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ABSTRACT

This work considers the design of separating input signals in order to discriminate

among a finite number of uncertain nonlinear models. Each nonlinear model corre-

sponds to a system operating mode, unobserved intents of other drivers or robots,

or to fault types or attack strategies, etc., and the separating inputs are designed

such that the output trajectories of all the nonlinear models are guaranteed to be

distinguishable from each other under any realization of uncertainties in the initial

condition, model discrepancies or noise. I propose a two-step approach. First, using

an optimization-based approach, we over-approximate nonlinear dynamics by uncer-

tain affine models, as abstractions that preserve all its system behaviors such that

any discrimination guarantees for the affine abstraction also hold for the original non-

linear system. Then, I propose a novel solution in the form of a mixed-integer linear

program (MILP) to the active model discrimination problem for uncertain affine mod-

els, which includes the affine abstraction and thus, the nonlinear models. Finally, I

demonstrate the effectiveness of our approach for identifying the intention of other

vehicles in a highway lane changing scenario.

For the abstraction, I explore two approaches. In the first approach, I construct the

bounding planes using a Mixed-Integer Nonlinear Problem (MINLP) formulation of

the given system with appropriately designed constraints. For the second approach,I

solve a linear programming (LP) problem that over-approximates the nonlinear func-

tion at only the grid points of a mesh with a given resolution and then accounting

for the entire domain via an appropriate correction term. To achieve a desired ap-

proximation accuracy, we also iteratively subdivide the domain into subregions. This

method applies to nonlinear functions with different degrees of smoothness, including

Lipschitz continuous functions, and improves on existing approaches by enabling the

use of tighter bounds. Finally, we compare the effectiveness of this approach with
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existing optimization-based methods in simulation and illustrate its applicability for

estimator design.
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Chapter 1

INTRODUCTION

1.1 Motivation

Recently, there is much public interest in the integration of smart systems into

everyday lives. These systems that include smart homes, smart grids, intelligent

transportation and smart cities, are essentially complex, integrated and intercon-

nected engineered systems with multiple operating modes that are often not directly

observed or measured; thus, they can be modeled as hidden mode hybrid systems.

For example, autonomous vehicles/robots have no access to the intentions or deci-

sions of other vehicles or humans [32, 38, 11], while smart infrastructures are prone

to different fault types [17, 8] or attack modes [29, 39, 19]. In these scenarios, ap-

proaches for discriminating among these operating modes (or more generally, models

of system behaviors) based on noisy observed measurements can have a significant

impact on a broad range of applications in robotics, process control, medical devices,

fault detection, etc. This is an important problem in statistics, machine learning and

systems theory; thus, general techniques for model discrimination can have a signifi-

cant impact on a broad range of applications. problems in robotics, process control,

medical devices, fault detection, etc.

In particular, the transition to autonomy in passenger and commercial vehicles is

happening at an incredible pace. Despite big technological breakthroughs in recent

years, a major challenge in autonomous driving that remains is the capability of these

autonomous vehicles to intelligently and safely identify and react to the behaviors of

human-driven cars and other autonomous vehicles.
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Figure 1.1: Illustration of active intention identification, where separating inputs
help to distinguish Inattentive, Cautious and Malicious intentions [11].

The main focus of my thesis can be explained with Figure 1.1. In this scenario

we have two cars - ego car (blue) and the other car (red) in a highway lane changing

scenario. The ego car wants to move from its current lane to the other car’s lane. My

goal is to discern the intention of the other car (inattentive, cautious or malicious)

by designing the ego car’s input in such a way that at the end of a pre-determined

time horizon, only one of the three intentions can be consistent with the other car’s

dynamics.

In the first part of Figure 1.1 the initial conditions - position, velocity etc. - for

all three intentions is the same. In the second part we can see that the ego car moves

in the same manner, but the other car reacts in a different way in all cases. Car 1 is

not aware of the ego car and thus is coasting. Car 2 is cautious and yields the lane

in order for the ego car to change its lane. Car 3 is Malicious and tries to match the

position of the ego car as it comes into its lane.

Since the dynamics of these smart systems are almost always complex (nonlinear or

hybrid), it is desirable to compute a simpler conservative approximation or abstraction

of the system dynamics while preserving the dynamical characteristics of the original

systems. Abstraction-based methods for analyzing and controlling smart systems
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Figure 1.2: Illustration of Affine Abstraction/Overapproximation.

have recently attracted a great deal of interest [37].

Using these approximate systems, controllers that are correct-by-construction with

respect to reachability and safety specifications can be synthesized efficiently, see e.g.,

[2, 13, 1], and similarly, guarantees for estimator designs also apply to the original

complex systems [35].

Figure 1.2 is an illustration of abstraction in a 1-dimensional nonlinear system.

Here, two lines are constructed in such a way that the original (nonlinear) system is

completely contained within these lines for the concerned domain and the gap between

the two lines is minimum. This is extended to higher dimensions for a n-dimensional

nonlinear function by designing two n-dimensional affine hyperplanes that contain

the original system. The active model discrimination algorithm is designed in such a

way that it is applicable for everything within the bounds of the affine planes, thus

being applicable to the original system as well.
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1.2 Literature Review

The problem of discriminating among a set of models appears in a plethora of

research areas such as fault detection, input-distinguishability and mode discernibil-

ity of hybrid systems, where the approaches in the literature can be grouped into

passive and active methods. Passive discrimination techniques seek the separation

of the models regardless of the input [25, 31, 38, 21], while active methods design a

separating input such that the behaviors of different models are distinct.

Specifically in the area of input design for active model discrimination, many

approaches have been proposed with the goal of finding a small excitation that has a

minimal effect on the desired behavior of the system, while guaranteeing the isolation

of different fault models [8, 34, 28, 33, 19, 11]. However, these methods are only

applicable for known linear or affine models, and not for nonlinear or uncertain affine

models that we consider in this work.

A passive fault detection and isolation approach first computes a time horizon

length that is sufficient for guaranteeing the distinguishability of multiple faults rep-

resented by switched affine models (also known as the T -detectability problem). Then,

a model invalidation approach is proposed to detect and isolate different fault models

in real-time by only observing the output sequence for a finite time horizon without

compromising detection/isolation guarantees. The problem of mode discernibility in

switched autonomous linear models is also studied in [6], where discernibility of the

linear models is considered for almost every initial condition.

Passive methods offer stronger conditions for distinguishability of the behaviors

of multiple models in the sense that they guarantee separation of output trajectories

for any input applied to the models. This, however, comes at a cost, which is the

conservativeness introduced by these methods. In other words, the applicability of
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guaranteed passive methods is somewhat limited, because not all models are passively

distinguishable. This is the motivation behind the introduction of active methods.

Active model discrimination is also considered in hybrid system community, where

the concept of controlled-discernibility is introduced, which seeks for an input to

discriminate among different mode sequences in switched linear models The concept

of input-distinguishability for a pair of linear models is discussed in [25, 31], which is

the passive version of distinguishability that is defined in [14]. The problem of model-

based active fault detection is also extensively studied, where the goal is to find a

small excitation that has a minimal effect on the desired behavior of the system, while

guaranteeing the isolation of different fault models [8, 28, 33]. On the other hand,

a computational method for passively discriminating among fault models is given in

[18, 21]. The problem of mode discernibility in switched autonomous linear models in

the passive setting is also studied in [6], and in addition, they introduced the concept

of controlled-discernibility, which seeks for an input to discriminate among different

mode sequences in switched linear models.

In [6], controlled-discernibility is introduced, which seeks for an input to discrimi-

nate among different mode sequences in switched linear models. Moreover, in [33], an

active fault detection approach is considered to isolate multiple linear time-varying

models subject to uncertainties and noise. In this approach, a bi-level optimization

formulation is posed as a Mixed-Integer Quadratic Program (MIQP) that is then used

to search for optimal separating inputs.

Specifically in the area of intention identification, passive methods have been

investigated in [38, 40, 27, 22] to estimate human behavior or intent, and the obtained

intention estimates are then used for control. The problem of intention identification

was also considered for inter-vehicle applications, where a partially observable Markov

decision process (POMDP) framework was proposed to estimate the driver’s intention

5



[23].

Another set of relevant literature pertains to abstractions of nonlinear systems

as linear or affine models that over-approximates all possible original system be-

haviors, which is a common systematic approximation approach in the literature on

hybridization [4, 2, 10, 1]. The abstraction process typically involves partitioning the

state space of the original system into a finite number of regions and approximating

its dynamics locally in each region by a simpler dynamics, which is possibly conser-

vative affine or polynomial approximations of the analyzed system [13]. When the

system state moves from one region to another, the dynamics of the approximate

system also switches accordingly. That is to say, the approximate systems behaves

like a hybrid system and thus, the abstraction is also referred to as a hybridization

process [4]. In [3], abstraction of nonlinear systems as piecewise linear systems over a

mesh with a fixed partition was studied. However, this evenly-sized partition of the

domain of interest may not be computationally tractable as it requires a large number

of discrete states/modes to make the partition size sufficiently fine. To reduce the

number of subregions, the Lebesgue piecewise affine approximation was proposed for

a class of nonlinear Lipschitz continuous functions in [5], where the partition of the

state space depends on the variation of the vector field. On the other hand, on-the-fly

abstraction is a dynamic method where the domain construction and the abstraction

process are only carried out on states that are reachable [16, 2]. Although this method

scales better into high dimensions, some drawbacks, such as error accumulation and

the splitting of the currently-tracked set of states along multiple facets, still exist [7].

Moreover, abstractions for each partition are typically obtained by linear inter-

polation over a given region and adding the corresponding interpolation error to the

simpler dynamics as bounded inputs [4, 30]. Hence, a set of relevant literature per-

tains to the analysis of interpolation error bounds. The size of the error bounds is
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important as it affects not only the approximation precision but also the computation

time. In [36], optimal estimates for approximation errors in linear interpolation of

functions with several degrees of smoothness were developed, while [10] presented a

coordinate transformation to get a tighter interpolation error bound.

1.3 Contribution

We propose a novel two-step approach to active model discrimination among a set

of uncertain nonlinear models, consisting of the affine abstraction/ over-approximation

and the corresponding input design problem. This problem is relatively unexplored

in the literature to the best of my knowledge.

In the first step, we propose optimization-based approaches to over-approximate

nonlinear dynamics by uncertain affine models that are compactly described using

interval-valued matrices/vectors, in contrast to only having a interval-valued affine

vector. In particular, this uncertain affine model must preserve all the system behav-

iors of the original nonlinear dynamics such that any model discrimination guarantees

for uncertain affine abstraction also hold for the original nonlinear models.

In addition, we develop a mesh-based method for piecewise affine abstraction,

which over-approximates the nonlinear behaviors over an entire mesh as opposed to

over each simplex/mesh element, thus our approach results in less complex abstrac-

tions that can simplify reachability analysis.

The novelty of our mesh-based approach lies in solving a linear programming (LP)

optimization that over-approximates the nonlinear function at only the grid points of a

mesh with a given resolution and then accounting for the entire domain in the interior

of the mesh via an appropriate correction term. The proposed abstraction algorithm

can also obtain an arbitrarily precise approximation of a nonlinear function at the

price of increasing the mesh resolution, hence the size of the LP and its computational
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complexity.

Comparing with a recent abstraction method for Lipschitz continuous functions in

[1], our method can apply to nonlinear functions with different degrees of smoothness

including Lipschitz continuous functions. In addition, our analysis is based on mesh

elements (in contrast to point-wise analysis in [1]) and this enables the use of tighter

error bounds based on linear interpolation in [36, 10]. Therefore, the abstraction

efficiency is improved and the number of subregions is reduced for the same desired

approximation accuracy.

Next, in the second step, using the resulting set of uncertain affine models from

the first step, we propose a novel solution to the active model discrimination problem

for uncertain affine models, which includes the affine abstraction. We show that this

problem can be casted as a mixed-integer linear program (MILP), for which off-the-

shelf optimization tools are readily available. To my knowledge, this input design

problem for uncertain affine models (an important problem on its own) has also not

been considered in the literature.

Finally, using simulation examples, we demonstrate the advantages of the pro-

posed approaches for affine abstraction over the existing optimization-based approach

in [1] as well as illustrate the usefulness of the obtained abstraction for estimator de-

sign, specifically the active model discrimination problem in the context of identifying

the intention of other vehicles in a lane changing scenario.

1.4 Notation and Definitions

Let x ∈ Rn denote a vector and M ∈ Rn×m a matrix, with transpose Mᵀ and

M ≥ 0 denotes element-wise non-negativity. The vector norm of x is denoted by ‖x‖i

with i ∈ {1, 2,∞}, while 0, 1 and I represent the vector of zeros, the vector of ones

and the identity matrix of appropriate dimensions.
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The diag and vec operators are defined for a collection of matrices Mi, i = 1, . . . , n

and matrix M as:

diagni=1{Mi} =


M1

. . .

Mn

 , vecni=1{Mi} =


M1

...

Mn

 ,

diagi,j{Mk} =

Mi 0

0 Mj

 , veci,j{Mk} =

Mi

Mj

 ,
diagN{M} = IN ⊗M, vecN{M} = 1N ⊗M,

where ⊗ is the Kronecker product.

The set of positive integers up to n is denoted by Z+
n , and the set of non-negative

integers up to n is denoted by Z0
n. We will also make use of Special Ordered Set of

degree 1 (SOS-1) constraints1 in our optimization formulations, defined as:

Definition 1 (SOS-1 Constraints). A special ordered set of degree 1 (SOS-1) con-

straint [e.g., [15]] is a set of integer, continuous or mixed-integer scalar variables for

which at most one variable in the set may take a value other than zero, denoted as

SOS-1: {v1, . . . , vN}. For instance, if vi 6= 0, then this constraint imposes that vj = 0

for all j 6= i.

1Off-the-shelf solvers such as Gurobi and CPLEX [15, 9] can readily handle these constraints,

which can significantly reduce the search space for integer variables in branch and bound algorithms.
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Chapter 2

AFFINE ABSTRACTION

2.1 Mesh-Based Affine Abstraction

There are two parts in solving the problem. In the first part, we consider the

subproblem of abstracting a single pair of affine hyperplanes for the nonlinear dy-

namics in a single subregion Ii ∈ I using mesh-based affine abstraction. Unlike the

recent paper [1] in which only Lipchitz continuous functions have been considered,

we provide a novel analysis that considers mesh elements, as opposed to point-wise

analysis, which enables us to exploit the tighter bounds from the literature on linear

interpolation [36, 10] for several classes of continuous functions with different degrees

of smoothness.

Then, in the second subproblem, we extend the abstraction method from a single

subregion to multiple subregions, which constitute a cover of the state space of the

nonlinear dynamics. Specifically, we will construct an εf -accurate cover that is com-

posed of subregions with a pair of families of affine hyperplanes (F ,F) such that the

nonlinear dynamics f is over-approximated with desired accuracy εf holds in each

subregion.

As will be demonstrated in Section 4.1, our abstraction method outperforms the

algorithm in [1] for a given εf in terms of computation time and number of subregions

required to over-approximate a function.
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2.1.1 Mesh-Based Affine Abstraction of a Single Subregion

To solve the subproblem of mesh-based affine abstraction of a single subregion, we

will rely on the following result on linear interpolation error bounds over simplices:

Proposition 1 ([36, Theorem 4.1 & Lemma 4.3]). Let S be an (n+m)-dimensional

simplex such that S ⊆ Rn+m with diameter δ . Let f : S → R be a nonlinear function

and let fl be the linear interpolation of f at the vertices of the simplex S. Then, the

approximation error bound σ defined as the maximum error between f and fl on S:

σ = max
s∈S

(|f(s)− fl(s)|) (2.1)

is upper-bounded by

(i) σ ≤ 2λδs, if f ∈ C0 on S,

(ii) σ ≤ λδs, if f is Lipschitz continuous on S,

(iii) σ ≤ δs maxs∈S ‖f ′(s)‖2, if f ∈ C1 on S,

(iv) σ ≤ 1
2
δ2
s maxs∈S ‖f ′′(s)‖2, if f ∈ C2 on S,

where λ is the Lipschitz constant, f ′(s) is the Jacobian of f(s), f ′′(s) is the Hessian

of f(s) and δs is simplex ball radius that satisfies

δs ≤
√

n+m

2(n+m+ 1)
δ.

According to [36], all factors are the best possible, while [10] proposes a mapping

of the original simplex to to an “isotropic” space to obtain a better bound for the

simplex ball radius δs. On the other hand, the Lipschitz constant λ for f on S can be

computed using well-known techniques, e.g., [26], while the constants for cases (iii)

and (iv) above can be computed using any off-the-shelf optimization software.

Moreover, we derive a useful lemma as follows:
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Lemma 1. Let f1 and f2 be affine hyperplanes on the same (n + m)-dimensional

simplicial domain Sk ⊆ Rn+m with vertex set Vk = {vk1 , . . . , vkn+m+1}. Suppose that

f1(vki) ≥ f2(vki), ∀ i ∈ [n+m+ 1]. (2.2)

Then, f1(s) ≥ f2(s), ∀ s ∈ S.

Proof. Since S is a simplex, any point s ∈ S can be represented as s =
∑n+m+1

i=1 αivki ,

where αi ≥ 0,
∑n+m+1

i=1 αi = 1. Moreover, we represent the affine hyperplanes as

f1(s) = A1s+ b1 =
n+m+1∑
i=1

αi(A1vki + b1) =
n+m+1∑
i=1

αif1(vki),

f2(s) = A2s+ b2 =
n+m+1∑
i=1

αi(A2vki + b2) =
n+m+1∑
i=1

αif2(vki).

Since (2.2) holds by assumption and αi ≥ 0, the result follows directly from the

above.

Armed with the above interpolation error bounds and lemma, we can obtain the

following lemma and theorem using a novel analysis that considers mesh elements for

each subregion, as opposed to point-wise analysis in [1], resulting in tighter bounds

and more effective abstraction.

Lemma 2. Given a nonlinear function f : I → Rn with a hyperrectangular domain

I ⊂ Rn+m for any subregion I ∈ I, let V = {v1, v2, . . . , vl} be a set of l grid points of

a uniform mesh of the subregion I. Suppose that we have affine hyperplanes fu and

fb such that:

fu(vi) ≥ f(vi), ∀i ∈ [l], (2.3)

fb(vi) ≤ f(vi), ∀i ∈ [l], (2.4)

12



then, the affine hyperplanes f and f over-approximate the function f in the entire

subregion I, i.e.,

f(x, u) = fu(x, u) + σ ≥ f(x, u), ∀(x, u) ∈ I, (2.5)

f(x, u) = fb(x, u) + σ ≤ f(x, u), ∀(x, u) ∈ I, (2.6)

where σ is a vector of the smallest possible error bounds based on the degrees of

smoothness of each element of the vector-valued function f (cf. Proposition 1).

Proof. First, we note that the given hyperrectangular mesh can be considered to be

comprised of simplices with the same set of vertices . Next, consider any (n + m)-

dimensional simplex Sk ⊂ I with vertex set Vk = {vk1 , . . . , vkn+m+1}. By assumption,

there exists an affine plane fu that satisfies (2.3), and hence also at the vertices in

Vk, i.e.,

fu(vki) ≥ f(vki), ∀ i ∈ [n+m+ 1], (2.7)

since Vk ⊆ V . Moreover, the linear interpolation of the simplex vertices, fl(x, u), ∀ (x, u) ∈

Sk is a uniquely determined affine plane. Since fu and fl are both affine over the same

domain, by Lemma 1, we have

fu(x, u) ≥ fl(x, u), ∀(x, u) ∈ Sk,

=⇒ f(x, u) = fu(x, u) + σ ≥ fl(x, u) + σ, ∀(x, u) ∈ Sk.

By Proposition 1, fl(x, u) + σ≥ f(x, u),∀(x, u) ∈ Sk, hence

f(x, u) ≥ f(x, u), ∀ (x, u) ∈ Sk.

Since this result is applicable for all Sk ⊆ I with the same fu, we further have

f(x, u) ≥ f(x, u), ∀ (x, u) ∈ I. (2.8)

A similar proof can be derived to obtain (2.6).

13



Theorem 1. Given a nonlinear function f : I → Rn with a hyperrectangular domain

I ⊂ Rn+m for any subregion I ∈ I, let V = {v1, v2, . . . , vl} be a set of l grid points

of a uniform mesh of the subregion I and C = {vc1, . . . , vc2(n+m)} be a set of the corner

points of the hyperrectangular domain. The affine hyperplanes f and f that over-

approximate/abstract f are given by:

f = fu + σ, f = fb − σ,

with σ as defined in Lemma 2, fu = Ax + B u + hu, and fb = Ax + B u + hb,

where A,A,B,B, hu and hb are obtained from the following linear programming (LP)

problem:

min
θ,A,A,B,B,hu,hb

θ

subject to Axi +B ui + hu ≥ f(xi, ui), (2.9a)

Axi +B ui + hb ≤ f(xi, ui), (2.9b)

(A− A)xcj + (B −B)ucj + hu − hb ≤ θ, (2.9c)

∀i ∈ [l],∀ j ∈ [2(n+m)],

where (xi, ui) and (xcj, u
c
j) are the state-input values at the grid point vi of the mesh

and the vertex cj of I, respectively.

Proof. The first two constraints (2.9a) and (2.9b) in the linear optimization problem

can be interpreted as:

Axi +B ui + hu = fu(vi) ≥ f(vi), ∀i ∈ [l],

A xi +B ui + hb = fb(vi) ≤ f(vi), ∀i ∈ [l].

Based on Lemma 2, these inequalities imply that

f(x, u) ≥ f(x, u) ,∀(x, u) ∈ I,

f(x, u) ≤ f(x, u) ,∀(x, u) ∈ I,
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which means that (2.9a) and (2.9b) always make sure that f and f are completely

over and under f in I, as required by the definition of affine abstraction. Next, we

wish to make fu and fb to be as close to each other as possible by minimizing θ,

defined as:

θ = max
(x,u)∈X×U

‖fu(x, u)− fb(x, u)‖∞.

We now show this can be rewritten as a minimization problem with the objective

function θ and the third constraint (2.9c). Consider any one dimension in Rn+m

with the other dimensions arbitrarily fixed. Due to the linear nature of the difference

between fu and fb, the difference can only be increasing or decreasing as the considered

point in I moves in one direction. Because of this, the maximum difference would

be at one of the ends. Since this argument applies to all dimensions, it follows that

the maximum difference must be attained at one of the vertices of I. Hence, we

only need to minimize the difference among the vertices of the (n + m)-dimensional

hyperrectangle I, which leads to the third constraint (2.9c).

2.1.2 Mesh-Based Affine Abstraction of Multiple Subregions

For multiple subregions, the mesh-based affine abstraction is provided in Algo-

rithm 1, in which the abstraction method of a single subregion (cf. Theorem 1) is

considered as the abstraction function. In Algorithm 1, the epsCover function

is recursive in nature. First, the abstraction function is run in order to obtain

f, f and e(f, f). Then, the error e(f, f) is compared to the desired error εf . If it

is smaller than εf , the information about the subregion boundary (bound) and the

corresponding hyperplanes (with desired accuracy) is collected in a data structure

called cover. Otherwise, the function divBound divides the state domain into a finer

cover I = {I1, . . . , I2n+m} by partitioning each interval [aj, bj], ∀j ∈ [n + m] into two
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Algorithm 1: Creating a εf -accurate Cover

Data: f , bound = X × U , resolution r, desired accuracy εf

1 function epsCover(f, bound, r, εf)

2 (f, f , e(f, f)) ← abstraction(f, bound, r, εf)

3 if e(f, f) ≤ εf then

4 cover = {f, f , bound}

5 return (cover)

6 else

7 I ← divBounds(bound)

8 for i = 1 : 2n+m do

9 cell{i} = epsCover(f, Ii, r, εf)

10 end

11 cover =
⊕2n+m

i=1 {cell{i}} (
⊕

= concatenation)

12 end

13 return (cover, I)

1 function divBounds(bound)

2 Refer to Section 2.1.2 for its description

3 return (subBounds)

1 function abstraction(f, bound, r, εf)

2 Refer to Theorem 1 for its description

3 return (f, f , e(f, f))
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subintervals of width (bj−aj)/2. Thus, the region is divided into 2(n+m) different sub-

regions denoted by subBounds. Now, each of the subregions subBounds is recursively

passed to epsCover in place of the original region until e(f, f) in each newly obtained

subregion has an error that is less than εf . In each recursion, we keep tracking of

the subregion boundaries and the corresponding affine-hyperplanes and store it in the

data structure cover.

2.2 MINLP-Based Affine Abstraction

Problem 1 (Affine Abstraction). Given a nonlinear n-dimensional vector field f( #”x , #”u, w)

with (polytopic) domain #”x ∈ X , #”u ∈ U , w ∈ W, find two n dimensional affine planes

(i.e., upper and lower planes defined by matrices A,A,B,B,Bw, Bw and vectors f ,

f) such that they “contain” (i.e., upper- and lower bound) the given vector field with

minimum separation, as expressed by the following:

min
A,A,B,B,Bw,Bw,f ,fÃ,B̃,B̃w,f̃

Ã+ λ1B̃ + λ2B̃w + λ3f̃

subject to

A #”x+B #”u+Bww+f ≤ f( #”x , #”u, w),

f( #”x , #”u, w)≤A #”x+B #”u+Bww+f,

∀( #”x ∈X , #”u ∈U ,

w∈W),
(2.10a)

‖A− A‖ ≤ Ã, ‖B −B‖ ≤ B̃, ‖Bw −Bw‖ ≤ B̃w,

‖f − f‖ ≤ f̃ , A ≥ A,B ≥ B,Bw ≥ Bw, f ≥ f,
(2.10b)

where λ1, λ2 and λ3 are tuning weights and suitable norms are also chosen based on

the application at hand.

In this section, we present an alternative approach to the previous mesh-based

affine abstraction method by directly considering the mixed-integer nonlinear program

(MINLP) as formulated in Problem 1. Since the robust formulation given in Problem 1

cannot be directly implemented using standard optimization packages, we will convert
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the problem into a more amenable form such that off-the-shelf optimization tools can

be applied. For simplicity, we first describe our approach for a 1-dimensional vector

field with interval domains, before describing how this can be extended to higher

dimensional systems. Moreover, we will assume in the following discussion that there

is at most one local optimum in the domain X ,U ,W . This can also be extended to

the case with multiple local optima.

Theorem 2 (Affine Abstraction). Given a nonlinear 1-dimensional differentiable

vector field f( #”x , #”u, w) with interval domains #”x ∈ X , #”u ∈ U , w ∈ W, two affine

planes (i.e., upper and lower planes defined by A,A,B,B,Bw, Bw and vectors f ,

f) that contain the given vector field with minimum separation are solutions to the

following nonlinear optimization problem:
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min
A,A,B,B,Bw, Bw, f , fÃ, B̃, B̃w, f̃ ,

#”xu,
#”uu, wu,

#”xb,
#”ub, wb

Ã+ λ1B̃ + λ2B̃w + λ3f̃

subject to

A #”x+B #”u+Bww+f ≤ f( #”x , #”u, w),

f( #”x , #”u, w)≤A #”x+B #”u+Bww+f,

∀( #”x ∈ X̃ , #”u ∈ Ũ ,

w∈W̃),
(2.11a)

A−∇x f(
#”xb,

#”ub, wb) = 0,

B −∇u f(
#”xb,

#”ub, wb) = 0,

Bw −∇w f(
#”xb,

#”ub, wb) = 0,

(( #”xb ∈ X ∧ #”ub ∈U ∧ wb ∈W ∧ (A #”xb +B #”ub

+Bwwb + f ≤ f( #”xb,
#”ub, wb)))

∨ #”xb /∈ X ∨ #”ub /∈U ∨ wb /∈W),

(2.11b)

A−∇x f(
#”xu,

#”uu, wu) = 0,

B −∇u f(
#”xu,

#”uu, wu) = 0,

Bw −∇w f(
#”xu,

#”uu, wu) = 0,

(( #”xu ∈ X ∧ #”uu ∈U ∧ wu ∈W ∧ (A #”xu +B #”uu

+Bwwu + f ≥ f( #”xu,
#”uu, wu)))

∨ #”xu /∈ X ∨ #”uu /∈U ∨ wu /∈W),

(2.11c)

‖A− A‖ ≤ Ã, ‖B −B‖ ≤ B̃, ‖Bw −Bw‖ ≤ B̃w,

‖f − f‖ ≤ f̃ , A ≥ A,B ≥ B,Bw ≥ Bw, f ≥ f,
(2.11d)

where λ1, λ2, λ3 are tuning weights (chosen based on the application), X̃ , Ũ , W̃ are

the sets of endpoints of the interval domains X , U , W, respectively, #”xu, #”uu and wu

are the local optimum for the difference between the upper plane and function f, and

similarly, #”xb,
#”ub and wb for the bottom plane, while ∧ and ∨ are logical AND and OR
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operators1 and ∇ denotes the derivative operator.

Proof. The optimization formulation above is as in Problem 1 except that the semi-

infinite constraints (2.10a) are replaced by readily implementable constraints (2.11a),

(2.11c), (2.11b). This is possible because the maximum of a differentiable (thus,

continuous) function over a closed domain is the maximum of its local optima (i.e.,

minima, maxima or saddle points) in its interior (i.e., (2.11b)) and the maximum over

its boundaries (i.e., its endpoints; (2.11a)). The same holds for minimization over a

closed domain, resulting in (2.11a) and (2.11c) for the lower plane.

Eq. (2.11a) is required such that the upper and lower planes upper- and lower-

bound each boundary/endpoint of the domains. On the other hand, Eqs. (2.11b)

and (2.11c) are such that the local optima, which are given by their first order nec-

essary condition (i.e., their first order derivative is set to zero), are also upper- and

lower-bounded by the two planes, respectively. The constraints with logical operators

are to be understood to be in conjunction with the other constraints, and has the

interpretation that only the local optima in the given domain needs to be upper-

or lower-bounded by the two planes. Finally, Eq. (2.11d) along with the objective

function ensures that the upper plane remains above the lower plane and that the

separation between the two planes is as small as possible.

To extend the above formulation to higher dimensions, the key difference from the

1-dimensional case is that the boundaries of the domain are higher dimensional facets

as opposed to line segments. To deal with this, the above procedure of replacing the

maximization or minimization over a domain with the maximizing or minimizing over

the local optima (using first order optimality condition for constrained optimization)

1Note that these logical operators can be directly implemented by off-the-shelf software such as

YALMIP [24]. If needed, they can also be converted to mixed-integer constraints.
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and its boundaries as in (2.11a), (2.11c), (2.11b) can be repeated to recursively reduce

the dimension of the boundaries by one until we obtain line segments. This procedure

may be tedious to implement for systems with high dimensions and domains with

many facets, hence, in practice, we may start with only constraints on the vertices

and iteratively add facets of the domain of interest when the resulting planes are

found to intersect them.

Although this MINLP-based approach is exact, as above-mentioned, this approach

may be tedious and moreover, a global optimum may not be found. Hence, the mesh-

based approach in the previous section is more appealing in general.
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Chapter 3

ACTIVE MODEL DISCRIMINATION

In this section, we extend and modify the optimization-based approach proposed

in [11] to solve the nonlinear active model discrimination problem with given uncer-

tain affine models from Chapter 2. This approach relies on formulating the problem

as a bi-level optimization problem which can be further converted to a single level

optimization problem using KKT conditions. The bi-level optimization can be then

represented as MILP’s for which off-the-shelf optimization softwares are readily avail-

able [15, 9]. For the sake of clarity, we will defer the definitions of certain matrices

in the following results to the appendix. Moreover, for brevity, the proofs of this

approach are omitted, as they follow similar steps to the proofs in [11].

Lemma 3 (Bi-level Optimization Formulation). Given a separability index ε, the

active model discrimination problem is equivalent (up to ε) to a bi-level optimization

problem with the following outer problem:

min
uT

J(uT ) (POuter)

s.t. QuuT ≤ qu, (3.1a)

∀ι ∈ Z+
I : δι∗(uT ) ≥ ε, (3.1b)

where δι∗(uT ) is the solution to the inner problem:

δι∗(uT ) = min
δι,xι

δι (PInner)

s.t. Rι
1x

ι ≤ rι1 + Sι1uT , (3.2a)

Rι
2x

ι ≤ 1δι + rι2 + Sι2uT , (3.2b)

H ι
xx̄

ι ≤ hιx. (3.2c)
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Theorem 3 ( Discriminating Input Design as an MILP ). Given a separability index

ε, the active model discrimination problem (Problem 1.??) is equivalent (up to ε) to

the following mixed-integer optimization problem:

min
uT ,δι,,x̄ι,µ

ι
1,,µ

ι
2,µ

ι
3

J(uT ) (PDID)

s.t. Q̄uuT ≤ q̄u,

∀ι ∈ Z+
I : δι(uT ) ≥ ε,

∀ι ∈ Z+
I : 0 =

∑i=κ
i=1 µ

ι
1,iH

ι
x̄(i,m) +

∑j=ξ
j=1 µ

ι
2,jR

ι
1(j,m)

+
∑k=ρ

k=1 µ
ι
3,kR

ι
2(k,m), ∀m = 1, · · · , η,

0 = 1− µι3T1,

H̃ι
x̄,ix̄

ι − hιx̄,i ≤ 0,∀i = 1, . . . κ,

R̃ι1,j x̄
ι − rι1,j − Sι1,juT ≤ 0, ∀j = 1, . . . ξ,

R̃ι2,kx̄
ι − δι − rι2,k − Sι2,kuT ≤ 0,∀k = 1, . . . ρ,

µι1,i ≥ 0, ∀i = 1, . . . κ,

µι2,j ≥ 0, ∀j = 1, . . . ξ,

µι3,k ≥ 0, ∀k = 1, . . . ρ,

∀ι ∈ Z+
I ,∀i ∈ Z+

κ : SOS-1 : {µι1,i, H̃ι
x̄,ix̄

ι − hιx̄,i},

∀ι ∈ Z+
I , ∀j ∈ Z+

ξ : SOS-1 : {µι2,j , R̃ι1,j x̄ι − rι1,j − S̃ι1,juT },

∀ι ∈ Z+
I ,∀j ∈ Zρρ : SOS-1 : {µι3,k, R̃ι2,kx̄ι − δι − rι2,k − S̃ι2,kuT },

where µι1,i, µ
ι
2,j and µι3,j are dual variables, while H̃ ι

x̄,i is the i-th row of H ι
x̄, R̃ι

1,j and

S̃ι1,j are the j-th row of Rι
1 and Sι1, respectively, R̃ι

1,k and S̃ι2,k are the k-th row of Rι
2

and Sι2, respectively, η = IT (n + md + mw + mv) is the number of columns of H ι
x,

κ = 2IT (c0 + cd + cw + cv) is the number of rows of H ι
x, ξ = 2IT (cx + cy) is the

number of rows of Rι
1 and ρ = 2ITp is the number of rows of Rι

2.
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Chapter 4

SIMULATION EXAMPLES—APPLICATION TO INTENTION

IDENTIFICATION

In this section, we first compare the performance of our mesh-based affine ab-

straction approach with the state-of-the-art approach in [1]. Then, we apply both

proposed affine abstraction approaches as well as the proposed active model discrim-

ination technique to the problem of intention identification of other vehicles in a

highway lane changing scenario.

In addition, we will investigate the effects of the choices of various parameters on

the proposed mesh-based affine abstraction algorithm. In particular, we consider the

impacts of the desired accuracy εf and approximation error bound σ in Section and

the resolution vector r All the examples are implemented in MATLAB on a 2.9 GHz

Intel Core i5 CPU.

4.1 One-Dimensional Affine Abstraction Example (f(x, y) = x cos y)

In order to compare the effectiveness of our mesh-based affine abstraction approach

with that in [1], we begin by applying our algorithm to the same one-dimensional

nonlinear function f(x, y) = x cos y, on the interval [−2, 2]×[0, 2π]. Since this function

is infinitely differentiable, all approximation error bounds σ from Lemma 2 apply

and these bounds are used to obtain Table 4.1 for three different desired accuracies,

εf ∈ {0.05, 0.1, 0.2}. The resulting number of subregions serve as a measure for

quality of the abstraction procedure because a better approximation would naturally

lead to fewer subregions that are required for obtaining a given desired accuracy εf

(cf. Figure 4.4).
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Table 4.1: Results of affine abstraction for the nonlinear function x cos y for varying
desired accuracies εf and varying approximation error bounds σ (shown for the entire
domain) corresponding to different degrees of smoothness.

Desired Accuracy, εf 0.2 0.1 0.05

(i) C0 function

(σ = 1.351)

No. of Subregions 784 1024 4096

CPU Time (s) 169.97 212.48 765.22

(ii) Lipschitz function

(σ = 0.676)

No. of Subregions 256 976 3376

CPU Time (s) 55.81 213.15 674.49

(iii) C1 function

(σ = 0.478)

No. of Subregions 232 688 1024

CPU Time (s) 50.84 149.83 212.89

(iv) C2 function

(σ = 0.228)

No. of Subregions 64 232 256

CPU Time (s) 14.22 50.77 56.83

[1]1 Lipschitz function

(σ = 1.170)

No. of Subregions 256 1024 4096

Comp. Time (s) 57.18 214.40 786.88

Table 4.1 demonstrates that our proposed abstraction algorithm outperforms the

approach in [1] because of the tighter bounds σ that we can obtain, with the exception

of the case when we only assume continuity but not differentiability (i.e., x cos y is a

C0 function). Moreover, the computation (CPU) time is proportional to the resulting

number of subregions.

As above-mentioned, the choice of desired accuracy εf impacts on the number of

subregions, where a larger εf leads to fewer subregions, as shown in Figure 4.1. On

the other hand, the choice of approximation error bound also impacts the number of

subregions, where a tighter bound leads to less subregions, as illustrated in Figure

4.2.
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Figure 4.1: Affine abstraction of x cos y using an approximation error bound σ =
0.228 and desired accuracies, εf = 1 (left) and εf = 0.05 (right), resulting in 16 and
256 subregions.

Figure 4.2: Affine abstraction of x cos y using a desired accuracy εf = 0.4 and
approximation error bounds σ = 1.170 (left, [1]) and σ = 0.228 (right); zoomed in
[−2, 0]× [0, π] with added emphasis (colored) on different subregions.

4.2 Application Example: Active Intention Identification in Lane Change Scenario

In this example, we apply the active model discrimination approach proposed in

the previous sections to design a separating control input that, in conjunction with

a modified model invalidation algorithm (e.g., [17, 21, 20]), can be used for active

intention identification in a highway lane change scenario (cf. Figure 4.3).

The dynamics of the ego vehicle (blue) is of the Dubins car [12] with acceleration
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Figure 4.3: Illustration of active intention identification, where separating inputs
help to distinguish Inattentive, Cautious and Malicious intentions [11].

input:

ẋe = ve cosφe, ẏe = ve sinφe, v̇e = u1 + w1, φ̇e = u2 + w2, (4.1)

while the other car dynamics (red) is described by:

ẋo = vo, v̇o = di + w3,

where xe and ye are the longitudinal and lateral coordinates of the ego car, ve is its

speed and φe is its heading angle, while xo is the longitudinal coordinate of the other

car with its speed given by vo (no lateral movement), with process noise signals wj, j ∈

{1, 2, 3}. u1 ∈ Ua , [−7.848, 3.968] and u2 ∈ Us , [−0.44, 0.44] are the acceleration

and steering inputs of the ego car, whereas di is the (uncontrolled) acceleration input

of the other car for each intention i ∈ {I, C,M}, corresponding to an Inattentive,

Cautious or Malicious driver.

The Inattentive driver is unaware of the ego car and tries to maintain his speed

using an acceleration input which lies in a small range dI ∈ DI , [−0.392, 0.198].

On the other hand, the Cautious driver tends to yield the lane to the ego car

with the input equal to dC , −Kd,C(ve − vo) + Lp,Cφe + Ld,C φ̇e + d̃C , where φ̇e =

u2 + w2, Kd,C = 1, Lp,C = 12 and Ld,C = 14 are PD controller parameters and
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the input uncertainty is d̃C ∈ DC = DI . Finally, the Malicious driver does not

want to yield the lane and attempts to cause a collision with input equal to dM ,

Kd,M(ve−vo)−Lp,Mφe−Ld,M φ̇e+ d̃M(k), if provoked, where φ̇e = u2 +w2, Kd,C = 0.9,

Lp,C = 12 and Ld,C = 14 are PD controller parameters and the input uncertainty

satisfies d̃M ∈ DM = DI .

Without loss of generality, we assume that the initial position and heading angle

of the ego car are 0, while the initial velocities match typical speed limits of the

highway. Moreover, both cars are close to the center of their lanes that are 3.2 m

wide. Thus, the initial conditions are:

ve(0) ∈ [24, 26]m
s
, ye(0) ∈ [1.5, 1.7]m,

vo(0) ∈ [24, 26]m
s
, xo(0) ∈ [10, 12]m.

Further, the velocity of the ego vehicle is constrained to be between [20, 30]m
s

at all

times (in order to obey the speed limit of a highway), its heading angle is between

[0, 0.44]rad and its lateral position is constrained between [0.3, 2.5]m. Process and

measurement noise signals are bounded with a range of [−0.01, 0.01] and the separa-

bility threshold is set to ε = 0.5m
s

. Moreover, we assume the extreme scenario where

only noisy observation of other car’s velocity is observed z = vo + v.

4.2.1 Affine Abstraction fo Dubins Dynamics

The Dubins vehicle and intention models above are nonlinear. Hence, we resort

to the approach in Chapter 2 to obtain affine abstractions of the models. Since the

nonlinearity only affects the speed ve and the heading angle φe, we first define a

suitable domain that is appropriate for the lane changing scenario. Specifically, we

consider the speed of the ego car to be between 20 m/s to 30 m/s (72 to 108 km/h)

and a heading angle range of −25◦ to 25◦ ([−0.44, 0.44]rad).
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Figure 4.4: Affine abstraction/over-approximation of Dubins vehicle dynamics such
that the true nonlinear system behavior is contained/enveloped by the abstraction.

MINLP-Based Affine Abstraction

Using the above domain, we can obtain an affine abstraction for the reduced 2-

dimensional system in (5.1) with λ1 = 1000, λ2 = λ3 = 0 and∞-norms, as illustrated

by Figure 4.4, and using the compact interval matrix representation, the abstracted

open-loop model is given by:

A = [A,A]

=



0 0 [0.9947, 0.9956] 2.3821 0 0

0 0 [−0.1028,−0.0928] [23.0325, 25.2673] 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0


,
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B=Bw =B=



0 0 0

0 0 0

1 0 0

0 1 0

0 0 0

0 0 1


, F = [f, f ] =



[−3.7471, 0.2859]

[0.4413, 4.4754]

0

0

0

0


.

Mesh-Based Affine Abstraction

As in the mixed-integer nonlinear optimization (MINLP) approach above, we con-

sider only one region (i.e., without subdividing into subregions) with the speed be-

tween 20m/s and 30m/s (72 to 108 km/h) and the heading angle between −25◦ to

25◦ ([−0.44, 0.44] rad). Moreover, we consider an objective function that minimizes

γA‖A− A‖∞ + γh‖h− h‖∞, where γA and γh are chosen as 0.5 and 5, respectively.

For very small resolution r, e.g., r = 25, the mesh-based approach performed

worse than the MINLP approach (independent of resolution) in terms of the obtained

optimal value, however the optimal value decreases rapidly as the resolution is in-

creased, as shown in Figure 4.5. On the other hand, the computation (CPU) time

of the mesh-based approach increases with increasing resolution but is still generally

faster than the MINLP approach up until the resolution of over r = 3000.
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Figure 4.5: Decreasing optimal value (left) and increasing computation (CPU) time
(right) as the resolution r is increased for the mesh-based affine abstraction approach,
in comparison with the values obtained from the MINLP-based approach.

Similarly, we can obtain the abstracted open-loop model as:

A = [A,A]

=



0 0 [0.90474, 1] [0,−0.07512] 0 0

0 0 [−0.085188, 0.085188] 23.2331 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0


,

B=Bw =B=



0 0 0

0 0 0

1 0 0

0 1 0

0 0 0

0 0 1


, F = [f, f ] =



[0.000233309, 0.00023858]

0

0

0

0

0


.

4.2.2 Active Nonlinear Model Discrimination

Combining the abstracted model with the intention models and considering a

time-discretization with sampling time δt = 0.3 s, we obtain the following closed-loop

31



intention models:

Inattentive Driver (i = I):

AI = I + δtA, AI = I + δtA,

BI = BI = Bw,I = Bw,I = δtB,

CI =

[
0 0 0 0 0 1

]
, DI = 0, Dv,I = 1,

f
I

= δtf , f I = δtf .

Cautious Driver (i = C):

ÃC =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 −Kd,C Ld,C 0 Kd,C


, B̃C =



0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 Lp,C 0


,

AC = I + δt(A+ ÃC), AC = I + δt(A+ ÃC),

BC = BC = Bw,C = Bw,C = δt(B + B̃C),

CC = CI , DC = 0, Dv,C = 1,

f
C

= δtf , fC = δtf .
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Malicious Driver (i = M):

ÃM =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 −Kd,M Ld,M 0 Kd,M


, B̃M =



0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 Lp,M 0


,

AM = I + δt(A− ÃM), AM = I + δt(A− ÃM),

BM = BM = Bw,M = Bw,M = δt(B − B̃M),

CM = CI , DM = 0, Dv,M = 1,

f
M

= δtf , fM = δtf .

Next, we apply the active model discrimination approach we developed in Chapter

3 to the above uncertain affine models for the three intentions of the other driver in a

highway lane changing scenario. Figure 4.6 shows the active inputs of the ego car to

discern the other car’s intention based on its response when using various objective

functions when using MINLP-based approach. When comparing the solutions with

different norms as the objective functions, we observe that ‖u‖1 reduces the sum

of absolute values, thus keeping all the data points as close to zero as possible, ‖u‖2

minimizes energy and may be desirable to reduce fuel consumption, and ‖u‖∞ ensures

comfort by minimizing the maximum absolute input values.

Moreover, in all three solutions, the ego car accelerates and turns towards the

other car’s lane, and then either maintains its speed or decelerates while re-aligning

to its lane, although now laterally shifted toward the other car’s lane. Throughout the

maneuver, the inattentive car would coast with small accelerations, the cautious car

would slow down when it observes the ego car turning to its lane and the malicious car

would try and match the ego car’s position and cause a collision. The obtained optimal
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separating input is then applied to the ego vehicle in real-time. After measurements

are recorded for T = 3, the passive model discrimination approach based on model

invalidation of each intention model (e.g., [17, 20]) can be applied to identify the

intention of the other vehicle since the observed dynamics of the other car will be

consistent with only one of the three intention models by design (see above definition

of separating input).

Figure 4.6: Effect of different choices of objective functions on the resulting sepa-
rating inputs.

In addition, we compare the active model discrimination solutions when using the

MINLP- and mesh-based affine abstraction approaches. Table 4.2 shows that the

optimal values ({1, 2,∞}-norms of the excitation input uT ) that are obtained for the

active model discrimination problem based on mesh-based affine abstraction are lower

than when the MINLP-based abstraction is used. However, this improvement comes

at the cost of higher computation times.
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Table 4.2: Optimal values and computation (CPU) times for active model dis-
crimination when using affine abstractions of Dubins dynamics from MINLP- and
mesh-based approaches.

‖uT‖1 ‖uT‖∞ ‖uT‖2

MINLP-based [35]
Optimal Value 1.0819 0.4930 0.4171

CPU Time (s) 10.2590 8.6219 277.7508

Mesh-based

(r = 3500)

Optimal Value 0.4341 0.2937 0.1746

CPU Time (s) 9.4357 27.4894 1600.5861
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Chapter 5

CONCLUSION AND FUTURE WORK

This work considered the novel design of separating input signals in order to

discriminate among a finite number of uncertain nonlinear models, using a two-step

approach. First, we developed two methods to over-approximate nonlinear dynamics.

In the first method, we use an MINLP-based approach and in the second method, we

define a mesh on the function domain of interest and use the properties of the function

and to determine bounds on the function interpolation in each mesh element, thus

over-approximating the nonlinear function.Then, we proposed one of the first active

model discrimination algorithms for uncertain affine models, which includes the affine

abstraction, hence, the nonlinear models. Finally, we demonstrated our approach

on an example of intent estimation/identification in a lane changing scenario on a

highway.

We also extend the mesh based abstraction method to find a piecewise affine

abstraction. We divide the domain of interest into smaller subregions that form a

cover of the domain with a desired approximation accuracy for each suberegion. On

each subregion, the nonlinear dynamics is conservatively approximated by a pair of

piecewise affine functions, which brackets the original nonlinear dynamics. Our novel

analysis allows for the use of tighter interpolation bounds, thus the proposed abstrac-

tion method achieves better time efficiency and requires less subregions for the same

desired approximation accuracy when compared to existing approaches. Our method

also applies to nonlinear functions with different degree of smoothness. We demon-

strated the advantages of our approach in simulation and illustrated its applicability

for the problem of active model discrimination. Future works will explore partition-
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ing the domain of interest into subregions with a non-uniform, non-rectangular mesh,

e.g., simplicial mesh, with the objective of improving the approximation quality and

accuracy.
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APPENDIX

Time-Concatenated Matrices and Vectors

Mi =



Ai −I 0 0 · · · 0
−Ai I 0 0 · · · 0

0 Ai −I 0 · · · 0
0 −Ai I 0 · · · 0
...

...
...

...
. . .

...
0 0 · · · · · · Ai −I
0 0 · · · · · · −Ai I


, Fi =



fi
−fi
fi
−fi

...
fi
−fi


,

Ei = diag
T
{Ci}, Gi = vec

T
{gi}.

For ? = {d, w, u} :

Γ?,i =



B?,i 0 0 · · · 0

−B?,i 0 0 · · · 0
0 B?,i 0 · · · 0

0 −B?,i 0 · · · 0
...

...
...

. . .
...

0 0 · · · · · · B?,i

0 0 · · · · · · −B?,i


, F?,i = diag

T
{D?,i}.

Pair-Concatenated Matrices and Vectors

M ι = diag
i,j
{Mi},Γιu = vec

i,j
{Γu,i},Γιd = diag

i,j
{Γd,i},

Γιw = diag
i,j
{Γw,i}, F ι

T = vec
i,j
{Fi}, Eι = diag

i,j
{Ei},

F ι
u = vec

i,j
{Fu,i}, F ι

d = diag
i,j
{Fd,i},

F ι
v = diag

i,j
{Fv,i}, Gι = vec

i,j
{Gi}.
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Matrices and Vectors in Theorem 3

Rι
1 =

[
Mi 0 Γd,i 0 Γw,i 0 0 0
0 Mj 0 Γd,j 0 Γw,j 0 0

]
,

rι1 =

[
−Fi
−Fj

]
, Sι1 =

[
−Γu,i
−Γu,j

]
,

Rι
2 =

[
Ei −Ej Fd,i −Fd,j 0 0 Fv,i −Fv,i
−Ei Ej −Fd,i Fd,j 0 0 −Fv,i Fv,i

]
,

rι2 =

[
Gj −Gi

Gi −Gj

]
, Sι2 =

[
Fu,j − Fu,i
Fu,i − Fu,j

]
.
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