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ABSTRACT 

Prior work in literature has illustrated the benefits of using surge arrester as a way 

to improve the lighting performance of the substation and transmission line. Installing 

surge arresters would enhance the system reliability but it comes with an extra capital 

expenditure. This thesis provides simulation analysis to examine substation-specific 

applications of surge arrester as a way of determining the optimal, cost-effective 

placement of surge arresters. Four different surge arrester installation configurations 

are examined for the 500/230 kV Rudd substation which belongs to the utility, Salt 

River Project (SRP). The most efficient configuration is identified in this thesis. A new 

method “voltage-distance curve” is proposed in this work to evaluate different surge 

arrester installation configurations. Simulation results show that surge arresters only 

need to be equipped on certain location of the substation and can still ensure sufficient 

lightning protection. 

With lower tower footing resistance, the lightning performance of the transmission 

line can typically be improved. However, when surge arresters are installed in the sys-

tem, the footing resistance may have either negative or positive effect on the lightning 

performance. Different situations for both effects are studied in this thesis.  

This thesis proposes a surge arrester installation strategy for the overhead trans-

mission line lightning protection. In order to determine the most efficient surge arrester 

configuration of transmission line, the entire transmission line is divided into several 

line sections according to the footing resistance of its towers. A line section consists of 

the towers which have similar footing resistance. Two different designs are considered 
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for transmission line lightning protection, they include: equip different number of surge 

arrester on selected phase of every tower, equip surge arresters on all phases of selected 

towers. By varying the number of the towers or the number of phases needs to be 

equipped with surge arresters, the threshold voltage for line insulator flashover is used 

to evaluate different surge arrester installation configurations. The way to determine 

the optimal surge arresters configuration for each line section is then introduced in this 

thesis. 
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NOMENCLATURE 

b   Distance between the two shielded wires. 

𝐶ℎ𝑔 Distributed capacitance of the high-voltage windings. 

𝐶ℎ𝑙 Distributed capacitance between the high-voltage winding and low-volt-

age winding. 

𝐶𝑙𝑔  Distributed capacitance of the low-voltage winding. 

𝐸0  Soil ionization gradient. 

𝐸𝑎  Surge arrester discharge voltage. 

𝐹𝑖𝑛  Control signal. 

h   Mean shield wires at the tower. 

ℎ1   Height from base to mid-section. 

ℎ2   Height from mid-section to the top; 

ℎ𝑔   The height of the shield wire at the tower. 

ℎ𝑔𝑤 Shield wire midspan clearance to the ground. 

𝐻𝑡  Height. 

I  Peak current amplitude. 

K  Constant. 

𝐾1  Constant. 

𝐾2  Constant. 

L  Insulator length. 

𝐼  Stroke current through the resistance. 
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𝐼𝑔   Limiting current to initiate sufficient soil ionization. 

N   Number of flashes to earth per square kilometer per year. 

𝑁𝐿   Number of flashes to the transmission line per 100 kilometers per year. 

𝑁𝑠  Total number of flashes causing shielding failure per 100 kilometers per 

year. 

𝑟1  Tower top radius. 

𝑟2  Tower mid-section radius. 

𝑟3  Tower base radius. 

𝑅0   Footing resistance at low current and low frequency. 

𝑅𝑇  Tower footing resistance. 

T  Keraunic level in thunder days per year in the area. 

t  Elapsed time after lightning stroke. 

𝜏1  Time constant. 

𝜏2  Time constant. 

U  Maximum discharge voltage. 

𝑉𝑖𝑛𝑠
′  Voltage across the adjacent tower insulator. 

𝑉𝑙𝑖𝑛𝑒 Voltage between the phase conductor and the ground. 

𝑉𝑝𝑘  Crest value of the wave voltage. 

𝑉𝑠𝑡𝑟𝑖𝑛𝑔  Voltage across the insulator. 

 𝑉𝑣−𝑡 Flashover voltage. 

𝑍𝑔  Neutral conductor surge impedance. 
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𝑍𝑚  Mutual surge impedance between phase and neutral conductors. 

𝑍𝑇𝑠𝑢𝑟𝑔𝑒 Tower surge impedance. 

ρ   Soil resistivity. 

A  Tower located at the top of the ridge. 

AEP American Electric Power Service Corporation. 

APS Arizona Public Service Electric. 

B  Tower located at the top of the ridge. 

Bott  Bottom insulator of the tower.  

BIL Basic insulation level. 

C  Tower at the bottom. 

C1  No installed surge arrester on the substation  

C2 Two surge arresters are installed at the entrance of the substation and the 

terminal of the transformer respectively.  

C3  One surge arrester is mounted at the entrance of the substation. 

C4  One surge arrester is installed on the terminal of the transformer.  

CFO Critical flashover Voltage. 

D  Tower at the bottom. 

L  Lower phase conductor. 

LFCs Lightning flashover charts. 

M  Middle phase conductor. 

MOSA Metal oxide surge arrester. 
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MOV Metal oxide varistor. 

Mid Middle insulator of the tower. 

P  Node. 

SRP Salt River Project. 

T  Top phase conductor. 

TLSA Transmission line surge arrester. 

Top Top insulator of the tower. 

X   Lightning stroke point. 

Y  Terminal of the transformer. 

Z  Entrance of the substation. 
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 INTRODUCTION 

 Background 

 Lightning  

The lightning is an electrical discharge between the atmospheres. The discharge 

can occur within the clouds, between the clouds, or between the clouds and the ground. 

The three types of discharges are referred to as in-cloud lightning, cloud-to-cloud light-

ning, and cloud-to-ground lightning. Among all lightning events happened on earth, 

cloud-to-ground lightning accounts for about 25% of all lighting events worldwide. 

This category of lightning flash is most likely to be relevant to our life. 

If the lightning flash involves an object on the ground, it is then called the lightning 

strike. The most common type of strike is cloud to ground strike, while another type of 

strike is called ground to cloud strike. The ground to cloud strike originates from a tall 

object on the ground, propagate upwards and finally reach into the clouds. Most of the 

lightning flash delivers negative current; however, it may also deliver positive current 

in rare circumstance, which usually has higher magnitude and is more severe than the 

negative current. Thus, for surge protection, the positive current needs to be taken into 

consideration. 

There are 16 million thunderstorms each year around the world, which is on aver-

age approximately 1,800 thunderstorms occurring per hour [1]. In the United States, 

the number of lightning strokes that hits the ground is between 8-0.5 strokes per square 

kilometer per year [2] and it is illustrated in Fig. 1.1. On average, 30% of all power 



2 

outages annually are lightning-related, and the associated total cost is close to one 

billion dollars [3].  

The keraunic level in a specified locality is roughly proportional to the number of 

lightning events to earth in that locality. It is suggested by [2] that: 

𝑁 = 0.12𝑇      (1.1) 

where N denotes the number of flashes to earth per square kilometer per year, and T is 

the keraunic level in thunder days per year in the area. 

When lightning flash terminates within a specific area around the transmission line, 

the transmission line will flashover. The approximation of the width of the area was 

given in [2] for a line with two shield wires. 

𝑊 = 𝑏 + 4ℎ1.09        (1.2) 

ℎ = ℎ𝑔 − 2/3(ℎ𝑔 − ℎ𝑔𝑤)              (1.3) 

where h denotes the mean shield wires at the tower, ℎ𝑔 is the height of the shield wire 

at the tower, ℎ𝑔𝑤 is the shield wire midspan clearance to ground and b represents the 

distance between the two shielded wires. 

The number of flashes to the line can then be calculated: 

𝑁𝐿 = 0.012𝑇(𝑏 + 4ℎ1.09)             (1.4) 

where 𝑁𝐿 is the number of flashes to the transmission line per 100 kilometers per year. 

All the equations above are developed assuming that there are equal probabilities 

of lightning striking anywhere along the line, including the midspan. However, Wagner 

and Hileman [4]-[5] examine that the lightning flash which terminates at the midspan 
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traveling to the nearby towers are likely to cause overvoltages below the flashover volt-

age of the tower. Thus, reference [6] shows that midspan lightning flashovers are quite 

uncommon. Reference [6] then takes 60% of the total number of the lightning strike on 

the line into account. The flashover frequency becomes: 

𝑁𝑇 = 0.6(𝑁𝐿 − 𝑁𝑠)                                          (1.5) 

where 𝑁𝑠 is the total number of flashes causing shielding failure per 100 kilometers per 

year. 

 

Fig. 1.1 Number of Cloud-to-ground Lightning Strikes per Square Kilometer per Year in the 10-year 

Period of 1989-1998 in the U.S [1]. 

 

 Overvoltages 

IEEE and CIGRE guides and standards divide the overvoltages in power system 

into three categories: lightning overvoltages, switching overvoltages and temporary 

overvoltages. The characteristics of overvoltages regarding the voltage magnitude and 

duration are illustrated in Fig. 1.2 [12].  
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Fig. 1.2 Voltage of Different Type of Overvoltages as a Function of Time[12].  

 

Lighting Overvoltage 

Lightning overvoltages are caused by the external event: lightning. In practice, 

there are three different types of lighting events that may cause outages in the power 

system: 

Lightning flash terminating on the phase conductor of the transmission line is more 

likely to happen in an unshielded line. The phenomenon of lightning hits on the con-

ductor of a shielded line is usually denoted as shielding failure.  

Back flashover is the result of a direct lightning stroke to the tower structure and 

shielded wires. Lightning surges travel in both directions and down the tower into the 

ground, developing a voltage on the crossarm and stress the insulation. Flashover oc-

curs when the voltage exceeds the threshold of the insulator string. The flashover of 

insulator then causes a line to ground fault and will be interrupted by the breakers. The 

backflash usually occurs during a lightning striking to the overhead shield wire where 

the ground impedance is high. Fig. 1.3 [42] illustrates the process of backflash. 
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Flashover

 

Fig. 1.3 The Back Flashover. 

 

Previous researchers have shown that the back flashover is more prominent in the 

lightning protection of overhead transmission line rather than shielding failure [8]-[11]. 

Switching overvoltages 

Switching overvoltages usually results from the breaker operation including fault 

occurrence, line energization, reclosing, capacitor switching. For the 115kV and above 

system [12], the switching surge should be taken into consideration.  

Temporary overvoltages 

Temporary overvoltages usually last a period of hundreds of milliseconds or longer 

while the switching overvoltages usually last hundreds of microseconds. This is a major 

difference between the switching overvoltages and the temporary overvoltages. The 

temporary overvoltages have a frequency that is close to the normal power frequency. 

The leading causes of the temporary overvoltages include single line-to-ground faults, 
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ferroresonance, load rejection, loss of ground, long unloaded transmission lines (Fer-

ranti rise), coupled-line resonance, and transformer-line inrush [12]. This type of over-

voltage is crucial to determining surge arrester selection and installation.  

 Surge Arrester Protection 

Metal oxide surge arresters (MOSA) are the most wildly used protective device 

nowadays. There are three main categories of MOSA, including gapless arresters, 

shunt-gapped arresters, and series-gapped arresters.  

The surge arrester is expected to limit the lighting overvoltages and switching over-

voltages. However, the surge arrester itself is designed to withstand the temporary over-

voltages. In addition, it should be able to withstand the continuous system operating 

voltage. 

All types of surge arresters share similar principles. In the most common type of 

surge arresters, the component metal oxide varistor (MOV) is used for conducting the 

lighting surge to the ground. The MOV is a semiconductor, which is highly sensitive to 

voltage and current. For power system normal operation voltage, the MOV has high 

impedance and acts as an insulator. However, if lighting or switching overvoltage oc-

curs, the MOV impedance drops down and diverts the current to the ground. Thus, the 

voltage at the terminal of the arrester remains low, which protects the vicinity device 

from the overvoltages. 

There are several methods to reduce the lighting related outages on transmission 

lines. Installing ground wires are the most common methods for reducing the number 
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of the direct stroke on transmission lines. The optimal shielding design was presented 

in [13], while Mladen S.Banjanin [14] proposed a new method of using external ground 

wires to improve lightning protection of transmission lines. However, after the 

transmission lines are built, it is costly and time-consuming to add overhead shield 

wires or change the configuration of the ground wire. Surge arresters have the ad-

vantages that it flexible and can deal with nearly all types of surges. They are used in 

both lighting protection and switching surge control. It can help reduce the cost of line 

voltage uprating projects and compact line construction while other methods cannot. 

The surge arresters installed on the transmission line towers operate differently 

than any other arrester application. When lightning hits the tower or the shield wire of 

a transmission line, the surge will be conducted onto the phase conductor by the surge 

arrester instead of going to ground. 

When no arresters are in service and the shield wire experiences a direct stroke, the 

lightning surge will travel along the shield wire and down to the ground from nearest 

pole. If the voltage across the insulator increases and exceeds the withstand level of the 

line insulator, the insulator flashover occurs, leading to a line to ground fault. 

If an arrester is installed on the tower, the surge current will directly transfer into 

the phase conductor as shown in Fig. 1.4. Thus, no flashover would occur across the 

insulators in this scenario. 
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Fig. 1.4. Tower with Surge Arresters. 

 

For shielded lines without line arresters, it is generally true that lower ground re-

sistance at the towers and poles will improve the backflash performance. When line 

arresters are applied, however, a lower ground resistance may worsen the lightning per-

formance of the overhead transmission line in some cases.  

Except for the direct stroke and back flashover, the lightning may strike on the 

nearby ground and induce surges into the phase conductor. In this case, the overvoltage 

is usually not large enough to cause flashovers.  

 Motivation 

A significant number of faults are caused by lightning every year. Installing surge 

arrester is an efficient way to improve the lightning performance of power systems. 

Most utilities install surge arresters at both the entrance of the substation and the termi-

nal of the transformer. Due to the high installation cost of surge arresters, however, 

some utilities like Salt River Project (SRP) only install the surge arrester at the trans-
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former side. The surge arresters at the entrance of the substation can prevent the pene-

tration of lighting or switching generated traveling waves, which endangers equipment 

in the substation. How will the system operate without the surge arrester at the entrance 

need to be analyzed in order to examine the reliability of the SRP transmission line 

system. Since the lightning surge has the behavior of reflection and refraction, it is also 

useful to know whether there is a maximum recommended length of the line before an 

arrester needs to be applied.  

Utilities in Japan significantly reduced the number of lightning stroke caused out-

ages by installing surge arresters along the line. This method is expensive but produces 

significant improvements. Well-rounded protection can be achieved by installing the 

surge arrester across every insulator of each circuit. However, this method is a large 

expenditure, and it is unnecessary as the footing resistance is not uniform along the 

transmission line. The lightning performance of a transmission line depends on the line 

configuration, transmission line tower surge impedance, footing resistance, lightning 

surge rise time and amplitude. A utility must consider all the issues for the installation 

of line arresters. Thus, the effect of the footing resistance, lighting stroke front time and 

magnitude need to be thoroughly studied. This thesis aims at finding the design which 

can satisfy the reliability of the line service with the minimum number of surge arrest-

ers. A surge arrester installation strategy which can be applied to different transmission 

line system is proposed and developed in this work.   



10 

 Summary of Contents 

The rest of this thesis is structured as follows. In Section 2, detailed modeling 

guidelines are developed for the digital simulations involving fast front waveforms. In 

this section, modeling of the lightning surge is first presented, followed by the data of 

the transmission lines used in the simulation and the geometry of the towers. All the 

data are provided by the utility SRP. Then the models of the transformer and surge 

arrester are discussed, as well as the model of the transmission line tower. The detailed 

insulator model, calculation of tower surge impedance, and the model of the tower foot-

ing resistance are also presented. 

Section 3 focuses on the lightning protection of the substation. A thorough litera-

ture review of substation lightning protection is presented. An evaluation of lightning 

protection design for a 500/230 kV substation with surge arresters is illustrated in this 

section. The substation and several spans of transmission line connected to the substa-

tion are included in the lightning study model. Then, four different surge arrester place-

ment configurations are investigated. The voltage at the substation entrance and the 

voltage of transformer terminal are measured, along with the arrester energy duty and 

current. The voltage-distance curve is proposed to analyze the lightning performance 

of the four different configurations. Simulation results show that installing surge arrest-

ers only at the transformer location is adequate for the substation lightning protection. 

Advantages and disadvantages of installing surge arresters at the entrance of the sub-

station or the terminal of the transformer are discussed. 
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In Section 4, the surge arrester lightning protection of the long transmission line is 

studied. The lightning performance of a transmission line depends on multiple factors. 

The effects of different tower footing resistance, the lightning surge rise time, and light-

ning surge amplitude on lighting protection performance are examined. It is been 

discussed that lower tower footing resistance cannot always improve the reliability of 

the line service. If the tower with high footing resistance is protected by surge arrester, 

the adjacent tower with low footing resistance exposed to high overvoltage and is likely 

to experience backflash. The region where the tower footing resistance varies from 

tower to tower needs to have surge arrester installed on tower close to the boundary of 

different line sections. The various design aimed at improving the lightning perfor-

mance of the transmission line using a minimum number of surge arrester is studied in 

this section. Different designs considered for transmission line lightning protection us-

ing line surge arresters are: the surge arresters are not installed in all tower phases or on 

all towers. Section 4.3.1 studies the effect of the number of surge arresters per tower 

and develops criteria for optimal selection of surge arrester installation location on the 

towers according to the line section tower footing resistance. Section 4.3.2 presents the 

effect of the distance of surge arrester locations. The simulation model and simulation 

procedures as well as the simulation results are presented are presented in both sections. 

In Section 4.3.1, the surge arrester installation strategy is proposed. 

Section 5 concludes this thesis and potential future work is presented in Section 6 
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 Modeling 

The lightning stroke to the transmission line and substation is the primary cause of 

the fast front transient in power system. The fast front transient covers a frequency 

range from 10 kHz up to 1 MHz. This chapter aims to identify the models of specific 

power system components used in the digital simulation which involves fast front tran-

sient. 

 Lightning Surge  

The standard waveform of a lightning surge is specified by the IEEE standard 4-

2013 [15] and is described as a 1.2/50 µs voltage impulse, which means the voltage 

wave reaches the crest in 1.2 µs and diminishes to half the crest value in 50 µs. Fig. 2.1 

depicts the standard waveform of the lightning surge. In this thesis, the lightning im-

pulse is modeled as a voltage source with external source control, which uses a surge 

generator to provide the surge waveform. IEEE standard 4-2013 [15] introduced a dou-

ble exponential waveshape described as: 

𝑉 = 𝑉𝑝𝑘 ∗ 𝐾(𝑒
−

𝑡

𝜏1 − 𝑒
−

𝑡

𝜏2)                                     (2.1) 

𝑉𝑝𝑘 is the crest value of the wave voltage. 

For a 1.2 × 50𝜇𝑠 wave, K=1.037, 𝜏1 = 68.5𝜇𝑠, 𝜏2 = 0.404𝜇𝑠 

The crest value is recommended to be the basic lightning impulse insulation levels 

(BIL) of the equipment [16]. According to IEEE Std C62.82 [17], the BIL for 230 kV 

systems is 900 kV while it is 1800kV for 500kV systems.  
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Fig. 2.1. Lightning Standard Waveform. 

 

 Transmission Line  

Transmission lines are modeled with the Frequency Dependent (Phase) Model in 

PSCAD since it is one of the most advanced time domain models. It can distribute the 

line resistance across the entire transmission line rather than lumped at the end of the 

line [18].  

The data for the 230kV transmission line and the 500kV transmission line are pro-

vided by Arizona Public Service Electric (APS) and Salt-river project (SRP) respec-

tively. Table 2.1 shows the parameters of those two transmission lines. 
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Table 2.1. Data for 230kV Transmission Line and 500kV Transmission Line. 

Parameters 230kV  500kV  

Conductor Cardinal Chukar 

Type 954 KCM, ACSS 1780 KCM, ACSR 

Stranding 54/7 84/19 

Average Span, ft. 1000 1000 

No./phase; spacing, in. 3, 18 2, 12 

Suspension Strings   

Configuration I V 

Insulator size, in. 53
4⁄ × 10 111

2⁄ × 7 

No. strings/ phase 2 2 

Lightning Protection   

No. shield wires 2 2 

Material Alumoweld Alumoweld 

Diameter, in. 0.385; 7 #8 0.385; 7 #8 

 

Fig. 2.2 shows the geometrical features including the location of ground wires and 

phase conductors. Dotted lines represent the suspension insulators. The 230kV trans-

mission line comprises a three-phase double circuit (see Fig. 2.2 (a)) while the 500kV 

transmission line is a three phase single circuit (see Fig. 2.2 (b)). 

 

(a) 230kV Transmission Line Tower Design and Conductor Arrangement. 
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(b) 500kV Transmission Line Tower Design and Conductor Arrangement. 

Fig. 2.2 500kV Transmission Line Tower Design and Conductor Arrangement. 

 

The traveling wave on the transmission line is influenced and modified by the tow-

ers. Thus, to determine the overvoltage accurately, a sufficient number of towers should 

be modeled at both sides of the struck tower. Generally, when the traveling time for the 

lightning surge between the struck tower and the farthest tower to the substation is more 

than one-half of the lightning surge front time, the number of line spans will be consid-

ered as sufficient. If the effect for the tail of the lightning surge is taken into consider-

ation, the number of spans need to be modeled should increase. 

The line extended beyond the last tower, which is expected to avoid reflections that 

could affect the overvoltages, is represented by a long enough transmission line section. 

The line terminal representation results in no reflection from the line termination. 

 Transformer 

The auto transformer used in this simulation is connected in star-star and has a 

rating of 533kVA as per the data provided by SRP. A high-frequency transformer 

23'

13'20'
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model, as shown in Fig. 2.3, must be used in the study of the fast front transient. There 

are several detailed models which may include each winding turn and turn-to-turn in-

ductance and capacitance. However, the model corresponding to each specific turn is 

not efficient for most applications due to computational complexity. A much simpler 

model can be obtained by using lumped capacitor and inductor. 

In Fig. 2.3, 𝐶ℎ𝑔  denotes the distributed capacitance of the high-voltage wind-

ings; 𝐶𝑙𝑔 denotes the distributed capacitance of the low-voltage winding; and  𝐶ℎ𝑙 de-

notes the distributed capacitance between the high-voltage winding and low-voltage 

winding [19]. 

Vp Chg

Chl

Clg Vs

 

Fig. 2.3. High Frequency Model for the Transformer. 

 

 Surge Arrester  

The characteristics of the 500kV and 230kV surge arresters used in this paper are 

given in Table 2.2 and Table 4.3 respectively. The V-I characteristic curve of the surge 

arresters is given in Fig. 2.4 and Fig. 2.5. The surge arrester type used in this system is 

SIEMENS 3EL2. In the tables, U denotes the maximum discharge voltage. I denotes 

the peak current amplitude. 
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Table 2.2. Technical Data for SIEMENS 3EL2 230kV Surge Arrester. 

3EL2 1/2 𝜇𝑠 8/20 𝜇𝑠 45/90 𝜇𝑠 

I(kA) 10 5 10 20 40 0.5 1 2 

U(kA) 458 406 432 480 544 346 354 372 

 

Table 2.3. Technical Data for SIEMENS 3EL2 500kV Surge Arrester. 

3EL2 8/20 𝜇𝑠 45/90 𝜇𝑠 

I(kA) 5 10 20 40 0.5 1 2 

U(kA) 930 989 1088 1187 801 821 860 

 
Fig. 2.4. Siemens 3EL2 230kV Surge Arrester.           

 

Fig. 2.5. Siemens 3EL2 500kV Surge Arrester. 
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 Transmission Line Tower 

Fast front transient tower models include the effect of tower geometry and tower 

grounding resistance. The tower body and tower arm can be represented using the trans-

mission line Bergeron model in PSCAD since only the surge impedance and the surge 

travel velocity of the tower are needed to be concerned. The insulators are modeled 

with their flashover characteristics. 

A simplified fast front transient tower model is depicted in Fig. 2.6. Where 

cylinders represent the phase conductor and the shield wires, the insulators are denoted 

by the switches and capacitors. The surge impedance and the footing resistance are used 

to represent the towers. 

 

Fig. 2.6. The Overhead Transmission Line, Tower and Insulator Representation [22]. 

 

 Insulators 

As illustrated in Fig. 2.6, the insulators are represented by switches in parallel with 

capacitors connected between the respective phases and the tower. The switch, which 
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is voltage-dependent, is open when the insulator is under normal operation condition 

and close when the insulator flashover occurs. The capacitors can represent the coupling 

effect of conductors to the tower structure.  

The backlashover mechanism of the insulators can be modeled by volt-time 

method [2]. The volt-time characteristic of insulators is represented as a function of 

insulator length. The equation (2.2) can be used to calculate the insulator flashover 

voltage. 

If the voltage across the insulator exceeds 𝑉𝑣−𝑡, back flashover occurs. 

  𝑉𝑣−𝑡 = 𝐾1 +
𝐾2

𝑡0.75                                               (2.2) 

where 

 𝑉𝑣−𝑡: Flashover voltage, kV  

𝐾1: 400 × 𝐿 

𝐾2: 710 × 𝐿  

L: Insulator length, m 

t: Elapsed time after lightning stroke, 𝜇𝑠 

Fig. 2.7 is an illustration of the volt-time curve of the insulation for 𝐿 = 1.65 𝑚. 
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Fig. 2.7. The Plot of the Flashover Voltage vs. the Elapsed Time after Lightning Stroke. 

 

A snapshot of the model of the insulator in PSCAD is illustrated in Fig. 2.8. 

 

Fig. 2.8. Insulator Model in PSCAD. 

 

The node T in Fig. 2.8 is connected to the tower of the insulator while node P is 

connected to the phase conductor. Thus, 𝑉𝑠𝑡𝑟𝑖𝑛𝑔 represents the voltage across the insu-

lator and 𝑉𝑙𝑖𝑛𝑒 is the voltage between the phase conductor and the ground. 
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Fig. 2.9. Switch Control Signal Generator Model. 

 

The signal BRK controls the switch which represents the insulator. When BRK is 

1, the switch is open. When BRK is 0, the switch is closed. 

Fig. 2.9 is the control of the insulator modeled in PSCAD. The input of the control 

is the 𝑉𝑠𝑡𝑟𝑖𝑛𝑔, 𝑉𝑙𝑖𝑛𝑒, and 𝐹𝑖𝑛. 𝐹𝑖𝑛 is used to enable the flashover behavior of the insula-

tor. The output is the signal BRK. When 𝐹𝑖𝑛 is set to be 0, the switch will keep open. 

The Non-Linear Transfer Characteristic Component in PSCAD is used to obtain 

the 𝑉𝑣−𝑡 according to the time. This component model a non-linear transfer character-

istic by using straight-line-segment approximation. Totally ten sets of points are used 

in this component, which is the time and the corresponding result of 𝑡0.75. The output 

corresponding to a specific time is determined by straight-line interpolation between 

the points.   

One thing should be noted is that the negative flashover voltage of cap and pin 

insulators with non-uniform solid layer could be 10%-15% lower than the positive 

switching flashover voltage [2]. To make it simple, we assumed that for either positive 

or negative voltage across the insulator, they have the same flashover voltage.  
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 Tower Surge Impedance 

The tower surge impedance can be defined as the voltage developed across an in-

sulator string at the tower top per unit of lightning current entering the tower [2]. 

Wagner and Hileman [20] proposed the expression below to calculate the surge 

impedance of a cone: 

 Zav = 60 ∗ ln [cot (0.5 ∗ tan−1(ravg/Ht))]                       (2.3) 

ravg =
r1h2+r2(h1+h2)+r3h1

h1+h2
                                      (2.4) 

Where: 

𝑟1 is the tower top radius; 

𝑟2 is the tower mid-section radius; 

𝑟3 is the tower base radius; 

ℎ1 is the height from base to mid-section; 

ℎ2 is the height from mid-section to the top; 

𝐻𝑡  = ℎ1 + ℎ2. 

As Chisholm [21] stated that the cylindrical model fails when used to analyses 

horizontal-current response. Thus, the model used in the report to calculate the surge 

impedance of the transmission line towers are chosen to be calculated based on conical 

antenna tower model which can provide better results.  

Corona effect is not considered since it is a conservative approximation to neglect 

it. The propagation velocity of traveling wave in towers is approximate 80% of the 

speed of light. 
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In PSCAD simulation, the body of the towers is represented as Bergeron model 

transmission lines with the surge impedance and surge travel velocity.  

 Tower Footing Resistance 

The tower model needs to include the tower grounding resistance with special em-

phasis on its lightning current magnitude dependent characteristics due to soil ioniza-

tion. 

The footing impedance is represented as a current dependent non-linear resistance 

as follows [23]. 

𝑅𝑇 =
𝑅0

√1+
𝐼

𝐼𝑔

                                                    (2.5) 

𝐼𝑔 =
1

2𝜋
∙

𝐸0𝜌

𝑅0
2                                                    (2.6) 

where 𝑅𝑇 is the footing resistance, 𝑅0 is the footing resistance at low current and 

low frequency, 𝐼 is the stroke current through the resistance, and 𝐼𝑔 is the limiting cur-

rent to initiate sufficient soil ionization, being ρ the soil resistivity (Ω.m) and 𝐸0 the 

soil ionization gradient (300 kV/m).
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 LIGHTNING PROTECTION OF SUBSTATION 

 Literature Review 

Most studies about the surge arrester placement focus on the transmission line [24]-

[28] while very few papers discuss the effect of the placement of surge arresters in a 

substation. Past research effort has proposed a method which has a significant effect on 

the improvement of shielding devices. Such shielding devices are expected to protect 

the substation equipment adequately [29]. In addition, the backflashover study of the 

substation is performed in [25], [30]. The direct stroke on the transmission line feeding 

into the substation has not been fully discussed. Thus, this chapter focuses on the direct 

lightning stroke which can cause very severe damage to the equipment in the substation. 

The effectiveness of surge arresters’ function regarding limiting the arising overvoltage 

is identified in [31]. The correlation between overvoltage and the rise time of the light-

ning stroke current was investigated in [32], and the effect of tower footing resistance 

variation is studied in [25]. In this section, only the placement of the surge arresters on 

the substation is of concern. Most of the literatures use the EMTP-type programs to 

evaluate the lightning performance of surge arrester [27], [33]. However, the EMTDC 

program can provide better transmission models. Thus, the PSCAD/EMTDC program 

is used to perform simulations in this work.   

The reason for the overvoltage caused by lightning in a substation is either the 

station shielding failure or the lightning stroke to a transmission line feeding to the 

substation [12]. In a well-designed substation, the majority of strokes are to the lines, 
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creating surges that travel along the line and enter into the substation. The lightning 

surge that originates in the transmission line can be divided into three categories: a 

lightning flash terminating on a phase conductor, on an overhead shield wire, or on the 

nearby ground which induces a surge into the conductors [12]. The lightning that strikes 

on a phase conductor is the focus of this section since the overvoltage it causes to the 

substation is expected to be the most severe. The lightning striking on the line sets up 

traveling waves moving along the line. When the traveling wave reaches the entrance 

of the station, it is modified by the terminating impedance of the substation. The crest 

voltage doubles when the traveling wave encounters an open circuit breaker and reflects 

back to the transmission line, which corresponds to the worst case. When the lightning 

striking on a transmission line causes a phase to ground fault, the faults may provide a 

path for current to flow into the ground and the impedance at that point will change 

significantly. In this case, the traveling wave will reflect back and forth between the 

lightning striking point and the entrance of the substation. Lattice diagram, shown in 

Fig. 3.1 (a), is used to illustrate the situation. Note that, in Fig. 3.1, X denotes the light-

ning stroke point; Y denotes the terminal of the transformer; and the line entrance of 

the substation is marked as Z.  
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Fig. 3.1. Lattice Diagram of the Traveling Wave. 

 

The voltage of a specific point at a transmission line is the sum of the instantaneous 

values overall individual traveling waves at that point. Thus, it is very likely that the 

highest overvoltage at the substation entrance will occur when lightning strikes a criti-

cal point. A critical point is defined as a specific location where if lightning hits, the 

maximum peak voltage amplitude will occur at the terminal of the transformer. The 

critical point is one of the major concerns of this chapter and is discussed in the model 

development section. Another factor considered in this chapter is that no impedance 

change occurs along the transmission line when the lightning does not cause any ground 

fault. With the assumption that there is no attenuation of the lightning surge along the 

transmission line due to the line resistance, the distance of lightning stroke to the sub-

station is independent of the voltage at the entrance, which is illustrated in Fig. 3.1 (b). 

According to IEEE Standard C62.22-2009 [12], surge arresters can be installed at 

the line entrance of the substation to protect apparatus in the substation such as the 

circuit breakers, disconnect switches, and instrument transformers. However, due to the 
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high cost of surge arresters, this standard is not enforced by all utilities. Thus, four 

different configurations are evaluated in this section and they are listed as follows:  

1) No surge arrester in the substation;  

2) Surge arrester installed at the entrance of the substation;  

3) Surge arresters installed at the terminals of the transformer;  

4) Surge arresters installed at both the substation line entrance and the terminals of 

the transformer.  

Then, the protection scheme that provides the optimal protection with the least cost 

will be determined. 

 Model Development 

Line 
Termination

...

Station Ground 
Resistance

Substation
Representation

Entrance of the 
Substation

Terminal of the 
Transformer

Transformer 
Representation

Phase B

Sheild Wire

 

Fig. 3.2. Simulation Model Representation. 
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In Fig. 3.2, only one shield wire and phase B conductor are depicted. By varying 

the lightning struck location, the critical point which has the maximum overvoltage on 

the terminal of the transformer can be determined. The lightning stroke is terminating 

on the phase B. Travelling waves are generated on both side of the lightning struck 

location. In this chapter, surge arresters are not installed on the transmission line towers. 

They are installed at the entrance of the substation, or the terminal of the transformer, 

or both. 

Four different surge arrester configurations are developed and investigated for 

studying the surge arrester placement on substations. These four configurations are:  

C1: No installed surge arrester on the substation  

C2: Two surge arresters are installed at the entrance of the substation and the ter-

minal of the transformer respectively.  

C3: One surge arrester is mounted at the entrance of the substation;  

C4: One surge arrester is installed on the terminal of the transformer.  
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Fig. 3.3. One Line Diagram of the Four Configurations. 

 

A one-line diagram that illustrates the four different configurations is shown in Fig. 

3.3. 

The procedure used to analyze the effect of different surge arrester configurations 

on the substation is listed below: 

(1) Designing the line section which comprises ten spans of the 230kV transmis-

sion line and the connected substation in PSCAD using the field data. No 

surge arrester is installed in this configuration at step (1). It is assumed that the 

lightning hits on Phase B of the transmission line. 

(2) Gradually changing the distance from the lightning stroke location to the 

entrance of the substation. For each lightning stroke, the crest voltages at the 

entrance of the substation and the transformer terminal are recorded. 
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(3) The improvement of the system lightning performance for the rest of the three 

configurations, which use surge arresters, are analyzed by repeating step (2). 

In addition, the performance of the surge arresters is recorded. 

Step (2) describes how the voltage-distance curves are drawn. The voltage-distance 

curve can identify the critical point which is used to determine the maximum recom-

mended length of the line before an arrester needs to be applied. Moreover, the voltage-

distance curves can help determine the optimal configuration which can satisfy the spe-

cific lightning performance.  

 Simulation Results 

It is explained in the literature review section that the worst case would occur when 

lightning hits the transmission line and causes the line to ground fault, which is the 

focus of the simulations performed with PSCAD in this section. 

Fig. 3.4 illustrates a simplified model for the transmission line and the substation. 

For simplicity, only phase B is depicted in Fig. 3.4. The point of the lightning stroke on 

the transmission line is denoted as Point X. Point Y is the 230kV line entrance of the 

substation. Point Z represents the 230kV terminal of the transformer, which connected 

to the substation.  

 Entrance of 
the Substation 

X ZY

Lightning 
stroke 

Terminal of the 
transformer 

 

Fig. 3.4. A Simplified Model for the Transmission Lines and the Substation. 
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For a specific stroke location, for instance, the distance from lightning stroke to the 

entrance of the substation is 200m. Simulation results are given regarding plots of 

waveforms for the important variables such as arrester voltage, current, and energy du-

ties. The voltages over time at Point Y and Point Z for configuration C1 are shown in 

Fig. 3.5.  

The oscillation voltage in Fig. 3.5 may result from the transformer capacitors and 

inductors. Since there is no surge arrester in this system, the maximum voltage is over 

1600kV which is much higher than the BIL value (900kV). The equipment in the sub-

station including circuit breakers, instrument transformers, and the transformers, are in 

danger. 

 

Fig. 3.5. The Voltage at Point Y and Z for C1. 
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Fig. 3.6. Voltage and the Surge Arrester Energy as well as the Current at Point Y and Z for C2. 

 

Fig. 3.6 (a).(i) and Fig. 3.6 (b).(i) illustrate the voltages at Points Y and Point Z for 

C2 respectively. The energies absorbed by the surge arresters at Point Y and Point Z 
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and the current of the surge arresters installed on these two phases are all zero. 

Therefore, the energy and current curves of phase A and phase C are overlapped in Fig. 

3.6. The analysis described above also applies to C3 and C4. It is worth noting that the 

energies absorbed in C3 and C4 are close to C2, but they are a bit lower than the sum 

of the energy absorbed by the two surge arresters in C2. Meanwhile, the average voltage 

of C3 and C4 are higher than the average model of C2. 

The effect of the surge arrester configurations concerning the point which injected 

the lightning stroke on a 230 kV transmission line and the substation is studied using 

the voltage-distance curve in Fig. 3.7.  

Fig. 3.7 illustrates that the trend of the peak voltage amplitude curves of all four 

configurations decreases as the distance between the lightning stroke location and the 

substation increases. However, for C1, the crest voltage at the entrance of the substation 

reaches the peak when the lightning stroke is 160m away from the substation. 

Therefore, the critical point is 160m. Also, for C4, the curve of the crest voltage is 

oscillating and thus, it has several maxima. 
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Fig. 3.7. The Voltage-distance Curve for All Three Phase of the Point Y and Z. 
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Except for the voltage of C1, the maximum voltage at Point Z of C3 is the highest. 

The voltage at the terminal of the transformer (Point Z) is 85% of the BIL value. Since 

a transformer is a very vulnerable and expensive equipment in the power networks, a 

failure of a transformer can result in high cost of repair or replacement and outage 

losses. Therefore, it is better to leave some margin for the peak voltage amplitude at the 

transformer terminal. Regarding the protection of the transformer, C4 has a better light-

ning protection performance than C3. In addition, the maximum voltage for the two 

points is 85% in C3 and 79% in C4, which shows another advantage of C4 over C3. 

Due to the mutual coupling effect, phase A and phase C have the peak voltage ampli-

tude around 100kV. The voltages on phase A and phase C are far less than the voltage 

on phase B. In Fig. 3.8, it is clear that phase A and phase C voltages can only reach up 

to 31% of the BIL value. Therefore, the voltages of phase A and phase C are not shown 

in Fig. 3.9. 

For C4 in Fig. 3.9, the peak voltage amplitude at Point Y is higher than the peak 

voltage amplitude at Point Z. However, the situation is the opposite for C3. Therefore, 

the location which has surge arrester installed would have lower overvoltage than the 

locations. Point 𝑃1 is the intersection of the two curves 𝑈𝑌-C4 and 𝑈𝑍-C3. The differ-

ence between the peak voltage amplitude at Point Z in C3 and Point Y in C4 is large at 

the beginning and gradually reduces to zero at the intersection Point 𝑃1. Then the peak 

voltage amplitude at Point Y in C4 surpasses the voltage at Point Z in C3. Thus, the 

highest voltage is under C3 first and soon becomes the voltage under C4. After Point 
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𝑃2, the curve of 𝑈𝑍-C3 becomes even lower than the 𝑈𝑍-C4. Which means that after 

point P2, the voltage of the transformer under configuration 3 is lower than the voltage 

under configuration 4. The probability for lightning stroke on a transmission line within 

100m to the entrance of the substation is very low. Therefore, C3 may provide a better 

protection for the equipment in the substation since the voltage at the entrance of the 

substation is always high in C4. C3 also performs better than C4 with respect to trans-

former lightning protection. 

 

CP - critical point 

Fig. 3.8. The Ratio between the Maximum Voltage and the BIL Value Under Different Configurations. 
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Fig. 3.9. Voltage-distance Curve for Phase B at Point Y and Z. 
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Fig. 3.10. The Voltage-distance Curve for All Three Phases of the Point Y and Z of 500kV Substation 
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stroke hits on the transmission line feeding to the substation. A good visual depiction 

of the simulation results is offered by implementing the voltage distance curve.  

Though installing the surge arresters at both the entrance of the substation and the 

terminal of the transformer has the best performance among the four configurations, the 

high installation cost of the surge arrester makes it less competitive. Moreover, the other 

two configurations which have surge arrester installed either at the entrance of the sub-

station or the terminal of the transformer are sufficient for lighting protection. In the 

configuration of installing the surge arrester at the entrance of the substation, it is pos-

sible that the transformer may suffer the voltage up to 85% of the BIL value. However, 

this happens only when the lighting stroke hits on a small area that is very close to the 

substation. It is rare that the lighting would hit on that area. The voltage at the entrance 

of the substation when the surge arrester is installed at the terminal of the transformer 

is always high, which may require the equipment at the entrance of the substation to 

have a better lightning voltage withstanding capability. Regarding the economic im-

pact, the failure of the transformer can result in high cost due to repair or replacement 

costs and outage losses. To guarantee that the transformer is well-protected, the config-

uration which only has surge arrester installed at the terminal of the transformer can be 

implemented. Therefore, installing surge arrester at the terminal of the transformer in 

the Rudd 500/230kV substation by SRP is proved to be adequate and efficient 

concerning both the lightning performance and the economic cost. 
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 LIGHTNING PROTECTION OF TRANSMISSION LINE 

 Literature Review 

Equipping the towers with transmission line surge arresters (TLSA) has been a very 

effective way to improve the reliability of transmission lines. After monitoring the three 

circuits where TLSA are installed on all phases of 13-kV distribution lines with a spac-

ing of 40 meters (every pole), 200 meters, or 400 meters for one year, Reference [34] 

concluded that the distribution lines with surge arresters does not have a much better 

lightning performance than the circuit without surge arresters. Moreover, the flashover 

rates for both scenarios are low. They also presented that the circuit with arresters in-

stalled on every pole still had several lightning faults during the monitoring period. 

However, several practical factors are not considered in reference [34]. For instance, 

distribution line major flashovers are not caused by lightning. Distribution lines are 

rarely exposed to lightning since they are mainly located in urban areas where many 

lightning pods are built. This explains why the flashover rate is low for circuits with 

and without surge arrester in [34]. In addition, for the 13kV low voltage level distribu-

tion line, the basic insulation level (BIL) is around 95kV. Thus, the associated break-

down voltage for the arresters is 95kV. However, the probability of lightning overvolt-

age exceeding the BIL value of the line system is high. Therefore, it is reasonable that 

flashovers may still occur on the transmission line even when arresters are installed on 

every pole of the circuit.  
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The surge arrester may not provide significant improvements in reliability for the 

distribution system. However, surge arresters can substantially improve the lightning 

performance on high voltage transmission lines. This is demonstrated by the field ex-

periments on the application of surge arresters on transmission lines [35]-[38].  

References [40]-[41] have studied the parameters that can affect the lightning 

overvoltage across the insulator in a transmission system. [40]-[41] concluded that low 

footing resistance could improve the lightning performance of the system. However, 

back to 1980s, American Electric Power Service Corporation (AEP) believed that under 

a specific situation, grounding may adversely affect the lightning performance [42]. It 

can occur in the rocky regions where the earth resistivity is high as stated in [42]. The 

traditional method to avoid lightning flashover of transmission lines on the rocky region 

is to reduce the footing resistance. However, it is not very effective to reduce the 

grounding impedance of the tower at the top of the ridge where the tower footing re-

sistance is generally the highest. In addition, towers are more likely to be built on the 

top of the ridge in order to make the construction easier. Thus, it is very likely that the 

footing resistances of towers that are located in the rocky regions are very different with 

the footing resistances of its adjacent towers. Fig. 4.1 illustrates a one phase and one 

shield wire diagram of a three-phase system. Tower A and tower B that are located at 

the top of the ridge have the highest footing resistances while tower C and tower D are 

located at the bottom of the ridge and have comparatively low footing resistance. 
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Fig. 4.1.Towers at the Top of a Ridge and Towers at the Bottom of a Ridge [42]. 
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Fig. 4.2. Lightning Striking a Protected Tower Causing the Adjacent Towers Flashover. 

 

Fig. 4.2 presents an example that illustrates a special case when the lightning per-

formance is adversely affected by lowering the tower footing resistance. In Fig. 4.2, 

tower A has a 100Ω footing resistance, since it is on the ridge of the mountain, the tower 

footing resistance is relatively high. Tower B and tower D, adjacent towers of tower A, 

are located at the bottom of the ridge; and both towers have 10Ω footing resistance. 
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Tower C and tower E have the same footing resistance as tower B and tower D. Only 

tower A is equipped with surge arresters. 

When lightning strikes location #1 shown in Fig. 4.2. Assuming 4000 kV lightning 

surge is generated at the top of the tower. With 1000kV voltage drop on the surge ar-

rester, the 3000kV lightning surge is injected into the phase conductor through the surge 

arrester and travels in both directions into the adjacent towers. If the footing resistance 

of adjacent tower is infinity, which is an ideal situation for high grounding resistance, 

the voltage across the insulator of the adjacent tower will be equal to the voltage on the 

lightning struck tower when the phase conductor and the shield wire are lossless lines. 

The voltage across the insulator of the stricken tower is arrester discharge voltage and 

is below the critical flashover voltage (CFO). After changing the footing resistance of 

tower A to 10Ω, the 4000kV traveling wave on the shield wire will pull down by the 

low footing resistance of the adjacent towers. Since the voltage at the phase conductor 

does not change significantly, the voltage across the insulator would exceed the CFO. 

Back flashover will occur on both adjacent towers.  

When lightning strikes the location #2 and the surge arrester is only installed at 

tower C, the low footing resistance of the lightning struck tower can reduce the voltage 

across the insulator to a value below the CFO value. 

Fig. 4.2 is not a suitable surge arrester application. The configuration in Fig. 4.3 is 

more preferred.  
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Fig. 4.3. The Installation of Surge Arresters on the Adjacent Towers. 

 

If line arresters are applied only on a number of line sections with poor grounding, 

arresters also need to be installed on at least one or two towers that are adjacent to the 

poor grounding resistance section. For example, in Fig. 4.4, the towers in line section 1 

are equipped with surge arrester since they have high grounding resistance. The towers 

in line section 2 have lower grounding resistance and no surge arrester is installed in 

line section 2. However, the tower A and tower B which are on the boundary of line 

sections need to be equipped with surge arresters. The “line section” is several spans of 

transmission line where the variation of its tower footing resistance can be ignored. 
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Fig. 4.4. The Installation of Surge Arresters on the Boundary of Line Sections. 
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Under the discussion section of paper [34], T. E. McDermott proposed equation 

(4.1), which is used to estimate the voltage across the insulator of the adjacent tower 

when the tower with surge arrester is subjected to the lightning stroke. 

Ea

Vn

R R

Zm

Zg

Vins >Ea

Vp Vp <Vp

Vn <<Vn

 

Fig. 4.5. Stroke to a Phase Conductor with no Adjacent Line Arresters  

 

𝑉𝑖𝑛𝑠
′ = 𝐸𝑎 + 𝑉𝑛 [1 −

2𝑅+𝑍𝑚

2𝑅+𝑍𝑔
]                                   (4.1) 

Where, 𝑉𝑖𝑛𝑠
′  denotes the voltage across the adjacent tower insulator, 𝐸𝑎 is the surge 

arrester discharge voltage. 𝑍𝑔 represents the neutral conductor surge impedance and 𝑍𝑚 

is the mutual surge impedance between phase and neutral conductors. 

The resistance of the ground wire and the phase conductor is ignored in the equa-

tion. However, difference of the resistance between the conductor and the shield wire 

can enlarge the overvoltage across the insulator. The results obtained from the equation 

(4.1) will be greatly different from the simulation results. 

In recent years, many researchers focus on the surge arrester placement for the 

transmission line. Multiple ways are used to assess the lighting performance of different 

surge arresters spacing and user of a different number of surge arrester per tower. Paper 
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[25] uses the “Lightning flashover charts” (LFCs) as a graphic representation of the 

flashover situation on each pole concerning different lightning stroke locations. The 

LFCs can give an overall impression of the lightning performance of different surge 

arrester placement strategies. However, it is a simple illustration and is not able to pro-

vide all the information. Paper [36] focuses on the effect of a different number of surge 

arresters per tower. The threshold current for insulator flashover was used in [36] to 

help evaluate the lightning performance of transmission lines. Reference [39] further 

improve the accuracy of evaluating the lightning performance of the overhead lines by 

using the statistical approach to obtain the flashover rate for each surge arrester place-

ment strategies. The flashover rates were calculated by implementing Monte Carlo 

method. Reference [25], [36], [39], however, did not provide any detailed criterion for 

choosing the suitable strategies for specific line sections.  

 Effect of Footing Resistance  

There are two different scenarios that can be used to study the effect of the footing 

resistance. The first scenario is that the tower footing resistances of the transmission 

line vary in a rocky region. While in the urban area. The tower footing resistance may 

be alike, which is the second scenario studied in this work.  
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 The Effect of Footing Resistance for Towers Near the Boundary of the Line 

Sections.  

Model Development 

A model, which has twelve transmission line spans with line matching elements, 

was developed according to the 230kV transmission line parameters given by SRP. Fig. 

4.7 (a) illustrates the transmission line section used in the simulation. The eleven towers 

included in the protection section are called Tower 1, Tower 2, …, and Tower 11 re-

spectively. Tower 6 is the lighting struck tower and is the only tower which has surge 

arrester in the protection section. The footing resistances of the Tower 1 through Tower 

5 and Tower 7 through Tower 11 change from 10Ω to 100 Ω while the footing re-

sistance of Tower 6 remains to be 100 Ω. The purpose of this simulation is to support 

the conclusion that if line arresters are installed only on a section of line with high 

footing resistance, arresters need to be installed on one or two towers near the boundary 

of different line sections.  

The Vstring in Fig. 4.7 (a) represents the voltage across the insulator of Tower 7. 

It is defined as the voltage at the phase conductor (Vline) minus the voltage of the tower. 

 

Fig. 4.6. Tower Configuration used in the Simulation 
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Simulation Results 

As illustrated in Fig. 4.8 (b), when the footing resistance is 10Ω, the voltage across 

the insulator connecting to phase A and phase C suddenly becomes zero at around 2.5 

s, which indicates the insulator flashover. However, no flashover occurs when the ad-

jacent tower footing resistance is 100 Ω as shown in Fig. 4.8 (a). The lightning perfor-

mance of the line section becomes worse when the footing resistance of the tower de-

creases.  
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(a) Voltage Across the Insulator of Tower 7 When the Footing Resistance of the Tower 1 Through 

Tower 5, Tower 7 Through Tower 11 is 100 Ω. 
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(b) The Voltage Across the Insulator of Tower 7 When the Footing Resistance of Tower 1 Through 

Tower 5, Tower 7 Through Tower 11 is 10 Ω. 

Fig. 4.8. The Voltage Across the Insulator as a Function of Time. 
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Fig. 4.9. The Voltage Across the Insulator of Phase A as a Function of the Time and the Footing Re-

sistance. 

 

As shown in Fig. 4.9, the line section does not have any back flashovers when the 

footing resistance of the adjacent tower is above 70 Ω. The peak voltage magnitude 

increases with the tower footing resistance decreases.  

Since Tower 6 is equipped with surge arresters, no flashover occurs on Tower 6. 

In addition, the voltage across the insulator of Tower 6 remains around the arrester 

discharge voltage for a long time. The results demonstrate that when lightning hits the 

tower with high footing resistance, the surge arresters will deliver the lightning surge 

to the adjacent tower. When the adjacent tower has relatively low footing resistance, 

flashover is likely to occur. 

 The Effect of Footing Resistance for Towers in the Same Line Section. 

The effect of footing resistance in a line section where the variation of its tower 

footing resistance can be neglected is studied in this section. Meanwhile, The effect of 
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the front time of lightning stroke as well as the magnitude of lightning stroke is also 

examined.  

Model Development 

The model used in this work is illustrated in Fig. 4.7 (b). No surge arrester is 

installed in the line section. In order to obtain the maximum overvoltage, the insulator 

flashover is disabled in the simulation. Fig. 4.10 depicts the tower configuration used 

in the simulation. In order to study the effect of insulator location, the tower structure 

used in this section is different from Section 4.2.1. the difference is that the tower 

structure in Fig. 4.10 has different distances from the tower top to the insulators of 

different phase conductor.  

In the simulation, apart from the footing resistance, sensitivities of the magnitude 

and the wave shape of the lightning stroke are also investigated. 

 

Fig. 4.10. Tower Configuration Used in the Simulation. 

Simulation Results 

A. Front time of lightning stroke 
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Fig. 4.11 compares overvoltage at insulator with a different front time of lightning 

strokes with a magnitude of 1200kV between 1.2/50μs, 2/77.5 μs, and 3/75 μs. 
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Fig. 4.11. Overvoltage at Insulator as a Function of Different Front Time of the Lightning Stroke. 

 

In Fig. 4.11, “Top” indicates the top insulator of the tower, “Mid” and “Bott” rep-

resent the middle insulator and the bottom insulator of the tower respectively.  

Fig. 4.11 illustrates that shorter front time will increase the overvoltage. In addi-

tion, higher tower footing resistance and magnitude of lightning stroke may result in an 

increase of the overvoltage. When the footing resistance is less than 50 Ohms, the dif-

ference of the overvoltage caused by different front time of the lightning surge is neg-

ligible. While the influence of the lightning surge waveshape becomes significant when 

tower footing resistance is above 50 Ohms. 

Fig. 4.11 shows that the top insulator suffers the highest overvoltage. Since the top 

insulator is closest to the tower top and has the smallest IR drop for the lightning surge, 

which is why the overvoltage on the top phase conductor is the highest. 
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Table 4.1 compares the flashover performance of all the insulators with different 

front time between 1.2/50μs, 2/77.5 μs, and 3/75 μs. 

Table 4.1. Overvoltage with Varying Front Time of Lightning Stroke  

Tower footing re-

sistance (Ohm) 

Wavefront 1.2/50µs Wavefront 2/77.5µs Wavefront 3/75µs 

Top Mid Bott Top Mid Bott Top Mid Bott 

3.00 N N N N N N N N N 

5.00 N N N N N N N N N 

8.00 N N N N N N N N N 

10.00 F F N N N N N N N 

20.00 F F N F F N N N N 

30.00 F F F F F N F N F 

40.00 F N F F N F F F N 

50.00 F F N F F N F F N 

60.00 F F N F F N F F N 

70.00 F N F F F N F N F 

80.00 F N F F F N F N F 

90.00 F N F F F N F N F 

100.00 F N F F F N F F N 

F-Flashover   N-No flashover 

 

It can be observed from the Table 4.1 that the top phase insulator has the highest 

flashover rate among the three-phase insulators. Moreover, Table 4.1 shows that the 

flashover rate also increases as the front time of the lightning surge increases. 

B. The magnitude of the lightning surge  

Fig. 4.12 compares overvoltage at insulator with different magnitude of lightning 

strokes between 1000kV to 2000kV with front time 1.2/50 μs.  It can be observed from 

Fig. 4.12 that when the lighting surge peak magnitude is higher, higher overvoltage will 

occur in the system. 
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(a) Top phase insulator 
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(b) Middle phase insulator 
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(c) Bottom phase insulator 

Fig. 4.12. Overvoltage at Insulator with Different Magnitude of Stroke. 

Table 4.2 compares the flashover performance of all the insulators with different 

voltage magnitude between 1000kV, 1200kV and 1400kV. For the case of 1400kV, the 
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flashover occurs at both the top and the middle phase of the insulator. While for the 

case of 1600kV, the flashover occurs at all three phase of the insulator. When the mag-

nitude of a lightning stroke is more than 1400kV, the back flashover always occurs as 

shown in Table 4.2. 

Table 4.2. Overvoltage with Varying Front Time of Lightning Stroke.  

Tower foot-

ing re-

sistance  

(Ohm) 

Insulator Flashover 

Magnitude 1000kV Magnitude 1200kV Magnitude 1400kV Magnitude 1600kV 

Top Mid Bott Top Mid Bott Top Mid Bott Top Mid Bott 

3.00 N N N N N N F F N F F F 

5.00 N N N N N N F F F F F F 

8.00 N N N F F N F F N F F N 

10.00 N N N F F N F F N F F N 

20.00 N N N F F N F F N F F N 

30.00 N N N F F F F F N F F F 

40.00 N N N F N F F F F F F F 

50.00 N N N F F N F F N F F F 

60.00 N N N F F N F F F F F F 

70.00 N N N F N F F F F F F F 

80.00 N N N F N F F F F F F F 

90.00 N N N F N F F F F F F F 

100.00 N N N F N F F F F F F F 

F-Flashover   N-No flashover 

 The Effect of Tower Footing Resistance for Different Phases Located at Dif-

ferent Height. 

Model Development 

The model used in the simulation is illustrated in Fig. 4.7 (b). The tower configu-

ration. The tower structure in Fig. 4.13 has two three-phase circuits and two shield 

wires.  
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Fig. 4.13. Tower Configurations Used in the Simulation. 

Simulation Results 

The voltages across the insulators of phases A, B, C are different since they are in dif-

ferent locations. According to Fig. 4.14, the peak voltage magnitude of phase A is 

higher than those of phase B and phase C. Note that phase A is the top phase of the 

tower, phase B is the middle phase, and phase C is the phase located at the bottom of 

the tower. It can be concluded that the probability of the flashover occurring on the 

upper phase is higher than the middle or lower phase. Since the lengths of the tower’s 

arms are the same, the voltage of phase A of circuit one equals the voltage of phase A 

of circuit two. Similar conclusions can be drawn to phase B and phase C. 
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Fig. 4.14. The Voltage Across the Insulator of the Stricken Tower and the Adjacent Tower when Light-

ning Strikes the Top of Tower 6. 



57 

In Fig. 4.14, both footing resistance of the stricken tower and the adjacent tower 

are 10 Ohms. The lightning voltage is 1600kA with linear ramp waveform (1.2/50μs). 

Note that C1 denotes circuit one of the 230kV transmission line and C2 denotes circuit 

two of the 230 kV transmission line. 

When lightning strikes the top of a tower, the voltage across the insulator may 

largely depend on the footing resistance of the stricken tower. However, the footing 

resistance of the adjacent tower may not have a significant influence on the voltage 

across the insulator of the stricken tower. In both Fig. 4.15 and Fig. 4.16, the footing 

resistance of the stricken tower is 10 Ohms. The lightning current is 1600kA with a 

linear ramp waveform of 1.2/50μs. Fig. 4.15 shows that the peak voltage magnitude of 

the voltage across the insulator of the adjacent tower increases as the footing resistance 

of the adjacent tower increases. Fig. 4.16 illustrates the dependency of overvoltage 

across the insulator of the adjacent tower on the footing resistance of stricken tower. 

The increase of footing resistance of stricken tower results in a moderate increase on 

the overvoltage of the adjacent tower. This suggests that the footing resistance of a 

tower can only affect the overvoltage of itself. The footing resistance of the adjacent 

tower changes will not have a significant impact on the overvoltage of the stricken 

tower.  
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Fig. 4.15. The Voltage Across the Insulator of the Adjacent Tower when Lightning Strikes the Top of 

Tower 6 with Various Adjacent Tower Footing Resistance.  
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Fig. 4.16. The Voltage Across the Insulator of the Adjacent Tower when Lightning Strikes the Top of 

Tower 6 for Various Stricken Tower Footing Resistance.  
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lighting performance. One of the design is to equip all the towers in the line section 

with surge arresters on selected phases. The second design is to installed surge arrester 

on all the phases of selected towers in the line section. Fig. 4.17 illustrates all the prac-

tical configurations of surge arrester installation under the two designs. For the first 

design, four different configurations are examined in Section 4.3.1. As shown in Fig. 

4.17, the six squares connected to each other are used to represent the six phases of the 

double circuit transmission line used in this section. When the square is black, it indi-

cates that there are surge arresters installed on this phase for all the towers in the line 

section. For design two, each square represents a tower. The black square represents 

the tower which is equipped with surge arresters. The three configurations under design 

two are studied in Section 4.3.2. 

Surge arrester protection for 
overhead Transmission line

Design 1
To equip surge arrester with 
selected phases on all towers

Design 2
To equip surge arrester with 
all phases of selected towers

Configuration 3 Configuration 3Configuration 1 Configuration 2Configuration 1No TLSA Configuration 2

 

Fig. 4.17. Illustration of Different Designs and Configurations analyzed in this Thesis. 

 Design 1: Equipped Surge Arrester with Selected Phases on All Towers 

The double circuit 230kV transmission line has 6 phase conductors and two shield 

wires. The protected line section includes twelve spans of transmission line, each line 
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section is 300 meters long and consists of 11 towers. The two circuits on the transmis-

sion line are denoted as circuit one and circuit two. 

The four different configurations under design two are: 

 No surge arrester installed in the line section. 

 Surge arresters are installed on the top phase of circuit one for all the towers 

in the line section. 

 Surge arresters are installed on both the top phase and the middle phase of 

circuit one for all the towers in the line section. 

 Surge arresters are installed on all three phases of circuit one for all the 

towers in the line section. 

Model Development  

Surge arresters are installed on every tower of the line section, as shown in Fig. 

4.19. The effect of the number of surge arresters per tower is analyzed in this section. 

Fig. 4.18 represents the model used for configuration 1 where surge arresters are in-

stalled on the top phases of all towers in the line section. 

Since the line section is symmetric and the lightning stroke is assumed to be 

terminated on tower 6, only the results of tower 6 through 11 are presented. Fig. 4.18 

provides a detailed model representing tower 6 through tower 11.  

The footing resistances of the towers in a single line section are assumed to be 

equal. To study the effect of the footing resistance in this section, all the tower footing 
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resistance are changed simultaneously. The sequence of the insulator flashover is rec-

orded and the threshold lightning voltage for the insulator flashover are obtained.  
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Simulation Results 

A. Simulations without surge arrester 

To study the impact of lightning striking the transmission line without the use of 

the surge arrester, PSCAD simulations are performed to simulate the lightning surge to 

the tower top ranging from 1200kV to 1800kV. The towers 1 through 5 and the towers 

7 through 11 are symmetric in terms of the tower structure. Thus, only the results of the 

towers 1 through 6 are displayed.  

Table 4.3 shows the towers and phases on which flashover occurs as a function of 

lighting peak voltage on the top of the tower. For lighting voltage peak magnitude over 

1250kV, flashover occurs at the top and bottom phases in sequence. When the lighting 

voltage peak magnitude is above 1300kV, all three phases of the lightning stricken 

tower have flashovers. For a lightning surge level of 1350kV, flashovers occur on cer-

tain phases of all the towers. When lightning surge goes over 1600kV, flashover in all 

three phases occurs for more than one towers. 

B. Simulations with the presence of the surge arresters 

It is essential to install surge arresters on transmission lines to avoid insulator flash-

over due to a lightning surge greater than 1200kV. 

Surge arresters are installed on all towers for the studies in this section. However, 

it is not necessary to installed surge arresters on all the phases. The effect of different 

numbers of surge arresters per tower on lightning protection performance is analyzed. 

In the test case, the surge arrester is only installed on the circuit one. The simulation 
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includes three different configurations: 1) the surge arrester is installed on the top phase 

of circuit one; 2) surge arrester is installed on the top and middle phase of circuit one; 

and 3) surge arresters installed in all three phases of circuit one. As shown in Section 

4.2, the maximum overvoltage occurs at the upper phase. This is the reasons to equipped 

surge arresters on the top phase of circuit one in all configurations.  

Table 4.3 through Table 4.6 show the improvement of the lightning performance 

of the 230kV transmission line section with the increase of the installed surge arresters. 

Installing one surge arrester on the tower can improve the lighting performance signif-

icantly. For instance, the voltage for the line section to start having insulator flashovers 

increases from 1250kV to 1400kV. At 1450kV, flashover occurs on five towers out of 

six towers. Flashover occurs on all towers only when the lightning surge magnitude is 

above 1800kV. 

Installing surge arresters on top and middle phases of circuit one do not show much 

improvement in the lightning performance of the 230kV transmission line over in-

stalling surge arresters on the top phase only. The critical flashover voltage increases 

from 1400kV to 1450kV. However, the total number of flashover decrease signifi-

cantly. The insulator on tower 1 and tower 2 are operating in normal condition when 

the lightning surge is increasing from 1500kV to 1800kV. 

Installing surge arresters on all three phases of circuit one does not eliminate the 

flashovers of the tower completely. For 1550kV lightning surge striking the line sec-

tion, flashover occurs on the middle and lower phases of circuit 1 on tower 6 and tower 
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4. However, the total number of flashover in the line section has been further reduced. 

Tower 1, tower 2 and tower 3 are free from flashover when the peak magnitude of the 

lightning surge is below 1800kV. To protect the circuit against flashover for lighting 

voltage above 1550kV. More surge arresters are required to be installed on the protected 

line section. However, for the 230kV transmission lines used in our simulation, the 

probability of lightning peak voltage greater than 1550 kV is low.  

Note that flashover occurs on the top phase of circuit two most frequently. More-

over, the top phase is most likely to be the first to have insulator flashover. 

As mentioned above, the variation of the footing resistance will affect the lighting 

performance of the transmission line. Fig. 4.20 shows the lightning voltage threshold 

above which flashover occurs on at least one insulator concerning the footing re-

sistance. 
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Fig. 4.20. Lighting Voltage Threshold Above Which Insulator Flashover Occurs as a Function of Foot-

ing Resistance, for Four Configurations.  
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To maximize the reliability of service on the transmission line using a minimal 

number of surge arresters, some surge arrester strategy is proposed.  

For instance, the studied transmission lines section is required to be capable of 

accepting 1400kV lightning strokes. Fig. 4.20 shows that when the footing resistance 

of the line section is between 0 ohms and 15 ohms, installing surge arrester on the upper 

phase of circuit one is enough for the lightning protection. Where the footing resistance 

of tower is between 15 ohms to 25 ohms, configuration 2 may be justified. However, 

when the tower footing resistance is above 25 ohms, surge arresters should be installed 

in all three phases of one of the circuits of the towers in that line section. 

The transmission line will be divided into several line sections according to its 

tower footing resistance. For each line section, one surge arrester installation configu-

ration is applied.  

Increasing the number of surge arresters installed on circuit one changes surge ar-

rester duty slightly before the magnitude of the lightning increase to the number high 

enough for insulator flashovers happens. Fig. 4.21 shows the effect of the number of 

surge arresters on the maximum energy absorbed by the surge arrester for towers with 

30 ohms footing resistance. The lightning stroke is terminating on the top of tower 6 

for this test case. 

The energy absorbed by the surge arrester on tower 5 and tower 7 is the highest 

among all eleven towers. In Fig. 4.21, it shows that when the lightning surge magnitude 
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is not high enough to make insulator flashover occurs, the maximum surge arrester en-

ergy increases when the number of surge arrester installed on circuit one decreases. 

This can be explained that when there is no flashover occurs, the energy of the lighting 

will mostly be absorbed by the surge arresters. Once the number of surge arrester in-

creases, the average energy need to be absorbed by each arrester will decrease. How-

ever, most of the energy can be absorbed by the ground if back flashover occurs in the 

line section. It can explain the dip in the curve of the energy absorbed by the surge 

arrester. In addition, the energy absorbed by the surge arrester decreases when the num-

ber of flashover increases. As mentioned above. The number of flashovers for config-

uration 3 is the smallest. When flashover occurs in the line section under this configu-

ration, the maximum energy is the largest. Note that the surge arrester absorbed energy 

is always below the surge arrester energy capability in the test case.  

The curve for the discharged current of the surge arrester has a similar characteris-

tic with the curve of energy duty of surge arrester. The footing resistance for the towers 

in the line section is 30 Ohms and the lightning stroke is terminating on the top of tower 

6 for this test case. 
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Fig. 4.21. Worst Case Energy Absorbed by a Surge Arrester Installed on Circuit One as a Function of 

Peak Lightning Voltage Magnitude for a Different Number of Surge Arresters on Circuit One. 
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Fig. 4.22. Worst Case Surge Arrester Discharged Current as a Function of Peak Lightning Voltage 

Magnitude for a Different Number of Surge Arresters on Circuit One.  
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Surge arrester installation strategy 

The simulation in this section provides a way of determining the optimal, cost-

effective solution for surge arrester placement. With this approach, the customer only 

needs to equip particular phases with line surge arresters, and can still ensure sufficient 

lightning protection of the overhead line and reduce network failures. 

The optimum protection strategy for selection of tower phases to be protected can 

be summarized below: 

The procedure for selecting the optimal surge arrester configuration consists of six 

steps: 

Step 1) Divide the transmission line into line sections according to the tower 

footing resistance. 

Step 2) Install surge arresters on one or two towers near the boundary between 

the line sections.  

Step 3) Build the transmission line model. 

Step 4) Perform the same simulation in this section to obtain the plot of the 

threshold voltage vs the footing resistance. 

Step 5) Select the surge arrester installation strategy according to the protection 

level and the footing resistance of the line section. 

The first step requires that the variation of the tower footing resistance is negligible 

within single line section. The second step aims at protecting the towers which have 

footing resistance different from its adjacent tower. According to the protection level 
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and protection margins, the desired threshold voltage can be determined. Therefore, the 

optimal surge arrester configuration for a line section can be chosen by the footing re-

sistance and the desired threshold voltage of the line section. 

 Design 2: Equipped Surge Arrester with All Phases of Selected Towers 

Model Development  

The double circuit 230kV transmission line section has two three-phase circuits 

and two shield wires. It consists of 13 spans of transmission line, each span is 300m 

long. Since the probability of all the towers being stricken by lightning stroke would be 

the same. The simulation of lightning striking Tower 1 to Tower 12 in twelve different 

runs were implemented. Eight different lightning peak voltage magnitude was used in 

the simulation. under each specific lightning surge peak voltage magnitude, twelve dif-

ferent simulations of lightning terminating on tower 1 through tower 12 respectively 

are implemented. 

This section presented the simulation procedure in details. The proposed procedure 

is used to analyze the effect of the surge arrester location distance for the line section 

lighting performance. The simulation consists of five steps as listed below. 

Step 1) Under Configuration X (X=0 TLSA, configuration 1, configuration 2, 

and configuration 3). Lightning stroke is terminating on tower N (N=1, 

2, 3, …, 12); the lightning stroke magnitude is M (M=1000, 1200, 1400, 

…, 1800) kV (standard waveshape). Run the simulation (Run #1).Record 

the number of flashover on phase A, B, and C. The sum of the number of 
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flashover on phase A, B, C is the total number of flashover for the 

1100kV lightning stroke under Run #N. 

Step 2) Lightning stroke is terminating on tower N+1, lightning stroke magnitude 

and waveshape remain the same as in Step 1). Run the simulation (Run 

#N+1). Record the number of flashover on phase A, B, and C. 

Step 3) Increase the crest value of the lightning stroke to M+200 kV. Repeat the 

Step 1) – Step 3). 

Step 4) Change the configuration to X+1. Repeat Step 1) to Step 5). 

As illustrated in Fig. 4.20, the surge arrester is installed on every two towers. Fig. 

4.23 provides a detailed model of tower 6 to tower 11. 
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Simulation Results 

For each simulation, lighting strikes on different towers. The total number of all 

towers is shown in Fig. 4.25. For each set of 12 simulations under certain peak voltage 

magnitude, the simulation which has the most significant number of flashovers is rec-

orded and plotted in Fig. 4.25. Noted that all the footing resistance was set to be 25 

ohms. 
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Fig. 4.25. Number of Insulators Flashovers for All the Towers and on All the Phase in the Protected 

Section as a Function of Lightning Current Amplitude for 12 Simulations.  

 

Fig. 4.25 illustrate the number of flashovers occur on all 12 towers when lightning 

hit on different towers according to the lighting voltage peak magnitude. When increas-

ing the peak voltage magnitude, the number of flashovers generally goes up. The num-

ber of flashovers on Phase A is the most significant of all the three phases. This is 

consistent with the simulation results in Section 4.2. The reason is that the insulators 
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on phase A are on the top, higher than the insulators on the other phases. The top insu-

lator locates close to the lightning stroke, thus has the fewer losses on the tower arms. 

Therefore, it has the largest number of flashover.  
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Fig. 4.26. The Number of Insulators Flashovers for all the Towers in the Protected Section as a Func-

tion of Lightning Current Amplitude for 12 Simulations.  

 

To compare the number of flashovers with different surge arresters configurations, 

the number of flashovers on different phases are ignored in Fig. 4.26. Fig. 4.26 focuses 

on the total number of insulator flashovers. The number of flashovers increases with 

the decrease of the number of surge arresters installed. The effect of the number of 

surge arrester is more pronounced at high lightning voltage magnitude. For 1800kV 

lightning surge, the number of flashovers without surge arrester is around 500. How-

ever, when surge arresters are installed on every five towers, the number of flashovers 

decrease to around 250, half of the number without surge arrester. The difference for 

installed surge arrester three spans apart and two spans apart is comparatively small. 

The number of flashovers for configuration 2 when the peak voltage amplitude is 
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1800kV is around 100, while the number of flashover for installs the surge arresters 

two spans apart under the same lightning voltage is 80.  
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Fig. 4.27. Number of Insulators Flashovers for All the Towers and on All the Phase A, B, and C in the 

Protected Section as a Function of Lightning Current Amplitude for One Simulation Which Has the 

Maximum Number of Flashovers in Each Set of the 12 Simulations.  
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Fig. 4.28. The Number of Flashovers of Insulators for All the Towers in the Protected Section as a 

Function of Lightning Current Amplitude for One Simulation Which Has the Maximum Number of 

Flashovers in Each Set of the 12 Simulations.  
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In Fig. 4.27, the simulation which has the maximum number of flashovers on all 

the tower among 12 simulations under specific voltage peak magnitude is illustrated. It 

has the same characteristic as Fig. 4.26. The difference is that for Phase A and B, the 

number of flashovers does not change too much according to the number of surge ar-

rester installed on the protection scheme. 

Fig. 4.28 compare the total number of flashovers and ignore the number of flasho-

vers on Phase A, B, and C. In Fig. 4.28 the intersection for configuration 1 and config-

uration 2 is around 1400kV. This shows that when the lightning peak magnitude is 

lower than 1400kV, installing surge arresters three spans apart has less flashover than 

installed surge arresters two spans apart.  
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Fig. 4.29. Lighting Voltage Threshold Above Which Insulator Flashover Occurs as a Function of Foot-

ing Resistance.  

Compare Fig. 4.29 with Fig. 4.12 in Section 4.3.1, the variation in threshold volt-

age for insulator flashover is negligible under different configurations for Fig. 4.29. The 

three curves representing different configurations are overlapped. In another word, the 
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threshold insulator flashover voltage for different configurations do not have much dif-

ference. The reason is that all the configurations analyzed in Section 4.3.2 have towers 

which have no surge arrester installed. The insulators on the towers which do not have 

surge arrester installed will be the first to flashover. Thus, the threshold voltage just 

simply depends on the flashover voltage of the insulators on the tower without surge 

arrester. Therefore, for this kind of design, the best way is to analyze using the flashover 

rate of the transmission line. 

 Conclusions 

In section 4.2, it is stated that the footing resistance can significantly affect the 

overvoltage across the insulators. Therefore, for the tower which has high footing re-

sistance, it is recommended to install the surge arresters which have better energy dis-

charge capability. When the footing resistance of the transmission line towers varies, 

the footing resistance may adversely affect the lightning performance of the system 

under certain condition. The simulations conducted in section 4.2 shows that the de-

crease of the footing resistance of the adjacent tower may increase the overvoltage 

across the insulator of the adjacent tower when surge arresters are installed on the 

stricken tower with high footing resistance. Thus, when the towers are located near the 

boundary of the protected section, it is recommended to examine whether the towers 

need to be equipped with surge arresters. After dividing the transmission line into sev-

eral line section according to its footing resistance, different surge arrester configura-

tions are utilized to improve the lightning performance of each line section. The first 
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design is to install different numbers of surge arresters on selected phases of all towers. 

For the first design, the simulation results show that the insulators on the top phase are 

most likely to experience flashover. Thus, the insulator should installed on top phases. 

The three different configurations, which are used to determine the number of surge 

arresters that should be installed on the towers, are: 1) surge arresters are installed on 

the top phase of circuit one; 2) surge arresters are installed on the top and middle phases 

of circuit one; 3) surge arresters are installed in all the three phases of circuit one. The 

Lighting voltage threshold for the insulator flashover as a function of footing resistance 

for four configurations was studied. The results can be used to determine the optimal 

surge arresters configuration used in single line section. Considering the second design 

where the surge arresters are installed on selected towers, different configurations share 

the same threshold voltage. However, the number of surge arrester installed on the cir-

cuit one largely affects the total number of flashovers on all towers. For instance, the 

number of flashovers for installing surge arresters every five spans is half of the num-

bers when no surge arrester is installed on the transmission line. The threshold voltage 

cannot be used as the criteria for choosing the optimal surge arrester installation con-

figuration.  
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 CONCLUSIONS 

The case studies presented in Section 3 proves that installing surge arrester only on 

the terminal of the transformer can provide adequate protection for the substation equip-

ment and transformer for the SRP Rudd substation. The process used for examining the 

lightning performance of the substation and its incoming line can be applied to other 

substations. The modeling guideline is applicable for the scenarios that share the same 

frequency range of lightning surge. In addition, the location of the lightning stroke does 

not have a significant effect based on the reflection and refraction characteristic of the 

traveling wave. However, the location of the lightning can still affect the maximum 

overvoltage on the substation due to the changing distance of traveling wave to the 

substation. The longer traveling path for the lighting impulse to the substation will fur-

ther reduce the lighting impulse magnitude. Since the resistance of a line section is 

proportional to its length.  

The lightning performance of the transmission line depends on multiple factors. 

The factors of this study include front time of lightning stroke, the magnitude of 

lightning stroke, and tower footing resistance. As presented in Section 4.2, both the 

magnitude and the front time of the lightning surge would negatively affect the light-

ning performance of the transmission line system. Though the two factors related to the 

lightning stroke are not controllable, reducing the footing resistance of the tower is the 

major solution for improving the lighting reliability of the transmission line system. For 

shielded lines without line arresters, it is generally true that lower ground resistance at 
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the towers and poles will improve the backflash performance. However, it does not hold 

when surge arrester applied to the transmission line. Low footing resistance may worsen 

the lightning performance of system. This mainly happens in the area where tower foot-

ing resistance varies. When the footing resistance of the line sections remains the same, 

it holds that lower ground resistance at the towers and poles will improve the lighting 

performance. As presented in Section 4.2, both the magnitude and the front time of the 

lightning surge would negatively affect the lightning performance of the transmission 

line system.  

Even though installing surge arresters on every tower and every phase along the 

transmission line can ensure complete lighting protection, it can be very costly. Section 

4.3.1 and Section 4.3.2 propose approaches to determine the optimal and cost-effective 

solution for improving the reliability of the lines. As illustrated in Section 4.3.1 and 

Section 4.3.2, utilities only need to equip particular phases or individual line segments 

with surge arresters that would still ensure sufficient lighting protection for the lines. 

The utilities will then only need to invest a reduced amount of money and thus save the 

total cost.  
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 FUTURE WORK 

The effects of footing resistance on lighting protection are examined by two differ-

ent scenarios in this thesis. One of the scenarios has varied footing resistance between 

towers in the protected line section. While the towers’ footing resistance are similar in 

the second scenario. The simulation under the second scenario assumes equal footing 

resistance in the line section. However, in practice, the footing resistance of the tower 

may not be exactly the same. Thus, a standard needs to be made to determine the range 

of the variation of different towers’ footing resistance in a single line section. Within 

the line section, the small variation of the footing resistance can be ignored. 

A new surge arrester installation strategy is proposed to determine the appropriate 

surge arrester configuration by installing a different number of surge arrester per tower. 

However, simulation results show that the proposed strategy is not applicable for de-

termining the number of towers needs to be equipped with surge arresters. The thresh-

old voltage for different configuration is almost the same under various tower footing 

resistance when surge arresters are not installed on all towers. Thus, the threshold flash-

over voltage is not the best way to determine the optimal configuration of surge arrest-

ers. A systematic mechanism needs to be developed to determine the most effective 

configuration.  

Due to the random nature of lightning, the evaluation of the lighting performance 

should base on a statistical approach; the Monte Carlo method can be used to calculate 
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the flashover rate. Comparing the flashover rate of different surge arrester configura-

tions is a better way to evaluate the lighting performance. 

Arrester failure also needs to be concerned. Surge arresters are exposed to switch-

ing overvoltage and lightning overvoltage. All these stresses, as well as the environ-

mental pollution and manufacturing defects, may lead to arrester failures. The nearby 

direct lighting stroke is also a common cause of arrester failure [43]. Thus, the arrester 

failure is essential for studying the system lighting performance.  

In addition, the two installation designs, including 1) installing a different number 

of surge arresters per tower and 2) installing surge arrester different spans apart, need 

to be compared. Moreover, they can be combined. Combining these two configurations 

requires full examination. The numerical simulation of installing surge arrester on cer-

tain towers and certain phases at the same time should be conducted. 
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