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ABSTRACT 

One out of ten women has a difficult time getting or staying pregnant in the 

United States. Recent studies have identified aging as one of the key factors attributed to 

a decline in female reproductive health. Existing fertility diagnostic methods do not allow 

for the non-invasive monitoring of hormone levels across time.  In recent years, olfactory 

sensing has emerged as a promising diagnostic tool for its potential for real-time, non-

invasive monitoring.  This technology has been proven promising in the areas of 

oncology, diabetes, and neurological disorders.  Little work, however, has addressed the 

use of olfactory sensing with respect to female fertility.  In this work, we perform a study 

on ten healthy female subjects to determine the volatile signature in biological samples 

across 28 days, correlating to fertility hormones.  Volatile organic compounds (VOCs) 

present in the air above the biological sample, or headspace, were collected by solid 

phase microextraction (SPME), using a 50/30 µm divinylbenzene/carboxen/ 

polydimethylsiloxane (DVB/CAR/PDMS) coated fiber.  Samples were analyzed, using 

comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry 

(GC×GC-TOFMS). A regression model was used to identify key analytes, corresponding 

to the fertility hormones estrogen and progesterone. Results indicate shifts in volatile 

signatures in biological samples across the 28 days, relevant to hormonal changes.  

Further work includes evaluating metabolic changes in volatile hormone expression as an 

early indicator of declining fertility, so women may one day be able to monitor their 

reproductive health in real-time as they age. 
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CHAPTER 1 

INTRODUCTION/BACKGROUND LITERATURE 

In the United States, one out of ten women 1.6 million women (ages 15-44) has 

complications with fertility, affecting approximately 1.6 million individuals annually [1]. 

In 2012, the estimated market for individuals seeking fertility services reached $3.5 

billion [2]. Fertility, or the natural ability to reproduce, directly correlates to hormone 

production. The reproductive health of a woman is indicated by hormones such as 

estrogen, progesterone, anti-mullerian hormone (AMH), follicle stimulating hormone 

(FSH), and luteinizing hormone (LH) [3-5]. During a woman’s 28-day menstrual cycle, 

hormone levels naturally change. These hormone-related changes affect the release of an 

egg from an ovary, known as ovulation. During this process, fluctuations in hormone 

levels, which are indicative of ovulation, are present in metabolic shifts within biological 

fluids [6]. Current methods of testing ovulation include clinical and at-home diagnostics 

such as: blood tests, basal body temperature monitoring, and fertility kits [7-9], evaluated 

at a single time point. A woman’s reproductive health, however, changes with time [10]. 

These available methods lack the ability to quantify metabolic alterations in hormones 

across years. Understanding the long-term ovulatory and physiological health of a women 

can give insight into trends in reproductive health over time. Thus, a critical need exists 

to measure reproductive hormones and their corresponding metabolites in real-time 

across a woman’s reproductive years. 

Metabolic profiling of biological samples has recently shown promise of 

developing into an accurate and real-time monitoring technique to diagnose hormone-

related diseases, such as diabetes, cancer, and neurological disorders [11-15]. Hormones 
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are part of the reproductive metabolic pathway and are directly correlated to metabolites 

[16]. Metabolite evaluation in biological samples has therefore emerged as a promising 

way to indicate hormone levels in real-time due to being readily available in biological 

samples [16]. An example of this can be found in the hormone, estrogen, where 

metabolic by-products result when estrogen is broken down from the parent estrogens of 

estrone and estradiol. During this reaction, oxidation of estrone and estradiol occur at the 

C-2 or C-4 positions to produce catechol estrogen metabolites, which include 2-

hydroxyestrone, 2-hydroxyestradiol, and 4-hydroxyestrone [16]. Likewise, progesterone 

can be reduced to 5α-pregnan-3, 20-dione and 3α-hydroxy-5α-pregnan-20-one 

metabolites [17]. Specific volatiles released from these metabolites can be traced back to 

the parent hormones. Volatiles consist of low molecular weight compounds, which are 

usually less than 400 g/mol [18] and readily become vapors or gases at room temperature. 

These vapors, or volatile organic compounds (VOCs), can be collected in the headspace 

of, or air above, biological samples [19]. Current studies show VOCs eluded from within 

different biological samples, including blood, saliva, and urine [20-23]. In addition, 

VOCs have been studied across a variety of fields, including toxicology, oncology, and 

neurology [13-15], for applications in personalized diagnostics. Research utilizing VOCs 

to monitor reproductive hormones in real-time, however, is limited. Investigations have 

shown gas chromatography-mass spectrometry (GC-MS) to be a reliable method of 

detecting VOCs at physiological levels. With high specificity at lower limits of detection 

[24], GC-MS can distinguish different VOCs within complex biological samples. To gain 

even better resolution, two-dimensional gas chromatography-time-of-flight mass 

spectrometry (GC x GC-TOFMS) differentiates structurally similar compounds by 
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preventing peaks from co-eluding [25]. Furthermore, solid-phase microextraction 

(SPME) reduces interference from higher molecular weight compounds, therefore, 

enabling volatile binding between the molecular weights of 40-275, promoting a wider 

range of volatile collection [25]. Thus, GC x GC-TOFMS combined with SPME provides 

a simple and rapid extraction technique to collect VOCs, and delivers better 

reproducibility, detection, and separation of VOCs from complex biological sample 

matrices [25].  

In this study, we employed GC x GC-TOFMS with SPME to analyze the VOCs in 

the urine samples of ten healthy women across a 28-day cycle. The aim of this study was 

to evaluate metabolic shifts of VOCs as they relate to fertility hormones across a healthy 

woman’s menstrual cycle. Results indicate a significant shift in VOCs correlating to the 

estrogen hormone during ovulation. Furthermore, VOCs from the urine samples consist 

of different functional groups, including alcohols, aldehydes, amides, amines, aromatics, 

carboxylic acids, ethers, hydrocarbons, ketones, and thiols. Further studies will need to 

investigate the potential of metabolic changes in volatile hormone expression for use as 

an early indicator of declining fertility. Through this work, women may one day be able 

to monitor their reproductive health in real-time as they age.  
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CHAPTER 2 

METHODOLOGY 

2.1 Sample Collection and Preparation 

The sample collection protocol was approved by the Institutional Review Board at 

Arizona State University. Urine samples were obtained from ten healthy women of 

Asian, African, Caucasian, and Hispanic origin in the age group of 18-28 years (Table 1). 

Women included in this study were not taking any medication known to affect hormonal 

balance, including birth control. The urine samples were acquired daily in 20 mL glass 

vials, for 30 consecutive days. All sample collection was completed with a 1-month time 

frame. All samples were collected in the morning between 8 am and 12 pm. The subjects 

did not eat for 2 hours, prior to collection. A standard sterile collection procedure was 

followed [26]. Prior to collection, subjects used alcohol wipes to clean the area of 

collection. The samples were collected mid-stream during urination. Urine samples were 

capped and remained at 4°C for up to an hour. Within one hour of sample collection, the 

samples were aliquoted into 1.5mL cryogenic vials (VWR International, Radnor, PA) for 

storage in a -80°C freezer for one year, prior to testing.   

In preparation for sample testing, the 10-mL VOC-free vials and PTFE/silicone 

caps were baked at 100°C for 12 hours in an oven to reduce contamination and variation 

across the vials and caps (Supelco/Sigma-Aldrich, St. Louis, MO). One hour before 

testing, samples, vials, and caps were brought to room temperature. The samples were 

inverted to mix, and 1 mL of sample was transferred to vials and securely closed with a 

cap. The sample vials were placed into a chilled tray held at 4°C until tested. A Gerstel 

MultiPurpose Sampler (MPS; Gerstel, Mülheim an der Ruhr, Germany) was used for 
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sample preparation, transport, and extraction. Samples were incubated at 60°C with 

agitation at 250 rpm for 5 minutes. The volatile metabolites of urine were sampled from 

the headspace by SPME, using a 50/30 μm divinylbenzene/carboxen/ 

polydimethylsiloxane (DVB/CAR/PDMS; Supelco/Sigma-Aldrich) coated fiber. Prior to 

each sample extraction, fiber bake-out was performed for 10 min at 270°C. Sample 

extraction was performed at 60°C with agitation at 250 rpm for 60 min. Subsequently, the 

fiber was injected into the GC inlet for 5 min at 250°C. 

Table 1. Demographics of Subjects. The table shows the age, ethnicity, height, weight, 

and ovulation confirmation by ovulation kit of the 10 subjects. 

 
Subject 

No 
Age 

(years) Ethnicity Height Weight (lbs) 
Ovulation 

Confirmation 

1 24 Hispanic 5'4" 122 Yes 

2 21 Hispanic 5'3" 110 Yes 

3 19 Asian 5'6" 150 Yes 

4 21 
African 

American 5'1" 105 Yes 

5 20 Caucasian 5'5" 109 Yes 

6 24 Asian 5'9" 121 Yes 

7 19 Hispanic 5'0" 100 Yes 

8 18 Caucasian 5'8" 127 No 

9 18 Asian 5'4" 130 No 

10 27 Caucasian 5'5" 150 No 

 

 

2.2 Method Optimization 

Test conditions were optimized prior to running the study. Selection criteria was 

based on the maximum number of VOCs that could be collected. The optimal number of 

analytes collected by SPME were evaluated through sample volume and extraction time 

measurements. Sample volume was tested at 500 µL, 1 mL, 1.5 mL, and 2 mL and 

analyzed by GC x GC-TOFMS three times at each sample volume. The average number 



6 
 

of analytes, with less than 15% deviation, collected in the headspace across the three runs 

was 320 at 500 µL, 394 at 1 mL, 438 at 1.5 mL, and 470 at 2 mL. The sample volume of 

1 mL was selected to maximize the number of volatiles collected while keeping the 

sample volume consistent across runs, with a limited sample amount.  

Extraction time was tested at 30, 45, and 60 min, using 1mL urine samples. 

Preliminary studies were tested using a 65 µm CAR/PDMS fiber within a 10-mL 

headspace vial. Extraction was performed by SPME in the headspace and analyzed by 

GC x GC-TOFMS three times consecutively. The average number of analytes, with less 

than 10% deviation, collected across the three runs was 626 for 30 min, 689 for 45 min, 

and 819 for 60 min. The extraction time of 60 min was therefore selected to maximize the 

number of volatiles collected, and used in the final testing conditions, as indicated above. 

Furthermore, a 50/30 μm DVB/CAR/PDMS coated fiber was chosen due to the wide 

range (molecular weight of 40-275) of volatiles and semi-volatiles collected.  

Degradation of samples was tested by running 10 samples consecutively from one 

urine collection in a 4°C chilled tray. The signal-to-noise ratio of the compound 2-

heptanone across the 10 samples is shown in Figure 1 as an example compound that did 

not degrade over the 12.6 hours the 10 samples ran. In addition, no significant 

degradation was found in all the other compounds in the samples over time. 
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Figure 1. Urine Degradation Study. The analyte 2-heptanone is shown as an example 

compound, which did not degrade over 10 samples, as a result of the samples being in a 

4°C chilled tray.  

 

2.3 Instrumentation 

Calibration of the mass spectrometer was executed daily to maintain instrument 

performance, which included ion optic and source focusing, acquisition system 

adjustments, mass calibration, tune checks, and leak checks. All analyses of urine 

samples were performed by GC x GC-TOFMS [27]. The instrument was fitted with a 

two-dimensional column set, joined together by a press-fit connection. The first column 

consisted of an Rxi-624Sil MS (60 m x 250 µm x 1.4 µm [length x internal diameter x 

film thickness]; Restek, Bellefonte, PA). The second column consisted of a Stabilwax (1 

m x 250 µm x 0.5 µm; Restek). Each of the two columns were heated independently. The 

first column in the primary oven was heated with an initial temperature of 50°C, held for 

2 min. The oven was ramped at 5°C/min to 225°C and held for 2 min for temperature 
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stability. Subsequently, the oven was ramped at 30°C/min to 230°C and held for 30 min 

for post-column bake-out. The second column was heated with a +5°C offset relative to 

the primary oven. A quad-jet modulator was used with 2 s modulation periods (0.5 s hot, 

0.5 s cold pulses) and a +15°C offset relative to the secondary oven. The helium carrier 

gas flow rate was 2 mL/min. Mass spectra were acquired at 100 Hz over a range of m/z = 

35-550. Data acquisition was captured by ChromaTOF software, Version 4.60.8.0 (Leco 

Corp., St. Joseph, MI) [27]. A resulting chromatogram of one urine sample of a single 

subject on a single day is shown in Figure 2. 

 

Figure 2. Chromatogram of Urine Sample. The resulting chromatogram of a urine 

sample of one of the subjects is shown. The compound 4-heptanone has been identified as 

one of the compounds in the headspace of the urine sample. 

 

 

2.4 Data Alignment and Normalization 

A Kovats index (KI) standard mix of alkanes was used to identify retention times 

at the beginning, middle, and end of the GC x GC-TOFMS runs. KI is used to confirm 

compounds eluded at retention times within known values and can be used as a reference 
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from instrument to instrument as it is independent of the system [28]. Retention indexes 

were also compared to ensure that the equipment did not drift over time. Data processing 

and chromatographic alignment were completed using the Statistical Compare package of 

ChromaTOF software, Version 4.60.8.0. For a peak to be identified as the same 

compounds across chromatograms, both the retention times and the mass spectra had to 

meet minimum match criteria. The first-dimension retention time could not vary more 

than 2 s from chromatogram-to-chromatogram, and the second-dimension retention time 

could not vary more than 0.2 s from chromatogram-to-chromatogram. The mass spectrum 

for aligned peaks had to meet a minimum match threshold of 600. The baseline was fixed 

to be through the middle of the noise, and the signal-to-noise (S/N) cutoff for peak 

finding was set to 50 for a minimum of two apexing masses. Peaks were putatively 

identified using the National Institute of Standards and Technology (NIST) Mass Spectral 

Library and published retention time data. All peaks eluded during blank runs and known 

contaminants were excluded from data analysis.   

Multiple normalization and alignment analysis were performed on the raw data 

prior to statistical analysis. Relative abundance of the analytes was normalized across 

chromatograms using the Probabilistic Quotient Normalization (PQN) method [29]. Data 

normalization was performed in R, Version 1.0.136 [27] prior to any data analysis. 

Ovulation across all subjects was tested using commercially available ovulation kits 

(Clearblue). Ovulation is a well-known indicator of healthy fertility in women [30]. The 

first day of menses was reported by each subject. The ovulation day, signified by an 

increase in the luteinizing hormone (LH), was confirmed in 7 out of the 10 subjects. All 7 

subjects were aligned, so ovulation day corresponded with day 14 of the menstrual cycle. 
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The data obtained from all 10 subjects were used in the functional group classification. 

The data acquired from 7 out of the 10 subjects were used for all data analysis, where 

ovulation was validated. 

2.5 Data Analysis: Random Forest and PCA 

 After the data was processed, filtered, and normalized, the remaining compounds 

were imported into R for further analysis. Unsupervised learning principal component 

analysis (PCA) of the compounds showed there was no pattern in the data between four 

baseline estrogen days and four peak days, across the 7 subjects. Thus, the supervised 

learning technique of random forest was employed to discover the discriminatory 

analytes that differentiated between estrogen peak days and estrogen baseline days for the 

7 subjects, where ovulation was confirmed [31]. The code used the function 

“randomForest” from the “Random Forest” package in R. The random forest was run 100 

times and outputted the top discriminatory analytes with the least mean decrease in 

accuracy from the model that drove the classification between baseline estrogen days and 

peak days. After supervised learning by random forest, PCA was performed on the top 

discriminatory variables [32] in R with the function “prcomp”.  The function “ggplot” 

was used to plot the first principal component to account for the largest possible variance 

in the variables, and the second principal component to account for the second largest 

possible variance in the variables. Data analysis was performed in R, Version 1.0.136. 

2.6 Data Analysis: Regression Model and Lasso Technique 

The data was imported into JMP for regression model analysis. A total of 935 

compounds were included in the regression model. The “Fit Model” menu was utilized to 

calculate the forward-stepwise regression model with Akaike Information Criterion 
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Corrected (AICc) [33, 34]. The model was employed to identify potential biomarkers 

from the biological samples, as per the estrogen and progesterone literature curves. To 

prevent the model from overfitting and reduce the number of compounds, the adaptive 

Lasso technique with 5-fold cross-validation was performed in JMP with the “Fit Model” 

menu [35]. The data set was split into 5 different sets, with the Lasso technique using 

80% of the data to train the model and 20% of the data to test the model. Significant 

compounds (p<0.001) were retained in the final models. Data analysis was performed in 

JMP Pro, Version 13.1.0. Regression model calculations used 7 out of the 10 subjects, 

where ovulation was verified. 

2.7 Data Analysis: t-test and Heat Map 

Data used in this analysis was evaluated and determined to be accurate for 

compound significance. The data set was imported into R for analysis. R was used to 

filter the data set, so the core compounds that appeared in at least half the subjects (3 out 

of 7 subjects) in at least half the days (14 out of 28 days) were utilized in the data 

analysis (Appendix C). The missing data values were converted from 0 to NA (not 

applicable) in the data set and were not used in the analysis. The pairwise Student’s t-test 

was performed on the median of 5 baseline estrogen days vs. the median of 5 peak 

estrogen days [36]. The function “t.test” was employed in R for the pairwise Student’s t-

test. The resulting significant compounds (p<0.05) were plotted in a heat map to look at 

the signals of each compound across the menstrual cycle. The “heatmap” function was 

used to plot the significant compounds in a heatmap. Data analysis was performed in R, 

Version 1.0.136. 
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2.8 Compound Validation and Quality of Data 

Compounds, selected using the t-test, were validated through a confirmation of 

the retention indices as shown in data produced from the GC x GC-TOFMS. The 

presence of retention indices confirms retention times as they relate the identified 

compounds to the known compounds. The NIST database clarifies the retention time in 

the GC x GC-TOFMS data. Unconfirmed compounds result in a lower quality analysis. 

The quality of the compound identifications was assigned (levels 1-4) following 

published guidelines [28]. Level 2 compounds were categorized based on greater than or 

equal to 60% mass spectral match, utilizing forward searches of the NIST mass spectral 

library. In addition, level 2 compounds had validated retention time data with 

experimentally-determined retention indices that are consistent with the mid-polar Rxi-

624Sil stationary phase. Level 2 was the highest classification in this study. Level 3 

compounds were classified on greater than or equal to 60% mass spectral match to the 

NIST library. Level 4 compounds have mass spectral matches less than or equal to 60%, 

but can still be determined from mass spectral data. 
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CHAPTER 3 

DATA ANALYSIS AND RESULTS 

3.1 Functional Groups 

With the optimized parameters, the functional groups resulting from the volatiles 

expressed in all the urine samples of the 10 subjects were analyzed (Figure 3). Volatile 

analytes were classified as core, rare, or accessory metabolites according to the following 

criteria: 

Core: Identified in all 10 subjects; 

Rare: Identified in only 1 subject; 

Accessory: Identified in 2-9 subjects. 

Functional group analysis shows there are more core analytes (498) associated between 

all the samples than rare analytes (30). The total number of accessory analytes was 451.  

 

Figure 3. Volatile Analyte Classification. Analytes were classified as core, accessory, or 

rare, and each one was assigned to a functional group (ACI = Acids; ALC = Alcohols; 

ALD = Aldehydes; AMI = Amides; AMN = Amines; ETH = Ethers; FUNC AROM = 

Functionalized Aromatics; HC = Saturated/Unsaturated Hydrocarbons; HET AROM = 

Heteroaromatics; KET = Ketones; OTH = OTHER; THI = Thiols). 
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3.2 Random Forest and PCA 

This model was not utilized in the final selection of compounds due to the fact 

that continued analysis of data proved this method to be biased. It was discovered that the 

model had data values of 0 for missing data, which significantly biased the model. Future 

studies simplified the model in terms of high and low abundance and corrected the values 

from 0 to “NA”. To find particular analytes correlated with estrogen baseline days and 

estrogen peak days per the literature curve, random forest was employed to discover the 

top discriminatory analytes from the 7 subjects, where ovulation was confirmed. Using 

balanced data of 4 baseline estrogen days and 4 peak estrogen days across all 7 subjects, 

the top 10 discriminatory analytes from random forest were 1,3,5-Cycloheptatriene, 

3,7,7-trimethyl, 1-Butene, 4-isothiocyanato-1-(methylthio), 2,3-Pentanedione, 4-methyl, 

2-Butenal, 2-Butenal, (E), 2-Hexanone, 4-Acetyl-1-methylcyclohexene, Allyl 

Isothiocyanate, Benzyl 4-nitrophenyl carbonate, and Cyclobutylamine. PCA was 

performed on the 10 resulting analytes to determine the first principal component and 

second principal component (Figure 4). The first principal component accounted for 

37.4% of the variance, and the second principal component accounted for 21.4% of the 

variance. From the PCA, the baseline estrogen days cluster together, and the peak 

estrogen days cluster together. Peak estrogen days correspond with ovulation, so a 

distinct difference can be seen between the peak estrogen days and the baseline estrogen 

days. It was discovered the data set had values of 0 for missing data, which significantly 

skewed the model. Thus, random forest and PCA was not used in the final selection of 

compounds. Future studies simplified the model in terms of high and low abundance, 

thus, removing any time dependence. 
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Figure 4. Balanced PCA of 7 Subjects. The PCA of the 7 subjects shows a distinct 

separation between baseline estrogen days and peak estrogen days. The first principal 

component accounts for 37.4% of the variance, and the second principal component 

accounts for 21.4% of the variance. This data was later refuted and proven to be invalid. 

 

3.3 Regression Modeling and Lasso Technique 

This model was not utilized in the final selection of compounds due to the fact 

that continued analysis of the time dependency proved this method to be an invalid 

approach. Future studies simplified the model in terms of high and low abundance, 

removing any time dependence and correcting the values from 0 to “NA”. To further 

investigate the particular analytes correlated with the estrogen and progesterone literature 

curves across a woman’s menstrual cycle, forward step-wise regression with AICc was 

used. A total of 19 of 935 analytes were found to be significant (p<0.001) in the estrogen 

regression model, and a total of 18 of 935 analytes were found to be significant (p<0.001) 

in the progesterone regression model. The R2 value of both models were 0.999. In order 
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to prevent the data from being overfit, adaptive Lasso technique was performed. Further 

analysis using the adaptive Lasso technique with 5-fold cross-validation reduced the 

significant analytes down to 8 analytes for the estrogen model and down to 9 analytes for 

the progesterone model. For each hormone analysis, the model with the least out-of-

sample mean squared error of the 5 different train/test sets was selected as the predictive 

model. Model regression showed the predictive model of estrogen to be a linear 

combination of 8 analytes (Table 2), which strongly fits the estrogen curve as found in 

literature (Figure 5). Similarly, the model regression showed the predictive model of 

progesterone to be a linear combination of 9 analytes (Table 3), which strongly fits the 

progesterone curve as found in literature (Figure 6). The retention indices (Table 2, Table 

3) were only able to be calculated for the analytes that had a retention time between the 

retention times of the KI standard mix. The analyte 2-furanmethanol, 5-

ethenyltetrahydro-α,α,5-trimethyl-,cis- was common across estrogen and progesterone 

models. The predicted expression of the estrogen model is shown in Figure 7, and the 

predicted expression of the progesterone model is shown in Figure 8. Checking the 

assumptions of the model, the data was normal (Figure 9, Figure 10). Furthermore, the 

residual estrogen (Figure 11) and residual progesterone analysis (Figure 12) vs. menstrual 

cycle days show that no time dependence exists in the models. However, this was 

disputed and later removed in the study. It was also discovered that the model had data 

values of 0 for missing data, which significantly biased the model.  
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Table 2. Top Analytes from Estrogen Regression Model. Key analytes identified by the 

forward stepwise estrogen regression model with AICc and adaptive Lasso with 5-fold 

cross-validation. The first and second dimension retention times of each analyte from the 

GC x GC-TOFMS are shown. The retention indices shown were calculated for the 

analytes that had a retention time between the retentions time of the KI standard mix. 

Later refuted and proven to be invalid. 

 

No. Analyte First Dimension 

Retention Time (s) 

Second Dimension 

Retention Time (s) 

Retention 

Index 

1 1-Tetrazol-2-

ylethanone 

360 0.67 N/A 

2 2-Furanmethanol, 5-

ethenyltetrahydro-

α,α,5-trimethyl-,cis- 

1580 0.92 1099 

3 3-Buten-2-ol, 3-

methyl- 

704 0.83 N/A 

4 3-Hexen-1-ol, 

acetate,(E)- 

1570 0.89 1094 

5 4-Octanone 1214 0.77 923 

6 5-Ethyl-1-nonene 2108 0.68 N/A 

7 Acetone 346 0.79 N/A 

8 Decane,2,6,8-

trimethyl- 

1434 0.65 1029 
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Figure 5. Estrogen Predicted Model vs. Estrogen Literature Curve. The estrogen 

predicted model vs. the estrogen literature curve is shown across a healthy woman’s 

menstrual cycle. Later refuted and proven to be invalid. 
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Table 3. Top Analytes from Progesterone Regression Model. Key analytes identified by 

the forward stepwise progesterone regression model with AICc and adaptive Lasso with 

5-fold validation. The first and second dimension retention times of each analyte from the 

GC x GC-TOFMS are shown. Later refuted and proven to be invalid. 

No. Analyte First 

Dimension 

Retention 

Time (s) 

Second 

Dimension 

Retention 

Time (s) 

Retention 

Index 

1 2-Furanmethanol, 5-

ethenyltetrahydro-α,α,5-

trimethyl-,cis- 

1580 0.92 1099 

2 2-Heptanone, 6-methyl-6-[3-

methyl-3-(1-methylethenyl)-1-

cyclopropen-1-yl]- 

2472 0.94 N/A 

3 2H-Pyran-2-one, tetrahydro-4-

(2-methyl-1-propen-3-yl) 

1962 1.1 N/A 

4 4,4-Dimethyl-1-hexene 1304 0.87 966 

5 Cis-Verbenol- 1712 1.08 1163 

6 Cyclohexene, 3-(1,5-dimethyl-4-

hexenyl)-6-methylene-, [S-R*, 

S*)]- 

2314 0.86 N/A 

7 Isopropylcyclobutane 2342 1.2 N/A 

8 Pentanal, 2,4-dimethyl- 1416 0.79 1020 

9 Undecanal, 2-methyl- 1874 0.78 N/A 
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Figure 6. Progesterone Predicted Model vs. Progesterone Literature Curve. The 

progesterone predicted model vs. the progesterone literature curve is shown across a 

healthy woman’s menstrual cycle. Later refuted and proven to be invalid. 

 

y = 0.933 + 0.098*[1]– 0.295*[2] – 0.123*[3] + 0.035*[4] + 0.063*[5] – 0.211*[6] + 

0.354*[7] – 0.052*[8] 

Figure 7. Estrogen Model Predictive Expression. Predictive model expression of the 

estrogen model is shown with the corresponding analytes in Table 2 ([1] in the equation 

refers to Analyte No.1 in Table 2). Later refuted and proven to be invalid. 

 

y = 0.333 – 0.040*[1]– 0.139*[2] + 0.212*[3] + 0.212*[4] + 0.051*[5] – 0.259*[6] + 

0.326*[7] – 0.062*[8] – 0.117*[9] 

Figure 8. Progesterone Model Predictive Expression. Predictive model expression of the 

progesterone model with the corresponding analytes in Table 3 ([1] in the equation 

refers to Analyte No.1 in Table 3). Later refuted and proven to be invalid. 
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Figure 9. Estrogen Residuals Normal Quantile Plot. Normal quantile plot of the estrogen 

residuals shows the data to be normal. 

 

 

Figure 10. Progesterone Residuals Normal Quantile Plot. Normal quantile plot of the 

progesterone residuals shows the data to be normal. 
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Figure 11. Estrogen Residuals vs. Days. The estrogen residuals plotted vs. days shows 

there is no time trend in the data. Later refuted and proven to be invalid. 

 

 

Figure 12. Progesterone Residuals vs. Days. The progesterone residuals plotted vs. days 

shows there is no time trend in the data. Later refuted and proven to be invalid. 
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3.4 Data Analysis: t-test and Heat Map 

From the data filtering, using the core compounds in half of the subjects in half of 

the days, 935 compounds were reduced to 347 compounds. The Student’s t-test was 

performed on the median of 5 baseline estrogen days vs. the median of 5 peak estrogen 

days resulted in 10 significant compounds (Figure 13). These 10 compounds indicated a 

significant difference between the baseline estrogen days and peak estrogen days, which 

could help in the predication of ovulation. A heat map of the 10 compounds shows the 

signal of the compounds across the menstrual cycle (Figure 13). The compound, 3-Octen-

2-one, (E), seemed to show a signal around the time of ovulation, and it was validated by 

the retention index. Ketones were the chemical class that appeared the most number of 

times (3) from the 10 compounds.  

From the Student’s t-test, key compounds were discovered, which correlate to the 

fertility hormone of estrogen a woman’s menstrual cycle. Future tests involve validating 

the 10 significant compounds with independent data sets from other subjects. The 

independent data sets will seek to test the robustness of the compounds. Further 

investigations will seek to confirm if the analytes found are caused by the hormones of 

estrogen. In the future, quantification of the fertility hormones could be predicted, using 

this model, which could be used to identify declining fertility in women. 
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Figure 13. Significant Compounds from t-test Analysis. (a) The heat map of the 10 

significant compounds from the t-test analysis is shown. (b) The 10 significant 

compounds and their mass, ID level, chemical class, first dimension retention time (1tR), 

second dimension retention time (2tR), and retention index (RI) are displayed (For 

chemical class: ALD = Aldehydes; FUNC AROM = Functionalized Aromatics; HC = 

Saturated/Unsaturated Hydrocarbons; KET = Ketones; OTH = OTHER). (c) One of the 

10 significant compounds, 3-Octen-2-one, (E), and the plot of the relative abundance of 

the 7 subjects across the menstrual cycle are shown. Baseline estrogen days are marked 

in blue and peak estrogen days are marked in red. (d) Plot of baseline estrogen days vs 

peak days for 3-Octen-2-one, (E) shows a significant difference between the two.  
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CHAPTER 4 

CONCLUSION 

An analytical method was established to discover a more complete representation 

of the VOCs present in the urine samples of 10 healthy women. A total of 935 different 

analytes were identified in the urine samples. The t-test and heat map show there are 10 

key analytes within a woman’s menstrual cycle that can track the fertility hormone 

estrogen. From the functional group comparison, core common analytes were found to be 

shared across all the subjects. Through this study, we have identified potential volatile 

biomarkers that show statistical significance in correlation to hormonal changes in 

healthy women. Future research will aim to validate these biomarkers as an early 

expression of declining fertility in women. 
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APPENDIX A 

MATLAB CODE FOR DATA FILTERING 
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%% Preliminary 

% Start with a clean slate 

close all 

clear 

clc 

format compact 

  

%% Variables % 0 = no, 1 = yes 

plotBySubject = 0; 

plotByVOC = 0; 

plotByTotalArea = 0; 

writeGroups = 0 ; 

maxAbsence = 10000; 

maxArea = 0.000001; 

stepSize = 20; % VOCs per graph when plotBySubject == 1 

  

%% Functional Groups 

path = [pwd, '\Data\']; % set path to excel sheet 

files = dir([path, '*.xlsx']); 

funcGroups = {files.name}; 

  

%% Read data 

page = 1; % page of excel sheet to read 
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matrix = zeros(3,length(funcGroups)); 

ii = 1; 

close all 

[~, ~, raw]  = xlsread([path, funcGroups{ii}], page); % Read data from excel sheet 

raw = raw'; 

% Compartmentalize 

[rows, cols] = size(raw);                   % Size of excel sheet                       % Get names of 

VOCs 

subjectInfo = raw(1,2:end)';                % Get information on subject 

subject = zeros(length(subjectInfo)-100,3); % Allocate memory 

for i = 1 : length(subjectInfo)             % Run through subject info 

    str = subjectInfo{i,1};                 % Set info to string 

    C = strsplit(str,'_');                  % Split string based on _ 

    if strcmp(C{1}, 'Blank') == 1           % If Blank, do nothing 

    else 

        subject(i,1) = str2double(C{1});    % Set Subject ID to col 1 

        subject(i,2) = str2double(C{2});    % Set day to col 2 

        subject(i,3) = i;                   % Set index to col 3 

    end 

end 

  

%% Remove based on absences and max area 

[m, n] = size(raw); 
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for j = 2:m 

    for i = 2:n 

        if raw{j,i} == 0 

            raw{j,i} = NaN; 

        end 

    end 

end 

for j = m : -1 : 2 

    numOfNans = sum(isnan(cell2mat(raw(j,2:end)))); 

    tmp = max(cell2mat(raw(j,2:end))); 

    if numOfNans > maxAbsence || tmp < maxArea 

        raw(j,:) = []; 

    end 

end 

  

%% 

uni = unique(subject(:,1)); 

cnt = 1; 

superCell = cell(7,1); 

xAxis = cell(7,1); 

tmpMatrix = zeros(5,3); 

for i = 1 : length(uni) 

    for j = 1 : length(subject) 
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        if uni(i) == subject(j,1) 

            tmpMatrix(cnt,:) = subject(j,:); 

            cnt = cnt + 1; 

        end 

    end 

    [values, order] = sort(tmpMatrix(:,2)); 

    sortedMatrix = tmpMatrix(order,:); 

    sortedCell = raw(:,1); 

    cnt2 = 2; 

    for k = 1 : length(sortedMatrix) 

        index = sortedMatrix(k,3); 

        sortedCell(:,cnt2) = raw(:,index+1); 

        %         sortedCell(:,cnt2) = raw(:,3+5*index+3); 

        cnt2 = cnt2 + 1; 

    end 

    superCell{i} = sortedCell; 

    xAxis{i} = sortedMatrix(:,2); 

    clear tmpMatrix 

    clear sortedCell 

    clear sortedMatrix 

    cnt = 1; 

end 
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%% Filter for Core 

nameCell = superCell{i,1}(:,1); 

numSubjects = length(uni); 

barGraphMat = zeros(m,numSubjects+1); 

tempVect = 1:m; 

barGraphMat = [barGraphMat, tempVect']; 

for i = 1 : numSubjects 

    barGraphMat(1,i) = uni(i); 

    tmpMatrix = superCell{i,1}; 

    [m, n] = size(tmpMatrix); 

    for j = 2 : m 

        numOfNans = sum(isnan(cell2mat(tmpMatrix(j,2:end)))); 

        superCell{i,1}(j,n+1) = {n-1-numOfNans}; 

        barGraphMat(j,i) = n-1-numOfNans; 

    end 

end 

  

core = 0; 

accessory = 0; 

rare = 0; 

for j = m : -1 :2 

    idx = barGraphMat(j,1:numSubjects) == 0; 

    tempValue = numSubjects - sum(idx(:)); 
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    barGraphMat(j,numSubjects+1) = tempValue; 

    if tempValue == 7 

        core = core + 1; 

    elseif tempValue == 1 

        rare = rare + 1; 

        barGraphMat(j,:) = []; 

        nameCell(j,:) = []; 

    elseif tempValue == 0 

        display('empty???') 

        barGraphMat(j,:) = []; 

        nameCell(j,:) = []; 

    else 

        accessory = accessory + 1; 

        barGraphMat(j,:) = []; 

        nameCell(j,:) = []; 

    end 

end 

  

%% Analyze 

  

core = 0; 

accessory = 0; 

rare = 0; 
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[m2, ~] = size(barGraphMat); 

for j = m2 : -1 : 2 

    idx = barGraphMat(j,1:numSubjects) < 14; 

    tempValue = numSubjects - sum(idx(:)); 

    barGraphMat(j,numSubjects+1) = tempValue; 

    if tempValue > 3 

        core = core + 1; 

    elseif tempValue == 1 

        rare = rare + 1; 

        barGraphMat(j,:) = []; 

        nameCell(j,:) = []; 

    elseif tempValue == 0 

        display('empty???') 

        barGraphMat(j,:) = []; 

        nameCell(j,:) = []; 

    else 

        accessory = accessory + 1; 

        barGraphMat(j,:) = []; 

        nameCell(j,:) = []; 

    end 

end 

  

nameCell = [nameCell, num2cell(barGraphMat)]; 
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nameCell{1,9} = 'Over 14'; 

nameCell{1,10} = 'Row in Raw'; 

matrix(1,ii) = core; 

matrix(2,ii) = accessory; 

matrix(3,ii) = rare; 

xlswrite([path, funcGroups{ii}(1:end-5),'_updated1.xlsx'], nameCell) 

  

%% Add data to matrix from raw 

concatCell = superCell{1}; 

for i = 2 : numSubjects 

    concatCell = [concatCell, superCell{i}(:,2:end)]; 

end 

  

nameCell2(1,:) = [nameCell(1,:), concatCell(1,:)]; 

[f, g] = size(nameCell); 

for i = 2 : f 

    nameCell2(i,:) = [nameCell(i,:), concatCell(nameCell{i,g},:)]; 

end 

xlswrite([path, funcGroups{ii}(1:end-5),'_updated2.xlsx'], nameCell2) 

  

%% Graph 

legendNames = cell(1, numSubjects); 

for i = 1 : length(funcGroups) 
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    legendNames{i} = funcGroups{i}(1:end-5); 

end 

% figure('units','normalized','outerposition',[0 0 1 1]); 

bar(matrix,'stacked') 

xt = get(gca, 'XTick'); 

set(gca, 'XTick', xt, 'XTickLabel', {'Core' 'Accessory' 'Rare'}) 

% legend(legendNames, 'Location','northwest','Orientation','horizontal') 

% legend(legendNames) 

ylabel('Number of Volatile Molecules') 

% ylim([0 550]) 

  

%% 
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APPENDIX B 

R CODE FOR PROBABIBILISTIC QUOTIENT NORMALIZATION (PQN) 
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## Function: Probabilistic Quotient Normalization ## 

PQN <- function (X) { 

   

  obs <- dim(X)[1]     #Define number of observations. 

  dimm <- dim(X)[2]     #Define number of variables (dimensions). 

   

  X[0==X] <- 1E-08     #Set zeroes to an arbitrarily small value. 

  normRef <- apply(X,2,function(x){median(x[x>1E-08])})     #Define reference 

spectrum as median for all analytes. 

   

  M <- matrix(rep(normRef, each=obs), ncol=length(normRef))     #Convert reference 

spectrum in matrix equivalent in size to data matrix. 

  Q <- X/M     #Divide the concentration of the analyte in each sample by the median 

value for each analyte. 

  Q[0.001 >= Q] <- NA      #Set very small values of "Q" equal to NA for elimination in a 

subsequent step.    

  for (i in 1:obs) { 

    X[i,] <- X[i,]/median(Q[i,], na.rm=TRUE)}     #Divide each analyte in a given sample 

by the median quotient in that sample. 

   

  X[1 >= X] <- 0     #Convert very small normalized values to 0. 

  return(matrix(X, nrow=obs, ncol=dimm)) 

} 
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PREP <- function (X) { 

  dimm <- dim(X)[1] #Define the number of variables (dimensions). 

  obs <- dim(X)[2] #Define the number of observations. 

  analyte.names <- X[,1] #Determine the analyte names. 

  X <- t(X[,-1]) #Transpose the data matrix without the first column. 

  colnames(X) <- analyte.names #Make the analyte names the names of matrix columns. 

  X[is.na(X)] <- 0 

  return(as.matrix(X)) 

} 

 

## Function: Data Matrix Final Transposition ## 

REMATRIX <- function (X) { 

  X <- t(X) #Transpose the data matrix without the first column. 

  X[0==X] <- NA 

  return(X)} 
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APPENDIX C 

R CODE FOR T-TEST AND HEAT MAP 
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# Load data 

d1 = 

read.csv('urine_data_normalized_7subjects_orderedformenstrualcycle_rev1_NA.csv', 

header=T, row.names=1) 

 

# Half the subjects across half the days 

compounds = c(3:length(colnames(d1))) 

f1 = sapply(colnames(d1)[compounds], function(c1) { tmp = sapply(1:28, function(x) { 

sum(is.na(d1[which(d1[,'Day.of.Menstrual.Cycle']==x),c1]))<=4 } ); 

return(sum(tmp)/length(tmp)) } ) 

f2 = names(which(f1>=0.5)) 

 

# Get sample information 

s1 = unique(d1[,'Day.of.Menstrual.Cycle']) 

n1 =  unique(d1[,'Subject.ID']) 

 

# Samples to median for T-test 

baseline = c(27,28,1,2,3) 

peak = c(12,13,14,15,16) 

#baseline = c(28,1,2) 

#peak = c(13,14,15) 

#baseline = c(1) 

#peak = c(14) 
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# For each compound comapre using T-test 

pdf('boxplot_p_m_2days_split.pdf') 

m1 = matrix(ncol=2,nrow=length(f2)) 

colnames(m1) = c('FC','P.value') 

rownames(m1) = f2 

for(c1 in f2) { 

    bsl1 = sapply(n1, function(x) { 

median(d1[intersect(which(d1[,'Day.of.Menstrual.Cycle'] %in% 

baseline),which(d1[,'Subject.ID']==x)),c1],na.rm=T) } ) 

    pk1 = sapply(n1, function(x) { 

median(d1[intersect(which(d1[,'Day.of.Menstrual.Cycle'] %in% 

peak),which(d1[,'Subject.ID']==x)),c1],na.rm=T) } ) 

    t1 = try(t.test(pk1,bsl1,paired=T)) 

    print(t1) 

    if(!class(t1)=='try-error') { 

        m1[c1,'FC'] = median(pk1,na.rm=T)/median(bsl1,na.rm=T) 

        m1[c1,'P.value'] = t1$p.value 

        if(t1$p.value<=0.05) { 

            boxplot(c(bsl1,pk1) ~ 

c(rep('Baseline',length(bsl1)),rep('Peak',length(pk1))),col=c(rgb(0,0,1,0.8),rgb(1,0,0,0.8)),

main=paste(c1,'; P-value =',signif(m1[c1,'P.value'],2),sep='')) 

        } 
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        #stripchart(c(bsl1,pk1) ~ c(rep('Baseline',length(bsl1)),rep('Peak',length(pk1))), 

vertical = TRUE, method = "jitter", add = TRUE, pch = 20, col = rgb(0,0,0,0.5)) 

    } 

} 

m2 = na.omit(m1) 

m2 = cbind(m2,Adj.P.value=p.adjust(m2[,'P.value'],method='BH')) 

write.csv(m2,'p_m_2days.csv') 

dev.off() 

 

# Volcano plot 

plot(log2(m2[,'FC']),-log10(m2[,'P.value']),col=rgb(1,0,0,0.5),pch=20) 

abline(h=-log10(0.05),lty=2) 

abline(v=c(-log2(2),log2(2)),lty=2) 

 

# Plot major players 

up = rownames(m2)[intersect(which(m2[,'FC']>1),which(m2[,'P.value']<=0.05))] 

down = rownames(m2)[intersect(which(m2[,'FC']<1),which(m2[,'P.value']<=0.05))] 

pdf('up_and_down_p_m_2days.pdf') 

for(i in c(up,down)) { 

    boxplot(as.numeric(d1[,i]) ~ 

addNA(as.numeric(d1[,'Day.of.Menstrual.Cycle'])),col=c(rep(rgb(0,0,1,0.8),3),rep('white'

,8),rep(rgb(1,0,0,0.8),5),rep('white',10),rep(rgb(0,0,1,0.8),3)),main=paste(i,'; P-value 

=',signif(m2[i,'P.value'],2),sep='')) 
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    stripchart(as.numeric(d1[,i]) ~ addNA(as.numeric(d1[,'Day.of.Menstrual.Cycle'])), 

vertical = TRUE, method = "jitter", add = TRUE, pch = 20, col = rgb(0,0,0,0.5)) 

} 

dev.off() 

 

# Matrix of median expression across participants for each compound 

tmp = sapply(f2, function(c1) { sapply(1:28, function(x) {  

median(d1[which(d1[,'Day.of.Menstrual.Cycle']==x),c1],na.rm=T) }) } ) 

tmp2 = sapply(colnames(tmp), function(x) { (tmp[,x] - median(tmp[,x], 

na.rm=T))/mad(tmp, na.rm=T) } ) 

 

library(gplots) 

pdf('heatmap.pdf') 

heatmap.2(t(as.matrix(tmp2[,c(up,down)])),trace='none',col=colorpanel(256,'blue','black',

'yellow'),Colv=F,Rowv=T,dendrogram='row',density.info='none') 

dev.off() 

 

 

 

library(gplots) 

m3 = t(sapply(1:length(unique(cut1)), function(x) { 

apply(tmp[,names(which(cut1==x))],1,mean,na.rm=T) })) 
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heatmap.2(as.matrix(m3),trace='none',col=colorpanel(256,'blue','black','yellow'),Colv=F,

Rowv=T,dendrogram='none',density.info='none') 
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