

Localized Application for Video Capture for a Multimedia Sensor Node with Name-

Based Segment Streaming

by

Zarah Khan

A Thesis Presented in Partial Fulfillment

of the Requirements for the Degree

Master of Science

Approved April 2018 by the

Graduate Supervisory Committee:

Martin Reisslein, Chair

Adolph Seema

Antonia Papandreou-Suppappola

ARIZONA STATE UNIVERSITY

May 2018

i

ABSTRACT

 The Internet of Things (IoT) has become a more pervasive part of everyday life.

IoT networks such as wireless sensor networks, depend greatly on the limiting unnecessary

power consumption. As such, providing low-power, adaptable software can greatly

improve network design. For streaming live video content, Wireless Video Sensor Network

Platform compatible Dynamic Adaptive Streaming over HTTP (WVSNP-DASH) aims to

revolutionize wireless segmented video streaming by providing a low-power, adaptable

framework to compete with modern DASH players such as Moving Picture Experts Group

(MPEG-DASH) and Apple’s Hypertext Transfer Protocol (HTTP) Live Streaming (HLS).

Each segment is independently playable, and does not depend on a manifest file, resulting

in greatly improved power performance. My work was to show that WVSNP-DASH is

capable of further power savings at the level of the wireless sensor node itself if a native

capture program is implemented at the camera sensor node. I created a native capture

program in the C language that fulfills the name-based segmentation requirements of

WVSNP-DASH. I present this program with intent to measure its power consumption on

a hardware test-bed in future. To my knowledge, this is the first program to generate

WVSNP-DASH playable video segments. The results show that our program could be

utilized by WVSNP-DASH, but there are issues with the efficiency, so provided are an

additional outline for further improvements.

ii

TABLE OF CONTENTS

 Page

LIST OF TABLES…...…………………………………………………….……………..iv

LIST OF FIGURES………………………………...……………………………………..v

CHAPTER

1 INTRODUCTION…………………………..…………………………….…….1

1.1 Motivation…...…………….………………………………...………...1

1.2 Previous Work…….……..…...……….……………………….……...2

1.3 Contribution….…..……..……………………………...……………...5

2 BACKGROUND….……………………....……………………………….……7

 2.1 Video Streaming Using WVSNP-DASH………….….…...…….…....7

2.2 WVSNP-DASH………………….……………………………….......8

2.3 Power Testing…….……………………………………………….....11

3 IMPROVEMENT ON POWER...………..….....………………...…………....16

3.1 Method….……………………………………………….…………...16

3.2 Measurement……….……….…………………………….………….18

3.3 Result…...………………………………………………….…….…..26

4 NATIVE CAPTURE PROGRAM…………….……………………….…...….28

 4.1 How It Works…...………………………………....………….….......28

 4.2 Suggestions For Further Optimization……………………..…....…...31

 5 CONCLUSION AND FUTURE WORK….…………....………...……..….....33

REFERENCES…………….…...…………………………………………………..……39

iii

CHAPTER Page

APPENDIX

A NATIVE CAPTURE PROGRAM SOURCE CODE…...………………….…47

iv

LIST OF TABLES

Table Page

3.1 Average Power Draw…………………………………..…………………………….19

3.2 Average CPU %...20

3.3 Average Time Lapse………....………....……………………………………………21

v

LIST OF FIGURES

Figure Page

2.1 Hardware-based Power Measurement Setup………………………………………...15

3.2 Plotted Power Draw Over Time For Each Resolution And Video Segment Length...22

3.3 Plotted CPU Usage In Percent Over Time…………………………………………...24

1

CHAPTER 1

INTRODUCTION

1.1 Motivation

As an ever-growing popular topic, wireless sensor networks have become an

integral part of society with the development and implementation of the Internet of Things

(IoT). These networks are expected to regularly gather and send desired information from

a variety of sensors. In addition, they must do so while also efficiently utilizing power and

memory of the sensors, as well as delivering the information in a timely and reliable

manner. The data collected can is then utilized for a variety of applications [3], [4], [5], [6],

[7], [8], [9], [10], [11], [12], [13]. Certainly, with the rising demand for reliable video

streaming for purposes such a surveillance, there is a clear demand to establish a reliable

low-power network running in real-time [14].

 In particular, the need for low power usage stems from the condition of the sensors.

Often, these sensors are placed in remote environments far from the recipient of the data.

These sensors are limited by hardware constraints and limited resource access such as a

reliable power supply. Often, these sensors work on a limited battery and are only capable

of a certain level of computing power [15], [16], [17], [18], [19], [20]. The limited

computing and storage resources of typical wireless sensor nodes [21], [22], [23] have

spurred the developed of specialized video coding mechanisms, e.g., [24], [25], [26], [27],

[28], [29], [30].

Furthermore, it can be inefficient, inconvenient, or even dangerous to manually

replace such power supplies too often. Improving the hardware itself can have

2

improvements, but they are often limited. Frequently replacing an old sensor with a newer

one with a more efficient processor, for example, is an inefficient and costly solution. It

would not compensate greatly for inefficient, poorly-designed networks or software.

Hardware can only make up for poorly implemented software or inefficiently designed

networks to a limited degree, so many developers choose to improve software as a more

cost-effective measure. Or they prefer to look at the overall design. It is far better to

improve the overall network design and framework to improve the lifespan of sensors,

while understanding the trade-offs between extending lifespan and meeting the desired

application requirements [19].

1.2 Previous Work

Seema et. al. [1] looked to improve video-streaming from these sensor nodes under

such power constraints. Their approach uses the Wireless Video Sensor Network Platform

compatible Dynamic Adaptive Streaming over HTTP (WVSNP-DASH) framework to

capture and send name-based, video segments [2]. This framework takes a streamlined

approach to conventional streaming frameworks such as Moving Picture Experts Group -

Dynamic Adaptive Streaming over HTTP (DASH or MPEG-DASH) [31], [32]. WVSNP-

DASH utilizes a “segment naming syntax,” which simply means the metadata is in the

name of the video segment itself, to remove the need to depend on an external manifest

file, as current models do [1]. Simply put, these segments can be hosted on a server and

based on their names the WVSNP-DASH Player (WDP) can fetch them in the correct

order. Because each of these segments contains the basic metadata (such as the quality or

order in the sequence) in the name, each segment is essentially a self-contained video file

that may be played independently from other files. These segments are labelled by their

3

sequence number, the playback mode (whether LIVE or Video on Demand (VOD)), the

total number of segments in the sequence, and the video container format [2].

For their contribution, Seema et al. [1] were able to establish a benchmark for

measuring power consumption at a wireless sensor node when using manifest file

dependent streaming (like HLS) vs. segmented name based streaming (like WVSNP-

DASH). First, they provide a power profile of both frameworks WVSNP-DASH and HLS.

The power profile includes the power consumed for all the typical steps of retrieving video

over the internet after a request has been made for the video: capturing the video segments,

storing them, transmitting them over the wireless network, and playing back the video

segments using the player open on the system of the individual who requested the video.

They then provide extensively-detailed measurements of the current draw at the wireless

sensor node for both streaming frameworks.

They next profile design choices that could further influence power consumption.

For example, there was consideration for the choice in video library: FFmpeg [33] vs.

GStreamer [34]. They also looked at data movement over a USB vs. a Camera Serial

Interface (CSI). And finally, they looked at the power profile when using hardware

acceleration versus running the software only when encoding.

In their experiment, they profiled the power consumption of the name-based

WVSNP-DASH format against Apple’s manifest-file dependent HTTP Live Streaming

(HLS) format. Their power measurement setup included several components. First, a

remote client was setup that hosts the video playback that sends the request for the video.

The client used the WVSNP-DASH Player (WDP) [2] and HLS was streamed using

JWPlayer 6 with HLS-supported plug-in, with version 32 of Google Chrome serving as the

4

web browser [1]. Next, the wireless sensor node was constructed using a NXP i.MX6 ARM

Cortex-A9, 1.2 GHz Quad core 2 GB node development board and had attached to it both

a USB webcam and a CSI attached Wandcam [35]. Hosting on a local server,

measurements were taken both over WiFi and over Ethernet. A current clamp was used to

measure the current draw in milliamperes (mA) and voltage (V) was measured in volts

using an oscilloscope [1]. It is important to understand the setup done in their work as in

Chapter 5 we will discuss how we intend to very closely recreate the experiment using our

own contribution.

The results of the experiment showed that when comparing WVSNP-DASH and

HLS for miniaturized wireless sensor nodes, WVSNP-DASH generally performed with

greater reduced power consumption over HLS. However, it was noted that there was the

potential for additional power saving should a local program be implemented, as their

experiment relied on an inefficient script [1]. This Linux script would simply repeatedly

open and close the open source video library FFmpeg, which was used to run the video

capture, and saves each segment in the WVSNP-DASH format. This opening and closing

of the program led to unnecessary power loss that could be saved if FFmpeg was only

invoked once, segments are encoded, then have ffmpeg close once the video segments are

collected. The primary conclusion to take away from their work is that if a native capture

program were utilized instead of the inefficient script used in their work, the power saving

between WVSNP-DASH and HLS would be even greater, as WVSNP-DASH has already

shown to have a reduced power consumption. [1] For our own contribution, we intend to

provide a native capture program to recreate this experiment.

5

1.3 Contribution

The primary contribution of this work is to provide and outline the means to further

improve upon the work done by Seema et. al., as there were several limitations in their

experimental setup [1].

In our work, we implement a modular standalone C application to capture LIVE

video that is WVSNP-DASH compatible, based on the need stated in Chapter 1.2 [1]. Our

native capture program utilizes the open source FFmpeg library tools, which provide the

necessary support for capturing and encoding the video [33]. Once the program was

written to suit our needs, we analyzed the efficiency of the video capture between our native

capture program and the script. This is further explained in Chapter 4.1. In addition, we

measured the memory usage and time-lapse, as both are additionally good indicators of a

program’s efficiency. We chose to look at the efficiency of just the program and the script

themselves, not utilizing any framework, to ensure our program was suitably optimized

before recreating the previous experiment [1]. Our method and results are discussed in

Chapter 3. To the author’s knowledge, there does not exist a program like this so there is

no means of comparison. Thus, we needed to make our own goals for the program and

establish a rigorous, consistent test to show enough improvement to allow the program to

move onto the next phase of testing. While we have optimized our program to testing

capacity, we also acknowledge that further optimization is possible. Due to time

constraints, we were only able to achieve a certain level of utility from the program, so we

will outline how to improve the program’s efficiency. The detailed description of our

program and suggestions for further optimization are included in Chapter 4.

6

Afterward, we outline the future work to be done with the native capture program

and we provide the experimental setup to test our native capture program against HLS and

the previous script over WVSNP-DASH similar to the previous work [1]. We outline in

Chapter 5 our suggestion for the experimental setup to be conducted on similar hardware.

For future testing, we have already taken the liberty of setting up the WDP and two

additional players, including HLS, so that we may soon begin the hardware-based

measurement. Details of how to conduct offline setup of these players are also included in

Chapter 5.

 To summarize, the rest of this paper is organized as follows: Chapter 2 provides the

background information of video streaming and power profiling. Chapter 3 provides the

methodology of the power profiling, the measurements collected, and a discussion of the

results. Chapter 4 provides a more detailed explanation of our native capture program and

suggestions for further optimization based on our findings. Chapter 5 outlines the future

work to be done, and outlines how to recreate the experiment of the previous work. Finally,

we include references and our native capture program in the appendix.

7

CHAPTER 2

BACKGROUND

2.1 Video Streaming Using DASH

 The Moving Picture Experts Group (MPEG), a primary authority for video and

audio quality standards, released the Dynamic Adaptive Streaming over HTTP (DASH)

technique with the intention to provide quality video streaming frameworks alongside the

rise in the usage of smartphones and other multimedia devices [36]. The intention was to

replace the outdated mindset of the Real-Time Transfer Protocol (RTP), as Sodagar [31]

shows several flaws to the system. While RTP worked fine in small, managed network

settings, relied too heavily on session-management to deliver audio and video. It also would

be regularly be locked by firewalls, something that is not an issue with HTTP. Furthermore,

Sodagar points out that managed networks are on their way out as content delivery

networks (CDN), which often do not have RTP-support, are becoming the norm. CDN’s

are essentially a decentralized network prioritizing high-quality content delivery. The

infrastructure of the internet has been made to well support HTTP and this approach to

content delivery [31].

The reason for streaming to develop in this direction is that with video streaming

being some of the most common content delivered through a network, it is critical to be

able to do so reliably. Adaptive streaming is more suited to the dynamic nature of IP

networks compared to streaming platforms before it, as a high amount of bandwidth is

required for higher quality audio and video streams, but such bandwidth is not always

available [37]. Ideally, we want to prioritize having a reliable stream, so if the network is

less reliable, and high bandwidth is not guaranteed, we want to see our network

8

dynamically adapt by lowering the video or audio quality to maintain the overall Quality

of Experience (QoE).

 DASH streaming has two components. The first is a manifest file that contains all

the relevant metadata for the client to be able to fetch and play segments in the correct

sequence. The second part are media segments that determine the format of the content into

such formats as the MP4 format [37]. MPEG-DASH and HLS are both streaming formats

based on the DASH standard. Both utilized a manifest file, although each use their own

format of manifest file and segment formats. This means that hypothetically, for two

devices to share content with each other, one device must support the other’s client protocol

[31]. Both formats work by taking some multimedia content, then encoding it, and then

dividing it into multiple segments. The first segment is usually the initialization segment,

which contains the required information to initialize the DASH client’s media decoder [31].

This is the most important segment as the entire stream of segments will not function

properly if this initialization segment is not processed. The DASH client then uses the

information to request the segments. For live streaming, DASH has been found to have

issues with end-to-end delay, in that, there is always a certain degree of waiting for the next

segment [37].

 HLS is the DASH standard developed by Apple. It is similar to the MPEG-DASH

standard, as stated above, but it utilizes its own manifest file format and media segment

extension formats. In contrast, MPEG-DASH is codec-agnostic. Being agnostic, this

standard can support any codec format used by the encoded content, and can support said

content whether it is multiplexed or unmultiplexed encoded content [31]. This makes

MPEG-DASH more flexible compared to the HLS standard. For example, MPEG-DASH

9

does not require a browser to directly support DASH in the video element. HLS on the

other hand, requires that browsers using the standard to be written in such a way to properly

support its manifest files [2]. However, because both utilizes a manifest file for the

metadata and an initialization segment to begin the stream, this makes the segments heavily

dependent on each other. During video playback, these dependencies and generation tools

must be maintained by the video server and the client. HLS was also the standard compared

against WVSNP-DASH in the work by Seema et al. [1], and will primarily be the focus of

our work. Apple HLS is an established, commercial product, and the goal of their work

and our own is to see if WVSNP-DASH can outperform HLS.

2.2 WVSNP-DASH

 Seema et al. [1], [2] have developed a solution to address the issue of previous

adaptive segmented video streaming frameworks, especially when streaming from small,

wireless, multimedia sensor nodes. Rather than having segmented video with dependencies

held by a manifest file, this unique approach suggests that each video segment be

independently playable by having the essential metadata held within its name. While this

requires that the files adhere to a rigid name syntax, shown below, it essentially removes

the need for a manifest file, or initialization in order to retrieve and playback the desired

segmented video from the sensor network.

The naming syntax was inspired by the Backus-Naur Form: <filename>-

<maxpresentation>-<presentation>-<mode>-<maxindex>-<index>.<ext> -- where

<filename> is the stream’s unique identifier, <maxpresentation> is an integer value of the

maximum possible stream quality, <presentation> in contrast is the actual stream quality

10

value (with 0 being the lowest quality possible), <mode> simply determines if the stream

is live playback (LIVE) or video on demand (VoD), <maxindex> indicates the number of

segments total request, <index> indicates a segment’s position in the sequence from 1 to

the <maxindex>, and <ext> is the video container format (e.g. .mp4) [2], [38]. In our

program, we followed this guideline when generating the filenames of the video segments

in order to make the native capture program adhere to the rigid naming format. This

information is sufficient to remove the need for a manifest file [2]. This removes the need

to have the playback conducted in the right order as MPEG-DASH and HLS require.

WVSNP-DASH solves a continually growing issue of meeting modern demand for

high quality video. Video streams are some of the most commonly shared and distributed

content on the internet. There’s a particular demand for high-quality, reliable streams of

VoD and LIVE video. To prevent congestion from a large video file size, the most video

nowadays are segmented over the Internet Protocol (IP) communication network. This

allows for adaptive streaming of the video quality and bitrate between segments. This

adaptability makes it possible to maximize the performance of video streaming given

certain conditions or trade-offs [39], [40].

 Currently, the majority of modern web browsers support video playback under

HTML5 [37], [41], [42], [43]. While HTML5 allows for an easy implementation of video

players by use of the video tag, the challenge comes from the diverse formats and

requirements of different media formats, often times requiring workarounds to properly

play. Furthermore, if the bitrate or the quality is changed, it can require re-downloading

the entire video file again [2]. WVSNP-DASH utilizes its own player, the WDP, for

streaming video with the HTML5 element. The player follows the specification for DASH.

11

WDP is similar to MPEG-DASH in that both do not require a browser to directly support

DASH like HLS does. However, WDP does not require a server to format the multimedia

data [2]. Beyond TCP/IP networks, WVSNP-DASH also supports non-traditional protocol

networks such as Zigbee, which are not supported by existing DASH players [2]. There is

also an additional benefit from name-based video segmentation in regards to backwards-

compatibility. The flexibility of WDP comes from the fact that it is essentially container

agnostic. Therefore, because WVSNP-DASH, like MPEG-DASH, is codec agnostic, will

work with most web browsers (e.g., Chrome, Windows Internet Explorer, Firefox), support

HTML5, and work with non-TCP/IP networks, WVSNP-DASH is a solid choice for

interfacing with wireless sensor networks that conduct video capture because of it does not

require any redesign of video containers or file formats [2].

 WVSNP-DASH still needs to be improved in a few key areas. Currently, the most

recent measurements of the performance of WVSNP-DASH were not measured to reflect

the nature of dynamic streaming. We would expect bitrates, the pixel format, or frame rates

to fluctuate due to the nature of wireless networks and video playback. In the work

conducted by Seema et al., [1] all three variables were measured as preset constants. While

the WDP can switch between both BIG and SMALL in real time to provide a degree of

dynamic adaptability, this method is rather limited. In our own program, these three

variables are also fixed so that our program could be used to recreate the same test

procedure. In future, this will need to be taken into account.

2.3 Power Testing

IoT networks often utilize miniature devices such as wireless video sensors. There

is an ever-growing urgency to look at the power consumption of these hardware-limited

12

devices, as these devices have continually developed more complex and more ubiquitous

multimedia applications [13], [44], [45], [46]. These more complex devices require careful

understanding of how power is managed. Many times, devices such as wireless sensors are

placed in remote areas, and likely depend on battery power. Sensors in these conditions

have to settle for certain tradeoffs. In regards to size, the devices must be self-contained

and self-reliant, containing the necessary sensors, power source, and CPU. But they must

do so while also being as small as possible for convenience. These devices must also have

the CPU power for their desired tasks, while also taking into account power efficiency, as

they will likely run on a battery. Ideally, these sensor devices would balance the need to

maximize efficiency and minimize power consumption, while also meeting desired

performance goals set by the developer.

 For sensor network design, power supply and consumption are arguably the most

important factor to consider. There have been several studies that show how power affects

the operation of a sensor network [47], [48], [49], [50], [51], [52], [53], [54], [55], [56],

[57]. There have only been a few studies to focus on the power consumption at the sensor

node level [58], [59], [60]. These can be the most important as these nodes can have the

most limited resources. In this paper, we are interested on understanding and measuring

the power consumption between a name-based video segmentation stream [1] and the

current manifest-based video segmentation stream method, as there is evidence that the

former can save power in wireless sensor networks.

For our native capture program, we wanted to make sure that it was suitably

optimized to participate in the previous experiment [1]. To do so, we conducted software-

based testing to measure improvements on power consumption. Our goal was to properly

13

optimize the native capture program that there will be considerable improvements when

the previous experiment is recreated. We believed that both the script and our native

capture program ought to be tested in an isolated environment to better understand the

contribution to the power consumption of both pieces of software. We determined that

software testing would be best suited for our purpose as changes can be made quickly to

the program and then observed on the computer.

With that goal in mind, we studied how to best conduct software-based power

testing. We were interested in studying a software’s power draw, which can be measured

in Watts, or the product of a voltage V in volts and a current I in amperes. We analyze

power over a time t in seconds. There are several existing tools such as the Linux tools

PowerTop [1] and powerstat [61]. Powerstat is the software we chose to use in our power

measurements and is further discussed in Chapter 3. There are also process-specific

measurement software libraries, such as PowerAPI and kernel-specific libraries such as

powerscripts and powerman [1]. Software-based testing such as this can help establish a

general trend or provide a quick means to determine if any improvements to software result

in improved power efficiency. It also has the benefit of quick and easy implementation, as

it allows our team to make quick changes to the native capture program and then shortly

test the performance after. However, it is worth noting that running any additional

software, ironically including measurement software, affects the measurement of power

consumption, as the measurement software also requires power itself. Specifically in-

system methods of testing affect the device under test (DUT) because they require power

to function [1]. Limitations to of our work will be further explored in subsequent chapters.

14

 As useful as software-based testing is, we can further get better results through

hardware testing. Testing with hardware allows the power measurement devices to be

separate from the device being tested and isolates the system for a better, more accurate

measurement. There are several different approaches for to measuring the energy

consumption of wireless devices [1]. Of the different methods, the one of particular interest

is the inductor method, popularly used for heavy engineering tools, as it was used in

previous work [1]. Essentially, current is measured by sampling the voltage at the clamp

inductor by the electric field from the wire that supplies the load current. While this method

allows for high sampling rates, it also requires frequent recalibration [1].

 The power measurement setup shown in previous work [1] follows the inductor

power measurement method, and it will be the setup of future testing with our own native

capture program. Figure 2.1 below shows the setup we will intend to recreate in future

work. To follow previous work, the following setup will be created. The board used would

be a NXP i.MX6 ARM Cortex-A9, 1.2 GHz Quad core, 2 GB node development board, or

a very similar board. To measure the current, we would use a 10 μA resolution current

clamp attached to the power wire of the board. A digital oscilloscope with 100 MHz

bandwidth, a sampling rate of 1 gigasamples/s, and 12-bit enhanced resolution would be

attached to the 5V jack on the board to measure voltage. While alternatives exist such as

15

Figure 2.1: Hardware-based Power Measurement Setup [1]

using a plug-in power meter, we will need to recreate the experiment as closely as possible,

with the goal of recreating similar current values. Doing so means we can safely test our

native capture program with WVSNP-DASH playback to see if we

have successfully saved power. Further detail of the experimental setup that we will

conduct as future work is included in Chapter 5.

14

CHAPTER 3

IMPROVEMENT ON POWER

3.1 Method

 We addressed the concerns raised by Seema et al. [1] about their means of

measuring the power profile of WVSNP-DASH for miniature wireless multimedia sensor

nodes. Their work draws the conclusion that WVSNP-DASH does reduce power

consumption on the sensor node for video capture and LIVE streaming compared to the

HLS framework. However, the experimental setup for WVSNP-DASH utilized a power-

inefficient script that crudely opened and closed the video capture program, instead of a

more optimized method. They suggested a native capture program be installed on the

camera node itself to further the potential power savings [1]. The contribution of this paper

was to create that native application mentioned [1] and run preliminary testing regarding

its power savings. Then, we present our findings, discuss the implications, and draft an

outline for future testing.

 We began by writing a native video capture program using the C language. This

program simply takes in several values: name, video length, number of segments, and

whether the video is BIG or SMALL (as defined in previous work [1]). We also ensure that

the output files are in the WVSNP-DASH format, [2] to ensure they can be read by the

WVSNP-DASH player (WDP). Our main limitation is a set time-constraint, but regardless

we have optimized the code to the best of our ability. Chapter 3.1 will discuss the

performance of the program. Further details of the program are discussed in Chapter 4.

Chapter 5 will discuss the need to optimize the program further.

15

 After the program was written, the next step was to establish what factors to

measure to determine the efficiency. We compared the performance of our local application

to the performance of the script by looking at three key factors: speed, memory usage, and

power consumption. All three tests were conducted with laptop testing using Linux-based

software to establish a general trend. By establishing this general trend, we establish a

benchmark to see if more accurate means of measurement will follow the trend. Next, we

analyze the results, suggest techniques for further optimization, and outline how to utilize

hardware for more accurate measurements that not only take into account the running

process, but also the startup of the device.

 For on-laptop testing, we used the following. The laptop used was a Sager CLEVO

P151EMx. The 2.40 GHz CPU was an Intel(R) Core™ i7-3630QM and has 16 GB of RAM.

Video capture was done by the internal webcam of the laptop itself. The laptop utilizes a

NB Pro BisonCam. As for the operating system, we used Ubuntu version 16.04.3 LTS. For

the video library, we used FFmpeg version N-89665-gbddf31b. For our measurements, we

want the run the script against the native program for 10 minutes. This ensured stable

results free from random power spikes or dips. We also ran measurement software in “idle

mode,” where only minimal operations were running to establish a baseline. To better

understand the change in power, we ran the measurement software one minute prior and

one minute after running the program or script to show that the system started and finished

in the “idle mode” state. We acknowledge that the measurements will be influenced by

other operations on the laptop. To minimize their effects, precautions were taken to

minimize unnecessary power consumption. First, all networking such as WiFi and

Bluetooth were disabled. Any external devices were removed. The laptop brightness was

16

reduced to its minimum value. Powerstat was found to be sensitive enough to show mouse

and cursor movement, so the laptop was left alone for the duration of testing. And all

measurements were done without the laptop being attached to its charger to ensure that the

power draw measurements were more accurate. Charging the laptop while measuring

power draw can affect the values. Finally, no other programs were running in the

background. The only two programs running were the measurement software and either

the native program or the script.

For power consumption, powerstat [24] was used to create a general trend of power

drawn in Watts/s. This Linux tool has been used before [62], [63], [64], [65] to measure

the efficiency of wireless sensor nodes, so we felt that the tool would be useful for

establishing a general trend. This software tool measures the status of the computer based

on a set time interval and the number of samples. The software is even sensitive enough to

detect even small movements of the mouse cursor or clicking the left mouse button. The

program has additional features beyond power measurements such as time, CPU usage,

number or currently running processes, temperature, and more. While previous work [1]

measured the results in terms of current in milliamperes, we believe that measuring in watts

should be sufficient as both are directly correlated to power consumption. Our results

cannot be directly applied to the measurements from the previous work, but if we are able

to show a significant reduction in power between the native capture program and the script,

then this should be sufficient evidence that the native capture program is appropriate for

testing using the hardware test-bed setup from before [1].

For our testing, we set the time interval to 0.5 seconds and the number of samples

to 1440, which amounts to 12 minutes of sampling. As mentioned above, powerstat was

17

run for one minute to establish a baseline, then the software was run for ten minutes, then

the measurement continued for one minute after to ensure that the system returned to the

“idle mode.” For data collection, we ran 3 runs for each video size and bitrate (BIG and

SMALL) and for 3 different time intervals (2 seconds, 5 seconds, and 10 seconds). BIG

and SMALL were defined on previous work [1]. BIG video was defined as 500

kilobytes/second with a 640 x 360 pixel resolution and 25 frames/second. SMALL video

was defined as 150 kilobytes/second with a 320 x 180 pixel resolution and 15

frames/second. These 3 runs per video size per time length, were conducted twice to ensure

consistent values. This testing was done for both the native capture program and the script.

To establish a baseline, 3 runs of “idle mode” were run to establish a baseline for each run,

making 6 total measurements, or the equivalent of running each case for an hour. To

determine the statistical significance of our data and to reject the null hypothesis, a t-test

was also run for each case to compare the values of the script and the native capture

program. This was done to reinforce the consistency of the powerstat measurements.

Chapter 3.2 shows the measurements from our runs. The results of the power measurements

are in Figure 3.1 and Table 3.1. Chapter 3.3 discusses the results.

 Powerstat also showed the CPU usage in percentage, which we used to determine

general CPU usage. The tool has a variable called User that shows the power consumption

of programs initiated by the user [24]. The measurement was done simultaneously to the

power draw measurement, so in a similar fashion, the program is idle for one minute before

and after its ten minute run, and the results are posted in Figure 3.2 and Table 3.2. Finally,

we used the simple Linux tool time to show the time lapse of running the program. It is low

power and could be run simultaneously with the program itself to ensure accuracy over a

18

more crude method such as a stopwatch. We ran 6 captures of a single segment to obtain

the average time to capture a single segment in seconds. We found that the standard

deviation of time lapse was very low, so we felt that 6 runs for each condition was

significant. The results are displayed in Table 3.3.

3.2 Measurement

 Figure 3.2 depicts the resulting power consumption over time of a typical run.

Initially, there is a one minute idle period and after ten minutes, we allowed the program

to return to the idle state. The results is a square-wave-like shape to show the power

consumption. The idle state graph below shows the minimal power consumption when all

unnecessary programs are disabled. The program and script are shown as two lines. They

account for both sizes and all three video lengths. For all tables, we only took the average

and standard deviation of the system when the program was running. We did not include

the idle states as they would have falsely reduced the averages and increased the standard

deviation. We also conducted a t-test between the power values of the script and the

program to determine the statistical significance of our findings. The p values of each run

are shown below in each Table. Averages, standard deviation (SD), and p values of each

tested case are displayed in Table 3.1. Figure 3.2 shows the plotted power draw in Watts

over time.

19

Table 3.1: Average Power Draw

 Figure 3,2 shows the CPU percent usage. The powerstat tool variable called User

shows the power consumption of programs initiated by the user. Reducing the amount of

running programs allows us to determine the general CPU percentage of just the running

program. When measuring the idle state, this value is zero. Averages and standard

deviations are shown in Table 3.2.

Size
Time

(s)

Program

(Watts)

Program

SD

Script

(Watts)

Script

SD
P Value

Idle

(Watts)
Idle SD

BIG

2 6.77 1.72 8.13 1.11 p < 0.0001 3.93 0.29

5 7.19 1.80 6.94 1.12 p < 0.0001 3.98 0.33

10 7.68 1.06 6.85 1.14 p < 0.0001 3.98 0.33

SMALL

2 5.98 0.57 7.11 0.83 p < 0.0001 3.96 0.32

5 6.03 0.69 6.53 0.87 p < 0.0001 3.95 0.34

10 6.12 0.47 6.86 1.12 p < 0.0001 3.92 0.29

20

Table 3.2: Average CPU %

Size Time

(s)

Program

(%)

Program

SD

Script

(%)

Script

SD

P Value Idle (%) Idle SD

BIG

2 2.83 1.34 2.24 0.90 p < 0.0001 0.21 0.08

5 2.67 1.10 2.64 0.82 0.028 0.22 0.11

10 2.56 0.74 2.52 0.86 0.004 0.22 0.11

SMALL

2 1.97 0.41 1.61 0.62 p < 0.0001 0.21 0.14

5 1.97 0.46 2.46 0.83 p < 0.0001 0.25 0.11

10 1.91 0.47 2.46 0.71 p < 0.0001 0.20 0.07

 Time lapses of the program were displayed below. The time shown depicts the time

taken to record a single time segment of length 2 seconds, 5 seconds, or 10 seconds. Due

to the time issue of the native capture program, we reported the average runtimes for

different times. Below, Table 3.3 shows the runtimes.

21

Table 3.3: Average Time Lapse

Size Time Program (s) Program SD Script

(s)

Script SD

BIG

2 7.23 0.055 2.22 0.11

5 17.20 0.015 5.29 0.06

10 33.90 0.007 10.24 0.18

SMALL

2 4.34 0.003 2.09 0.12

5 10.36 0.035 5.11 0.09

10 20.37 0.006 10.24 0.12

22

(a)

(b)

(c)

Figure 3.2: Plotted Power Draw Over Time For Each Resolution And Video Segment

Length (Continued on Next Page)

23

(d)

(e)

(f)

Figure 3.2: Plotted Power Draw Over Time For Each Resolution And Video Segment

Length

24

(a)

(b)

(c)

Figure 3.3: Plotted CPU Usage in Percent Over Time (Continued on Next Page)

25

(d)

(e)

(f)

Figure 3.3: Plotted CPU Usage in Percent Over Time

26

3.3 Result

 Looking at Table 1, we see that SMALL video saves considerable power over the

script on average, especially when recording 2 second segments. For BIG video, there was

only savings when recording 2 second video. We double-checked BIG 5 and 10 second

segments (Figure 3.1 (d), (f)) with an additional run another time to make sure the result

was consistent. Unfortunately, we found that these two conditions still performed the worst.

We believe this is due to a power spike at the end of each iteration of the loop. Because our

program follows the similar open and close method of the script, unnecessary power usage

occurs as FFmpeg is closed and initialized again in the next iteration. It is also likely that

BIG video uses more power than SMALL video due to the higher pixel resolution, frame

rate, and bit rate. Looking at the graphs, we see that there are times when the native capture

program uses less power than the script. The problem comes when opening and closing,

where a spike in power increases the overall average power consumption. Future work will

need to look at how to reduce power spikes. We also suggest using additional software-

based power measurements tools mentioned before [1] to double-check our results.

 In regards to CPU percentage, both utilize a similar percentage of the CPU. The

native capture program was shown to not cause a spike in CPU usage to the same severity

as the script, which is a novel improvement. Once again, SMALL video was shown to be

generally more efficient. For future work, we suggest utilizing additional software-based

testing means mentioned before [1] to see how much of the CPU processor is used and how

much saving is possible there. Both power and CPU of the script vs. the native capture

27

program were found to have p < 0.05, in other words, we found the results to be statistically

significant.

 Time lapse was the greatest issue. Per segment, our native capture program takes

twice as long or more as the video length to record. Again, BIG video and longer segments

perform worse. There is certainly room for this to be optimized. The program is stable, and

consistently performs at the rates in Table 3.3, meaning that the issue is inefficiency in the

programming logic. The opening and closing of the software seems to slow down the

progress of the video considerably. Yet, playing the segments afterwards shows that they

are not affected by the slow recording time. Furthermore, the program shows the elapsed

time of recording, which prints at a slower rate than real-time, suggesting the program is

rather sluggish. We suggest implementing multithreading to have FFmpeg invoked only

once, have the segments generated, and then have FFmpeg closed. In Chapter 4 and 5, we

suggest how to further improve the program to get better power consumption, memory

usage, and elapsed time per segment.

28

CHAPTER 4

NATIVE CAPTURE PROGRAM

4.1 How it Works

 Before writing the program, several steps were taken to ensure that the program

would function properly. First, the latest version of Ubuntu, in our case version 16.04.3

LTS, was installed. Once the operating system was updated, the latest version of FFmpeg

was installed. It is important to remember where the various libraries are installed as a path

must be configured to this location to ensure that the program functions work properly. As

an open-source library, there are multiple helpful tutorials to help understand basic

functions of FFmpeg. FFmpeg can be run as a program in the terminal to conduct a variety

of video and audio tasks. The script, for example, runs FFmpeg to conduct LIVE video

capture. For creating projects in C to call on the FFmpeg libraries, one simply needs to

include the libraries at the start of the program as header files. For good examples, locate

the “examples” folder inside the FFmpeg folder, as the folder contains multiple example C

programs to be used as reference. These range from video to audio encoding and decoding

examples and include makefiles and directions.

Next we looked at installing the WVSNP-DASH player and its local server. This

folder was provided by the lab of Professor Martin Reisslein at Arizona State University

(ASU). Included in the folder are directions to install and operate the WDP, with sample

video for playback. Due to time constraints, we were not able to properly conduct LIVE

video playback over the WDP using our native capture program, but we intend to do so in

the future. To conduct LIVE video playback, we would simply run the local host server

included in the WVSNP-DASH folder, open the WDP, and enter the video path to be where

29

the video files are generated. We would run our native capture program. Because our

program utilizes name-based segmented video streaming, the player should be able to begin

pulling the segments in the correct order based on name.

The native capture program is a C application that utilizes the FFmpeg library for

segmented video capture. There are 4 inputs that are required. A sample command-line

input would typically look like the following: ./capture --out_fname output.mp4 --vlen 10

-- seg 60 --size SMALL. Going through the command-line, --out_fname takes in a “.mp4”

output name. The file extension must be included. This name will be changed to reflect the

WVSNP-DASH format. [2] For example, the example shown above will yield the output:

output-1-0-LIVE-60-1.mp4, where the filename includes the output name, size, live video,

number of segments, and the number of the video file in the sequence (which will gradually

increase from 1 to 60 with each subsequent capture).To further accommodate the WVSNP-

DASH format, we allowed for two resolutions: BIG and SMALL [1]. These are preset

bitrates, pixel resolutions, and framerates defined in Chapter 3, that show in the video name

as “1-1” for BIG and “1-0” for SMALL. FFprobe was used to double-check that the

resolutions, bitrates, and framerates were correctly set [23].

 As stated above, the program utilizes the FFmpeg library for capture and

transcoding. This software is highly efficient for encoding and decoding video, and is

already used in commercial software like HLS. The previous method for invoking FFmpeg

for live capture utilized a script that would open and close ffmpeg. This method is relatively

inefficient as additional power was used to interpret the script, launch ffmpeg, conduct the

live capture, transcode, and save the files [1]. In contrast, our program aims to invoke

ffmpeg once and enters a loop to continually run until the appropriate number of video

30

segments have been created. This is a similar approach to HLS, which uses an optimized

method where FFmpeg need only to be invoked once [1].

 Our largest contribution was taking a basic open-source video capture program and

updating it to work for WVSNP-DASH. The basic video capture program was provided by

the lab of Professor Martin Reisslein and Adolph Seema at ASU. We had removed all the

deprecated functions, using only the most recent version of FFmpeg and its libraries. This

was the largest task we completed, as the program was 3 years out of date in regards to

FFmpeg. To remove the deprecated functions, we relied heavily on documentation. While

the examples provided by FFmpeg provided an overall picture of what needed to be

accomplished, the examples themselves often utilized deprecated functions as well. This

meant that we needed to rely more on forum discussions and documentation to determine

how to update the program. One good thing about FFmpeg is when compiling the program,

the terminal will provide warnings about deprecated functions and often suggest the better

implementation technique to use. This made narrowing down the issues much simpler. For

future, installing the latest version of FFmpeg and recompiling the native capture program

should alert the user if there is a new deprecated function.

Afterward, we created a for loop based on the number of segments desired by the

user. The old program was only capable of a single segment capture, so this allowed us to

create multiple segments. Finally, we adjusted the file-naming system to be compatible

with WVSNP-DASH. While we acknowledge this is not an optimized technique to use,

our first goal was to create a WVSNP-DASH compliant program. The result is a program

that takes in the above mentioned input, then saves the set number of desired live video

segments.

31

 The program works as follows: once the input is taken in, the loop begins. At each

iteration, FFmpeg is invoked. First, the audio is read, the appropriate codec is found, and

then the audio will be decoded and muxed to the video once the video is read in. For now,

all audio input is set to a default synthetic audio. In future, we will consider other audio

inputs. Afterwards, we write the filename based on the inputs given. Then, we read in and

decode the video file and find the appropriate codec for the video. Here, we set the video

input format to live video from the webcam. Once the video stream is read in and the codec

is opened, we encode the audio and video, and write to the video frames. At the end of the

iteration, we close the operations, free the camera, and reset our values. The process starts

again until the desired number of segmented video files have been created.

4.2 Suggestions For Further Optimization

At the moment, the program does not support audio. Rather, it plays a default noise

and muxes with the video. Future work can look into audio support, as the code for it has

been written, but not fully debugged and implemented. When running the program in the

command terminal, the audio source is an optional input, such as the following: ./capture

--in_audio_file sound.mp3. However at the moment, it always returns null, and plays the

default sound instead as a temporary measure. Future work should look into fixing this

issue. Doing so would allow a user to include either no sound, the default noise, an audio

source file, or a microphone recording from the camera node. Considering the IoT

application of surveillance, being able to collect audio from the camera node and have it

muxed with the live video capture would allow for improved surveillance.

As discussed in Chapter 3, the time lapse has been a major issue. Ideally, a live

stream should have a minimal end-to-end delay, but unfortunately, our results in Chapter

32

3 show that the delay is significant. Utilizing a for loop creates a proportionally longer

runtime as the number of segments increases. There is a brief delay at the end of each

iteration of the loop that ought to be minimized. In addition, for feedback, the program

prints the time in seconds of recording, which to the human observer appears to print

significantly slower than real time, meaning the program itself could be optimized further.

Another portion of the issue comes from the opening and closing done by the program each

run. It was found to be necessary to enable and disable the video capture after each loop to

prevent the camera from getting a “in use” error. However, this means that we are

fundamentally continuing the same flawed approach done with the script before. While we

do save power using the native capture instead, further power can be saved by better

understanding what needs to only be invoked once, and keep it outside the for loop, while

the for loop creates the sequential segmented live video files. To solve this, we suggest

looking at multithreading as the solution. The work ought to be divided so that a portion of

the program in one thread generates the video segments and another thread processes new

video segment names that are compatible with WVSNP-DASH. Allowing for dynamic

naming will allow the user to adjust video quality as the segments are generated. For future

work, we intend to invoke FFmpeg only once, then implemented multithreading where the

video encoding occurs. This will be further discussed in Chapter 5. We also suggest using

FFprobe [23] to double-check that the resolutions, bitrates, and framerates were correctly

set after any major change to the program.

33

CHAPTER 5

CONCLUSION AND FUTURE WORK

 Overall, we believe our work was a solid attempt to further optimize native video

capture. CPU percent usage was very similar between both pieces of software, but our

program did not cause as severe of spikes in CPU usage. This is particularly useful in sensor

nodes as they are typically hardware-limited. Power consumption was generally lesser,

with the exception of large power spikes that would increase the average power draw in

Watts. And finally, time lapse was the largest issue, as it is currently taking much too long

to record segments of video versus the current method. For all three observations, BIG

video performed significantly worse than SMALL video, most likely due to the higher

pixel resolution, bitrate, and framerate. The open and close approach of both our program

and the script are wholly inefficient. We know it is possible to improve here as HLS itself

utilizes an efficient ffmpeg method where the video library only needs to be invoked once

[1].

 There were certainly limitations to our work. The largest being time constraints.

With the limited time we had to optimize the program, we could only test it to a certain

degree, however we feel that the program could be further improved upon. We outline our

suggestions in the rest of the paper. The other key limitation is the choice of software-based

testing. While we were satisfied with the performance of powerstat, we would suggest

additional software be used to support the general trends shown in our work. For more

rigorous testing, we suggest using alternative power-measurement software as mentioned

before, and to utilize the hardware setup shown in Figure 2.1 for a more accurate

measurement scheme [1].

34

 We believe the program we have written will be suitable for testing [1] once the

following conditions are met. First and foremost, the program itself needs to be further

optimized. We discussed in Chapter 4 how to further optimize the program. The program

is included in the appendix below as open source software. The main issue is the length of

time it takes to capture a segment. We suggest implementing multithreading. We would

not have to change the code too drastically. First, we would take in our inputs, then we

would invoke FFmpeg only once. The existing for loop would be removed in favor of a

smaller one that covers the portion of the program that encodes the video, towards the end

of the main function. Here, a second thread would rename the segment once the previous

segment is generated. That way, the segments are produced much faster.

For testing, we suggest additional software-based testing ought to be done both with

powerstat and additional power-measurement libraries to ensure that the optimized native

capture program will perform better than the script. For example, we suggest PowerAPI as

it had significant literature in support of it [1]. This would be done in isolation to ensure

the program itself is properly efficient. Third, we suggest hosting the WVSNP-DASH

playback on the testing laptop to measure the power consumption of video playback. This

would be done by running the video playback over a local server. This will reaffirm that

the native capture program is suitably optimized for WVSNP-DASH, that is has improved

performance, and that it is ready for the next phase of testing.

Finally, we outline our intended future actions. We have already set up HLS player

to be used for offline purposes, so this phase of testing has some work already done. We

hope to retest the work of Seema et. al. [1] using our native capture program for WVSNP-

DASH playback against the script and against HLS. This would have us compare WVSNP-

35

DASH playback using the native capture program and the script, and compare both results

to HLS over its own playback service. The same setup as their paper [1] would be

assembled, and we would instead measure current draw instead of power draw to properly

see the improvement.

Once the software is suitably improved, we would then conduct the hardware

measurement. Following the previous work, we will set up the experiment to look very

similar to the setup in Figure 2.1 [1]. The main difference is we would use the latest board

and camera, though they will generally be the same make. Also, instead of an oscilloscope

or current clamp, we would utilize the Mooshimeter to measure our voltage and current

[66]. This device is a multimeter that automatically records data over time. Both voltage

and current can be recorded simultaneously and the results can be projected on a

smartphone. This eliminates the unnecessary waste of having two multimeter attached, and

allows us to look at how overall the voltage and current affect the power. Current would

be measured by attaching one probe at the power wire. Voltage would be measured at the

5 V jack on the board. Our wireless sensor node would be consist of a NXP Wandboard

QuadPLUS (i.MX6), a similar board to the one used in the experiment before [1]. We would

attach its matching antennae, and a 5MP Camera Module. After the board is assembled,

we would install the FFmpeg library onto the board and our optimized native capture

program. Then, we would setup the WVSNP-DASH playback. We have already setup the

WDP and a local server on our testing laptop. The playback can be done over any browser,

but for our experiment, we would initially choose Google Chrome. Our test video would

be roughly ten minutes of typical surveillance such as a crosswalk on the ASU campus.

We would capture 2, 5, 10, and 15 second segment lengths. Our wireless sensor node would

36

host the files to be accessed by the WDP wirelessly over a local server. For measurement,

we would begin at a time prior to booting, then we would boot up the node. We would then

leave the node active but not run the program to establish a benchmark for the node in an

idle state. Then, we would run the program for roughly ten minutes and observe the node

returning to the idle state afterwards. We expect each step (except the program running

step) to occur for a minute each. This will ensure that our results are easier to compare.

Like in the previous experiment, we would focus on milliamperes as our primary

independent variable while time would be dependent. Because the board will be maintained

at 5 V, we also consider this variable a constant. The primary 3 comparisons would be

WVSNP-DASH with the script, WVSNP-DASH with the native capture program, and

HLS with its player. We could look at the different video sizes (BIG or SMALL), the

different segment lengths (2, 5, 10, and 15s), and additional variables listed in the previous

paper [1]. For the different sizes, we would keep it fixed as dynamic streaming would

prevent us from seeing the general trend. Each capture would be done with 3 runs at two

separate times, like the software testing in this paper, to establish a general trend and

minimize variance. What we expect to result from this testing is that WVSNP-DASH with

our native capture program will draw the smallest current, followed by WVSNP-DASH

with the script, and finally HLS.

 Looking at longer-term goals for this project, we suggest further improvements.

After testing against HLS, we recommend testing with MPEG-DASH as well, as it is a

commonly used streaming framework, and possibly testing against other competition. For

the program, we would add audio support as the code has been written but it needs

debugging. This would allow for true surveillance. Finally, once the code of the native

37

capture program is optimized, we suggest also looking at the alternative video library

GStreamer [55]. This library was also used by Seema et al. [1] and was shown to have even

further power savings over FFmpeg. The idea would be to follow the same logic of the

FFmpeg-based native capture program, but to incorporate the new libraries instead. Then,

we suggest undergoing the same testing done in this paper in Chapter 3 and the future work

in Chapter 5 using GStreamer. Due to time-constraints, we were not able to implement a

second program, but we believe building it would be worth doing. Furthermore, it has been

stated that WVSNP-DASH is not truly dynamic, as video is set as BIG or SMALL [1], [2].

We expect WVSNP-DASH to support more dynamic video streaming in future. When the

system is able to support more than the two defined video qualities, the native capture

program will need to be adjusted to consider conditions such as limited bandwidth or power

saving. Current video frameworks can offer several video qualities or set the value to auto-

quality. We hope to see WVSNP-DASH have the capacity to support true dynamic

streaming in the future.

Overall, wireless multimedia sensor networks operate in the wider context of

access networks, as well as metropolitan area networks that interconnect wireless sensor

networks with the Internet at large. An important future work direction is to integrate the

WSNP-DASH paradigm with the networking mechanisms into this wider networking

context. Generally, there has been recently a trend to control individual network segments

as well as their internetworking through Software Defined Networking (SDN) [67], [68],

[69], [70]. SDN can enhance the transmissions in wireless networks towards the wired

access network segment [71], [72], [73], [74] as well as the management of the wireless

networks [75], [76], [77]. Similarly, SDN enhances the wired access network segments

38

[78], that connect the wireless sensor networks typically through wired, e.g., cable

networks [79], [80], [81], [82], [83] or optical fiber networks, e.g., passive optical

networks [84], [85], [86], [87], [88], to the corresponding metropolitan area networks.

Low-latency DASH service will require short segments. The power saving mechanisms

introduced in this thesis should be evaluated for low-latency, short-segment DASH

versions in future research. A related research direction is to enhance video surveillance

networks to support low-latency, which has become an important requirement in

multimedia networking [89], [90], [91], [92], [93], [94].

39

REFERENCES

[1] A. Seema, T. Shah, L. Schwoebel, Y. Liu, and M. Reisslein, “Power profiling of

multimedia sensor node with name-based segment streaming,” Multimedia Tools and

Applications, Oct. 2018.

[2] A. Seema, L. Schwoebel, T. Shah, J. Morgan, and M. Reisslein, “WVSNP-DASH:

Name-Based Segmented Video Streaming,” IEEE Transactions on Broadcasting, vol. 61,

no. 3, pp. 346–355, 2015.

[3] Castellanos WE, Guerri JC, Arce P (2017) “SVCEval-RA: An evaluation framework

for adaptive scalable video streaming.” Multimedia Tools Applications. 76(1):437–461.

[4] Chang H-Y (2018) “A connectivity-increasing mechanism of ZigBee-based IoT

devices for wireless multimedia sensor networks.” Multimedia Tools Applications. print,

pp 1–18.

[5] Hamid Z, Hussain FB, Pyun J-Y (2016) “Delay and link utilization aware routing

protocol for wireless multimedia sensor networks.” Multimedia Tools Applications

75(14):8195–8216.

[6] Javaid S, Fahim H, Hamid Z, Hussain FB (2018) “Traffic-aware congestion control

(TACC) for wireless multimedia sensor networks Multimedia Tools Applications, in

print, pp 1–20.

[7] Kim Y, Bok K, Son I, Park J, Lee B, Yoo J (2017) “Positioning sensor nodes and

smart devices for multimedia data transmission in wireless sensor and mobile P2P

networks.” Multimed Tools Appl 76(16):17 193–17 211.

[8] Lee J-Y, Jung K-D, Moon S-J, Jeong H-Y (2017) “Improvement on LEACH protocol

of a wide-area wireless sensor network.” Multimedia Tools Applications 76(19):19 843–

19 860.

[9] Ramakrishna M, Karunakar A (2017) “SIP and SDP based content adaptation during

real-time video streaming in future internets.” Multimedia Tools Applications. 76(20):21

171–21 191.

[10] Rashid B, Rehmani MH (2016) “Applications of wireless sensor networks for urban

areas: A survey.” J Network Computing Applications 60:192–219.

[11] Shin H, Park J-S (2017) “Optimizing random network coding for multimedia content

distribution over smartphones.” Multimedia Tools Applications 76(19):19 379–19 395.

40

[12] Wunderlich S, Cabrera J, Fitzek F, Reisslein M (2017) “Network coding in

heterogeneous multicore IoT nodes with DAG scheduling of parallel matrix block

operations.” IEEE Internet Things J 4(4):917–933.

[13] Yap FG, Yen H-H (2014) “A survey on sensor coverage and visual data

capturing/processing/ transmission in wireless visual sensor networks.” Sensors

14(2):3506–3527.

[15] Chen S, Yuan Z, Muntean G-M (2016) “An energy-aware routing algorithm for

quality-oriented wireless video delivery.” IEEE Trans Broadcast 62(1):55–68.

[16] Kidwai NR, Khan E, Reisslein M (2016) “ZM-SPECK: A fast and memoryless

image coder for multimedia sensor networks.” IEEE Sens J 16(8):2575–2587

[17] Pantazis N, Vergados D (2007) “A survey on power control issues in wireless sensor

networks.” IEEE Communication Survey Tutorials 9(4):86–107. 4th Quarter.

[18] Popovici E, Magno M, Marinkovic S (2013) “Power management techniques for

wireless sensor networks: a review.” In: Proceedings of the IEEE International Workshop

on Advance in Sensors and Interface (IWASI), pp 194–198.

[19] Rault T, Bouabdallah A, Challal Y (2014) “Energy efficiency in wireless sensor

networks: A top-down survey.” Computing Networks 67:104–122.

[20] Rein S, Reisslein M (2011) “Low-memory wavelet transforms for wireless sensor

networks: A tutorial.” IEEE Communication Survey Tutorials 13(2):291–307.

[21] Akyildiz, Ian F., Tommaso Melodia, and Kaushik R. Chowdhury. "Wireless

multimedia sensor networks: Applications and testbeds." Proceedings of the IEEE 96, no.

10 (2008): 1588-1605.

[22] Seema, Adolph, and Martin Reisslein. "Towards efficient wireless video sensor

networks: A survey of existing node architectures and proposal for a Flexi-WVSNP

design." IEEE Communications Surveys & Tutorials 13, no. 3 (2011): 462-486.

[23] Tavli, Bulent, Kemal Bicakci, Ruken Zilan, and Jose M. Barcelo-Ordinas. "A survey

of visual sensor network platforms." Multimedia Tools and Applications 60, no. 3 (2012):

689-726.

[24] Chrysafis, Christos, and Antonio Ortega. "Line-based, reduced memory, wavelet

image compression." IEEE Transactions on Image processing 9, no. 3 (2000): 378-389.

[25] Oliver, Jose, and Manuel Perez Malumbres. "On the design of fast wavelet transform

algorithms with low memory requirements." IEEE Transactions on Circuits and Systems

for Video Technology 18, no. 2 (2008): 237-248.

41

[26] Rein, Stephan, and Martin Reisslein. "Scalable line-based wavelet image coding in

wireless sensor networks." Journal of Visual Communication and Image Representation 40

(2016): 418-431.

[27] Rein, Stephan, and Martin Reisslein. "Performance evaluation of the fractional

wavelet filter: A low-memory image wavelet transform for multimedia sensor networks."

Ad Hoc Networks 9, no. 4 (2011): 482-496.

[28] Schroeder, Damien, Adithyan Ilangovan, Martin Reisslein, and Eckehard Steinbach.

"Efficient multi-rate video encoding for HEVC-based adaptive HTTP streaming." IEEE

Transactions on Circuits and Systems for Video Technology (2016). 28(1):143-157,

January 2018.

[29] Tausif, Mohd, Naimur Rahman Kidwai, Ekram Khan, and Martin Reisslein. "FrWF-

based LMBTC: Memory-efficient image coding for visual sensors." IEEE Sensors Journal

15, no. 11 (2015): 6218-6228.

[30] Ye, Linning, Jiangling Guo, Brian S. Nutter, and Sunanda D. Mitra. "Low-memory-

usage image coding with line-based wavelet transform." Optical Engineering 50, no. 2

(2011): 027005.

[31] Sodagar I (2011) “The MPEG-DASH standard for multimedia streaming over the

internet.” IEEE MultiMed 18(4):62–67.

[32] Thomas E, van Deventer M, Stockhammer T, Begen AC, Champel M-L, Oyman O

(2016) “Applications and deployments of server and network assisted DASH (SAND).”

In: Proceedings of the IET IBC Conference, pp 1–8.

[33] FFmpeg (2017) [Online]. Available: http://ffmpeg.org

[34] “GStreamer: Open source multimedia framework” (2017) [Online]. Available:

http://gstreamer.freedesktop.org/

[35] Engineering Services (2017) Avnet. “WandCam (AES-WCAM-ADPT-G)—getting

started guide.” [Online]. Available: http://www.em.avnet.com/wandcam

[36] T. Lohmar, T. Einarsson, P. Frojdh, F. Gabin, and M. Kampmann, “Dynamic

adaptive HTTP streaming of live content,” in Proc. IEEE Int. Symp. World Wireless

Mobile Multimedia Netw. (WoWMoM), Lucca, Italy, 2011, pp. 1–8.

[37] M. Hoernig, A. Bigontina, and B. Radig, “A comparative evaluation of current

HTML5 web video implementations,” Open J. Web Technol., vol. 1, no. 2, pp. 1–9,

2014.

http://ieeexplore.ieee.org/servlet/opac?punumber=76&isvol=28&isno=1
http://ffmpeg.org/

42

[38] D. E. Knuth, “Backus normal form vs. Backus Naur form,” Comm. ACM, vol. 7, no.

12, pp. 735–736, Dec. 1964.

[39] A. Molnar and C. H. Muntean, “Cost-oriented adaptive multimedia delivery,” IEEE

Trans. Broadcast., vol. 59, no. 3, pp. 484–499, Sep. 2013.

[40] R. Trestian, O. Ormond, and G.-M. Muntean, “Energy-quality-cost trade-

off in a multimedia-based heterogeneous wireless network environment,”

IEEE Trans. Broadcast., vol. 59, no. 2, pp. 340–357, Jun. 2013.

[41] L. Stevens and R. Owen, “The truth about audio and video in HTML5,” in The Truth

About HTML5. New York, NY, USA: Apress, 2014, pp. 117–133.

[42] E. Tzoc and J. Millard, “For video streaming/delivery: Is HTML5 the real fix?”

Code4Lib J., vol. 2013, no. 22, Oct. 2013.

[43] S. J. Vaughan-Nichols, “Will HTML5 restandardize the web?” IEEE Computing.,

vol. 43, no. 4, pp. 13–15, Apr. 2010.

[44] I. F. Akyildiz, T. Melodia, and K. R. Chowdhury, “A survey on wireless multimedia

sensor networks,” Comput. Netw., vol. 51, no. 4, pp. 921–960, Mar. 2007.

[45] K. Abas, C. Porto, and K. Obraczka, “Wireless smart camera networks for the

surveillance of public spaces,” IEEE Comput., vol. 47, no. 5, pp. 37–44, May 2014.354

IEEE TRANSACTIONS ON BROADCASTING, VOL. 61, NO. 3, SEPTEMBER 2015

[46] L. D. P. Mendes, J. J. P. C. Rodrigues, J. Lloret, and S. Sendra, “Cross-layer

dynamic admission control for cloud-based multimedia sensor networks,” IEEE Syst. J.,

vol. 8, no. 1, pp. 235–246, Mar. 2014.

[47] Bicakci K, Gultekin H, Tavli B (2009) “The impact of one-time energy costs on

network lifetime in wireless sensor networks.” IEEE Communication Lett 13:12.

[48] Cotuk H, Bicakci K, Tavli B, Uzun E (2014) “The impact of transmission power

control strategies on lifetime of wireless sensor networks.” IEEE Trans Computing

63(11):2866–2879.

[49] Cotuk H, Tavli B, Bicakci K, Akgun MB (2014) “The impact of bandwidth

constraints on the energy consumption of wireless sensor networks.” In: IEEE Wireless

Communications and Networking Conference (WCNC), pp 2787–2792.

[50] Ghasemzadeh H, Panuccio P, Trovato S, Fortino G, Jafari R (2014) “Power-aware

activity monitoring using distributed wearable sensors.” IEEE Trans Human-Mach

System 44(4):537–544.

43

[51] Karakus C, Gurbuz AC, Tavli B (2013) “Analysis of energy efficiency of

compressive sensing in wireless sensor networks.” IEEE Sens J 13(5):1999–2008.

[52] Li Y, Shen D, Zhou G (2017) “Energy optimization for mobile video streaming via

an aggregate model.” Multimed Tools Appl 76(20):20 781–20 797.

[53] Magno M, Boyle D, Brunelli D, Popovici E, Benini L (2014) “Ensuring survivability

of resource-intensive sensor networks through ultra-low power overlays.” IEEE Trans

Ind Inf 10(2):946–956.

[54] Misra S, Mohanta D (2010) “Adaptive listen for energy-efficient medium access

control in wireless sensor networks.” Multimed Tools Appl 47(1):121–145.

[55] Pantazis NA, Nikolidakis SA, Vergados DD (2013) “Energy-efficient routing

protocols in wireless sensor networks: A survey.” IEEE Commun Surv Tutorials

15(2):551–591.

[56] Redondi A, Buranapanichkit D, Cesana M, Tagliasacchi M, Andreopoulos Y (2014)

“Energy consumption of visual sensor networks: Impact of spatio-temporal coverage.”

IEEE Trans Circ Syst Video Technol 24(12):2117–2131

[57] Yan R, Sun H, Qian Y (2013) “Energy-aware sensor node design with its application

in wireless sensor networks.” IEEE Trans Instrument Measure 62(5):1183–1191.

[58] Horneber J, Hergenröder A (2014) “A survey on testbeds and experimentation

environments for wireless sensor networks.” IEEE Commun Surv Tutorials 16(4):1820–

1838.

[59] Saginbekov S, Shakenov C (2016) “Testing wireless sensor networks with hybrid

simulators,” arXiv:1602.01567.

[60] Yuan D, Kanhere SS, Hollick M “Instrumenting wireless sensor networks—a survey

on the metrics that matter.” Pervasive Mobile Computing 37:45–62. 2017.

[61] Gayan (2012) Powerstat: Power Consumption Calculator for Ubuntu Linux.

http://www.hecticgeek.com/ 2012/02/powerstat-power-calculator-ubuntu-linux

[62] Rentala, Sri Harsha, Reisslein, Martin “Analysis of Wireless Video Sensor Network

Platforms over AJAX, CGI and WebRTC.” Master’s Thesis. Arizona State University.

2016.

[63] Shah, Tejas, Reisslein (2014) “A Cross-Layer Power Analysis and Profiling of

Wireless Video Sensor Node Platform Applications.” Master’s Thesis. Arizona State

University.

44

[64] F.-Q. Sun, G.-H. Yan, X. He, H.-W. Li, and Y.-H. Han, “CPicker: Leveraging

Performance-Equivalent Configurations to Improve Data Center Energy Efficiency,”

Journal of Computer Science and Technology, vol. 33, no. 1, pp. 131–144, 2018.

[65] Dall, Christopher. (2018) “The Design, Implementation, and Evaluation of Software

and Architectural Support for ARM Virtualization.” Columbia University.

[66] Mooshim Engineering. (2018) [Online] Mooshimeter. Available:

https://moosh.im/mooshimeter/

[67] Amin, Rashid, and Martin Reisslein, and Nadir Shah. “Hybrid SDN Networks: A

Survey of Existing Approaches.” IEEE Communications Surveys & Tutorials, in print,

2018.

[68] Bizanis, Nikos, and Fernando A. Kuipers. "SDN and virtualization solutions for the

Internet of Things: A survey." IEEE Access 4 (2016): 5591-5606.

[69] Guck, Jochen W., Amaury Van Bemten, Martin Reisslein, and Wolfgang Kellerer.

"Unicast QoS routing algorithms for SDN: A comprehensive survey and performance

evaluation." IEEE Communications Surveys & Tutorials (2017). 20(1):388-415, First

Quarter 2018.

[70] Trois, Celio, Marcos D. Del Fabro, Luis CE de Bona, and Magnos Martinello. "A

survey on SDN programming languages: Toward a taxonomy." IEEE Communications

Surveys & Tutorials 18, no. 4 (2016): 2687-2712.

[71] Amjad, Muhammad, Fayaz Akhtar, Mubashir Husain Rehmani, Martin Reisslein,

and Tariq Umer. "Full-duplex communication in cognitive radio networks: A survey."

IEEE Communications Surveys & Tutorials (2017) 19(4):2158-2191, Fourth Quarter

2017.

[72] Kobo, Hlabishi I., Adnan M. Abu-Mahfouz, and Gerhard P. Hancke. "A survey on

software-defined wireless sensor networks: Challenges and design requirements." IEEE

Access 5 (2017): 1872-1899.

[73] Modieginyane, Kgotlaetsile Mathews, Babedi Betty Letswamotse, Reza Malekian,

and Adnan M. Abu-Mahfouz. "Software defined wireless sensor networks application

opportunities for efficient network management: A survey." Computers & Electrical

Engineering (2017).

[74] Thyagaturu, Akhilesh S., Ziyad Alharbi, and Martin Reisslein. "R-FFT: Function

split at IFFT/FFT in unified LTE CRAN and cable access network." IEEE Transactions

on Broadcasting (2018).

[75] Ferrari, Lorenzo, Nurullah Karakoc, Anna Scaglione, Martin Reisslein, and Akhilesh

Thyagaturu. “Layered Cooperative Resource Sharing at a Wireless SDN Backhaul.”

45

Proc. IEEE International Conference on Communications Workshops (ICC Workshops),

International Workshop on 5G Architecture (5GARCH), pages 1-6, Kansas City, MO,

May 2018.

[76] Ndiaye, Musa, Gerhard P. Hancke, and Adnan M. Abu-Mahfouz. "Software defined

networking for improved wireless sensor network management: A survey." Sensors 17,

no. 5 (2017): 1031.

[77] Thyagaturu, Akhilesh S., Yousef Dashti, and Martin Reisslein. "SDN-based smart

gateways (Sm-GWs) for multi-operator small cell network management." IEEE

Transactions on Network and Service Management 13, no. 4 (2016): 740-753.

[78] Thyagaturu, Akhilesh S., Anu Mercian, Michael P. McGarry, Martin Reisslein, and

Wolfgang Kellerer. "Software defined optical networks (SDONs): A comprehensive

survey." IEEE Communications Surveys & Tutorials 18, no. 4 (2016): 2738-2786.

[79] Alharbi, Ziyad, Akhilesh S. Thyagaturu, Martin Reisslein, Hesham ElBakoury, and

Ruobin Zheng. "Performance comparison of R-PHY and R-MACPHY modular cable

access network architectures." IEEE Transactions on Broadcasting 64, no. 1 (2018): 128-

145.

[80] Chen, Po-Yen, and Martin Reisslein. "FiWi network throughput-delay modeling

with traffic intensity control and local bandwidth allocation." Optical Switching and

Networking 28 (2018): 8-22.

[81] Chen, Po-Yen, and Martin Reisslein. "A simple analytical throughput–delay model

for clustered FiWi networks." Photonic Network Communications 29, no. 1 (2015): 78-

95.

[82] Hamzeh, Belal, Mehmet Toy, Yunhui Fu, and James Martin. "DOCSIS 3.1: Scaling

broadband cable to gigabit speeds." IEEE Communications Magazine 53, no. 3 (2015):

108-113.

[83] Mercian, Anu, Elliott I. Gurrola, Frank Aurzada, Michael P. McGarry, and Martin

Reisslein. "Upstream polling protocols for flow control in PON/xDSL hybrid access

networks." IEEE Transactions on Communications 64, no. 7 (2016): 2971-2984.

[84] Butt, Rizwan Aslam, Sevia M. Idrus, Nadiatulhuda Zulkifli, and M. Waqar Ashraf.

"A Survey of Energy Conservation Schemes for Present and Next Generation Passive

Optical Networks." Journal of Communications 13, no. 3 (2018).

[85] McGarry, Michael P., Martin Reisslein, Frank Aurzada, and Michael Scheutzow.

"Shortest propagation delay (SPD) first scheduling for EPONs with heterogeneous

propagation delays." IEEE Journal on Selected Areas in Communications 28, no. 6

(2010).

46

[86] Mercian, Anu, Michael P. McGarry, and Martin Reisslein. "Offline and online multi-

thread polling in long-reach PONs: A critical evaluation." Journal of Lightwave

Technology 31, no. 12 (2013): 2018-2028.

[87] Pradeep, M., B. Pavithra, R. Pooja, S. Parameswari, and M. Pandi. "A Survey of

FTTH Elements Based on Broadband Access Network." Asian Journal of Applied

Science and Technology (AJAST) 1, no. 7 (2017): 54-59.

[88] Wang, Lin, Xinbo Wang, Massimo Tornatore, Hwan Seok Chung, Han Hyub Lee,

Soomyung Park, and Biswanath Mukherjee. "Dynamic bandwidth and wavelength

allocation scheme for next-generation wavelength-agile EPON." IEEE/OSA Journal of

Optical Communications and Networking 9, no. 3 (2017): B33-B42.

[89] Bachhuber, Christoph, Eckehard Steinbach, Martin Freundl, and Martin Reisslein.

"On the minimization of glass-to-glass and glass-to-algorithm delay in video

communication." IEEE Transactions on Multimedia 20, no. 1 (2018): 238-252.

[90] Fouladi, Sadjad, Riad S. Wahby, Brennan Shacklett, Karthikeyan Balasubramaniam,

William Zeng, Rahul Bhalerao, Anirudh Sivaraman, George Porter, and Keith Winstein.

"Encoding, Fast and Slow: Low-Latency Video Processing Using Thousands of Tiny

Threads." In NSDI, pp. 363-376. 2017.

[91] Nasrallah, Ahmed, Akhilesh Thyagaturu, Ziyad Alharbi, Cuixiang Wang, Xing

Shao, Martin Reisslein, and Hesham ElBakoury. "Ultra-Low Latency (ULL) Networks:

A Comprehensive Survey Covering the IEEE TSN Standard and Related ULL Research."

arXiv preprint arXiv:1803.07673 (2018).

[92] Pandi, Sreekrishna, Frank Gabriel, Juan A. Cabrera, Simon Wunderlich, Martin

Reisslein, and Frank HP Fitzek. "PACE: Redundancy engineering in RLNC for low-

latency communication." IEEE Access 5 (2017): 20477-20493.

[93] Shih, Yuan-Yao, Wei-Ho Chung, Ai-Chun Pang, Te-Chuan Chiu, and Hung-Yu

Wei. "Enabling low-latency applications in fog-radio access networks." IEEE Network

31, no. 1 (2017): 52-58.

[94] Wunderlich, Simon, Frank Gabriel, Sreekrishna Pandi, Frank HP Fitzek, and Martin

Reisslein. "Caterpillar RLNC (CRLNC): A Practical Finite Sliding Window RLNC

Approach." IEEE Access 5 (2017): 20183-20197.

47

APPENDIX A

NATIVE CAPTURE PROGRAM SOURCE CODE

48

/*

 * Copyright (c) 2003 Fabrice Bellard

 * Copyright (c) 2016 Adolph Seema

 * Copyright (c) 2018 Zarah Khan

 *

 * Permission is hereby granted, free of charge, to any person obtaining a copy

 * of this software and associated documentation files (the "Software"), to deal

 * in the Software without restriction, including without limitation the rights

 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

 * copies of the Software, and to permit persons to whom the Software is

 * furnished to do so, subject to the following conditions:

 *

 * The above copyright notice and this permission notice shall be included in

 * all copies or substantial portions of the Software.

 *

 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY

KIND, EXPRESS OR

 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY,

 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO

EVENT SHALL

 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,

DAMAGES OR OTHER

 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR

OTHERWISE, ARISING FROM,

 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR

OTHER DEALINGS IN

 * THE SOFTWARE.

 */

/**

 * @file

 * Derived from libavformat API example that output a media file in any

 * supported libavformat format. It uses default codecs.

 * Captures live video and saves it to a file.

 *

 */

/***

***************/

/* ZPlayer2 - an ffmpeg-based codec

 * By Zarah Khan

 *

 * Derived from transcoding.c and output.c.

 * To compile:

 * Configure path: export

PKG_CONFIG_PATH=$PKG_CONFIG_PATH:"$HOME/ffmpeg_build/lib/pkgconfig"

49

 * Access the folder with the makefile: type "make"

 * Run the program: ./ZPlayer2 --out_fname tst_out.mp4 --vlen 4

 */

/***

***************/

/*libraries*/

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <math.h>

#include <getopt.h>

#include <time.h>

#include <libavutil/avassert.h>

#include <libavutil/channel_layout.h>

#include <libavutil/opt.h>

#include <libavutil/mathematics.h>

#include <libavutil/timestamp.h>

#include <libavformat/avformat.h>

#include <libswscale/swscale.h>

#include <libswresample/swresample.h>

#include <libavdevice/avdevice.h>

/*defintions*/

#define STREAM_FRAME_RATE 25 //25 images per second. perhaps up to 30?

#define STREAM_PIX_FMT AV_PIX_FMT_YUV420P // default pix_fmt

#define SCALE_FLAGS SWS_BICUBIC // bicubic scaling algorithm -- maybe change

to SWS_BILINEAR? SWS_LANCZOS

//START-------------New Defines---

#define LINUX_LIVE_STREAM // enables linux live stream

#define MAX_NAME_LEN 256 // max length of input?????

typedef struct OutputStream {

 AVFormatContext * video_fmt_ctx;

 AVStream *st;

 AVCodecParameters *str;

 AVCodecContext * video_st;

 AVCodecContext * enc; // maintains the encoding info

 int64_t next_pts;

 int samples_count;

 AVFrame *frame;

 AVFrame *tmp_frame;

 float t, tincr, tincr2;

 struct SwsContext *sws_ctx; // swscontext = compile conersion then send to sws_scale

 struct SwrContext *swr_ctx; // handles audio resampling, sample format conversion,

and mixing

} OutputStream;

50

typedef enum {

 AUDIO_SYNTHETIC = 0,

 AUDIO_FILE = 1,

 AUDIO_MIC = 2,

 AUDIO_SRC_MAX

} AudioSrcOption;

typedef struct InputStream {

 AVFormatContext * audio_fmt_ctx; // stores info about the file format

 AVCodecContext * audio_codec_ctx; // all the codec info from a stream

 AVCodec * audio_codec; // the audio codec

 AVStream *audio_stream; // the struct for the stream -- deprecated

 const char *src_filename; // input

 int audio_stream_idx; // stores the tyoe of audio 0,1,2

 AVFrame * audio_frame; // stores the audio frame

 AVPacket audio_pkt; // The struct in which raw packet data is stored.

 int audio_frame_count; // I din't know

 AudioSrcOption audio_src; // connects to audio source option

} InputStream;

//END---------------New Defines---

//START-------------------------Global variables--------------------------------

char prog_name[MAX_NAME_LEN]; // program name is 256 long

uint32_t video_length = 0; //see command line usage options can be set, I assume

seconds

static int dbg_cnt = 0; // debugging

uint32_t segment = 0;

char videosize[MAX_NAME_LEN];

// Enable or disable frame reference counting. You are not supposed to support

// both paths in your application but pick the one most appropriate to your

// needs. Look for the use of refcount in this example to see what are the

// differences of API usage between them. */

static int refcount = 0;

//END---------------------------Global variables--------------------------------

// The flush packet is a non-NULL packet with size 0 and data NULL

int decode(AVCodecContext *avctx, AVFrame *frame, int *got_frame, AVPacket *pkt)

{

 int ret;

 *got_frame = 0;

 if (pkt) {

 ret = avcodec_send_packet(avctx, pkt);

 // In particular, we don't expect AVERROR(EAGAIN), because we read all

 // decoded frames with avcodec_receive_frame() until done.

 if (ret < 0)

 return ret == AVERROR_EOF ? 0 : ret;

 }

 ret = avcodec_receive_frame(avctx, frame);

51

 if (ret < 0 && ret != AVERROR(EAGAIN) && ret != AVERROR_EOF)

 return ret;

 if (ret >= 0)

 *got_frame = 1;

 return 0;

}

int encode(AVCodecContext *avctx, AVPacket *pkt, int *got_packet, AVFrame *frame)

{

 int ret;

 *got_packet = 0;

 ret = avcodec_send_frame(avctx, frame);

 if ((ret < 0) && (ret != AVERROR(EAGAIN)) && (ret != AVERROR_EOF))

 return ret;

 ret = avcodec_receive_packet(avctx, pkt);

 if ((ret >= 0) && (ret != AVERROR(EAGAIN)) && (ret != AVERROR_EOF)){

 //printf("Received packet. ret = %d\n", ret);

 *got_packet = 1;

 }

 if (ret == (AVERROR(EAGAIN)) || AVERROR_EOF){

 return 0;

 }

 return ret;

}

static void log_packet(const AVFormatContext *fmt_ctx, const AVPacket *pkt) {

 AVRational *time_base = &fmt_ctx->streams[pkt->stream_index]->time_base;

 printf("pts:%s pts_time:%s dts:%s dts_time:%s duration:%s duration_time:%s

stream_index:%d\n",av_ts2str(pkt->pts),av_ts2timestr(pkt->pts,time_base),av_ts2str(pkt-

>dts),av_ts2timestr(pkt->dts, time_base),av_ts2str(pkt->duration),av_ts2timestr(pkt-

>duration,time_base),pkt->stream_index);

} //END log_packet(const AVFormatContext *fmt_ctx, const AVPacket *pkt)---------

static int write_frame(AVFormatContext *fmt_ctx,const AVRational

*time_base,AVStream *st,AVPacket *pkt) {

 //printf("In write_frame();\n");

 av_packet_rescale_ts(pkt, *time_base, st->time_base);

 pkt->stream_index = st->index;

 log_packet(fmt_ctx, pkt);

 return av_interleaved_write_frame(fmt_ctx, pkt); // Write a packet to an output media

file ensuring correct interleaving.

} //END write_frame(...)--

static void add_stream(OutputStream *ost,AVFormatContext *oc,AVCodec

**codec,enum AVCodecID codec_id, char * dimension) {

 AVCodecContext *c; // add_stream(&out_video_st,oc,&video_codec,fmt-

>video_codec);

 int ret;

 unsigned int i = 0; // idk if this matters

52

 *codec = avcodec_find_encoder(codec_id);

 if (!(*codec)) { //

https://libav.org/documentation/doxygen/master/output_8c_source.html#l00417

 fprintf(stderr, "Could not find encoder for '%s'\n",avcodec_get_name(codec_id));

 exit(1);

 }

 ost->st = avformat_new_stream(oc, *codec); // AVStream * avformat_new_stream

(AVFormatContext *s, const AVCodec *c)

 if (!ost->st) {

 fprintf(stderr, "Could not allocate stream\n");

 exit(1);

 }

 c = avcodec_alloc_context3(*codec); // old way: c = ost->st->codec;

 if (!c) {

 printf("Could not alloc an encoding context\n");

 av_log(NULL, AV_LOG_ERROR, "Failed to allocate the encoder context for

stream in add_stream: #%u\n", i);

 exit(1);

 }

 ost->enc = c;

 ost->st->id = oc->nb_streams-1;

 ret = avcodec_parameters_to_context(c, ost->st->codecpar); // sets codec to par

 if (ret < 0) {

 av_log(NULL, AV_LOG_ERROR, "Failed to copy decoder parameters to input

decoder context for stream #%u\n", i);

 exit(1);

 }

 switch ((*codec)->type) {

 case AVMEDIA_TYPE_AUDIO:

 //printf("AVMEDIA_TYPE_AUDIO\n");

 c->sample_fmt = (*codec)->sample_fmts ?

 (*codec)->sample_fmts[0] :

 AV_SAMPLE_FMT_FLTP;

 c->bit_rate = 64000;

 c->sample_rate = 44100;

 if ((*codec)->supported_samplerates) {

 c->sample_rate = (*codec)->supported_samplerates[0];

 for (i = 0; (*codec)->supported_samplerates[i]; i++) {

 if ((*codec)->supported_samplerates[i] == 44100)

 c->sample_rate = 44100;

 }

 }

 c->channels = av_get_channel_layout_nb_channels(c->channel_layout);

 c->channel_layout = AV_CH_LAYOUT_STEREO;

 if ((*codec)->channel_layouts) {

53

 c->channel_layout = (*codec)->channel_layouts[0];

 for (i = 0; (*codec)->channel_layouts[i]; i++) {

 if ((*codec)->channel_layouts[i] == AV_CH_LAYOUT_STEREO)

 c->channel_layout = AV_CH_LAYOUT_STEREO;

 }

 }

 c->channels = av_get_channel_layout_nb_channels(c->channel_layout);

 ost->st->time_base = (AVRational){ 1, c->sample_rate };

 break;

 case AVMEDIA_TYPE_VIDEO:

 //printf("AVMEDIA_TYPE_VIDEO\n");

 c->codec_id = codec_id;

 c->codec_type = AVMEDIA_TYPE_VIDEO; //fixed the codec mismatch problem

 if (strcmp(dimension,"BIG") == 0) { // 25 frames/s

 printf("\nBIG video\n");

 c->width = 640;

 c->height = 360;

 c->bit_rate = 500000; //bits/s

 c->framerate = (AVRational){25,1}; // from encode_video.c

 ost->st->time_base = (AVRational){1, 25};

 c->gop_size = 50;

 }

 else if (strcmp(dimension,"SMALL") == 0) { // 15 frames/sec

 printf("\nSMALL video\n");

 c->width = 320;

 c->height = 180;

 c->bit_rate = 150000; //bits/s

 c->framerate = (AVRational){15,1};

 ost->st->time_base = (AVRational){1, 15};

 c->gop_size = 30;

 }

 //c->bit_rate = 400000;

 //c->width = 352;

 //c->height = 288;

 //ost->st->time_base = (AVRational){1, STREAM_FRAME_RATE};

 c->time_base = ost->st->time_base;

 //c->gop_size = 12;

 c->pix_fmt = STREAM_PIX_FMT;

 if (c->codec_id == AV_CODEC_ID_MPEG2VIDEO) {

 c->max_b_frames = 2;

 }

 if (c->codec_id == AV_CODEC_ID_MPEG1VIDEO) {

 c->mb_decision = 2;

 }

 break;

54

 default:

 break;

 }

 if (oc->oformat->flags & AVFMT_GLOBALHEADER) {

 c->flags |= AV_CODEC_FLAG_GLOBAL_HEADER;

 }

 ost->enc = c;

 ret = avcodec_parameters_from_context(ost->st->codecpar,c);

 if (ret < 0) {

 av_log(NULL, AV_LOG_ERROR, "Failed to copy encoder parameters to

output stream\n");

 exit(1);

 }

}

static AVFrame *alloc_audio_frame(enum AVSampleFormat sample_fmt,uint64_t

channel_layout,int sample_rate, int nb_samples) {

 AVFrame *frame = av_frame_alloc(); // Allocate an AVFrame and set its fields to

default values.

 int ret;

 if (!frame) {

 fprintf(stderr, "Error allocating an audio frame\n");

 exit(1);

 }

 frame->format = sample_fmt;

 frame->channel_layout = channel_layout;

 frame->sample_rate = sample_rate;

 frame->nb_samples = nb_samples;

 if (nb_samples) {

 if ((ret = av_frame_get_buffer(frame, 0)) < 0) {

 fprintf(stderr, "Error allocating an audio buffer\n");

 exit(1);

 }

 }

 return frame;

} //END static AVFrame *alloc_audio_frame(...)--------------------------------

static void open_audio(AVFormatContext *oc,AVCodec *codec,OutputStream

*ost,AVDictionary *opt_arg) {

 AVCodecContext *c;

 int nb_samples;

 int ret;

 AVDictionary *opt = NULL;

 c = ost->enc;

 if (!c) {

 av_log(NULL, AV_LOG_ERROR, "Failed to allocate the decoder context for

stream\n");

55

 exit(1);

 }

 ret = avcodec_parameters_to_context(c, ost->st->codecpar);

 if (ret < 0) {

 av_log(NULL, AV_LOG_ERROR, "Failed to copy decoder parameters to input

decoder context for stream\n");

 exit(1);

 }

 //c = ost->st->codec; // deprecated -- c = avcodec_alloc_context3(codec);

 av_dict_copy(&opt, opt_arg, 0); // probably don't need to mess here

 ret = avcodec_open2(c, codec, &opt); // open the codec

 av_dict_free(&opt);

 if (ret < 0) {

 fprintf(stderr, "Could not open audio codec: %s\n", av_err2str(ret));

 exit(1);

 }

 //init signal generator

 ost->t = 0;

 ost->tincr = 2 * M_PI * 110.0 / c->sample_rate;

 //increment frequency by 110 Hz per second

 ost->tincr2 = 2 * M_PI * 110.0 / c->sample_rate / c->sample_rate;

 if (c->codec->capabilities & AV_CODEC_CAP_VARIABLE_FRAME_SIZE) // c-

>capabilities

 nb_samples = 10000;

 else

 nb_samples = c->frame_size;

 ost->frame = alloc_audio_frame(c->sample_fmt,c->channel_layout,c-

>sample_rate,nb_samples);

 ost->tmp_frame = alloc_audio_frame(AV_SAMPLE_FMT_S16,c->channel_layout,c-

>sample_rate,nb_samples);

 /* copy the stream parameters to the muxer */

 ret = avcodec_parameters_from_context(ost->st->codecpar, c);

 if (ret < 0) {

 fprintf(stderr, "Could not copy the stream parameters\n");

 exit(1);

 }

 //create resampler context

 ost->swr_ctx = swr_alloc();

 if (!ost->swr_ctx) {

 fprintf(stderr, "Could not allocate resampler context\n");

 exit(1);

 }

 //set options

 av_opt_set_int(ost->swr_ctx, "in_channel_count", c->channels, 0);

56

 av_opt_set_int(ost->swr_ctx, "in_sample_rate", c->sample_rate, 0);

 av_opt_set_sample_fmt(ost->swr_ctx,"in_sample_fmt",AV_SAMPLE_FMT_S16,0);

 av_opt_set_int(ost->swr_ctx, "out_channel_count", c->channels, 0);

 av_opt_set_int(ost->swr_ctx, "out_sample_rate", c->sample_rate, 0);

 av_opt_set_sample_fmt(ost->swr_ctx,"out_sample_fmt",c->sample_fmt,0);

 //initialize the resampling context

 if ((ret = swr_init(ost->swr_ctx)) < 0) {

 fprintf(stderr, "Failed to initialize the resampling context\n");

 exit(1);

 }

} //END void open_audio(...)--

static int decode_packet(InputStream *in_st,int *got_frame,int cached) {

 int ret = 0;

 int decoded = in_st->audio_pkt.size;

 //AVPacket * pkt = in_st->audio_pkt;

 *got_frame = 0;

 if (in_st->audio_pkt.stream_index == in_st->audio_stream_idx) {

 // pCodecCtx WAS allocated first which is required

 ///* THIS LOOKS OKAY FOR NOW

 ret = decode(in_st->audio_codec_ctx,in_st->audio_frame,got_frame,&in_st-

>audio_pkt);

 //*/

 //printf("Finished decoding audio input!\n");

 /*

 //decode audio frame -- deprecated

 ret = avcodec_decode_audio4(// Decode the audio frame of size avpkt->size from

avpkt->data into frame.

 in_st->audio_codec_ctx,

 in_st->audio_frame, //decoded frame goes in here

 got_frame, //was it really decoded or not goes here

 &in_st->audio_pkt);

 */

 if (ret < 0) {

 fprintf(stderr,"Line#[%d], Error decoding audio frame.

ERROR=[%s].\n",__LINE__,av_err2str(ret));

 return ret;

 //*/

 }

 // Some audio decoders decode only part of the packet, and have to be

 // called again with the remainder of the packet data.

 // Sample: fate-suite/lossless-audio/luckynight-partial.shn

 // Also, some decoders might over-read the packet.

 decoded = FFMIN(ret, in_st->audio_pkt.size);

 if (*got_frame) {

57

 printf("audio_frame[%s] n:%d nb_samples:%d pts:%s\n",(cached ? "(cached)" :

""),in_st->audio_frame_count++,in_st->audio_frame->nb_samples,

 av_ts2timestr(in_st->audio_frame->pts,&in_st->audio_codec_ctx->time_base));

 // Write the raw audio data samples of the first plane. This works

 // fine for packed formats (e.g. AV_SAMPLE_FMT_S16). However,

 // most audio decoders output planar audio, which uses a separate

 // plane of audio samples for each channel (e.g. AV_SAMPLE_FMT_S16P).

 // In other words, this code will write only the first audio channel

 // in these cases.

 // You should use libswresample or libavfilter to convert the frame

 // to packed data.

 } else {

 //decode video frame

 fprintf(stderr,"Line#[%d], we are not expecting video or non audio streams yet. We got

in_st->audio_pkt.stream_index=[%d].\n",

 __LINE__,in_st->audio_pkt.stream_index);

 }

 // If we use frame reference counting, we own the data and need

 // to de-reference it when we don't use it anymore.

 if (*got_frame && refcount) {

 av_frame_unref(in_st->audio_frame); // frees any reference held by frame

 }

 }

 return decoded;

} //END-decode_packet(...)--

//--

static AVFrame *get_file_audio_frame(InputStream *ist,OutputStream *ost) {

 int got_frame = 0;

 int ret = 0;

 //check if we want to generate more frames

 if (av_compare_ts(

 ost->next_pts,

 ost->enc->time_base, // ost->st->time_base -----CHANGED HERE

 video_length,

 (AVRational){ 1, 1 }) >= 0) {

 return NULL;

 }

 if (av_read_frame(ist->audio_fmt_ctx, &ist->audio_pkt) >= 0) {

 AVPacket orig_pkt = ist->audio_pkt;

 do {

 if ((ret = decode_packet(ist, &got_frame, 0)) < 0) {

 break;

 }

 ist->audio_pkt.data += ret;

 ist->audio_pkt.size -= ret;

58

 } while (ist->audio_pkt.size > 0);

 av_packet_unref(&orig_pkt);

 }

 //overwriting time stamps with output futures

 ist->audio_frame->pts = ost->next_pts;

 ost->next_pts += ist->audio_frame->nb_samples;

 return ist->audio_frame;

} //END-static AVFrame *get_file_audio_frame(... *ist, ... *ost)--------------

//--

static AVFrame *get_synthetic_audio_frame(OutputStream *ost) {

 AVFrame *frame = ost->tmp_frame;

 int j, i, v;

 int16_t *q = (int16_t*)frame->data[0];

 //check if we want to generate more frames

 if (av_compare_ts(ost->next_pts,

 ost->enc->time_base, // ost->st->time_base ------ CHANGED

HERE!!!!!!!!!!!!!!!!!!!!!!!!!!

 video_length,(AVRational){ 1, 1 }) >= 0) {

 return NULL;

 }

 for (j = 0; j <frame->nb_samples; j++) {

 v = (int)(sin(ost->t) * 10000);

 for (i = 0; i < ost->st->codecpar->channels; i++) // ost->st->channels

 *q++ = v;

 ost->t += ost->tincr;

 ost->tincr += ost->tincr2;

 }

 frame->pts = ost->next_pts;

 ost->next_pts += frame->nb_samples;

 return frame;

} //END-static AVFrame *get_synthetic_audio_frame(OutputStream *ost)------------

//--

static int write_audio_frame(InputStream *in_st, AVFormatContext *oc, OutputStream

*ost) {

 AVCodecContext *c;

 AVPacket pkt = { 0 }; // data and size must be 0;

 AVFrame *frame;

 int ret;

 int got_packet;

 int dst_nb_samples;

 av_init_packet(&pkt);

 c = ost->enc; /*My attempt to change*/

 ret = avcodec_parameters_to_context(c, ost->st->codecpar); // should be okay

 if (ret < 0) {

 printf("Could not set codec to paramters\n");

59

 } //c = ost->st->codec; // c = avcodec_alloc_context3(in_st->audio_codec);

 if (in_st->audio_src == AUDIO_SYNTHETIC) { // see above

 frame = get_synthetic_audio_frame(ost);

 } else {

 frame = get_file_audio_frame(in_st,ost);

 }

 if (frame) {

 // convert samples from native format to destination codec format, using

 //the resampler compute destination number of samples.

 dst_nb_samples = av_rescale_rnd(// Rescale a 64-bit integer with specified

rounding.

 (swr_get_delay(/*Gets the delay the next input sample will experience

relative to the next output sample. */

 ost->swr_ctx,c->sample_rate) + frame->nb_samples),c->sample_rate,c-

>sample_rate,AV_ROUND_UP);

 av_assert0(dst_nb_samples == frame->nb_samples); // CRASHES HERE

 // when we pass a frame to the encoder, it may keep a reference to it internally make

sure we do not overwrite it here

 //simplify -- Ensure that the frame data is writable, avoiding data copy if possible.

 if ((ret = av_frame_make_writable(ost->frame)) < 0) {

 exit(1);

 }

 //convert to destination format -- internal?????

 ret = swr_convert(ost->swr_ctx,ost->frame->data,dst_nb_samples,(const uint8_t

**)frame->data, frame->nb_samples);

 if(ret < 0) {

 fprintf(stderr,"Line#[%d], Error while converting.

ERROR=[%s].\n",__LINE__,av_err2str(ret));

 exit(1);

 }

 frame = ost->frame;

 frame->pts = av_rescale_q(ost->samples_count,(AVRational){1, c->sample_rate},c-

>time_base);

 ost->samples_count += dst_nb_samples;

 } //END if (frame)--

 ///*

 //ret = encode(c,&pkt,&got_packet,frame);

 //*/

 //ret = avcodec_encode_audio2(c, &pkt, frame, &got_packet); //deprecated

 if ((ret = encode(c,&pkt,&got_packet,frame)) < 0) {

 fprintf(stderr,"Line#[%d], Error encoding audio frame.

ERROR=[%s].\n",__LINE__,av_err2str(ret));

 exit(1);

 } //encoding audio frame succeeded

 if (got_packet) { //write audio frome to the muxer

60

 if ((ret = write_frame(oc, &c->time_base, ost->st, &pkt)) < 0) {

 fprintf(stderr,"Error while writing audio frame: %s\n",av_err2str(ret));

 exit(1);

 }

 } //END if there is a packet, write it to the muxer---------------------------

 return (frame || got_packet) ? 0 : 1;

} //END write_audio_frame(AVFormatContext *oc, OutputStream *ost)---------------

static AVFrame *alloc_picture(enum AVPixelFormat pix_fmt, int width, int height) {

 AVFrame *picture;

 int ret;

 picture = av_frame_alloc();

 if (!picture) {

 return NULL;

 }

 picture->format = pix_fmt;

 picture->width = width;

 picture->height = height;

 // allocate the buffers for the frame data

 //ret = av_frame_get_buffer(picture, 32);

 if ((ret = av_frame_get_buffer(picture, 32)) < 0) {

 fprintf(stderr, "Could not allocate frame data.\n");

 exit(1);

 }

 return picture;

} //fine

static void open_video(AVFormatContext *oc,AVCodec *codec,OutputStream *ost,

AVDictionary *opt_arg) {

 AVCodecContext *c;

 int ret; // open_video(oc,video_codec,&out_video_st,opt);

 c = avcodec_alloc_context3(codec); // done before avcodec_open2

 c = ost->enc;

 if (!c) {

 av_log(NULL, AV_LOG_ERROR, "Failed to allocate the decoder context for

stream\n");

 exit(1);

 }

 AVDictionary *opt = NULL;

 av_dict_copy(&opt,opt_arg, 0);

 ret = avcodec_open2(c,codec,&opt); // ret = avcodec_open2(c,dec,&opt);

 av_dict_free(&opt);

 if (ret < 0) {

 //printf("ret = %d\n", ret);

 fprintf(stderr, "Could not open video codec: %s\n", av_err2str(ret));

 exit(1);

 }

61

 ost->frame = alloc_picture(c->pix_fmt, c->width, c->height);

 if (!ost->frame) {

 fprintf(stderr, "Could not allocate video frame\n");

 exit(1);

 }

 ost->tmp_frame = NULL;

 if (c->pix_fmt != AV_PIX_FMT_YUV420P) {

 ost->tmp_frame = alloc_picture(AV_PIX_FMT_YUV420P, c->width, c->height);

 if (!ost->tmp_frame) {

 fprintf(stderr, "Could not allocate temporary picture\n");

 exit(1);

 }

 }

 ost->video_st = c;

 ost->enc = c;

 /* copy the stream parameters to the muxer */

 ret = avcodec_parameters_from_context(ost->st->codecpar, c);

 if (ret < 0) {

 fprintf(stderr, "Could not copy the stream parameters\n");

 exit(1);

 }

 //printf("Finished open_video\n");

} //END static void open_video(...)---

#ifdef LINUX_LIVE_STREAM

 //Now lets grab the frame from the input stream

 static void grab_live_image(

 OutputStream *ost,

 unsigned int width,

 unsigned int height,

 AVFormatContext * pFormatCtx,

 AVCodecContext * pCodecCtx,

 AVFrame * pFrame,

 AVPacket * packet,

 int videoindex) {

 int ret, got_picture; //AS-TODO: useful?

 //char buf[1024];

 //AVCodecParserContext * parser;

 // When we pass a frame to the encoder, it may keep a reference to it internally make

sure we do not overwrite it here

 ret = av_frame_make_writable(ost->frame);

 if (ret < 0) {

 exit(1);

 }

 //we must convert LIVE V4L2 picture to the codec pixel format if needed

 if (!ost->sws_ctx) {

62

 //printf("Setting sws_ctx\n"); /*sws_getContext returns an SwsContext to be used in

sws_scale*/

 //printf("Width = %u and height = %u\n", pCodecCtx->width,pCodecCtx->height);

 //printf("Width = %u and height = %u\n", ost->st->codecpar->width,ost->st-

>codecpar->height);

 /*changed to codecpar -- pix_fmt is not in codecpar, set it to global default*/

 ost->sws_ctx = sws_getContext(pCodecCtx->width,pCodecCtx->height,pCodecCtx-

>pix_fmt,ost->st->codecpar->width,ost->st->codecpar->height,ost->enc-

>pix_fmt,SCALE_FLAGS,NULL,NULL,NULL);

 if (!ost->sws_ctx) {

 fprintf(stderr,"Could not initialize the conversion context\n");

 exit(1);

 }

 //printf("Have sws_ctx\n");

 } //END if (!ost->sws_ctx)--

 if(av_read_frame(pFormatCtx, packet) >= 0) {

 if(packet->stream_index == videoindex) {

 //printf("Decoding video...\n"); // Use avcodec_send_packet() and

avcodec_receive_frame(). FIX HERE

 ret = decode(pCodecCtx,pFrame,&got_picture,packet);

 //ret =

avcodec_decode_video2(pCodecCtx,pFrame,&got_picture,packet); //deprecated!!!!!!!!!!

!!!!!!!!!

 //printf("Finished decoding video input!\n");

 if(ret < 0) {

 printf("Decode Error.\n");

 }

 if(got_picture) {

 //printf("I got picture!\n");

 sws_scale(ost->sws_ctx,(const uint8_t* const*)pFrame->data,pFrame->linesize,0,

 pCodecCtx->height, //ost->st->codec->height,

 ost->frame->data,

 ost->frame->linesize);

 } //END if(got_picture)-------------------------------

 } //END if(packet->stream_index == videoindex)------------

 av_packet_unref(packet); //av_free_packet(packet);

 } //END if(av_read_frame(pFormatCtx, packet) >= 0)------------------------

 //printf("Grabbed LIVE image\n");

 } //END static void grab_live_image(...)-------------------------------------

#else //NOT LINUX_LIVE_STREAM---

 ////

 // Prepare a dummy image.

 // This is used only if we want to create a made up frame in the case where

 // we are no capturing live frames nor reading them from some input file or

 // input stream frames.

63

 //

 static void fill_yuv_image(AVFrame *pict,int frame_index,int width,int height) {

 int x, y, i, ret;

 // when we pass a frame to the encoder, it may keep a reference to it

 // internally;

 // make sure we do not overwrite it here

 //

 //ret = av_frame_make_writable(pict);

 if ((ret = av_frame_make_writable(pict)) < 0) {

 exit(1);

 }

 i = frame_index;

 //IF SYNTHETIC VIDEO

 for (y = 0; y < height; y++) {

 for (x = 0; x < width; x++) {

 pict->data[0][y * pict->linesize[0] + x] = x + y + i * 3;

 }

 }

 //Cb and Cr

 for(y = 0; y < height / 2; y++) {

 for (x = 0; x < width / 2; x++) {

 pict->data[1][y * pict->linesize[1] + x] = 128 + y + i * 2;

 pict->data[2][y * pict->linesize[2] + x] = 64 + x + i * 5;

 }

 }

 } //END static void fill_yuv_image(...)---------------------------------------

#endif //#ifdef LINUX_LIVE_STREAM LINUX_LIVE_STREAM

LINUX_LIVE_STREAM-----------

static AVFrame *get_video_frame(

 OutputStream *ost

 #ifdef LINUX_LIVE_STREAM

 ,

 AVFormatContext * in_fmt_ctx,

 AVCodecContext * in_codec_ctx,

 AVFrame * in_frame,

 AVPacket * in_packet,

 int videoindex

 #endif //#ifdef LINUX_LIVE_STREAM

) { //AVCodec *dec = avcodec_find_decoder(ost->st->codecpar->codec_id);

 int ret;

 AVCodecContext *c;// = ost->st->codec; // AVCodecContext *c =

avcodec_alloc_context3(dec);

 c = ost->enc;

 ret = avcodec_parameters_to_context(c, ost->st->codecpar);

64

 if (ret < 0) {

 av_log(NULL, AV_LOG_ERROR, "Failed to copy decoder parameters to input

decoder context for stream\n");

 printf("FAILED\n");

 exit(1);

 }

 fprintf(stderr,"Line[%d]...next_pts=[%"PRId64 "].\n", __LINE__,ost->next_pts);

 /* check if we want to generate more frames */

 // printf("ost->st->time_base = %s while video_length = %s\n", ost->st->time_base,

video_length);

 if (

 av_compare_ts(ost->next_pts,

 c->time_base, // ost->st->time_base,

 video_length,(AVRational){ 1, 1 }) >= 0) {

 //printf("Failed here\n");

 return NULL;

 }

 #ifdef LINUX_LIVE_STREAM /*get the image -- see above*/

 //printf("GRAB_LIVE_IMAGE\n");

 grab_live_image(ost,c->width,c-

>height,in_fmt_ctx,in_codec_ctx,in_frame,in_packet,videoindex);

 #else //#ifdef LINUX_LIVE_STREAM

 if (c->pix_fmt != AV_PIX_FMT_YUV420P) {

 fprintf(stderr,"Line[%d]..next_pts=[%" PRId64 "].\n", __LINE__, ost->next_pts);

 if (!ost->sws_ctx) {

 ost->sws_ctx = sws_getContext(c->width,c->height,AV_PIX_FMT_YUV420P,c-

>width,c->height,c->pix_fmt,SCALE_FLAGS,NULL,NULL,NULL);

 if (!ost->sws_ctx) {

 fprintf(stderr,"Could not initialize the conversion context\n");

 exit(1);

 }

 } //END if (!ost->sws_ctx)---------------------------------------

 fill_yuv_image(ost->tmp_frame,ost->next_pts,c->width,c->height);

 sws_scale(ost->sws_ctx,(const uint8_t * const *)ost->tmp_frame->data,

 ost->tmp_frame->linesize,0,c->height,ost->frame->data,ost->frame->linesize);

 } else {

 fprintf(stderr,"Line[%d]..next_pts=[%" PRId64 "].\n", __LINE__, ost->next_pts);

 fill_yuv_image(ost->frame, ost->next_pts, c->width, c->height);

 }

 #endif

 ost->frame->pts = ost->next_pts++;

 //printf("Finished get_video_frame();\n");

 return ost->frame;

} //END static AVFrame *get_video_frame(...)------------------------------------

static int write_video_frame(

65

 AVFormatContext *oc,

 OutputStream *ost

 #ifdef LINUX_LIVE_STREAM

 ,

 AVFormatContext * in_fmt_ctx,

 AVCodecContext * in_codec_ctx,

 AVPacket * in_packet,

 AVFrame * in_frame,

 int videoindex

 #endif //#ifdef LINUX_LIVE_STREAM

) {

 int ret;

 AVCodecContext *c;

 AVFrame *frame;

 int got_packet = 0;

 AVPacket pkt = { 0 };

 c = ost->enc; //Based on outout.c

 //printf("In video_write_frame\n");

 ret = avcodec_parameters_to_context(c, ost->st->codecpar);

 if (ret < 0) {

 printf("Could not set codec to parameters\n");

 }

 //printf("get_video_frame\n");

 //c = ost->st->codec; // deprecated

 frame = get_video_frame(

 ost,

 #ifdef LINUX_LIVE_STREAM//,

 in_fmt_ctx,

 in_codec_ctx,

 in_frame,

 in_packet,

 videoindex

 #endif //#ifdef LINUX_LIVE_STREAM

);

 av_init_packet(&pkt);

 //printf("Got video frame. Encoding frame..!\n");

 //ret = avcodec_encode_video2(c,&pkt,frame,&got_packet); // deprecated

 if ((ret = encode(c,&pkt,&got_packet,frame)) < 0) {

 fprintf(stderr,"Error encoding video frame. ERROR=[%s].\n",av_err2str(ret));

 exit(1);

 }

 //printf("Encoded\n");

 //printf("got packet = %d\n", got_packet);

 if (got_packet) {

 //printf("got a packet \n"); //%u\n, c->time_base);

66

 ret = write_frame(oc, &c->time_base, ost->st, &pkt);

 } else {

 ret = 0;

 }

 //printf("ret = %d\n", ret);

 if (ret < 0) {

 fprintf(stderr,"Error while writing video frame. ERROR=[%s].\n",av_err2str(ret));

 exit(1);

 }

 //printf("end write_video_frame\n");

 return (frame || got_packet) ? 0 : 1;

} //END static int write_video_frame(...)---------------------------------------

static void close_stream(AVFormatContext *oc, OutputStream *ost){

 //avcodec_parameters_free(ost->st->codecpar);

 avcodec_close(ost->enc);

 av_frame_free(&ost->frame); // frees av_frame_alloc()

 av_frame_free(&ost->tmp_frame);

 sws_freeContext(ost->sws_ctx);

 swr_free(&ost->swr_ctx);

} //END close_stream(AVFormatContext *oc, OutputStream *ost)--------------------

// Print information about the input file and the used codec.

static void print_stream_info(InputStream *is) {

 //const char * long_name = NULL;

 //long_name = is->ofmt->long_name;

 fprintf(stderr,"Line#[%d], Codec for input=[%s], is=[%s].\n",__LINE__,

 (is->src_filename? is->src_filename: "NULL"),

 (// is->audio_stream->codecpar->long_name

 is->audio_codec_ctx->codec->long_name?

 is->audio_codec_ctx->codec->long_name:"NULL"));

 if(is->audio_codec_ctx->codec->sample_fmts != NULL) {

 fprintf(stderr,"Supported sample formats: ");

 int i = 0; // is->audio_stream->codecpar->sample_fmts[i]

 for(i = 0; is->audio_codec_ctx->codec->sample_fmts[i] != -1; ++i) {

 fprintf(stderr,"%s",av_get_sample_fmt_name(is->audio_codec_ctx->codec-

>sample_fmts[i]));

 if(is->audio_codec_ctx->codec->sample_fmts[i+1] != -1) {

 fprintf(stderr, ", ");

 }

 }

 fprintf(stderr, "\n");

 }

 fprintf(stderr, "---------\n");

 fprintf(stderr,"Stream: %7d\n",is->audio_stream_idx);

 fprintf(stderr,"Sample Format: %7s\n",av_get_sample_fmt_name(is->audio_codec_ctx-

>sample_fmt));

67

 fprintf(stderr,"Sample Rate: %7d\n",is->audio_codec_ctx->sample_rate);

 fprintf(stderr,"Sample Size: %7d\n",av_get_bytes_per_sample(is->audio_codec_ctx-

>sample_fmt));

 fprintf(stderr,"Channels: %7d\n",is->audio_codec_ctx->channels);

 fprintf(stderr,"Planar: %7d\n",av_sample_fmt_is_planar(is->audio_codec_ctx-

>sample_fmt));

 fprintf(stderr,"Float Output: %7s\n",(av_sample_fmt_is_planar(is->audio_codec_ctx-

>sample_fmt)? "yes" : "no"));

 } //END print_stream_info(...)--

//--

// Find the first audio stream and returns its index. If there is no audio

// stream returns -1.%

//--

int find_audio_stream(const AVFormatContext* fmt_ctx) {

 int audio_strm_idx = -1;

 size_t i = 0; // fmt_ctx->streams[i]->codecpar->codec_type

 for(i = 0; i < fmt_ctx->nb_streams; ++i) { // Use the first audio stream we can find.

NOTE: There may be more than one, depending on the file.

 if(fmt_ctx->streams[i]->codecpar->codec_type == AVMEDIA_TYPE_AUDIO) { //

fmt_ctx->codecpar->codec_type

 audio_strm_idx = i;

 break;

 }

 }

 return audio_strm_idx;

} //END find_audio_stream(const AVFormatContext* fmt_ctx)---------------------

//This return "stream_idx" found AND opens the decoder, alloactes it

//and initializes it.

//stream_idx will be "-1" if never found.

static int open_codec_context(InputStream *is, enum AVMediaType type) {

 int ret, stream_index;

 AVStream *st;

 AVCodecContext *dec_ctx = NULL;

 AVCodec *dec = NULL;

 AVDictionary *opts = NULL;

 is->audio_stream_idx = -1; //If AVMediaType is not found this is returned.

 if ((ret = av_find_best_stream(is->audio_fmt_ctx, type, -1, -1, NULL, 0)) < 0) {

 fprintf(stderr,"Could not find [%s] stream in input file [%s].

ERROR=[%s].\n",av_get_media_type_string(type),is->src_filename,av_err2str(ret));

 return ret;

 } else {

 stream_index = ret;

 st = is->audio_fmt_ctx->streams[stream_index];

 //find decoder for the stream

 //dec_ctx = st->codec; // delete this line

68

 dec = avcodec_find_decoder(st->codecpar->codec_id); // st->codecpar->codec_id

 dec_ctx = avcodec_alloc_context3(dec);

 //ret = avcodec_parameters_to_context(dec_ctx, st->codecpar);

 if ((ret = avcodec_parameters_to_context(dec_ctx, st->codecpar)) < 0) {

 printf("Failed to load codec parameters to decoder context\n");

 avcodec_free_context(&dec_ctx);

 return ret;

 }

 if (!dec) {

 fprintf(stderr,"Failed to find [%s] codec for stream in input

file=[%s].\n",av_get_media_type_string(type),is->src_filename);

 return AVERROR(EINVAL);

 }

 av_dict_set(&opts, "refcounted_frames", refcount ? "1" : "0", 0);

 ret = avcodec_open2(dec_ctx, dec, &opts);

 if (ret < 0) {

 fprintf(stderr,"Failed to open [%s] codec.

ERROR=[%s].\n",av_get_media_type_string(type),av_err2str(ret));

 return ret;

 }

 is->audio_stream_idx = stream_index;

 } //found best stream---

 return 0;

} //END-open_codec_context(...)---

static void print_usage() {

 printf("usage: \n $ %s --out_fname <string> --vlen <uint32_t>\n"\

 "This program captures LIVE video and outputs it to a media file using

libavformat.\n"\

 "By default, this program generates synthetic audio muxed to a LIVE captured video

stream.\n"\

 "A third option, --audio_source [synth|file|mic], can be used to mux: \n"\

 " synth => synthetic video + LIVE video (default). \n"\

 " file => audio file (e.g. mp3) + LIVE video. \n"\

 " mic => default microphone + LIVE video. \n"\

 "\nAgain, the webcam video is encoded and muxed with either\n"\

 "synthetic audio, provided audio file or audio from a microphone.\n"\

 "The video and audio are muxed into a file named in command line.\n"\

 "The output file format is automatically guessed according to the \n"\

 "output file extension.\nRaw images can also be output by using '%%d' in the

filename.\n\n",prog_name);

} //END print_usage()---

int main(int argc, char **argv) {

 //float startTime = (float)clock()/CLOCKS_PER_SEC; //

 char *filename = NULL;

 //char ** temp_filename = NULL;

69

 //char * temp_filename;

 const char *in_audio_file = NULL;

 char * dimension = NULL;

 strncpy(prog_name, argv[0], MAX_NAME_LEN);

 static struct option long_options[] = {

 {"out_fname" , required_argument, 0, '0' },

 {"vlen" , required_argument, 0, '1' },

 {"audio_source", optional_argument, 0, '2' },

 {"seg" , required_argument, 0, '3' },

 {"size" , required_argument, 0, '4' },

 {0 , 0, 0, 0 }

 };

 printf("Line#[%d],dbg_cnt[%d]...\n",__LINE__,

dbg_cnt++);

 int capture_options = 0;

 int long_index = 0;

 while ((capture_options = getopt_long(argc,argv,"",long_options,&long_index)) != -1) {

 switch (capture_options) {

 case '0' :

 filename = optarg;

 printf("Line#[%d],dbg_cnt[%d]................filename[%s].\n",__LINE__,dbg_c

nt++,(filename == NULL? "NULL": filename));

 break;

 case '1' :

 video_length = atoi(optarg);

 printf("Line#[%d],dbg_cnt[%d]................video_length[%d].\n",__LINE__,d

bg_cnt++,video_length);

 break;

 case '2' :

 in_audio_file = optarg;

 printf("Line#[%d],dbg_cnt[%d]................in_audio_file[%s].\n",__LINE__,d

bg_cnt++,(in_audio_file == NULL? "NULL": in_audio_file));

 break;

 case '3' :

 segment = atoi(optarg);

 printf("Line#[%d],dbg_cnt[%d]................segment[%d].\n",__LINE__,dbg_c

nt++,segment);

 break;

 case '4' :

 dimension = optarg;

 printf("Line#[%d],dbg_cnt[%d]................size[%s].\n",__LINE__,dbg_cnt++

,(dimension == NULL? "NULL": dimension));

 break;

 default: print_usage();

 exit(EXIT_FAILURE);

70

 }

 }

 if ((video_length < (uint32_t)1) || (filename == NULL)) {

 print_usage();

 exit(EXIT_FAILURE);

 }

 //-----------------------ffmpeg related stuff below--------------------------

 //-------------------allocate the output media context------------------------

 for (int k = 1;k<=segment;++k) {

 //temp_filename = filename; // preserve the original name, makes labelling easier

 OutputStream out_video_st = {0}, out_audio_st = { 0 };

 InputStream in_strm = {0};

 AVOutputFormat *fmt;

 AVFormatContext *oc;

 AVCodec *audio_codec, *video_codec;

 int ret;

 int have_video = 0, have_audio = 0;

 int encode_video = 0, encode_audio = 0;

 AVDictionary *opt = NULL;

 av_register_all();

 fprintf(stderr,"Line#[%d],dbg_cnt[%d]......ffmpeg.all.registered.and.ready.to.go!......\n",

__LINE__, dbg_cnt++);

 if (in_audio_file == NULL) {

 in_strm.audio_src = AUDIO_SYNTHETIC;

 }

 else {

 in_strm.audio_src = AUDIO_FILE;

 in_strm.src_filename = in_audio_file;

 //open input file, and allocate format context

 if ((ret =

avformat_open_input(&in_strm.audio_fmt_ctx,in_strm.src_filename,NULL,NULL)) < 0)

{

 fprintf(stderr,"Line#[%d], Could not open source file=[%s].

Error=[%s].\n",__LINE__,in_strm.src_filename,av_err2str(ret));

 exit(1);

 } //dump input information to stderr

 av_dump_format(in_strm.audio_fmt_ctx, 0, in_strm.src_filename, 0);

 //retrieve stream information

 if ((ret = avformat_find_stream_info(in_strm.audio_fmt_ctx, NULL)) < 0) {

 fprintf(stderr,"Line#[%d], Could not find stream information.

Error=[%s].\n",__LINE__,av_err2str(ret));

 exit(1);

 } // Try to find an audio stream.

 in_strm.audio_stream_idx = find_audio_stream(in_strm.audio_fmt_ctx);

71

 if(in_strm.audio_stream_idx == -1) { // No audio stream was found.

 fprintf(stderr,"Line#[%d], None of the available [%d streams] are audio

streams.\n",__LINE__,in_strm.audio_fmt_ctx->nb_streams);

 avformat_close_input(&in_strm.audio_fmt_ctx);

 exit(1);

 }

 // open the codec, allocate it, initialize it and return the stream index of the

AVMEDIA_TYPE_AUDIO

 if((ret = open_codec_context(&in_strm, AVMEDIA_TYPE_AUDIO)) != 0) {

 fprintf(stderr,"Line#[%d], Could not open_codec_context.

Error=[%s].\n",__LINE__,av_err2str(ret));

 }

 in_strm.audio_stream =in_strm.audio_fmt_ctx->streams[in_strm.audio_stream_idx];

 if (in_strm.audio_stream == NULL) {

 fprintf(stderr,"Line#[%d], Could not find audio stream in the input=[%s],

aborting!\n"\

 "Use correct audio file source or microphone or default synthetic audio generated by

this program.\n",__LINE__,in_strm.src_filename);

 exit(1);

 }

 //Setup the decoder for the input audio

 ret = avcodec_parameters_to_context(in_strm.audio_codec_ctx, in_strm.audio_stream-

>codecpar);

 if (!audio_codec){

 printf("Failed to copy audio stream parameters to audio codec context\n");

 }

 //in_strm.audio_codec_ctx = in_strm.audio_stream-

>codec; //in_strm.audio_codec_ctx = in_strm.audio_stream->codecpar;

 in_strm.audio_codec = avcodec_find_decoder(in_strm.audio_codec_ctx-

>codec_id); // in_strm.audio_stream->codecpar->codec_id

 if(in_strm.audio_codec == NULL) {

 fprintf(stderr,"Line#[%d], Audio codec not found.\n",__LINE__);

 exit(1);

 }

 print_stream_info(&in_strm);

 //allocate audio frame to be used

 in_strm.audio_frame = av_frame_alloc();

 if (in_strm.audio_frame == NULL) {

 fprintf(stderr,"Line#[%d], Could not allocate frame for input=[%s],

aborting!\n",__LINE__,in_strm.src_filename);

 exit(1);

 }

 //initialize packet, set data to NULL, let the demuxer fill it

 av_init_packet(&(in_strm.audio_pkt));

 in_strm.audio_pkt.data = NULL;

72

 in_strm.audio_pkt.size = 0;

 if (in_strm.audio_stream) {

 fprintf(stderr,"Line#[%d], Demuxing audio from file

input=[%s].\n",__LINE__,in_strm.src_filename);

 }

 printf("Line#[%d],dbg_cnt[%d].REMOVE REMOVE REMOVE! REMOVE

REMOVE! REMOVE REMOVE!\n",__LINE__, dbg_cnt++);

 }

 char c[20];

 char d[20];

 //char e[20];

 size_t len = strlen(filename);

 char * newfilename = malloc (len-3);

 memcpy(newfilename,filename,len-4);

 newfilename[len - 4] = 0;

 printf("newfilename = %s\n", newfilename);

 //strncpy(temp_filename,newfilename,32);

 //temp_filename = newfilename;

 //strncpy(temp_filename,newfilename,MAX_NAME_LEN);

 //snprintf(e,10,"-%s",dimension);

 if (strcmp(dimension,"SMALL")== 0){

 snprintf(d,10,"-1-0-LIVE");//, segment);

 }

 else {

 snprintf(d,10,"-1-1-LIVE");//, segment);

 }

 //snprintf(d,10,"-LIVE-%d", segment);

 snprintf(c,24,"-%d-%d.mp4",segment,k); // c = "-%d.mp4"

 // strcat(temp_filename,e);

 char * temp_filename = malloc(len-3+strlen(d)+strlen(c));

 printf("just made temp: %s\n", temp_filename);

 memset(temp_filename,0,strlen(temp_filename));

 printf("After memset: %s\n", temp_filename);

 strcat(temp_filename,newfilename);

 strcat(temp_filename,d); //concatenate

 strcat(temp_filename,c); //concatenate

 //strncpy(temp_filename,temp_filename,MAX_NAME_LEN);

 printf("temp_filename = %s\n", temp_filename);

 oc = avformat_alloc_context();

 avformat_alloc_output_context2(&oc,NULL,NULL,temp_filename); //determines the

file format extension

 if (!oc) {

 fprintf(stderr,"Line#[%d],Could not deduce output format from file extension: using

mp4.\n",__LINE__);

 avformat_alloc_output_context2(&oc, NULL, "mp4", temp_filename); //MPEG

73

 return 1;

 }

 fmt = oc->oformat;

 if(fmt->video_codec != AV_CODEC_ID_NONE) {

 //printf("No video codec found. Adding stream...\n");

 add_stream(&out_video_st,oc,&video_codec,fmt->video_codec,dimension); //

working on it

 have_video = 1;

 encode_video = 1;

 //printf("--->Video codec has been found\n");

 }

 if(fmt->audio_codec != AV_CODEC_ID_NONE) {

 //printf("No audio codec found. Adding stream...\n");

 add_stream(&out_audio_st, oc, &audio_codec, fmt->audio_codec, dimension);

 have_audio = 1;

 encode_audio = 1;

 //printf("--->Audio codec has been found\n");

 }

 if(have_video) {

 //printf("Have video. Opening...\n");

 open_video(oc,video_codec,&out_video_st,opt);

 //printf("--->Got the video\n");

 }

 if(have_audio) {

 //printf("Have audio. Opening...\n");

 open_audio(oc,audio_codec,&out_audio_st,opt);

 //printf("--->Got the audio\n");

 }

 av_dump_format(oc,0,temp_filename,1);

 if(!(fmt->flags & AVFMT_NOFILE)) {

 //printf("Output file needed\n");

 if((ret = avio_open(&oc->pb, temp_filename, AVIO_FLAG_WRITE)) < 0) {

 fprintf(stderr,"Line#[%d],Could not open file=[%s],

ERROR=[%s].\n",__LINE__,temp_filename,av_err2str(ret));

 return 1;

 }

 //printf("Output file opened\n");

 }

 //printf("Write the header\n");

 if ((ret = avformat_write_header(oc, &opt)) < 0) {

 fprintf(stderr,"Line#[%d], Could not write stream header to output file,

ERROR=[%s].\n",__LINE__,av_err2str(ret));

 return 1;

 }

 //printf("Header Written\n");

74

 //Now let's prepare input video

 #ifdef LINUX_LIVE_STREAM //---

 AVFormatContext *pFormatCtx;

 pFormatCtx = avformat_alloc_context(); // create AVFormatContext

 // Since we use V4L2 device make sure all devices are registered

 avdevice_register_all();

 //Linux only

 AVInputFormat *ifmt = av_find_input_format("video4linux2");

 if((ret = avformat_open_input(&pFormatCtx, "/dev/video0", ifmt, NULL)) != 0) {

 fprintf(stderr,"Line#[%d], Could not open input stream.

ERROR=[%s].\n",__LINE__,av_err2str(ret));

 return -1;

 } //Does the stream exist?

 if((ret = avformat_find_stream_info(pFormatCtx,NULL)) < 0) {

 fprintf(stderr,"Line#[%d], Could not find input stream infomation.

ERROR=[%s].\n",__LINE__,av_err2str(ret));

 return -1;

 }

 int videoindex = -1;

 int i = 0;

 for(i=0; i < pFormatCtx->nb_streams; i++) {

 if(pFormatCtx->streams[i]->codecpar->codec_type == AVMEDIA_TYPE_VIDEO)

{

 videoindex = i;

 break;

 }

 }

 if(videoindex == -1) {

 fprintf(stderr,"Line#[%d], Could not find a video stream.

ERROR=[%s].\n",__LINE__,av_err2str(ret));

 return -1;

 } //Setup the decoder for the input video

 AVCodecContext * pCodecCtx; // = pFormatCtx->streams[videoindex]->codec;

 AVCodec * pCodec; // = avcodec_find_decoder(pCodecCtx->codec_id);

 pCodec = avcodec_find_decoder(pFormatCtx->streams[videoindex]->codecpar-

>codec_id);

 if (!pCodec) {

 fprintf(stderr, "Could not find input codec\n");

 //avformat_close_input(pFormatCtx);

 return -1;

 }

 /*I think I fixed pCodecCtx*/

 pCodecCtx = avcodec_alloc_context3(pCodec);

 if(!pCodecCtx){

 printf("Failed to allocate pCodecCtx\n");

75

 return -1;

 }

 if ((ret = avcodec_parameters_to_context(pCodecCtx, pFormatCtx-

>streams[videoindex]->codecpar)) < 0) {

 printf("Could not set codec to paramters\n");

 }

 if(avcodec_open2(pCodecCtx, pCodec, NULL) < 0) {

 fprintf(stderr,"Line#[%d], Could not open codec.

ERROR=[%s]\n",__LINE__,av_err2str(ret));

 return -1;

 }

 AVFrame *pFrame = av_frame_alloc(); // Allocate the input frame to use

 //AVFrame *pFrameYUV = av_frame_alloc();

 AVPacket *packet = (AVPacket *)av_malloc(sizeof(AVPacket));

 //AVPacket * packet = av_packet_alloc();

 #endif //#ifdef LINUX_LIVE_STREAM LINUX_LIVE_STREAM

LINUX_LIVE_STREAM---------

 /*

 if (strcmp(dimension,"BIG") == 0) { // 25 frames/s

 printf("\nBIG video\n");

 pCodecCtx->width = 640;

 pCodecCtx->height = 360;

 pCodecCtx->bit_rate = 500000; //bits/s

 pCodecCtx->framerate = (AVRational){25,1}; // from encode_video.c

 //pFormatCtx->width = 640;

 //pFormatCtx->height = 360;

 //pFormatCtx->bit_rate = 500000; //bits/s

 }

 else if (strcmp(dimension,"SMALL") == 0) { // 15 frames/sec

 printf("\nSMALL video\n");

 pCodecCtx->width = 320;

 pCodecCtx->height = 180;

 pCodecCtx->bit_rate = 150000; //bits/s

 pCodecCtx->framerate = (AVRational){15,1};

 //pFormatCtx->width = 320;

 //pFormatCtx->height = 180;

 //pFormatCtx->bit_rate = 150000; //bits/s

 }// by default, dimensions will be 640x480

 // pCodecCtx->width = 640;

 // pCodecCtx->height = 480;

 */

 while (encode_video || encode_audio) {

 //select the stream to encode

 if (encode_video &&(!encode_audio ||av_compare_ts(

 out_video_st.next_pts,

76

 out_video_st.enc->time_base, // changed here

 out_audio_st.next_pts,

 out_audio_st.enc->time_base // changed here

) <= 0)) {

 //---

 encode_video = !write_video_frame(

 oc,

 &out_video_st

 #ifdef LINUX_LIVE_STREAM

 ,

 pFormatCtx,

 pCodecCtx,

 packet,

 pFrame,

 videoindex

 #endif //#ifdef LINUX_LIVE_STREAM

);

 //printf("encode video\n");

 } else {

 encode_audio = !write_audio_frame(&in_strm,oc,&out_audio_st);

 //printf("encode audio\n");

 }

 //printf("stil in while loop\n");

 } //END while (encode_video || encode_audio)--------------------------------

 //Write the trailer, if any. The trailer must be written before you

 //close the CodecContexts you opened when you wrote the header; otherwise

 //av_write_trailer() may try to use memory that was freed by av_codec_close().

 //printf("write trailer\n");

 av_write_trailer(oc);

 //Close each codec.

 if(have_video) {

 close_stream(oc, &out_video_st);

 }

 if(have_audio) {

 close_stream(oc, &out_audio_st);

 }

 if(!(fmt->flags & AVFMT_NOFILE)) {

 //Close the output file.

 avio_closep(&oc->pb);

 }

 //free the stream

 avformat_free_context(oc);

 avformat_close_input(&pFormatCtx); // kill the camera

 temp_filename = filename; // reset it

 }

77

 return 0;

} //.............................END.OF.PROGRAM.................................

