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Yun Kang

Muntaser Safan

ARIZONA STATE UNIVERSITY

May 2018



ABSTRACT

In this dissertation the potential impact of some social, cultural and economic factors on

Ebola Virus Disease (EVD) dynamics and control are studied. In Chapter two, the inability

to detect and isolate a large fraction of EVD-infected individuals before symptoms onset is

addressed. A mathematical model, calibrated with data from the 2014 West African out-

break, is used to show the dynamics of EVD control under various quarantine and isolation

effectiveness regimes. It is shown that in order to make a difference it must reach a high

proportion of the infected population. The effect of EVD-dead bodies has been incorpo-

rated in the quarantine effectiveness. In Chapter four, the potential impact of differential

risk is assessed. A two-patch model without explicitly incorporate quarantine is used to as-

sess the impact of mobility on communities at risk of EVD. It is shown that the overall EVD

burden may lessen when mobility in this artificial high-low risk society is allowed. The cost

that individuals in the low-risk patch must pay, as measured by secondary cases is high-

lighted. In Chapter five a model explicitly incorporating patch-specific quarantine levels is

used to show that quarantine a large enough proportion of the population under effective

isolation leads to a measurable reduction of secondary cases in the presence of mobility.

It is shown that sharing limited resources can improve the effectiveness of EVD effective

control in the two-patch high-low risk system. Identifying the conditions under which the

low-risk community would be willing to accept the increases in EVD risk, needed to reduce

the total number of secondary cases in a community composed of two patches with highly

differentiated risks, has not been addressed. In summary, this dissertation looks at EVD

dynamics within an idealized highly polarized world where resources are primarily in the

hands of a low-risk community – a community of lower density, higher levels of education

and reasonable health services – that shares a “border” with a high-risk community that

lacks minimal resources to survive an EVD outbreak.
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Para mi hijo Baltazar Espinoza de la Mora; cada dı́a me enseñas a ser papá y a ser hijo,
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Chapter 1

INTRODUCTION

This dissertation aims to understand the potential impact of some social, cultural and eco-

nomic factors on Ebola Virus Disease (EVD) dynamics and control. Differences in such

factors are assumed across regions within the community of interest, thus defining distinct

environments (or patches) with specific risks of infection. Individuals moving across these

patches experience different infection risks over time. The assumed risk variation plays a

determinant role by adjusting the disease impact over the whole community. In absence of

specialized treatment or an approved vaccine against EVD, understanding how risk vari-

ations across environments reduces or increases the number of EVD secondary cases is

critical to refine existent control strategies.

Discovered in the late 1970’s, Ebolavirus (EBOV) was identified as the culprit for two

outbreaks: in Zaire (now the Congo) and the Sudan, where the EVD (formerly known

as Ebola hemorrhagic fever) startled the international community (Johnson et al., 1977;

Bowen et al., 1977; Commission et al., 1978). This new virus showed an astonishing abil-

ity to transmit among humans as well as strikingly high mortality rates (ranging from 50%

to 90%) (WHO, 2015). Such elevated fatality rates are the result of its capacity to attack

almost every tissue in the human body (except lymphocytes), by invading cells trhough

different mechanisms (Falasca et al., 2015). EBOV is a genus of the Filoviridae family

causing severe symptoms, differentiated into two phases: the first phase is mainly charac-

terized by headache, fever, diarrhea and severe weakness; while the second phase is driven

by a functional failure of the liver and kidneys, producing internal and external bleeding

through body orifices (WHO, 2015; Nelson and Williams, 2013). The virus is transmitted

during the second symptoms phase, through direct contact with bodily fluids of infected and
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EVD-infected corpses; through semen, breast milk and other bodily secretions (Feldmann

and Geisbert, 2011; CDC, 2018e,d). Recent studies showed that recovered individuals still

possess the Ebolavirus for several days during convalescence (Chughtai et al., 2016; Deen

et al., 2017). EBOV can also be sexually transmitted long after the acute illness phase. In

fact, after the 2014-2016 EVD outbreak, a new virus resurgence was linked to sexual trans-

mission by a recovered patient, more than 500 days after symptoms onset (Diallo et al.,

2016).

The EVD is a zoonotic disease, meaning that it can spread across species. EVD has

been found in gorillas, monkeys, fruit bats and humans (Feldmann and Geisbert, 2011;

CDC, 2018d). Currently, the EVD natural reservoir is not known, but, there is evidence

suggesting the fruit bat as the most likely wild reservoir (Pourrut et al., 2005; Feldmann

et al., 2004). Its zoonotic nature makes eradication through control programs (for in-

stance, the case of smallpox eradication (Breman et al., 1980)) difficult, if not impossible,

to achieve. Consequently, the disease can remain undetected in a wild reservoir for years

until the next spillover occurs. After the Zaire and Sudan outbreaks, there have been 24

EVD outbreaks, most of them occurring in Central Africa (WHO, 2015). These outbreaks

had the common characteristic of arising in small, rural communities where the EVD was

self-contained (Coltart et al., 2017). The deadliest and worst outbreak was the 2014 West

African epidemic, caused by the Ebola virus (EBOV, formerly designated Zaire ebolavirus,

which is the most dangerous of the Ebolavirus genus), and was responsible for approxi-

mately 28,600 cases and more than 11,000 deaths (CDC, 2018a; Kuhn et al., 2010; Gire

et al., 2014). It is suspected the virus spread from Central Africa, where the EVD is consid-

ered endemic, and started the 2014 West African outbreak through a single zoonotic event

in Guinea (Feldmann et al., 2004; Baize et al., 2014). The new outbreak rapidly propagated

from Guinea to Liberia in March and to Sierra Leone in May 2014 (UN, 2018; Gire et al.,

2014; CDC, 2018a).
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In response to the rapidly increasing outbreaks, a few weeks after EVD reached Lagos,

Nigeria (the most populous city in Africa), on August 1st 2014, governments decided to

implement cordons sanitaires on the region containing at the time more than 70% of the

epidemic (Agence France-Presse, 2018). During this period, military force was used to pre-

vent individuals from traveling outside the cordoned area. This control strategy was aimed

to limit the spread of the disease, but not focused on improving or maintaining conditions

within the cordoned zone. The imposed traveling curtailments produced a humanitarian

crisis. The food transportation system was seriously affected, to the point that individuals

inside the highly affected region suffered from scarcity, lack of appropriate health care and

increased risk of infection (Amesh Adalja, 2018; R. K. Hoffmann et.al, 2018). Despite

efforts to control population trying to escape from the cordoned region, some people found

ways to outwit the cordons sanitaires (ONISHI, 2014). This in turn reflected an increased

effective reproduction number and an increased amount of cases (Towers et al., 2014; Es-

pinoza et al., 2016; Pandey et al., 2014). These results, suggest that the traveling restriction

might have accelerated the contagion process and that cordons sanitaires might not be an

effective control measure.

Despite massive efforts to control the spread of the EVD epidemic, the virus reached

the large cities of Monrovia, Freetown and Conakry, increasing the risk of international

spread (UN, 2018; Gomes et al., 2014). In July 2014, Sierra Leone was declared in a

state of emergency, followed by Liberia and Guinea in August, 2014 (UN, 2018). On

August 8th 2014, the World Health Organization declared Ebola an international health

emergency (BBC News, 2018). Besides outbreak containment, another major challenge

also emerged. It was shown that during the West African outbreak, the rate of observed

EBOV genetic variation duplicated the mutation rate between outbreaks (Gire et al., 2014).

Such variations have the potential to produce EBOV functional changes and stressed the

importance of competent public health strategies to quickly control an EVD outbreak.

3



The overall goal in this dissertation is to shed light on how mobility and social factors

like insufficient health-care infrastructure, unsafe traditional burial practices, proximity be-

tween highly vulnerable areas and big cities, and delayed international responses, promoted

the progression of local outbreaks to an international public health threat. In Chapter 2, the

inability to detect and isolate a large fraction of EVD-infected individuals before symp-

toms onset is addressed. A mathematical model calibrated with data from the 2014 West

African outbreak scenario is used to show the dynamics of EVD control under various

quarantine effectiveness regimes. The proposed model, focuses on studying the impact of

current technology allowing early detection of infected individuals up to three days before

symptoms appear on the EVD dynamics. The presented model incorporates secondary

infections produced by infected and quarantined individuals, and secondary infections pro-

duced by EVD-infected corpses. My findings are in agreement to current literature results

where the impact of early detection without explicitly incorporate infections produced by

EVD-infected corpses was addressed (Chowell et al., 2015). Massive quarantine of pre-

symptomatic individuals would lead to the effective management of EVD, provided high

enough quarantine effectiveness. The impact of average EVD-infected corpses removal

periods on the quarantine effects is assessed.

Chapter 3 provides a short review of some approaches used in metapopulation models.

Particularly, the modeling framework used in the construction of the multi-patch models

in subsequent Chapters 4 and 5 is described (Bichara et al., 2015; Castillo-Chavez et al.,

2016). In Chapter 4, a two-patch model based on the single patch model presented in

Chapter 2, without explicitly incorporating quarantine, is studied. The impact of mobility

across neighboring regions exhibiting differential risk of EVD infection is studied. By a

single parameter, health services, access inequalities and resources are modeled.

In this model, one patch is calibrated to resemble infection risk conditions similar to

those within the cordons sanitaires region during the 2014 West African outbreak; the sec-

4



ond patch is assumed to experience a lower risk of infection and is incapable of sustaining

an epidemic. It is shown that population mobility might increase or reduce the total number

of secondary cases generated. Furthermore, the effects of the population density ratio on

the efficiency of the cordons sanitaires are studied. Results show that the cordons sani-

taires does not always minimize the final epidemic size; moreover, high mobility regimes

have the potential to reduce an EVD outbreak. In Chapter 5, a model explicitly accounting

for patch-specific quarantine levels is used to study the joint effects of mobility and early

detection of infected individuals on regions exhibiting highly distinct risks of infection.

Naturally, quarantine implementation reduces the traveling regime needed to ameliorate

the impact of an EVD outbreak through mobility. However, the harmful effect of massive

quarantine programs (by reducing the effective population traveling) might play an adverse

role on the overall control of EVD in the presence of mobility. Finally, in Chapter 6, present

work implications and challenges to improve current global sensitivity to worldwide epi-

demics are discussed.
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Chapter 2

THE IMPACT OF QUARANTINE CAPACITY AND ISOLATION EFFECTIVENESS

ON THE EVD DYNAMICS

2.1 Introduction

The lack of a vaccine or effective treatment for Ebola Virus Disease (EVD), along to its

relatively high contagiousness, implied that EVD transmission was likely best controlled

by isolating patients and the use of barriers on health-care workers (Matua et al., 2015;

CDC, 2018b). Even under specialized health care, approximately 50% to 90% of EVD

infected individuals die (CDC, 2018a; Bruce and Brysiewicz, 2002). Current health aid to

EVD-infected individuals consists of providing early supportive care maintaining hydration

and blood pressure levels (WHO, 2015; Ansumana et al., 2015), postexposure treatments

have also been studied, however there are none currently approved (Feldmann, 2010). Cur-

rent development of a highly effective vaccine seems promising; nonetheless, systematic

implementation aimed to ameliorate a possibly new Ebola outbreak requires more research

on the side effects (A. Maxmen, 2017; E. Callaway, 2017).

EVD is transmitted as a result of contact with infected bodily fluids and, it is already

recognized as a potential bioterrorism agent (Feldmann and Geisbert, 2011; Borio et al.,

2002; CDC, 2017). Based on the small number of suspected infected cases by airborne

transmission, it cannot be conclusively excluded. Nonetheless, droplet and aerosol spread

routes of transmission have been evaluated in efforts to weaponize the Ebola virus (Polesky

and Bhatia, 2003). More recently it has been confirmed that a survivor can sexually transmit

the Ebola virus for a period of more than 500 days after symptoms onset (Diallo et al.,

2016).
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Since the majority of Ebola cases have been the result of human-to-human transmission

(Gire et al., 2014), effective isolation has critical importance in containing an outbreak.

Currently, efforts to control EVD mostly rely on isolation strategies and good sanitation

techniques when dealing with both sick and dead contaminated individuals (Pandey et al.,

2014). EVD diagnosis is challenging during the early stages of infection. The symptoms

caused are similar to those of Marburg virus, Typhoid fever, Plague, Yellow fever and

Chikungunya fever among others (Feldmann and Geisbert, 2011). EVD identification is

done through laboratory diagnosis, thus demanding high specialized human resources and

infrastructure. Currently there are two main assays to diagnose Ebola infection, focusing

on detecting particle components in infected individuals (RT-PCR) and measuring the host

immune response (ELISA) (Feldmann and Geisbert, 2011). Particularly, RT-PCR assays

offer the possibility of detecting Ebola infection up to three days before symptoms onset

(Towner et al., 2004). Previous work studying the consequences of early diagnosis of in-

fected individuals found that early diagnosis combined with effective isolation leads to a

rapid reduction of Ebola transmission (Chowell et al., 2015). This work resemble condi-

tions found on developed countries, where exposure to infected dead bodies is minimal and

this transmission route can be neglected.

The goal of this project is to understand the impact of misinformation, cultural practices

and resource limitations on the complex disease dynamics exhibited during the EVD 2014

West African outbreak. The heroic actions done by health-care workers adequately manag-

ing the spread of EVD in Lagos, Nigeria was a milestone in the control of the West African

EVD outbreak. However, this poses a critical question: what are the minimal requirements

to control an EVD outbreak? For instance, for an EVD outbreak happening in a large urban

center, like Lagos (densely comparable to New York city), using current diagnostic tech-

nology (RT-PCR) to help determine up to three days in advance whether an individual has

been infected with EVD, what levels of quarantine and isolation effectiveness are required
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in order to control an outbreak? or, what is the impact of properly handling EVD-induced

dead bodies?

This chapter is organized as follows. In section 2.2, I present an ODE based mathe-

matical model to describe a population’s progression through the EVD contagion process.

Section 2.3 is devoted to analyze the proposed model, computing the associated basic re-

productive number and final epidemic size relation. Results and simulations addressing the

aforementioned questions are presented in section 2.4. Finally, in section 2.5 the conse-

quences of the obtained results are highlighted as well as work limitations.

2.2 Model Derivation

The population studied is assumed to be constant and divided into Susceptible (S), la-

tent undetectable individuals (E1), latent detectable individuals (E2), infected individuals

(I), quarantined infected individuals (Q), EVD-infected corpses (D) and removed individ-

uals: recovered individuals and properly buried dead bodies (R). The total population

(including dead individuals) is then N = S+E1 +E2 + I +Q+D+R. The contagion pro-

cess decreases the susceptible population by infections due to contacts between infected

individuals (I), quarantined infected individuals (Q) or EVD-infected corpses (D), with

susceptible individuals (S), at rate β

(
I+εD+lQ

N

)
. Latent individuals are assumed to be de-

tectable via RT-PCR test on average 1
κ1

days after being infected, and become infectious

on average after a period of 1
κ1
+ 1

κ2
days. During the second latency stage ( 1

κ2
days before

symptoms onset), a fraction q of pre-symptomatic individuals are diagnosed and taken to

isolation, while the rest are neither detected nor isolated. Non-isolated infected individuals

might die with probability fd or recover after a mean period of 1
γ

days. Until removed, on

average after 1
ν

days, dead bodies are assumed capable to produce new infections. During

this period, since EVD dead bodies (D) have the highest viral load, they are assumed to be

more infectious than infected individuals, (ε > 1). Finally, quarantined infected individuals
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are assumed to have a reduced infectious rate (l < 1), and recover or die after a mean period

of 1
γ

days. Quarantined EVD induced deaths are assumed to be safely buried immediately,

not contributing to the infectious process.

During the West African Ebola outbreak asymptomatic individuals associated with low

viral loads were detected via PCR test (Leroy et al., 2000). Supporting antecedents of

patients with symptoms ranging from mild, severe and rapid fatality can be found, for

instance during the Sudan (1976) and Zaire (1979) outbreaks (of a WHO/International

Study Team et al., 1978). Asymptomatic individuals are not explicitly modeled in this

work due to association with low viral loads and the secondary infections produced by this

subpopulation are neglected.

Population’s transitions through the EVD disease stages are showed in Figure 2.1

S E1 E2

I D

RQ

�

✓
I + "D + lQ

N

◆

1

q2

(1 � q)2

fd�

(1 � fd)�

�

⌫

Figure 2.1: Ebola compartmental model with quarantine intervention.

and mathematically described by the system of ordinary differential equations (2.1)




N = S+E1 +E2 + I +Q+D+R

Ṡ =−βS
(

I+εD+lQ
N

)

Ė1 = βS
(

I+εD+lQ
N

)
−κ1E1

Ė2 = κ1E1−κ2E2

İ = (1−q)κ2E2− γI

Q̇ = qκ2E2− γQ

Ḋ = fdγI−νD

Ṙ = (1− fd)γI +νD+ γQ

(2.1)
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The parameters used in this work are directly extracted from literature. It is estimated

from previous EVD outbreaks a mean period from symptoms onset to end of infectious-

ness
(

1
κ

)
of 7 days (Legrand et al., 2007; Ndambi et al., 1999). The infected dead bod-

ies burial mean period (bodies infectious period) is approximately 2 days (Legrand et al.,

2007); while fatality rate of EVD is on average 70% (Team, 2014). Since high viral load

has been associated with high fatality rates, in the present work infectiousness of EVD-

induced dead bodies is assumed greater than the one of infected individuals, that is, ε > 1

(Li et al., 2016). The parameter β has been approximated to calibrate model’s (2.1) basic

reproduction number to R0 ≈ 2.45 (Althaus, 2014; Chowell et al., 2004). Quarantine ca-

pacity (q) and isolated individuals’ relative infectiousness (l) are varied on the range [0,1]

in order to explore the whole spectrum effects on the EVD dynamics. Table 2.1, summarize

the parameters used in this research.

Table 2.1: Parameters of the single patch EVD model.
Parameter Description Base model values

β Per susceptible infection rate 0.287 (Althaus, 2014)

γ Rate at which an infected recovers or dies 1/7 (Team, 2014)

κ1 Per-capita progression rate to latent detectable stage 1/4 (Legrand et al., 2007)

κ2 Per-capita progression rate from latent detectable to infectious stage 1/3 (Towner et al., 2004)

ν Per-capita body disposal rate 1/2 (Legrand et al., 2007)

fd Proportion of infected who die due to infection 0.7 (Team, 2014)

ε Scale: Ebola infectiousness of EVD-infected corpses > 1 (Li et al., 2016)

q Proportion of latent individuals diagnosed before symptoms onset [0,1]

l Isolated individuals relative transmissibility [0,1]

2.3 Model Analysis

2.3.1 Computation of the Control and Basic Reproductive Numbers

System’s (2.1) control and basic reproduction numbers are computed by following the

next generation approach (Diekmann et al., 1990; van den Driessche and Watmough, 2002).
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Consider model’s (2.1) infected subpopulations, i.e. E1,E2, I,Q and D. By evaluating

model (2.1) at the disease free equilibrium, S = N and

F =




0 0 β lβ εβ

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




and V =




κ1 0 0 0 0

−κ1 κ2 0 0 0

0 −(1−q)κ2 γ 0 0

0 −qκ2 0 γ 0

0 0 − fdγ 0 ν




.

The control reproduction number Rc, quantify the number of secondary infections caused

by a single infected individual in a totally susceptible population, under the effects of con-

trol measures. The Rc is the spectral radius of the next generation matrix

−FV−1 =




q
(

lβ
γ

)
+β (1−q)

(
1
γ
+ fdε

ν

)
q
(

lβ
γ

)
+β (1−q)

(
1
γ
+ fdε

ν

)
β

(
fdε

ν
+ 1

γ

)
lβ
γ

βε

ν

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




,

this is

Rc = q
(

lβ
γ

)
+(1−q)β

(
1
γ
+

fdε

ν

)
. (2.2)

The control reproductive number determines the beginning of the recognition of the epi-

demic. In counterpart, the basic reproductive number R0 represents the number of sec-

ondary infections produced by an infected individual in an essentially susceptible popula-

tion, in absence of control measures. By writing (2.2) in terms of the secondary infectious

produced by quarantined and non-quarantined individuals as follows

Rc = qRQ +(1−q)R0 (2.3)

it is possible to define the quarantine reproductive number RQ =
lβ
γ

, which captures the

secondary infections produced by a typical individual in quarantine and the basic repro-

ductive number R0 = β

(
1
γ
+

fdε

ν

)
, which captures the secondary infections produced by
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infected individuals and non-removed infected dead bodies in absence of control measures.

Explicitly, the control reproductive number RC, accounts for the secondary infections pro-

duced by the proportion (q) of pre-symptomatic individuals diagnosed, during its infectious

period
(

1
γ

)
at a reduced infectiousness rate (lβ ), secondary infections produced by non iso-

lated infectious individuals during their infectious period
(

1−q
γ

)
and secondary infections

produced by non-quarantined EVD dead bodies ((1− q) fd) with increased infectiousness

rate (εβ ) during its average disposal time
(

1
ν

)
.

2.3.2 Derivation of the Final Epidemic Size

Since the total population of model (2.1) is constant, it is possible to reduce the system

to 



N = S+E1 +E2 + I +Q+D+R

Ṡ =−βS
(

I+εD+lQ
N

)

Ė1 = βS
(

I+εD+lQ
N

)
−κ1E1

Ė2 = κ1E1−κ2E2

İ = (1−q)κ2E2− γI

Q̇ = qκ2E2− γQ

Ḋ = fdγI−νD

(2.4)

by assuming S(0) = N, E1(0) = E2(0) = I(0) = D(0) = 0 and using the notation f̂ (t) =
∫

∞

0 f (s)ds and f ∞ = limt→∞ f (t); from the first two equations of system (2.4), Ṡ + Ė =

−κ1E1 ≤ 0, which implies E∞
1 = 0. Similarly it is possible to get E∞

2 = I∞ = Q∞ =

D∞ = 0. By integrating model’s (2.4) first two equations, S∞ − N = κ1Ê1 which im-

plies Ê1 =
N−S∞

κ1
. Similar procedure implies Ê2 =

N−S∞

κ2
, Î = (N − S∞)

(
1−q

γ

)
,

Q̂ = (N − S∞)

(
q
γ

)
and D̂ = (N − S∞)

(
fd(1−q)

ν

)
. By integrating model’s (2.4) first
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equation and using previous derivations

log
(

N
S∞

)
=

(
1− S∞

N

)(
q

lβ
γ
+(1−q)β

(
1
γ
+

ε fd

ν

))

log
(

N
S∞

)
=

(
1− S∞

N

)
RC. (2.5)

Equation 2.5 is the typical final size relation (Brauer et al., 2001), which in the presented

model relates the number of infected individuals at the end of the outbreak, to the secondary

infections produced by isolated and non-isolated infectious individuals, and non removed

EVD-induced dead bodies. Denote by s∞ =
S∞

N
the proportion of the final susceptible

individuals, equation (2.5) yields

log(s∞) = (s∞−1)RC. (2.6)

Letting y = s∞ − 1 denote the proportion of population infected over the course of the

epidemic, equation (2.6) becomes

y = 1− exp[−yRc] (2.7)

which give us the final proportion of infected individuals, also known as the epidemic attack

rate.

2.4 Results

In this section numerical explorations of the impacts of quarantine early detected EVD-

infected individuals are shown. The contagion process is assumed to start by the intro-

duction of a single infected individual I(0) = 1, into a completely susceptible population

S(0) = 10,000, where the rest of initial conditions are Q(0) = D(0) = R(0) = 0. Infected

individuals’ disease progression is assumed to follow model (2.1), calibrated by using the

parameter values in Table 2.1.

In Section 2.4.1 the effects of different quarantine capacities (q) and isolation effective-

ness (l) on the epidemic dynamics, is explored. Section 2.4.2 is devoted to study the role
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of the EVD-dead bodies disposal rate (ν) on the quarantine effectiveness. In Section 2.4.3

the effects of implementation delay on quarantine are numerically explored via the final

epidemic size.

2.4.1 The Role of Quarantine and Isolation Effectiveness

The unprecedented scale of the West African EVD epidemic exposed the hidden danger

of weak health systems in highly dense regions (Piot et al., 2014; Fowler et al., 2014). In

this Section, the inability to detect and isolate a large fraction of EVD-infected individuals

before symptoms onset is addressed. Via numerical explorations, the effects of distinct

quarantine levels (assumed constant over the epidemic course), implemented at different

isolation effectiveness are studied.

Figure 2.2 shows the EVD attack rate (final proportion of infected individuals) as func-

tion of the proportion of quarantined infected individuals. It is shown that even under per-

fect quarantine (l = 0), epidemic mitigation (when intended only by quarantine) requires

to reach at least 60% of the incident population in order to properly manage an Ebola out-

break. Figure 2.2 shows that quarantine effectiveness bellow 50% ameliorates the attack

rate, but even detecting the whole incident population is not enough to mitigate the Ebola

outbreak. In other words, the impact of a massive quarantine program is not meaningful

for “low” quarantine effectiveness is. Figure 2.3 shows the desirable quarantine capacity

and quarantine effectiveness in terms of the control reproductive number RC(q, l), in order

to properly manage an EVD outbreak.
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Figure 2.2: EVD attack rate as func-
tion of pre-symptomatic diagnosed in-
dividuals, for isolation effectiveness
φ = 80%,100% and the extreme case
φ = 50%. The dashed gray line indi-
cates no infectiousness reduction φ =
0%.
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Figure 2.3: Isolation effectiveness of
infected individuals as function of the
proportion of latent individuals diag-
nosed before symptoms onset.

Model construction allows to characterize the role of EVD-infected corpses on the final

epidemic size under various control scenarios. The gray curve in Figure 2.2 shows the

solely impact of properly handle a q proportion of EVD-infected corpses, when quarantine

individuals infectiousness is not reduced (l = 1). Particularly, under the extreme case when

all pre-symptomatic individuals are detected (q= 1) and all resulting EVD-infected corpses

are properly removed, the attack rate is slightly reduced.

Figure 2.3 shows the level curves of the control reproductive number as function of

quarantine capacity and effectiveness, for values RC(q, l) = 2,1.5 and the critical threshold

RC = 1. The threshold relation quarantine effectiveness and quarantine capacity is high-

lighted by the level curve RC = 1. The pure effect of properly managing EVD-infected

corpses, leads the control reproductive number to RC = 2. This result suggest that at

the early stage of the epidemic, each two non-removed EVD-infected corpses produced

a new secondary infection during the average removal period. Previous results suggest

that quarantine programs can eradicate an Ebola outbreak with the characteristics or the

West African epidemic, provided an isolation effectiveness above 50% and whenever at
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least 60% of the incident population is quarantined. In order to illustrate this result, Figure

2.4 shows that quarantine of 55% of pre-symptomatic individuals with null infectiousness

(l = 0) impacts the evolution of the epidemic but is not enough to stop the infectious pro-

cess. In contrast, Figure 2.5 shows that preventing 60% of pre-symptomatic individuals of

producing secondary infections leads to the eventual control of the EVD outbreak.
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Figure 2.4: Time series of infected and
quarantine of 55% pre-symptomatic in-
dividuals under perfect isolation (l = 0).
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Figure 2.5: Time series of infected and
quarantine of 60% pre-symptomatic in-
dividuals under perfect isolation (l = 0).

From equation (2.3), it is possible derive an expression relating the minimum quarantine

capacity required to control an EVD outbreak, given a quarantine effectiveness value

q(l) =
1−R0

RQ(l)−R0
. (2.8)

Figure 2.6 shows the threshold condition RC = 1 denoting the quarantine capacity and

quarantine effectiveness combination needed to control an EVD outbreak.

q

l

RC < 1

RC > 1

0.0 0.1 0.2 0.3 0.4 0.5

0.6

0.7

0.8

0.9

1.0

Figure 2.6: Level curve of RC = 1 on the plane (l,q)
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Usually, it is difficult to assess whether increasing quarantine capacity or increasing

quarantine effectiveness is the best option in order to enhance sanitary conditions. From

equation (2.2), it is possible to characterize the scenarios for which increasing quarantine

capacity or increasing isolation effectiveness produces similar impact on reducing the num-

ber of EVD secondary cases. This occurs whenever the secondary infections produced by

quarantined individuals equals the cumulative secondary infections produced by non quar-

antined infected individuals and EVD-infected corpses. This is

lβ
γ

= (1−q)
β

γ
+β

fdε

ν
, which implies l = 1−q+

fdεγ

ν
. (2.9)

Figures 2.7 and 2.8, shows the control reproductive number level curves and the attack

rate level curves in the (q, l) plane. The red (dashed) line represents the scenarios where

augmenting isolation effectiveness produces the same effect that increasing quarantine ca-

pacity.
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Figure 2.7: Control reproductive num-
ber for all quarantine capacities and ef-
fectiveness. Along the dashed red curve
increasing quarantine capacity reduces
RC equally than increasing quarantine
effectiveness.
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Figure 2.8: Attack rate for all quarantine
capacities and effectiveness. Over the
red curve increasing quarantine capacity
or effectiveness, produces the same re-
duction of the attack rate.
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For l > 1−q+ fdεγ

ν
, increasing quarantine effectiveness produces a greater benefit than

increase quarantine capacity; while for l < 1− q+ fdεγ

ν
the major benefit is given by in-

creasing quarantine capacity.

Moreover, note that unless quarantine reach at least ≈ 20% of pre-symptomatic indi-

viduals, increasing quarantine effectiveness does not produce a significant reduction on the

control reproductive number and in consequence the attack rate. This suggest the existence

of a tipping point in the relation between quarantine capacity and quarantine effectiveness.

More precisely, results suggest that quarantine effectiveness becomes critical provided a

minimum quarantine capacity of around 20% of pre-symptomatic individuals is attained.

In summary, according to the presented results, early detection and quarantine of pre-

symptomatic infected individuals would mitigate an Ebola outbreak. Nevertheless, EVD

mitigation would require extraordinary logistic and coordination efforts. Specifically a

quarantine program intending to effectively manage a West African like epidemic would

require to isolate a minimum of 60% of early diagnosed infected population. Furthermore,

results suggest that without the capacity to isolate at least 20% of pre-symptomatic indi-

viduals, increasing isolation effectiveness does not produce substantial benefits.

2.4.2 The Role of EVD-infected Corpses in the Control of EVD

EVD control efforts might not be restricted to guarantee enough quarantine capacity

and enough isolation quality. Providing fast removal of EVD-infected corpses substantially

helps on breaking transmission chains. During the 2014 West African Ebola outbreak news

coverage reported that burial teams capacity were exceeded (ABC News, 2014). Despite

of efforts done to persuade communities of avoiding traditional high risk burials, because

these had a triggering effect on the spread of EVD, inhabitants continued practicing tradi-

tional burial ceremonies to EVD-infected corpses of relatives (Hewlett and Amola, 2003;

Piot et al., 2014).
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In this section, the role of EVD-infected corpses in the infection process is studied.

Particularly, this work focus on addressing how reducing the average removal period of

EVD-infected bodies impacts the relationship between quarantine capacity and quarantine

effectiveness (equation (2.6)) needed to appropriately manage an EVD epidemic with sim-

ilar characteristics to the West African scenario.

By equation (2.8), the minimum quarantine needed to eradicate an EVD outbreak de-

pends on both quarantine effectiveness and infected dead bodies removal period. Figure

2.9, shows the relationship between quarantine capacity (q) and quarantine effectiveness

(l) required to take RC = 1, for scenarios when EVD-infected corpses are removed on av-

erage after two days, one day and safely removed without exposing susceptible individuals.

By reducing susceptible individuals’ exposure to EVD-infected corpses the quarantine ca-

pacity required to manage an EVD outbreak diminishes. Moreover, the impact of reducing

susceptible population’s exposure time to EVD-infected corpses increases as quarantine

effectiveness improves. Decreasing the critical quarantine capacity of pre-symptomatic in-

fected individuals to 50%, when perfect isolation (l = 0) is achieved. Moreover, under

quarantine effectiveness bellow the critical 50%, reducing susceptible population’s expo-

sure to EVD-infected corpses does not facilitate EVD management.
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Figure 2.9: The effect of EVD-infected
corpses on the quarantine capacity and
effectiveness required to properly man-
age 2014 West African like EVD out-
break.
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Figure 2.10: Attack rate for infected dis-
posal periods of two days, one day and
no exposure.
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Figure 2.10 shows that reducing EVD-infected corpses average removal period consid-

erably shift down the attack rate curve, ameliorating the impact of an EVD epidemic and

particularly, reducing the minimum quarantine capacity needed to control the West African

EVD outbreak.

The presented model calibrated to the West African Ebola outbreak suggest that in-

fected individuals produced on average two new infections, while for each two non-removed

EVD-infected corpses a new infection occurs. Fast removal of EVD-infected corpses sig-

nificantly reduces the attack rate per se. However, when combined to effective quarantine,

fast removal of EVD-infected corpses substantially reduces the minimum quarantine ca-

pacity needed to eradicate EVD.

2.4.3 The Impact of the Intervention Time on the Control of EVD

Due to the lack of appropriate preparedness and capacity, local health care systems were

fast overwhelmed during the West African EVD epidemic. In few weeks international aid

became critical on boosting local health services to the point it was possible fight EVD.

The epidemic quickly spread across the West Africa region, and in consequence, the time

it took international community to reinforce local response against Ebola became critical,

particularly after the implementation of cordons sanitaires. Calls for international aid were

officially done after the virus reached highly dense populated cities, by the end of June

2014 Médecins Sans Frontières (MSF) declared the Ebola outbreak out of control, while

until August 2014 the WHO declared it an international threat (UN, 2018).

Previous results studied the impact of quarantine implementation by assuming the con-

trol intervention is effective since the beginning of the epidemic. In this section, the impact

of applying delayed quarantine programs as a control measure against an West African like

EVD epidemic is studied. Numerical explorations focus on the effect of delayed quarantine

implementation on the final number of EVD-infected individuals. In the explored scenar-
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ios, the proportion of diagnosed individuals taking to quarantine is assumed constant over

time, and quarantined individuals are assumed to be effectively isolated, (l = 0).

Figure 2.11 shows the epidemic evolution when quarantine programs diagnosing 60%,

50%, 30% and none pre-symptomatic individuals are implemented 75 days after the in-

dex case. Particularly, it is shown that detecting and quarantining at least 60% of pre-

symptomatic individuals produce a monotonic decreasing of the prevalence.
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Figure 2.11: Effects of quarantine 60%,
50% 30% and no quarantine on the EVD
prevalence, after 75 days of the index
cases.
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Figure 2.12: The effect of quarantine
implementation time on the attack rate.

It is clear that control efforts’ impact is strongly dependent on the implementation time.

Figure 2.12, shows that late implementation of a massive and highly effective quarantine

program diagnosing pre-symptomatic individuals, produces similar effects on the attack

rate than early implementation of a smaller quarantine program. Thus, highlighting the

importance of a fast response at local levels.

2.5 Discussion

Reverse Transcription Polymerase Chain Reaction (RT-PCR) technology offers new

perspectives on the control strategies available against EVD, by early detecting EVD-

infected individuals in a period of up to three days before symptoms onset. Results showed
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that quarantine programs targeting pre-symptomatic individuals can eradicate an ongoing

EVD outbreak provided high enough scope and a substantial reduction of quarantined in-

dividuals contagiousness. According to the presented model, high quarantine capacity is

required even when perfect isolation is accomplished (at least 60% of the infected popula-

tion). This minimal quarantine capacity is highly sensitive to both, quarantine effectiveness

and EVD-infected corpses burial period. Particularly, reducing secondary infections pro-

duced by contacts with EVD-infected corpses, substantially reduces the efforts required

to reduce the basic reproductive number bellow one. Furthermore, the impact of delayed

quarantine implementation dramatically reduces over time. Not surprising, the impact of

delayed massive quarantine programs providing perfect isolation on the attack rate, is com-

parable to earlier implemented local quarantine programs.

The fragile health system of the affected regions were incapable to provide an adequate

fast response during the 2014 West African Ebola outbreak. This, when combined to the

reduced effects of delayed implementation of control strategies allowed the EVD epidemic

to became a catastrophic event, and call to allocate collective liability on improving sanitary

conditions in the West African EVD vulnerable regions. The simplicity of the used model

naturally leads to an overestimation on the dynamics of the EVD epidemic. Structured

population models by incorporating population’s heterogeneity might help to disentangle

the role of localized interventions on the control of EVD.
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Chapter 3

THE LAGRANGIAN APPROACH

Mathematical models of infectious diseases envision transmission through “collisions” be-

tween susceptible and infected individuals. These collisions or contacts assumed (in the

simplest case) random over the population, represent the building blocks behind the con-

tagion process (Castillo-Chavez et al., 2016). The impossibility of clearly defining what a

successful contact means in the context of epidemiology, precede the difficulty to appropri-

ately measure individuals’ interactions. For instance, it has been shown that the concept of

contact strongly affects model results. The assumption of contact types, contacts frequency

and duration of contacts, as well as mixing patterns, play important roles in modeling a

contagion process (Mossong et al., 2008). The issue of homogeneity in epidemiology has

been addressed, for example, through meta-population models or models with patchy land-

scapes, and network-based models (Arino and Van den Driessche, 2006; Sattenspiel and

Dietz, 1995; Arino and Van Den Driessche, 2003; Van den Driessche, 2008). Such mod-

els recognize the importance of a disease transmission dependent on the environment and

individuals’ activity varying across patches with different characteristics. Furthermore, by

labeling individuals according to their place of residency, it is possible to track them across

different regions at all times through the corresponding traveling rates.

Metapopulation models as tractable mathematical tools aimed to incorporate popula-

tion’s heterogeneity, usually require a large number of parameters in order to perform sim-

ulations. For instance in modeling the spread of Measles in the 1984 epidemic in Dominica

(Sattenspiel and Dietz, 1995). The model used differentiated traveling rates between in-

fants, school-age children and adults, thus becoming highly complex and requiring a lot

of data to simulate. Recognizing the value of mathematical models as analytic tools from

23



which qualitative insights can be obtained is important. In this regard, simple models or

models accounting for measurable parameters becomes paramount in order to couple math-

ematical modeling to data obtained from experimental works.

The Lagrangian perspective stresses this modeling principle by conceiving the infec-

tious process as the result of individuals being exposed to different infection risks while

sojourning in different environments (patches). A patch is conceived as any location where

individuals’ interactions can occur, and under the Lagrangian approach, it is endowed with

a specific “transmission risk”, βi. This parameter collects patch specific attributes like so-

cial and economic conditions, health care access, among others. In this framework, the

infection risk is an intrinsic property of the environment and independent of the popula-

tion group. Individuals experience different risks of infection as they move across different

environments, i.e. the risk of infection is seen as a function of the residency time spent

in a given environment, or as a function of the proportion of contacts occurred (Bichara

et al., 2015; Bichara and Castillo-Chavez, 2016; Castillo-Chavez et al., 2016, 2003). The

Lagrangian perspective represents a simple, yet powerful way to build mathematical mod-

els including heterogeneity. Lagrangian approaches have been used, for instance, to study

vector-borne diseases (Iggidr et al., 2016; Wesolowski et al., 2012). However, the frame-

work used by researchers ignores the effect of mobility on the patch-specific population

size at time t, that is, the patch population is composed by local individuals for all t. The

Lagrangian framework through residency times used in the present work incorporates the

concept of effective population. This is, the expected population in a given patch at time t,

is composed by residents and visitant individuals, and ultimately weighted by the average

activity level of these populations in each patch. Specifically, by letting Ni denote the pre-

dispersal (on isolation) Patch i population, the effective population size in Patch i at time

t is given by ∑
n
j=1 p jiN j. Furthermore, individuals’ activity is monitored via a residency

matrix P= (pi j)1≤i, j≤n, where pi j stands for Patch i residents’ average proportion of time
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spent in Patch j, per unit time, and ∑
n
j=1 pi j = 1 (Bichara et al., 2015; Castillo-Chavez

et al., 2016; Bichara and Castillo-Chavez, 2016). In general, residency times are not con-

stant over time and across populations groups. For example, the time an individual spends

in different environments can be the result of the social behavior exhibited when facing

an epidemic, in this scenario residency times might be a function of the proportion of the

infectious population sojourning in each patch at time t. Hosts’ response to illness has also

been addressed through the Lagrangian approach via residence times. Under this scenario,

the time an individual spend in a given environment varies according to the individual’s

epidemiological status (Bichara and Iggidr, 2017).

In the Lagrangian perspective, the total risk of infection perceived by a susceptible in-

dividual per unit time, is the sum of all the (in general different) infection risks experienced

by such individual while sojourning on different environments. Individual’s exposure to

patch-specific risks is weighted by their corresponding activity level on each environment

(residency time or proportion of contacts). This is, the classical force of infection term

βS I
N under the Lagrangian framework through residence times reads as follows

Si

n

∑
j=1

β j pi j
∑

n
k=1 pk jIk

∑
n
k=1 pk jNk

(3.1)

where β j stands for the Patch j risk of infection, pi j is the average proportion of time Patch

i residents spend in Patch j, and the infectious proportion of the population sojourning in

Patch j is denoted by ∑
n
k=1 pk jIk

∑
n
k=1 pk jNk

. In summary, the Lagrangian approach incorporates het-

erogeneity by weighting individuals’ activity levels (through proportion of contacts spent

or the proportion of time sojourning in each environment) exhibited across environments

which have different infection risks. The value of the Lagrangian approach through res-

idency times resides on the parameter’s clear definitions, which in turn allows for exper-

imental assessment. For instance, the patch-specific infection risk can be experimentally

measured as it is conceived as an intrinsic patch property. This increases the value of
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mathematical models based on this framework, since the parameters used are potentially

measurable. Previous work using the Lagrangian approach through residency times ex-

plored the effects of mobility in the context of Ebola, Tuberculosis and Zika (Espinoza

et al., 2016; Moreno et al., 2017a,b). By using a simple two patch landscape, the impact of

host-movement on the local and global transmission dynamics on neighboring regions hav-

ing highly distinct infection risks is assessed. In the study of Ebola, the cordons sanitaires

effectiveness was assessed by studying traveling ban in a two patch system consisting of

equally dense populations.

Broader use of this framework can intuitively be constructed, for instance in ecology, in

the problem of patch selection, incorporation of residency times would be a natural exten-

sion. Furthermore, the conception of patch as a geographical environment can also easily

be generalized to a broader concept. For example, any system allowing for diverse “strate-

gies” can be studied by thinking about these strategies as patches, while the “residency

time” can be seen as the proportion of time a particular strategy is used, or as the weight a

particular strategy has on the final output.
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Chapter 4

CONSEQUENCES OF SHORT TERM MOBILITY ON THE WEST AFRICAN EBOLA

OUTBREAK

4.1 Introduction

The largest Ebola Virus Disease (EVD) epidemic documented in history started on De-

cember 2013 in the West African region. The Ebola virus (EBOV), formerly designated

Zaire ebolavirus and the most dangerous of the Ebolavirus genus, was identified as the cul-

prit. Few days after the outbreak started in the village of Meliandou, Guéckédou Prefecture,

in Guinea, secondary cases were also detected in the neighboring countries of Sierra Leone

and Liberia. The epidemic quickly spread in the triple border of these countries, a region

where high commercial transit considerably increased the likelihood of EVD international

dissemination (Gomes et al., 2014).

In response against a rapidly evolving EVD otubreak, on August 1st , 2014 governments

decided to implement a cordons sanitaires, a controversial old tactic used to stop the spread

of an epidemic and not seen in centuries. The control strategy consisted on imposing trav-

eling bans around the region containing the majority of the known cases. Individuals inside

the cordoned area were banned from traveling outside, and borders were aggressively moni-

tored by making use of military force (Agence France-Presse, 2018). Although the cordons

sanitaires are aimed to avoid potential secondary cases produced outside the cordoned area,

individuals within suffered from scarcity, lack of medical services and crowding, conditions

potentially leading the affected population to experience an elevated risk of EVD infection

(Amesh Adalja, 2018; R. K. Hoffmann et.al, 2018; Towers et al., 2014).
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Many factors jointly acted to produce the catastrophic 2014 West African epidemic.

Fragile local health infrastructure, and a population being exposed by first time to EVD,

with a high devotion to unsafe traditional practices, affected the massive control efforts im-

plementation and effectiveness (Matua et al., 2015; CDC, 2018c). Moreover, the commer-

cial importance of the affected region exposed a large mobile population to EVD infection,

these individuals traveled across regions absent of disease reigniting EVD transmission

chains and as consequence promoting a generalized risk of infection across affected regions

(WHO, 2018). The effectiveness of the cordons sanitaires strategy implemented during the

West African outbreak has been previously analyzed by using a two patch model with dif-

ferential risk (Espinoza et al., 2016). Authors showed that travel ban across neighboring

regions having highly distinct sanitary conditions not always minimize the total EVD bur-

den. Their results suggest the existence of mobility levels producing total EVD burden

levels bellow the cordons sanitaires scenario.

In this chapter, a two-patch model coupled by tracking individual’s residency times

across patches, is used to study the dynamics of EVD on heterogeneous risk environments

in the presence of mobility. By tracking individuals’ place of residency and the proportion

of time spent in each patch, the mobility conditions producing beneficial effects on the

EVD control are assessed. It is assumed that one of the patches exhibits similar conditions

to those seen within the cordoned area during the West African EVD epidemic, while the

second patch is assumed to offer better sanitary conditions and a low infection risk. While

sojourning in the cordoned patch (“high-risk” patch), individuals are assumed to experience

a high risk of EVD infection, in counterpart, during the time spent outside the cordoned

region (“low-risk” patch), individuals are assumed to experience a minimal EVD infection

risk. Results suggest that allowing individuals from the cordoned region to spend time

in the safer region can have beneficial or detrimental effects, depending on the mobility

levels. While “low” mobility levels tend to produce a detrimental effect by increasing the
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overall attack rate, “intermediate” and “high” mobility levels tend to be beneficial, reducing

the overall attack rate. Furthermore, “high” mobility levels can mathematically control

the EVD epidemic, provided a “safe enough” neighboring environment. Two mobility

thresholds are identified, the cordons sanitaires threshold and the EVD control threshold,

and their dynamics are assessed for various population’s density ratios and patch-specific

risks of infection.

The rest of the chapter is organized as follows, in Section 4.2, a single patch model de-

scribing EVD progression (in absence of control measures) among a population is derived.

The single patch model’s basic reproductive number and the final epidemic relation are

computed. Section 4.3 is devoted to derive the two patch model with patch specific risks

of infections in terms of residency times. Within Section 4.4 the analysis of the EVD dy-

namics on heterogeneous risk environments is presented, more precisely, the global basic

reproductive number, the patch-specific basic reproductive and the global final epidemic

size relation in the presence of mobility are computed. Section 4.5 contains the main re-

sults derived via numerical explorations. In Section 4.6, the final conclusions and a short

discussion on the results implications are stated.

4.2 Model Derivation

The population of interest is structured by individual’s epidemiological states: Suscep-

tible (S), Latent (E), Infected (I), EVD-infected corpses (D) and, Removed EVD-infected

corpses and Recovered individuals (R). The total population, including EVD-infected

corpses is then, N = S+E + I +D+R. Susceptible individuals move to the infected com-

partment at rate β

(
I+εD

N

)
through “effective” contacts with either infected individuals (I)

or EVD-infected corpses (D). Infected individuals spend on average 1
κ

days on latency

state, without being infectious. After the latency period, individuals become infectious (I)

on average during 1
γ

days, after which, individuals either recover with probability (1− fd)
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or die with probability fd . EVD-infected corpses (D) subpopulation is assumed to increase

at rate fdγ , and reduced through properly burial on average after 1
ν

days. Due to have the

highest viral load, EVD-infected corpses are assumed to be more infectious than infected

individuals (I), ε > 1. Figure 4.1 shows the EVD contagion process

S E I D R
⌫

(1 � fd)�

fd��

✓
I + "D

N

◆

Figure 4.1: SEIDR model for Ebola Virus Outbreak

while system (4.1), mathematically describes population transitions through the EVD

disease states 



N = S+E + I +D+R

Ṡ =−βS
(

I+εD
N

)

Ė = βS
(

I+εD
N

)
−κ

İ = (1−q)κE− γI

Ḋ = fdγI−νD

Ṙ = (1− fd)γI +νD

(4.1)

and Table 4.1 collects the parameter descriptions and values used in simulations

Table 4.1: Parameters of the single patch EVD model.
Parameter Description Base model values

β Per susceptible infection rate 0.287 (Althaus, 2014)

γ Rate at which an infected recovers or dies 1/7 (Team, 2014)

κ Per-capita progression rate to latent detectable stage 1/7 (Legrand et al., 2007)

ν Per-capita body disposal rate 1/2 (Legrand et al., 2007)

fd Proportion of infected who die due to infection 0.7 (Team, 2014)

ε Scale: Ebola infectiousness of EVD-infected corpses > 1 (Li et al., 2016)
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The population in (4.1) is constant and Ω = {(S,E, I,R) ∈R4
+|S+E + I +R≤ N} is a

compact positively invariant set, hence solutions of (4.1) behave as biologically expected.

By using the next generation approach, with disease compartments E, I, D the associated

basic reproductive number is computed (Diekmann et al., 1990; van den Driessche and

Watmough, 2002),

R0 = β

(
1
γ
+

ε fd

ν

)
. (4.2)

The basic reproductive number of system (4.1) captures the average number of secondary

infections produced by a typical infectious individual during their infectious period
(

β

γ

)
,

and the secondary cases generated by a single EVD-infected corpse, during its disposal

period
(

εβ fd
ν

)
, in a totally susceptible population. The final size of the epidemic, in terms

of the final proportion of infected population (attack rate) is expressed as follows

log
N
S∞

= R0

(
1− S∞

N

)
. (4.3)

Equation (4.3) is called the final size relation, and it gives a relationship between the basic

reproductive number and the size of the epidemic (Brauer et al., 2001).

4.3 Ebola Dynamics on Heterogeneous Risk Environments

Structured population models have been used to, for example, study the impact of a

particular groups in a population or design targeted disease surveillance strategies. This

approach allows to assess the accuracy of local specific characteristics as indicators of the

large scale behavior of, for instance, the spread of an epidemic (Keeling, 1999; Eubank

et al., 2004; Stroud et al., 2007). However, for structured models to prove valuable in prac-

tical epidemiological scenarios, they must require both specific and measurable parame-

ters allowing for experimental design in order to obtain specific data for model calibration

(Keeling, 1999; Castillo-Chavez et al., 2016). Frameworks implementing the Lagrangian

perspective seems to be ad-hoc to this task, by tracking individuals according to their place
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of residency at all times, the population’s specific impact on the overall disease dynamics

can be assessed (Castillo-Chavez et al., 2003; Bichara et al., 2015).

This work uses the Lagrangian approach through residency times to track individuals’

activity on a two patch setting, i.e the proposed model assess the average proportion of

time individuals’ spent in each patch through the residency times matrix P = (pi j), i, j ∈

{1,2}, where pi j ≥ 0 are constant over time (Bichara et al., 2015; Castillo-Chavez et al.,

2016). In this way, homogeneity is broken at the patch scale, while individuals’ behavior

within patches is assumed homogeneous. The community of interest is assumed to be

composed by two adjacent regions facing distinct levels of EVD infection. Differences

on risks of infection captures in a single parameter specific patch’s attributes as economy

levels, education access, healthcare access, cultural practices, etc.

The new cases of infection per unit time are modeled by incorporating the effective

density of individuals sojourning in each patch, i.e. the expected amount of residents and

visitants sojourning in Patch i at time t. By following the previous reasoning, the new

infections within Patch j residents are given by

ϕ( j) = βi︸︷︷︸
Patch i infection risk

p jiS j︸︷︷︸
Expected Patch j susceptible pop. in Patch i

piiIi + p jiI j

piiNi + p jiN j︸ ︷︷ ︸
Proportion of infected pop. in Patch i

(4.4)

+ β j︸︷︷︸
Patch j infection risk

p j jS j︸ ︷︷ ︸
Expected Patch j susceptible pop. in Patch j

pi jIi + p j jI j

pi jNi + p jiN j︸ ︷︷ ︸
Proportion of infected pop. in Patch j

(4.5)

this is, Patch j residents can get infected at their patch of residency (with risk of infection

β j) and while sojourning in Patch i (with risk of infection βi). Since times of residency

holds pii + pi j = 1, in the proposed two patch system, ti is used to denote the Patch i

residents’ average proportion of time in Patch j, while 1− ti denotes the average proportion
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of time Patch i residents’ spend in their own patch. Hence the expected proportion of

infected population sojourning in Patch i at time t is expressed as

(1− ti)Ii + t jI j

(1− ti)Ni + t jN j
(4.6)

Finally, the proposed model assumes that EVD-infected corpses are not transported across

patches, and secondary infections produced by EVD-infected corpses occurs over the local

population. In other words, burial events are assumed to be practiced by resident local

individuals. Thus, by following the construction of model (4.1), the dynamics of EVD in a

two patch landscape, with distinct risk of infection is described by the following system of

differential equations




Ni = Si +Ei + Ii +Di +Ri

Ṡi =−(1− ti)βiSi

(
(1−ti)Ii+t jI j
(1−ti)Ni+t jN j

+ εDi
Ni

)
− tiβ jSi

(
tiIi+(1−t j)I j

tiNi+(1−t j)N j

)

Ėi = (1− ti)βiSi

(
(1−ti)Ii+t jI j
(1−ti)Ni+t jN j

+ εDi
Ni

)
+ tiβ jSi

(
tiIi+(1−t j)I j

tiNi+(1−t j)N j

)
−κEi

İi = κEi− γIi

Ḋi = fdγIi−νiDi

Ṙi = (1− fd)γIi +νiDi

(4.7)

where i, j ∈ {1,2} and i 6= j.

4.4 Model Analysis

4.4.1 EVD Basic Reproductive Number on Heterogeneous Risk Environments

System’s (4.7) control and basic reproduction numbers are computed by following the

next generation approach (Diekmann et al., 1990; van den Driessche and Watmough, 2002).

Consider the infectious compartments E1, I1, D1, E2, I2 and D2, evaluating at the Disease
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Free Equilibrium (DFE), leads to S1(0) = N1 and S2(0) = N2. Then

F =




(1− t1)β1S1

(
(1−t1)I1+t2I2
(1−t1)N1+t2N2

+ εD1
N1

)
+ t1β2S1

(
t1I1+(1−t2)I2

t1N1+(1−t2)N2

)

0

0

t2β1S2

(
(1−t1)I1+t2I2
(1−t1)N1+t2N2

)
+(1− t2)β2S2

(
t1I1+(1−t2)I2

t1N1+(1−t2)N2
+ εD2

N2

)

0

0




and

V =




κE1

−κE1 + γI1

− fdγI1 +ν1D1

κE2

−κE2 + γI2

− fdγI2 +ν2D2




,

evaluated at the DFE, S∗1 = N1 and S∗2 = N2. Hence

F =




J1 K1

K2 J2




where

Ji =




0 Mi (1− ti)εβi

0 0 0

0 0 0



, Ki =




0 Ci 0

0 0 0

0 0 0



,

and

Mi =
Ni(1− ti)2βi

(1− ti)Ni + t jN j
+

t2
i Niβ j

tiNi +(1− t j)N j
, Ci =

(1− ti)Nit jβi

(1− ti)Ni + t jN j
+

ti(1− t j)Niβ j

tiNi +(1− t j)N j
,
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and

V =




κ 0 0 0 0 0

−κ γ 0 0 0 0

0 − fdγ ν1 0 0 0

0 0 0 κ 0 0

0 0 0 −κ γ 0

0 0 0 0 − fdγ ν2




.

The basic reproduction number of model (4.7), in the presence of mobility, is given by the

spectral radius of the next generation matrix, R0(t1, t2) = ρ(−FV−1). Note that the basic

reproductive number is a function of the patch-specific mobility and risk levels (P and βi

respectively), as well as patch-specific densities (Ni).

4.4.2 EVD Final Epidemic Size on Heterogeneous Risk Environments

By using the notation f̂ (t) =
∫

∞

0 f (s)ds and f ∞ = limt→∞ f (t), it is possible to find the

Patch-specific final epidemic size, as function of times of residency. By assuming Si(0) =

Ni, E1i(0) = E2i(0) = Ii(0) = Qi(0) = Di(0) = 0, and by adding the first two equations

Ṡi + Ė1i =−κ1Ê1i, then E∞
1i = 0. Following the same reasoning E∞

2i = I∞
i = Q∞

i = D∞
i = 0.

From the first two equations Ê1i =
Ni−S∞

i
κ1

, and similar reasoning leads to Ê2i =
Ni−S∞

i
κ2

, Îi =

(Ni−S∞
i )

(1−qi)
γ

, Q̂i = (Ni−S∞
i )

qi
γ

, D̂i = (Ni−S∞
i )

(1−qi) fdνi
γ

.
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From model’s (4.7) first equation, the secondary infections among the Patch i popula-

tion, produced by Patch i and Patch j individuals are given by

log

(
N1

S∞
1

)
=(N1−S∞

1 )


(1− t1)β1




(1−t1)
γ

(1− t1)N1 + t2N2
+

ε fd
ν1

N1


 + t1β2

t1
γ

t1N1 +(1− t2)N2




+(N2−S∞
2 )


(1− t1)β1

t2
γ

(1− t1)N1 + t2N2
+ t1β2

(1−t2)
γ

t1N1 +(1− t2)N2




log

(
N2

S∞
2

)
=(N1−S∞

1 )


(1− t2)β2

t1
γ

t1N1 +(1− t2)N2
+ t2β1

(1−t1)
γ

(1− t1)N1 + t2N2




+(N2−S∞
2 )


(1− t2)β2




(1−t2)
γ

t1N1 +(1− t2)N2
+

ε fd
ν2

N2




+ t2β1

t2
γ

(1− t1)N1 + t2N2




which is expressed in vector form as



log

(
N1

S∞
1

)

log

(
N2

S∞
2

)



=




B11 B12

B21 B22







1− S∞
1

N1

1− S∞
2

N2


 (4.8)

36



where

B11 =


(1− t1)β1




(1−t1)
γ

(1− t1)N1 + t2N2
+

ε fd
ν1

N1


 + t1β2

t1
γ

t1N1 +(1− t2)N2


N1,

B12 =


(1− t1)β1

t2
γ

(1− t1)N1 + t2N2
+ t1β2

(1−t2)
γ

t1N1 +(1− t2)N2


N2,

B21 =


(1− t2)β2

t1
γ

t1N1 +(1− t2)N2
+ t2β1

(1−t1)
γ

(1− t1)N1 + t2N2


N1

B22 =


(1− t2)β2




(1−t2)
γ

t1N1 +(1− t2)N2
+

ε fd
ν2

N2


 + t2β1

t2
γ

(1− t1)N1 + t2N2


N2.

Model’s (4.7) final size relation is denoted by the patch-specific final proportion of infected

individuals (or attack rate) 


1− S∞
1

N1

1− S∞
2

N2


 ,

and the matrix B, capturing the secondary infections produced by Patch 1 and Patch 2 indi-

viduals in each environment. For instance, B12 accounts for the Patch 1 residents infected

by Patch 2 inhabitants in both environments, while spending 1− t1 time in their patch of

residency and having contact with an infected Patch 2 visitor individual at rate

(1− t1)β1

t2
γ

(1− t1)N1 + t2N2

and while visiting Patch 2 and being infected by Patch 2 inhabitants at rate

t1β2

(1−t2)
γ

t1N1 +(1− t2)N2
.

Furthermore, the eigenvalues of the matrix B on the final epidemic size are the same of the

second generation matrix, then the global basic reproductive number is also the spectral
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radius of B (Bichara et al., 2015). Under this framework the global reproductive number

is a function of the mobility matrix (P) and the patch specific basic reproductive numbers

(R0i), defined in the absence of mobility (t1 = t2 = 0), so that, R0 = f (P,R01,R02).

Let s∞
i = lim

t→∞

Si(t)
Ni

, represent the proportion of the population remained susceptible at

the end of the epidemic. Then, from equation (4.8)

s∞
1 = exp[−B11(s∞

1 −1)−B12(s∞
2 −1)],

s∞
2 = exp[−B21(s∞

1 −1)−B22(s∞
2 −1)].

which in terms of the total number of disease cases from Patch i over the course of the

epidemic (yi = 1− s∞
i ), takes the form

y1 = 1− exp[−y1B11]exp[−y2B12],

y2 = 1− exp[−y1B21]exp[−y2B22].

(4.9)

System’s (4.9) solution (y∗1,y
∗
2), represents the patch-specific attack rates. Therefore, the

total final epidemic size (ϕ) as a function of the patch-specific density, risk and mobility

levels, is given by

ϕ(N1,N2,R01,R02, t1, t2) = N1y∗1 +N2y∗2 (4.10)

4.4.3 The Patch-Specific Basic Reproductive Number in the Presence of Mobility

The patch-specific basic reproductive number in the absence of mobility incorporates

the secondary infections produced among the resident population. In the presence of mo-

bility, the Patch-specific basic reproductive number should accounts for the secondary in-

fections produced among the resident and the visiting population, where the secondary

infections generated can occur through contacts with locals or visitant infected individuals.

The threshold condition for disease prevalence among the Patch i population, when indi-

viduals experience differential risk while moving across patches, spending on average pi j
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proportion of their time in Patch j, reads as follows

Ri
0(P) = Ri

0×
n

∑
j=1

(
β j

βi

)
pi j




(
pi j

bi
di

)

∑
n
k=1 pk j

bk
dk


 (4.11)

where βi stands for the Patch i infection risk, pi j is the average proportion of time individ-

uals from Patch i spend in Patch j, Ri
0 represents the Patch i basic reproductive number

in the absence of mobility and bi
di

is the Patch i population at equilibrium (Bichara et al.,

2015). Initially the aforementioned condition was stated as the patch-specific basic repro-

ductive number. However, the patch-specific basic reproductive number must be dependent

uniquely on the local infection risk. Furthermore, model construction implies that the Ṡi

equation captures the secondary infections produced among Patch i individuals across en-

vironments.

In this work, an expression accounting for the secondary infections produced in each

environment is derived from the computation of the total final epidemic size relation ex-

pressed by equation (4.8), and particularly, by using the associated matrix B, which cap-

tures the secondary infections produced in each environment. Denoting ϕ = log
(

N1
S∞

1

)
+

log
(

N2
S∞

2

)
, the total final size relation can be expressed in terms of the infections generated
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in each environment as follows

ϕ = (N1−S∞
1 )

[
(1− t1)β1

(
(1− t1)/γ

(1− t1)N1 + t2N2
+

ε fd/ν1

N1

)
+(1− t1)β1

t2/γ

(1− t1)N1 + t2N2

]

︸ ︷︷ ︸
Patch 1 residents infected in Patch 1

+ (N2−S∞
2 )

[
t2β1

(
(1− t1)/γ

(1− t1)N1 + t2N2

)
+ t2β1

t2/γ

(1− t1)N1 + t2N2

]

︸ ︷︷ ︸
Patch 2 residents infected in Patch 1

+ (N1−S∞
1 )

[
t1β2

(
t1/γ

t1N1 +(1− t2)N2

)
+ t1β2

(1− t2)/γ

t1N1 +(1− t2)N2

]

︸ ︷︷ ︸
Patch 1 residents infected in Patch 2

+

(N2−S∞
2 )

[
(1− t2)β2

(
t1/γ

t1N1 +(1− t2)N2

)

+(1− t2)β2

(
(1− t2)/γ

t1N1 +(1− t2)N2
+

ε fd/ν2

N2

)]
.

︸ ︷︷ ︸
Patch 2 residents infected in Patch 2

where all the secondary infections produced in Patch i (ρi) are given by

ρi =
βi

(1− ti)Ni + t jN j

[
(1− ti)Ni

(
1− ti

γ
+

t j

γ
+

ε fd/νi

Ni
((1− ti)Ni + t jN j)

)(
1− S∞

i
Ni

)

+ t jN j

(
1− ti

γ
+

t j

γ

)(
1−

S∞
j

N j

)
 for i, j ∈ {1,2}, i 6= j.

Finally, by ignoring the place of residency of infected individuals in Patch i the patch-

specific basic reproductive numbers for model (4.1), in the presence of mobility, are ex-

pressed by

R0i(P) = (1− ti)βi

(
1
γ
+

fdε

νi

)
+ t jβi

1
γ

= (1− ti)R0i + t jβi
1
γ
, for i, j ∈ {1,2}, i 6= j.

(4.12)

Equation (4.12), accounts for the secondary infections produced within Patch i, among

local and visitant individuals, weighted by the corresponding residency time. More specifi-

cally, the average secondary infections produced among Patch i individuals while in Patch i,
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is captured by the term (1− t1)R01, and the average secondary infections produced among

Patch j residents while in Patch i, is expressed by the term t jβi
1
γ
. The asymmetry exhibited

in the patch-specific basic reproductive number is due to the model construction, the as-

sumption that EVD-infected corpses are locally handled implies that secondary infections

on the visiting population are generated only by infected individuals but not EVD-infected

corpses. Moreover, note that R0i(P) is independent of the population density, a property in-

herited by the so called “standard incidence” used in the construction of the model (Brauer

et al., 2001). In a totally symmetric n patch model, i.e. where the resident and the visitant

populations experience the same routes of infection, the patch-specific basic reproductive

number is expected to accounts for all the secondary infections produced within Patch i,

among individuals from each patch and weighted by the population’s residency times in

Patch i, this is

R0i(P) = R0i×
n

∑
j=1

p ji. (4.13)

In the Lagrangian perspective through residence times, the patch-specific basic number

number in the presence of mobility R0i(P), is proportional to the patch basic reproductive

number in the absence of mobility (R0i), where the cumulative residency time individuals

from all patches spend in Patch i is the constant of proportionality.

Figure 4.2 shows the dynamics of the global R0(P), and the patch patch-specific basic

reproductive numbers R0i(P), in the presence of one way mobility (t2 = 0).

41



t1

R01(P) R02(P)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5 R0(R01, R02, P)

Figure 4.2: Global and patch-specific basic reproductive numbers in the presence of mo-
bility.

4.4.4 The Cordons Sanitaires Threshold

In this section, a mathematical expression for the mobility required to reduce the total

final epidemic size bellow the cordons sanitaires scenario is derived. Hereafter called the

cordons sanitaires mobility threshold, the minimum mobility required to produce a benefi-

cial effect can be numerically addressed by using equations (4.10) and (4.3). By the typical

final size relation, the attack rate can be numerically computed by solving the equation

y = 1− exp[−yR0] (Brauer et al., 2001). Then, Ny∗ stands for the final epidemic size in

the absence of mobility. According to previous derivations, the overall final epidemic size

in presence of mobility is denoted by (4.10), where y∗i stands for the patch-specific attack

rate in presence of dispersal. By assuming the high-risk patch (Patch 1) is cordoned, and

that there is no traveling from the safer patch (Patch 2), the cordons sanitaires threshold is

defined as the Patch 1 average proportion of time (t1 6= 0) such that

y∗ = ϕ(N1,N2, t1) (4.14)

4.5 Results

In this section the local and global effects of population dispersal on the global EVD

dynamics is studied. On a two patch landscape, the effects of mobility across patches
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with equal density (N1 = N2 = 10,000) is studied. In order to capture sanitary differences

between patches, in the absence of mobility Patch 1 is assumed capable to sustain an epi-

demic, R01 > 1), while Patch 2 is assumed incapable to do so, meaning that R02 < 1.

The presented model is calibrated to data from the West African EVD outbreak to get

R01 = 2.45, (Towers et al., 2014; Chowell and Nishiura, 2014; Althaus, 2014). Under the

aforementioned setup the impact of mobility from the high and low risk patches on the final

epidemic size is numerically explored. Particularly, the mobility conditions under which

the cordons sanitaires strategy is effective or detrimental are explored. Moreover, the ef-

fects of population densities and risk disparities on the control of EVD through mobility

are assessed.

4.5.1 The Impact of High-Risk Population Mobility

Intuitively, it makes sense to expect that spreading a disease through individuals moving

to a region basically consisting of completely susceptible individuals, has the potential to

increase the overall final epidemic size. However, if the affected population travels to a

region having better sanitary conditions, a trade off between reducing secondary infections

in the high-risk region, and increasing them in a more prepared area, will occurs. This

is, although the resident population of the safe region is being infected by having contacts

with visitant infected individuals, safer sanitary conditions locally reduce the strength of

the epidemic.

Figure 4.3 shows the non-linear effects of allowing Patch 1 (high-risk) population spend

a proportion of their daily time in the safer region, on the patch-specific and total final

epidemic size. Individuals from the safer patch are assumed to avoid the high-risk region,

then model (4.7) is calibrated to t2 = 0. By taking the final epidemic size corresponding

to the uncoupled scenario as baseline (dashed gray line), results suggest that low mobility

levels increase the total final epidemic size (t1 < 0.5), while “big enough” traveling levels

43



takes it down the cordons sanitaires scenario, (t1 > 0.5). Moreover, results suggest that high

levels of single direction mobility can also control an ongoing EVD outbreak, (t1 > 0.8).

This last observation reflects the sharp threshold condition of disease persistence in the

overall system of the Lagrangian framework through residence times (Bichara et al., 2015).

This work focus on the aforementioned traveling thresholds, namely, the traveling re-

quired to reduce the total attack rate bellow the cordons sanitaires scenario (t−1 ), and the

traveling needed to control an EVD outbreak in the whole system, (t+1 ). The first thresh-

old denotes the mobility level producing a total attack rate equal to the cordons sanitaires

scenario, while the second threshold represents the mobility at which the global basic re-

productive number (R0(P,R01,R02)), hits one. Particularly, the t−1 threshold captures the

trade off between diminishing cases in Patch 1, while increasing infected individuals in

Patch 2.

0.2 0.4 0.6 0.8 1.0

2000

4000

6000

8000

10000

t1

Patch 1
Patch 2

Total

Final epidemic size

Figure 4.3: Patch specific and total fi-
nal epidemic size under one way mobility
(t2 = 0).
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Figure 4.4: Global R0 for different Patch
2 risk scenarios, t2 = 0.

Figure 4.4 shows that the existence of a threshold after which unidirectional mobility

can control an EVD outbreak, is tied to the Patch 2 risk of infection. For instance, the

scenario exhibited in Figure 4.3, corresponds to R01 = 2.45 and R02 = 0.9, where mobility

above t1 = 0.8, produces a global R0 less than one, thus leading the final epidemic size to

almost zero. It is worth to mention that the curves in Figure 4.4 do not converge to R02
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at the extreme value t1 = 1, this is because model (4.7) is asymmetric due to the local

management of EVD-infected corpses.

Figure 4.5 shows that the t−1 and t+1 thresholds are highly sensitive to the Patch 2 risk

of infection. This is, both thresholds are functions of the Patch 2 risk of infection, t−1 =

t−1 (R02) and t+1 = t+1 (R02). Hence, reduction of the Patch 2 infection risk ameliorates EVD

secondary infections and relaxes mobility conditions required to appropriately manage an

epidemic on the overall system.
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Figure 4.5: Total attack rate for different
Patch 2 risk levels, under one way mobil-
ity.
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Figure 4.6: Traveling time reduces or in-
creases the total attack rate, as function
of the Patch 2 risk of infection.

Figure 4.6 shows the impact of Patch 2 sanitary conditions and mobility from the high-

risk region, on the effectiveness of the cordons sanitaires strategy. The traveling and risk

conditions for which the total attack rate increases or decreases, characterize three scenarios

for the cordons sanitares effectiveness

• For a “highly safe” Patch 2, (R02 < 0.35), all mobility levels from the high-risk

region are beneficial. This is, the total attack rate monotonically decreases as t1

increases. Hence, implementation of the cordons sanitares under this scenario is the

worst decision.
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• Given an “intermediately safe” Patch 2, (0.35 < R02 < 1.45), depending on the mo-

bility levels, the total attack rate increases or decreases. Therefore, under these sce-

narios, the cordons sanitaires strategy is effective provided specific mobility levels

required to reduce the total attack rate are not attainable. In other words, whenever

mobility from the high-risk patch is lower than t−1 (R02), the cordons sanitaires con-

trol measure is not recommended.

• For an “unsafe” Patch 2 (R02 > 1.45), all mobility levels increase the total attack

rate. In these scenarios, even when Patch 2 is considerably safer than Patch 1, the

reduced risk of infection is not enough to produce an overall benefit reducing the total

number of infections. Therefore, in these scenarios the implementation of cordons

sanitaires is an effective control strategy.

According to the aforementioned results, the cordons sanitaires scenario do not always

minimize the overall number of infected individuals, and under specific risk conditions it

may or may not be effective. Its impact on the total attack rate is rather determined by

the Patch 2 risk of infection. Moreover, its implementation has to be evaluated taking in

account the specific attributes of the community of interest. Particularly, characterization of

the health care system in the safer patch is important in order to evaluate control measures

in the form of a traveling ban.

Figure 4.7 shows the level curve R0(t1,R02) = 1 in the plane (t1,R02). The mobility

and risk conditions where an EVD outbreak can and cannot be sustained are distinguished.
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Figure 4.7: Mobility from high risk patch can eradicate an EVD outbreak, (N1 = N2)

According to simulations, mobility can eradicate an EVD epidemic given the low-risk

patch is “safe” enough. For the model calibrated to data of the 2014 West African Ebola

outbreak, high mobility can control an EVD outbreak even when R02 is slightly greater than

one. However, even under the extreme scenario of a completely safe Patch 2 (R02 = 0),

controlling an EVD outbreak will require high-risk patch residents to spend at least around

60% of their time outside the highly affected region.

Due to the extraordinary efforts that substantial improvement of sanitary conditions

in the high risk region would demand, alternative control strategies leading to the eventual

EVD control become meaningful. Previous results show that traveling management has the

potential, as an alternative control strategy, to minimize the total attack rate. Nonetheless,

it is important to notice that such goal would require massive mobility. More important

yet, it should be noticed that on managing mobility as a control strategy, a fraction of the

safer patch residents is expected to be infected. Thus, an effective mobility strategy aimed

to minimize the total number of final infected individuals, requires a safer patch willing

to receive part of the disease morbidity. Reduction of the EVD total attack rate through

mobility implies the spread of the outbreak to an environment free of the disease. Increasing

the local disease cost in terms of secondary cases in the safe patch, but decreasing the
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overall disease burden. Finally, mobility management might be a counter intuitive control

strategy, and if not appropriately used it has the potential to produce adverse effects.

4.5.2 The Impact of Low-Risk Population Mobility

The West African EVD outbreak taught us that sustainability of regions highly vulner-

able to EVD infection and, its dependence on neighboring regions is a critical issue on the

EVD control. Food transportation, health care services, commerce, etc., are critical factors

for a population to persist. Some of these, necessarily require traveling from and to high-

risk of infection zones, potentially exposing neighboring susceptible population to EVD

infection. In order to analyze the impact of traveling from the low-risk of infection zone on

the EVD dynamics, the effects of allowing two ways traveling on system (5.9) are studied.

Particularly the effects on the cordons sanitaires threshold (t−1 ) and eradication threshold

(t+1 ) are studied.

Figure 4.8 shows that given a Patch 2 having a local basic reproductive number slightly

bellow one (R02 = 0.9), any increase on mobility from safer patch (t2 > 0), have detrimen-

tal effects on the control of EVD outbreak. This is reflected on an increased traveling level

needed from residents on the high-risk population, to avoid an EVD epidemic. In other

words, as t2 increases, t1 does it so, implying that null mobility from Patch 2 minimizes t+1 .

In addition, whenever individuals are exposed to a high risk of infection for long peri-

ods, mobility from the safe region might frustrate the EVD control efforts, regardless how

exhaustive they are. Simulations in Figure 4.8 shows that when mobility from the safe re-

gion goes beyond t2 ≈ 0.23, there is no mobility from the high-risk region (t1) capable to

reduce the global R0 bellow one. Figure 4.9 shows that this threshold value depends on

Patch 2 sanitary conditions.
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Figure 4.8: Level curve R0(t1, t2) = 1,
for R02 = 0.9.
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Figure 4.9: Level curves of R0(t1, t2) =
1 for R02 = 1,0.9 and 0.8.

Opposite to the case when the safe region have a local basic reproductive number

slightly bellow one (Figures 4.8 and 4.9), extremely safe regions shows a different behavior

in terms of the mobility needed to mathematically control an EVD outbreak. Simulations

in Figure 4.10, suggest that null mobility from the safer patch to the high-risk region does

not always minimize the mobility from the high-risk zone required to eradicate and EVD

outbreak, (t+1 ).
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Figure 4.10: Level curves R0(t1, t2)= 1,
for R02 = 0,0.25,0.5 and 0.75.
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Figure 4.11: Attack rates under two
ways mobility.
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The total attack rate when almost no secondary infections are produced in the safe

patch (R02 ≈ 0), is shown in Figure 4.11. The dynamics of the total attack rate as function

of Patch 1 traveling level, for the Patch 2 mobility scenarios t2 = 0,0.1 and 0.2, under

the extreme case R02 ≈ 0 are explored. For low t1 values (t1 ≈ 0), the total attack rate

increases as t2 does it so. Nonetheless, for “high enough” t1 values the total attack rate

decreases faster for t2 = 0.2, decreasing t+1 , the mobility regime from the high-risk region

required to control an ongoing EVD outbreak. As seen in Figure 4.10, the t2 value that

minimize t1, is dependent on the R02.
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Figure 4.12: Visitant population breaks transmission chains in Patch 1.

Although previous result seems to be counter intuitive, Figure 4.12 contrast the dynam-

ics of the patch-specific attack rate under safe region mobility levels of t2 = 0 and t2 = 0.2.

The benefit obtained by allowing individuals from the safe region spend time in the high-

risk region can be explained in terms of the trade-off between generating secondary infec-

tions among the high-risk patch individuals and generating secondary infections among the

low-risk patch inhabitants. Since the epidemic in this polarized scenario is mainly driven

by infections among Patch 1 individuals, reducing the high-risk region attack rate, also re-

duces the low-risk attack rate significantly. Thus, resulting on a beneficial trade off at high

mobility levels.
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In summary, null mobility from the safe-risk to high-risk area is not always the best

strategy when the goal is to minimize the number of infected individuals. Particularly, for

“small” differences in the patch-specific risks of infection, one way traveling seems to be

the best strategy. In counterpart, when the system is composed by two regions having very

notable disparities in infection risks, a two ways mobility strategy aimed to minimize the

final number of infected individuals might be appealing.

4.5.3 The Effects of Patch Density Disparities

In this section, the impact of population density inequalities on the dynamics of EVD

over a two-patch setting involving distinct infection risks is explored. Particularly, this

section focus on the effects of populations’ density ratio on both the mobility needed to

reduce the final epidemic size bellow the cordons sanitaires threshold, and the mobility

levels capable to eradicate an ongoing EVD outbreak.

Similar to Figure 4.6, where N1 = N2, Figure 4.13 shows the level curves dividing the

(R02, t1) plane on regions where mobility and risk conditions either, increase or reduce the

total final epidemic size, contrasted to the cordons sanitaires scenario. The curves in Figure

4.13 correspond to populations’ ratios N1
N2

= k = 10,1, 1
10 . It is clearly seen that the region

R02 < 0.35, corresponding to the risk-mobility conditions where the cordons sanitaires

strategy is not effective, is independent on the populations’ densities. In counterpart, the

regions where the cordons sanitaires control measure works or conditionally works are

strongly affected by the populations’ densities. Figure 4.13 simulations show that as the

safe population’s density increases, the mobility levels required to drop the total attack rate

bellow the cordons sanitaires level, also increases. Thus, increasing the effectiveness of

the cordons sanitaires as a control measure.

According to the model (4.7), for a safe population neighboring a smaller high-risk

of infection zone, implementation of the cordons sanitaires might represent the best con-
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tainment strategy, provided it cannot offer a “highly enough” safety level. For instance,

in Figure 4.13, for population’s densities N1 = 10N2, mobility from high risk region can

reduces the total final size provided Patch 2 has a local basic reproductive number bellow

the corresponding of the high-risk patch, R02 < R01.
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Figure 4.13: Cordons Sanitaires level
curves for populations ratios N1
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=

1
10 ,1,10.
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Figure 4.14 exhibits how differences on population sizes affects the control of EVD in

a two patch system with different risk environments. Simulations suggest that the more

aggregated is the total population in the high-risk patch (N1 = 10N2), the traveling needed

from this region to lead the global basic reproductive number bellow the unit, becomes

less sensitive to the Patch 2 infection risk. Under this scenario, the EVD outbreak can be

controlled via mobility from the high-risk patch, provided the classical threshold R02 < 1

is hold and mobility above 60% is attained. On the other hand, as the total population ag-

gregates in the safer patch (N1 =
1

10N2), the traveling required to control an EVD epidemic

becomes more sensitive to changes in Patch 2 infectiousness level, R02.

Since extreme cases are always illustrative, Figure 4.15 exhibits the dynamics of t−1

threshold for two populations having extremely different densities. Not surprisingly, the
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denser the safe population compared to the high-risk region, the mobility required to take

the final epidemic size bellow the no mobility case is highly sensitive to the Patch 2 in-

fection risk (R02). Moreover, as population aggregates in the safe region (N1 =
1

1,000N2),

the Patch 2 sanitary conditions (R02) making the cordons sanitaires an effective control

strategy, converge to the sharp threshold R02 = 1. On the other hand, when the total pop-

ulation is mainly aggregated in the high-risk patch (N1 = 1,000N2), the cordons sanitaires

strategy becomes less effective, and almost all mobility level reduce the final epidemic size.

Interestingly, when the population aggregates in the high-risk region (N1 = 1,000N2), the

sanitary level required in Patch 2 converges to R02 ≈ 3.
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Figure 4.15: Extreme aggregation sce-
narios, shows convergence of mobility
thresholds.
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Figure 4.16 shows the effects of populations’ density disparities on the threshold condi-

tion R0(t1, t2) = 1. Simulations suggest that population aggregating in the safe patch makes

a two ways mobility strategy more appealing in order to reduce the global basic reproduc-

tive number bellow one. Under the scenario N1 =
1
2N2 and R02 = 0.5, Patch 2 mobility of

around 10%, reduces t+1 bellow 60%. On the other hand, Patch 2 null mobility requires a

t+1 above 0.6 to attain a global R0 less than one. Population aggregation in the high-risk

53



patch (N1 = 2N2) allow more mobility from Patch 2, but it increases t+1 , complicating the

control of an EVD outbreak.

The red lines in Figure 4.16, denoting t1 ≈ 0.7 and t2 ≈ 0.3 shows the minimum Patch

1 and maximum Patch 2 traveling levels leading the global R0 bellow one (for R02 = 0.5),

regardless of the populations’ density ratio. This is, there exist a pair of mobility thresh-

olds independent of the populations’ densities that mathematically drives R0 bellow one.

These mobility thresholds are uniquely determined by the local basic reproductive num-

bers. However, as previously illustrated, when populations densities are also considered,

a series of mobility strategies produced the desired effect on the global basic reproductive

number..

4.6 Conclusion and Discussion

By using a two-patch model incorporating differences in risks of infection it was showed

that mobility might work as an EVD control measure. In the studied polarized world, al-

lowing residents from the high-risk region spend time in the safer area can ameliorate the

overall impact of an epidemic. Results suggest that low mobility levels from the high-risk

region tend to increases the total final epidemic size, while high mobility levels are capable

to reduce it. Particularly, in absence of mobility from the low-risk region, allowing indi-

viduals from the high-risk zone spend more than 60% of their time sojourning in the safer

patch can lead to EVD eradication.

Contrary to what is expected, simulations suggests that null mobility from the safer

patch is not always harmful in terms of the final number of EVD cases. Whenever the low-

risk patch has an exceptional capacity to respond against EVD infections, mobility from

the low-risk region is capable to reduce the traveling level required from the highly affected

population, in order to ameliorate the EVD burden. This can be explained as the effect of

the visitant individuals breaking transmission chains within the high-risk region, importing
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the disease into the safe patch and producing (on average) less secondary infections in this

region. However, this strategy has the potential to boost the epidemic if the mobility from

the highly affected patch is not high enough.

Finally, it was found that the time of residency needed outside the high-risk patch ca-

pable to produce a beneficial effect is highly dependent on the populations’ density ratio.

For the scenario where the population is mainly aggregated in a EVD low-risk of infection

region, the cordons sanitaires control strategy will be effective whenever the epidemic can-

not be locally contained in Patch 2 (R02 > 1). On the other hand, for a population strongly

aggregated in a high-risk region, allowing traveling to the safer patch will produce a benefit

for almost all mobility levels. Additionally, the local risks of infection (R0i) implicitly de-

fine a set of traveling regimes thresholds after which an EVD epidemic is mathematically

not sustainable, regardless of the populations’ densities ratio.

It is worth to stress that in the presented work, the traveling time is assumed constant

during the epidemic. Modeling the effects of social response to an epidemic goes beyond

the scope of the presented work. Avoidance of contacts with EVD-infected individuals

and EVD-infected corpses, as well as other control measures (quarantine, for instance),

potentially reduce the exhibited thresholds mathematically leading to the control of an EVD

epidemic.
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Chapter 5

DYNAMICS OF THE CONTROL OF EVD ON HETEROGENEOUS RISK

ENVIRONMENTS IN THE PRESENCE OF MOBILITY

5.1 Introduction

Despite improvements in appropriately manage or possibly prevent an eventual new

Ebola Virus Disease (EVD) outbreak, vulnerable African regions are still highly prone to

future spillovers. Due to the absence of prophylactic and post-exposure EVD treatment

on humans, EVD containment efforts lie on clinical management of patients, and prompt

diagnose and isolation of infected individuals (Matua et al., 2015; A. Maxmen, 2017; Feld-

mann, 2010). The persistent EVD outbreaks on the African vulnerable regions demonstrate

the necessity to implement long-term control efforts at individual, institutional and regional

scales (Matua et al., 2015). The highly connected West African communities, mainly de-

pendent on the local commerce, translate the EVD control into a regional rather than a

local problem (Sorichetta et al., 2016; Blackwood and Childs, 2016). The work by Black-

wood for example, addressed the role of localized control measures in a two patch setting

by studying the impact of quarantine, hospitalization and burial practices in the presence

of mobility. Authors found that regional connectivity substantially impacts control strat-

egy effectiveness (Blackwood and Childs, 2016). The framework used differs from the

Lagrangian approach used in the present work, since it does not track individuals’ resi-

dency as they move across patches, nor considers the effective population sojourning in

each region at a given time, i.e. residents plus visitant individuals.

The presented work aims to understand the impact of localized control measures on

the dynamics of EVD, on a two-patch landscape where regions exhibit highly distinct risk
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of EVD infection. The joint effects of short term mobility and, early detection and quar-

antine of pre-symptomatic individuals is studied. The system is coupled by monitoring

individuals’ proportion of time spent sojourning in each region, while keeping their iden-

tity according to its place of residency. Section 5.2, introduces the single patch EVD model

explicitly modeling quarantine, along with the corresponding basic reproductive number

and parameters used in simulations. In Section 5.3, a two-patch model coupled via resi-

dence times is derived by extending the single patch model in section 5.2. Section 5.4 is

devoted to the analysis of the proposed two-patch model. Specifically, the derivation of the

global basic reproductive number and final epidemic size relation is done. In Section 5.5,

main results obtained by numerically explore the proposed two-patch model are presented.

5.2 Model Derivation

The population studied is assumed to be constant over time and structured according

to individuals’ epidemiological states. It is assumed that a fraction of the infected popula-

tion can be tested via RT-PCR assays to determine up to three days before symptoms onset

whether their are infected or not. The total population is composed by susceptible individ-

uals (S), latent undetectable individuals (E1), latent detectable individuals (E2), infected in-

dividuals (I), quarantined infected individuals (Q), EVD-infected corpses (D), and removed

individuals composed by recovered individuals and properly buried corpses (R). The total

population (including buried and dead individuals) is then N = S+E1+E2+ I+Q+D+R.

The contagion process decreases the susceptible population by infections due to susceptible

individuals (S) having contacts with infected individuals (I), quarantined infected individu-

als (Q) or EVD-infected corpses (D), at rate β

(
I+εD+lQ

N

)
. Latent individuals are assumed

to be detectable via RT-PCR test on average 1
κ1

days after being infected, and become infec-

tious on average after a period of 1
κ1
+ 1

κ2
days. During the second latency stage a fraction

q of pre-symptomatic individuals are diagnosed and taken to isolation, while the rest are
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neither detected nor isolated. Non-isolated infected individuals either die with probability

fd or recover after a mean period of 1
γ

days.

EVD-infected corpses (D) before removed, on average after 1
ν

days, exhibit the highest

viral load, then in the present work, these are assumed to be more infectious than infected

individuals, (ε > 1). Finally, quarantined infected individuals are assumed to have a re-

duced infectious rate (l ≤ 1), and recover after a mean period of 1
γ
. EVD-infected corpses

produced while on quarantine are assumed to be properly removed from the system imme-

diately, and do not contribute to the infectious process.

During the West African Ebola outbreak asymptomatic individuals associated to low

viral loads were detected (Leroy et al., 2000). This possibility had antecedents during the

Sudan (1976) and Zaire (1979) EVD outbreaks, where patients with symptoms ranging

from mild, severe and rapidly fatal were noticed. (of a WHO/International Study Team

et al., 1978). In this work, asymptomatic individuals having low viral loads are assumed

incapable to produce secondary infections.

Population transitions through the EVD disease stages are showed in Figure 5.1
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Figure 5.1: Ebola compartmental model with quarantine intervention.
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and mathematically described by the system of ordinary differential equations (5.1)




N = S+E1 +E2 + I +Q+D+R

Ṡ =−βS
(

I+εD+lQ
N

)

Ė1 = βS
(

I+εD+lQ
N

)
−κ1E1

Ė2 = κ1E1−κ2E2

İ = (1−q)κ2E2− γI

Q̇ = qκ2E2− γQ

Ḋ = fdγI−νD

Ṙ = (1− fd)γI +νD+ γQ

(5.1)

The basic reproductive number R0 represents the number of secondary infections by an

infected individual in an essentially susceptible population in absence of control measures.

In counterpart, the control reproductive number Rc, quantify the number of secondary in-

fections caused by a single infected individual in a susceptible population under the effects

of control measures. Then, the control reproductive number determines the beginning of

the recognition of the epidemic. For model (5.1), the control and basic reproductive number

are given by

Rc = qRQ +(1−q)R0 (5.2)

where the quarantine reproductive number RQ =
lβ
γ

, captures the secondary infections

produced by a typical individual in quarantine, and the basic reproductive number R0 =

β

(
1
γ
+

fdε

ν

)
captures the secondary infections produced by infected individuals and non-

removed infected EVD-infected corpses in absence of control intervention. Explicitly, the

control reproductive number accounts for the secondary infections produced by the pro-

portion of diagnosed pre-symptomatic individuals (q) during its infectious period
(

1
γ

)
at a

reduced infectiousness (lβ ), secondary infections produced by non isolated infectious in-

dividuals (1−q) during their infectious period
(

1
γ

)
at the baseline infectiousness (β ), and
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secondary infections produced by non-quarantined EVD-infected corpses ((1−q) fd) with

increased infectiousness (εβ ) during its average disposal time
(

1
ν

)
.

Rc = q
(

lβ
γ

)
+(1−q)β

(
1
γ
+

fdε

ν

)
. (5.3)

Model parameters were directly extracted from literature. The mean incubation pe-

riod
(

1
κ

)
is assumed to be 7 days (Legrand et al., 2007; Ndambi et al., 1999). It has

been estimated from previous EVD outbreaks a mean period from symptoms onset to the

end of infectiousness
(

1
κ

)
of 7 days (Chowell and Nishiura, 2014; Chowell et al., 2015).

The average time it takes health care workers to properly bury EVD-infected corpses, i.e.

EVD-infected corpses infectious period, has been estimated of about 2 days (Legrand et al.,

2007). EVD fatality rate has a great range of fatality, going from 50% to 90%. In this work

EVD fatality rate is assumed to be of 70% (Chowell and Nishiura, 2014). EVD-infected

corpses are assumed to have the maximum viral load, thus being more infectious than

infected individuals, and captured by ε > 1. The parameter β has been calibrated to ap-

proximate model’s (5.1) basic reproduction number to R0 ≈ 2.45 (Althaus, 2014; Chowell

et al., 2004). Quarantine capacity (q) and quarantined infected individuals relative infec-

tiousness (l) varies between [0,1] in order to explore their effects on the EVD dynamics.

Table 5.1, summarize the parameters used to calibrate simulations done in this work.

Table 5.1: Parameters of the single patch EVD model.
Parameter Description Base model values

β Per susceptible infection rate 0.287 (Althaus, 2014)

γ Rate at which an infected recovers or dies 1/7 (Team, 2014)

κ1 Per-capita progression rate to latent detectable stage 1/4 (Legrand et al., 2007)

κ2 Per-capita progression rate from latent detectable to infectious stage 1/3 (Towner et al., 2004)

ν Per-capita body disposal rate 1/2 (Legrand et al., 2007)

fd Proportion of infected who die due to infection 0.7 (Team, 2014)

ε Scale: Ebola infectiousness of dead bodies > 1 (Li et al., 2016)

q Proportion of latent individuals diagnosed before symptoms onset [0,1]

l Isolated individuals relative transmissibility [0,1]
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5.3 Ebola Dynamics on Heterogeneous Risk Environments

Assessing the effectiveness of localized control measures imposed on a population dur-

ing an epidemic is not a trivial task. While mathematical models simplify the real world

situation, many factors modulate the observed output. Populations’ mobility, beliefs and

education are some of the important factors in the context of designing appropriate con-

trol measures to fight Ebola. The reduction on EVD transmission at the time interventions

were introduced in Sierra Leone, between June 2014 and February 2015 has been studied

(Kucharski et al., 2015). Despite the difficulty of assessing the direct impact of a particular

control measure, authors focused on estimate the cases prevented by increasing treatment

beds available in different districts. Blackwood for example, by studying the impact of

quarantine, hospitalization and burial practices in presence of mobility, addressed the im-

pact of localized control measures in a two-patch setting on the control of an epidemic

(Blackwood and Childs, 2016). Although the framework used does not incorporates the

role of the effective population sojourning in a given patch at a particular time, authors

found that regional connectivity substantially affects control strategy effectiveness.

In this work, by using the Lagrangian approach through residency, specifically the mo-

bility matrix P, individuals’ preserving their place of residency are tracked at all time across

patches (Bichara et al., 2015). Thus, the average effective density of individuals sojourning

in Patch i, which is composed by the expected amount of residents individuals sojourning

in Patch i at time t (piiNi), and the expected visitant individuals (p jiN j). On a two-patch

landscape where infections are produced uniquely by infected individuals, the number of
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new infections within Patch j residents is expressed by

ϕ( j) = βi︸︷︷︸
Patch i infection risk

p jiS j︸︷︷︸
Expected Patch j susceptible pop. in Patch i

piiIi + p jiI j

piiNi + p jiN j︸ ︷︷ ︸
Proportion of infected pop. in Patch j

+ β j︸︷︷︸
Patch j infection risk

p j jS j︸ ︷︷ ︸
Expected Patch j susceptible pop. in Patch j

tiIi + p j jI j

pi jNi + p jiN j︸ ︷︷ ︸
Proportion of infected pop. in Patch j

(5.4)

this is, Patch j residents can get infected while sojourning in Patch i (with corresponding

risk of infection βi) and at their patch of residency (with associated risk of infection β j).

Note that the times of residency of Patch i residents traveling in a n-patch landscape should

hold ∑
n
j=1 pi j = 1.

In the context of Ebola, infections caused by EVD-infected corpses or quarantined in-

dividuals are assumed to only occur within their patch of residency. Moreover, quarantined

individuals, similar to EVD-infected corpses, are assumed not to be transported across

patches. Thus, the Patch j population capable to travel is approximated by monitoring the

time of residency of non quarantined individuals in Patch i, (1−q j)p jiN j. New EVD cases

among Patch j residents are assumed to occur by infections produced within Patch j, by

having contacts with residents and visitant infected individuals, and resident EVD-infected

corpses and quarantine individuals, at rate

β j p j jS j

(
pi jIi + p j jI j

(1−qi)pi jNi + p j jN j
+

ε jD j + l jQ j

N j

)
(5.5)

or by Patch j residents having contacts with residents and visitor infected individuals in

Patch i, at rate

βi p jiS j

(
piiIi + p jiI j

piiNi +(1−q j)p jiN j

)
. (5.6)
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Hence (5.4), becomes

β j p j jS j

(
pi jIi + p j jI j

(1−qi)pi jNi + p j jN j
+

ε jD j + l jQ j

N j

)
+βi p jiS j

(
piiIi + p jiI j

piiNi +(1−q j)p jiN j

)

(5.7)

In this work, the notation used to monitor individual’s times of residency on a two-patch

landscape is simplified by tracking individuals’ “traveling time”, the time a typical Patch

i individual spend visiting Patch j, ti. Patch i residents’ average proportion of traveling

time is denoted by ti, while 1− ti denotes the average proportion of time spent on their own

patch. Therefore (5.7) takes the form

β j(1−t j)S j

(
tiIi +(1− t j)I j

(1−qi)tiNi +(1− t j)N j
+

ε jD j + l jQ j

N j

)
+βit jS j

(
(1− ti)Ii + t jI j

(1− ti)Ni +(1−q j)t jN j

)

(5.8)

By following the construction of model (5.1) and the infection force (5.8), the two-patch

model incorporating quarantine and residency times can be written as




Ni = Si +Ei1 +Ei2 + Ii +Qi +Di +Ri

Ṡi =−(1− ti)βiSi

(
(1−ti)Ii+t jI j

(1−ti)Ni+(1−q j)t jN j
+ εDi+liQi

Ni

)
− tiβ jSi

(
tiIi+(1−t j)I j

(1−qi)tiNi+(1−t j)N j

)

Ėi1 = (1− ti)βiSi

(
(1−ti)Ii+t jI j

(1−ti)Ni+(1−q j)t jN j
+ εDi+liQi

Ni

)
+ tiβ jSi

(
tiIi+(1−t j)I j

(1−qi)tiNi+(1−t j)N j

)
−κ1Ei1

Ėi2 = κ1Ei1−κ2Ei2

İi = (1−qi)κ2Ei2− γIi

Q̇i = qiκ2Ei2− γQi

Ḋi = fdγIi−νiDi

Ṙi = (1− fd)γIi +νDi + γQi

(5.9)

5.4 Model Analysis

In this section the control and basic reproductive numbers, as well as the patch-specific

and total final epidemic size relations are analytically derived.
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5.4.1 Computation of the Basic and Control Reproductive Numbers on Heterogeneous

Risk Environments

System (5.9) control and basic reproduction numbers are computed by following the

next generation approach (Diekmann et al., 1990; van den Driessche and Watmough, 2002).

Consider the infectious compartments E11, E12, I1, Q1, D1, E21, E22, I2, Q2 and D2, which

evaluated at the disease free equilibrium leads to S1(0) = N1 and S2(0) = N2, then

F =




(1− t1)β1S1

(
(1−t1)I1+t2I2

(1−t1)N1+(1−q2)t2N2
+ εD1+l1Q1

N1

)
+ t1β2S1

(
t1I1+(1−t2)I2

(1−q1)t1N1+(1−t2)N2

)

0

0

0

0

(1− t2)β2S2

(
t1I1+(1−t2)I2

(1−q1)t1N1+(1−t2)N2
+ εD2+l2Q2

N2

)
+ t2β1S2

(
(1−t1)I1+t2I2

(1−t1)N1+(1−q2)t2N2

)

0

0

0

0




64



and

V =




κ1E11

−κ1E11 +κ2E12

−(1−q1)κ2E12 + γI1

−q1κ2E12 + γQ1

− fdγI1 +ν1D1

κ1E21

−κ1E21 +κ2E22

−(1−q2)κ2E22 + γI2

−q2κ2E22 + γQ2

− fdγI2 +νD2




.

Thus the second generation matrix is composed by

F =




J1 K1

K2 J2




where

Ji =




0 0 Mi Ai Bi

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




, Ki =




0 0 Ci Fi Gi

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




,

and

Mi =
Ni(1− ti)2βi

(1− ti)Ni + t jN j
+

t2
i Niβ j

(1− ti)Ni + t jN j
, Ai =

(1− ti)Niliβi

(1− ti)Ni + t jN j
, Bi =

(1− ti)Niεβi

(1− ti)Ni + t jN j
,

Ci =
(1− ti)Nit jβi

(1− ti)Ni + t jN j
+

ti(1− t j)Niβ j

tiNi +(1− t j)N j
, Fi =

tiNil jβ j

tiNi +(1− t j)N j
, Gi =

tiNiε jβ j

tiNi +(1− t j)N j
,

and

V =




H1 05×5

05×5 H2



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where

Hi =




κ1 0 0 0 0

−κ1 κ2 0 0 0

0 −(1−qi)κ2 γ 0 0

0 −qiκi 0 γ 0

0 0 − fdγ 0 ν




.

The basic reproduction number is finally, the spectral radius of the next generation

matrix −FV−1 given by

−FV−1 =




φ1 φ1
B1 fd

ν
+ M1

γ

A1
γ

B1
ν

ϕ1 ϕ1
C1
γ
+ fdG1

ν

F1
γ

G1
ν

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

ϕ2 ϕ2
C2
γ
+ fdG2

ν

F2
γ

G2
ν

φ2 φ2
B2 fd

ν
+ M2

γ

A2
γ

B2
ν

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0




where

φi =
(1−qi)Mi

γ
+

qiAi

γκ2
+

Bi fd(1−qi)

ν
, and ϕi =

(1−q j)Ci

γ
+

q jFi

γκ2
+

Gi fd(1−q j)

ν
.

Due to the expression length, the final output is avoided. However, numerical explorations

of the control reproductive number are done in further sections.

5.4.2 EVD Final Epidemic Size on Heterogeneous Risk Environments

In this section, the overall and patch specific final epidemic size relations as functions

of the patch residency times and local risks of infection are derived. To simplify notation,
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the expressions f̂ (t) =
∫

∞

0 f (s)ds and f ∞ = limt→∞ f (t), are used. Assume Si(0) = Ni,

E1i(0) = E2i(0) = Ii(0) = Qi(0) = Di(0) = 0, then adding the first two equations of model

(5.1) leads to Ṡi + Ė1i = −κ1Ê1i and E∞
1i = 0. Following the same reasoning it is possible

to show that E∞
2i = I∞

i = Q∞
i = D∞

i = 0, Ê1i =
Ni−S∞

i
κ1

, Ê2i =
Ni−S∞

i
κ2

, Îi = (Ni− S∞
i )

(1−qi)
γ

,

Q̂i = (Ni− S∞
i )

qi
γ

and D̂i = (Ni− S∞
i )

(1−qi) fd
νi

. Therefore, for each patch, the following

relations are obtained

log

(
N1

S∞
1

)
=(N1−S∞

1 )


(1− t1)β1


 (1− t1)

1−q1
γ

(1− t1)N1 +(1−q2)t2N2
+

ε
(1−q1) fd

ν1
+ l1

q1
γ

N1




+ t1β2
(1−q1)

t1
γ

(1−q1)t1N1 +(1− t2)N2




+(N2−S∞
2 )


(1− t1)β1

t2
1−q2

γ

(1− t1)N1 +(1−q2)t2N2

+ t1β2

(1− t2)
(

1−q2
γ

)

(1−q1)t1N1 +(1− t2)N2




log

(
N2

S∞
2

)
=(N1−S∞

1 )


(1− t2)β2

t1
1−q1

γ

(1−q1)t1N1 +(1− t2)N2

+ t2β1

(1− t1)
(

1−q1
γ

)

(1− t1)N1 +(1−q2)t2N2




+(N2−S∞
2 )


(1− t2)β2


 (1− t2)

1−q2
γ

(1−q1)t1N1 +(1− t2)N2
+

ε
(1−q2) fd

ν2
+ l2

q2
γ

N2




+ t2β1
t2

1−q2
γ

(1− t1)N1 +(1−q2)t2N2



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which can be expressed in vector form as



log

(
N1

S∞
1

)

log

(
N2

S∞
2

)



=




B11 B12

B21 B22







1− S∞
1

N1

1− S∞
2

N2




where

B11 =


(1− t1)β1


 (1− t1)

1−q1
γ

(1− t1)N1 +(1−q2)t2N2
+

ε
(1−q1) fd

ν1
+ l1

q1
γ

N1




+ t1β2
(1−q1)

t1
γ

(1−q1)t1N1 +(1− t2)N2


N1,

B12 =


(1− t1)β1

t2
1−q2

γ

(1− t1)N1 +(1−q2)t2N2
+ t1β2

(1− t2)
(

1−q2
γ

)

(1−q1)t1N1 +(1− t2)N2


N2,

B21 =


(1− t2)β2

t1
1−q1

γ

(1−q1)t1N1 +(1− t2)N2
+ t2β1

(1− t1)
(

1−q1
γ

)

(1− t1)N1 +(1−q2)t2N2


N1

B22 =


(1− t2)β2


 (1− t2)

1−q2
γ

(1−q1)t1N1 +(1− t2)N2
+

ε
(1−q2) fd

ν2
+ l2

q2
γ

N2




+ t2β1
t2

1−q2
γ

(1− t1)N1 +(1−q2)t2N2


N2.

Note that, the final size relation on an n-patch system is given by a system of n equations,

and is denoted by the patch-specific final proportion of infected individuals



1− S∞
1

N1

1− S∞
2

N2


 ,

and the matrix B denoting the secondary infections produced by Patch i and Patch j sec-

ondary infections produced in each environment. For instance, for the presented two-patch
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model, B12 captures Patch 1 residents’ infections produced by having contacts with Patch

2 inhabitants. While spending (1− t1) proportion of time at their patch of residency and by

having contacts with infected visitant individuals ((1−q2)t2)

(1− t1)β1
t2

1−q2
γ

(1− t1)N1 +(1−q2)t2N2
,

and, while visiting Patch 2 and being infected by contacts with Patch 2 non quarantined

infected residents

t1β2

(1− t2)
(

1−q2
γ

)

(1−q1)t1N1 +(1− t2)N2
.

Furthermore, it is important to stress that in the construction of the Lagrangian approach,

the eigenvalues of the matrix B, on the final epidemic size relation, are the same of the

second generation matrix. Particularly, RC is also the spectral radius of B, (Bichara et al.,

2015). Moreover, under the Lagrangian approach, the global control reproductive number

is a function of the residence matrix (P) and the local control reproductive numbers (RC1

and RC2), defined in absence of mobility (t1 = t2 = 0). Hence RC = f (P,RC1,RC2).

5.5 Results

In this section the impact of individuals moving across patches (having distinct infec-

tious risks) on the control interventions effectiveness is addressed. Particularly, this work

focus on addressing questions such as, how mobility impacts the effectiveness of quaran-

tine programs aimed to reduce EVD cases? does mobility increase or reduce the quarantine

threshold required to properly manage EVD epidemic?

In order to address these questions a two-patch mathematical model assuming patch

specific constant populations (N1 = N2 = 10,000), but having different risk of EVD infec-

tion, is studied. Patch 1 is assumed to represent a region having high-risk of infection and

capable to sustain an EVD outbreak. Conditions in this patch are assumed to produce a

high local basic reproductive number. Data from the West African EVD epidemic is used
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to calibrate model (5.9) risk conditions to match R01 = 2.45 (Towers et al., 2014; Chowell

and Nishiura, 2014; Althaus, 2014). Patch 2 is assumed to exemplify a region incapable

to sustain an EVD epidemic, having a low-risk of infection and a local basic reproductive

number bellow the unit, R02 = 0.738.

Some patch-specific conditions like social, economic and health characteristics lead to

differences in risk of infection and are captured in a single parameter βi. The contagion

process is assumed to start by the introduction of an infected individual in Patch 1, and in

the presence of mobility, the epidemic is capable to spread to Patch 2.

5.5.1 The Effect of Quarantine Pre-Symptomatic Individuals on the Spread of EVD on

Distinct Risk Environments

In this section, numerical explorations aimed to assessing the effects of mobility on

the global reproductive number and EVD total attack rate are performed. It is assumed

that a fraction of the population (q), is opportunistically diagnosed and quarantined before

symptoms onset.

Figures 5.2 and 5.3 show the effects of mobility from the high-risk region on the total

and patch specific final epidemic size, in absence of control interventions, and when 20%

of detected individuals are quarantine in Patch 1, respectively. Naturally, quarantine imple-

mentation in the high-risk region reduces the final epidemic size for all traveling scenarios.

More interestingly, quarantine reduces the mobility needed to control an EVD outbreak

by mobility from the high-risk region, i.e. making mobility management a more feasible

control measure.
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Figure 5.2: Total and patch specific fi-
nal epidemic size under Patch 1 mobility,
q1 = 0 = q2 and R01 = 0.9.

Final epidemic size

0.2 0.4 0.6 0.8 1.0

2000

4000

6000

8000

Patch 2

Patch 1

Total

(q1 = 0.2, q2 = 0)

t2

Figure 5.3: Total and patch specific fi-
nal epidemic size under Patch 1 mobility,
q1 = 0.2, q2 = 0 and R01 = 0.9.

Isolation of infected individuals produces transmission chains breakage, decreasing the

final epidemic size for all mobility levels. However, a more important effect of quarantine

considerable proportions of the population is that this control measure impacts the effective

population traveling across patches. This directly impact the traveling thresholds producing

benefits in terms of the final epidemic size and controlling an EVD epidemic on the overall

system.

Figure 5.4 shows the dynamics of the overall attack rate under scenarios where none,

20% and 35% of pre-symptomatic individuals are perfectly isolated (l = 0) and for R02 =

0.9. Simulations suggest that detecting and quarantining a low proportion of the infected

individuals in the high-risk region (for example, q1 = 0.2) produces a significant reduction

on the overall EVD attack rate. Although in the presence of quarantine, the cordons san-

itaires scenario attack rate (t1 = 0) decreases, quarantine low proportions of the infected

individuals in Patch 1 (q1≤ 0.35) produces similar dynamics of the total attack rate as func-

tion of the Patch 1 mobility, i.e. the total attack rate increases for small traveling regimes.

Nonetheless, quarantining a “big enough” proportion of infected individuals in the high-

risk region, can vanish the detrimental effect of low mobility regimes, reshaping the total

attack rate as a monotonic decreasing function as Patch 1 traveling increases.
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Figure 5.4: The total attack rate de-
creases dramatically as quarantine of
pre-symptomatic individuals increases.
All levels of Patch 1 residents mobil-
ity are beneficial if more than 35% pre-
symptomatic individuals are under per-
fect isolation.
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Figure 5.5: The total attack rate de-
creases by increasing quarantine in low-
risk region. However, even Patch 2 big
quarantine programs (q2 = 0.5) slightly
helps on controlling epidemic. q1 = 0.2

On the other hand, Patch 2 quarantine interventions are not as effective as do it in the

highly vulnerable region. Figure 5.5 shows that even implementing “big” quarantine pro-

grams in the safe region has not a significant impact in reducing the total attack rate, unless

high mobility levels from the high-risk region are attained. Although the efficacy of the cor-

dons sanitaires control strategy on reducing the total attack rate depends on both patches

traveling regimes and quarantine programs, previous results show that quarantine programs

and mobility from the high-risk population produce the major impacts on decreasing the

total attack rate.

5.5.2 Quarantine vs Isolation on the containment of Ebola

In this section, the effects of isolation and quarantine on the dynamics of EVD on het-

erogeneous risk environments are numerically explored. Quarantine and isolation have

been historically used as control measures aimed to contain the spread of communicable

diseases. The mechanism upon these control strategies are based is simple, by reducing

infected individuals’ interactions with the rest of the population, the disease burden is ex-
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pected to be reduced due to transmission chains breakage. Despite the wide historical use

of these strategies on the control of diseases, their specific impacts and effectiveness are

still controversial, being current sources of active research. The importance of understand-

ing the dynamical consequences of implementing such control measures is exacerbated by

situations where dealing with diseases for which there is no available vaccine or treatment.

In such situations, quarantine and/or isolation become the only available control measures

to arrest or mitigate, the epidemic. Addressing the precise definitions for isolation and

quarantine as control measures, are historical challenges. Many of the modern research

coincide in defining isolation as the segregation of individuals known or suspected (for ex-

ample via diagnose or symptoms) to be infected. In counterpart quarantine refers to the

separation and detention of persons suspected to be infected or that have been exposed

to an infectious agent(Barbera et al., 2001; Daubert, 2006; Cetron and Landwirth, 2005).

Historically, quarantine interventions have proven to be effective on controlling Ebola out-

breaks in Central Africa. Nonetheless, the unprecedented scale of the 2014 West African

EVD outbreak joined to limited infrastructure poses a huge challenge on effectively imple-

menting these control strategies. The main difference in modeling isolation and quarantine

is incorporated in the way diagnosed individuals interact with the rest of the population.

While individuals under quarantine are assumed still capable to interact with the rest of the

population, without changing the population size in the force of infection term; individuals

under isolation are incapable to interact with the rest of the population, impacting the pop-

ulation size. This two perspectives are usually reflected in the construction of the force of

infection term (Brauer et al., 2001; Sattenspiel and Herring, 2003; Chowell and Nishiura,

2014).

In order to explore the effects of isolation and contrast them to the effects of quarantine,

assume that a fraction ri of the Patch i diagnosed individuals is isolated and cannot produce

secondary infections, while the fraction of quarantined infected individuals (1− ri) are ca-
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pable to produce secondary infections at reduced infectiousness lβ . According to model’s

(5.9) construction, the expected population sojourning in Patch i at time t is composed

by the non-isolated Patch i individuals while at home ((1− ti)(Ni− riJi)) and the non-

quarantined Patch j individuals while spending time in Patch i ((1−q j)t jN j). Simulations

in Figure 5.6 contrast the effects of perfectly quarantine 30% of diagnosed pre-symptomatic

individuals (l1 = 0 and r1 = 0) and isolate them (l1 = 0 and r1 = 1). For “low” mobility

values isolation of pre-symptomatic infected individuals has an adverse effect on the to-

tal attack rate. This is exhibited in a bigger attack rate when diagnosed individuals are

completely segregated.
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Figure 5.6: Effects of Patch 1 isola-
tion on the total attack rate
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Figure 5.7: Effects of Patch 1 quarantine on
the control of EVD

Figure 5.7 shows the total attack rate as function of Patch 1 mobility in the absence

of any control measure (q1 = 0, l1 = 0, r1 = 0), in the presence of quarantine reducing

diagnosed pre-symptomatic individuals’ infectiousness by 70% (q1 = 0.3, l1 = 0.3, r1 = 0),

in the presence of quarantine reducing diagnosed infectiousness by 90% (q1 = 0.3, l1 =

0.1, r1 = 0), and in the presence of quarantine reducing diagnosed infectiousness by 70%

and isolation of 50% of diagnosed individuals (q1 = 0.3, l1 = 0.3, r1 = 0). Interestingly,

increasing quarantine effectiveness from 70% to 90%, is not as effective as maintaining

quarantine effectiveness at 70% and isolate 50% of pre-symptomatic diagnosed individuals.
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Previous results show that under the scenario where a fraction of the infected population

is quarantined, there exists a trade off between increasing quarantine effectiveness and

completely isolate a fraction of the quarantined population. Further analysis would be

required to completely disentangle dynamics of these control measures jointly acting on

ameliorate the EVD burden.

5.5.3 The Joint Effect of High-Risk Region Quarantine and Traveling

In this section, the impact of Patch 1 control measures are numerically explored. To do

so, Patch 2 is assumed to implement no control measures and residents are assumed avoid

traveling to Patch 1. This work particularly focus on study the impact of quarantine on the

cordons sanitaires traveling threshold and the mobility threshold leading the global basic

reproductive number bellow one.

Figure 5.8 shows the curves along which mobility has no benefits over the cordons

sanitaires scenario. The effects of quarantine programs in the high-risk region, is clearly

seen on the increment of risk levels for which implementation of the cordons sanitaires is

not the best strategy. For instance, q1 = 0 implies that for R02 < 0.35, all mobility regimes

decreases the total attack rate, implying that implementation of the cordons sanitaires under

these scenarios would be the worst decision. In counterpart, q1 = 0.15 relaxes the sanitary

conditions required in Patch 2, allowing the local basic reproductive number raising up to

R02 ≈ 0.5 implying that the cordons sanitaires strategy would be avoided.
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Figure 5.8: Effects of Patch 1 quarantine
on the cordons sanitaires effectiveness
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Figure 5.9: Effects of Patch 1 quarantine
on the control of EVD

The EVD eradication mobility threshold is also highly sensitive to Patch 1 interven-

tions. Figure 5.9 illustrates the level curves R0(t1,R02) = 1, when 0%, 15% and 30% of

Patch 1 pre-symptomatic individuals are isolated. According to simulations, in absence

of Patch 2 mobility and quarantine, Patch 1 traveling can lead to eradication of an EVD

outbreak whenever R02 < 1. Furthermore, the required mobility to eradicate an EVD

outbreak is reduced as more Patch 1 latent individuals are isolated. More interestingly

increasing quarantine in Patch 1, sharpen the eradication mobility threshold, making it less

sensitive to the Patch 2 risk of infection. On extreme scenarios, when at least 60% of Patch

1 pre-symptomatic individuals are isolated, the EVD outbreak control is independent of

the traveling regime, see Figure 5.10. This result is consistent to the single patch scenario

explored in Chapter 2, where results suggest that in order to control and EVD outbreak, a

minimum of 60% pre-symptomatic individuals is required to be isolated.

Previous results showed that widely applied quarantine programs as well as relative

“high” traveling levels can lead to the eventual control of an EVD outbreak. However,

efforts to contain an eventual EVD outbreak by using a single control strategy might be

daunting. Then, a strategy combining quarantine and mobility levels leading to the erad-

ication of EVD in the affected regions might be appealing. In order to illustrate the joint
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effect of Patch 1 mobility and quarantine, Figure 5.11 shows the impact of quarantine and

mobility on the total attack rate, for a Patch 2 having a local infection risk of R02 = 0.9.
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Figure 5.10: Effects of large Patch 1
quarantine programs on the control of
EVD
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Figure 5.11: Total attack rate as function
of Patch 1 traveling t1 and quarantine q1,
for R02 ≈ 0.9.

Figure 5.12 shows the non-linear relation between quarantine and mobility required to

reduce the total attack rate bellow the cordons sanitaires level. Increasing Patch 1 mobility

produces that higher quarantine levels are required, attaining a maximum quarantine at

t1 ≈ 0.1. This maximum turns out to be dependent on the Patch 2 risk of infection, as it is

exhibited in Figure 5.13 for different Patch 2 risks of infection.
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Figure 5.12: Level curve of the total at-
tack rate on the plane (t1,q1), for the cor-
dons sanitaires level.
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Figure 5.13: Patch 2 risk of infection
defines the mobility-quarantine critical
combination.
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The non-monotonic behavior of the critical quarantine-mobility relation is generated

by the reduced effect of mobility as R02 increases. This behavior can be explained geo-

metrically by noticing that the “hump” on the total attack rate surface in Figure 5.11, gets

smother as R02 diverges from one.

It is worth to stress that relative “small” mobility values producing an increment on

the total attack rate demand wider quarantine in order to maintain the attack rate on the

cordons sanitaires level. According to the presented model, high-risk residents spending

around 10% of their time in the safe patch produce the worst impact, increasing the attack

rate. This becomes relevant at the time of analyzing the efficiency of the cordons sani-

taires strategy. Besides the controversy involved in the use of the cordons sanitaires during

the 2014 West African EVD epidemic, produced mainly because this strategy is intended

to stop the spread of the epidemic outside the cordoned region, without caring about the

within population, the impossibility of perfectly contain individuals, produced a leakage

turned out to be harmful for the EVD epidemic containment. The exhibited results are in

agreement to the currently disentangled effects of the cordons sanitaires, seen during the

2014 EVD West African epidemic.

5.5.4 The Joint Effect of Low-Risk Region Quarantine and Traveling

Previous section showed that whenever R02 < 1 an EVD epidemic can be contained

by localized control measures implemented in the high-risk region. In this section the

effects of Patch 2 quarantine on the control of EVD outbreak, when combined to Patch 1

quarantine and mobility, are explored.

Figure 5.14 shows the effect of quarantine Patch 2 pre-symptomatic individuals on

the cordons sanitaires strategy effectiveness, in absence of Patch 1 interventions. Despite

quarantined individuals residents of the low-risk zone has a moderate effect on decreasing

the total attack rate, the dynamics of the cordons sanitaires threshold are heavily affected.
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Figure 5.15 shows that whenever R02 < 1, EVD eradication can be achieved by only

quarantine individuals in Patch 1. Moreover, the safer Patch 2, the major the mobility effect

on reducing the quarantine needed con take the global R0 bellow one. For instance, the

scenario of an R02 = 0.9 and t1 ≈ 0.5, would require to quarantine around 40% of Patch

1 pre-symptomatic individuals; while an R02 = 1 under the same mobility level would

require to quarantine around 50% of the infected population. Furthermore, for R02 slightly

greater than one, the combination of Patch 1 quarantine and traveling, is capable to lead to

the eventual eradication of an EVD outbreak. For example, under the scenario R02 = 1.015,

Patch 1 quarantine is not enough to take the control reproductive number bellow one. In

this case, a combined strategy of mobility of t1 ≈ 0.15 and quarantine between 60% to 90%

would lead to EVD eradication. This exhibits the impact of big quarantine programs on

reducing the traveling population, and in consequence, the impact of traveling management

as a control strategy. In Figure 5.15, the extreme scenario of quarantining above 90% of

pre-symptomatic individuals, reduces enough the traveling population, so that there is no

mobility regime capable to lead to the EVD eradication, in absence of Patch 2 interventions.
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5.6 Discussion

In this chapter it was shown that under the simple scenario of two regions with differen-

tial Ebola Virus Disease (EVD) infection risk, the joint use of mobility and localized control

measures might be an appealing strategy in order to properly manage the EVD spread on

the whole system. Results show that, control measures applied in the high-risk region have

major impacts than those implemented in the low-risk region. Nonetheless, this does not

mean that having good sanitary conditions in the safe region is not important. If mobility

would be used as a control strategy, sanitary conditions of both patches are important. The

trade off between increasing quarantine effectiveness or increase the fraction of isolated

diagnosed pre-symptomatic individuals was briefly addressed via numerical simulations.

Results show that more analysis is required in order to accurately assess the impact of each

control strategy under an EVD epidemic. Either quarantine or isolate a large proportion

of the population, directly impacts the effective population traveling and/or the effective

population sojourning in a given patch. Results show that the joint implementation of quar-

antine and mobility control strategies require further analysis in order to properly address

the potential beneficial and harmful effects of joint implementation of these control strate-

gies.
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Chapter 6

CONCLUSIONS & DISCUSSION

The 2014 West African Ebola Virus Disease (EVD) epidemic, after the 2003 Severe Acute

Respiratory Syndrome (SARS) epidemic and 2009 influenza A (H1N1) pandemic, dis-

closed a highly connected world with enormous potential to rapidly spread a disease world-

wide. Fast and accessible transportation around the world doubtless produces invaluable

benefits in many aspects, but at the same time generating interdependence across nations

and posing new global challenges. The West African epidemic showed that currently a

virus can worldwide spread in few hours, the same period for an infected individual to

develop symptoms. The imported EVD case in Lagos, Nigeria, by an international flight

from Liberia, is but an example of such international threat. In this work, the role of

highly vulnerable regions as the weakest link in a global health system is assessed. These

regions, where spillover events are highly likely to happen, are critical for early disease

containment. Unpreparedness of these regions facilitates conditions for a local outbreak to

become a serious international problem, as seen in the 2014 West African EVD epidemic.

The presented work envisioned the EVD affected region as a polarized area to study the

effects of risk heterogeneity on the dynamics of EVD. The introduction of the Lagrangian

modeling approach to study the EVD dynamics is useful in many aspects, as it makes use

of measurable parameters (infection risk and residency time, for instance) and as EVD

dynamics can be locally (this is, patch-specific) and globally (over the two patch system)

assessed. The metrics used in this works includes the local and global (the two patch sys-

tem) basic reproductive number and final epidemic sizes as functions of the patch specific

mobility, infection risks and density. The main contributions of the presented work are

done around the potential benefits of mobility management as a control measure. Particu-
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larly, across regions exhibiting extreme differences on health care access, disease risks and

population’s densities. The derived results challenge the stigmatized classical notion of

population mobility as producing a harmful effect on the containment of an epidemic. The

cordons sanitaires’ effectiveness was assessed as function of the mobility, patch-specific

risk of infection and patch density.

Results suggest that three scenarios characterize the cordons sanitaires’ effectiveness in

terms of the total final number of EVD-infected individuals: a very safe neighboring region

implies that travel ban is the worst decision as a control measure, an “intermediate” safe

neighboring region conditions the cordons sanitaires’ effectiveness on specific mobility

levels after which the final epidemic size reduces, and a relatively “high risk” neighboring

region for which the cordons sanitaires strategy appears to be the best control strategy.

Moreover, the dynamics of the threshold condition for EVD eradication in terms of the

patch population mobility is assessed in terms of its dependence on the patch-specific in-

fection risk and implementation of localized control strategies. Finally, the impact of patch-

specific density on the dynamics of the mobility threshold reducing the total final epidemic

size (compared to the cordons sanitaires scenario) and the mobility threshold required to

properly manage EVD are explored.

The simple setting used in the present work seems able to shed light on the EVD dynam-

ics exhibited in the zone divided by a cordons sanitaires barrier. However, the appropriate

minimum number of patches needed to capture the dynamics of specific systems should be

addressed. The proposed problem, although in principle, similar to the problem of the min-

imum number of pixels required to gain the best image quality at different scales, is still

more challenging. In the epidemiological context, the patch problem deals with humans

changing their behaviors according to their threat’s perception. Thus, not only the number

of patches to be incorporated has a critical role in the study of epidemic’s dynamics, but

also the role of human behavior becomes imperative.
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The many factors combined in West Africa promoting an event of global scale had dif-

ferent nature. Social characteristics like population’s fear and government distrust, poor co-

ordination at distinct levels, as well as people’s reluctance to suspend traditional practices,

among others; extreme poverty reflected in lack of appropriate health system infrastructure,

basic medical supplies and insufficient personal protective equipment; and, highly connec-

tivity between the West African communities and, its proximity to highly dense cities, are

but some factors that deeply influenced the course of the outbreak. Many of the control

measures implemented during the 2014 West African outbreak can be identified as tem-

porary effective, i.e feasible in presence of international aid, but not sustainable without

it. Contact tracing, besides its high implementation costs, becomes challenging and less

effective in presence of mobility. On the other hand, high isolation effectiveness is required

to produce a significant impact on the EVD control, moreover, this control measure is

highly dependent on treatment center capacity and transportation availability. Robust con-

trol measures, planned to effectively persist beyond the crisis period, might be expensive at

the implementation time, but doubtless represent the best investment over time. The out-

come of maintain inequalities across nations or cities, might ultimately be more expensive

than start investing on sustainable control measures. For instance, in the case of zoonotic

diseases, beyond the complex task that eradication of the wild carrier would represent, a

species eradication might dramatically alter a whole ecosystem, potentially triggering a

worst event. The consequences of altering an ecosystem has been documented in many

scenarios, for example the wolfs reintroduction in the Yellowstone park and the incredible

change in the whole ecosystem and geography. Such environmental complexity demand

us to safely coexist with the countless disease agents we are continuously exposed to. On

the other hand, it is well known that decisions are made on individual’s risk perception

and directly affected by the event probability. However, decisions made towards increas-

ing the contrast between the privileged and the oppressed, can ultimately lead us towards
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a global disastrous scenario. The impossibility of preventing the next spillover demand

us to identify the real goal as not only be capable to contain an ongoing outbreak, but as

being capable to design a global strong public health system. In retrospective, it is not hard

to see that enhancement of health care systems in the highly affected regions, along with

implementation of sustainable control measures aimed to vanishing existing inequalities,

would be the path to attain a global strong health system. Nonetheless, this will be possi-

ble until global engagement on international public health preparedness occurs, otherwise

we might continuously experiencing local outbreaks becoming international public health

treats. In the end, it is our ethical responsibility to construct moral based policies equally

caring about people’s health, regardless their nationality, race, ethnics and other personal

characteristics.
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