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ABSTRACT  
   

Bicycle sharing systems (BSS) operate on five continents, and they change 

quickly with technological innovations. The newest “dockless” systems eliminate both 

docks and stations, and have become popular in China since their launch in 2016. The 

rapid increase in dockless system use has exposed its drawbacks. Without the order 

imposed by docks and stations, bike parking has become problematic. In the areas of 

densest use, the central business districts of large cities, dockless systems have resulted in 

chaotic piling of bikes and need for frequent rebalancing of bikes to other locations. In 

low-density zones, on the other hand, it may be difficult for customers to find a bike, and 

bikes may go unused for long periods. Using big data from the Mobike BSS in Beijing, I 

analyzed the relationship between building density and the efficiency of dockless BSS. 

Density is negatively correlated with bicycle idle time, and positively correlated with 

rebalancing. Understanding the effects of density on BSS efficiency can help BSS 

operators and municipalities improve the operating efficiency of BSS, increase regional 

cycling volume, and solve the bicycle rebalancing problem in dockless systems. It can 

also be useful to cities considering what kind of BSS to adopt. 
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CHAPTER 1 

INTRODUCTION  

Over the past decades, bike sharing systems (BSS) have expanded rapidly all over 

the world. Attributed to the creation of new technologies, the systems are innovating 

continuously. The newest type of “dockless” bike sharing system, which eliminates docks 

and stations, has become popular in China since early 2016.  

As of now, the BSS, born in 1965 in Europe, has been developed for three 

generations. These include the first generation, called white bikes (or free bikes); the 

second generation of coin-deposit systems; and the third generation, or information 

technology (IT) based systems. These three generations are collectively referred to as 

docked systems, which need several fixed stations with docks in each station used to 

store bicycles and finish rent and return operations. The dockless system, also considered 

as the fourth-generation system, based on mobile app and GPS, which completely 

eliminates stations and docks. Passengers can easily pick up and drop off bikes anywhere 

using their cell phone. 

The rapid increase in use of this successful system has exposed its drawbacks. 

Without the regulation of docks and stations used in regular public bike systems, bike 

parking has become a major problem, and in some urban hot spots, like the Central 

Business District (CBD) and tourist sites, it has led to a chaos, especially during rush 

hour (Figure 1).  

Cities and towns that want to improve their transportation systems with bike sharing 

can learn much from the results of BSS implementation elsewhere. One of the problems 

they will need to deal with if they choose a dockless systems is chaotic parking. Here I 
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argue that building density is one of the most important factors influencing the efficiency 

of dockless BSS. 

 

 

Figure 1.  Chaotic parking problem of dockless systems 

Source: http://news.hexun.com 

 

China first innovated the dockless system at the end of 2015, and most of users 

worldwide are still found in China. Dockless trip data are not open access. Literature 

about these systems are hard to find. Because of the lack of data, the only research about 

this dockless systems was done by one of the bike sharing operation companies in 

collaboration with Tsinghua University Urban Planning Institute (Sharing Bicycles and 
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Urban Development White Papers 2017). This white paper mainly discusses the trip 

characteristic and riders’ behavior based on the data from all over China. It shows that the 

modal share of dockless bike systems have reached 6.8% of all trips, while traditional 

bike trips account for only 4.8%. However, if we have a look at dock system, a traditional 

type system which was first operated in Denmark in 1991 (DeMaio, 2009), with docks 

and stations, there is a larger literature. Generally, these studies can be divided into three 

perspectives of actions for improving bicycle-sharing systems: infrastructure planning 

and utilization; measures for integrating bicycles with public transit; and resolutions for 

rebalancing problem (Fishman, Washington, & Haworth, 2013). 

For dock station infrastructure planning, García-Palomares et al. (2012) applied a 

GIS-based location-allocation model to optimize bike-sharing stations in central Madrid, 

and tested two solutions in this model: minimizing impedance (minimizes the distance 

between supply and demand) and maximizing coverage (the stations are concentrated in 

the zones with greatest potential demand). The empirical study shows that the maximize-

coverage solution is more efficient in Madrid because it maximizes the potential demand 

covered by the stations and the minimize-impedance solution is more advantageous in 

terms of spatial equity because it generates a more uniform coverage. Some research 

shows differences in the usage rate of bike share programs globally. Usage rates vary 

from around zero to eight trips per bicycle per day (Fishman et al., 2013). In addition to 

the spatial differences, the usage rate also varies over time and purpose of trip. 

Randriamanamihaga, Côme, Oukhellou, & Govaert, (2014) applied Poisson mixture 

models on two months of trips data recorded on the Vélib' Bike-Sharing System of Paris 

and found that the usage of the system is mostly governed by the weekday/weekend 
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distinction, which clearly differentiates between utilitarian and recreational usage. 

Faghih-Imani et al. (2014) did a comprehensive study on exploring the factors affecting 

bicycle-sharing flows and usage based on the data obtained from a major bicycle-sharing 

system (BIXI) in Montreal. They examined the influence of meteorological data, 

temporal characteristics, bicycle infrastructure, land use and built environment attributes 

on arrival and departure flows at the station level using a multilevel approach to statistical 

modeling. As a result, they found that adding additional stations (either by relocating 

large stations to smaller stations with lower capacity in multiple locations or adding new 

bicycle stations) is more beneficial in terms of arrival, departure flows and usage rate 

compared to adding capacity to existing stations. This research also found that population 

density of a station’s transport analysis zone (TAZ) positively affects the bicycle flows.  

Integrating bicycle-sharing with public transit is also a meaningful and practical 

research area. In most scenarios, cycling is not the only transportation mode for the whole 

trip: rather it is integrated with other modes, such as metro and bus, and affected by them. 

BSSs have frequently been cited as a way to solve the "last mile" problem and connect 

users to public transit networks. Fishman et al. (2013) identify two themes of the 

relationship between BSS and public transit: modal integration and modal substitution. 

The first focuses on the location of bikeshare infrastructure near transit stations so that 

passengers can use bikeshare in conjunction with transit. The other refers to trips that 

shift from public transit to bikeshare. The modal integration of BSSs and public transit 

has been shown to strengthen the benefits of both modes in Netherlands (Brons, Givoni, 

& Rietveld, 2009), North America (Ma, Liu, & Erdoğan, 2015), Australia (Pucher & 

Buehler, 2012) and China (Pan, Shen, & Xue, 2010). In New York City, BSS stations 
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that are located near subway stations, particularly stations with high monthly boardings, 

showed higher bikeshare usage (Noland et al., 2016). In China, a study on the different 

rider group of BSS in five cities shows that commuters using them as a supplementary 

form of travel for the first/mile of their journey to and from work (Zhang, Zhang, Duan, 

& Bryde, 2015). Jäppinen et al. (2013) modeled the travel times between the population 

and 16 important destinations in the central Helsinki by public transportation alone 

compared with public transportation extended with shared bikes. The result is that a 

large-scale bicycle sharing system could complement a traditional public transport system 

and thereby improve accessibility. Regarding modal substitution, the evidence from New 

York City shows that after separately controlling for bike lane infrastructure, almost 50% 

of trips now made by bikeshare were previously made by bus. The model without bike 

lanes suggests that approximately 70% of bikeshare members may be substituting 

bikeshare for bus use (Campbell & Brakewood, 2017). Coincidentally, another case study 

of a BSS in Shanghai showed that a large share of BSS users shift from walking and mass 

transit to use bike-sharing system for commuting and other daily activities (Zhu, Pang, 

Wang, & Timmermans, 2013). Another study of Washington DC and Minneapolis 

suggests that the denser the bikesharing network and the denser the urban form, the more 

bikeshare members substitute biking for public transit (Martin & Shaheen, 2014). 

However, Singleton and Clifton (2014) mentioned that the relationship between public 

transit and BSS can vary by time. In the short-run, BSS can be a substitute of public 

transit, which means passengers will shift to bike-sharing system from public transit. 

However, they could become complements in the long-term, in other words BSS and 
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public transit can work together, a public transit network and BSS network could impact 

future travel behavior. 

The final group of bike-sharing studies, the bicycle rebalancing problem (BRP) for 

dock systems, is also a popular research area. Most of these papers are talking about the 

design of solution algorithms (Erdoğan, Battarra, & Wolfler Calvo, 2015; Erdoğan, 

Laporte, & Wolfler Calvo, 2014). Some papers use empirical data. For example, 

Dell'Amico et al. (2014) use Mixed Integer Linear Programming and a Branch-and-Cut 

algorithm created several formulas to find out the solution of BRP in Reggio Emilia, Italy 

based on the net flow of bike in docked stations and population density of each stations 

(Dell'Amico, Hadjicostantinou, Iori, & Novellani, 2014). 

A few papers on dock systems discuss the issue of density of stations and of users. 

Liu, Jia, & Cheng (2012) explored the reason the Public Bicycle System (a docked 

system operated by city government of Beijing) suffered a decline after the 2008 

Olympic Games. One of the main reasons is inefficient distribution of bicycle stations, 

with too many stations and low utilization in low-density areas and too few stations in 

high-density areas. García-Palomares et al., (2012) analyzed where dock stations should 

be located using GIS based on population density and CBD areas. For instance, there 

should be several docked bike-sharing stations around a subway station in the CBD area, 

while in residential areas there should be more stations in high-density areas and fewer 

stations in low-density areas. However, their method assumed that people usually 

consider CBD areas as the end point of their trips from suburban residential areas. In 

other words, it focuses on certain kinds of commuting and shopping trips from residential 
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areas to CBDs, which ignores other kinds of bike-share trips and requires the analyst to 

specify CBD boundaries.  

Although there are no stations, the efficiency of dockless systems also vary spatially. 

Newspapers and other media outlets have highlighted the chaotic parking problem in high 

density areas (CBS8 News, March 20th). In addition, low population density areas often 

experience low usage rate per bike. Users may have to walk a long distance to access a 

bike, affecting service quality. Bikes left in low-density areas may go unused for long 

periods of time. On the positive side, dockless bicycle users can conveniently bike to 

their exact destination in low-density areas, rather than park the bike at a station, which 

may be far from their final destination. As dockless systems start to spread to more 

sprawling cities and to the suburbs of cities, density will become an increasingly 

important factor. For these reasons, density should be a key concept for understanding 

dockless bike-share systems, but there appear to have been no studies published on the 

effect of density of such systems. 
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CHAPTER 2 

PROBLEM STATEMENT 

This research investigated the relationship between building density and efficiency of 

dockless BSS and in this way to discover the impact of building density on bike use, so as 

to optimize regional cycling volume.   

The figure below is a conceptual model of this research and included all the 

hypothesis. The +/- sign on the arrow means positive/negative impact. The other 

(unmeasured) variables are not included in this study due to the lack of data. 

The hypothesis of this study also included in the conceptual model:  

1. Urban density can have a positive effect on BSS efficiency. As I mentioned before, 

low density area often has relatively low usage rate per bike while high density 

area has more daily activities, the efficiency in high density area should be higher. 

2. Metro stations can be a positive variable for the efficiency of BSS. One of the 

objectives of BSS is to integrate with mass transit and to solve last mile problem. 

The more metro station and rail lines in an area means it should have more flow of 

people and activities. In other word, this area is more attractive for people using 

BSS. 

3. Idle time and rebalancing are two indicators I use to reflect the BSS efficiency. Idle 

time is the time that the bike stays somewhere unused, in other word it can be 

treated as the waste time of BSS. Thus, the higher idle time means a lower 

efficiency of BSS system.  

4. As for the rebalancing, this process is done by operators and government, at least 

partly to reduce the idle time in this area. That means, the more rebalancing process, 
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the lower idle time and therefore improve the efficiency of BSS in that area. 

5. Also, I assumed the trip can have some impact on efficiency: Morning and evening 

peak can have positive effect, and midnight and daytime except rush hour can have 

a negative impact on the efficiency. In addition, the efficiency of BSS on weekends 

may be lower than weekdays. 

 

Figure 2. Conceptual model 
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CHAPTER 3 

METHODOLOGY 

Case Study: Mobike System in Beijing 

Beijing, China’s capital and second largest city, had a population of over 21.5 

million people in 2015. This study analyzed the bike-sharing trips in Beijing's central 

area, within the Fifth Ring Road (Figure 3(B)).  This area includes all of Xicheng, 

Dongcheng, Xuanwu, and Chongwen districts, and parts of Chaoyang, Haidian, and 

Fengtai districts. It covers approximately 775 square kilometers and accounts for 4.6% of 

the total area of Beijing (Figure 1(A)). The area was home to 10.5 million people in 2015, 

or 49% of Beijing's total population. This central area, with its very high population 

density, is a concentration of residences, employment, shopping, entertainment, culture, 

and political power.  

In 2017, after dockless BSSs had been operating in Beijing for a year, the mode share 

of total bicycle trips had increased significantly, from 5.5% to 11.6%, and the share of car 

trips had decreased from 29.8% to 26.6% (Sharing Bicycles and Urban Development 

White Papers 2017). 
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Figure 3(A). Administrate districts in Beijing 

Figure 3(B). Ring roads in Beijing 

Mobike is one of the biggest companies operating dockless bike-sharing systems in 

China, with a market share of about 50%. Mobike is the only company to install GPS 

trackers on their bicycles; the trackers provide useful, accurate trip data. Mobike began 

operating in Beijing on September 1, 2016, after launching its first operation in Shanghai 

in April of the same year. As of this writing, Mobike operates more than 700,000 bicycles 

in Beijing. 

 

Data 

To examine the relationship between urban density and the efficiency of dockless 

BSS in Beijing, I used data on building density, Mobike trips, and metro station locations. 

For the building density data, I used a CAD building map showing the number of 

floors in each building in downtown Beijing.  The map was purchased from AutoNavi 
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Software Co., Ltd. (amap.com), an online map company in China (Figure 4).  The reason 

why I use building density rather than population density is that building density 

represents both population density and the high density commercial and office area (e.g., 

CBD).  In contrast, population density can only reflect the density of residential area. As 

commuting trips plays an important role in BSS usage, residential density reflects only 

one end of the trip. But in addition, bike share can be used for shopping, restaurants, 

errands, school, entertainment, tourism, and other trip purposes, and may not have the 

riders home at either end of the trip. Therefore, the building density is more reasonable to 

applied in this study.  

 

Figure 4. Building block CAD map for downtown Beijing 

Data on bike-sharing trips in Beijing were provided by Mobike. This data included 

all 1,830,100 trips for one week, Wednesday May 10 to Tuesday May 16, 2017, made by 
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all of that week’s 349,600 Mobike users, on Mobike’s 485,500 bicycles. The data 

included trip start times, starting and end points (latitude and longitude), user ID, bicycle 

ID, and bike type. These data were missing an important field: trip end time. Therefore, I 

used the average biking speed in Beijing, as provided by Mobike, of 8.5km/h to estimate 

end times for the trips, using Manhattan distance. 

Some studies of BSS have used only one explanatory variable, (e.g., building 

density) and have lacked control variables (e.g., metro stations), which can result in 

omitted variable bias.  To avoid this problem, I included metro station data and start day 

and time for each trip as control variables in my analysis. Metro stations are relevant 

because one of the main purposes of bike-sharing is to solve the “last mile problem” in 

public transit (Martens, 2004). Metro-station location data were obtained from a Baidu 

Map (comparable to Google maps), and were transformed to WGS-1984 Coordinate 

System. 

 

Methods 

This study investigated the relationship between building density and efficiency of 

dockless BSS, using a big-data approach. It was first necessary to define efficiency for 

dockless BSS. Based on literature and the characteristics of dockless BSS, idle time and 

percentage of rebalanced trips were selected as indicators of efficiency. The raw data on 

the 18.3 million Mobike trips were processed using Pandas in the Python environment. 

Then, both statistical and spatial analyses were performed to determine the correlation 

between building density and the efficiency variables. Analyses were carried out using 

SPSS and ArcGIS. 



  14 

 

a. Data Processing 

1. Density Data 

I used two methods to present building density: Kernel Density Estimation (KDE) 

and 300m resolution grid cell. 

Kernel Density Estimation (KDE) techniques in geospatial analysis may be applied 

to point datasets with spatially extensive attributes (De Smith, Goodchild, & Longley, 

2007). The result of a KDE is usually a raster dataset (Longley et al., 2005) where each 

cell has a density value that is weighted according to distance from the starting features. 

Also, each point can have a “population” field to present its weight in the model. In this 

research, I used building volume (Floor Area * Number of Floor) as “population” field to 

weight each building point.  The bandwidth is an important parameter for KDE model. 

The higher bandwidth can make the model global and vice versa. In this study, I 

generated three KDE models with different bandwidths: 0.005, 0.01 and 0.02 decimal 

degree (Around 500m, 1km and 2km respectively). After comparing the three models, I 

chose the model with 0.01 bandwidth (Figure 5) as it balanced the bias and variance 

better than others. For the kernel of KDE model, I use Gaussian kernel, chose 0.0018 

decimal degree as cell size and use ArcMap to generate the KDE model. 
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Figure 5. KDE density distribution of urban area in Beijing, with 0.01 decimal degree 

bandwidth 

The KDE model can give each point a more precise density value without arbitrary 

boundaries, and I used this model to make a scatter map for each trip point and a 

histogram for net density change.  

For the 300m grid cell method, I used Floor Area Ratio (FAR) to present building 

density (Figure 6). FAR can be expressed as: 

FAR = Floor Area * Number of Floor/Area of the Plot. 

With this method, I was able to calculate the average value of a spatial region and 

also reduce the computation time. Most spatial analyses in this research are based on a 

300m grid-cell map. 

The selection of a resolution for the grid cell is a trade-off process between bias and 

variance. If the resolution is too low (e.g., 1,000m), it will lead to a large bias in the local 
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building density estimation, which produces an inaccurate result. If the resolution is too 

high (e.g., 50m), the number of data points for each cell used in estimation may become 

too low and create a large variance in the local building-density estimates. I chose 300m 

as the resolution level because it is a walkable distance.  Moreover, the density of 

buildings in a person’s immediate area can affect his or her feelings and behavior; for 

example, some people dislike, and prefer to avoid, crowded areas. The higher the 

building density, the more crowded an area is likely to be. 

 

Figure 6. 300m resolution grid-cell floor ratio area (FAR) map of downtown Beijing 

Made by author, Data Source: AutoNavi Software Co., Ltd. (amap.com)  

 

2. Trip Data 

I grouped the bike-trip data by bike id, and then calculated the Manhattan distance 

for each trip to estimate actual biking distance, since Beijing’s street network is grid-like. 
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I then applied average bike speed in Beijing (8.5 km/h) to estimate trip end time for each 

trip. I calculated the time gap (idle time) between every two adjacent trips. Next, I 

determined whether the bike has been rebalanced; in other words, each trip was classified 

by its rebalanced status, in one of three classes: “Rebalanced”, “Non-rebalanced,” and 

“No Previous Record” (see Figure 8 for class parameters).  I defined a trip with a 

Manhattan distance of less than 100 m between the previous ending point and the next 

starting point as non-rebalanced. Percentage of rebalanced trips was calculated based on 

total trips made on the same bicycle in a 300m grid cell. 

Trips in the “non-rebalanced” class means these trips didn't experience a rebalance 

process after the end of the previous trip and before the start of next trip. In other words, 

the end location of this trip is (roughly) the same as the start point of next trip using the 

same bike. Therefore, the time gap between the end time of first trip and start time of 

next trip is exactly the idle time of this bike between these two trips at this location.  

In contrast,” trips in the class “rebalanced” means the bike experienced a manual 

rebalancing process after the end of trip and before the start of next trip. This rebalancing 

process can be conducted by the BSS operator or government by truck (Figure 7). Under 

perfect conditions (urban activities are completely evenly distributed), the manual 

rebalancing is not necessary for BSS system, the bike can be rebalanced automatically be 

passengers themselves. However, in fact, there is a lot of unevenly distribution in the 

urban area, such as building density, land use type, and metro stations, that leads to the 

necessity of rebalancing. For rebalanced trips, it is impossible to calculate the amount of 

time the bike was idle at that location before being checked out by a customer, because 
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the time gap between the end time of first trip and start time of next trip included the time 

the bike was idle at a different location plus the time required for rebalancing. 

 

Figure 7. A photograph of rebalancing process 
Source: www.theatlantic.com  

The remaining class “no previous record” is for the first trip of each bike recorded in 

the dataset. For these trips, I cannot calculate the idle time because I cannot get the end 

time from the previous trip (they don't have a previous trip). 

Overall, I can use the trip in the first class (“Non-Rebalanced”) to do analysis of idle 

time, and use second class (“Rebalanced”) to do analysis for rebalancing.  
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Figure 8. Three classes based on rebalance status 

Note: S1= Start Point of Trip 1, E1= End Point of Trip 1. 

 For the idle time analysis, the density of each trip is based on start points. That’s 

where the bike sat idle before being used. For rebalancing analysis, the density at both 

start points and end points are potentially of interest, but the density of a location that it is 

rebalanced from is what triggers the need to move the bike. In most cases, when a BSS 

company or government rebalances a dockless bike, it’s more likely to be because it was 

left in an undesirable location—either “in the way” or where there is an oversupply, 

rather than because the company needs to find bikes to move to undersupplied areas—

although the latter can also be an issue.  For this analysis, I use individual trip data and 
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KDE model to reflect building density. In this way, the analysis can be more accurate 

with no aggregation.  

The percentage of rebalancing should be another indicator for the efficiency of BSS, 

both docked and dockless. The higher percentage shows higher efficiency, because in 

general, rebalancing brings bikes from area with low demand to high demand, this allows 

bicycles to be fully utilized. The percentage of rebalancing can be expressed as: 

Percentage = (Number of rebalanced trip / Total trips in each grid cell) * 100% 

I use 300m grid cell for the rebalancing analysis because each cell can have multiple 

trips, and I can do the calculation for percentage of rebalancing for each grid cell. It’s 

easier to quantify the rebalancing than using individual trips with KDE map. 

In addition, the time when the trip is recorded is also included in this study. I use 23 

dummy variables (“hour1” to “hour23”) to reflect the hour and another 6 dummy 

variables (“Mon” to “Sun”) to reflect the day of the trip recorded. “Hour1” means the trip 

start time falls from 1:00 to 2:00 (in 24-hour), “Mon” means the trip start time recorded 

in Monday, respectively. For instance, if the trip start time is 3:20am at Monday, the 

variable “hour 3” and “Monday” of this trip are “1”, and other day and time variables are 

“0”.  The base case for hours is midnight to 1:00 am; no dummy variable is included for 

trips starting at this time. Similarly, the base case for day of week is Monday, there is no 

dummy variable for Wednesday. 

 For metro station data, which is based on 300m grid cell. for the cell has a metro 

station in it got a value 1, for those station which have more than one metro line (transfer 

station) got the value equals to the number of lines it has. I assume the passenger flow at 



  21 

the two-line transfer station is twice that of the station with only one line. The highest 

value for metro station field is 3.  

 

There were 7,282 300m walkable cells with building density in downtown 

Beijing. However, bike trips were not distributed evenly in these cells: the densest cell 

had 2683 trip records while some cells had none. Thus, I needed to cleanse the data 

before analysis to avoid inaccuracies caused by too few data samples. I used a minimum 

threshold of 10 trips per cell, and removed all cells with fewer than 10 trips.  

 

b. Statistical and Spatial Analyses  

To map the indicators of BSS efficiency, average idle time and percentage of 

rebalanced trips were both calculated for each 300m grid cell. A higher idle time 

indicates lower efficiency, and a higher percentage of rebalanced trips indicates lower 

efficiency because rebalances are assumed to be made from a low-demand area to higher-

demand area. I mapped each of the two indicators for each grid cell to put the results of 

data analysis into a spatial perspective. I also created scatter maps of the relationship 

between building density and average idle time, and building density and percentage of 

rebalanced trips.  

Next, I did regression analyses, with building density as the independent variable, 

and idle time and percentage of rebalanced trips as the dependent variables. In addition, 

metro-station location was used as another independent variable in a regression analysis 

to understand the effect of metro stations on BSS. Trip start time, which are reflected by 

day and hour variables, is also included in this study to find out the time effect on BSS 
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usage. The regressions were conducted with OLS (Ordinary Least Squares) to investigate 

the relationships among variables. 

 

𝑌" = 𝛼% + 𝛼'𝑋"' + 𝜀"

*

'+,

, 𝑖 = 1,… , 𝑛 

where: 

Yi = dependent variables: percentage of rebalanced trips or idle time 

Xik = independent variables: building density, metro line count, hour and day dummy 

variables  

𝛼, 𝜀 = constant 
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CHAPTER 4 

RESULTS 

Descriptive Findings 

Table 1 shows some features of riding behavior in the Mobike system in Beijing.  To 

get an idea of how trip behavior in the Mobike system compares to that in a docked 

system, I looked at data from a docked system in another nation’s capital, Capital Bike, in 

Washington, D.C.  Trip distance and trip duration for the Mobike system were relatively 

lower than those for the Capital Bike, where the mean trip duration is 900 seconds (15 

minutes), and mean trip distance is 2.9km. The main purpose of the Mobike system in 

Beijing is to cover short-distance trips to make connections with public transit.  

 

Table 1. Descriptive Statistics for Mobike Trip Dataset 

 Data count Min 25% Medium 75% Max Mean 
Std. 

Dev. 

Trip 

Distance 

(km) 

1,830,100 0.15 0.76 1.07 1.53 44.74 1.23 0.95 

Trip  

Duration  

(Second) 

1,830,100 65 324 453 647 18900 522 403 

Idle time 

(Second) 
183,484 -6,417* 987 5,076 21309 556,336 17,034 30,825 
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Rebalance 

Distance 

(km) 

1,210,673 0.15 1.22 2.9 5.96 8.75 4.38 4.56 

* For negative values in “idle time” field, because trip distance is estimated using 

Manhattan distance and the duration time is estimated using average speed in Beijing 

(8.5km/h), the estimated idle time may deviate from actual time. 

 

 

Figure 9. Distribution of each class of rebalance status (n=1,830,100 trips) 

The distribution of each class of rebalance status is shown in Figure 9. For total 

1,830,100 trips, 1,210,673 trips are rebalanced (66%), 435,943 trips have no previous 

66%

24%

10%

Classes of Rebalance Status

rebalanced 
no_previous_record 
non-rebalanced 
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record (24%) and 183,484 trips are non-rebalanced (10%). This result is somehow 

unexpected. The rebalanced trips account for a much larger proportion than I expected 

before. That means over half of trips had experienced a manual rebalance from the 

destination of last trip (e.g. moved by Mobike company from an area with low demand to 

another area with high demand). To further study the rebalanced trip, I calculated the net 

change of density (∆ Density) and made a histogram to present the result (Figure 10): 

∆ Density = Density rebalance end – Density rebalance start 

 

Figure 10. Histogram for the net change of density for rebalanced trips (n=1,210,673 

rebalanced trips) 

The result shows amazing symmetry and a normal distribution, which means there is 

no obvious direction of density change for rebalance process. Another finding from the 

histogram is a large part of trips has a relatively small net change before and after 
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rebalancing. That means the building density is not a significant factor during rebalance 

process. I sent an enquiry email for more detailed information about rebalance process to 

Mobike company but did not get any response yet. 

 

Relationship Between Density and Efficiency 

a. Relationship Between Building Density and Idle Time 

Using the 300m walkable cell to generate a map for spatial distribution of average 

idle time in downtown Beijing (Figure 11) The map shows a great spatial heterogeneity, 

the average idle time in south region is obvious higher than north region. Compare with 

the density map, the spatial distribution of average idle time is in general the opposite of 

density map: in the center city area, which has a high building density, bikes have a lower 

average idle time, and vice versa. This map result visual evidence for my hypothesis: 

high density area shows a higher efficiency of dockless BSS.  
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Figure 11. Map of average idle time distribution  

To further test my hypothesis and to find more specific relationship between building 

density and idle time, I did some statistical analysis: made a scatter plot between building 

density (Figure 9) and applied an OLS model. 

An OLS model has been applied to observe the detailed relationship between average 

idle time (dependent variable) and building density, metro station and start day and time 

(explanatory variables.)  

 

Table 2. Ordinary Least Squares Regression Model for Idle Time (n = 183,484 trips) 

Independent 

Variable 

Coefficients t-value VIF 

(Constant) 19483.497 14.327  
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Metro Station -1116.487*** -3.602 1.009 

Building Density -7.84E-07*** -50.294 1.013 

hour1 -314.846 -0.134 1.481 

hour2 4983.558* 1.803 1.308 

hour3 9024.481*** 2.941 1.236 

hour4 18974.668*** 7.53 1.394 

hour5 24628.007*** 15.526 3.495 

hour6 22267.77*** 15.839 10.994 

hour7 16186.336*** 11.852 27.276 

hour8 8131.439*** 5.96 28.595 

hour9 4555.157*** 3.3 17.556 

hour10 5366.81*** 3.867 14.824 

hour11 3558.237** 2.59 20.736 

hour12 361.056 0.264 24.28 

hour13 -190.342 -0.138 19.989 

hour14 1210.739 0.877 17.222 

hour15 1207.533 0.875 17.861 

hour16 1774.573 1.293 21.865 

hour17 2709.397** 1.987 30.074 

hour18 2768.249** 2.031 30.71 

hour19 1263.714 0.923 23.674 

hour20 850.373 0.617 18.314 
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hour21 569.385 0.41 15.019 

hour22 990.08 0.696 8.931 

hour23 1531.823 0.987 3.945 

Wed -8862.494*** -33.108 1.574 

Thu -2803.508*** -11.09 1.671 

Fri -2112.358*** -8.28 1.653 

Sat 2372.049*** 8.768 1.558 

Sun 2239.971*** 8.444 1.595 

Tue -658.446*** -2.657 1.711 

 

Note: Adjusted R2 = 0.074, VIF = variance inflation factor, DF (degrees of freedom) = 

31. ***, **, * denote significance at the 1%, 5%, and 10% levels, respectively. “hour1” 

means the trip start time during 1:00 to 2:00 (in 24-hour), “Mon” means the trip start time 

recorded in Monday, respectively. 

The OLS result has a relatively low R2 0.074 but the p value (Sig) of most 

explanatory variables are very low (0.000), which means that most explanatory variables 

show high significance. However, the lower R2 shows that there may be some other 

factors that can also impact idle time but were not included in this regression.  

The parameter estimates show the idle time has a negative correlation with both 

metro station and building density. Also, for time analysis, idle time can be obviously 

reduced in morning peak (from 6:00 to 10:00) and evening peak (17:00 to 19:00) is also 

showing significance (Figure 12). The model uses the midnight hour (trip during 0:00-

1:00) as the base time, and the result shows the idle time has an obvious increasing 
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during the time before morning peak (2:00 to 6:00). That is because the time period from 

midnight to morning peak has fewer urban activities compared to other times of day. In 

this way, the idle time can experience a significant accumulation and keep increasing 

until the morning peak. In addition, the time variable is based on trip start time, which 

means the idle time is measured from the previous trip. For example, a bike finished the 

first trip and was dropped off at midnight until the next trip of this bike that started in 6 

am, this six-hour-long idle time is applied to the second trip which is recorded in 6am 

(morning peak). This can explain why during the first two hours in morning peak (6 and 

7) the coefficient is still very high—because early in the morning, most bikes have sat 

idle overnight, or longer. 

For weekday analysis, day variables show high significance level, and weekends can 

have a significant positive impact on idle time (Figure 13). That means, the usage rate of 

BSS is lower in weekends than those in weekdays. Another finding is Wednesday has a 

very low (strongly negative relative to Monday) coefficient compare to other weekdays. 

This result is due to the dataset, which recorded the trip during the whole week from May 

10th, 2017 to May 16th, 2017. May 10th is Wednesday, so that many trips on this day 

have no idle time (“no previous record”), and I can only calculate idle time for those trips 

that had a previous trip recorded on the same day. In other word, the longest idle time in 

Wednesday’s data is entire day (24 hours), they don't have any idle time recorded that 

longer than one day otherwise it will be recorded to the next day. For example, if the first 

trip of a bike in this dataset is recorded ending at 1am on Wednesday, the idle time of this 

trip cannot be calculated, because there is no previous trip record for this bike. Then, the 

next trip started at 11pm (23:00), that means, the idle time of this bike on Wednesday is 
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22 hours. If the next trip is started at 1am the next day (Thursday), the idle time should be 

24 hours, but this idle time will be recorded on Thursday not Wednesday. 

 

Figure 12. Coefficient of idle time distribution for 24 hours (based on hour 0) 
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Figure 13. Coefficient of idle time distribution for seven days (based on Monday) 

 

b. Relationship Between Building Density and Percentage of Rebalancing 

 

Using 300m walkable grid cell to generate a map for spatial distribution of 

percentage of rebalancing in downtown Beijing (Figure 14). The average percentage for 

5715 grid cells is 65.1%. Compared with the density map, the spatial distribution of 

percentage of rebalancing is approximately following the density map, presenting a 

descending distribution from the center. This result shows a positive correlation between 

percentage of rebalancing and building density. 
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Figure 14. Map of spatial distribution of percentage of rebalancing 

An OLS model has been applied to observe the detailed relationship between 

percentage of Rebalancing (dependent variable) and building density, metro station 

(explanatory variables.) After eliminated the cells count less than 10 trip data, 5,715 cells 

remain. This time, the R2 improves a bit yet is still low: 0.069. However, similarly to the 

idle time regression, the explanatory variables are highly significant. The parameter 

estimates show rebalancing has a positive correlation with both metro station and 

building density. Also, low VIF (1.007) means there is little multicollinearity between 

variables. (Table 3) 

 

Table 3. Ordinary Least Squares Regression Model for Percentage of Rebalancing (n = 
5,715 300m grid cells with > 10 trips per cell) 
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Independent 

Variable 

Coefficients  

(t-value) 

VIF Adjust R2 DF 

Constant  0.623*** 

(335.723) 

- 0.069 2 

Building Density 

(FAR) 

0.020*** 

(19.809) 

1.007 

Number of Metro 

Station 

0.022*** 

(4.398) 

Note: VIF = variance inflation factor, DF = degrees of freedom. ***, **, * denote 

significance at the 1%, 5%, and 10% levels, respectively. 

 

Figure 15. Scatter plot for building density and percentage of rebalancing (n = 5,715 

300m grid cells with > 10 trips per cell) 
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The scatter plot between building density and percentage of rebalancing is shown in 

Figure 15. The scatter plot uses data in 5715 grid cells. A positive correlation can be 

found in the scatter plot, but there is also strong evidence of heteroscedasticity. 

As of now, the results are in line with my assumptions, the density has a positive 

impact on the efficiency of dockless BSS. However, the R2 are unexpectedly low. 

Relationship Between Idle Time and Percentage of Rebalancing 

Finally, I tried to find the connection between the idle time and percentage of 

rebalancing: applied a bivariate OLS model using average idle time as dependent variable 

and percentage of rebalancing as explanatory variable (Table 4.) I assuming that average 

idle time can experience a decrease during the increase of rebalancing. The results proved 

my hypothesis, the parameter estimates shows there is a significant negative correlation 

between idle time and percentage of rebalancing. However, the R2 is still low but better 

than before (0.137). 

Table 4. Bivariate OLS model for Percentage of Rebalancing and Average Idle Time (n 

= 5,715 300m grid cells with > 10 trips per cell) 

Variable Coefficients  

(t-value) 

VIF Adjust R2 DF 

Constant 62358.851*** 

(41.532) 

- 0.137 1 

Percentage of Rebalancing -68880.440*** 

(30.195) 

- 

Note: VIF = variance inflation factor, DF = degrees of freedom. ***, **, * denote 

significance at the 1%, 5%, and 10% levels, respectively. 
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CHAPTER 5 

DISCUSSION AND LIMITATIONS 

The relationship between efficiency and building density has been demonstrated 

from both statistical and spatial analysis: building density can have a positive effect on 

efficiency of dockless BSS. However, the low R2 means there should be many other 

factors can impact efficiency of dockless BSS system beyond building density, metro 

station and trip start time.  

Urban development differences can be an important factor. Compare distribution 

map of idle time and density can find a common phenomenon: North and South Beijing 

are very different. Actually, the urban development of Beijing does present a huge 

difference between North and South. All along, universities, financial and high-tech 

companies have been gathering in the north. This invigorated the northern part of the city. 

Zhongguancun, located between the North Fourth Ring and the North Fourth Ring Road, 

is the most concentrated area of intelligence in China. It has gathered many headquarters 

of high-tech companies and is known as China’s Silicon Valley. The neighboring 

Wudaokou is China’s financial center, which has gathered the headquarters of major 

banks in China. In contrast, most of the southern area is old city. It has remained the 

status quo for a long time and has developed slowly. Most areas are urban and rural areas 

and urban villages, with low-income residential area. Beijing South Railway Station is a 

large-scale railway hub. Its existence has also greatly limited the development of the 

southern urban area of Beijing. This shows that urban development level and land use can 

both have a great impact on the efficiency of dockless BSS. However, this study did not 
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include these variables into the analysis. This is most likely the main reason for the lower 

R2, which is also a limitation of this research. 

 As for the relationship between idle time and rebalancing, the result means a 

negative correlation between them. This result explains why there is a high portion of 

rebalanced bikes. From the operator's point of view, one of the Mobike's purposes of 

rebalancing the bicycle is to reduce idle time. If idle time is high, the company would be 

expected to rebalance those bikes to get them back into circulation. On the contrary, if 

rebalancing is high, it can reduce the idle time observed for the remaining bikes. There is 

circular reasoning involved and the direction of causation goes both directions. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORKS 

This research demonstrated the relationship between efficiency of dockless BSS and 

building density using a big data approach. Through this study, I found that the 

performance of dockless BSS in low-density areas is not ideal, most of them experienced 

a high idle time. Governments and operators need to develop special plans and policies 

for using dockless BSS in low-density areas, and operators also need to increase the 

frequency of rebalancing in low-density areas.  

Some specific suggestions based on the density:  

1. For high density area: provide more parking space for dockless bikes in the area 

with high demand (e.g., commercial center, metro station with high passenger). 

More parking space can help solve the chaotic parking problem, and reduce the 

idle time as well as the rebalancing percentage, in this way, reduce the cost of 

operation BSS. 

2. For low density area: It may help to create a different rate plan in low density area. 

The new plan should charge people more in low density area because under the 

same rebalance percentage, the rebalancing process cost more in low density area 

than high density area per bike. However, it is complicated because higher pricing 

will also discourage use of BSSs in low density area, and will increase the idle 

time. 

3. Launch incentives (e.g. reward program) to encourage people to park their bikes 

in designated locations or in clusters with other bikes. This can improve the idle 

time in low density area (there will be no bike scattered in remote areas, unused 
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for long periods of time). 

 

Using 300m walkable cells to do the spatial analysis provide a foundation for future 

research. Also using FAR as the index of building density make research results easier 

for the government to formulate policy services.  

Understanding the relationship between density and efficiency of dockless BSS can 

significantly improve the operating efficiency of BSSs, and increase regional cycling 

volume. The finding on the negative relationship between idle time and rebalancing also 

contribute valuable information to solve the BRP in dockless system in the future. In 

addition, finding the nexus between the system performance and building density can 

also help this new type system promote to other countries.  

For future work, I think one valuable research is to include land use in the analysis as 

mentioned above. More Points of Interest (POI, e.g., restaurant, hotel and bus station) 

other than metro station can be used to quantify land use data. Some POI with very low 

building density may have a high attraction for BSS usage (e.g. tourist sites, parks, zoos). 

Also, the traffic congestion and distribution of bicycle facilities (bike lane and parking 

space) can be considered in this research. 
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