
Chartopolis - A Self Driving Car Test Bed

by

Rakshith Subramanyam

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved April 2018 by the
Graduate Supervisory Committee:

Spring Berman, Co-Chair, Chair
Hongbin Yu, Co-Chair

Suren Jayasurya

ARIZONA STATE UNIVERSITY

May 2018

ABSTRACT

This thesis presents an autonomous vehicle test bed which can be used to conduct stud-

ies on the interaction between human driven vehicles and autonomous vehicles on the road

. The test bed will make use of a fleet of robots which is a microcosm of an autonomous ve-

hicle performing all the vital tasks like lane following, traffic signal obeying and collision

avoidance with other vehicles on the road. The robots use real time image processing and

closed loop control techniques to achieve automation. The test bed also features a manual

control mode where a user can choose to control the car with a joystick by viewing a video

relayed to the control station. Stochastic rogue vehicle processes will be introduced into

the system which will emulate random behaviours in an autonomous vehicle. The test bed

was experimented to perform a comparative study of driving capabilities of the miniature

self driving car and a human driver.

i

ACKNOWLEDGMENTS

I would like to thank Professor Spring Berman, for giving me a wonderful opportunity to

work in her lab. She has been supportive all through out. I should also thank her for her

patience for putting up with my ignorance in many areas.

I would like to thank Professor Hong Bin Yu for constantly supporting me and encour-

aging the work that I was doing. I also thank all his capstone students who have been

helpful in setting up the test-bed.

I would like to thank all my collaborators, mainly Ruben Gameros who helped in con-

structing the test bed and i also thank all my fellow lab members of the ACS lab who have

been a constant support, mainly Aniket Shrishat, Zahi Kakish, Sriram, Madlyin for sharing

their valuable inputs.

I would like to thank Kowshik Thoppalli and Sai Pratyusha Gutti for helping me docu-

ment this thesis. I am also thankful to the many friendships that I made in this phase which

helped me stay focused on the job.

I am thankful to my graduate advisor, Sno Kleespies from the department of Electri-

cal Computer and Energy Engineering at ASU, for helping me make my stay at ASU, a

comfortable one.

This thesis would not have been possible without the love, guidance and unconditional

support of my parents and friends.

ii

TABLE OF CONTENTS

LIST OF TABLES . v

LIST OF FIGURES . vi

CHAPTER

1 INTRODUCTION . 1

1.1 Motivation . 1

1.2 Problem Statement . 2

1.3 Organization of Thesis . 2

2 RELATED WORK . 3

3 AUTONOMOUS CARS . 5

3.1 Autonomous Cars - Introduction . 5

3.2 Autonomous Cars - Hardware . 7

3.3 Autonomous Cars - Software . 9

3.3.1 Observer - Kalman Filter . 11

3.3.2 Controller . 12

4 CHARTOPOLIS . 17

4.1 Hardware components . 17

4.1.1 Motor Model . 20

4.2 Software components . 22

4.2.1 Camera Calibration . 22

4.2.2 Lane Detection . 26

4.2.3 Traffic Light Detection . 37

4.2.4 Robot Detection . 43

4.2.5 Manual Control of the car . 44

5 EXPERIMENTAL RESULTS . 47

6 CONCLUSION . 51

iii

CHAPTER Page

6.1 Future Directions . 51

REFERENCES . 53

iv

LIST OF TABLES

Table Page

3.1 Ziegler-Nichols Hyper Parameters Tuning . 15

v

LIST OF FIGURES

Figure Page

4.1 Test Bed with Intersection . 18

4.2 Test Bed CAD . 19

4.3 Block Diagram of the Control . 23

4.4 Pin hole camera projection . 24

4.5 HSV Color Solid Cylinder . 27

4.6 Lanes in HSV . 28

4.7 Masked Lanes . 29

4.8 Gaussian Effect on Lane . 30

4.9 Erosion Effect on Lane . 31

4.10 Region Of Interest for Lane . 32

4.11 Edge segmentation for Lane . 33

4.12 Hough Transforms for Lane . 34

4.13 Lane centre on the Road . 35

4.14 Masking of green traffic light . 38

4.15 Masking of red traffic light . 39

4.16 ROI of the traffic lights . 40

4.17 Red light Bounding Box . 41

4.18 Green light Bounding Box . 42

4.19 Pheeno Indicator . 44

4.20 Mask Pheeno LED ring . 45

4.21 Pheeno detect . 46

5.1 Real traffic Lane detection . 48

5.2 Lane error represented in no of pixels while driving in autonomous mode . . 49

5.3 Test Bed . 50

vi

Chapter 1

INTRODUCTION

1.1 Motivation

In the past decade the word ’self driving car’ has become a part of our everyday vocab-

ulary. Self driving cars have now hit the roads to the point where our cab rides are given

by autonomous drivers. The advancements in the computational technology have made

companies like Tesla (Reese (2017)), Waymo, Mercedes-Benz (Logan (2015)) and the

Uber(Dwoskin (2016)) operate their autonomous taxis around United States since 2016

making them accessible to millions of users. These advancements of the autonomous ve-

hicles have changed urban transportation by making it much more easier and convenient.

Along with these developments were the troubles that every technology brings with it. It’s

the cost that is paid when the technology doesn’t operate the way it should. The first fatal

autonomous car crash happened in China’s Hubei province(Boudette (2016)). Following

this, within four months Tesla faced another fatal incident in Florida(Fleming (2016)) and

the latest fatal accident happened in March 2018 at Tempe.

These incidents that tail along with the advancements bring in the requirement of exper-

imenting and validating the performance of the self driving cars in an urban environment.

Though this is a necessity it is becoming an issue with the stringent laws in many states in

the US that restrict the accessibility of the roads for a self driving car. In Urban environ-

ments the traffic flow is mostly happening based on a non verbal communication between

the drivers and the pedestrians on the road. With the removal of the driver from a car it

is going to be tough to establish this kind of communication where there is an affirmation

for both the pedestrian and the driver about each others’ action. Now the question raises

1

on how these situations are going to be handled in the world of automation. Experiments

are to be conducted where the interaction between the humans and the self driving cars are

focused.

1.2 Problem Statement

Current testing and validation methods include on road experimentation by driving the

self driving car around in a city. There are also experiments conducted in simulated and

graphical environments. In a manner, to find solutions to these problems this thesis attempts

to address the following question.

Can a self driving car test bed be constructed to emulate the conditions of the urban

traffic and perform experiments related to human robot interaction.

This problem statement is examined in the context of real time machine vision in

robotics and a suitable solution is discussed in this work.

1.3 Organization of Thesis

The remainder of the thesis is organized as follows: Chapter 2 briefly introduces the

existing work in this research field. Chapter 3 explains the working and the algorithms

behind a self driving car. Chapter 4 covers the proposed methods to emulate a self driving

car in the Pheeno robot. Chapter 4 and 5 talks about the experiments carried out to show

the effectiveness of the test bed and concludes the discussion with possible directions for

future work.

2

Chapter 2

RELATED WORK

After the start of the self driving cars there have been multiple test platforms that have

been used to experiment with the algorithms and the working of the autonomous vehicles.

These test environments are based off simulations and emulations. Driving simulators are

not new, there are numerous realistic and racing simulators, many autonomous vehicle

manufacturing industries are using them. Given all of this, most of them do not provide

enough data to the autonomous driving system in the aspect of human machine interaction.

The CARLA (Dosovitskiy et al. (2017)) from the Intel labs and the Toyota research center

is an simulation of an urban scenario which was developed to train self driving cars by

experimenting the algorithms with different data sets and different test scenarios. The

CARLA incorporates a library of assets that can be arranged into various weather settings

and lighting conditions. Even this environment lacks the ability to have multiple human

drivers drive alongside the autonomous car to study the behaviour of the humans and the

self driving car next to each other.

The Duckietown(Paull et al. (2017)) was developed as an open-source platform for

education and research in automation. This paper also includes building of vehicles called

Duciebots which serve as miniature autonomous cars. The duckiebots are equipped with a

Raspberry pi 2 and a monocular camera for sensing the objects in front. This combination

of raspberry pi and camera makes the duckiebot to run complex software architecture like

low level perception, object recognition, decentralized coordination etc. The duckiebot

performs lane following by using active image processing techniques, it also detects the

street names and the traffic signs using fiducial markers (Olson (2011)). Each fiducial

marker is attributed to a different street name or traffic sign. The duckiebot also uses

3

the fiducial markers for localizing itself in the town. The size and the location of each

fiducial markers are programmed prior and the duckiebot uses this data to estimate its

current position. The duckiebot is also capable of performing path planning and navigation,

the duckibot uses A* search algorithm to generate an optimal route to traverse the map.

Though these robots have autonomous capabilities they lack the ability to establish V2X

communications which is a growing research field of the self driving cars. The proposed

solution establishes a V2x communication by establishing an AD-Hoc network where all

the vehicles and the infrastructure can be connected.

Paralleling the Duckietown the students of University of Delaware also developed a

smart city, called University of Delaware Scaled Smart city(UDSSC)(Stager et al. (2017))

This smart city is intended towards experimental validation of connected and autonomous

vehicles. The UDSSC cars perform lane tracking and operations related to connected

vehicles. Their research focuses more on the communication of connected vehicles and

scheduling their movements when there is a road merging with another. But the UDSSC

doesn’t address the traffic lights and the ability of a human to drive alongside the self

driving cars. These abilities pave way to design experiments around human vehicle inter-

actions. The proposed solution solves this issue by modelling a city with traffic lights and

lanes and making the self driving car operate in this setup.

4

Chapter 3

AUTONOMOUS CARS

This chapter provides a detailed explanation on how an autonomous car operates, the

hardware components required and the software architecture. One of the important tools

to know about in this exploration is Image processing, sensor fusion and Machine learning

which will be presented in detail.

3.1 Autonomous Cars - Introduction

The term autonomous car may have been made common after the 2005 DARPA chal-

lenge. But the first efforts of making an autonomous car dates back to 1925(Felton (2017))

with the 1926 Chandler driving through the streets of New York city. The car was con-

trolled by a radio signal that was transmitted by a tailing vehicle. The radio signal was sent

to few circuit breakers which in turn controlled small motors attached to the throttle and

the steering. There were multiple attempts after this to make an efficient autonomous car,

but all of them depended on a device or circuitry embedded within the road.

The first autonomous car that was not dependent on the infrastructure of the road was

developed by Ernst Dickmanns, in the early 1980. His team equipped a Mercedeze Benz

van with a camera and sensors. This was the pioneer for the use of dynamic vision. The

vehicle employed Kalman filtering techniques to perspective imaging so as to achieve au-

tonomous driving with noisy data from the camera and sensors. But the first vehicle to start

using depth perception was the DARPA funded Autonomous Land Vehicle (ALV)(Leighty

(1986)) which demonstrated the use of LIDAR and a camera for performing self driving.

5

This vehicle encapsulated a RCA color video CCD camera and a EIRM Laser Range scan-

ner. The camera captures RGB analog intensity image at 30 frames per second and delivers

it to a VICOM video processor. The laser scanner employed an amplitude modulated(AM)

light source which scanned the entire road ahead, the phase shift of the reflected wave is

measured with respect to an internal reference and the distance of the objects in front is

calculated with this measurement.

With all these different autonomous vehicles through history, there are defined func-

tions that are attributed to certain levels of automation. A brief overview of these levels is

enumerated below.

1. Level 0 autonomy is when the driver of the vehicle controls everything in the vehicle

ranging from steering to throttle.

2. Level 1 autonomy is the state where there is assistance for the driver like cruise

control etc.

3. Level 2 autonomy is when partial automation is achieved by letting at least one sys-

tem like lane centering to operate with full automation. In this level the driver should

monitor the vehicle at all times.

4. Level 3 autonomy is when minimal driver intervention is required. The system

prompts the driver to take over if it encounters a scenario that it can navigate through.

5. Level 4 autonomy is highly automated, where there is no assistance required from

the driver but the vehicle cannot operate in all the scenarios

6. Level 5 autonomy is where the vehicle is fully automated and there is no requirement

of a driver. The vehicle can perform all the task from steering to throttle

6

3.2 Autonomous Cars - Hardware

There are multiple hardware components facilitating the automation of an autonomous

car, but the most primary ones are the perception sensors, the GPS and the central process-

ing unit. A brief operation of these sensors are elucidated below.

One of the most important sensory component is the camera which gives the car with

live video feed of the road ahead of the vehicle, this video feed is used by the car to un-

derstand the surrounding like lane markings, traffic lights, traffic signs etc. Two techniques

are primarily used to capture video feed from the surroundings - mono vision and stereo

vision. In mono vision, there is a single camera lens that captures the environment ahead.

The drawback is that the pixel density is low which throws the challenge of sophisticated

image processing techniques to recognize the markings and signs on the road using a low

resolution image and also this camera cannot capture depth of the objects in the frame. On

the other hand, stereo vision(Bertozzi and Broggi (1998)) exploits the concept of depth

perception by using two video cameras analogous to human vision. This perception of

depth aids in differentiating the moving objects from static objects and empty spaces. For

capturing the detail at farther distances, usually a camera is placed on the roof area (Thrun

et al. (2006)).

Another important component in a self driving car is the LIDAR, It equips the car with

a three dimensional point cloud of the objects surrounding the car. It shoots a beam of

laser and inspects the reflection and measures the time of flight of the light to gauge the

distance of the objects that is being scanned. The LIDAR gives a very accurate depth

perception for the autonomous car and creates a 3D map which the car can use to navigate.

The use of LIDAR eases the requirement on the machine vision of the autonomous car

by enabling the processor with the knowledge of the relative position and speed of other

vehicles on the road along with the locations of traffic signals and traffic signs. One of the

7

main drawbacks of the LIDAR sensor is that it is very expensive which makes it difficult

to be used in commercial cars. Though there are multiple autonomous car manufacturing

industries which depend heavily on LIDAR to achieve the required automation in a car

there are also few industries which do not depend on LIDAR and rely purely on computer

vision. One example is the Tesla which is purely dependent on the camera and computer

vision though there have been multiple criticisms on this approach(Lohor (2016)).

Another most crucial sensor is the Global Position Sensor(GPS). This sensor enables

the autonomous car to know where it is in the world with an accuracy of 4 inches. The GPS

aids the autonomous car to navigate to the desired destination. Along with the information

provided by computer vision the positioning of the vehicle on the lane is also done using

the GPS data along. When it is snowing or there are no lane markings the autonomous car

solely depends on GPS to stick to the lanes. The GPS data is attributed to a accurate map

that was developed by the industry that makes the autonomous car. If the industry doesn’t

have provision to build a map of the entire world it purchases from another companies like

Google Maps, NOKIA’s Here maps etc. The problem with this type of mapping is that,

with constantly changing roadways the maps should be updated very frequently to include

the new changes made to the road ways. This problem might be solved in the future by

crowd sourcing the map information. Another drawback of the GPS is when the sky is

not clear or if the sensor is not able to receive satellite signal the localization accuracy

decreases drastically.

Apart from these sensors the autonomous vehicle also uses various other sensors to

aid its decision making process. It uses a RADAR to assist the LIDAR in generating a

3D point cloud. There are few manufacturers who just use RADAR for generating a 3D

map. The advantage of RADAR is that it’s relatively cheaper and has a very long range

as compared to LIDAR. The car also uses an odometer and an inertial measurement unit

to calculate the heading, velocity and distance travelled. Another most important hardware

8

component of the car is the Control unit which receives the data from all the various sensors

and controls the vehicle accordingly. Along with these there are the actuators which control

the movements of the pedals and the steering.

3.3 Autonomous Cars - Software

To use all the hardware components efficiently and to induce automation in the car there

is a requirement of a strong software component running in the back end. All the sensory

data is used hand in hand by the sensor fusion algorithm to estimate the next step that is to

be taken by the autonomous car. The primary segment of self driving is lane following.

The lane following can be performed using computer vision techniques or using Ma-

chine Learning algorithms. The computer vision technique was the first algorithm to be

used for the establishing automation in a car. This algorithm depends on digital image

processing techniques. This method would be similar to how human processes an image

to detect lanes on the road. Every image that a camera capture is captured as intensities

of Red, Green and Blue, generally called as the RGB image. The RGB image is first con-

verted to gray scale which reduces the image to a single color channel image. This reduces

the processing time by a huge factor as the machine vision operations are performed on a

two dimensional matrix rather than a three dimensional matrix. The gray scale image is

smoothened to suppress any noise from the image. Only a small segment of this image

contains the useful information regarding the lanes. To extract this a region of interest is

defined and the corresponding segment is extracted. An edge detection algorithm is used

to extract the edges in the image, these edges are run through a line extraction algorithm

to extract the lines. The slope of the lines is used to characterize them as left and the right

lanes. This algorithm is very reliable and operational but when the conditions of the road

are very harsh this algorithm fails.

9

Another most commonly used technique is the Machine Learning algorithm. In this a

huge quantity of data is collected and labelled for training a neural network that learns to

identify a lane and the curvature of a lane. The accuracy of this method is very high and

this method is also reliable in some harsh conditions. The drawback of this method is the

requirement of huge training data and a very laborious process of labeling the data. Apart

from lane detection, the autonomous car uses Machine Learning to detect the traffic signs,

existence of a traffic light and other cars on the road.

Another crucial software segment in the car is to control the vehicle, for this purpose

there are various control algorithms like the Proportional Integral Derivative(PID) con-

troller, Linear Quadratic regulators(LQR) or Model Based Controller. But these algorithms

heavily depend on the existence of a model for the system. Though these models are ob-

tained and used for controlling the drive train of the vehicle, the decision making process

that commands the controller still rests on the machine learning approach. The autonomous

car is trained on a data of many million hours of driving by a human so that it can under-

stand the command that is to be given to the steering wheel with respect to the traffic state.

Object tracking and trajectory estimation is a critical operation for an autonomous

car.There are various sensors that gives data for a single object of interest. For example, the

camera, LIDAR and RADAR all give the same data of what is present around the vehicle.

These data sets are used to estimate the type of object, distance to the object, the velocity

of the object and possibly the trajectory of the object. But inherently due to inaccuracies

and errors in measurements these data sets are usually a probabilistic estimates. This inac-

curacy will affect the control action that is being performed. To reduce the inaccuracies in

processing the data, a sensor fusion algorithm which takes in data from various sensors is

being used. This algorithm takes in the noisy input and generates an estimate of the states

with less error.

10

3.3.1 Observer - Kalman Filter

The most commonly used sensor fusion algorithm is the Extended Kalman Filter (EKF)

(Kala (2016)). The object of interest will be modelled in state space representation(Fried-

land (2012)). The state of the system at time step t can be estimated from information from

time step t − 1. The model of a system is represented using A,B and C matrix as shown

below.

Xk = Axk−1 +Btut +Wk

Zk = Cxk + Vk

where

Xk is the state vector

A is the state transition matrix, this defines how the state values evolve over time

u is the input vector

B is the input matrix

Wk is the Gaussian noise that is acting on the state

Vk is the Gaussian noise acting on the sensor measurements

Zk is the observation of the state

C is the observation matrix or the sensor matrix

The current state value is predicted by using the state transition matrix and the previous

state estimate

x̂k = Ax̂k−1

From the variance in the Gaussian noise of the sensors the R matrix is defined as the

co-variance between the noise from various sensors. The diagonal elements of this matrix

represents the sensors variance with itself. Usually the standard deviation of the sensors

11

can be measured and from this the variance is calculated by squaring the standard deviation.

Similarly the co-variance matrix of the process noise is represented by Q. The estimation

noise at time k of the system is represented by Pk. The estimation noise is the co-variance

of the estimates made for the states at time step k. The Kalman Gain matrix is represented

by Gk, this gain matrix is utilized to weigh the state estimate made by the observer and the

state measurement made by the sensors. This gain matrix reduces the state estimation error

for the next iteration and the state estimate value is used to calculate the the control input.

After estimating the current state values using the state estimate equation the process

noise Pk is calculated.

Pk = APk−1A
T +Q

. This process noise along with the observation matrix is used to calculate the Kalman gain

matrix Gk

Gk = PkC
T (CPkC

T +R)−1

x̂k = x̂k +Gk(Zk − Cx̂k)

The estimation uncertainty is updated for the next iteration by

Pk = (1−GkC)Pk

After this step the x̂k is fed to a controller which uses this observation of the state and

would define a control input to the system. These type of systems are called full state

feedback systems.

3.3.2 Controller

There are various controllers that have evolved over the years. But the autonomous

cars are constrained by computational power and every disturbance from the surroundings.

These constraints beget a fast and reliable controller, the most commonly used controllers

12

are MPC (Model Predictive Controller), PID (Proportional Integral Derivative) and the

LQR (Linear Quadratic regulator).

PID controller is a commonly used feedback controller widely used in robotics and

industrial control system. The PID controller actively calculates an error value between a

set point and a measured variable and would modify the control input based on proportional

integral and derivative term. The PID controller requires the user to have a model of the

system. A model is a mathematical expression of the relation between the input and the

output of a system based on differential equations. The gains of the controller are calculated

with this knowledge. The sensor measures a value and feeds it back to the controller. The

feedback loop calculates a difference in the current state and the desired state of the system,

this is the error term. The error is being tracked by the proportional component of the

controller. The controller commands a control input proportional to the error in the opposite

direction. The proportional response can be adjusted by multiplying the error with the

proportional constant Kp. This simplistic proportional control can be used independently,

but this would suffer with the problem of overshoot. This is a condition where the control

action might push the vehicle far to left of the lane when trying to correct an error due to

the vehicle being more to the right side of the lane. To avoid this situation an derivative

term is used.

The derivative term tries to flatten the error curve to a straight line. It keeps track of the

previous error and would compute the rate of change of error or the slope of the error and

would multiply this with a derivative gainKp. The magnitude of the derivative gain dictates

the contribution of the derivative term in the control action. Based on this estimate in the

trend of the error, future overshoots can be avoided and the error can be reduced faster.

But if the derivative constant is too high this control would induce oscillations, which will

make the car oscillate around the set point. The integral term observes any residual errors

in the system after applying proportional and derivative control. Eliminating this error is

13

crucial as in long period of time this error would cause the vehicle to drift off. The integral

term keeps track of all the past errors, it does this by integrating the error from to to the

current time step. This accumulated error is multiplied by an integral gain Ki and added to

the controller output. The contribution of the integral term is proportional to the magnitude

of the error and the duration of the error.

The PID equation is given below.

u(t) = Kpe(T) +Ki

∫ t

0

e(τ)dτ +Kd
de(t)

dt

where,

u(t) is the control input or the output from the controller

e(t) is the error between the set point and the measurement at time t

Kp is the proportional gain

ki is the integral gain

Kd is the derivative gain

τ is the variable of integration which takes values from time 0 to the present τ

The most import part in PID control algorithm is tuning the gain parameters. These

gain parameters decide how much contribution each of the control term offers. There are

multiple ways to tune the PID parameters. But all these can be categorized as tuning with

the model or without the model. Once the system is modeled pole placement techniques

can be used to get the gain value, This method is not very native to PID controller tuning.

Other commonly used method is the manual tuning where the Ki and Kd values are set

to zero and the Kp is increased till the system oscillates, then the Kp is set as half of that

value. After this the Ki is increased till the offset is corrected in the least required time.

After this the Kd is increased till the overshoot is eliminated and has a quick response.

Another method that is used for tuning PID controller is the Ziegler-Nichols method(Ziegler

and Nichols (1942)). It is a heuristic method of tuning where the integral gain and the dif-

14

ferential gains are set to zero. The proportional gain is increased until it reaches the ultimate

gain Ku, At this stage the control loop has stable and consistent oscillations. The oscilla-

tion period is measured and labelled as Tu which along with the ultimate gain Ku are used

to set the gains for the PID. The proportional gain Kp will be set to 0.6 of Ku, the integral

gain Ki will be set to 2
Tu

and the differential gain Kd will be set to 0.125 of Tu

This method can also be used for tuning P, PI and PD controllers, the method of calcu-

lating the gains is euclidated in table

Control Type Kp Ki Kd

P 0.5Ku - -

PI 0.45Ku
0.833
Tu

-

PD 0.8Ku - 0.125Tu

PID 0.6Ku
2
Tu

0.125Tu

Table 3.1: Ziegler-Nichols Hyper Parameters Tuning

The Linear Quadratic Regulator (LQR) controller is used for operating a dynamic sys-

tem at minimum cost, which is described by a quadratic function. The weights of the input

cost matrix and state matrix determine the allowable magnitude of control action that can

be used. The LQR is an important part of the solution to the Linear Quadratic Gaussian

(LQG) problem. The LQG observes the system using a Kalman filter and solves the Alge-

braic Ricatti equation to obtain the controller. This computation is performed every time

the input cost matrix and the state matrix change. Hence, the computation of the controller

is not performed in real time. Another disadvantage of the LQR is the requirement of a

dynamic model for the system. The LQR’s transient response is faster than that of the PID

controller.

Another control algorithm that is used on self driving cars is the Model Predictive Con-

troller (MPC). This is a finite-time horizon problem where the controller is computed at

15

every time step, based on the system states at the previous time step. This process is very

computationally intensive with O(n) complexity where n is the number of variables in the

Ricatti equation, which must be solved at every time step. The MPC dynamically adapts

to the changes in the system parameters, whereas the LQR only accounts for parameter

changes when the input cost matrix and state matrix are updated and the PID controller

does not account for parameter changes unless the user manually updates the controller.

Like the LQR, the MPC requires a dynamic model for the system, whereas the PID con-

troller does not need a model of the system.

16

Chapter 4

CHARTOPOLIS

In this section a detailed explanation of the proposed test bed is provided along with the

explanation of the key image processing components. The functions and capabilities of the

robot that have been used to emulate the self driving car is also explained in derail.

The self driving car test bed can be divided into two major subsections - the hardware

subsection and the software subsection. The hardware subsection deals with the construc-

tion of the test bed, and hardware components of the robot that is being used. The software

subsection discusses about algorithms that are powering the robot and the algorithms that

are running on the test bed and the intersections.

4.1 Hardware components

The hardware is the most important part of the test bed as it is facilitating a platform

to test out the algorithms that are being developed for emulating a self driving car. It

starts with constructing the physical layout of the test bed with lanes marked and the traffic

lights setup as shown in Figure 4.1. The layout of the test bed was first designed in CAD

respecting the dimensions of the robot and the lane width this is shown in Figure 4.2.

The robot that was used to emulate a self driving car is the Pheeno Robot (Wilson

et al. (2016)) developed in ACS Laboratories. The pheeno robot was developed as a low

cost alternative for performing swarm experiments. These robots are modular platforms,

constructed using commercially available actuators and sensors. The structure of the robot

is 3D printed and laser cut. The Pheeno has the modularity to be scaled up or scaled down

and can be added with many different sensors or actuators. These capabilities made the

author to choose the pheeno robot for constructing the test bed.

17

Figure 4.1: Construction of the test bed with the intersection and the traffic lights mounted

The Core support structure of the pheeno robot is 3D printed with ABS plastics. The

circular base and cap of the housing are poly-carbonate . The 3D printed parts of the pheeno

robot uses an infill of 12 which is dense enough to run the experiments for the test bed. The

robot uses a differential drive to move around and this is facilitated with two micro metal

gear motors with extended back shaft. The motor of choice was a micro gear motor with

51.45:2 gear ratio, a wheel of 32mm diameter, with this configuration the pheenos can

move with a speed ranging from 4cm/sec to 42cm/sec. A magnetic encoder is attached to

the extended back shaft of the robot which has a linear resolution of 0.163 mm/tick. The

robot also features a LED ring around its periphery. This enables the users to programs the

robot to display multiple states.

18

Figure 4.2: CAD model of the test bed representing a block

Along with this actuator there are a couple of sensors which are installed in the robot.

The robot has six Sharp GP2YOA41SKOF IR sensors with a range of 4 - 30 cm. IR sensors

with different ranges could be substituted with the interface pins that are provided with the

robot. The IR sensor on the periphery of the robot gives a measurement of distance of the

objects around the robot. It also has an Inertial Measurement Unit (IMU) which has three

degrees of freedom magnetometer, three degrees of freedom gyroscope and three degrees

of freedom accelerometer. The IMU measures acceleration, magnetic intensity and rate of

change of angular position of the robot in all three dimensions. The robot also features a

camera which has a 5MP Omnivision 5647 sensor in a fixed focus module.

19

The robot has a Raspberry Pi 3 computer as the primary on board processing unit. The

Raspberry Pi is a credit card sized Linux computer the gives the flexibility for the user to

program in multiple programming languages and run all the programs that would run on a

native Linux system. It has a Quad Core 1.2Ghz Broadcom BCM2837 64 bit CPU and 1

GB of RAM, BCM43438 wireless LAN and Bluetooth Low, Energy on board. It has 40

GPIO pins, four USB 2.0 ports, a full size HDMI and a CSI camera port. Along with this

the robot has a secondary processing unit which is Teensy 3.2. The Teensy board has a

32 bit Cortex M4 processor with a clock speed of 72 MHz, it has a RAM of 64 KB and

34 digital input output pins, 21 analog input pins. The Teensy board supports USB, serial,

SPI, I2C and CAN communication protocols

4.1.1 Motor Model

The motor mentioned above is to be modelled to implement a controller to have a closed

loop system which will make the robot follow the commands given by the algorithm. Two

modelling techniques were used to study the model of the motor, an analytical method

where the model of the motor is derived by differential equation of the mechanical systems

and the electrical systems.

A DC motor has an armature, a permanent magnet and a shaft. The armature is con-

nected to the electrical circuit which magnetizes and demagnetizes the armature. This will

induce rotation in the armature in accordance with law of Electromagnetic Induction. This

rotation is a result of the torque produced on the shaft of the motor, which is proportional to

the current flowing through the armature. The rotation of the motor would produce a back

emf on the armature which is proportional to the angular velocity of the motor. With these

equations a relation between electrical power and mechanical power can be derived.

τ = KtI

20

E = Kbω

τ = J
dω

dt

where, τ is the torque on the shaft of the motor

kt is the torque constant of the motor

I is the electric current flowing through the armature

From Kirchhoff circuit law a differential equation of the electrical system can be written

as

V − IRa − La
dI

dt
− E = 0

The armature inductance is very low which can be approximated to zero

V − τ

Kt

Ra −Kbω = 0

Rewriting the torque equation we have

V −
J dω

dt

Kt

Ra −Kbω = 0

Taking Laplace transform and rearranging the equations would give,

ω =
V

Js
Kt

+Kb

This is the transfer function that relates the angular velocity of the shaft of the motor to

the voltage applied to the motor. To get the relation between the linear velocity of the robot

and the voltage applied to the motors the equation is modified slightly.

v =
raV

Js
Kt

+Kb

where, V is voltage applied to the armature

I is the current flowing through the armature

21

Ra and La are resistance and inductance of the armature

E is the back emf flowing through the armature due to the rotation of the shaft

rw is the radius of the wheel

vw is the linear velocity of the wheel

By getting the motor parameters from the data sheet of the motor, the transfer function

of the motor is found to be

v =
0.015V

Js
0.0187

+ 0.0192

An experimental method was also used to obtain the model of the motor. In this model

a step voltage was given to the motor and the response of the motor was plotted as shown

in Figure (). This plot is approximated to a first order transfer function, the pole location

was obtained using curve fitting method.

This transfer function can be used to design a controller for making the wheel of the

robot to follow the commands given by the processor.

4.2 Software components

With the given hardware the software segment plays the crucial role in realizing the

autonomy of the robot, It runs complex algorithms to define the motions and allocates a

trajectory for the robot by utilizing all the sensors and actuators. The control diagram is

shown in Figure 4.3

4.2.1 Camera Calibration

The camera of the robot plays a crucial rule in emulating the robot as an autonomous

car. Like the Tesla autonomous cars, this robot as well does not heavily depend on LIDAR

data since camera being the major part in deciding the actions to be taken. The image from

the camera should not be distorted. For this purpose the camera calibration procedure is

22

Figure 4.3: Block diagram of the closed loop controls for the robot

carried out.

Geometric camera calibration, also referred to as camera resectioning, estimates the

parameters of camera. These are the intrinsic and extrinsic parameters. Intrinsic parameters

are related to the optics of the camera. These parameters encompass focal length, image

sensor format and principle point. The extrinsic parameters denote the coordinate system

transformations from the world coordinates to the camera coordinates. These parameters

define the position of the camera centre and the cameras heading in the world coordinates.

The major distortions in an image are the radial and the tangential distortion. Due to the

radial distortions, straight lines will appear curved. There are two types of radial distortion

- Barrel distortion where the image would barrel outwards making the pixels in the centre

to distort more relative to the pixels in the edges, and Pincushion distortion where the pixels

in the edge would distort more relative to the centre.The tangential distortion occurs when

the lens is not aligned parallel to the imaging plane.

An image is a two dimensional representation of the three dimensional world. The

world coordinates are transformed to pixel coordinates. This is referred to as forward

23

Figure 4.4: Projection of an object in the world frame represented by X,Y,Z on to an image
plane,(Majumder (2010))

projection. The projection of a scene depicted in Figure 4.4 follows the following formula

u = f
X

Z

v = f
Y

Z

where, u is the x coordinate of the object in image plane

v is the y coordinate of the object in image plane

X is the x coordinate of the object in world plane

Y is the y coordinate of the object in world plane

f is the focal length of the camera

When the origin of the two dimensional image coordinate system doesn’t coincide with

where the principle axis meets the image plane, a translation of the image is to be per-

formed. Let this translation be defined as tu, tv. Now, u and v becomes,

24

u = f
X

Z
+ tu

v = f
Y

Z
+ tv

The same equations can be written in an perspective transformation matrix

Pc =MP

To express this camera image in inches, the resolution of the camera is to be known.

This can be denoted as mu and mv. So, the transformation matrix is dependent on the

focal length of the camera, X, Y and Z coordinates of the object, the translation vectors tu,

tv, the scaling vectors mu and mv. This is denoted by K, where K is called the intrinsic

parameter matrix for the camera. So the projection of the object on the image plane follows

the following equation

Pc = KP

When the camera does not have its projection centre at the origin the image will be ro-

tated and translated to correct this. The image should be translated and rotated accordingly

to align the projection centre. Let the translation vector be denoted by Tx, Ty, Tz and the

rotational matrix be denoted by R. The extrinsic parameter E is given by

E = (R|RT)

The complete camera calibration matrix can be represented by

C = KR(I|T)

the projection on the image plane of object P after calibration is given by

25

PC = CP

This calibration matrix is obtained by getting multiple images of a checker board in

different angles of known dimensions and calculating the matrix parameters.

The image that is captured by the camera is passed to the distortion removal algorithm

to remove any distortions in the image. This image is then passed to the process pipeline

which performs the image processing algorithms to detect the elements of a traffic scenario.

4.2.2 Lane Detection

The lane detection algorithm taken in an undistorted image to estimate the location of

lanes in a given frame. This estimate is then used to control the trajectory of the robot.

The image that is received by the lane detection algorithm is in RGB color space, this

RGB image is first converted into HSV color space (Schwarz et al. (1987)). HSV color

space is an alternative representation of the RGB color model designed in the 1970s. The

H corresponds to the hue value which represents different colors, the S corresponds to

saturation dimension of the various shades of the color represented by the Hue and the V

denotes the Value of white or black mixed with the color represented by hue and saturation.

Thus HSV gives a cylindrical dimension to color and much more control of the choice of

color as shown in Figure 4.5

The hsv of the test bed is shown in Figure 4.6 , this HSV image is masked for extracting

color with high brightness or ’V’(value). This would result in an image with lanes and other

noise over the horizon as depicted in Figure 4.7. The resulting image was too noisy which

made random white spots appear all over the image. Gaussian smoothing was done over

the image to remove this noise. Gaussian smoothening (Fisher et al. (2003)) uses a kernel

which convolutes through each pixels of the image and would smoothen the image. This is

a slow process which is depended on the size of the kernel and the size of the image. The

26

Figure 4.5: HSV color solid cylinder representing the Hue Saturation and Value parameters
and their effect in the choice of color

kernel is a gaussian distribution matrix. An example of a gaussian kernel is depicted below.

The image after applying the kernel is represented by the Figure 4.8

3X3Kernel =
1

16


1 2 1

2 4 2

1 2 1


After the gaussian blur the image would still have some noise and big unwanted seg-

ments. These segments were removed by eroding the image. The erosion operation(Works

(1999)) is similar to gaussian blur, it uses a kernel to perform the operation. The kernel is

usually a odd square unity matrix. This matrix is convoluted over each pixel. The pixel

27

Figure 4.6: The lanes of the test-bed represented in HSV color space

value of the original image will be retained only if all the pixels under the kernel is one,

else it will be made zero. This makes the pixels near the boundary to be discarded depend-

ing on the size of the kernel which decreases the size of the objects in the image. Erosion

only works for binary image. While masking the image, it is mapped to binary format. The

image after erosion is shown in the Figure 4.9 Even after the erosion the objects above the

horizon are not removed from the image. To remove these a trapezoidal region of interest

is selected and all the other pixels are made black. This would leave only the road to be

shown in the image as depicted in Figure 4.10. The height of the trapezoid was determined

by taking a point that is less than that of the infinite point for the camera. This frame after

erosion is sent to the edge detection algorithm, the canny edge detection was chosen for

28

Figure 4.7: The HSV image is masked for pixels with high Value and is represented as a
binary image

this. The canny edge detection algorithm first calculates the gradients based on the inten-

sity of the pixels in horizontal direction Gx and vertical direction Gy. This gives out two

images one with vertical gradient and one with horizontal gradient. From this, the edge

gradient and the angle of each pixel is calculated as given below. The gradient direction

will be perpendicular to the edges in the image.

Gedge =
√
G2

x +G2
y

Angle(θ) = tan−1 Gx

Gy

29

Figure 4.8: Image after smoothening using Gaussian Blur with 5X5 kernel

After getting the direction and the magnitude of the gradient, the image is scanned again

to remove unwanted pixels which are not attributing to an edge. To achieve this, every pixel

is checked if it is a local maximum in its neighborhood in the direction of the gradient. If it

is not the local maximum, it is suppressed to zero. This process eliminated unwanted noise

in the image showing up as a edge. The algorithm also thresholds the magnitude of the

gradient which gives a control on choosing how sharp of an edge is required. The resulting

edge image will be binary image with thin edges as shown in Figure 4.11.

Using the edge image, the lines in the image are computed using Hough transforms(Duda

and Hart (1972)) to extract the lanes. The Hough transform is a popular technique to detect

shapes. A line can be represented by the liner equation yi = mxi + c, it can also be rep-

30

Figure 4.9: Image after eroding with kernel size of 11x11

resented as c = −mxi + yi. In this mc-plane for a given point xi, yi there can be multiple

lines drawn with different slopes and intercepts. Consider a line segment, for different xi

and yi on the line segment if all possible intercepts and slopes are calculated for the given

points, there would be one intercept that is common for all the three points. The line can be

represent with this slope and intercept. But for a vertical line the slope is infinite. To more

efficiently represent the line, it is converted into polar coordinate system in which the line

is described as ρ = xicosθ + yIsinθ. Each point xi, yi in the xy-plane gives a sinusoid in

the ρθ plane. Assuming there areM co-linear points lying in the line, ρ = xicosθ+yIsinθ.

These points will give M sinosoids that would intersect at ρi, θj in the polar plane. This ρ

and θ represents the line. This process is computationally very intense so a voting method

31

Figure 4.10: Trapezoidal region of interest which removes objects that are above half of
the infinite point

is used to determine the line segment, this process is called probabilistic Hough transform

(Kiryati et al. (1991)). The probabilistic Hough transform doesn’t take all the points on

the line into consideration but selects few points randomly and computes the extremes of

the line segment. The lane with the Hough lines is shown in Figure 4.12

The resultant lines are separated as left lane and right lane based on the slope of the

line. This is seen in Figure 4.12. The average between the left lane and the right lane

is calculated to get the lane centre, the lane centre is plotted in Figure 4.13. An error

is computed between the centre of the lane and the centre of the frame captured by the

camera. This value represents the error between the robot and the lane, as the camera is

placed on the centre point of the robot with respect to x axis.

32

Figure 4.11: The Canny edge with a threshold band between 100 and 200 would result in
extracting the edges of the lane

Another approach was experimented to compare the result with the afore mentioned

algorithm. The frame that is captured is converted into a binary image i.e. a black and

white image, this image is sent to a Homography algorithm that converts the image to

birds eye view with the help of the transformation matrix. Homography maps points in

one image to the corresponding points in another image, this mapping is performed by the

homography matrix which is 3X3 matrix, this is briefed below

Let the a set of points taken from the first image be X1, Y1 and X2, Y2 taken from the

second image. The mapping of the point from the second image to the first is done by

multiplying X2, Y2 with the transformation matrix.

33

Figure 4.12: Probabilistic Hough transforms detecting the lines on the lane with minimum
length of 10 pixels and maximum line gap of 20 pixels


X1

Y1

1

 =


X2

Y2

1



h00 h01 h02

h10 h11 h12

h20 h21 h22


But in the case under study there is only one image and the perspective transformation

matrix is not available. To solve this two lines parallel to the lanes are drawn and the points

of intersection of these lines with the horizontal line drawn at a point less than the infinity

point is taken as edge points of one image and the points for the second image is taken as the

intersection of the two vertical lines drawn from the bottom of the image to the horizontal

line drawn at a point less than the infinity point. This forms a set of four points these are

34

Figure 4.13: The centre of the two lanes is estimated by averaging the left and the right
lane pixel positions

used to compute the Homography transformation matrix.The transformation matrix is used

to map the points from the actual lane image to the birds eye view.

The birds eye image is used to compute the sum of pixel values of each columns, this

sum gives a vector which has a length equal to the width of the image. This vector would

have two regions of high values which corresponds to the start of the lane in the x direction.

This vector is used to separate the left lane from the right lane. From this starting point, a

sliding window is used to scan through a region wider than start of the left and right lane.

The points inside the sliding window is fit with a second order polynomial which is used

to estimate the curvature and the position of the left and the right lanes. The curvature is

used to re-position the sliding window for the next segment. Similarly the entire image

35

is scanned to estimate the polynomial that represents the entire left and the right lane.

With the help of these polynomials the center of the lane is calculated with which the

error with the image center is computed. This method was found to be more accurate but

computationally slow as the algorithm is trying to fit a cure to a given number of points

which runs for multiple passes.

The error computed is sent to the control algorithm that dictates the motors to re-

position the robot to align itself with the centre of the lane. The control algorithm is a

PID controller that takes in error values and would compute the angular velocity of the

robot. This angular velocity is used to compute the individual wheel velocities vrandvl

using a Robot model as shown below. This is a kinematic model that computes the position

and heading of the robot in the Cartesian space given the velocities of the wheels.

ẋ =
R

2
(vr + vl)cosθ

ẏ =
R

2
(vr + vl)sinθ

θ̇ =
R

L
(vr − vl)

where,

L is the axle length of the chassis

R is the wheel radius

x, y position of the robot in the Cartesian space

θ heading of the robot in the Cartesian space

Though this model is very efficient for commanding the robot to move in desired direc-

tions, designing a controller with this model is very cumbersome. So a unicycle model is

used to design a controller for the robot. The unicycle model was considered

36

ẋ = vcosθ

ẏ = vsinθ

θ̇ = ω

where, ω is the angular velocity of the robot and v is the linear velocity of the robot

But this model failed to give individual wheel velocities for a differential drive robot so

this model is merged with the kinematic model to get a differential drive kinematic model

which was used to command the wheels.

vr =
2v + ωL

2R

vl =
2v − ωL

2R

The error message is sent from the raspberry pi computer to the Teensy computer which

computes the individual wheel velocities. The PID loop runs at a speed of 48 Khz and the

feed back data from the image processing segment is at the rate of 0.002 Khz. This delay

is modeled in the feed back loop.

4.2.3 Traffic Light Detection

Traffic lights have been playing a major role in regulating the flow and control of the

traffic in an intersection in the urban traffic system since the dawn of the age of automobile.

It has mostly been a trivial task for the humans to see and detect the vivid red and green

lights and respond accordingly, but when this comes to an autonomous car there are many

factors into consideration, the car should be avoiding detecting false positives and false

negative as any of these would result in a traffic light skipping which may endanger the

vehicles around. The autonomous car should first recognize the traffic light structure and

37

Figure 4.14: Image after masking for the green color in the frame

then detect the state of the traffic light. We are using classic image processing techniques

to recognize the traffic light and compare it with a deep neural network algorithm.

The frame captured by the Raspberry Pi camera is pipe-lined to traffic light detection

algorithms after lane detection algorithm. The received image is converted to HSV space

and red and green color is masked out in the image using experimented HSV values. This

masking is shown in Figure 4.14 and Figure 4.15. The brightness of the traffic light causes

pixel saturation (Hasinoff (2014)) and blooming, this makes it very difficult to separate the

colors using the HSV mask. Saturation is a type of distortion when the image is limited

to some maximum value or charge interfering with the measurement of bright regions of

the scene and blooming is when these excess charges spill over to the neighbouring pixels

38

Figure 4.15: Image after masking for the red color in the frame

saturating them which would other wise not be saturated. When the overexposure is very

high the pixels become saturated in all the color channels, there are many methods to correct

this over exposure, one of the common method used is Dynamic ranging as proposed in

(Reinhard et al. (2010)). This process captures multiple images in different exposure levels

of the same subject and would render an image from all these images. Due to constrains

in the processing speed and the real time requirement this process was not feasible to be

implemented. A mechanical design solution was brought out where the light would be

diffused before it leaves the structure. A diffusing structure was designed by studying the

HSV data for different intensity of diffusion.

After masking the entire frame for the desired color, a region of interest is selected

39

Figure 4.16: Selecting the region of interest for extracting the traffic lights

which separates the top of the frame, this would leave only the traffic structure visible and

any other red or green in the image would be removed. This is shown in Figure 4.16.

The image is used to find any counters using the Topological structure analysis by border

following algorithm (Suzuki et al. (1985)). This would give the boundary points of all the

shapes detected in the image. A rectangle is fit to these points to extract the dimension of

the traffic light. The height and the width of the bounding rectangle is used to estimate

the distance of robot from the traffic light as shown in Figure 4.17 and Figure 4.18. This

distance is acquired by getting the pixels per centimeter value, after acquiring the distance

from the traffic light the robot is made to respond to the traffic light only if it close enough

to the traffic light provided it is not violating any other operating conditions. Based on what

40

Figure 4.17: Bounding box around red traffic light, the height and the width of the rectan-
gle is used to estimate the distance of the traffic light

color the robot is detecting the corresponding command is sent to the Teensy controller to

perform the required action. If the robot is encountering a Green signal, it has four choice

of directions of equal probabilities to choose the trajectory. If the robot chooses to turn it

will do so by ailing itself in the center of the lane and turning ninety degrees to the desired

direction. While performing this action the robot will operate in open loop condition.

A neural network was used for comparing the performance results of the computer

vision approach. The inception(Szegedy et al. (2015)) network architecture was selected

for comparing and transferring. The learning process was used to re-train the last layer

of the inception of inception model for detecting traffic lights. The system was trained

on GTX 960m GPU with CUDA support. A locally created dataset was used with 100

41

Figure 4.18: Bounding box around green traffic light. The text on the video is used for
post analysis

positive images for green and red each and 100 negative images were used to retrain the

model. This gave a very good prediction with an accuracy greater than 99 percentage. But

this process of classification took approximately 3 seconds in a GTX 960m GPU to give

a result when an image is passed through the model so this was not experimented on the

raspberry pi computer considering the high computational requirements.

Another functionality for the traffic light detection was added, where if robot detects

red light but stops past the stop line it would reverse to align itself with the stop sign.

This is to compensate for the fact that there is no yellow traffic light condition in the test

bed, as mixture of red and green makes yellow and the camera is not sensitive enough to

distinguish between shades of red and green with yellow.

42

4.2.4 Robot Detection

Another important factor in road traffic is the requirement to detect other vehicles on

the road. This would ensure there are no crashes and the robots are following the rules of

the road. To facilitate this, a light ring is added to each robot which is used as a medium

of communication between the robots. This light ring is mimicking the lights on the rear

of a car. It exhibits four states, where one state is nominal operation where the robot

follows lane, one state exhibits the robots inability to detect any lanes, one state indicates

the direction of turn Figure 4.19 and the last state represents rogue mode of the robot

where the robot will not follow any traffic rules. The robot has a probability of 0.1 to get

into rogue mode while it is operational. In rogue mode the robot doesn’t respect traffic

lights and would not detect other robots in the test bed. It would also randomly choose to

increase its speed between 30 to 70 percent of the current operational speed.

The light ring used was a Neo pixel RGB array which can display multiple colors. The

neopixels receive data with a fixed frequency of 800 Khz where each bits require 1.25

microseconds and each pixels have 24 bits which makes the data streaming to a speed of

30 microseconds. After the streaming the data for the last pixel the transmission should be

held at least for 50 microseconds for the colors to latch. This reduces the speed of the loop

and introduces a delay in the system. Hence this delay should also be considered for the

feed back loop.

The image of the current frame is also pipe-lined to the robot detection algorithm. The

robot detection algorithm first segments the region where the light ring can be expected.

After segmenting the image, the image is converted into HSV color space and it is masked

for red and green as shown in Figure 4.20. The red and green colors are used to indicate

the sate of nominal operation. The size of the box bounding the detected colors is used to

estimate the distance of the robot and the rate of change of size is used to detect the velocity

43

Figure 4.19: The Robots indicating left and right turns using the indicator LED

at which the robot ahead is travelling as shown in Figure 4.21.

4.2.5 Manual Control of the car

The test bed is trying to emulate the urban conditions of the current traffic scenario

which dictates the requirement to have the cars be controlled manually. To enable this

need, the test bed was equipped with a router which was enabling communication between

the robots and a command station. All the robots were connected to the same network and

every robot was assigned with a unique static IP address. The command station was also

44

Figure 4.20: Masking the LED ring using the HSV value of the LED

connected to the same network. Every robot would create a socket for communicating to

the command station, if the command station wants to communicate to a particular agent, it

will connect to the socket using the knowledge of the IP and the port created by the robot.

The station would send the required message and would exit the connection and would

move to the next robot. The manual controller from the command station should visually

see the movements of the robots in the test bed to control it. An experiment was carried

where the robots would relay the video while they are being controlled, in this experiment

it was found that the band width of the network is not wide enough to receive the video and

send control commands for multiple robots.

45

Figure 4.21: Bounding Box around the LED of the robot ahead which is used to estimate
the distance of the robot in front

46

Chapter 5

EXPERIMENTAL RESULTS

In this chapter, the results of different experiments are shown. There were two main

experiments conducted - one was on a data set of road videos and another was on the test

bed. The first experiment was on the road recordings which was to assert the lane tracking

algorithms performance on a real road scenario and the second was where all the algorithms

were tested on the test bed shown in the Figure 5.3.

The lane tracking algorithm was tested on a data set of video recordings of roads pro-

vided by Cognitive Technologies. The algorithm was able to estimate the position of the

lanes on a clear bright day when the lanes were very clear and visible for the human eyes.

This is shown in Figure 5.1. With minor tweaking of the parameters of the traffic light

detection algorithm it was able to detect the the traffic lights on a real world condition.

The experiments with the test bed provided consistent results with the lane tracking

algorithm, the traffic light detection and the robot detection algorithm. Different lighting

conditions were experimented where the robots even performed in a condition similar to

night conditions and the robots were attached with a flash light mimicking a head light of

a car.

An experiment was orchestrated which was intended on comparing the results of human

driving and autonomous driving on the test bed. The manual control of the robot was

exploited to perform this experiment. A study group of six students were asked to drive

around the test bed for five minutes sticking to the rules of the test bed, i.e. following lanes,

stopping for traffic light and re-flowing back into the test bed. In this experiment, they were

given a game pad to control the robots and allowed to move around the test bed for getting

better perspectives. Their performance was recorded with the on-board camera which was

47

Figure 5.1: Lane Detection in a Real traffic video. The yellow line is estimated center of
the lane

computing an error parameter with the center of the lane and this was being saved in a text

file. The same experiment was conducted with the robot in the autonomous mode. The

robots were made to run in the test bed for five minutes by self flowing back into the test

bed when it detects the barrier at the end of the test bed. In this experiment the robots

were operating in autonomous mode by detecting lanes, traffic lights and other robots on

the road. The error between the center of the lane and the center of the robot are plotted in

Figure 5.2. On an average the error was around 5 pixel length, which can be translated to 8

millimeters. The robots had huge errors immediately after it re flows in to the test bed, this

is due to the fact that the reflow algorithm is operating on open loop which accumulates the

48

0 50 100 150 200 250 300 350
−20

−15

−10

−5

0

5

10

time (sec)

E
rr

o
r

Lane error in autonomous mode

Figure 5.2: Lane error represented in no of pixels while driving in autonomous mode

error. This proves a stable lane tracking process.

When comparing the results of the human driving in the test bed and the autonomous

mode driving in the test. The autonomous mode was performing better. This can be at-

tributed to the fact that the control of the motors was done in a closed loop feed back

system with a controller. Where as for the humans they had to observe and control the

robot using a joystick. The micro movements of the joystick was found difficult to keep

control over which were causing minute oscillations on the drive during manual mode. The

autonomous mode was needing external assistance few times when it was going off the lane

while operating in open loop to re flow back into the test bed. The human driver was able

to drive better even in low lit conditions but the autonomous mode was not very efficient in

49

Figure 5.3: The test bed with two intersections and a curved lane

low lit condition mainly when the color of the lane markings were faded.

The battery life was also put to test for manual mode of operation and autonomous mode

of operation. For the autonomous mode of operation the robot had to do multiple function,

where as for the manual mode it had to receive commands from the control station and send

the video back to the command station. This made the battery last longer for the manual

mode.

50

Chapter 6

CONCLUSION

In this thesis, a self driving car test bed was presented in which miniature robots were

used to mimic a self driving car. This miniature robot was able to emulate the operations

of a self driving car by performing lane detection, traffic light classification, detection of

other robots in the test bed and collision avoidance using 6 IR sensors. And these robots

are scalable with dimensions and are easy to build so the number of vehicles in the test bed

can be increased easily. The algorithms developed for the test bed were tested on videos

of real traffic scenarios and were shown to work with minor parametric tuning. In addition

to the robot operating in autonomous mode, it can be controlled using a joystick with the

vehicles point of view video being relayed wirelessly to the humans control station. The

autonomous driving mode was made to run for 5 minutes and it was found that the average

lane error was less than 8 mm.

6.1 Future Directions

There are several future avenues for research. They include fusion with contemporary

deep-learning architectures for exploiting the complementarity of both paradigms. Replac-

ing the processing computer with a computer with higher processing power would enable

the robot to do the image processing algorithms faster and the maximum speed of the robot

can be increased. This will also pave way for use of real time machine learning algorithm.

To design of an indoor GPS using over head cameras can aid in better path planning and

navigation. Some preliminary work has been done, where the server attached to the camera

can read the QR code on top of each robot and would estimate the position and heading of

51

the robot. This position and heading data can be used to locate the robot in the test bed and

the robot can perform much more informed actions.

Use of steering wheel, pedals and a VR headset for manual control can immerse the

experience of the user and much more human based experiments can be carried out in

the test bed. Inclusion of multiple re configurable traffic signs can be used to represent

the traffic conditions in a better manner. Implementation of optimization algorithms on

the intersection can be used to schedule the vehicles at an intersections and increase the

through put of the intersection.

52

REFERENCES

Bertozzi, M. and A. Broggi, “Gold: A parallel real-time stereo vision system for generic
obstacle and lane detection”, IEEE transactions on image processing 7, 1, 62–81 (1998).

Boudette, N. E., “Autopilot cited in death of chinese tesla driver”, http://tiny.cc/
7y83sy (2016).

Dosovitskiy, A., G. Ros, F. Codevilla, A. López and V. Koltun, “Carla: An open urban
driving simulator”, arXiv preprint arXiv:1711.03938 (2017).

Duda, R. O. and P. E. Hart, “Use of the hough transformation to detect lines and curves in
pictures”, Communications of the ACM 15, 1, 11–15 (1972).

Dwoskin, E., “Mercedes-benz’s self-driving big-rig proves that au-
tonomous vehicles are coming sooner than we think”, URL
http://www.chicagotribune.com/bluesky/technology/
ct-uber-self-driving-cars-pittsburgh-20160906-story.html
(2016).

Felton, R., “The man who tested the first driverless car in 1925 had a bizarre feud with
harry houdini”, URL http://tiny.cc/3x83sy (2017).

Fisher, R., S. Perkins, A. Walker and E. Wolfart, “Gaussian smoothing”, Hypermedia Im-
age Processing Reference (2003).

Fleming, C., “Tesla car mangled in fatal crash was on autopilot and speed-
ing, ntsb says”, URL http://www.latimes.com/business/autos/
la-fi-hy-autopilot-photo-20160726-snap-story.html (2016).

Friedland, B., Control system design: an introduction to state-space methods (Courier Cor-
poration, 2012).

Hasinoff, S. W., “Saturation (imaging)”, in “Computer Vision”, pp. 699–701 (Springer,
2014).

Kala, R., On-road intelligent vehicles : motion planning for intelligent transportation sys-
tems (2016).

Kiryati, N., Y. Eldar and A. M. Bruckstein, “A probabilistic hough transform”, Pattern
recognition 24, 4, 303–316 (1991).

Leighty, R. D., “Darpa alv (autonomous land vehicle) summary”, Tech. rep., ARMY EN-
GINEER TOPOGRAPHIC LABS FORT BELVOIR VA (1986).

Logan, B., “Mercedes-benz’s self-driving big-rig proves that autonomous vehicles are
coming sooner than we think”, URL http://www.businessinsider.com/
mercedes-self-driving-big-rig-on-a-public-highway-2015-10
(2015).

53

Lohor, S., “A lesson of tesla crashes? computer vision can’t do it all
yet”, URL https://www.nytimes.com/2016/09/20/science/
computer-vision-tesla-driverless-cars.html (2016).

Majumder, A., “The pinhole camera”, URL https://www.ics.uci.edu/
˜majumder/vispercep/cameracalib.pdf (2010).

Olson, E., “Apriltag: A robust and flexible visual fiducial system”, in “Robotics and
Automation (ICRA), 2011 IEEE International Conference on”, pp. 3400–3407 (IEEE,
2011).

Paull, L., J. Tani, H. Ahn, J. Alonso-Mora, L. Carlone, M. Cap, Y. F. Chen, C. Choi,
J. Dusek, Y. Fang et al., “Duckietown: an open, inexpensive and flexible platform for
autonomy education and research”, in “Robotics and Automation (ICRA), 2017 IEEE
International Conference on”, pp. 1497–1504 (IEEE, 2017).

Reese, H., “Tesla’s autopilot: The smart person’s guide”,
URL https://www.techrepublic.com/article/
teslas-autopilot-the-smart-persons-guide/ (2017).

Reinhard, E., W. Heidrich, P. Debevec, S. Pattanaik, G. Ward and K. Myszkowski, High
dynamic range imaging: acquisition, display, and image-based lighting (Morgan Kauf-
mann, 2010).

Schwarz, M. W., W. B. Cowan and J. C. Beatty, “An experimental comparison of rgb,
yiq, lab, hsv, and opponent color models”, ACM Trans. Graph. 6, 2, 123–158, URL
http://doi.acm.org/10.1145/31336.31338 (1987).

Stager, A., L. Bhan, A. Malikopoulos and L. Zhao, “A scaled smart city for experimen-
tal validation of connected and automated vehicles”, arXiv preprint arXiv:1710.11408
(2017).

Suzuki, S. et al., “Topological structural analysis of digitized binary images by border
following”, Computer vision, graphics, and image processing 30, 1, 32–46 (1985).

Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
A. Rabinovich, J.-H. Rick Chang et al., “Going deeper with convolutions”, in “The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR)”, (2015).

Thrun, S., M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong, J. Gale,
M. Halpenny, G. Hoffmann et al., “Stanley: The robot that won the darpa grand chal-
lenge”, Journal of field Robotics 23, 9, 661–692 (2006).

Wilson, S., R. Gameros, M. Sheely, M. Lin, K. Dover, R. Gevorkyan, M. Haberland,
A. Bertozzi and S. Berman, “Pheeno, a versatile swarm robotic research and education
platform”, IEEE Robotics and Automation Letters 1, 2, 884–891 (2016).

Works, H. I., “Brief description”, Transformation (1999).

Ziegler, J. G. and N. B. Nichols, “Optimum settings for automatic controllers”, trans.
ASME 64, 11 (1942).

54

