov Chain modeling of HIV/AIDS 

progression. Similar to the second section, this research will use a Markov Chain to model 

the progression of AD.  

2.2 Decision Making in Healthcare 

 Healthcare costs in the United States continue to rise. In 2014, the US health cost 

exceeded $2.5 trillion [8].  It is projected that these costs will exceed other gross domestic 

price (GDP) categories [8]. Along with the issue of the rise of costs, the impact to 

individuals is just as severe as diseases continue to impact all persons of all backgrounds.  

Everyday medical decisions must be made by doctors that impact the diagnosis and 

treatment of patients.  These decisions rely on quantitative models and some applications 

from quantitative models include: breast cancer diagnosis and treatment, disease modeling, 

drug selection for HIV treatment, optimization of the timing of organ transplants, and the 

optimization of radiotherapy treatment [8]. 

 Modeling of Medical Decision Making (MDM) has become popular because past 

statistics demonstrate that medical errors due to poor decision making has attributed to a 

leading cause of death. A 1999 report stated that medical errors were responsible for 

approximately 100,000 deaths each year. From these deaths medical costs equated about 

in about $37.6 billion and of that, approximately $17 billion were because of preventable 

errors [8]. Additionally, MDM has become popular due to the increase in technology that 

allows medical doctors and personnel to collect medical information about the patient. This 
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technology gives researchers opportunities to model diseases, treatments, and 

optimizations more efficiently due to the vast amount of data available.  

 Currently healthcare policy decision makers use ad-hoc and heuristic decision-

making methodologies. These approaches currently are not capable of incorporating the 

complexity that comes along with the diagnosis, screening, and treatment of patients that 

have uncertain factors [8].  Therefore, it is important that Operations Research (OR) 

methodologies be used to combat these complex factors. OR is defined as utilizing complex 

analytical methods to make decisions. OR can be useful in healthcare and making decisions 

because complex healthcare problems can be modeled by considering the rationalization 

and the uncertain effects of making a certain decision based upon a patient’s needs [8].  

 The interest of MDM in OR is due to the need of sequential decision making under 

unpredictable factors [8].  Sequential decision making occurs because there are various 

options and decisions that doctors must make in terms of their patient’s health state [8]. 

Doctor’s decisions rely on past situations and decisions [8]. Some examples of 

unpredictability include a patient’s response to: chemotherapy, antibiotics, and access to 

limited resources such as transplant organs [8].  

 Case studies have been applied the usage of MDM. In one case study MDM 

examined the process of the screening of a mammography [8]. The decision that needed to 

be determined was when a mammogram needed to be sent for biopsy [8]. This decision 

was based upon the factors of the mammogram and the patient’s demographics [8]. In this 

case study researchers determined optimal biopsy thresholds that helped determine the 

optimal time to send the mammograms for a biopsy [8]. A second case study of MDM 
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studied the ability to develop a personalized mammography screening schedule. This 

schedule used past screening history and the patient’s personal risk characteristics [8]. This 

case study highlights the application of individualized patient care MDM can bring. The 

final case study mentioned is on making optimal decisions from resource constraints. 

Pertaining to mammograms an approach that was developed optimized thresholds over 

traditional methods and ultimately saved costs [8]. 

 Applying OR methods to MDM is still developing [8]. Major research problems 

that MDM is tackling include: personalized patient care due to prognosis and treatment, 

quantitative behavior modeling of patients, and optimizing communications between 

medical professionals and patients [8]. In this paper, the process of making decisions 

pertaining to ordering prognosis biomarker tests is studied. It is crucial to understand and 

optimize the administration of these biomarker tests because the earliest of detection of AD 

the better for effective treatment and it will reduce the costs of unnecessary tests.   

2.3 Markov Chain Modeling in Healthcare 

 In the related literature, a Markov Chain was used to forecast the progression of 

HIV/AIDS of African Americans and Caucasian Americans [9]. This type of modeling was 

used to project the number of African Americans and Caucasian Americans that are 

diagnosed with AIDS and HIV and predicts those that will be dead in the year 2030 [9]. 

Markov Chain models are used because of the ability to embed stochastic factors. 

A Markov Chain follows the characteristics of a Markov process. A Markov process is a 

stochastic process. A stochastic process occurs when a system changes unpredictably 

between different states [9]. Markov processes are frequently used to tackle healthcare 
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topics such as: genetics, determining the potency of diabetes, predicting kidney transplants, 

and analyzing disease progressions for liver cancer, breast cancer, and Alzheimer’s Disease 

[9]. These healthcare topics possess stochastic factors and are suitable to be modeled by a 

Markov Chain because of its ability to model stochastic factors.  

As an example, HIV/AIDS progression has been modeled as a discrete time Markov 

Chain with stationary transition probabilities [9]. Due to this assumption, the Markovian 

property is satisfied. The Markovian Property states that the probability of a random 

variable being in a state during a period in time only depends on the prior state before it 

and not on any other state [9]. Because of this property a Markov Chain model is useful to 

model unpredictable progression behavior even without a lot of past historical data [9]. 

Lee, Ko, Patel, Balkrishnan, and Chang et al. in [9] predicted, using the Markov Chain 

model, that Caucasian Americans currently living with HIV/AIDS is smaller than African 

Americans, but predictions show that the number of Caucasian Americans with HIV/AIDS 

will continue to increase [9].   

The methodology of formulating a Markov Chain conducted in this literature and 

explained in this section, follows the same procedure that will be explained in Chapter 3. 

The formulation of a Markov Chain needs states, transition probabilities, and the modeled 

data statistics for verification of the Markov Chain model’s results. Formulating a Markov 

Chain begins by establishing states. The states modeled in this literature follow the state 

notation: S = 𝑆1, 𝑆2, … , 𝑆𝑛. 𝑆1 = the rate of vulnerable people (V), 𝑆2 = the rate of people 

diagnosed with HIV (H), 𝑆3 = the rate of people diagnosed with AIDS (A), 𝑆4 = the rate of 

deaths from HIV/AIDS (D). States 𝑆1, 𝑆2, and 𝑆3 are modeled as transient states and 𝑆4 is 
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modeled as an absorbing state [9]. Transient states are states that the patient can transition 

into and out of and an absorbing state is when the patient will never transition out of that 

state. The following figure represents the transitions among the different states.  

 

 

 

 

 

The next step in modeling a Markov Chain would be to use the provided data for 

the model formulation. In this literature study, four years of data (2006-2009) from the 

Centers of Disease Control and Prevention (CDC) and the Prevention HIV/AIDS 

Surveillance Report from 2009 were used. This data provided the rates of African 

Americans and Caucasian Americas for each state. These rates then were calculated to their 

respective transition probabilities. These transition probabilities are represented in Figure 

1 with the notation of 𝑝𝑖𝑗, where i represents the prior state and j represents the next state. 

Two different transition matrices were constructed, 𝑇𝐵 = African Americans and 𝑇𝑊= 

Caucasian Americans.  

The last step in modeling a Markov Chain would be to verify this model with the 

actual statistics of those affected with HIV/AIDS [9]. This verification allows the model to 

Figure 1: Transition Diagram for HIV/AIDS 
(Source [9]) 

 

Figure 2: African American Transition 

Matrix (Source [9]) 
Figure 3: Caucasian American Transition 

Matrix (Source [9]) 
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be assessed on its accuracy in predicting and forecasting. This literature provided an 

overview of the needed elements in developing a Markov Chain model and informed the 

methodology process used in this thesis. 

CHAPTER 3: METHODOLOGY 

3.1 Method Overview 

Due to the research goal of creating a Markov Chain model, the following work 

was outlined. The highlighted sections represent the focus of research conducted. 

Preliminary Work 

(STC)

Markov Chain 

Model 

Formulation

Simulate MC Model 

Validate

 

Figure 4: Method Overview 

The basis of this research is the formulation of a Markov Chain model that models 

the evolution of MCI patients based upon doctor visits. This is done to create the 

benchmark needed to understand the impact of the sequential order of the administration 

of the biomarker tests decided by doctors. As mentioned in section 1.2 the STC model has 

its limitations of not being able to effectively model the dependency between the tests and 

the uncertainty characterizing the process if not through additive gaussian noise. The 

remaining part of this chapter will discuss the initial data used to create the Markov Chain 

model and will discuss the steps of formulating the Markov Chain model. Techniques and 

results will additionally be explained. Chapter 4 will discuss the simulation of the Markov 
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Chain model and the results of different experiments conducted. In conclusion, Chapter 5 

will recap the purpose and objective of this research as well as its numerical results.  

3.2 Data Description 

The data used to create the Markov Chain model was obtained from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu) on July 

31st, 2013 [3]. The ADNI originated in 2003 as a public-private partnership, spearheaded 

from Michael W. Weiner, the Principal Investigator. The principal goal of ADNI has 

composed of testing whether serial magnetic resonance imaging (MRI), positron emission 

tomography (PET), other biological markers, and clinical and neuropsychological 

assessment can be accumulated to measure the progression of MCI and early AD. To obtain 

more information visit www.adni-info.org.  

This Markov Chain model was created from a total of 144 patient’s records. These 

144 records reflected patients at the MCI stage and observed the patient’s progression for 

two years of either contracting AD or not contracting AD. If a patient contracted AD, the 

value assigned to that specific patient and record was recorded as 1 and 0 otherwise. From 

these 144 records, 72 patients contracted AD and the other 72 patients did not convert to 

AD. All 144 records included the biomarker test ranges of p-Tau, FDG-PET, and Hippo. 

An example of the framework of this ADNI data is represented below. 

 Patient 
Number 

Conversion- 
 2 years 

p-Tau FDG-PET Hippo 

1 1 - - - 

2 0 - - - 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
Table 1: ADNI Data Framework 
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3.3 Markov Chain Formulation 

3.3.1 Assumptions 

Due to the multiple factors of modeling the evolution of a patient’s visits to the 

doctor, assumptions were made to create the Markov Chain model. The first assumption 

was that all patients belonged to same type of population and therefore all were considered 

homogeneous. The second assumption was that the doctors administered a specific 

biomarker test randomly. For example, if a patient was not given any tests yet, the patient 

had a 1 3⁄  chance of being administered the p-Tau test. Then if the patient still was not 

diagnosed of either contracting AD or not, another biomarker test would be randomly 

administered, and the remaining tests would be the FDG-PET and the Hippo test. If the 

next biomarker test administered was the FDG-PET test, the probability of that test being 

chosen would be 1 2⁄ . Then the remaining probability of being administered the Hippo test 

would be 1.  

3.3.2 States 

States within a Markov Chain are dependent on the decision maker. The states of 

the system will be represented as an overall vector of 𝑋 composed of vectors: 𝑋𝑇 and 𝑋𝐻 

based upon the 𝑡𝑡ℎ doctor visit. The two vectors will represent the biomarker tests (𝑋𝑇)  

and the patient’s health state (𝑋𝐻). The biomarker tests will consist of three tests: {p-Tau 

test, FDG-PET test, and a hippocampal (Hippo) test}. If a test in 𝑋𝑇 was performed then it 

would take a value of 1, otherwise 0. The patient’s health state after being administered a 

biomarker test will result in: contraction of AD, no contraction of AD, or inconclusive. The 

patient health states in 𝑋𝐻 will take a value of the associated states in abbreviation form of: 
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no detection of AD = NAD, detection of AD = AD, and Inconclusive = I. Both vectors will 

be represented as an overall vector: 𝑋 = [𝑋𝐻, 𝑋𝑇]. The vectors are represented below.  

Patient Health State Vector: 

𝑋𝐻𝜖ℝ3 =[no AD = NAD, AD = AD, Inconclusive = I]                

 

Biomarker Test Vector: 

𝑋𝑇𝜖ℝ3 = [p-Tau, FDG-PET, Hippo] 

𝑋𝑇 = {
1,  𝑖𝑓 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑒𝑠𝑡 𝑡𝑎𝑘𝑒𝑛
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

Overall Vector 

𝑋 = [𝑋𝐻, 𝑋𝑇]                                                                                                                     (2) 

 

 

Thus, the overall vector of both the biomarker test and the patient’s health state will be 

mathematically represented as:  

 

𝑃(𝑋𝑡+1 = 𝑗 |𝑋𝑡 = 𝑖) =  𝑝𝑖𝑗                                                                                                                 (3)      

𝑡 = 1,2, … is the index of the visit.  

 

Where 𝑖, 𝑗 represents states at time 𝑡 and 𝑝𝑖𝑗 represents the probability of the states after a 

transition from one state to another. For example, state, [1, 0, 1, AD] means that the p-Tau 

and the Hippo test were administered and the MCI patient contracted AD. By using a 

Markov Chain model, the future state of the patient can be predicted based upon the current 

state of the patient. This Markov Chain is based off the Stationary Assumption, where the 

transition states are independent of the doctor visit, 𝑡 [10]. 
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3.3.3 Transition Matrix and Diagram 

Based upon the formulated states a transition matrix could be created. A total of 22 

states existed. Each possible transition from each state was traced and formulated a 22 by 

22 matrix. Within these transition states exists absorbing states. Absorbing states are states 

when the patient can longer progress further in being administered biomarker tests. This 

means that the patient has converted from MCI to AD or the patient has not converted to 

AD and is recognized as the state, NAD. Patients recognized as AD or NAD no longer are 

administered biomarker tests and are no longer studied further in the Markov Chain. The 

transient states, those that are not absorbing states are patients that are recognized as being 

in an Inconclusive (I) state. These patients fall within an Inconclusive diagnosis once 

administered a biomarker test or more than one biomarker test. The Markov Chain is 

completed when all three tests are administered. There is a total of 36 states that have 

transition probabilities. Each transition probability must be multiplied by the assumption 

that the doctor randomly administers a biomarker test. The following matrix shows the 

highlighted 36 states. These 36 states represent transition probabilities, “p”, and the 

probabilities of randomly administering a biomarker test being multiplied.  

 

 

 

 

 

 

 

 

 

 

 
Figure 5: Transition Matrix of Markov Chain Model 



15 

 

The calculation of these transition probabilities will be discussed further in 3.4.1.d 

as well as the results. In addition, to formulating a transition matrix, a transition diagram 

also can be created to visually see the possible paths that a patient will undergo as the 

patient visits their doctor and is given a biomarker test. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The golden highlighted states in Figure 6 represent the transient states as these 

states are Inconclusive patients (I). The absorbing states are pictured as the states with 

recurring arrows and the red highlighted states are the conclusive states of the Markov 

Chain model. The conclusive states are all the possible three states: AD, NAD, I, once all 

tests have been administered. 

[0, 0, 0, I]

[1,0,0,AD] [1,0,0,NAD] [1,0,0,I] [0,0,1,AD] [0,0,1,NAD] [0,0,1,I][0,1,0,NAD] [0,1,0,I][0,1,0,AD]

[1,1,0,AD] [1,1,0,NAD] [1,1,0,I]

[0,1,1,AD] [0,1,1,NAD] [0,1,1,I]

[1,0,1,AD] [1,0,1,NAD] [1,0,1,I]

[1,1,1,AD] [1,1,1,NAD] [1,1,1,I]

Figure 6: Transition Diagram of Markov Chain Model 
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3.4 Estimation of Markov Chain Components 

3.4.1 Estimation Techniques Introduction 

Different approaches were applied in the attempt to calculate the transition 

probabilities. The first necessary step was to normalize the data. This allowed the 

calculation of probabilities to be easier. The first attempt to calculate the transition 

probabilities was to use the method of input modeling, however this had its limitations 

and will be discussed further in section 3.4.1.c. The next plausible and selected method 

was to solve the transition probabilities by utilizing Empirical Cumulative Distribution 

Functions.  

3.4.1.a Data Normalization 

The calculation of these transition probabilities is important to understand the 

impact of the sequential sequence of biomarker test administration. Prior to calculating 

these probabilities with the original data explained in section 3.3, the data must be 

normalized. This is because the ranges of these biomarker tests must be taken into 

consideration as the p-Tau, FDG-PET, and Hippo tests all have different test values and 

ranges. The p-Tau test’s values range from a minimum of 14 to a maximum of 171, the 

FDG-PET test’s values range from a minimum of 0.88 to a maximum of 1.60, and the 

Hippo test’s values range from a minimum of 1941 to a maximum of 4807. These test 

values must be normalized to adhere to different ranges. This normalization of the data is 

important for determining the joint density functions due to the combination of 

administered tests. The statistical software R was used to normalize this data from 0 to 1. 
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3.4.1.b Bayes’ Formulation 

The Markov Chain transition probabilities will be estimated using Bayesian 

methods. These Bayesian methods will help correspond the data with the current Markov 

Chain model. Bayes’ theorem is made up from a posterior probability and a prior 

probability [17]. Bayes’ theorem interchanges conditioning and updates based upon new 

information. One example from an absorption state such as [1, 1, 0, AD] states that the 

patient was administered the p-Tau and FDG-PET test and resulted in converting from MCI 

to AD. This specific state, [1, 1, 0, AD] is represented in the following Bayes’ formulation:  

 

𝑃(𝐴𝐷 |𝑝𝑡𝑎𝑢, 𝐹𝐷𝐺𝑝𝑒𝑡) =  
𝑃(𝑝𝑡𝑎𝑢,𝐹𝐷𝐺𝑝𝑒𝑡 | 𝐴𝐷)∗𝑃(𝐴𝐷)

𝑃(𝑝𝑡𝑎𝑢,𝐹𝐷𝐺𝑝𝑒𝑡)
                                                                 (4) 

 

 

𝑃(𝐴𝐷 |𝑝𝑡𝑎𝑢, 𝐹𝐷𝐺𝑝𝑒𝑡) represents the posterior probability, where this is what 

occurs after both tests have been administered. 𝑃(𝑝𝑡𝑎𝑢, 𝐹𝐷𝐺𝑝𝑒𝑡 | 𝐴𝐷) represents the 

likelihood that given that the patient converted to contracting Alzheimer’s Disease from 

being in an Inconclusive state, it calculates what the chance of that occurring due to being 

administered the p-Tau test and the FDG-PET test. The prior probability, 𝑃(𝐴𝐷) is what 

occurs before tests have been administered. The evidence of this formula is 

𝑃(𝑝𝑡𝑎𝑢, 𝐹𝐷𝐺𝑝𝑒𝑡) because it is known that these tests were administered. 

3.4.1.c Input Modeling 

Input models identify probability distributions from collected data. These 

probability distributions are determined from histograms. Histograms for continuous data 

such as the data in this research, correspond to the probability density function (PDF) of a 

theoretical distribution [11]. A line is drawn in the center of the bars of the histograms for 
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each interval based upon its frequency [11]. From these PDFs the calculation of 

probabilities could be calculated by using the parameters of these distributions, which 

includes the mean and standard deviation [11]. Software such as JMP allows users to input 

interested data into the software and a PDF and its parameters are provided. In this research, 

JMP was initially used to determine the PDFs of marginal densities and the PDFs of all 

tests individually. The following tables are examples of PDFs for the absorption state, [1, 

1, 0, AD]. 

Marginal Density of FDG-PET: 𝒇𝑭𝑫𝑮𝑷𝑬𝑻| 𝑨𝑫 

Type of 

Distribution PDF Graph Parameters 

 

 

 

 

Normal 

 

 

 

 

 

 
 

Mean = 

0.460 

Standard 

Deviation 

= 0.189 

Table 2: Marginal Density of FDG-PET|AD 

Marginal Density of p-Tau: 𝒇𝒑𝒕𝒂𝒖| 𝑨𝑫 

Type of 

Distribution PDF Graph Parameters 

 

 

 

 

Exponential 

 

 

 

 

 
 

 

Standard 

Deviation 

= 0.305 

Table 3: Marginal Density of p-Tau|AD 
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Density of FDG-PET: 𝒇𝑭𝑫𝑮𝑷𝑬𝑻 
Type of 

Distribution PDF Graph Parameters 

 

 

 

 

Normal 

 

 

 

 

 

 
 

Mean = 

0.427 

Standard 

Deviation 

= 0.178 

Table 4: Density of FDG-PET 

Density of p-Tau: 𝒇𝒑−𝑻𝒂𝒖 

Type of 

Distribution PDF Graph Parameters 

 

 

 

 

Exponential 

 

 

 

 

  

 

Standard 

Deviation 

= 0.224 

Table 5: Density of p-Tau 

Unfortunately, this method could not be conducted further because joint variables 

cannot be analyzed using JMP. The posterior probability illustrated in equation 4, 

𝑃(𝐴𝐷 |𝑝𝑡𝑎𝑢, 𝐹𝐷𝐺𝑝𝑒𝑡) could not be analyzed, nor provided a PDF and its parameters.                                                             

3.4.1.d Conditional Probabilities 

In this research, it is important to understand the relationship between two and three 

random variables. These random variables represent the values of the biomarker tests. Due 

to the lack of an input modeling software that can provide the joint PDF of two and more 
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continuous random variables, the conditional probability will be utilized. The formation of 

a conditional probability will aid in determining the joint probability, 𝑓𝑋,𝑌(𝑥, 𝑦): 

 

𝑓𝑋|𝑌(𝑥) =  
𝑓𝑋,𝑌(𝑥,𝑦)

𝑓𝑌(𝑦)
                                                                                                                      (5) 

 

For example, equation 5 states the interest of determining the probability of X given 

Y is the joint probability of X and Y over the marginalized probability of Y.  In this 

research, equation 5 is used to help calculate the probability of an example of transitioning 

from state [1, 0, 0, I] to [1, 1, 0, AD]. These two states mean that a patient is transitioning 

from a state of Inconclusive once given the p-Tau test, to a state of converting to AD after 

being given the FDG-PET test next.  

3.4.1.e Empirical Cumulative Distribution Function (ECDF) 

Before illustrating an example of a calculation of transition probabilities the 

thresholds of the three tests must be established as these thresholds determined when a 

patient would convert to AD, NAD, or I. Thresholds are established because probabilities 

are calculated by counting the number of patients below, above, or in between the 

thresholds. These counts illustrate the approach of utilizing Empirical Cumulative 

Distribution Functions (ECDF). ECDFs resample from the data collected and are used 

when there are no suitable theoretical distributions [11]. Since there are no viable 

theoretical distributions from input modeling due to joint variables, ECDFs illustrate the 

best option in calculating the transition probabilities.  

The thresholds established for each biomarker were calculated by using the 

normalized test value data. The thresholds included upper bounds and lower bounds. These 
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bounds were calculated by determining the 25% quantile and 75% quantile of all test values 

for each test. The quantiles’ values were calculated using R software. The p-Tau’s upper 

bound is 0.2951 and the lower bound is 0.1183. If a data record represented a p-Tau test 

value of 0.2951 or above, then that patient converts to AD and if a p-Tau test value that is 

equal or less than 0.1183 does not convert to AD and is assigned as a state of NAD. A p-

Tau test value that falls between the lower bound and upper bound values results in an 

Inconclusive (I) state. The FDG-PET’s upper bound is 0.5266 and FDG-PET test values 

that are equal to or greater do not have AD and are assigned as a state of NAD. The lower 

bound of the FDG-PET is 0.3237 and test values that are equal to or less are assigned a 

state of AD. Test values between the upper bound and lower bound values are assigned a 

state of Inconclusive (I). The Hippo’s upper bound is 0.5456 and test values that are equal 

and greater than are assigned a state of NAD and do not convert to AD. The lower bound 

of the Hippo test is 0.3235 and test values that are equal and less than are assigned a state 

of AD and converts AD. Test values that are between the upper bound and lower bound 

values are assigned a state of Inconclusive (I). Tables 6, 7, and 8 represent the summaries  

of the thresholds and patient state outcomes.  

Table 6: p-Tau Thresholds and Outcomes 

Test Normalized Data 

 

FDG-PET 

Thresholds Outcome 

≥ 0.5266Upper Bound NAD 

≤ 0.3237Lower Bound AD 

(0.3237, 0.5266) I 
Table 7: FDG-PET Thresholds and Outcomes 

Test Normalized Data 

 

p-Tau 

Thresholds Outcome 

≥ 0.2951Upper Bound AD 

≤ 0.1183Lower Bound NAD 

(0.1183, 0.2951) I 
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Test Normalized Data 

 

Hippo 

Thresholds Outcome 

≥ 0.5456Upper Bound NAD 

≤ 0.3235Lower Bound AD 

(0.3235, 0.5456) I 
Table 8: Hippo Thresholds and Outcomes 

After calculating these thresholds and determining the corresponding outcomes the 

collected data for each test was organized in a total of 13 intervals and each interval’s width 

was 1 12⁄ . These number of intervals and interval widths were decided upon the basis of 

constructing a histogram. Justification for following the basis of the construction of a 

histogram is because histograms are known as a frequency distribution charts and since 

ECDFs were the best option in determining transition probabilities, this organization of 

data would allow the feasibility of counts. The number of intervals, 13, for each test was 

determined by using the rule of thumb in constructing histograms, where the number of 

intervals is the square root of the total number of data records [12].  Since there is a total 

of 144 data records the square root of 144 is 12, however the interval width is the best when 

it is equal as possible and the interval width was calculated by inverting 12 to equal 1 12⁄ =

 0.0833 and by adding each interval width it equated to a total 13 equal width intervals 

[12]. Table 9 serves as an example of the intervals for each test. 

 

 

 

 

 

 
Table 9: Intervals for Each Test 
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Figure 7: ECDF Graph of p-Tau and FDG-PET tests 
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An example of utilizing the ECDF approach, is as follows, where the interest is 

calculating the probability of transitioning to state [1, 1, 0, AD]. This state means that both 

the p-Tau and the FDG-PET test were administered to this patient and this patient 

converted to obtaining AD. This interested resultant state has two possible past states: [0, 

1, 0, I] and [1, 0, 0, I], where the patient could have first been given the FDG-PET test and 

resulted in an Inconclusive test status or the patient could have been first given the p-Tau 

test and resulted in an Inconclusive test status. The ECDF of a p-Tau test and FDG-PET 

test is shown in Figure 7. 

 

 

 

 

 

 

 

 

 The X-axis represents the intervals associated to the corresponding test values. The 

p-Tau lower bound corresponds to interval 2 and the upper bound interval of p-Tau is 4. 

The FDG-PET lower bound corresponds to interval 4 and the upper bound interval of FDG-

PET is 7. The corresponding intervals contains the 25% and 75% quantile values. These 

intervals are determined by referencing Table 9.  
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From these corresponding intervals the probabilities were calculated by the 

following equations that utilize the conditional probabilities of the previous states.  

 

𝑃𝑝𝑇𝑎𝑢(𝑝𝑇𝑎𝑢 ≥  𝑝𝑇𝑎𝑢𝑈𝐵 | 𝐹𝐷𝐺𝑝𝑒𝑡 ∈  [ 𝐹𝐷𝐺𝑝𝑒𝑡𝑈𝐵, 𝐹𝐷𝐺𝑝𝑒𝑡𝐿𝐵]) ∗ 𝑃(𝑐ℎ𝑜𝑜𝑠𝑒 𝑝𝑇𝑎𝑢 𝑡𝑒𝑠𝑡 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 =  1 2⁄ )       (6) 
 

𝑃𝐹𝐷𝐺𝑝𝑒𝑡(𝐹𝐷𝐺𝑝𝑒𝑡 ≤  𝐹𝐷𝐺𝑝𝑒𝑡𝐿𝐵 | 𝑝𝑇𝑎𝑢 ∈  [ 𝑝𝑇𝑎𝑢𝑈𝐵, 𝑝𝑇𝑎𝑢𝐿𝐵]) ∗ 𝑃(𝑐ℎ𝑜𝑜𝑠𝑒 𝐹𝐷𝐺𝑝𝑒𝑡 𝑡𝑒𝑠𝑡 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 =  1 2⁄ )    (7) 
 
 

Equation 6 references the probability of being administered the FDG-PET next after 

initially being administered the p-Tau test. Equation 7 references the probability of being 

administered the p-Tau test next after initially being administered the FDG-PET test. The 

notation UB and LB are abbreviated respectively for upper bound and lower bound. 

Equation 6 states that the probability that the test, p-Tau is administered after FDG-

PET is when the test value is equal to or greater than the upper bound of p-Tau and that is 

when the test value is equal to or greater than 0.2951 and this is when the corresponding 

interval is 2. Therefore, the probability of this transition is calculated by counting all the 

test value instances of p-Tau that are greater than interval 2 when the FDG-PET is in the 

state of Inconclusive and that occurs when the test value is between the lower bound and 

upper bound of FDG-PET, (0.3237, 0.5266) which equates to the intervals 5 and 6 which 

are between the lower bound interval 4 and upper bound interval 7. Then that count is 

divided by the sum of all p-Tau test values within that Inconclusive state interval of FDG-

PET and that equals the transition probability. That transition probability is then multiplied 

by the random assumption probability that the biomarker tests are randomly chosen. 

Equation 7 follows the same suit, however with the switched condition variable of p-Tau. 

The following table shows the respective transition probabilities for equations 6 and 7. 
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Equation Past State Current State Transition 

Probability 

6 [0, 1, 0, I] [1, 1, 0, AD] 14% 

7 [1, 0, 0, I] [1, 1, 0, AD] 19% 
Table 10: Two Different Transition Probabilities for p-Tau and FDG-PET Tests 

3.4.2 Results Introduction 

From utilizing the ECDF approach, the following sections demonstrate the results 

of the calculations of all the possible transition probabilities for each feasible transition. 

The absorption probabilities of the absorbing states of the Markov Chain are further 

calculated and shown by the utilization of reordering the transition matrix of the position 

of transient probabilities and the position of the probabilities from transient to absorbing 

states, adding a submatrix of zero entries, and adding the submatrix of an identity matrix 

[13].   

3.4.2.a Transition Probabilities 

The following figure represents the calculations of all the transition probabilities of 

transient and absorption states. All calculations were conducted using Excel, specifically 

Pivot Tables, and nested functions.  

 

 

Figure 8: Transition Matrix Results 
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These transition probabilities of this Markov Chain are verified and confirmed as each row 

sums up to 1. As shown in Figure 5, the transition matrix framework, the same 36 

probabilities are calculated and are highlighted.  

3.4.2.b Markov Chain Calculations 

 

The Markov Chain being modeled is classified as an absorbing Markov Chain because 

it contains both transient and absorbing states [13]. There is interest in the absorbing chain 

because there are inquires of: 

1) What is the probability that a patient will end up in an absorbing state given that 

the patient started in a specific transient state? [15]. 

2)  How many expected time periods does a patient spend in a transient state before 

the patient reaches an absorption state? [15]. 

The created transition matrix shown in Figure 8, is reorganized by classes of states by 

the following organization and notation:  

P = s – m columns 

(Transient States) 

m columns 

(Absorbing States) 

s – m rows 

(Transient States) 

 

Q 

 

R 

m rows 

(Absorbing States) 

 

0 

 

I 

Table 11: Reorganization of Transition Matrix Framework 

The notations are as follows, P corresponds to the transition matrix in Figure 8, s = 

number of states = 22, and m = number of absorbing states = 15, Q = Transient State 

Probabilities, R = Absorbing State Probabilities, 0 = Submatrix of zero elements, I = 

Identity Matrix [14, 15]. The reorganized matrix represented in Figure 9, helps answer the 

first and second inquiry mentioned previously. The reorganized matrix and the following 
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equations were calculated using MATLAB. The first inquiry is calculated with equation 8 

and the second inquiry is calculated with equation 9. 

(𝐼 − 𝑄)−1 ∗ 𝑅                                                                                                                                            (8)     

(𝐼 − 𝑄)−1                                                                                                                          (9) 

 

 

Additionally, the transient states and absorption states are outlined in Table 12. 

Transient States Absorbent States 

[0, 0, 0, I] [1, 0, 0, I] [1, 0, 0, AD] [0, 1, 0, AD] 

[0, 1, 0, I] [0, 0, 0, I] [0, 0, 1, AD] [1, 0, 0, NAD] 

[1, 1, 0, I] [1, 0, 1, I] [0, 0, 1, NAD] [0, 1, 0, NAD] 

[0, 1, 1, I]  [1, 1, 0, AD] [1, 0, 1, AD] 

  [1, 1, 0, NAD] [1, 0, 1, NAD] 

  [0, 1, 1, AD] [0, 1, 1, NAD] 

  [1, 1, 1, AD] [1, 1, 1, NAD] 

  [1, 1, 1, I]  

Table 12: Transient and Absorbent States of Markov Chain 

Figure 9: Reorganized Transition Matrix 
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The probabilities for the first inquiry are represented in Figure 10 and the expected number 

of time periods for the second inquiry are represented in Figure 11.  

Figure 10: Markov Chain Model Absorption Probabilities 

 
Figure 11: Expected # of Time Periods in Transient State Prior to Absorption 

The absorption probabilities in Figure 10 follow a trend that as more tests are 

administered there is a higher likelihood of a patient not contracting AD. An example 

interpretation of Figure 11, states that starting at state [0, 0, 0, I] will result in the expected 

number of time periods that a patient stays in state [0, 0, 0, I] is 1, the expected number of 

time periods a patient stays in state [1, 0, 0, I] is 0.081, and so forth.   

CHAPTER 4: NUMERICAL RESULTS 

 

4.1 Introduction 

As with any type of model formulation, it is best practice to validate and verify the 

model. Model validation encompasses the interaction between the real system, which is the 

research problem of optimizing the biomarker test administration policy decisions that 

improve the accuracy in detecting patients that will contract Alzheimer’s Disease and those 

who do not, to the Markov Chain model of that system [11]. This interaction can be 
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validated with the verification of the Markov Chain model to a simulation of the model. 

The Markov Chain model can be verified by producing simulations of all possible 

transitions from transient states to absorbent states. Simulations of the Markov Chain 

model will show the impact of the lower bound and upper bound thresholds. As stated 

previously in this paper, the thresholds determine the likelihood of a patient contracting 

AD or not. The simulations of the Markov Chain model are conducted by a coded 

simulation. The simulation code is explained in the following section. 

4.1.1 Simulation Background  

Simulation code was created using MATLAB. This simulation code runs 1,000 

replications of modeling sample paths from transient states to the absorbent states. The 

input of the transition matrix shown in Figure 9 and the initial transient state must be 

manually executed in the MATLAB code. The sample paths from these replications are 

then used to calculate the absorbing probabilities. 

4.1.2 Markov Chain Model Verification 

The initial absorption probabilities from the Markov Chain model shown in Figure 

10 must be compared to the calculated absorption probabilities from the simulation model. 

The Markov Chain model can only be verified if there is no difference between the Markov 

Chain absorption probabilities and simulation model absorption probabilities.  This 

verification step involves a similar procedure conducted in section 3.4.1.e, when transition 

probabilities were empirically calculated. The simulation code produced all the possible 

states that could be reached from a starting state of a transient state. Table 13 is an example 
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of the possible transition paths for the initial state, [0, 0, 0, I]. Table 14 serves as a reference 

to associate each numerical state from the simulation to the corresponding vector state. 

# of Reps Initial State State 1 State 2 State 3 

1 1 13 0 0 

2 1 4 19 0 

3 1 13 0 0 

4 1 12 0 0 

5 1 10 0 0 

… … … … … 

996 1 10 0 0 

997 1 12 0 0 

998 1 9 0 0 

999 1 3 5 20 

1000 1 11 0 0 
Table 13: Sample Transition Path from Simulation Code 

Transient States Absorbent States Absorbent States 

Simulation 
State Vector State 

Simulation 
State 

Vector 
State 

Simulation 
State Vector State 

1 [0,0,0, I] 8 [1,0,0, AD] 15 [1,0,1, AD] 

2 [1,0,0, I] 9 [0,1,0, AD] 16 [1,1,0, NAD] 

3 [0,1,0, I] 10 [0,0,1, AD] 17 [1,0,1, NAD] 

4 
[0,0,1, I] 

11 
[1,0,0, 
NAD] 18 

[0,1,1, AD] 

5 
[1,1,0, I] 

12 
[0,0,1, 
NAD] 19 

[0,1,1, NAD] 

6 
[1,0,1, I] 

13 
[0,1,0, 
NAD] 20 

[1,1,1, AD] 

7 [0,1,1, I] 14 [1,1,0, AD] 21 [1,1,1, NAD] 

    22 [1,1,1,I] 

Table 14: State Reference 

From Table 13, each time an absorbent state, identified as 8-22 was listed, the count 

was summed for each absorbent state and divided by the total number of repetitions 

conducted from the simulation which was 1,000. The following equation is the equation 

used to calculate each probability in Figure 12. 
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𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑎𝑏𝑠𝑜𝑟𝑏𝑡𝑖𝑜𝑛 𝑠𝑡𝑎𝑡𝑒 𝑣𝑖𝑠𝑡𝑒𝑑

1,000
                                                                         (10) 

Figure 10, the Markov Chain model absorption probabilities and Figure 12, the 

simulation model’s absorption probabilities are then statistically compared by conducting 

a F-test. A F-test tests the hypothesis on the equality of the variances of two different data 

sets [16]. Equation 11 illustrates the null (𝐻0) and alternate (𝐻𝑎) hypothesis being tested.  

𝐻0: 𝜎1
2 =  𝜎2

2 

𝐻𝑎: 𝜎1
2 ≠  𝜎2

2                                                                                                                                            (11) 

 

This states that if the variance within the Markov Chain model absorption 

probabilities and the variance within the simulation model absorption probabilities are not 

statistically significant the two sets of absorption probabilities are essentially the same. 

Table 15 contains the F-test results: 

  Markov Chain Model  Simulation Model 

Mean 0.066711929 0.066666667 

Variance 0.011544883 0.011299186 

Observations 105 105 
df 104 104 

F 1.021744659  
P(F<=f) one-tail 0.456433199  
F Critical one-tail 1.382732799   

Table 15: F-test Results 

Figure 12: Calculated Simulation Absorption Probabilities 
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Since the F statistic, 1.02 is smaller than the F critical value, 1.38, the null 

hypothesis, 𝐻0 is not rejected. This means that the two data sets’ variances are equal. This 

verifies that the simulation model and the Markov Chain model do no differ. This proves 

that the Markov Chain can effectively model different types of parameter changes that are 

conducted in the following section.  

4.2 Experiments 

The parameter changes for this Markov Chain model are conducted by simulating 

different experiments. Two types of experiments are demonstrated. The first experiment is 

the tightening of the AD classification thresholds. The thresholds mentioned in tables 6, 7, 

and 8 are the values that determine the patients’ classification of contracting AD or not. 

The second experiment involves testing all possible biomarker test sequences. Both 

experiments were decided upon because both are two main parameter inputs in simulating 

the Markov Chain.  

These experiments were conducted to demonstrate the impact the thresholds and 

specified test sequences can have on the probability of patients contracting AD and the 

expected time spent in transient states before absorption. Simulations of these experiments 

of the Markov Chain model provide evidence that the Markov Chain can efficiently model 

different parameters of the evolution of MCI patients.  The Markov Chain is a more 

complex model than the STC model and these simulations demonstrate that the Markov 

Chain model can replace the STC model due to its capability of simulating complex 

parameters. 
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4.2.1 Tightening AD Threshold  

The F-test results verified the ability of the Markov Chain to model different 

parameters of the thresholds. The thresholds that classify patients as converting to AD was 

tightened. The threshold for the p-Tau test was changed from representing the 75% quantile 

to tightening it to the 65% quantile. The AD conversion threshold for the FDG-PET test 

changed from the 25% quantile to the 35% quantile. The Hippo test’s threshold for AD 

conversion changed from the 25% quantile to the 35% quantile. The highlighted data 

values changed accordingly:  

Table 16: p-Tau Thresholds and Outcomes 

Test Normalized Data 

 

FDG-PET 

Thresholds Outcome 

≥ 0.5266Upper Bound NAD 

≤ 0.3466Lower Bound AD 

(0.3237, 0.5266) I 
Table 17: FDG-PET Thresholds and Outcomes 

Test Normalized Data 

 

Hippo 

Thresholds Outcome 

≥ 0.5456Upper Bound NAD 

≤ 0.3627Lower Bound AD 

(0.3235, 0.5456) I 
Table 18: Hippo Thresholds and Outcomes 

As demonstrated in Chapter 3, these threshold values correspond respectively to 

established numeric interval values in Table 9. These intervals aid in calculating the 

transition probabilities for the newly established AD thresholds. As demonstrated in the 

example in section 3.4.1.e, the transition probabilities are calculated in the same manner 

and are represented in the following transition matrix: 

Test Normalized Data 

 

p-Tau 

Thresholds Outcome 

≥ 0.23971Upper Bound AD 

≤ 0.1183Lower Bound NAD 

(0.1183, 0.2951) I 
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The Markov Chain model absorption probabilities seen in Figure 14, were also calculated 

in the same manner using MATLAB as explained in section, 3.4.2.b. 

 

 

 

The expected number of time periods spent in a transient state prior to entering an absorbent 

state is represented by Figure 15. These time periods were calculated by equation 9.  

 

 

 

 

 

 

4.2.1.a Experiment 1 Data Comparison 

A comparison between the absorption probabilities of tightened AD thresholds and 

the original thresholds was conducted. A F-test resulted in a F statistic of 1.55 and F critical 

Figure 14: Absorption Probabilities for Adjusted AD Threshold 

Figure 15: Expected # of Time Periods in Transient State Before Absorption State from New 

AD Thresholds 

Figure 13: Transition Matrix for Adjusted AD Thresholds 
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value of 1.40. Since the F statistic is greater than the F critical value, this stated that there 

was statistically enough evidence to reject the null hypothesis that the variances between 

the two sets are the same. Comparing Figure 10 and Figure 14 side-by-side shows that 

Figure 14 has one less transient state than Figure 10. This is because due to a tighter AD 

threshold, the Inconclusive interval for p-Tau was non-existent and this resulted in zero 

visits to state, [1, 0, 0, I]. Therefore, because of the exclusion of this state, there is a 

significance difference among the original thresholds and new thresholds. Since, there were 

no possible visits to an Inconclusive state, it can be inferred that the new tighter AD 

thresholds will perform better in confidently classifying patient’s conversions to attaining 

AD or not attaining AD.  Additionally, there will be a subgroup of patients that will not 

need to be administered more biomarker tests and this would lead to a decrease of the cost 

of tests and time of diagnosis.  

Another set of comparisons was conducted. The initial data from ADNI mentioned 

in section, 3.2, were compared against the absorption probabilities from Figure 14 and 

compared against the absorption probabilities provided in Figure 10. The total probability 

of patients that contracted AD and the total probability of patients that did not contract AD, 

denoted as NAD, were analyzed among these three data sets. The Inconclusive state, I, was 

not compared between all these 3 different data sets because the patient data set did not 

have information about patients that were classified as Inconclusive. 

The patient data set classified that 50% patients contracted AD and the other 50% 

did not contract AD. Table 19 demonstrates the total probabilities of patients contracting 

AD and not contracting AD (NAD) from Figure 14 which represents the tightened AD 
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thresholds and from Figure 10 which represents the original thresholds. From the tightened 

AD thresholds there is a 2% differential of AD conversion and a 9% differential of NAD 

conversion from the patient data set. The original thresholds resulted in a 10% differential 

of AD conversion and a 6% differential of NAD conversion from the patient data set. These 

differentials make sense because the percentage of patients that contracted AD increased 

when the AD thresholds were tightened compared against the original thresholds. The 

tightening of the AD threshold allows more patients to be classified as AD patients. 

Nonetheless both sets of thresholds were within a 10% difference compared against the 

original patient classification.  

Patient Data Set 
Tightened AD 

Thresholds 
(Figure 14) 

Original Thresholds 
(Figure 10) 

Outcome Probability Outcome Probability Outcome Probability 

AD 50% AD 48% AD 40% 

NAD 50% NAD 41% NAD 44% 
Table 19: Outcome Comparison 

The expected time periods could not be compared against the provided data set 

because that information was not provided. Therefore, the comparison of the expected time 

periods spent in transient states before visiting absorption states were conducted for the 

tightened AD thresholds, seen in Figure 15 against the original thresholds seen in Figure 

11. A F-test resulted in a F statistic of 1.30 and a F critical value of 1.67. Since the F statistic 

was smaller than the F critical value, this illustrates that variances between the two data 

sets are not significantly different and the expected number of time periods in the transient 

states between the two different thresholds are similar. The expected number of time 
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periods in transient states in Figures 11 and 15 never exceeded the time period of 1.  The 

maximum time spent in a transient state was 0.19 of a time period.  

4.2.2 Fixed Test Sequences  

Further Markov Chain model analysis was conducted to illustrate the impact fixed test 

sequences had on absorption probabilities and the expected time periods spent in transient 

states. The three tests: p-Tau, FDG-PET, and Hippo have six possible sequences:  

1) p-Tau → FDG-PET → Hippo 

2) FDG-PET → p-Tau → Hippo 

3) p-Tau → Hippo → FDG-PET 

4) Hippo → p-Tau → FDG-PET 

5) FDG-PET → Hippo → p-Tau 

6) Hippo → FDG-PET → p-Tau 

The following absorption probabilities are illustrated in Figure 16 for each fixed 

sequence above as well as the expected time spent in the transient states are illustrated in 

Figure 17. The transition matrixes for these six sequences equated to fewer amount of total 

states. The number of transient states for each test sequence was 3, while the number of 

absorbent states was 7. 
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Figure 16: Absorption Probabilities for All Fixed Test Sequences 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: Expected Time Periods in Transient States for All Fixed Test Sequences 
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4.2.2.a Experiment 2 Data Comparison 

 

One-Way ANOVA tests were conducted to compare all six sequences’ values of 

the absorption probabilities for states: [1, 1, 1, AD], [1, 1, 1, NAD], and [1, 1, 1, I]. These 

three states were compared to each other, because out of all the six tests these three states 

were the only absorption states that were similarly visited. The p-values for [1, 1, 1, AD], 

[1, 1, 1, NAD], and [1, 1, 1, I] were respectively 0.99, 0.89, and 0.97. The null hypothesis 

that states that all test means are equal, is not rejected and reveals that each different test 

sequence does not result in different absorption probabilities. This provides evidence that 

a fixed sequence does not impact the probability of patients contracting AD and not 

contracting AD. Table 20 shows the probabilities of contracting AD and not contracting 

AD (NAD) for each test sequence.  

1st Sequence 4th Sequence 

Outcome Probability Outcome Probability 

AD 34% AD 32% 

NAD 31% NAD 33% 

2nd Sequence 5th Sequence 

Outcome Probability Outcome Probability 

AD 31% AD 32% 
NAD 35% NAD 35% 

3rd Sequence 6th Sequence 

Outcome Probability Outcome Probability 

AD 32% AD 28% 

NAD 35% NAD 38% 

Table 20: Totaled Fixed Test Sequence Classification Probabilities 

These probabilities are compared to the 50% of patients contracting AD and the 

50% of patients not contracting AD (NAD) from the ADNI data. It can be seen from Table 

20 that the maximum difference from AD conversion among the test sequences and the 

patient data is 22% and the minimum difference of AD conversion against the patient data 



40 

 

is 10%. The best sequence for classifying AD patients is the 1st sequence and the worst 

sequence for classifying AD patients is the 6th sequence. The maximum difference between 

patient classification from the test sequences and the patient data for NAD contraction is 

19% and the minimum difference is 6%. The best sequence for classifying NAD patients 

is the 6th sequence and the worst sequence for NAD classification is the 1st sequence. 

Similarly, to the comparison done in 4.2.1.a, the Inconclusive patient classification could 

not be conducted because the patient data did not contain that information.  

 From the comparison analysis seen above, the patient contraction of AD and non-

contraction of AD (NAD) in the fixed test sequences are not as close to the original patient 

data classification as the original set thresholds from Figure 10 and the adjusted AD 

thresholds from Figure 14. The most accurate model of patient classification was conducted 

by the adjusted AD threshold model. 

A different comparison was conducted pertaining to the expected time spent in 

transient states. The expected time spent in different test sequences could not be compared 

across all test sequences at once because each test sequence resulted in different transient 

states. Testing sequences were then paired based upon similar transient states. Figure 18 

represents the plausible pairings. 
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Sequence 

#  [0,0,0, I] [1,1,0, I] 

Sequence 

#  [0,0,0, I] [1,1,0, I] 

1 
[0,0,0, I] 1 0.09589 

2 
[0,0,0, I] 1 0.097222 

[1,1,0, I] 0 1 [1,1,0, I] 0 1 

        
Sequence 

#  [0,0,0, I] [1,0,1, I] 

Sequence 

#  [0,0,0, I] [1,0,1, I] 

3 
[0,0,0, I] 1 0.097222 

4 
[0,0,0, I] 1 0.097222 

[1,0,1, I] 0 1 [1,0,1, I] 0 1 

        
Sequence 

#  [0,0,0, I] [1,1,0, I] 

Sequence 

#  [0,0,0, I] [1,1,0, I] 

5 
[0,0,0, I] 1 0.145833 

2 
[0,0,0, I] 1 0.097222 

[1,1,0, I] 0 1 [1,1,0, I] 0 1 

        
Sequence 

#  [0,0,0, I] [0,0,1, I] 

Sequence 

#  [0,0,0, I] [0,0,1, I] 

6 
[0,0,0, I] 1 0.409722 

4 
[0,0,0, I] 1 0.409722 

[0,0,1, I] 0 1 [0,0,1, I] 0 1 
Figure 18: Paired Expected Time Period Sequences 

Sequences 1 and 2, and sequences 5 and 2 are the only sequences that have differing 

expected time periods. The significance of these differences was calculated by conducting 

two separate F-tests on both pair of sequences. Sequences 1 and 2 are not statistically 

significant because its F statistic, 1.003 is smaller than the F critical value, 161.45. This is 

interpreted that both expected time periods for [1, 1, 0, I] are the same. Sequences 5 and 6 

are statistically different because its F value, 0.895, is larger than the F critical value, 

0.0062. This demonstrates that the expected time periods for [1, 1, 0, I] from sequences 5 

and 2 are different, as the expected time period is larger for sequence 5 than sequence 2. 

The comparison of expected time spent in transient periods could not be compared to the 

original thresholds and the adjusted AD thresholds because the number of transient states 
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was different among all three data sets. Additionally, the comparison against the patient 

data was not conducted because that information was not available. 

CHAPTER 5: CONCLUSIONS AND FUTURE WORK 

The importance of optimizing policy decisions about biomarker test administration 

impacts how soon a prognosis can be made regarding if a patient has contracted AD or not. 

AD has proven to be a disease that progresses over time. Along with time progression of a 

disease, there exists uncertain contributing factors to the contraction of AD. The need for 

medical decision-making models, such as Markov Chain models, allows the ability to 

model these stochastic factors. As referenced in 2.3, regarding the progression of 

HIV/AIDs, case studies have been used to demonstrate how Markov Chain models can be 

used in the healthcare industry. Markov Chain models allow researchers the ability to 

model the progression of diseases, optimize the procedure for prognosis, and decrease the 

associated healthcare costs. The STC had limitations that included the lack of ability to 

model dynamic factors associated with the progression of AD among different patient 

populations as well as the restriction of only modeling fixed test sequences. Based upon 

the biomarker tests’ values from STCs, the Markov Chain model provides a more robust 

way to predict the progression of AD.  

The methodology of the Markov Chain formulation was explained from the data 

collection to the calculation of the necessary probabilities needed to understand how many 

patients would contract the disease. Analysis was conducted based upon the probabilities 

to verify the accuracy of the Markov Chain model against a simulated model. The 
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experiment, using the Markov Chain model proved able to be simulated, based on different 

input parameters.  

  Based upon this verification, experiments were able to be conducted to 

demonstrate that alternating parameters of the Markov Chain model will yield different 

results in absorption probabilities and expected time periods spent in transient states. 

Absorption probabilities related information about how many patients would contract AD, 

not contract AD, and those that were inconclusive about contracting AD. The expected 

time periods spent in transient states demonstrated how long patients were expected to be 

unknowledgeable (Inconclusive) about their health state regarding AD. The first 

adjustment to the Markov Chain model was tightening the AD thresholds values and the 

second adjustment to the Markov Chain model was fixing certain test sequences. Revising 

the AD thresholds and implementing fixed test sequences to the Markov Chain model 

yielded different results and different interpretations. The adjustment of tightening the AD 

threshold, offered evidence that stricter AD thresholds resulted in fewer inconclusive 

states. On the other hand, fixed test sequences provided fewer transition states and 

demonstrated that fixed test sequences do not impact the absorption probabilities which 

affects the analysis of determining how many patients contract AD and those that do not. 

These experiments were additionally compared to the patient data set and revealed that the 

tightened AD threshold experiment proved to be the best model that closely matched the 

patient data classification. 

There exist different opportunities for future work regarding this research. It would 

be beneficial to validate the conversion of AD results of fixed test sequences from the 
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Markov Chain model against the STC model’s results. This verification was not conducted 

in this research because different data was provided to formulate the Markov Chain model 

versus the data tested by the STC model.  Additionally, further optimization of the 

thresholds could be conducted with different fixed sequences. The decision-making 

process of which tests to administer would be conducted by converting the formulated 

Markov Chain model to a Markov Decision Process.  
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