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ABSTRACT

In this thesis, different H∞ observers for time-delay systems are implemented and

their performances are compared. Equations that can be used to calculate observer

gains are mentioned. Different methods that can be used to implement observers

for time-delay systems are illustrated. Various stable and unstable systems are used

and H∞ bounds are calculated using these observer designing methods. Delays are

assumed to be known constants for all systems. H∞ gains are calculated numerically

using disturbance signals and performances of observers are compared.

The primary goal of this thesis is to implement the observer for Time Delay Sys-

tems designed using SOS and compare its performance with existing H∞ optimal

observers. These observers are more general than other observers for time-delay sys-

tems as they make corrections to the delayed state as well along with the present

state. The observer dynamics can be represented by an ODE coupled with a PDE.

Results shown in this thesis show that this type of observers performs better than

other H∞ observers. Sub-optimal observer-based state feedback system is also gen-

erated and simulated using the SOS observer. The simulation results show that the

closed loop system converges very quickly, and the observer can be used to design full

state-feedback closed loop system.
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Chapter 1

INTRODUCTION

1.1 State Observers

In many systems, it is necessary for system states to be known in order to imple-

ment the control action. However, internal states of the system can not always be

measured directly using sensors. A state observer can be used in such cases to get an

estimate of the states. State observer uses the system dynamics and the knowledge

of the output to precisely estimate the states of the system. Thus, it can be used to

design a full state feedback controller for the physical systems whose internal states

can not be measured.

1.1.1 Observability

Weather all the internal states of a system are observable or not depends on a

property of the system called observability.

Consider a Linear Time Invarient(LTI) system,

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t)
(1.1)

where x(t) is the state, u(t) is the input and y(t) is the output of the system.

Observability matrix for the nth order system shown in (1.1) can be written as [23],

1



O =



C

CA

.

.

.

CAn−1


. (1.2)

A full state observer for the system (1.1) exists if the matrix O is a full rank matrix.

Otherwise, the system is not observable which means that some of the internal states

cannot be determined from the measurement of input and output.

1.1.2 General Forms of Observers for Linear Systems

Observer theory for LTI systems was developed by Luenberger [1, 2, 3] in 1965

and the observer that he designed is called the Luenberger observer. The observer

dynamics of the Luenberger observer can be represented by the system dynamics

along with a correction term proportional to the difference between the actual output

and the estimated output. Observer gains are designed such that the estimation error

dynamics are stable.

For the system shown in (1.1), the Luenberger observer is the observer which has

the following dynamics [3],

˙̂x(t) = Ax̂(t) +Bu(t) + L(y − Cx̂(t)), x̂(0) = x̂0, (1.3)

where x̂(t) is the state estimation and ŷ(t) is the estimated output. If the estimation
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error for the above system is defined as,

e(t) = x(t)− x̂(t). (1.4)

So the error dynamics become [3],

ė(t) = ẋ(t)− ˙̂x(t) = (A− LC)(x(t)− x̂(t)) = (A− LC)e(t). (1.5)

If L is designed such that the eigenvalues of matrix (A− LC) are negative, then the

error dynamics are stable and correct value of system states can be estimated.

A more general form of the observer can be written as [24],

ż(t) = Mz(t) +Ny(t) + Su(t),

x̂(t) = z(t) +Hy(t)
(1.6)

where z(t) is the observer state and x̂(t) is the estimated state. Matrices M,N, S

and H are the observer gains. The same analysis can be done and the gains can be

designed such that the error dynamics are stable.

A significant amount of research has been conducted in the field of state observer

in last five decades. Theory of state observers for linear system models and their ap-

plications are discussed in detail by Oreilly [35]. Frank [36] discussed the application

of the observer theory in fault diagnosis of dynamic systems. For methods to design

robust H∞ and H2 observers for linear systems, refer [38, 39, 40, 41, 42, 43, 44, 45,

46, 47]. Method of linear filtering of dynamic systems was developed by Kalman [22]

and this approach was extended for H∞ filtering in [48, 49, 50, 51].
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1.2 Time-Delay Systems

Time-delays are present in almost all the physical systems. There can be mea-

surement delays in manufacturing processes or transport delays in communication

networks. Calculating and implementing control decisions can generate delays in ac-

tuation. Not considering the effect of delays while modeling can result in undesired

system response and because of that reason, some systems are modeled as time-delay

systems. Systems such as Sampled-data control, Drilling machines, Tunnel diodes,

Lasers, Vehicular traffic flows and Neural networks can be modeled as time-delay

systems [6].

Various researchers have contributed in the field of time-delay systems. Existence

of the solution and stability conditions for Delay differential equations are discussed in

[26, 27]. Razumukhin [9] developed stability criterions for time-delay systems. Other

works on the stability of linear systems with delays can be found in [10, 11, 12, 13,

25, 66]. Morse [14] explained the ring models for time-delay systems and definitions

of controllability and observability were introduced. Modeling, analysis, applications

and open problems in the field of time-delay systems are discussed in [6, 7, 18, 68].

Time-delay systems are mathematically represented by delay differential equa-

tions(DDE). A time-delay system with discrete delays in state can be written math-

ematically as shown below [75],

ẋ(t) = A0x(t) +
m∑
i=1

Aix(t− τi) (1.7)

where Ai are known system matrices, x(t) is the current state and x(t − τi) are the

delayed states of the system.

4



Time-delay systems can be modeled as a transport problem and it can be for-

malized using an ODE(Ordinary Differential Equation) coupled with a PDE(Partial

Differential Equation) [6].

A linear DDE,

d
dt
x(t) = Ax(t− τ), t ≥ 0,

x(0) = x0

(1.8)

can be solved by solving an equivalent ODE coupled with a PDE [6],

∂
∂t
φ(t, θ) = ∂

∂θ
φ(t, θ), t ≥ 0, θ ∈ [−τ, 0),

∂
∂t
φ(t, θ)|θ=0 = Aφ(t,−τ), t ≥ 0,

(1.9)

Here, the first equation in (1.9) solves for the delayed state of the system and the

second equation solves for the current state of the system. DDEs can be solved using

various numerical algorithms and numerical methods for ODEs can be extended to

solve DDEs. DDEs can be solved in Matlab using dde23 command.
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Chapter 2

DEFINITIONS AND PRELIMINARIES

2.1 Signal and System Norms

Disturbances are present in almost all systems. The stability of the system can be

affected due to the disturbances. The field of optimal and robust control theory deals

with designing controllers and observers such that the effect of external disturbances

on the system output is minimized. Such control problems are formulated in terms

of norms of input and output signals.

Norm of a Vector Space: [29] A norm on a vector space V is defined as a

non-negative function ||.|| which satisfies the following equations,

||x|| = 0 if and only if x = 0,

||αx|| = |α|.||x||,

||x+ y|| ≥ ||x||+ ||y||,

(2.1)

for all α ∈ R and x, y ∈ V .

The concept of vector norm can be extended to signals. Some important signal

norms are described below.

L1-Norm: [29] The L1-norm of a signal is defined as the integration of the abso-

lute value of the signal,

||u||1 =

∫ ∞
0

|u(t)|dt. (2.2)

L2-Norm: [29] The L2-norm of a signal is defined as the integration of squared

value of the signal,

||u||2 =

∫ ∞
0

u(t)2dt. (2.3)

6



L∞-Norm: [29] The L∞-norm of a signal is defined as the maximum absolute

value of the signal,

||u||∞ = sup
t≥0
|u(t)|. (2.4)

Systems norm can be defined using the definitions of signal norms. One of the im-

portant concepts used in this thesis is H∞ norm of the system which is explained

below.

H∞-Norm of a System: [29] H∞ gain of a system is defined as the ratio of the

L2-norms of output signal and input signal,

||G||∞ = sup
u∈L2L2L2,||u||2 6=0

||Gu||2
||u||2

. (2.5)

Here, G is the system transfer function. Observers for time-delay systems that are

designed to minimize the H∞ gain of the observation error are discussed in chapter

3.

2.2 Linear Matrix Inequalities

Many problems in control theory such as stabilty analysis of the linear systems

and H2/H∞ optimal controller/observer design problems can be formulated in form

of Linear Matrix Inequalities. Lyapunov’s direct method to determine the stability

of LTI systems can be written as an LMI. Consider the linear system,

ẋ = Ax. (2.6)

7



The stability condition for this system using the Lyapunov’s direct method can be

written as the following inequality [6],

PA+ AP T < 0. (2.7)

The system shown in (2.6) is stable if there exists a matrix P > 0 such that the above

LMI is satisfied. The same approach has been extended to get an LMI form of various

problems in control theory.

In general, LMIs can be written as a constraint shown below [6],

n∑
i=1

Aixi +B < 0 (2.8)

where Ai and B are known matrices and xi are decision variables. Applications of

LMIs in control theory are discussed in detail in [30, 32]. Applications of LMIs in the

field of time-delay systems are described by Fridman [6].

LMIs as Convex Optimization Problem

LMIs can be formulated as a convex optimization problem can be solved numeri-

cally using various algorithms. In general, LMI optimization problem can be written

in the form below [54],

min cTx,

such that Ai(x) ≥ 0
(2.9)

where cTx is called the cost function, x is the decision variable and Ai(x) are the LMI

constraints. Interior point algorithms can be used to solve LMI optimization prob-

lems and are discussed in detail in [28]. Various numerical solvers such as SeDuMi,

MOSEK and LMI Lab are available online and are capable of solving LMI problems

in polynomial time.
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LMI problems in control theory can be differentiated as,

Feasibility Problem: This type of LMI problem aims at finding a feasible x

such that the inequality constraints are satisfied [6].

Find x

such that Ai(x) < 0.

LMIs for the stability of linear systems such as the one shown in (2.7) can be classified

as a feasibility problem as it aims at determining a feasible P > 0 that satisfies the

inequality.

Eigenvalue Problem: This type of LMI problem aims at finding a feasible x

for minimum or maximum eigenvalue of a matrix such that inequality constraints are

satisfied [6].

min γ

such that A(x) < γI, B(x) < 0.

Problems such as designing H2 or H∞ optimal controllers and observers can be clas-

sified as eigenvalue minimization problem.

2.3 Schur Complement Lemma

The following lemma can be used to convert non-linear matrix inequalities into

LMIs [6].

Lemma 1: [6] Following are equivalent for given constant matrices A,B,C,

1. M =

 A B

BT C

 > 0.

2. C > 0 & A−BC−1BT > 0.

9



2.4 Bounded Real Lemma

The bounded real lemma can be used to calculate the H∞ norm of the system.

Lemma 2: [54] Following are equivalent for system (1.1),

1. ||G||H∞ ≤ γ.

2. There exists a X = XT > 0 such that


ATX +XA XB CT

BTX −γI DT

C D −γI

 < 0.

2.5 Algebraic Riccati Equation

Apart from LMIs, Algebraic Riccati Equations have also been used to solve dif-

ferent problems in control theory. The general form of algebraic Riccati equations for

continuous time systems can be written as shown below [4],

ATP + PA− PBBTP +Q = 0 (2.10)

where, A,B,R and Q are known matrices and our goal is to find a feasible P such

that the above matrix equality is satisfied.

Applications of algebraic Riccati equations in optimal control theory are described

in [4]. Algorithms that can be used to solve such equations are described in [5]. In

Matlab, care(A,B,Q) can be used to solve the above Riccati equation.

10



2.6 Polynomial Sum of Squares and SOS Optimization Problem

Analysis of nonlinear systems or PDEs using Lyapunov’s method can result in

stability conditions in terms of polynomials [31, 32]. To investigate whether the

polynomial is positive or not is difficult. However, in some cases, sum of squares

method can be used to solve such problems.

A polynomial p(x) is a sum of squares if [63]

p(x) =
∑
i

gi
2(x).

If p(x) is an SOS, then it means that p(x) is a positive polynomial. Alternatively, the

polynomial is called a sum of squares if the polynomial p(x) can be written in the

following form [63],

p(x) = Z(x)TMZ(x).

where M is a positive definite matrix and Z(x) is the vector of monomials. Thus,

it can be proved that the polynomial is positive if there exists a matrix M > 0 and

positivity of a matrix can be investigated using convex optimization.

In general, An SOS optimization problem can be written as below [32],

min cTx

such that
n∑
i=1

xiAi(y) +Bi(y) is an SOS.

SOSTOOLS [19] is a Matlab toolbox that can be used to solve such optimization

problems.
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Chapter 3

OBSERVERS FOR TIME-DELAY SYSTEMS

Various methods have been designed to synthesize state observers for linear sys-

tems with delays during last four decades. Lee and Manitius [58] discussed necessary

conditions for the existence of an observer for time-delay systems. Extensions of Lu-

enberger type observers for linear time-delay systems were made in [21, 56, 57]. Lee

and Olbert [16] discussed observability criterions for time-delay systems using the

ring models. Some other methods were developed to design an observer for time-

delay system in [23, 59, 69, 70, 71]. Observers for nonlinear time-delay systems were

designed in [34, 72, 73, 74, 15, 76].

Research has been conducted in the field of H∞ optimal observation and filtering

for time-delay systems as well. An H∞ observer for time-delay system with a single

delay in state was developed using algebraic Riccati equation in [17]. H∞ observers

were developed using LMIs in [52, 53, 54]. Sum of squares method was used to develop

a more general form of the observer in [33]. For H∞ filters for time-delay systems,

see [37, 52, 60, 61, 62, 63, 64, 65, 67].

In this chapter, methods to design H∞ Observers for time-delay systems developed

by Fattouh et al [17], Fridman and Shakad [52], Briat [54], Choi and Chung [55], Peet

and Gu [33] are presented. Results of all the Observers listed here are reproduced

and compared with each other in chapter 5.
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Consider a time-delay system with single delay in state and no delay in output,

ẋ(t) = A0x(t) + A1x(t− τ) + Ew(t) +Bu(t),

y(t) = C2x(t) + Fw(t),

z(t) = C1x(t).

(3.1)

Where x(t) ∈ Rn is the state vector, u(t) is system control input, y(t) ∈ Rq is the

measured output, z(t) ∈ Rp is the state to be estimated and w(t) ∈ Rr is a disturbance

vector. In the case of full state observer, C1 = I.

Luenberger-type observer for this system is given by the following equation [20],

˙̂x(t) = A0x̂(t) + A1x̂(t− τ) +Bu(t) + L(y(t)− C2x̂(t))

ẑ(t) = C1x̂(t), e(t) = ẑ(t)− z(t)
(3.2)

where, x̂(t) is the state estimation and e is estimation error. Error dynamics are then

given by [20],

ė(t) = (A0 − LC2)e(t) + A1e(t− τ) + (E − LF )w(t) (3.3)

H∞ observers are designed such that effect of disturbance w(t) on error e(t) is mini-

mized i.e. ||e||L2 ≤ γ||w||L2 .

3.1 Fattouh et al’s Observer

Fattouh et al [17] proposed a method of designing H∞ observer for linear systems

with multiple delays in states. A simplified version of this method for a single delay

as shown by Sename [20] is presented here. An algebraic Riccati equation is required

to be solved in order to find the observer gain as shown below.

Theorem 1: [17, 20] Consider the time-delay system shown in (3.1). An H∞

observer of the form shown in (3.2) can be designed for this system if for some

13



positive contants γ and ε, the following algebraic Riccati equation

A0
T + PA0 + 2P (γ2A1A1

T + EET )P − 2

ε
C2

T (Ip −
1

ε
FF T )C2 +

2

γ2
= 0 (3.4)

can be solved for a symmetric positive semidefinite matrix P . The observer gain can

then be calculated using the following equation,

L =
1

ε
P−1C2

T .

The value of γ provides an upper bound on H∞ gain of the observation error. Exam-

ples are given in chapter 4 to illustrate this method.

3.2 Fridman and Shakad’s Observer

In [52], a Luenberger type observer was designed for time-delay systems with a

single delay in the state. An LMI must be solved in order to find the observer gain.

The following theorem illustrates the method presented in [52].

Theorem 2: [52] Consider the system shown in (3.1). An H∞ observer of the

form shown in (3.2) can be designed for this system if for some positive γ, there exist

a positive matrix Q1, a symmetric matrix R̄ and matrices Q2, Q3, all in Rn×n and a

matrix Y ∈ Rn×q such that the following LMI is satisfied,



Q2 +Q2
T ∗ ∗ ∗ ∗ ∗

QT
3 −Q2 + (A0

T + A1
T )Q1 − C2

TY T −Q3 −Q3
T ∗ ∗ ∗ ∗

0 T −γ2Ip ∗ ∗ ∗

0 τR̄A1 0 −τR̄ ∗ ∗

BTQ1 −D2,1
TY T 0 0 0 −Iq ∗

τQ2 τQ3 0 0 0 −τR̄


< 0.

(3.5)
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The observer gain can then be calculated using the following equation,

L = Q1
−1Y. (3.6)

The value of γ provides a bound on H∞ gain of the observation error. Examples are

given in chapter 4 to illustrate this method. This method of designing observer was

extended for systems with two and three time-varying delay in system states in [53].

3.3 Briat’s Observer

In [54], an H∞ observer was designed for LPV(Linear Parameter Varying) time-

delay systems using LMI approach. A simplified version of the theorem for linear

time-delay systems is presented here.

The observer form used in [54] is the extended form of observer presented in (1.6)

and observer dynamics are given by,

˙̂x(t) = M0x̂(t) +M1x̂(t− τ) +N0y(t) +N1y(t− τ) + Su(t)

ẑ(t) = x̂(t) +Hy(t)
(3.7)

where x̂ ∈ Rr is the observer state, ẑ ∈ Rr the state estimation and the matrices

M0,M1, N0, N1 and H are observer gains.

Theorem 3: [54] Consider the time-delay system shown in (3.1). An H∞ observer

of the form shown in (3.7) can be designed for this system if for some positive γ,

there exist positive definite symmetric matrices P,Q,R ∈ Rp×p, and matrices Z ∈

Rp×(2p+3q), X ∈ Rp×p, H̄ ∈ Rp×q such that the following LMI is satisfied,
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−(X +XT ) ∗ ∗ ∗ ∗ ∗ ∗

U21 U22 ∗ ∗ ∗ ∗ ∗

U31 R −Q−R ∗ ∗ ∗ ∗

U41 0 0 −γIr ∗ ∗ ∗

0 In 0 0 −γIp ∗ ∗

X 0 0 0 0 −P ∗

hmaxR 0 0 0 0 −hmaxR −R



< 0. (3.8)

The matrices used in the LMI are explained below.

U21 = ΘTX − ΞT L̄C1 + P, U31 = ΥTX − ΩT L̄T , U22 = −P +Q−R,

U41 = ET (C1
TX − C2

T H̄T ), L̄ = (XTΦ− H̄)Ψ+ + Z(I −ΨΨ+),

Θ = C1A0U − ΛΓ+∆0

 C2

C2A0

U, Ξ = −(I − ΓΓ+)∆0

 C2

C2A0

U,

Υ = C1A1U − ΛΓ+∆1

 C2

C2A1

U, Ω = −(I − ΓΓ+)∆1

 C2

C2A1

U,
Φ = ΛΓ+∆H , Ψ = (I − ΓΓ+)∆H , S = FB, F = C1 −HC2,

U is defined such that

C1

C̄1


−1

= [U V ],

16



where C̄1 is a full column rank matrix such that

C1

C̄1

 is nonsingular and

Γ =



C1 0

0 T

C2 0

0 C2

C2A0 C2A1


, Λ = [C1A0 C1A1],

∆0 =



0 0

0 0

Ir 0

0 0

0 Ir


, ∆1 =



0 0

0 0

0 0

Ir 0

0 Ir


, ∆H =



0

0

0

0

Ir


.

The gain can be calculated using L = X−T L̄. The value of γ provides an upper bound

on H∞ gain of the observeration error. The Observer gains can then be calculated

using the following equations [54],

M0 = Θ− LΞ,

M1 = Υ− LΩ, H = Φ− LΩ,

N0 = K0 +M0H,

N1 = K1 +M1H.

where, K0, K1 and H is defined such that

[K0 H] = ΛΓ+∆0,

[K1 H] = ΛΓ+∆1.

17



3.4 Choi and Chung’s Observer

A method to design an H∞ optimal observer-based controller was presented in

[55]. The observer-based controller considered is of the following form,

˙̂x(t) = A0x̂(t) + A1x̂(t− τ) +Bu(t)− L(Cx̂(t)− y(t)) + EGx̂(t)

u(t) = Kx̂(t)
(3.9)

Two algebraic Riccati equations must be solved in order to calculate the observer

and controller gain. The first Riccati equation solves for the controller gain and the

second Riccati equation solves for the observer gain. The following theorem explains

the method presented in [55].

Theorem 4: [55, 20] Consider the time-delay system shown in (3.1). The

observer-based controller shown in (3.9) can be designed for this system if for some

positive constants γ, εc, δc, ε0, δ0 and matrices Qc and Q0, the following algebraic Ric-

cati equations

A0
TPc+PcA0−

1

εc
Pc(BB

T − 1

δc
A1A1

T − 1

γ2
EET )Pc+εc(δcIn+CTC+Qc) = 0 (3.10)

(A0 + EG)P0 + P0(A0 + EG)T − 1
ε0
P0(C

TC − 1
γ2
KTK − δ0

γ2
In)P0

+ε0(
γ2

δ0
A1A1

T + EET +Q0) = 0
(3.11)

can be solved for symmetric positive semidefinite matrices Pc and P0. The controller

and observer gains can be calculated using following equations,

K =
1

εc
BTPc, G =

1

γ2εc
ETPc, L =

1

ε0
P0C

T .

The value of γ provides an upper bound on H∞ gain of the closed loop system.

Examples are given in chapter 4 to illustrate this method.
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3.5 Observers for Time-delay Systems using SOS Approach

In this section, a method to design an observer for time-delay systems using SOS

developed by Peet and Gu [33] is presented. The observer dynamics consists of an

ODE coupled with an PDE as shown below. Consider the following time-delay system,

ẋ(t) = A0x(t) + A1x(t− τ) + Ew(t) +Bu(t),

y(t) = C2x(t),

z(t) = C1x(t).

(3.12)

where x(t) ∈ Rn is system state, y(t) ∈ Rq is system output, u(t) ∈ Rm is system in-

put, w(t) ∈ Rr is the external disturbance and z(t) ∈ Rp is the states to be estimated.

The observer designed in [33] has the following form,

˙̂x(t) = A0x̂(t) + A1φ̂(t,−τ) +Bu(t) + L1(C2x̂(t)− y(t)) + L2(C2φ(t,−τ)− y(t− τ))

+
∫ 0

−τ L3(θ)(C2φ̂(t, θ)− y(t+ θ))dθ,

∂tφ̂(t, s) = ∂sφ̂(t, s) + L4(s)(C2x̂(t)− y(t)) + L5(s)(C2φ̂(t,−τ)− y(t− τ))

+L6(s)(C2φ(t,−τ)− y(t− τ))

+
∫ 0

−τ L7(s, θ)(C2φ̂(t, θ)− y(t+ θ))dθ.

(3.13)

The ODE in the above equation makes correction to the current state of the system

while the PDE makes correction to the previous states of the system. Because of this

reason, smaller H∞ bound can be achieved compared to other observers which makes

correction to only the current state of the system.

Theorem 6: [33] Consider the system shown in (3.12). An H∞ observer of the

form shown in (3.13) can be designed for this system if for some positive constant γ,

there exist a matrix P ∈ Rn×n and polynomials Q : [−τ, 0]→ Rn×n, S : [−τ, 0]→ Rn
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and R : [−τ, 0]2 → Rn×n, matrices Z1, Z2 ∈ Rn×q and Z3, Z4, Z5, Z6 : [−τ, 0] → Rn×q

and Z7 : [−τ, 0]× [−τ, 0]→ Rn×q such that the following Linear Operator Inequalities

are satisfied,

P{P−εI,Q,R,S−εI} > 0 and P{T,U,V,W} < 0.

where operators P and Z are defined as below,

P = (P{P,Q,R,S}

x1
x2

)(s) =

 Px1 +
∫ 0

−τ Q(θ)x2(θ)dθ

τ(Q(s)Tx1 + S(s)x2(s) +
∫ 0

−τ R(s, θ)x2(θ)dθ)

 (3.14)

(Zy)(s) =

 Z1y1 + Z2y2(−τ) +
∫ 0

−τ Z3(θ)y2(θ)dθ

Z4(s)y1 + Z5(s)y2(−τ) + Z6(s)y2(s) +
∫ 0

−τ Z7(s, θ)y2(θ)dθ)

 (3.15)

and the matrix T and polynomials U, V and W are given by following equations,

T =


0 ∗ ∗

0 PA0 + AT0 P +Q(0) +Q(0)T + S(0) ∗

0 A1
TP −Q(−τ)T −S(−τ)



+


−γ
τ
I ∗ ∗

−PB 1
γτ
C1

TC1 + Z1C2 + C2
TZ1

T + εI ∗

0 C2
TZ2

T 0



U =


−BTQ(s)

C2
TZ4(s)

T + Z3(s)C2

C2
TZ5(s)

T

+


0

A0
TQ(s) +R(s, 0)T − Q̇(s)

A1
TQ(s)−R(s,−τ)T


V = −Ṡ(s) + Z6(s)C2 + C2

TZ6(s)
T +

ε

τ
I

W = −Rθ(s, θ)−Rs(θ, s)
T + Z7(s, θ)C2 + C2

TZ7(θ, s)
T .
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The value of γ provides an upper bound on H∞ gain of the observation error.

If the above theorem is satisfied, the observer gain L = P−1Z can be calculated

which is defined as below [33],

(Ly)(s) =

 L1y1 + L2y2(−τ) +
∫ 0

−τ L3(θ)y2(θ)dθ

L4(s)y1 + L5(s)y2(−τ) + L6(s)y2(s) +
∫ 0

−τ L7(s, θ)y2(θ)dθ)

 (3.16)

where L1, L2 ∈ Rn×q and L3, L4, L5, L6 : [−τ, 0]→ Rn×q and L7 : [−τ, 0]2 → Rn×q.

In order to calculate the observer gains, we should calculate the inverse of the operator

P . The expression for P−1 can be written using the following lemma,

Lemma 3: [33] Consider the operator P in (3.14). For some Z, if Q(s) = HZ(s)

and R(s, θ) = Z(s)TΓZ(θ) then the inverse of the operator P can be written as,

P−1 =

 P̂ x1 + 1
τ

∫ 0

−τ Q̂(θ)x2(θ)dθ

Q̂(s)Tx1 + 1
τ
Ŝ(s)x2(s) + 1

τ

∫ 0

−τ R̂(s, θ)x2(θ)dθ

 (3.17)

where

K =

∫ 0

−τ
Z(s)S−1(s)Z(s)Tds,

T = (I +KΓ−KHTP−1H)−1,

Ĥ = −P−1HT, P̂ = [I + P−1HTKHT ]P−1,

Γ̂ = [T THTP−1H − Γ](I +KΓ)−1,

Ẑ(s) = Z(s)S−1(s), Q̂ = ĤẐ(θ)

Ŝ(s) = S(s)−1, R̂(s, θ) = Ẑ(s)Γ̂Ẑ(θ)

Using Equations (3.17) and (3.15), observer gains in (3.16) can be written as [33],
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L1 = P̂Z1 +

∫ 0

−τ
Q̂(θ)Z4(θ)dθ, L2 = P̂Z2 +

∫ 0

−τ
Q̂(θ)Z5(θ)dθ,

L3(θ) = P̂Z3(θ) + Q̂Z6(θ) +

∫ 0

−τ
Q̂(s)Z7(s, θ)dθ,

L4(s) = Q̂(s)Z1 + Ŝ(s)Z4(s) +

∫ 0

−τ
R̂(s, θ)Z4(θ)dθ,

L5(s) = Q̂(s)Z2 + Ŝ(s)Z5(s) +

∫ 0

−τ
R̂(s, θ)Z5(θ)dθ, L6(s) = Ŝ(s)Z6(s),

L7(s, θ) = Q̂(s)Z3(θ) + Ŝ(s)Z7(s, θ) + R̂(s, θ)Z6(θ) +

∫ 0

−τ
R̂(s, ξ)Z7(ξ, θ)dξ.
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Chapter 4

OBSERVER IMPLEMENTATION METHODS

In this chapter, various methods that can be used to implement observers for

time-delay systems are proposed. A simple time-delay system is used to explain the

methods but they can easily be extended to complex systems such as the one shown

in the equation (3.13).

Consider a linear time-delay system,

d
dt
x(t) = A0x(t) + A1x(t− τ) +Bu(t), t ≥ 0, (4.1)

As shown in section (1.2), equivalent ODE coupled PDE for the above system can be

written as,

d
dt
φ(t, 0) = A0φ(t, 0) + A1φ(t,−τ) +Bu(t), t ≥ 0

∂
∂t
φ(t, s) = ∂

∂s
φ(t, s), t ≥ 0

φ(t, 0) = x(t), s ∈ [−τ, 0].

(4.2)

The simplest method to solve these equations numerically is by using Forward

Time-Backword Space (FTBS) method to solve the PDE [8],

φ(ti+1, sj)− φ(ti, sj)

δt
=
φ(ti, sj)− φ(ti, sj − 1)

δs

φ(ti+1, sj) = φ(ti, sj) +
δt

δs
(φ(ti, sj)− φ(ti, sj − 1)). (4.3)

Solving the PDE using this method is computationally very fast. However, numerical

errors will be high as we are using first order approximation for both spatial and

temporal derivative. One method to increase the numerical accuracy is to use higher

order approximation in time as shown below.
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The PDE in above equation can be discretized at N spatial points as shown below.

d
dt
φ(t, s)|s=sj =

φ(t,sj)−φ(t,sj−1)
δs

, j = 1, 2, 3, ..., N − 1,

d
dt
φ(t, s)|s=sN = A0φ(t, 0) + A1φ(t,−τ) +Bu(t).

(4.4)

where s ∈ [0,−τ ] and j = 1 corresponds to s = 0 and j = N corresponds to s = −τ .

The system above can be reformulated as,

d

dt
y(t) = f(y(t), t). (4.5)

Where,

y(t) =



φ(t, sN)

φ(t, sN−1)

.

.

φ(t, s1)


, f(y(t), t) =



φ(t,sN )−φ(t,sN−1)

δs

φ(t,sN−1)−φ(t,sN−2)

δs

.

.

A0φ(t, s1) + A1φ(t, sN)


.

This system of equations can be solved using 4th order Runge-Kutta method which

is explained below [8].

k1 = f(y(ti), ti)

k2 = f(y(ti) + k1
h

2
, ti +

h

2
)

k3 = f(y(ti) + k2
h

2
, ti +

h

2
)

k4 = f(y(ti) + k3h, ti + h)

y(ti + h) = y(ti) + (
1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4)h (4.6)

Here, h is the time-step. The accuracy of this method is higher as we are using 4th

order approximation in time. The same method can be extended to the estimator

dynamics shown in (3.13).
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Another implementation method is to convert the TDS into an equivalent LTI sys-

tem. The method is explained below.

Consider a linear TDS,

d
dt
x(t) = A0x(t) + x(t− τ) +Bu(t), t ≥ 0, (4.7)

The equation above can be discretized by using the same method used in (4.4) to

generate the system of N ODEs. The system shown in (4.4) can be written as a

simple matrix differential equation,

d

dt



φN

φN−1

.

.

φ2

φ1


=



1
ds
In − 1

ds
In 0 0 . 0

0 1
ds
In − 1

ds
In 0 . 0

. . . . . .

. . . . . .

0 0 . . 1
ds
In − 1

ds
In

A1 0 . . 0 A0





φN

φN−1

.

.

φ2

φ1


+



0

0

.

.

0

B


u(t) (4.8)

Here, φ1 corresponds to x(t) and φN corresponds to x(t− τ). This form is equivalent

to simple LTI state-space form ẋ(t) = Asysx(t) + Bsysu(t). The same approach can

be extended to observer shown in (3.13). We can also combine LTI form of system

and estimator dynamics which can be extended to generate a similar LTI form for

the Observer based Controller.
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Chapter 5

SIMULATION RESULTS AND COMPARISON OF THE OBSERVERS

In this chapter, theorems explained earlier have been used to design observers for

various stable and unstable time-delay systems. H∞ gains in estimation error are

calculated numerically and performances of observers are compared.

Example 1 : In this example, we consider an unstable system

ẋ(t) =

−3 4

2 0

x(t) +

0 0

1 0

x(t− 0.3) +

1

1

w(t)

y(t) = [0 7]x(t), z(t) =

1 0

0 1

x(t)

Using Theorem 1, we get γ = 0.021 for ε = 0.01. Applying LMI approach in

Theorem 2, we get γ = 0.349. Applying SOS approach in Theorem 5, we get γ =

0.0062. The input w(t) = 10sinc(5(t−τ)) and the numerically calculated H∞ gain for

the SOS observer is 0.0026 while calculated H∞ gains for observers in Theorem 1 and

Theorem 2 are 0.0061 and 0.1758 respectively. Simulations of the error dynamics for

these observers are shown in Figure 5.1-5.3. Comparison of State estimation errors

of all the observers is shown in Figure 5.4.

.
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Figure 5.1: State Estimation Error for

System in Example 1 Using Our Method.

Figure 5.2: State Estimation Error for

System in Example 1 Using Fattouh’s

Method.

Figure 5.3: State Estimation Error for

System in Example 1 Using Fridman’s

Method.

Figure 5.4: Comparison of State Estima-

tion Errors for the System in Example 1.

Example 2 : In this example, we consider an unstable system

ẋ(t) =

−3 4

2 0

x(t) +

0 0

1 0

x(t− 0.3) +

1 0

0 1

w(t)

y(t) = [0 7]x(t), z(t) =

1 0

0 1

x(t)
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In the previous example, E = [1 1]T , which means that both the states are

affected equally due to the disturbance. However, this approach is not realistic. In

this example, E is chosen such that both the states are affected differently due to

the disturbances. Using Theorem 1, we get γ = 0.58 for ε = 0.01. Applying SOS

approach in Theorem 5, we get γ = 0.236. The input w(t) = 10sinc(5(t − τ)) and

the numerically calculated H∞ gain for the SOS observer is 0.0474 while calculated

H∞ gain for the observer in Theorem 1 is 0.0617. Simulations of the error dynamics

for these observers are shown in Figure 5.5-5.6.

.

Figure 5.5: State Estimation Error for

System in Example 2 Using Our Method.

Figure 5.6: State Estimation Error for

System in Example 2 Using Fattouh’s

Method.

Example 3 : Consider an unstable system

ẋ(t) =

−10 10

0 1

x(t) +

1 1

1 1

x(t− 0.3) +

1

1

w(t)

y(t) = [0 10]x(t), z(t) =

1 0

0 1

x(t)

28



Using Theorem 1, we get γ = 0.025 for ε = 0.01. Applying LMI approach in

Theorem 2, we get γ = 0.1275. Applying SOS approach in Theorem 5, we get

γ = 0.0065. The input w(t) = 10sinc(5(t − τ)) and the numerically calculated

H∞ gain for the SOS observer is 0.0024 while calculated H∞ gains for observers in

Theorem 1 and Theorem 2 are 0.0115 and 0.0792 respectively. Simulations of the

error dynamics for these observers are shown in Figure 5.7-5.9.

Figure 5.7: State Estimation Error for

System in Example 3 Using Our Method.

Figure 5.8: State Estimation Error for

System in Example 3 Using Fattouh’s

Method.

Figure 5.9: State Estimation Error for System in Example 3 Using Fridman’s Method.
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Example 4 : Consider a stable system

ẋ(t) =

 0 1

−2 −3

x(t) +

 0 0.1

−0.2 −0.3

x(t− 0.5) +

−0.2

−0.2

w(t)

y(t) =

[
0 1

]
x(t), z(t) =

1 0

0 1

x(t)

Riccati approach in Theorem 1 and LMI approach in Theorem 2 were infeasible

for any value of gain. Briat’s method (Theorem 3) obtained a stable observer for

γ = 0.2235. Applying conditions in Theorem 5, we get γ = 0.125. The input

w(t) = 10sinc(5(t−τ)) and the numerically calculated H∞ gain for the SOS observer

is 0.0955 while calculated H∞ gains for observer in Theorem 3 is 0.145. Simulation

of the error dynamics for this observer is shown in Figure 5.10-5.11.

Figure 5.10: State Estimation Error for

System in Example 4 Using Our Method.

Figure 5.11: State Estimation Error

for System in Example 4 Using Briat’s

Method.

30



Example 5 : Consider an unstable system

ẋ(t) =

0 0

1 1

x(t) +

−π
2

0

0 0

x(t− 1) +

1

1

w(t)

y(t) = [0 1]x(t), z(t) =

1 0

0 1

x(t)

Using Theorem 1, we get γ = 1.8995 for ε = 0.01. LMI approach in Theorem 2 was

infeasible for any γ. Applying SOS approach in Theorem 5, we get an γ = 0.003. The

input w(t) = 10sinc(5(t − τ)) and the numerically calculated H∞ gain for the SOS

observer is 0.000971 while calculated H∞ gain for observer in Theorem 1 is 0.8092.

Simulations of the error dynamics for these observers are shown in Figure 5.12-5.13.

Figure 5.12: State Estimation Error for

System in Example 5 Using Our Method.

Figure 5.13: State Estimation Error for

System in Example 5 Using Fattouh’s

Method.

.
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Example 6 : Consider a stable system

ẋ(t) =

 0 1

−1 −1

x(t) +

0 0

0 −1

x(t− 1) +

1

1

w(t)

y(t) = [1 0]x(t), z(t) =

1 0

0 1

x(t)

Using Theorem 1, we get γ = 0.3223 for ε = 0.01. Applying LMI approach in

Theorem 2, we get an L2-gain of γ = 2929. Applying SOS approach in Theorem 5,

we get γ = 0.0015. The input w(t) = 10sinc(5(t− τ)) and the numerically calculated

H∞ gain for the SOS observer is 0.00078 while calculated H∞ gains for observers in

Theorem 1 and Theorem 2 are 0.1019 and 0.1758 respectively. Simulations of the

error dynamics for these observers are shown in Figure 5.14-5.16.

Figure 5.14: State Estimation Error for

System in Example 6 Using Our Method.

Figure 5.15: State Estimation Error for

System in Example 6 Using Fattouh’s

Method.

.
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Figure 5.16: State Estimation Error for System in Example 6 Using Fridman’s

Method.

Example 7 : Consider a stable system

ẋ(t) =

0 1

0 −0.1

x(t) +

 0 0

−0.375 −1.15

x(t− 0.3) +

1

1

w(t)

y(t) = [1 0]x(t), z(t) =

1 0

0 1

x(t)

Using Theorem 1, we get γ = 1.785 for ε = 0.01. Applying LMI approach in

Theorem 2, we get γ = 0.855. Applying SOS approach in Theorem 5, we get γ =

0.006. The input w(t) = 10sinc(5(t− τ)) and the numerically calculated H∞ gain for

the SOS observer is 0.0017 while calculated H∞ gains for observers in Theorem 1 and

Theorem 2 are 0.5416 and 0.3402 respectively. Simulations of the error dynamics for

these observers are shown in Figure 5.17-5.19.

.
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Figure 5.17: State Estimation Error for

System in Example 7 Using Our Method.

Figure 5.18: State Estimation Error for

System in Example 7 Using Fattouh’s

Method.

Figure 5.19: State Estimation Error for System in Example 7 Using Fridman’s

Method.

Example 8 : Consider an unstable system

ẋ(t) =

0 0

0 1

x(t) +

−1 −1

0 −0.9

x(t− 1) +

1

1

w(t)

y(t) =

[
0 1

]
x(t), z(t) =

[
1 0

]
x(t)
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Riccati approach in Theorem 1 was infeasible for any γ. Applying LMI approach

in Theorem 2, we get γ = 22.37. Applying SOS approach in Theorem 5, we get

γ = 0.0055. The input w(t) = 10sinc(5(t − τ)) and the numerically calculated H∞

gain for the SOS observer is 0.0016 while calculated H∞ gain for observer in Theorem

2 is 0.5522. Simulations of the error dynamics for these observers are shown in Figure

5.20-5.21.

Figure 5.20: State Estimation Error for

System in Example 8 Using Our Method.

Figure 5.21: State Estimation Error for

System in Example 8 Using Fridman’s

Method.

Simulation of Observer-based Controller : As the main objective to design an

observer is to implement a full state feedback control loop, it is important to study the

system behavior when the observer-based controller is implemented. The Controller

is designed using equation (3.10) and combined with the observer shown in (3.13) to

generate a suboptimal observer-based controller. The performance of this closed-loop

system is compared with the performance of observer-based controller designed using

theorem 4.
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Example 9 : Consider the unstable system in Example 1. Applying Theorem 4

to design an optimal observer-based controller, we get γ = 1.489. Using equation

(3.10) to design the controller we get γ = 0.66261 and using Theorem 6 to design the

observer we get γ = 0.00625. A suboptimal observer-based controller can be designed

by combining these controller and observer gains. The input w(t) = 10sinc(0.5(t−τ))

and the numerically calculated H∞ gain of the SOS observer is 0.0023 while calculated

H∞ gain for observer in Theorem 4 is 0.0233. Simulations of the system dynamics

and error dynamics for these observer-based controllers are shown in Figure 5.22-5.25.

Figure 5.22: States for the Closed Loop

System in Example 9 Using Our Method.

Figure 5.23: State Estimation Error for

the Closed Loop System in Example 9

Using Our Method.

Example 10 : Consider the unstable system in Example 3. Applying Theorem 4 to

design an optimal observer-based controller, we get γ = 1.41. Using equation (3.10)

to design the controller we get γ = 0.59 and using Theorem 6 to design the observer

we get γ = 0.004. Suboptimal observer-based controller can be designed by combin-
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Figure 5.24: States for the Closed Loop

System in Example 9 Using Choi and

Chung’s Method.

Figure 5.25: State Estimation Error for

the Closed Loop System in Example 9

Using Choi and Chung’s Method.

ing these controller and observer gains. The input w(t) = 10sinc(0.5(t− τ)) and the

numerically calculated H∞ gain for the SOS observer is 0.0013 while calculated H∞

gain for observer in Theorem 4 is 0.0045. Simulations of the system dynamics and

error dynamics for these observer-based controllers are shown in Figure 5.26-5.29.

Figure 5.26: States for the Closed

Loop System in Example 10 Using Our

Method.

Figure 5.27: State Estimation Error for

the Closed Loop System in Example 10

Using Our Method.
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Figure 5.28: States for the Closed Loop

System in Example 10 Using Choi and

Chung’s Method.

Figure 5.29: State Estimation Error for

the Closed Loop System in Example 10

Using Choi and Chung’s Method.
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Chapter 6

SUMMARY AND CONCLUSION

In this thesis, methods to implement observers for time-delay systems are shown.

Various observers for time-delay systems are implemented and compared with each-

other and the results are shown.

A. Summary

Introduction to observers and time-delay systems are given in chapter 1. Definition

of observability for LTI systems is listed. Delay-differential equations are briefed and

a method to solve them is shown.

Brief introduction to signal and system norms is given in chapter 2. Linear Matrix

Inequalities are introduced and LMI optimization problems widely used in the control

theory are also summarized. Sum of squares method as a convex optimization problem

is briefed.

In chapter 3, relevant literature is reviewed as an introduction to current research

in the area of observation of time-delay systems. Various H∞ optimal observers are

listed and equations to calculate observer gains are given.

In chapter 4, methods to implement the observers for time-delay systems are

illustrated and various observers are implemented and compared using these methods

in chapter 5.

B. Conclusion

The main purpose of this thesis was to measure the performance of the observer

presented in [33] with existing H∞ optimal observers. Simulation results clearly

show that very small H∞ bounds can be achieved using this observer. Different

signals are used as a disturbance and numerically calculated H∞ gains follow the

39



H∞ bound calculated using theorem 6. Simulations of error dynamics for various

stable and unstable systems are presented and the data shows that the observer

shown in [33] performs better than other H∞ observers. For some of the systems we

considered, other methods to calculate observer gains were infeasible. However, we

were able to calculate observer gains for all the systems we tested on using the method

shown in [33]. Sub-optimal observer-based state feedback system is also generated

and simulated. The simulation results show that the closed loop system converges

very quickly, and the observer can be used to design full state-feedback closed loop

system.
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