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ABSTRACT 

Quagga mussels are an aquatic invasive species capable of causing economic and 

ecological damage. Despite the quagga mussels’ ability to rapidly spread, two watersheds, the 

Salt River system and the Verde River system of Arizona, both had no quagga mussel detections 

for 8 years. The main factor thought to deter quagga mussels was the stratification of the two 

watersheds during the summer, resulting in high temperatures in the epilimnion and low dissolved 

oxygen in the hypolimnion. In 2015, Canyon Lake, a reservoir of the Salt River watershed, tested 

positive for quagga mussel veligers. In this study, I used Landsat 7 and Landsat 8 satellite data to 

determine if changes in the surface temperature have caused a change to the reservoir allowing 

quagga mussel contamination. I used a location in the center of the lake with a root mean 

squared error (RMSE) of 0.80 and a correlation coefficient (R2) of 0.82, but I did not detect any 

significant variations in surface temperatures from recent years. I also measured 21 locations on 

Canyon Lake to determine if the locations in Canyon Lake were able to harbor quagga mussels. I 

found that summer stratification caused hypolimnion dissolved oxygen levels to drop well below 

the quagga mussel threshold of 2mg/L. Surface temperatures, however were not high enough 

throughout the lake to prevent quagga mussels from inhabiting the epilimnion. It is likely that a 

lack of substrate in the epilimnion have forced any quagga mussel inhabitants in Canyon Lake to 

specific locations that were not necessarily near the point of quagga veliger detection sampling. 

The research suggests that while Canyon Lake may have been difficult for quagga mussels to 

infest, once they become established in the proper locations, where they can survive through the 

summer, quagga mussels are likely to become more prevalent. 
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INTRODUCTION 

Dreissena rostriformis bugensis, also known as quagga mussels, are an aquatic invasive 

species that poses a large problem in freshwater bodies. As a high priority aquatic invasive 

species, quagga mussels pose a threat to both local ecosystems and drinking water 

infrastructure. Since their initial detection in Lake Erie in 1989, they spread across the country to 

the Colorado River in just 17 years, threatening Arizona’s precious water systems since 2007. 

Despite their rapid ability to spread, several of Phoenix, Arizona’s major freshwater sources 

remained free of quagga mussels until detection in 2015. In a study conducted by Arizona State 

University in 2015, lab experiments on Saguaro Lake, of the Salt River system, and Bartlett Lake, 

of the Verde River system, suggested that summer stratifications, correlated with high surface 

temperatures, created an inhospitable environment for quagga mussels. During the summer in 

Saguaro Lake, surface temperatures rose above the quagga mussel’s temperature threshold of 

28°C, while a drop in dissolved oxygen in the two watersheds prevented infestation in deeper 

water. Recent detection of quagga mussel veligers in the Salt River system has brought concern 

that an external factor, impacting the surface temperature of the lake or an internal factor, 

inherent to the lake itself, may be allowing quagga mussels to survive in these supposedly 

inhospitable environments.  

In lieu of the recent detection of quagga mussel veligers in Canyon Lake in the year 

2015, an in-depth investigation was conducted on the reservoir’s potential for quagga mussel 

infestation. Data was collected from 3 primary sources. The first data source was the Regional 

Water Quality Sampling Project by ASU. In addition, I collected data from Landsat 7 and Landsat 

8 provided by the United States Geological Survey (USGS). The third source of data was taken 

in-situ and was obtained starting in late May, recording the seasonal summer decline in dissolved 

oxygen, and ending after the fall lake turnover in October. Using these three data sets, I seek to 

determine the underlying cause for recent detections of quagga mussel veligers in Canyon Lake, 

Arizona. 
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OBJECTIVES 

1. Find underlying factors for the lack of detection of quagga mussel veligers in Canyon 

Lake from 2007 to 2015, and the reasons why they were detected in Canyon Lake 

recently. 

2. Determine whether Canyon Lake contains hospitable zones for quagga mussels to 

survive and potentially thrive. 

3. If hospitable, determine where quagga mussels might reside in Canyon Lake. 

LITERATURE REVIEW 

QUAGGA MUSSELS 

Biology. The quagga mussel is a small bivalve mollusk, reaching up to 4cm in length. 

Named after the now extinct quagga zebra, the characteristic stripes of the quagga mussel 

typically fade as they get closer to the hinge of the shell (Benson, et al., 2017). They are closely 

related to another aquatic invasive species, Dreissena polymorpha, better known as the zebra 

mussel. The quagga mussel is typically distinguished from a zebra mussel by its fading stripes, 

larger adult size, rounder shape and asymmetric valves (Benson, et al., 2017). 

Quagga mussels reproduce by broadcast spawning. A single female mussel can produce 

over one million eggs per year and fertilization, as well as larval development, are initiated in the 

water column. Compared to other broadcast spawning organisms, quagga mussels are less 

susceptible to issues in sperm dilution. Clusters of mussels can impact water flow to encourage 

concentration of eggs and sperm in eddies (Misamore, Barnard, Couch, & Wong, 2015). Sperm 

are also capable of successful fertilization 2 hours after spawning. While time of spawning for 

each mussel varies, in infested lakes, veligers can be found in the water column year-round. In 

the Great Lakes, quagga mussels in the hypolimnion were observed to offset their spawning time 

up to one week later than the quagga mussels in the epilimnion, with both spawning more 

abundantly in the spring and fall. 
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Although the early stages of quagga mussel development have not been closely studied, 

they are believed to follow similar stages as the zebra mussel. The zebra mussel larvae first 

begin with the trochophore stage between 6-96 hours post fertilization. Afterwards, the 

trochophore secretes its first larval shell, thereby becoming a veliger. 7-9 days post fertilization, a 

second larval shell forms. The second larval shell then grows and as it gets heavier, initiates the 

next larval stage. In the pediveliger stage, characterized by the growth of a foot and changes in 

behavior, the organism begins a shift toward the bottom of the water column, using the foot to 

move until it finds a suitable location to secrete byssal threads and attach. Byssal threads are 

proteinaceaous filaments secreted from the ventral side of the mussel which allow it to firmly 

attach to surfaces. It is estimated that the pediveliger stage occurs between 18-90 days post 

fertilization, after which it is considered a post veliger and begins forming a mouth, gills and an 

adult shell (Misamore, Barnard, Couch, & Wong, 2015). The juvenile mussel takes a few months 

more to sexually mature. The adult quagga mussels live on average 2-3 years with the oldest 

known to live about 5 years. 

As a result of their extensive ability to reproduce, quagga mussels in infested lakes can 

be found in dense colonies, even at great depths. In 2010, the density of a quagga mussel colony 

at Parker Dam in Lake Havasu, Arizona, was reported at 35,000/m2. The deepest they have been 

found is 130m below the surface in the Great Lakes. (Benson, et al., 2017) 

The scientific community is just learning about the unique characteristics of quagga 

mussels. Their tolerance to water qualities are, in many ways, still uncertain. In some research, 

quagga mussels were closely approximated by their cousin zebra mussels, ignoring that the 

species could have key differences that would affect their ability to infest. Calcium requirements 

for quagga mussels to build their shells were once thought to be similar to those of observed 

zebra mussels and water with 12ppm or lower concentrations of calcium were thought to be 

uninhabitable. Experiments have shown successful survival, growth and reproduction of quagga 

mussels in calcium levels that were considered low. Although field observations did not often 



4 
 

place quagga mussels at locations with low calcium, experiments were conducted which found 

that quagga mussels could survive calcium levels as low as 12ppm for 90 days. Although mussel 

mortality was high exceeding 170 days, at 15ppm adult mussels were able to survive up to one 

year (Davis, Emma, Achara, Chandra, & Jerde, 2015). Quagga mussels have also shown the 

capability to rapidly adapt to their environment. Low dissolved oxygen tolerance was studied 

using populations from different lakes in Western Europe. Differences in each colony’s survival in 

low dissolved oxygen depended more on their source water than on their species identity 

(Ventura, Sarpe, Kopp, & Jokela, 2016). This suggests convergent adaptations from different 

strains to increase tolerance for low dissolved oxygen conditions. 

Ecological Impact. In addition to their prolific nature, quagga mussels also heavily 

impact the waters that they invade. Quagga mussels are filter feeders and a single quagga 

mussel can filter a liter of water a day. As filter feeders, quagga mussels concentrate substances 

including many toxins, in their bodies and in the pseudofeces they expel (Benson, et al., 2017). 

The prey of the quagga mussels, the phytoplankton, are keystone to the local ecology. As the 

quagga mussels filter phytoplankton from the water column, zooplankton, which feed on the 

phytoplankton, are starved. In turn, predators that feed on zooplankton have less food, thereby 

creating a cascade of decreasing predator populations throughout the biome. The effect of 

quagga mussel filtration also changes the overall quality of the water, making the water clearer 

and causing imbalances in the local ecosystems that can lead to more intense algal blooms 

(Nelson & Nibling, 2013). Overall changes in water quality favor certain organisms over others 

and cause a decline in biodiversity. Invasion by quagga mussels creates a dramatic shift that 

impacts the aquatic trophic structure, nutrient cycling and biodiversity of the local aquatic 

ecosystem (Nelson & Nibling, 2013).  

Economic Impact. Quagga mussels pose an economic threat as well due to their 

propensity to cause biofouling in infrastructure. The mussels heavily colonize hard surfaces and 

their dense, hard-packed colonies readily adhere to pipes and screens, causing clogs and putting 
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strain on pumps. The colonies also attach to docks, boats, buoys and even clutter beaches, 

putting strain on recreational activity as well. Though they flock to hard surfaces, they are also 

able to attach to soft surfaces as well. The quagga mussel’s byssal threads allow it to attach very 

firmly and they are difficult to remove.  

At present, to prevent quagga mussel biofouling there are only a few options available. 

Applying a preventative wax containing capsaicin to surfaces can decrease the rates of 

attachment to boats, docks and buoys, but requires constant maintenance and reapplication. 

Water distribution systems such as those in Arizona, cannot apply a wax throughout, and instead 

use a chemical pesticide, often derived from chlorine or copper (Takeguchi, Liang, & Yates, 

2012). These pesticides can be harmful to local fish and wildlife. Since the mussels are also able 

to close their shells when they sense harmful chemicals, an otherwise lethal dose must be 

applied for a long time to ensure eradication. While more effective, better targeted substances are 

being developed, tested, and marketed, any solution available will still place an economic burden 

on utilities, industries and communities. A biopesticide using Pseudomonas fluorescens strain 

CL145A has shown promising results as a substance specifically targeted toward dreissenid 

mussels through intoxication (Molly, et al., 2013). Pseudomonas fluorescens CL145A is a 

common organism in soil which contains a compound that is toxic to dreissenid mussels. Unlike 

chlorine or copper pesticides, the Pseudomonas fluorescens is less likely to be detected as a 

toxin by the mussels and are more likely to be absorbed, killing the mussels by breaking down 

their stomach lining. Currently marketed as Zequanox, it is not yet approved in reservoirs and it 

is, at this time, too expensive to implement (Meehan, Shannon, Gruber, Rackl, & Lucy, 2014). 

Predators to quagga mussels also exist, though their overall effects on populations need more 

study. One such predator is the Redear Sunfish which preys on quagga mussels in Lake Havasu, 

Arizona (US Department of the Interior Bureau of Reclaimation, 2015). 
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Detection. The presence of dreissenid mussels can be difficult to detect. The mussels 

themselves can be very small, reside in low light areas and are overall difficult for divers to spot. 

To detect if quagga mussels have contaminated a reservoir, the water is usually tested for 

quagga mussel veligers. The Bureau of Reclamation Detection Laboratory for Exotic Species 

(RDLES) in Denver, CO plays a primary role in the detection of invasive dreissenid populations in 

the western United States. The method they use involves microscopy, followed by DNA detection 

using Polymerase Chain Reaction (PCR), with the inclusion of scanning electron microscopy 

(SEM) and flow cell cytometry to confirm results (Carmon & Hosler, 2015). A 64µm plankton tow 

net with a weighted cup is used to collect water samples which are then preserved using buffer 

and alcohol. The sample is then allowed to settle overnight. The lab estimates a 98% veliger 

recovery rate using an optimized method for settling the veligers. They then use Cross Polarizing 

Light Microscopy (CPLM) to detect the veligers by their shell with 98% identification if the shell is 

not degraded. SEM is then used to clearly identify dreissenid veligers from other organisms with 

detectable shells. A taxonomist is consulted to confirm the identification of a quagga veliger and 

flow cytometry can also be used to determine the zooplankton communities as well as enumerate 

veligers. In quagga infested waters, there is often decreased zooplankton and high 

concentrations of veligers, which can indicate the intensity of quagga mussel infestation. The lab 

also conducts PCR using the DNA of positive and suspect samples to establish the organism’s 

identity as a dreissenid. Prior to 2012, DNA extraction for dreissenid mussels was inefficient at 

breaking apart the calcium carbonate shell or accounting for humic acid and other PCR inhibitors. 

After 2013, a method was optimized to remove inhibitors and breakdown the shell, increasing the 

likelihood of positive PCR results. RDLES uses gel electrophoresis to then obtain a visible band 

which, if confirmed, is then submitted for gene sequencing (Carmon & Hosler, 2015).  

Invasion. First discovered in 1890 by Andrusov in the Bug River, the Quagga mussel 

originates from the Dneiper River in Ukraine and the Ponto-Caspian Sea. Quagga mussels are 

closely related to another highly invasive species, the zebra mussel, which originates from the 

same waters. Although similar in appearance and taxonomy, the two mussels have exhibited 
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different invasive patterns. The zebra mussel had long been established as an aquatic invasive 

species, studied in Europe since the 18th century. The quagga mussel, however, has exhibited 

recent, rapid, and steady spread for only a few decades and is expected to overtake the zebra 

mussel in many places, including the Great Lakes.  

In 1989, quagga mussels were first sighted in the United States, starting in Lake Erie. 

They were believed to have reached the Great Lakes by stowing away in the ballasts of 

transatlantic ships. Discharge ballast water from these ships only needed to contain a few 

veligers, juveniles, or adult mussels to infect surrounding waters. It is theorized that the highly 

mobile and microscopic veligers may be the primary stage of quagga mussel transport. Transport 

of veligers through overland trailers was studied and veligers immersed in just 31uL of water were 

found to survive at least seven days at temperatures below 25°C. For veligers not immersed but 

stored in humid conditions below 25°C, next day conveyance from one body of water to another 

was still possible (Snider, Moore, Volkoff, & Byron, 2014). In addition to boat ballasts, they can 

also spread as adults by attaching to boat hulls and drift along rivers. Adult quagga mussels can 

release byssal threads and use a foot to drift downstream to new locations. 

By 1995, quagga mussels were sighted outside of the Great Lakes in the Mississippi 

River and in January of 2007, they had made their way across the country to Lake Mead in 

Nevada, as well as Lake Havasu and Lake Mohave near the border between Arizona and 

California. By late 2008, quagga mussels were discovered in 15 Southern California reservoirs 

and 6 Colorado River reservoirs. In 2011, a reservoir in New Mexico also tested positive for 

quagga mussel veliger DNA. 

History in Arizona. In 2007, quagga mussels were positively detected multiple times in 

several Arizona locations including Lake Mohave, Lake Mead, Lake Pleasant and other locations 

along the Colorado River. All three lakes are confirmed to host established colonies of this 

invasive species and all of them are connected by the Colorado River, with the Mohave lake 

directly downstream of Lake Mead (National Park Service, 2017). Areas along the Colorado river 
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between Lake Mead and Lake Mohave also tested positive for quagga mussel veligers. Lake 

Pleasant is fed by a combination of the Agua Fria River and an aqueduct from the Colorado 

River, downstream of Lake Havasu (Central Arizona Project, 2018). In 2008, the Granite Reef 

Dam, where water from the Colorado River mixed with the Salt River, also tested positive for 

quagga mussels. Although just downstream of Lake Mohave, Lake Havasu did not test positive 

for quagga mussels until 2009, and although it tested positive again in 2010, there has not been 

an established population confirmed in Lake Havasu. In 2013, Lake Powell, the reservoir which 

feeds into Lake Mead, tested positive for quagga mussels. Until 2015 in Arizona, only the 

Colorado River watershed tested positive for quagga mussel veligers. In 2015, the veligers were 

detected in Canyon Lake, a reservoir of the Salt River system. In 2016, two other lakes in the Salt 

River system also tested positive for quagga mussels, Apache Lake and Saguaro Lake. (USGS, 

2018) 

To control the spread of quagga mussels in Arizona, the Arizona Game and Fish 

Department passed “Directors Orders” laying out new regulations for boaters in Arizona under the 

Aquatic Invasive Species Interdiction Act, passed July of 2010. The “Don’t Move a Mussel” 

campaign, headed by the Arizona Game and Fish Department, encourages boaters to practice 

“clean, drain, and dry”. The campaign outlines required decontamination protocols and serves to 

increase boater awareness. Waters officially designated as containing quagga mussels in Arizona 

include Lake Pleasant, Lake Mead, Lake Mohave, Lake Havasu, and the Colorado River area 

south of Lake Havasu up until the international boundary with Mexico. The regulations require 

boaters to follow 4 steps upon leaving the designated waters. These include (1) cleaning off any 

material off the anchor, boat, motor and trailer, (2) removing the plug and draining all water, (3) 

allowing the craft, vehicle and equipment to completely dry and (4) waiting at least 5 days before 

launching the watercraft in another location. In step 4, if the craft is needed in less than 5 days, 

they must replace the bilge drain plug and disinfect the bilge with a gallon of vinegar (Arizona 

Game and Fish Department, 2010). Regulations also outline more strict requirements for any 

boats moored for 5 days or longer in quagga infested waters. To farther prevent the spread of 
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mussels by overland transport, some states also require boat inspections for boats crossing the 

borders from Arizona. 

For Lake Mead to test positive in 2007, it is hypothesized that reproducing quagga 

mussels must have been established by 2003 or 2004 to generate enough veliger larvae for 

detection (Moore, Holdren, Gerstenberger, Turner, & Wong, 2015). After detection, most areas 

only take 3-5 years before populations become an established infestation (Carmon & Hosler, 

2015). 

Between 2008 and 2015 quagga mussels were not detected in the nearby Salt River or 

Verde River systems. The Colorado River, Salt River, and Verde River water systems are in close 

proximity, and recreational boaters frequently travel between them. A study looking specifically at 

quagga mussel veligers traveling in the summer and autumn from Lake Mead, exhibited that 

residual water carried in trailered recreation boats could harbor surviving veligers for 

approximately 5 days in the summer and 27 days in the autumn (Choi, Gerstenberger, McMahon, 

& Wong, 2013). Considering a road trip from Lake Mead to the Salt River System would take less 

than 7 hours, and a trip from the infested Lake Pleasant would take less than 2 hours, it is very 

likely that despite efforts for raised awareness, that quagga mussel veligers have been frequently 

introduced to the Salt River and Verde river systems during that time. 

An investigation into quagga mussel spread in Arizona reservoirs was conducted and 

published as a M.S. thesis in 2015 by Matt Sokolowski. The study sought to determine why 

quagga mussels did not infect the Salt or Verde river systems in Arizona. Lakes resistant to 

quagga mussel invasion often contain predators or exhibit water quality parameters that are 

inhospitable to the mussels. Water quality parameters which have been shown to affect quagga 

mussel vitality include temperature, dissolved oxygen, pH, salinity, turbidity and calcium 

concentration.  

The investigation by Matt Sokolowski compared conditions in Lake Pleasant, to those in Bartlett 

Lake and Saguaro Lake. Lake Pleasant is part of the Colorado River system and was already 
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infested at the time of the study. Bartlett Lake is fed by the Verde River, while Saguaro Lake 

resides in the Salt River system. The study found that, in the laboratory, quagga mussels could 

survive in extracted Saguaro Lake and Bartlett Lake water. There are fewer predators (calanoid 

copepods) which prey on quagga mussel veligers, in Saguaro and Bartlett Lake than Lake 

Pleasant, and the only water quality parameters that the experiment did not account for were 

temperature and dissolved oxygen. Temperature and dissolved oxygen profiles sourced from field 

sampling conducted by the Regional Water Quality Sampling Project at Arizona State University 

revealed that that Saguaro Lake and Bartlett Lake had extended periods of low dissolved oxygen 

(Sokolowski, 2015). During the summer, each lake becomes heavily stratified. The layer closest 

to the surface, the epilimnion, of the water is subject to solar heating. In the hypolimnion, where 

the heat from the sun does not reach, the temperature of the water is lower. Very little mixing 

occurs between the epilimnion and the hypolimnion due to their temperature differences. During 

the summer, primary producers, mostly algae, bloom in the euphotic surface layers of the lakes, 

creating an epilimnion zone that is rich in oxygen. However, in the hypolimnion, there is very little 

light and decaying algae sink down toward the bottom of the lake. During the summer, it was 

hypothesized that the dissolved oxygen levels in the hypolimnion of these lakes declines to 

values below the quagga mussel’s minimum tolerance for dissolved oxygen. Meanwhile, the 

water temperature of in the epilimnion reaches the mussel’s upper threshold for temperature 

tolerance. In 2015, this hypothesis was put into question when quagga mussels were detected in 

Canyon Lake and in 2016, they were found in the neighboring Apache and Saguaro Lakes, all of 

which lay in the Salt River Watershed. 

CANYON LAKE RESERVOIR 

Canyon Lake Reservoir (Figure 1) is situated in the Tonto National Forest and is part of 

the Salt River Watershed. It lies downstream of Lake Roosevelt and Apache Lake. Canyon Lake 

is a triangular, boot-shaped lake with toes pointing southeast. Near the top of the boot, the source 

water and exiting waterways are surrounded by tall canyons. Mormon Flat Dam is to the 
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northwest, leading out to Saguaro Lake. In the same corner but to the northeast, water from 

Apache Lake flows into the lake via the Salt River. In the southeast corner, near the toe of the 

boot lies the marina. Along the bottom of the boot is a sandy beach, while cliffs surround the top 

of the boot on all sides. The lake is approximately 10 miles long with a shoreline of 28 miles. The 

reservoir has a capacity of 57,852 acre-feet with a surface area of around 950 acres when full. 

The maximum depth is recorded at 131.5 feet (40.08m). Mormon Flat Dam was built between 

1923 to 1925 and contains two hydroelectric generating units rated at 10,000kW and 50,000kW 

(Salt River Project, n.d.). 

The lake is managed by the Salt River Project, which keeps the lake at a constant 

elevation, usually around 95% full storing around 54692 acre-feet (Salt River Project, 2018). In 

2007, Canyon Lake was drawn down by 50 feet for maintenance. Debris was removed, including 

sunken boats and cars, and replaced by fish habitats that were constructed using wooden pallets 

and discarded Christmas trees (Branom, 2007). Repairs were conducted on Mormon Flat Dam 

and the neighboring businesses took this opportunity to remodel. The Lake was low from 

September 2007 to February 2008 and closed to the public during that time.  
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Figure 1. Canyon Lake Reservoir from Google Maps 

LANDSAT SATELLITE REMOTE SENSING 

Landsat satellites have been providing images of the Earth since the launch of Landsat 1 

on July 23rd, 1972 (USGS, 2017). Images of the Earth’s surface have been used for science and 

understanding of the Earth in ways that were previously unachievable. The Landsat’s extensive 

collection of Earth images are archived, and publicly available for research and development.  

Landsat 7. Much of the information in this section is taken from the Landsat 7 Data 

Users Handbook, which exists as a living document created and updated by the U.S. Geological 

Survey (USGS) Landsat Project Science Office at the Earth Resources Observation and Science 

Center (EROS) with collaboration from the National Aeronautics and Space Administration 

(NASA) Landsat Project Science Office.  

Landsat 7 was successfully launched by NASA on April 15th, 1999 at the Western Test 

Range Vandenberg Air Force Base in California. Its objective is to “provide timely, high quality 

visible and infrared images of all landmass and near-coastal areas on the earth” (USGS Landsat 
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Project Science Office, 2018). The satellite provides consistent archived data to the Landsat 

database. Landsat 7 was designed to have a lifetime of 5 years but has continued to collect data 

into 2018. The satellite uses stabilized attitude control, solar panels and an on-board power 

storage. The primary part of the satellite is its sensors. The sensors are housed in a pointing 

instrument called the Enhanced Thematic Mapper Plus (ETM+), an upgrade to the first Thematic 

Mapper (TM), first placed in Landsat 4. The original ETM was lost during the Landsat 6 launch 

failure. Landsat 7’s ETM+ has several improvements from Landsat 5’s TM including two gain 

ranges, a panchromatic band, a solar calibrator, and improved special resolution for the thermal 

band. 

The satellite orbits the earth at an altitude of 705km, synchronized with the sun and 

traveling at 7.5 km/s, orbiting Earth approximately every 99 minutes. With approximately 14 orbits 

per day, the satellite covers the Earth at 81 degrees north and south latitude every 16 days. 

Pictures taken by the satellite are geographically calibrated using the Worldwide Reference 

System 2 (WRS-2), an upgrade from the WRS-1 system used by Landsat 1-3 which followed a 

different pattern and had a higher orbit. The WRS-2 creates an index of the orbits (paths) and 

scene centers (rows) into a global grid system composed of 233 paths, by 248 rows. Spacecraft 

attitude is then controlled to minimize variation from the intended tracks. A scene size for the 

pictures taken by Landsat 7 is approximately 170km x 185km (106mi x 115mi) and the nominal 

scene center can vary by 250 meters. 

Onboard the Landsat 7 is a device called the Scan Line Corrector (SLC), an electro-

optical mechanism which corrects for the satellite’s motion to produce rectilinear scan patterns. 

The mechanism compensates for the satellite’s orbital motion, which would otherwise cause the 

scan to follow a zigzagging pattern. On May 31st, 2003, the SLC failed and could not be 

recovered. As a result, the ETM+ line of sight now traces a zig-zag pattern along the ground 

track. While the center of the image along the track is clear, there are wedge shaped gaps and 

alternating overlap areas which increase in magnitude farther from the center line. When 



14 
 

processed, duplicate areas are removed, and the wedges leave data gaps, causing 22% of every 

scene to be lost. The maximum width of the data gap is approximately 390 to 450m and the 

location varies from scene to scene. 

The Landsat 7 satellite uses 8 spectral bands. Bands 1, 2 and 3 are in the visible 

spectrum (1: 0.45-0.52 µm, 2: 0.52-0.60 µm, 3: 0.63-0.69 µm). Band 4 and 5 are in the Near-

Infrared (4: 0.77-0.90 µm, 5: 1.55-1.75 µm). Band 6, the band most relevant to this paper, is the 

thermal band (6: 10.4-12.50 µm) and is taken with both low gain and high gain. High gain allows 

for increased dynamic range while low gain increases radiometric sensitivity. Arizona is an arid 

desert and during the summer, has very high reflectance and radiance. High gain is therefore 

preferred for use due to its higher dynamic range. Band 7 is mid-infrared (7: 2.08-2.35 µm) and 

band 8 is panchromatic (8: 0.52-0.90 µm). The ground sampling interval, correlating to pixel size, 

is 60m for the thermal band, 15m for band 8 and 30m for all other bands. Although band 6 is 

collected at 60m resolution, it is resampled to 30m resolution matching the other reflective bands. 

The publicly available data product of the Landsat 7 ETM+ is called its “Level-1 Products” 

and appears as high quality corrected images packaged in Geographic Tagged Image File 

Format (GeoTIFF). The GeoTIFF is based on Adobe’s TIFF format which allows image data to be 

tagged with additional information. Level-1 Metadata is also available in the package as a text file 

which contains information for the essential characteristics of the product. Band images are 

delivered as 8-bit images with 256 grey levels. Pixel values are represented as one of the 256 

grey levels and are also known as Digital Numbers (DN).  

 The DNs represent pixel values, which can be converted to radiance values using the 

following formula: 

 (1) 
𝐿𝜆 = 𝐺𝑟𝑒𝑠𝑐𝑎𝑙𝑒 ∗ 𝑄𝐶𝐴𝐿 + 𝐵𝑟𝑒𝑠𝑐𝑎𝑙𝑒

= (
𝐿𝑀𝐴𝑋𝜆 − 𝐿𝑀𝐼𝑁𝜆

𝑄𝐶𝐴𝐿𝑀𝐴𝑋 − 𝑄𝐶𝐴𝐿𝑀𝐼𝑁
) ∗ (𝑄𝐶𝐴𝐿 − 𝑄𝐶𝐴𝐿𝑀𝐼𝑁) + 𝐿𝑀𝐼𝑁𝜆  

𝐿𝜆 = 𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑅𝑎𝑑𝑖𝑎𝑛𝑐𝑒 𝑎𝑡 𝑠𝑒𝑛𝑠𝑜𝑟 𝑎𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (
𝑊𝑎𝑡𝑡𝑠

𝑚2 ∗ 𝑠𝑟 ∗ 𝜇𝑚
) 
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𝐺𝑟𝑒𝑠𝑐𝑎𝑙𝑒 = 𝑅𝑒𝑠𝑐𝑎𝑙𝑒𝑑 𝑔𝑎𝑖𝑛 𝑓𝑜𝑢𝑛𝑑 𝑖𝑛 𝑑𝑎𝑡𝑎 𝑟𝑒𝑐𝑜𝑟𝑑 (
(𝑊𝑎𝑡𝑡𝑠

𝑚2 ∗ 𝑠𝑟 ∗ 𝜇𝑚⁄ )

𝐷𝑁
) 

𝐵𝑟𝑒𝑠𝑐𝑎𝑙𝑒 = 𝑅𝑒𝑠𝑐𝑎𝑙𝑒𝑑 𝑏𝑖𝑎𝑠 𝑓𝑜𝑢𝑛𝑑 𝑖𝑛 𝑑𝑎𝑡𝑎 𝑟𝑒𝑐𝑜𝑟𝑑 (
𝑊𝑎𝑡𝑡𝑠

𝑚2 ∗ 𝑠𝑟 ∗ 𝜇𝑚
)  

𝑄𝐶𝐴𝐿 = 𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑑 𝑝𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒 (𝐷𝑁)  
𝑄𝐶𝐴𝐿𝑀𝐼𝑁 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑑 𝑝𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒 (𝐷𝑁) = 0 𝑜𝑟 1 𝑓𝑜𝑢𝑛𝑑 𝑖𝑛 𝑑𝑎𝑡𝑎 𝑟𝑒𝑐𝑜𝑟𝑑 
𝑄𝐶𝐴𝐿𝑀𝐴𝑋 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑑 𝑝𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒 (𝐷𝑁) = 255 

𝐿𝑀𝐼𝑁𝜆 = 𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 𝑠𝑐𝑎𝑙𝑒𝑑 𝑡𝑜 𝑄𝐶𝐴𝐿𝑀𝐼𝑁 (
𝑊𝑎𝑡𝑡𝑠

𝑚2 ∗ 𝑠𝑟 ∗ 𝜇𝑚
) 

𝐿𝑀𝐴𝑋𝜆 = 𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 𝑠𝑐𝑎𝑙𝑒𝑑 𝑡𝑜 𝑄𝐶𝐴𝐿𝑀𝐴𝑋 (
𝑊𝑎𝑡𝑡𝑠

𝑚2 ∗ 𝑠𝑟 ∗ 𝜇𝑚
) 

 

The radiance calculated can be farther refined by conversion to an effective at-satellite 

temperature, which estimates surface temperature based on pre-launch calibration constants and 

an assumption of unity emissivity. 

(2) 

𝑇 =
K2

ln (
K1
Lλ

+ 1)
 

T = Effective at satellite temperature in Kelvin 
K2 = Calibration Constant 2 = 1282.71 Kelvin for Landsat 7 

K1 = Calibration Constant 1 = 666.09 (
Watts

m2 ∗ sr ∗ μm
) 

Lλ = Spectral radiance (
Watts

m2 ∗ sr ∗ μm
) 

 

The above equation is used for both Landsat 7 and Landsat 8 temperature estimations. 

The at-satellite temperature does not properly account for Earth’s atmospheric water and is a 

rough approximation, using only one band (band 6 and band 10 from Landsat 7 and Landsat 8 

respectively). The estimate from the above equations are referred to as the single-channel 

generalized method (SCGM). Case studies were then conducted to determine how closely the at 

satellite temperature could predict surface water temperatures. In the lakes and coastal zones 

near the Baltic Sea, Germany, nine sites found a Root Mean Square Error (RMSE) value of 1.4K 

compared to on site measurements and 1.6K with respect to bulk measurements (Wloczyk, Borg, 
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& Neubert, 2006). RMSE is a value estimating the difference between measured and calculated 

data, in our case representing the standard deviation between on-site measured data and data 

calculated from Landsat 7. A case study of Embalse del Río Tercero in Córdoba, Argentina, 

found that the SCGM method yielded an RMSE of 1.2250K and the method was noted to 

consistently reflect small differences in temperature between sites (Lamaro, Mariñelarena, 

Torrusio, & Sala, 2013). 

 Landsat 8. Much of the information in this section is taken from the Landsat 8 Data 

Users Handbook, which exists as a living document created and updated by the U.S. Geological 

Survey (USGS) Landsat Project Science Office at the Earth Resources Observation and Science 

Center (EROS) with collaboration from the National Aeronautics and Space Administration 

(NASA) Landsat Project Science Office.  

Landsat 8 was launched on February 11th, 2013 by NASA at the same site as Landsat 7. 

The satellite is designed to last 5 years with 10 years’ worth of fuel. With the use of solar panels, 

thermal control, radio frequency, attitude control and data handling, there are high hopes that the 

spacecraft will far exceed its design life. The purpose of its launch was to continue to provide data 

supplementing Landsat 4, 5 and 7 (USGS, 2018). Similarly to Landsat 7, Landsat 8 covers 16-

day repetitive Earth coverage, offset from Landsat 7 by 8 days. The images from Landsat 8 help 

create a periodically refreshed archive of sun-lit, cloud free images. Compared to previous 

Landsat 7 average collections of 400 scenes per day, the Landsat 8 collects approximately 650 

scenes. Landsat 8 has a 2-sensor payload, carrying the Operation Land Imager (OLI) and the 

Thermal Infrared Sensor (TIRS). Together, these integrated sensors are referred to as the 

Landsat 8 observatory.  

The satellite uses 11 bands total, taken from a 705km altitude. It orbits Earth every 98.9 

minutes, following the same WRS-2 ground path as Landsat 7. Each scene covers about a 190 

by 180 km surface area. Whereas Landsat 7 had 3 visible bands, Landsat 8 uses 4 visible bands 

(1: 0.43-0.45 µm, 2: 0.45-0.51 µm, 3: 0.53-0.59 µm, 4: 0.64-0.67 µm). The first band, an ultra-



17 
 

blue is used for coastal and aerosol studies. Band 5 is the near-Infrared band on board (5 0.85-

0.88 µm). Band 6 and Band 7 are the Shortwave Infrared (SWIR) bands (6: 1.566-1.651 µm, 7: 

2.107-2.294 µm). Band 8 is panchromatic (0.503-0.676 µm). Band 9 is the cirrus band (9:1.363-

1.384 µm), used for cloud detection. Band 10 and band 11 are the two, refined thermal bands 

(10: 10.60-11.19 µm, 11: 11.5-12.51µm). The thermal bands (10 and 11) are sampled at 100m 

resolution but are resampled to 30m. Band 8, the panchromatic band, has a resolution of 15m 

and all other bands have a 30m resolution. 

Unlike the Landsat 7 ETM+, which relied heavily on oscillating mirrors for the satellite’s 

field of view, the OLI and TIRS use linear arrays of photosensitive detectors. The machine is 

much more sensitive with fewer moving parts and it also outputs 12-bit data rather than 8-bit data. 

The 12-bit range translates to 4096 grey levels, compared to only 256 from Landsat 7. The OLI is 

required to produce data calibrated to an uncertainty under 5% for absolute, at-aperture spectral 

radiance and less than 3% of uncertainty for top-of-atmosphere reflectance, comparable to ETM+ 

calibration. The TIRS uses Quantum Well Infrared Photodetectors (QWIPs) sensitive to two 

thermal infrared wavelength bands. The TIRS sensor has a 100m spatial resolution, meaning less 

resolution than the 60m resolution of the ETM+ band 6. With the two thermal bands, surface 

temperature should have been easier to separate from atmospheric temperature, however issues 

with stray light in bands have prevented the data from being used in this way. Band 10 of the 

TIRS is used for alignment and as a reference for calibration.  

Although the TIRS has reduced noise and has greater stability, comparisons between 

Landsat 8 calibrated data to surface predictions shows that the TIRS results overestimated 

radiance and had high variability. Differences between TIRS results and ground-based estimates 

were as high as 5 degrees Kelvin in band 10 and 10 degrees K in band 11. Temperature 

differences were higher in the summer. Banding was seen in some images, indicating that stray 

light entering the optical path introduced additional, non-uniform energy on the detectors. It was 

confirmed during lunar scans that stray light created radiance outside the instrument’s field of 
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view and added non-uniform signal across the detectors. Landsat 8’s calibration and validation 

team adjusted the radiometric bias in order to improve the error for typical growth season Earth 

scenes to an uncertainty of 1 K from band 10 data and 2K from band 11 data. The stray light error 

is estimated to be 0.29 W/m2/sr/mm for band 10 and 0.51 W/m2/sr/mm for band 11. The 

correction adjusts for bias but cannot correct for stray light and in cold scenes, the bias tends to 

overcorrect. 

Temperature at the satellite was also calculated, using the single channel generalized 

method, for Landsat 8 data and case studies compared the calculated data to on-site data, as 

well as data from other map sources. In a case study in Poteran Island, Indonesia, 45 data points 

were assessed for on-site data and estimated brightness temperature with a coefficient of 

determination of 0.912 and an RMSE of 0.028 (Syariz, et al., 2015). Other studies using Landsat 

8 were conducted using both band 10 and band 11 data, however those studies used separate 

methods and not the USGS recommended single channel generalized method. This study 

focused only on use of the SCGM, but future studies using multiple bands will likely yield more 

accurate findings. 
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DATA COLLECTION 

Data was acquired from 3 different sources. The first source of data was the Regional 

Water Quality Sampling Project. A previous study by Matt Sokolowski used Regional Water 

Quality data from Saguaro Lake to hypothesize that surface warming and low dissolved oxygen 

from stratification of the Salt River Reservoirs, including Canyon Lake, created inhospitable water 

quality parameters for quagga mussels. For Canyon Lake, however, the Regional Water Quality 

Sampling Project did not have sufficient data. I then turned to the availability of surface 

temperature data from the USGS Landsat project. Landsat 7 and Landsat 8 provide overhead 

temperature data from before quagga mussels were detected in Canyon Lake. Surface 

temperature readings could indicate whether temperature changing events, such El Niño or 

climate change, may have affected the stratification of Canyon Lake. Finally, I took on-site data, 

collected from 21 locations on Canyon Lake, during the lake’s stratification period from late May 

to mid-October. On-site measurements explored if certain areas of the lake were more 

susceptible to quagga mussel infestation due to physical conditions. 

REGIONAL WATER QUALITY DATA 

Data was acquired from the Regional Water Quality Sampling Project by ASU. The 

Regional Water Quality Center at ASU has been collecting data on watersheds around Arizona 

since 2000 and sought to investigate algal impacts on water quality. The 2015 investigation by 

Sokolowski used detailed regional water quality data acquired between 2001-2002 from Saguaro 

Lake, Bartlett Lake and Lake Pleasant to determine that the Salt and Verde river systems were 

inhospitable to quagga mussels for period of 2-3 months. During that time surface temperatures 

at the Saguaro and Bartlett Lakes exceeded 28 degrees Celsius in the epilimnion and in the 

hypolimnion, dissolved oxygen concentrations dipped below 2mg/L. 

Upon reviewing the data from Saguaro Lake, the lake just downstream of Canyon Lake in 

the Salt River system, I found that stratification of the lake during the summer could have 

significant impacts on the dissolved oxygen levels and the overall survivability of quagga mussels 
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within the reservoir. In Figure 2and Figure 3 temperature and dissolved oxygen profiles were 

analyzed and compared with relative depth. The orange line in Figure 2 indicates a temperature 

of 28°C and in Figure 3, it highlights a dissolved oxygen concentration of 2mg/L. Temperatures 

above 28°C and dissolved oxygen levels below 2mg/L are both factors which make Saguaro lake 

inhospitable to quagga mussels (Sokolowski, 2015). 

 

Figure 2. Regional Water Quality Data at Saguaro Lake, Temperature vs Depth 

 

Figure 3. Regional Water Quality Data at Saguaro Lake, Dissolved Oxygen vs Depth 
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Water quality data for Canyon Lake was sparser, as seen in Figure 4, with dissolved 

oxygen and temperature measurements only taken about twice a year since 2014. In 2017, a 

water quality sample was taken in August, finally yielding a sample within the time of lake 

stratification. Dissolved oxygen was also included in the measurement. Dissolved oxygen levels 

from August of 2017 follow a stratified trend seen in Figure 5. 

 

Figure 4. Regional Water Quality Data at Canyon Lake, Temperature vs Depth 

 

Figure 5. Regional Water Quality Data at Canyon Lake, Dissolved Oxygen vs Depth 
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Regional Water Quality data confirms that Canyon Lake experienced stratification during 

the summer, but the data was too sparse to note any significant differences between before 

quagga mussels were detected at Canyon Lake, and after. At the time of this experiment, water 

quality data during the time frame of interest was unavailable and so other means were pursued 

to understand conditions surrounding Canyon Lake around the time of quagga mussel 

contamination. 

LANDSAT 7 SATELLITE DATA COLLECTION 

Landsat data was acquired from the USGS GloVis Next website. On the website. Canyon 

Lake was identified and corresponding images containing Canyon Lake were selected. There 

were 2 possible configurations for image selection and the configuration wherein Canyon Lake 

was closest to the center of the image was prioritized. Due to the breaking of the SLC device on 

the Landsat 7 satellite, bands lacking data can be seen in the images of Canyon Lake. The 

farther Canyon Lake was in proportion to the center of the image, the wider these bands of 

missing information would be. I therefore chose images in which Canyon Lake was as close to 

the center of the image as possible. The WRS-2 path allows the Landsat Satellites to take images 

in roughly the same location. Figure 6 below indicates the location of Canyon Lake with a yellow 

circle. Landsat data corresponding to the path of the right-side image were prioritized because 

Canyon Lake is located closer to the center of those scenes. Scenes in the figure below are from 

August of 2017, taken from the GloVis Website. 
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Figure 6. GloVis Available scenes containing Canyon Lake for August 2017 (Lake in yellow circle) 

USGS software for downloading from GloVis, known as Bulk Download Application, was 

used to download selected Landsat products from the website. Although the Landsat Look 

Thermal Image was considered as a usable product for this research, the thermal image had 

lower resolution compared to a GeoTIFF image. GeoTIFF images were downloaded in GZip file 

format and the program, ZipReader was used to unpack GZip files into readable folders. Among 

the image data unpacked from the Landsat GeoTIFF files, this research primarily focused on 

using the available Metadata text file and, for Landsat 7, the band 6, high gain data image was 

used. The high gain image is less sensitive than low gain but has a higher dynamic range and 

can better measure the high temperatures found around Arizona’s arid landscape.  
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Figure 7. Landsat 7, Band 6, High Gain Product for October 20, 2017 

Figure 7 is a sample of the Landsat 7, band 6, high gain image. The greyscale on the 

image corresponds to a digital number. The digital number, as found in the equation for at 

satellite radiance (equation 1), can be used to find approximate surface temperatures of the Lake 

(see equation 2). Canyon Lake is indicated in yellow, with the large Roosevelt Lake to the 

northeast and Saguaro Lake to the west. Dark areas in the lower corners of the image are 

indications of clouds, which can also cause issues in measuring temperature. Cloud cover lowers 

the digital number reading and can impact temperatures read. Cloud cover often causes much 

lower temperatures to be read. Because Arizona experienced constant heat during the summer 

with temperatures never dropping below 17 °C, water temperatures that were read below 10 °C 

were assumed to be caused by cloud cover. 

Using MATLAB’s image processing suite and location data from the metadata files, the 

thermal image data was cropped to focus on Canyon Lake. An affine transformation equation was 

used to correlate an input longitude and latitude to an output pixel coordinate. To make the initial 

crop, the upper left, upper right and lower left corners were used as reference longitude and 
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latitudes, along with their corresponding pixel coordinates to determine the constants in the 

equation. Once all the constants were, found, inputting the desired longitudes and latitudes would 

output corresponding column and row values through solving the system of equations.  

(3) 

 X0 = A + BXi + CYi 

 Y0 = D + EXi + FYi 

X0 = Latitude 

Y0 = Longitude 

Yi = Column Pixel Value 

Xi = Row Pixel Value 

A, B, C, D, E, F = Constants 

 

   

Figure 8. Landsat 7, Cropped image of Canyon Lake for August 2017, August 2016, and August 
2015 

The resulting images are about 102x132 pixels, (Figure 8). Lines lacking data can be 

observed due to the failure of the SLC. The lines are random and change from scene to scene. 

Although the results of cropping showed good consistency, using the same constants to map 

specific locations on the lake were not as accurate. To achieve higher levels of accuracy to 

correspond specific points on the lake to on-site measurements, I ran a second affine 

transformation, using landmarks on each image to farther correct the constants of the equation. 

Landmarks used included the southeast river branching from the lower tip of the lake, the 

southern cove near the sole of the boot-shape, and the western cove, near the heel of the boot. 

With these three locations added to the equation, subsequent latitude and longitude points 

inputted to the map showed higher location consistency.  
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Just as in the larger image, the cropped image resolution is 60m, resampled to 30m, 

meaning that each pixel represents roughly a 30m x 30m square. The accuracy of each square is 

less than the other bands sampled at higher resolutions. One result of this is that at locations 

near to the land, intrusion may occur wherein heat data from the land is projected as part of the 

thermal data farther inland. Although I attempted to choose areas of interest that had sufficient 

distance from the land, points that were closer to the center of the lake were the most closely 

relatable to on-site data. In addition, the digital number value of the Landsat 7 data ranged from 0 

to 255. This represents a limit to the accuracy of each degree kelvin, with one DN point roughly 

calculating to a change of about 0.3°C in the relevant range of temperatures (about 10°C-30°C). 

Since the satellite would have to approximate a DN value for the measured radiance, the 

resulting temperature is a rough estimate, comparable to on-site data but in this research, used 

mostly to determine long-term trends. 

LANDSAT 8 SATELLITE DATA COLLECTION 

The two thermal bands, band 10 and band 11 for Landsat 8 were designed to correct for 

the atmosphere so that surface temperature would be more accurate to measure. A set method 

to do so, however, has not been established and the Landsat 8 handbook does not currently list 

any official ways to process the data for exact surface temperature. Due to issues with stray light, 

the readings from the thermal bands vary significantly and although individual algorithms have 

been put forward in the literature, there is not yet a common consensus to correct readings 

globally for stray light.  

In this study, Landsat 8 data was processed in the same way as Landsat 7 data. 

GeoTIFF files were downloaded from GloVis. The metadata file and the file for band 10 was 

obtained. Band 10 was favored over band 11 because stray light had a higher impact on band 11, 

causing band 11 readings to be farther off than those of band 10. Landsat 8 satellite sensors did 

not require as many moving parts as Landsat 7 and the more robust design protects against 
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issues such as Landsat 7’s SLC failure. The images from Landsat 8 are more complete and lack 

lines of missing data. 

 

Figure 9. Landsat 8, Band 10, Product for June 22, 2017 

Figure 9 is an example of Landsat 8 band 10 image data. The greyscale corresponds to a 

digital number (DN). The DN from Landsat 8 ranged from 0 to 4095, in contrast to Landsat 7’s 0 

to 255. Higher accuracy of the digital number allows Landsat 8 much higher precision in 

temperature measuring and recording. One major drawback, however, is that the Landsat 8 TIRS 

had a lower resolution than Landsat 7’s thermal band. Whereas the Landsat 7 band 6 had a 60m 

resolution resampled to 30m, Landsat 8 has a 100m resolution resampled to 30m. As a result, 

pixels from band 8 have higher precision but possibly lower accuracy as land intrusion has a 

more significant impact on data close to the shore. Images in Figure 10, although displaying a 

higher variety of greyscale, shows less clearly defined edges between the shore and the lake 

surface.  
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Figure 10. Landsat 8, Cropped image of Canyon Lake for August 2017, August 2016, and August 
2015 

Landsat 8 was processed using the same equations and code as Landsat 7, with 

adjustments for Landsat 8’s higher volume of data due to its higher range of DN values. Although 

Landsat 8 data is more precise, a combination of issues from stray light and a lower resolution 

make the data less reliable than that of Landsat 7. Landsat 8 data was obtained offset from 

Landsat 7 data by 8 days and contains more complete data. The images do not have any missing 

data in them. As research confirms more accurate methods to compensate for the stray light, 

Landsat 8 data can become much more precise than the data from Landsat 7, however 

development of such an algorithm was not the focus of this research and Landsat 8 data was 

analyzed for overall trends. 

ON-SITE DATA COLLECTION 

The YSI ProDSS is a multiparameter water quality meter that I used to measure and 

record depth, dissolved oxygen, conductivity and temperature along with GPS coordinates for 

several locations around Canyon Lake, in Arizona. The sampling schedule was coordinated with 

days that the Landsat 7 and Landsat 8 satellites would be overhead. In accordance, the time of 

sampling was between 10am and 3pm to coordinate with the satellite’s daytime measurements. 

21 different locations were sampled throughout the lake (Figure 11). Locations were found on-site 

using landmarks, then confirmed using the YSI ProDSS GPS. A Venterior Portable Fish Finder 

was used to approximate depth to the bottom of the lake to avoid hitting the probe on the bottom 

or catching the probe on sunken debris. The probe was lowered to approximately 3m from the 

detected “bottom” of the lake. 
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The calibrated and prepped probe was initially held above the surface of the water, and 

the auto-logging feature was initiated. The auto-logger would record and save measured water 

quality parameters for later download. It was set to record measurements every 3 seconds. The 

first temperatures taken by the multimeter were actually air temperatures, comparable to Landsat 

which measures just above the Lake’s surface temperature. Temperatures were then 

automatically taken until 1m in depth. The 1m depth measurement is the epilimnion measurement 

and the probe was held at 1.0m in depth for 3 seconds to ensure logging. The probe was then 

lowered to 5m, suspected to be near the thermocline, and held at 5.0m until logged. If deep 

enough, the probe continued to be lowered to 10.0m, 15.0m, 20.0m, 25.0m, 30.0m and 35.0m. 

The deepest part of the lake I recorded was 35.0m near the Dam, but I was not able to measure 

this depth very often due to changes in flow and presence of nearby debris.  

The multimeter was capable of continuous data logging and saved data to an on-board 

SD card. On August 22nd, it was found that an issue occurred in the software of the onboard SD 

card that prevented data from being saved and therefore could not be automatically logged. The 

measuring probe continued to function normally, however data after the SD card malfunction is 

considerably sparser in comparison to before. After the SD card malfunction, data had to be 

recorded by hand and due to time constraints, fewer data points could be taken. 



30 
 

 

Figure 11. Sampling Points 

Sampling points for Canyon Lake were numbered L01 to L21 and are indicated in Figure 

11. Boating rules specified counterclockwise travel around the lake. The first sample for the day 

was taken at L01, just east of the marina. Samples were then taken around the lake and up the 

rivers, finally leading back to location L21 on the west side of the marina. The marina is a 

significant location because the Canyon Lake sample that was positive for quagga mussel 

veligers was taken at a site near the marina. Location L08, near top of the lake, is the 

approximate location of the Regional Water Quality sampling. Location L13 is one of the deepest 

locations, and the nearest location to Morman Flat Dam, which exhibited quagga mussel 

sightings. Location L20 is a boat dock for boating law enforcement, who regularly travel to the 

marina to get gasoline. 

Near some locations, the multimeter GPS would designate a location that was a 

significant distance from landmarks. At these times, I prioritized landmarks over GPS because 

this often occurred in locations with high cliffs nearby and it was possible the cliffs caused delays 

in GPS updating. 
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Figure 12. Close up Air Temperature and Water Temperature from 0 to 2m Depths 

In Figure 12, we see a close up of readings from the multimeter. Surface temperatures 

are begun above the surface of the water, measuring the air temperature. The air temperature 

measured by the probe is directly compared to Landsat satellite temperature. The probe is then 

slowly lowered into the water and allowed to log continuously until it reaches a depth of 1m. At 

1m, I stop lowering the probe and allow it to log for 3 seconds, sometimes taking multiple 

readings. The probe is then lowered to 5m and, if applicable, it is continued to be lowered until 

3m before the ‘bottom’ as read by the fish finder. From Figure 12, we see that there may be a 

slight difference in temperature between the ‘air’ surface temperature and the 0m water 

temperature but they follow similar trends. 
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RESULTS 

SURFACE TEMPERATURE: SATELLITE DATA COMPARED TO ON-SITE DATA 

Before I could analyze the temperature trends measured by satellite over Canyon Lake, I 

must first compare the accuracy of the satellite data to on-site sampled data.  

Table 1  
SRP  Daily  Water  Report  Data 

Date Mormon Flat 

Elevation (ft) 

%Full Rain Boat Ramp Depth @ 

Canyon Marina (m) 

5/30/2017 1656.89 94 0 22 

6/6/2017 1658.89 97 0 24 

6/14/2017 1657.25 95 0 22 

6/22/2017 1657.61 95 0 23 

6/30/2017 1657.37 95 0 22 

7/6/2017 1657.18 95 0 22 

7/17/2017 1657.56 95 0.5 23 

8/1/2017 1657.7 95 0.12 23 

8/9/2017 1657.06 94 0 22 

8/18/2017 1657.22 95 0 22 

8/25/2017 1657.32 95 0 22 

9/1/2017 1657.16 95 0 22 

9/11/2017 1657.78 96 0 23 

9/20/2017 1658.08 96 0 23 

9/22/2017 1657.15 95 0 22 

9/27/2017 1657.58 95 0 23 

9/28/2017 1657.13 95 0 22 

10/4/2017 1657.04 94 0 22 

10/16/2017 1656.95 94 0 22 

10/20/2017 1657.52 95 0 23 
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 A factor potentially impacting the level of land intrusion is the water level of the lake itself 

(Table 1). If the water level of the lake is lower, there is a higher likelihood of land intrusion in the 

satellite data due to receding edges in the lake. The overall elevation of Canyon Lake, however, 

was kept relatively the same, though areas which this may have created the most impact are also 

locations with the least accuracy, including the surrounding rivers. During days of low flowrate 

through the Salt river, the size of the areas read by the satellite would be smaller and land 

intrusion may have greater effects on the data. The SRP daily water report is taken at Mormon 

Flat Dam, near location L13. The overall elevation of Canyon Lake is kept relatively the same. 

Boat ramp depth at the marina is seen to change from day to day and similarly, water levels in 

areas of the lake could have varied. Precipitation was detected for July 17th, and August 1st. The 

precipitation did affect Landsat data on July 17th due to higher water vapor changing the 

atmospheric emissivity and data from that date was excluded from calculations. 

Temperature data from Landsat 7 and Landsat 8 was compared to on-site data averages 

at each of the 21 locations. Due to land intrusion, many of the near-shore sample points exhibited 

higher temperatures than those measured on-site. In addition, since Landsat 8 had a lower 

resolution, Landsat 8 data was found to be less accurate than Landsat 7 data due to land 

intrusion. If true, the most accurate data would be from location L08, due to its position nearer the 

center of the lake. Meanwhile, areas with the least accuracy would be areas that were nearly 

surrounded by land, such as points along the river and coves. The RMSE was found for each 

location and are included in Table 2 below. 
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Table 2 
Root  Mean  Squared  Test  for  Each  Location,  All  Landsat  vs  Landsat 7  vs  Landsat 8 

L01: All LS 4.37 L01: LS7 4.02 L01: LS8 4.85 

L02: All LS 2.17 L02: LS7 1.54 L02: LS8 2.66 

L03: All LS 11.63 L03: LS7 12.74 L03: LS8 8.79 

L04: All LS 3.60 L04: LS7 3.49 L04: LS8 3.40 

L05: All LS 1.53 L05: LS7 0.79 L05: LS8 1.87 

L06: All LS 6.89 L06: LS7 8.07 L06 LS8 5.72 

L07: All LS 2.06 L07: LS7 2.40 L07 LS8 1.74 

L08: All LS 0.80 L08: LS7 0.55 L08 LS8 1.02 

L09: All LS 4.07 L09: LS7 2.24 L09 LS8 5.31 

L10: All LS 6.82 L10: LS7 7.98 L10 LS8 5.43 

L11: All LS 10.64 L11: LS7 9.39 L11 LS8 11.97 

L12: All LS 5.37 L12: LS7 3.10 L12 LS8 6.70 

L13: All LS 4.29 L13: LS7 2.13 L13 LS8 5.79 

L14: All LS 3.01 L14: LS7 3.08 L14 LS8 2.95 

L15: All LS 13.08 L15: LS7 14.33 L15 LS8 11.94 

L16: All LS 13.67 L16: LS7 16.14 L16 LS8 11.73 

L17: All LS 11.69 L17: LS7 15.60 L17 LS8 6.91 

L18: All LS 14.64 L18: LS7 18.56 L18 LS8 7.60 

L19: All LS 2.81 L19: LS7 1.30 L19 LS8 3.62 

L20: All LS 5.80 L20: LS7 4.41 L20 LS8 6.56 

L21: All LS 5.08 L21: LS7 3.07 L21: LS8 6.75 

The RMSE for location L08 was found to be the lowest with an RMSE of 0.80K, while the 

highest degrees of land intrusion were seen in areas with a high amount of surrounding land 

(Table 2). The next lowest RMSE, 1.53K, is at location L05. Locations L07 and L02 also had 

relatively low RMSE, 2.06K and 2.17K. We found that location L08 is the most ideal location to 

analyze. To compare, I determined the coefficient of correlation (R2) for L02, L05, L07 and L08. 
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Figure 13. Landsat Temperature vs On-Site Temperature Over Time at L02 

Landsat 8 (LS8) overestimates values for location L02, and Landsat 7 (LS7) slightly over 

estimates values (Figure 13) when compared to on-site data at L02. L02 is located towards the 

center of a narrow section in the south eastern portion of the lake. 

 

Figure 14. Landsat Temperature vs On-Site Temperature at L02 Regression 
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In a linear regression (Figure 14), comparing the combined Landsat Temperatures to on-

site temperatures, we see the effects of Landsat 8’s overestimation impacting the accuracy of 

data from location L02. Although L02 is not close to a land point, stray light can still interfere with 

readings from Landsat 8. Overall, L02 had a linear regression coefficient of 0.62. 

 

Figure 15. Landsat Temperature vs On-Site Temperature Over Time at L07 

Location L07 is not far from L08, though closer to the shore. Compared to L02, Landsat 8 

did not overestimate temperatures for the location as much, but for Landsat 7, there were more 

overestimations (Figure 15). Although not precise, both satellites still follow the overall 

temperature trends at location L07. 
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Figure 16. Landsat Temperature vs On-Site Temperature at L07 Regression 

A linear regression reveals that the satellite data performs uneven over estimates as well 

as too few underestimates of the on-site data (Figure 16), evening out to a good RMSE, but a low 

R2 value of only 0.2.  

 

Figure 17. Landsat Temperature vs On-Site Temperature Over Time at L05 
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Figure 18. Landsat Temperature vs On-Site Temperature at L05 Regression 

Location L05 shared similar characteristics with L02 and L07 in that it looked to follow 

similar trends as on-site data (Figure 17), however failed to produce a well correlated R2 value 

(Figure 18). 

 

Figure 19. Landsat Temperature vs On-site Temperature vs RWQ data Over Time for L08 
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Figure 20. Landsat Temperature vs On-Site Temperature for L08 Regression 

At location L08, the sampling location shared by the Regional Water Quality Project, 

satellite data and on-site data can be compared (Figure 20). The RMSE for L08 is 0.80K and the 

coefficient of determination (R2) 0.82. Location L08 was therefore used to analyze long term 

trends at Canyon Lake.  

Since many of the other locations could not be accurately analyzed, I must also consider 

whether analysis of L08 is representative enough of other locations on Canyon lake. The 

Regional Water Quality Project shared use of location L08 as a representative point on Canyon 

Lake, however regarding quagga mussel infestation, other areas of the lake may be more 

susceptible to infestation. 
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Figure 21. Canyon Lake On-Site Surface Temperatures for June 14th, 2017 

 

Figure 22. Canyon Lake On-Site surface temperatures for August 9th, 2017 
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A comparison of Figure 21 and Figure 22 show that in June, different areas of the lake 

have significantly different surface temperatures. In August, some of those surface temperatures 

become more uniform. Regarding quagga mussels, the peak of the heat in August is of more 

concern than the surface temperatures in June. Quagga mussels have an upper threshold of  

28 °C before high mortality and the primary interest of the Landsat research is to determine how 

often, and for how long, Canyon Lake approaches this threshold each year. 

SURFACE TEMPERATURE TRENDS 

Stratified lakes have different layers. The surface of the water is exposed to the air and 

sun. The epilimnion is the area of the lake nearest the surface. It is the layer in which algae grow. 

Farther down you reach the thermocline, a layer of declining temperature that acts as a barrier 

between the epilimnion and the mixed lower layer, the hypolimnion. Compared to the epilimnion, 

which can source oxygen from the surrounding air and algae, the hypolimnion mostly contains 

oxygen consuming processes such as decay. The hypolimnion is also colder than the epilimnion, 

with no sun to heat it up. Stratification in lakes is temperature dependent. The sun-heated warm 

water rises above cold water. Therefore, the warm water in the epilimnion and the cold water of 

the hypolimnion are separated and do not mix. During the fall, the air begins to cool, also cooling 

the surface of the lake. If the surface of the lake cools to a temperature near to, or lower than the 

hypolimnion of the lake, the lake will turnover. Cold water sinks and warmer water rises, leading 

to mixing which distributes oxygen throughout the lake.  

Data from Landsat 7 and Landsat 8 were combined, and I looked at the surface 

temperatures from location L08 during the time of interest, May through October. One deterrent 

for Quagga mussels is high temperatures. The quagga mussels struggle to survive when 

temperatures reach near 28°C. In Saguaro Lake, these temperatures were regularly reached, 

and prevented quagga mussels from surviving in the oxygen-rich epilimnion of the lake. I took 

average summer surface temperatures from the year quagga mussels were first detected in 
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Arizona (2007), to present. If the average surface temperature fell, it would explain why quagga 

mussels were recently able to invade Canyon Lake. 

 

Figure 23. Yearly Average Temperature from May to October for Canyon Lake 2007-2017 

The overall average summer temperature was near 24°C with an RMSE of 1°C, the 

variation in the data is not significant enough to assume that the overall temperature of the lake 

changed significantly, and the trend has been relatively steady since 2007 (Figure 23). 

Comparing summer temperatures from the satellites to onsite data, I found that the 

summers followed a general trend reflected by the satellite data. Temperatures would rise 

between May and June and fall September to October. Late June, July, August, and early 

September stayed relatively warm. It should be noted that during the monsoon season in July, 

both on-site temperature and Landsat temperatures could not be acquired with the same 

frequency as other months due to severe weather and high cloud cover.  
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Figure 24. Long Term Summer Temperature Trends using Landsat and On-Site Data 

Overall, with an RMSE of 0.80K and an R2of 0.82 at location L08, I was not able to 

determine significant deviations from typical temperature trends from before Canyon Lake 

became infected and after (Figure 24). Studies with lower RMSE, potentially using standardized 

algorithms to determine accurate surface temperatures from Landsat 8, may provide more clarity 

to the data in the future. Higher accuracy in other locations may yield more results, especially with 

respect to the exact time in which turnover occurs, and whether, in the past, turnover occurred 

uniformly throughout the lake. Landsat satellite imaging is an important tool for retrieving 

otherwise inaccessible data such as the historic data displayed in this section. The accuracy of 

the data, however, must be carefully accessed and with the level this study was able to achieve, 

there were no significant temperature impacts to the lake which caused it to become more 

susceptible to quagga mussel infection. 
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ON-SITE TEMPERATURE AND DISSOLVED OXYGEN DATA 

During the summer of 2017, the Salt River area had large algal blooms that led to very 

low levels of dissolved oxygen just below the thermocline. Canyon Lake exhibited very low levels 

of dissolved oxygen in many locations throughout the lake and deep regions of Canyon Lake 

remained anoxic for an extended period. Temperature and dissolved oxygen (DO) levels for each 

location can be found in Appendix B. In this section, I will focus on the representative location, 

L08 (Figure 25). 

 

Figure 25. On-Site Temperature Trends for L08 

 

On-Site temperature trends mapped against depth in Figure 25 shows that below 

approximately 5m, the water temperature stabilizes, indicating that the water below that depth 

freely mixes. During this period, the position of the end of the mixed layer, is approximately near 

5m during the summer of 2017, (the depth of the mixed layer is subject to change seasonally). 

Above 5m, the temperature is frequently above 25°C, sometimes moving into the region of 28°C, 

the upper threshold for quagga mussels. Below 5m, temperatures approach 20°C in the deepest 
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portions of the lake, though I see a lot of measurements of about 22-23°C. As surface 

temperatures lower, such as seen in data from October 20th, the change in temperature with 

depth becomes smaller. When the surface temperature lowered to near the temperature of the 

hypolimnion, (near 22-23°C), the lake experienced turnover after which there is no more 

stratification.  

 

Figure 26 Close up Stratified Temperature vs Depth Trends for L08 

Figure 26 shows a detailed image of the temperature vs depth trends for location L08 

between 0m and 7m in depth during the time the lake is most stratified. During the peak of 

stratification in August, the epilimnion is from 0m to 2m in the graph. The thermocline layer is 2m 

in depth to 5m, where we observe a temperature gradient. After 5m, the temperature evens out to 

the next mixed layer, the hypolimnion. 
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Figure 27. Dissolved Oxygen vs Depth for L08 May and June 

Sampling began May 30. In late May and June, there was some stratification in the lake, 

but dissolved oxygen levels did not dip below levels stressful to quagga mussels (Figure 27). 

Some algae growth caused increased dissolved oxygen in the epilimnion and a slight drop in 

dissolved oxygen can be observed below 5m, dropping the dissolved oxygen from about 9mg/L to 

5mg/L. 

 

Figure 28. Dissolved Oxygen vs Depth for L08 July and August 
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In July and August (Figure 28), the lake becomes fully stratified and significant changes 

can be observed. Algal blooms cause the dissolved oxygen in the epilimnion to jump as high as 

11mg/L while dissolved oxygen levels below 5m begin to drop to levels well below where quagga 

mussels are capable of surviving, dropping to nearly 0 in the deepest parts of the lake. 

 

Figure 29. Dissolved Oxygen vs Depth for L08 September and October 

By late September (Figure 29), anywhere in the hypolimnion the dissolved oxygen has 

dropped to below 2mg/L and stayed near 1mg/L until turnover in the beginning of October. After 

the surface temperatures began to drop, increased mixing between the epilimnion and 

hypolimnion promote increases in dissolved oxygen in the hypolimnion. 
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Figure 30. On-Site Temperature Trends for L08 

The automatic nature of the data logger meant that I often had multiple readings for each 

location near certain depths in a single day, for example a reading at 0.9m in depth and another 

at 1.1m. In Figure 30, these readings were averaged into a single point per day. Readings more 

than 0.2m from the target depth were excluded and all readings within ±0.2m were averaged and 

graphed as a time series. Using this time series, I can see the temperature effects on stratification 

and observe how long surface temperatures remained near the max threshold of 28°C. At L08, 

the surface temperature, (an averaged air and 0m depth water temperature), did pass 28°C, but 

only for one recorded day. The subsequent day of measuring, the average temperature only 

reached 27.3°C. The wider the vertical gap between temperature readings at each subsequent 

depth, the more dramatic the drop in temperature was after passing the thermocline. 
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Figure 31. Dissolved Oxygen Trends for L08 

We see stratification mirrored in the dissolved oxygen trends (Figure 31). Readings from 

the epilimnion at 1m depth contained high amounts of dissolved oxygen from the oxygen 

producing organisms in the epilimnion. Near 5m, the reading closest to the end of the mixed 

layer, the dissolved oxygen began to drop. Very near 5m, the dissolved oxygen concentrations 

would vary significantly in just a short distance. Readings near the thermocline layer can be 

expected to vary drastically depending on if the reading was above, below or within the 

thermocline layer (Figure 32). In some locations, such as location L08, this led to readings near 

5m staying relatively above the dissolved oxygen threshold for quagga mussels.  
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Figure 32 Close up Stratified Dissolved Oxygen vs Depth for Location L08 

Additional evidence can be found in Figure 32 that just before the end of the mixed layer 

around 5m in depth, the thermocline shows a rapid decline in dissolved oxygen between depths 

of 2m and 5m. Below the thermocline, in the mixed layer, dissolved oxygen dropped, and the 

lower limit of quagga mussel tolerance was passed for an extended period. In Figure 31 and 

Figure 32 dissolved oxygen above the hypolimnion stayed well above 2mg/L. Combined with 

knowledge that the temperature in the regions above 5m in depth rarely passed 28°C for an 

extended period of time, the region above the hypolimnion mixed layer may be the location that 

quagga mussels are most likely to reside if they populate Canyon lake. 
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QUAGGA MUSSEL SURVIVABILITY IN CANYON LAKE 

The dissolved oxygen above 5m of depth at all locations did not drop below 2mg/L. The 

driving force preventing quagga mussels from populating the epilimnion and thermocline layers 

would be a temperature above 28°C. Meanwhile, below 5m, a dissolved oxygen above 2mg/L 

allows quagga mussels to survive. Depletion of dissolved oxygen is often due to decay, a process 

that is concentrated in the hypolimnion, especially near the bottom of the lake.  

Table 3 
Days  of  Inhospitable  Conditions  at  Canyon Lake  by  Location  and  Depth 

Days of Inhospitable Conditions at Canyon Lake by Location and Depth (days) 
d: Depth, T: Temperature, DO: Dissolved Oxygen 

Sampling 
Location 

 d=0m 
T 
>28°C 
(days) 

 d=1m 
T 
>28°C 
(days) 

d=5m 
DO<2m
g/L 
(days) 

 5<d≤10m 
DO 
<2mg/L 
(days) 

10<d≤15m 
DO<2mg/L 
(days) 

15<d≤20m 
DO<2mg/L 
(days) 

d= (20+) 
m 
DO<2mg
/L (days) 

L01 16 0 47 96 X x x 

L02 0 0 64 96 X x x 

L03 0 0 64 104 X x x 

L04 0 0 64 90 104 x x 

L05 0 0 23 56 X x x 

L06 0 0 14 64 79 96 x 

L07 0 0 0 23 90 90 90 

L08 0 0 0 33 65 65 x 

L09 0 0 0 24 79 79 x 

L10 0 0 0 56 79 90 x 

L11 0 0 0 73 79 90 x 

L12 0 0 0 19 50 50 x 

L13 8 8 0 9 26 50 90 

L14 17 9 7 50 65 79 x 

L15 0 0 0 79 X x x 

L16 24 17 0 14 X x x 

L17 7 0 9 64 X x x 

L18 8 11 26 79 X x x 

L19 8 0 0 x X x x 

L20 0 0 14 47 X x x 

L21 0 0 14 90 104 x x 
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In Table 3, the epilimnion contains a hospitable zone for quagga mussels to take shelter 

during the otherwise very inhospitable summer months. At location L08, there were 0 inhospitable 

days in which the quagga mussels could not survive above 5m, meaning that above the 

hypolimnion, quagga mussels can survive through the summer. Areas toward the center of the 

lake and up the river towards Apache lake are most prone to having hospitable zones as deep as 

5m. For L08, it isn’t until the hypolimnion is reached, that as many as 23 days were estimated to 

have passed with dissolved oxygen levels too low for quagga mussels to proliferate. The 23 days 

is calculated from the first day that I recorded low dissolved oxygen levels to the uninterrupted 

last day I recorded low dissolved oxygen. Data details for each location can be found in Appendix 

C. 

CONCLUSIONS 

The epilimnion of many locations around Canyon Lake does not have temperatures high 

enough to prevent quagga mussel infestation from occurring. This may be due to the high cliffs 

surrounding Canyon Lake providing shade, wind or flow conditions circulating the water, or the 

elevation of Canyon Lake, which is 154 ft higher than Saguaro Lake. Canyon Lake is not, 

however, entirely hospitable to quagga mussels. Quagga mussels need to attach to a surface 

and, since Canyon Lake was described to have a relatively flat lake bed (Branom, 2007), there 

are few places to attach above the hypolimnion. To create an established population year after 

year, the quagga mussels have likely found their way to substrates such as the chains of buoys, 

which provide a location not too near the surface and not too deep. In areas especially near the 

center of the lake, quagga mussels are likely to be found attached to substrate that can be found 

between 1m and 5m depth. 

Based on the Landsat data collected in this research, it is unlikely that Canyon Lake’s 

surface temperature varied significantly enough from past years that it would have affected the 

ability of quagga mussels to start inhabiting Canyon Lake. It is more likely that while populations 

have tried to establish, most hospitable locations in Canyon Lake lack the substrate for them to 
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attach. This also plays an essential role in the testing for quagga mussel veligers as well. 

Depending on the location and depth sampled, quagga mussels may not be in high density in one 

region of the lake simply due to a lack of places to attach. Recent detection may indicate then, 

that a colony has either newly established itself near the sampling point, or that an established 

colony has sent out more veligers which made their way to the sampling point. Most likely, 

considering estimates that Lake Mead had been infested years before detection, it is quite likely 

that Canyon Lake has already become infested with quagga mussels. It is likely that without 

preventative measures, Canyon Lake will steadily see an increase in quagga mussels as more 

and more quagga mussels populate the hospitable locations they can survive within.  

Another location that should be tested for veligers is the shaded boat area of the Canyon 

Lake Marina. The boats and docks are likely places that the quagga mussels will readily adhere 

to. A shaded canopy prevents hot temperatures from affecting the quagga mussels, and 

underwater plants such as seaweed growing near the marina may shelter quagga mussels from 

some of the low dissolved oxygen levels found in the rest of Canyon lake. Testing the epilimnion 

of the marina may yield more precise indications of the presence of quagga mussels in the 

reservoir. In addition, sightings of quagga mussels at Mormon Flat Dam may also be an indication 

that the dam is providing substrate and a suitable location for quagga mussel colonies to thrive. 

Our research was able to meet our first objective of determining a probable cause for the 

recent detection of quagga mussels in Canyon Lake. I determined that quagga mussels can infect 

Canyon lake, and I established the hospitable locations that can likely harbor quagga mussel 

colonies. The objectives of the study were met. 

Findings of this study can be expanded to the Salt River watershed, the Verde 

watershed, and other watersheds that follow a similar pattern of stratification. Although Canyon 

Lake is a difficult lake for quagga mussels to populate, enough exposure to quagga mussels have 

likely caused it to become partially infested. Recent detection of quagga mussels in Saguaro 

Lake and Apache Lake may follow similar trends and it is recommended that surface 
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temperatures at various locations of each reservoir are tested to ensure that quagga mussels 

cannot infect the epilimnion of those reservoirs. Further refinement of satellite data and the ability 

to determine accurate and precise surface temperatures of these watersheds could become an 

indispensable tool into understanding the spread of quagga mussels to similar reservoirs. 

Canyon Lake is an artificially created lake and may therefore have more options than 

other reservoirs for quagga mussel treatment. Introduction of predator fish species that prey on 

quagga mussels may help stem the population. Redear sunfish, already present in other Arizona 

Lakes (US Department of the Interior Bureau of Reclaimation, 2015) could potentially help control 

quagga mussel populations in Canyon Lake. Divers, looking specifically in areas such as docks 

and buoy chains for quagga mussels may also find ways to apply deterrents to prevent 

attachment at those locations. Although complete eradication of this invasive species in Canyon 

Lake may pose a challenge to reservoir managers, the concentration of quagga mussels in 

specific locations may help focus efforts to control their negative ecological and economic 

impacts. 
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APPENDIX A 

ACRONYMS 
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CPLM Cross Polarizing Light Microscopy 

EROS Earth Resources Observation and Science Center 

GeoTIFF Geographic Tagged Image File Format 

L01, L02, … L21 Location 1, Location 2, … Location 21 

LS7 Landsat 7 

LS8 Landsat 8 

NASA National Aeronautics and Space Administration 

OLI Operation Land Imager 

PCR Polymerase Chain Reaction 

QWIP Quantum Well Infrared Photodetectors 

RDLES Reclamation Detection Laboratory for Exotic Species 

RMSE Root Mean Square Error 

SCGM single-channel generalized method 

SEM scanning electron microscopy 

SLC Scan Line Corrector 

SRP Salt River Project 

SWIR Shortwave Infrared 

TIRS Thermal Infrared Sensor 

USGS U.S. Geological Survey 

WRS-2 Worldwide Reference System 2 
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APPENDIX B 

ON-SITE TEMPERATURE AND DISSOLVED OXYGEN TRENDS FOR ALL LOCATIONS 
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APPENDIX C 

DATES OF QUAGGA-INHOSPITABLE CONDITIONS 
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L01 Date 
Start 

Date End Days 

0m (T) 7/6/2017 7/17/2017 11 

0m (T) 9/11/2017 9/27/2017 16 

1m (T) 
  

0 

5m (DO) 8/18/2017 10/4/2017 47 

10m (DO) 6/30/2017 10/4/2017 96 

Greatest Depth, 11+ m 
(DO) 

6/30/2017 10/4/2017 96 

 

L02 Date 
Start 

Date End Days 

0m (T) 
  

0 

1m (T) 
  

0 

5m (DO) 8/1/2017 10/4/2017 64 

Greatest Depth, 9+ m (DO) 6/30/2017 10/4/2017 96 

 

L03 Date 
Start 

Date End Days 

0m (T) 
  

0 

1m (T) 
  

0 

5m (DO) 6/22/2017 7/6/2017 14 

5m (DO) 8/1/2017 10/4/2017 64 

Greatest Depth, 6+ m (DO) 6/22/2017 10/4/2017 104 

 

L04 Date 
Start 

Date End Days 

0m (T) 
  

0 

1m (T) 
  

0 

5m (DO) 8/1/2017 10/4/2017 64 

10m (DO) 7/6/2017 10/4/2017 90 

Greatest Depth, 11+ m 
(DO) 

6/22/2017 10/4/2017 104 

 

L05 Date 
Start 

Date End Days 

0m (T) 
  

0 

1m (T/DO) 
  

0 

5m (DO) 8/9/2017 9/1/2017 23 

5m (DO) 9/20/2017 10/4/2017 14 

Greatest Depth, 6+ m (DO) 8/9/2017 10/4/2017 56 
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L06 Date Start Date End Days 

0m (T) 
  

0 

1m (T) 
  

0 

5m (DO) 9/20/2017 10/4/2017 14 

10m (DO) 8/1/2017 10/4/2017 64 

15m (DO) 7/17/2017 10/4/2017 79 

Greatest Depth, 16+ m 
(DO) 

6/30/2017 10/4/2017 96 

 

L07 Date 
Start 

Date End Days 

0m (T) 
  

0 

1m (T) 
  

0 

5m (DO) 
  

0 

10m (DO) 8/9/2017 8/25/2017 16 

10m (DO) 9/11/2017 10/4/2017 23 

15m (DO) 7/6/2017 10/4/2017 90 

20m (DO) 7/6/2017 10/4/2017 90 

Greatest Depth, 23+ m 
(DO) 

7/6/2017 10/4/2017 90 

 

L08 Date 
Start 

Date End Days 

0m (T) 
  

0 

1m (T) 
  

0 

5m (DO) 
  

0 

10m (DO) 8/18/2017 9/20/2017 33 

15m (DO) 7/17/2017 9/20/2017 65 

Greatest Depth, 16+ (DO) 7/17/2017 9/20/2017 65 

 

L09 Date 
Start 

Date End Days 

0m (T) 
  

0 

1m (T) 
  

0 

5m (DO) 
  

0 

10m (DO) 8/1/2017 8/25/2017 24 

10m (DO) 9/11/2017 9/20/2017 9 

15m (DO) 7/17/2017 10/4/2017 79 

Greatest Depth, 16+ m 
(DO) 

7/17/2017 10/4/2017 79 
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L10 Date Start Date End Days 

0m (T) 
  

0 

1m (T) 
  

0 

5m (DO) 
  

0 

10m (DO) 8/9/2017 10/4/2017 56 

15m (DO) 7/17/2017 10/4/2017 79 

Greatest Depth, 16+ m 
(DO) 

7/6/2017 10/4/2017 90 

 

L11 Date 
Start 

Date End Days 

0m (T) 
  

0 

1m (T) 
  

0 

5m (DO) 
  

0 

10m (DO) 7/17/2017 9/28/2017 73 

15m (DO) 7/17/2017 10/4/2017 79 

Greatest Depth, 16+ m 
(DO) 

7/6/2017 10/4/2017 90 

 

L12 Date 
Start 

Date End Days 

0m (T) 
  

0 

1m (T) 
  

0 

5m (DO) 
  

0 

10m (DO) 8/1/2017 8/18/2017 17 

10m (DO) 9/1/2017 9/20/2017 19 

15m (DO) 8/1/2017 9/20/2017 50 

Greatest Depth, 16+ m 
(DO) 

8/1/2017 9/20/2017 50 

 

L13 Date 
Start 

Date End Days 

0m (T) 8/1/2017 8/9/2017 8 

1m (T) 8/1/2017 8/9/2017 8 

5m (DO) 
  

0 

10m (DO) 9/11/2017 9/20/2017 9 

15m (DO) 8/25/2017 9/20/2017 26 

20m (DO) 8/1/2017 9/20/2017 50 

Greatest Depth, 23+ (DO) 7/6/2017 10/4/2017 90 
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L14 Date Start Date End Days 

0m (T) 8/1/2017 8/18/2017 17 

1m (T) 8/9/2017 8/18/2017 9 

5m (DO) 8/18/2017 8/25/2017 7 

10m (DO) 8/1/2017 9/20/2017 50 

15m (DO) 7/17/2017 9/20/2017 65 

Greatest Depth, 16+ m 
(DO) 

7/17/2017 10/4/2017 79 

 

L15 Date 
Start 

Date End Days 

0m (T) 
  

0 

1m (T) 
  

0 

5m (DO) 
  

0 

10m (DO) 7/17/2017 10/4/2017 79 

Greatest Depth, 13+ m 
(DO) 

7/17/2017 10/4/2017 79 

 

L16 Date 
Start 

Date End Days 

0m (T) 8/1/2017 8/25/2017 24 

1m (T) 8/1/2017 8/18/2017 17 

5m (DO) 
  

0 

Greatest Depth, 9+ m (DO) 8/25/2017 10/4/2017 40 

 

L17 Date 
Start 

Date End Days 

0m (T) 8/18/2017 8/25/2017 7 

1m (T) 
  

0 

5m (DO) 8/9/2017 8/18/2017 9 

Greatest Depth, 9+ m (DO) 8/1/2017 10/4/2017 64 

 

L18 Date 
Start 

Date End Days 

0m (T) 8/1/2017 8/9/2017 8 

1m (T) 7/6/2017 7/17/2017 11 

5m (DO) 8/25/2017 9/20/2017 26 

Greatest Depth, 6+ m (DO) 8/1/2017 10/4/2017 79 
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L19 Date Start Date 
End 

Days 

0m (T) 8/1/2017 8/9/2017 8 

1m (T) 
  

0 

5m (DO) 
  

0 

Greatest Depth, 6+ m (DO)     0 

 

L20 Date Start Date End Days 

0m (T) 
  

0 

1m (T) 
  

0 

5m (DO) 9/20/2017 10/4/2017 14 

Greatest Depth, 5+ m (DO) 8/18/2017 10/4/2017 47 

 

L21 Date 
Start 

Date End Days 

0m (T) 
  

0 

1m (T) 
  

0 

5m (DO) 8/18/2017 9/1/2017 14 

5m (DO) 9/20/2017 10/4/2017 14 

10m (DO) 7/6/2017 10/4/2017 90 

Greatest Depth, 10+ m 
(DO) 

6/22/2017 10/4/2017 104 

 


