
A Study on Knowledge Transfer Techniques to Support Deep Learning on Edge

Devices

by

Ragini sai sri lakshmi sistla

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved March 2018 by the
Graduate Supervisory Committee:

Ming Zhao, Chair
Baoxin Li

Hanghang Tong

ARIZONA STATE UNIVERSITY

May 2018

ABSTRACT

With the emergence of edge computing paradigm, many applications such as image

recognition and augmented reality require to perform machine learning (ML) and

artificial intelligence (AI) tasks on edge devices. Most AI and ML models are large

and computational heavy, whereas edge devices are usually equipped with limited

computational and storage resources. Such models can be compressed and reduced in

order to be placed on edge devices, but they may loose their capability and may not

generalize and perform well compared to large models. Recent works used knowledge

transfer techniques to transfer information from a large network (termed teacher)

to a small one (termed student) in order to improve the performance of the latter.

This approach seems to be promising for learning on edge devices, but a thorough

investigation on its effectiveness is lacking.

The purpose of this work is to provide an extensive study on the performance

(both in terms of accuracy and convergence speed) of knowledge transfer, considering

different student-teacher architectures, datasets and different techniques for transfer-

ring knowledge from teacher to student.

A good performance improvement is obtained by transferring knowledge from

both the intermediate layers and last layer of the teacher to a shallower student. But

other architectures and transfer techniques do not fare so well and some of them even

lead to negative performance impact. For example, a smaller and shorter network,

trained with knowledge transfer on Caltech 101 achieved a significant improvement of

7.36% in the accuracy and converges 16 times faster compared to the same network

trained without knowledge transfer. On the other hand, smaller network which is

thinner than the teacher network performed worse with an accuracy drop of 9.48%

on Caltech 101, even with utilization of knowledge transfer.

i

ACKNOWLEDGMENTS

I would first like to thank my thesis advisor Dr. Ming Zhao, Associate Professor

of ASU School of Computing, Informatics, and Decision Systems Engineering. The

door to Prof. Zhao office was always open whenever I ran into a trouble spot or had a

question about my research. He consistently allowed this paper to be my own work,

but steered me in the right direction whenever he thought I needed it.

I would also like to thank the experts who were involved in the validation of this

research project: Saman Biookaghazadeh and Yitao Chen who are pursuing Ph.D. in

Computer Science. Without their passionate participation and input, the validation

of my research work could not have been successfully conducted.

I would also like to acknowledge Saman Biookaghazadeh, Ph.D. in Computer

Science at Arizona State University as the second reader of this thesis, and I am

gratefully indebted for his very valuable comments on this thesis.

ii

TABLE OF CONTENTS

Page

LIST OF TABLES . v

LIST OF FIGURES . vi

PREFACE . ix

CHAPTER

1 INTRODUCTION . 1

1.1 Pruning Unnecessary Parameters . 4

1.2 Dark Knowledge Technique . 5

1.3 Replacing Operations and Thinning the Network 7

1.4 Model Cutting . 8

1.5 Computation Acceleration on Mobile Devices . 8

1.6 Proposed System Architecture . 9

1.7 AI on Edge Devices . 10

2 BACKGROUND LITERATURE . 17

2.1 Neural Networks . 17

2.2 Deployment of DNN’s on Edge Devices . 19

2.3 Related Work . 23

3 KNOWLEDGE TRANSFER . 25

3.1 Different Techniques of Knowledge Transfer . 25

3.1.1 Transfering Hard Logits . 26

3.1.2 Transferring Soft Logits . 27

3.1.3 Transferring Intermediate Layer Representations 29

3.2 Architectures . 34

4 Motivation & Proposed Work . 37

4.1 Knowledge Transfer from Multi Task Learning Perspective 37

iii

CHAPTER Page

5 METHODOLOGY . 46

5.1 Benchmark Datasets . 46

5.2 Training Methodology . 47

5.3 Hyperparameters . 49

6 DISCUSSION AND RESULTS . 50

6.1 Results & Discussion on Convergence Time . 50

6.2 Results & Discussion on Top-1 Accuracy . 52

7 CONCLUSIONS AND FUTURE DIRECTIONS . 60

REFERENCES . 61

iv

LIST OF TABLES

Table Page

4.1 Mapping of Teacher→Student Layers of Same Widths 39

4.2 Mapping of Teacher→Student Layers of Different Widths 39

5.1 Mapping of Teacher→Student Single Layer Pairs . 49

5.2 Mapping of Teacher→Student Multiple Layer Pairs 49

6.1 Type I architecture & Caltech 101 Dataset . 54

6.2 Type I Architecture & CIFAR-10 Dataset . 55

6.3 Type II Architecture & Caltech 101 Dataset . 55

6.4 Type II Architecture & CIFAR-10 Dataset . 55

6.5 Type III Architecture & CIFAR-10 Dataset . 56

6.6 Type III Architecture & Caltech 101 Dataset . 56

6.7 Proposed KT on Type I Architecture & CIFAR-10 Dataset 56

6.8 Proposed KT on Type I Architecture & Caltech 101 Dataset 57

6.9 Proposed KT on Type II Architecture & CIFAR-10 Dataset 57

6.10 Proposed KT on Type II Architecture & Caltech 101 Dataset 57

6.11 Proposed KT on Type III Architecture & CIFAR-10 Dataset 57

6.12 Proposed KT on Type III Architecture & Caltech 101 Dataset 58

6.13 Number of iterations required by the independent and dependent stu-

dent models (trained with respective best KT techniques) to reach 90%

of its best accuracy . 59

v

LIST OF FIGURES

Figure Page

1.1 Model on Cloud with Service-Provider Dataset . 2

1.2 Model on User’s Server Machine with Custom Dataset 2

1.3 Download the Model from Cloud and Perform Inference on User’s Mobile 3

1.4 Mentor-Mentee . 16

3.1 Hard-Logits . 29

3.2 Soft-Logits . 30

3.3 Intermediate-Representations (Single Layer) . 30

3.4 Intermediate-Representations (Multiple Layer) . 31

3.5 Type I Architecture:: Student Model is Shorter than the Teacher Model 35

3.6 Type II Architecture:: Student Model is 1/20 Times Thinner than the

Teacher Model but Both have Same Height . 36

3.7 Type III Architecture:: Student Model is Thinner and Deeper Than

the Teacher Model . 36

4.1 Demonstrates Mapping between Teacher and Student Layers of Differ-

ent Widths. Teacher’s 3rd Layer Consisting of 128 Neurons is Mapped

to Student’s 1st Layer Consisting of 64 Neurons. RMSE loss is Evalu-

ated Between 1 and 2 Mapping Layers. Similarly, RMSE loss is Eval-

uated Between 3 and 4 Mapping Layers. 40

4.2 Demonstrates Mapping Between Teacher and Student Layers of Same

Widths. 3rd Layer of Teacher Consisting of 128 Neurons is Mapped

to 1st Layer of Student Consisting of 128 Neurons. RMSE loss is

Evaluated Between 1 and 2 Mapping Layers. Similarly, RMSE loss

is Evaluated Between 3 and 4 Mapping Layers. 41

vi

CHAPTER Page

4.3 CV Indicates Convolution Layer; Embed Layers Consists of 64 Feature

Maps and are Connected to Teacher and Student Layers as Convolution

Layers. RMSE Loss Between the Embed Layers of Teacher and Student

is Calculated . 42

4.4 FC Indicates Fully Connected Layer; Embed Layers Consists of 64

Feature Maps and are Connected to Teacher and Student Layers as

Fully Connected Layers. 43

4.5 a, b are the Feature Maps of the Student Layer. c,d are the Feature

Maps of the Teacher Layer. Both Student and Teacher Layers have

Equal Number of Feature Maps. 43

4.6 a, b are the Feature Maps of the Student Layer. c is the Feature Map of

the Teacher Layer. Student and Teacher Layers have Unequal Number

of Feature Maps. 44

4.7 a is the Feature Map of the Student Layer. b is the Feature Map of

the Teacher Layer. a, b Feature Maps have Same Shape of 2X2. 44

4.8 a is the Feature Map of the Student Layer. b is the Feature Map of

the Teacher Layer. a, b Feature Maps have Different Shape. a is of

Shape 2X3; Whereas, b is of Shape 2X2. 44

4.9 Mean of all the Elements of Each Feature Map a, feature map b is

Calculated. Similarly, Mean of all the Elements of the Feature Map c

and d is Calculated. The Output Feature Maps are of Size 1X1. 45

6.1 Top-1 Accuracy of Dependent Student and Baseline Models of Type I

on Caltech 101 . 58

vii

CHAPTER Page

6.2 Top-1 Accuracy of Dependent Student and Baseline Models of Type

III on CIFAR-10 . 58

6.3 Top-1 Accuracy of Dependent Student and Baseline Models of Type I

on CIFAR-10 . 58

6.4 Top-1 Accuracy of Dependent Student and Baseline Models of Type

III on Caltech 101 . 59

viii

PREFACE

Recently one of my colleagues came up with an idea, which is retraining a new

neural network from scratch while receiving mentorship from an already trained

network. One can use this technique to retrain a neural network from scratch in a

much easier manner, compared to non-mentored version. Now what if the new

network could maintain a smaller size than the original network, but at the same

time be able to represent the same knowledge? This may be a great idea, since it

makes it possible to adapt the knowledge of a heavy neural network, while make

training easier and faster. This is basically the idea I have extended in my thesis in

order to bring training into mobile phones.

ix

Chapter 1

INTRODUCTION

Enabling AI, such as deep neural networks on embedded and mobile devices is an

on-going effort in the literature. Howard et al. (2017) and Chollet (2016) demonstrate

the effectiveness of operation replacement with their faster counterparts. Based on

their results, convolutions can be replaced with less computational intensive ones,

without significant loss of accuracy. LeCun et al. (1990) show that certain number of

parameters learn the same representations, and by eliminating such parameters, the

size of the model can be reduced while preserving the accuracy. Sau and Balasub-

ramanian (2016), Romero et al. (2014) and, Venkatesan and Li (2016) are utilizing

knowledge distillation techniques to improve the accuracy of smaller models (termed

students) by taking supervision from larger models (termed teachers). Han et al.

(2015a) demonstrates pruning and compression techniques on trained model. Their

results are showing feasibility of model size reduction, while preserving the similar

accuracy. Kang et al. (2017) studies separation of a model into two pieces by placing

one section on a server and another on an embedded device.

Summarizing all the above approaches, they are categorized as follows;Pretrained

on Cloud, where the model is pre-trained on cloud with a large set of data, service

providers will host the model needed for AI application on the cloud. As shown in

Fig. 1.1, Mobile applications send a request along with the input data, to ask for

models suggestion. This approach is widely being used by current applications such

as Siri, Google Now, Cortana, and etc.

Pretrained on Cloud with User Dataset, where models are pre-trained

specifically for the user using their customized data set. Mobile applications still

1

Figure 1.1: Model on Cloud with Service-Provider Dataset

Model on
Cloud

Train the
Model

Service
Provider
Data Set

Mobile
Application

HTTP Request, Classification Request

Prediction Result

Figure 1.2: Model on User’s Server Machine with Custom Dataset

Model on
User’s
Server
Machine

Train the
Model

Custom
Data Set

Mobile
Application

HTTP Request, Classification Request

Prediction Result

send a request along with the input data to ask for the predictions, as being demon-

strated in Fig. 1.2. The second approach can be chosen when the data set on which the

user wants to train the model is highly customized, as a result the generic pre-trained

model cannot fulfill the users specific requirements.

In both the approaches user is bound to have a network connection. One drawback

of this approach is significant space and computation usage by the service provider

to store and process individual customized models.

Pretrained on Cloud & Inference on Mobile, as shown in Fig. 1.3, mod-

2

Figure 1.3: Download the Model from Cloud and Perform Inference on User’s Mobile

els can be pre-trained by the service provider, specifically for each user input data.

Furthermore, model alongside the application are moved into the user mobile device.

In this approach, inference can be done on the mobile device which provides faster

response time compared to previous approaches. It also eliminates the overhead of

hosting the model on the cloud. Unfortunately, the model on the mobile phone cannot

be continuously trained on the new input data, due to lack of power and storage on

the device. This requires retraining of all the models on the cloud, which introduces

same issues as mentioned in the second approach.

So far all the above related works can only support a single-shot prediction based

on the input data. By growing popularity in AI on mobile applications, there would be

a huge demand on customized evolution of models based on the individual user input

data. For example, users may like their voice recognition application, such as Siri or

Google now, to adaptively capture their unique accent continuously. Considering the

great number of application users, it is almost impossible for application providers to

host a single big and power consuming customized model per user, and train it over

a long period of time. As a result, mobile applications can hardly provide customized

AI models for each user.

3

I propose a solution to enable standalone AI applications on embedded devices.

To overcome the challenges discussed above, below techniques are used:

• Pruning redundant parameters which learn similar representations to reduce

model size and computation overhead.

• Replacing expensive operations, such as convolution, with their less expensive

counterparts such as depthwise convolutions.

• Utilizing Dark Knowledge techniques to train significantly smaller networks by

using supervision from original or larger networks.

• Cutting the model into two parts and placing the first part on the cloud and

the later part on the embedded device. Using generalization techniques, later

layers could be adaptively evolve based on the user input data.

• Utilizing available acceleration resources such as mobile GPU, in order to ac-

celerate computations of certain operations such as Matrix Multiplication and

Convolution.

So far, the feasibility of all the above techniques were proved to some extent. In

current work, all the above methods are combined to enable continuous training of

AI models, directly on the embedded device. All the above techniques are discussed

in detail below:

1.1 Pruning Unnecessary Parameters

Increasing the size of neural networks, both in depth and width, can increase the

capability of network to capture more complicated features, and as a consequence

provide better accuracy. Unfortunately extending the size of network does not nec-

essarily increase network capability for capturing new information. In another word,

4

redundancy is an outcome of greedy increase in network size. Pruning can help re-

moving all redundant weights and keep the accuracy as the same level as original

model. For example, after each training epoch, weights with small values can be

eliminated from the model, since small weights have lowest contribution to the final

accuracy. Several works have shown effectiveness of weight pruning in model size

reduction. Unfortunately all reductions have happened after full training of a model.

As a result, the same degree of weight elimination during training may cause severe

damage accuracy. My solution is investigating the extent of parameter reduction in

training phase. Preliminary results show effectiveness of pruning even during training

phase.

1.2 Dark Knowledge Technique

Small neural networks (termed students) show a significant improvement in their

performance provided they get sufficient knowledge from large neural networks (termed

teachers). This transfer of knowledge from larger neural networks to smaller ones is

termed as Dark Knowledge. The goal of the study is to train neural networks on mo-

bile with customized data set and at the same time achieve good prediction results.

Since its not feasible to train large neural networks on mobile due to its memory con-

straint, smaller networks are trained on mobile phones. But the drawback of training

smaller networks is, it cannot learn and perform as good as larger networks. As the

idea is to train the network on the mobile with customized user data the model should

be able to learn all the features of the data efficiently and accurately. Since the net-

work is small, it will not be able to extract all the features and will not be able to

predict correctly. To overcome this, dark knowledge technique is adopted. Using this

technique the knowledge that the network lacks due to its small size can be gained

from the large and efficient network.

5

Till date, the dark knowledge technique was used to train the models faster as the

transferred knowledge would help the smaller model to converge soon. It was acting

more like a regularizer. The other usage was when the dataset to train the smaller

model was not sufficient enough, it would get some knowledge from larger model and

would predict the result. Though the smaller model was not trained on some of the

specific images and if the larger model was trained on it, the smaller model would

still be able to predict as the knowledge was transferred to it. But, in this approach,

the focus is to make the smaller model behave like a larger model. Hence, various

ways in which the knowledge can be transferred are discussed in the below lines.

In terms of mathematical functions, knowledge transfer techniques can be elab-

orated as follows. Achieving high accuracy in turn results in minimizing the cross

entropy between empirical posterior distribution and predicted posterior distribution.

This minimization can be done in several ways. First, by minimizing the combination

of two convex functions: La: cross entropy between softmax output of deficient model

and the softmax output of efficient model (teacher model). Lb: The cross entropy

between the softmax output of deficient model (student model) and true labels of the

training data. Hence,the total loss function would be a linear combination of La and

Lb where L=La+(1-α)Lb

Second, by minimizing the combination of multiple convex functions: La: cross

entropy between the fourth layer of deficient model and the second layer of efficient

model. Lb: The cross entropy between the sixth layer of deficient model and fourth

layer of efficient model.Lc: The cross entropy between the softmax output of deficient

model and true labels of the data. Ld: The cross entropy between the softmax output

of deficient model and the softmax output of efficient model. Hence the total loss

function would be a linear combination of La, Lb, Lc and Ld where L= La+(Lb) + Lc

+ Ld.

6

Third by minimizing the convex function, L =La + noise, where La would be the

cross entropy between softmax layer of deficient model and softmax layer of efficient

model with some noise added to it.

2nd and 3rd approaches can be combined and minimized together with the convex

function L = La+ Lb + Lc + Ld + noise.

1.3 Replacing Operations and Thinning the Network

Using depthwise convolutions Howard et al. (2017) helps reducing storage con-

sumption and computation intensity. This new way of convolution is breaking the

whole process in two steps, where each step is much less intensive compared to the

single conventional convolution. Combining both can lead into faster convolution

with the same functionality. It also introduces less number of parameters to be held.

In short, depthwise convolutions can capture almost the same amount of informa-

tion as traditional convolutions, while not altering the final accuracy. In this work,

depthwise convolutions are utilized for the small network on the mobile side.

As it is studied in Howard et al. (2017), width multiplier can further reduce

network size and computational complexity to some extent. Width multiplier is

basically altering the number of inputs and outputs channels, by a constant value

between 0 and 1. Choosing higher width multiplier can reduce network width, in

exchange with acceptable accuracy.

This work extends the power of Howard et al. (2017) by studying the feasibility

of combination between Dark Knowledge and depthwise convolution. Using higher

degree of width multiplier alone can compromise the final accuracy of the model, but

it can be improved significantly using supervision from another big network. This

approach will be further discussed.

7

1.4 Model Cutting

Another approach to enable stand-alone AI on mobile devices, is separating the

model into two pieces. Separation could be after any number of layers. Each piece can

be deployed on either host or the mobile phone. Since we need embedded inference

capability, whole graph can be deployed on the phone. During training phase, only

latest layers will be updated. Generalization approach has shown that for tuning a

model for a new set of data of the same category, one only need to update the latest

layers. For instance, layers at the beginning of the model only capture fine grained

features, which works perfectly for any dataset of the same category. As a result,

mobile device is only responsible for tuning few final layers, which are small in size

and number of parameters. Han et al. (2015a) studied the feasibility performance

and energy consumption in this approach. This work demonstrates the feasibility of

training in the mentioned method. In summary, the whole model can completely be

deployed on both cloud and mobile device, while mobile only updates final section of

the model for customization purpose.

1.5 Computation Acceleration on Mobile Devices

Convolutional Neural Networks are memory and computation hungry by nature.

As a result, even using high-end systems without accelerators are not sufficient for

training these networks in a reasonable amount of time. This enforces CNN users to

utilize GPUs to accelerate training process. This issue can become more significant in

embedded and mobile devices, due to their lack of enough memory and sophisticated

processor. Therefore, training models on mobile devices is not considered as an option.

In order to overcome this problem, approach of using available accelerators, such

as GPU, in the mobile phone is proposed. Both popular mobile platforms, IOS and

8

Android, support utilization of the embedded GPU through their toolchains, BNNS

and RenderScript. Both libraries are using GPU API at the bottom to parallelize a

specific operation. In addition, GPUs on mobile devices are power efficient, which

makes utilizing them more reasonable. Extension of well-known deep learning frame-

works, such as TensorFlow, to support operation execution over RenderScript or

BNNS is important.

1.6 Proposed System Architecture

Combining all the above techniques, the description about the proposed systems

architecture is mentioned here. There are two architectures which are being inves-

tigated in this study: First, Mentee-Mentor network, where the two models are

designed to represent the same model with different sizes, as it is demonstrated in

Fig. 1.4. In this approach the smaller network will be deployed in the embedded

devices and the bigger network will reside in the cloud. The model on the embedded

devices is designed to capture and reflect users unique requirements, while the bigger

network on the cloud intends to be a much more sophisticated and generic version of

the model.

Utilizing Dark Knowledge technique, the smaller model can continuously be trained,

while receiving supervision from the bigger network. The supervision helps smaller

network not to deviate from the accurate representation. In detail, supervision comes

as a loss value from the mentor network into the mentee network. The knowledge can

also be transferred from any intermediate layer of the mentor network along with the

last layer, which helps mentee to maintain a mapping into the mentor network.

The smaller model can further be optimized, by using lightweight operations and

utilizing the available accelerators. For instance, all the conventional convolutions of

the smaller model will be replaced with depthwise convolutions thereby reducing the

9

width of the network. In addition, all the expensive operations can be deployed on

available accelerators, such as GPUs on the mobile phones.

Second, Model Cutting and Placement, in this approach, the model is cut

into two parts from one of the intermediate layers. The model will be deployed

completely on both cloud and mobile device. The mobile phone is only updating the

second part of the model, since they have the major contribution for new dataset

categorization. On the other hand, cloud can update the first section of the model

repetitively, after receiving large batch of new data from many users. Since second

part of the model is both small and low in number of parameters, training on the

mobile phone is practical. Similar to previous architecture, the complete model on

the graph can replace the operations with their lightweight counterparts, and also all

operations can utilize accelerators.

1.7 AI on Edge Devices

Deep neural networks (DNN) have achieved tremendous accuracy improvements

compared to conventional machine learning techniques for many important tasks, such

as image classification and speech recognition mentioned in Simonyan and Zisserman

(2014), He et al. (2016) and Chan et al. (2016). Edge applications are adopting

AI, specifically deep learning, to assist users in a better and more intelligent way.

For example, augmented reality, face recognition, and intelligent personal assistants

require deep networks for complex classification and decision making. However, state-

of-the-art deep learning models typically require storing millions of parameters and

need to perform large amounts of operations, which requires hours or even days of

training using many CPUs and GPUs on large-scale systems such as the cloud.

Such a cloud-only deep learning approach does not work well when the network is

not reliable or when the cloud is not responsive enough to handle sudden load surge.

10

Also, they rely on pre-trained neural networks, which stops the networks to adapt to

user local inputs. At the same time, it can also affect user experience due to network

latency. Further, the good computing and storage resources that modern edge devices

typically possess are not utilized to help the learning. Combining previous arguments,

cloud-based deep learning is not sufficient for edge applications.

Moreover, there are also important benefits from performing learning on edge

devices: 1) Personalization of the models based on user-specific behaviors and re-

quirements can be more effective and scalable, by learning on the devices that the

users directly interact with; 2) Responsiveness to user behaviors and environments

can be better achieved by adapting the models quickly and dynamically, using the

on-device resources; and 3) Privacy of user-specific information learned by the models

can be better protected on a device owned by the user compared to public resources

shared by many.

Deploying these computational and memory intensive models on edge devices, such

as mobile phones and smart cameras is challenging, since such devices are based on Sil-

icon on chip (SoC) architecture with limited resources designed to fulfill requirements

of embedded applications. To enable learning on such resource-constrained devices,

several model compression techniques are proposed: 1) Parameter sharing where a

single parameter represents multiple parameters with slight differences mentioned

in Chandakkar et al. (2017); Han et al. (2015a); Chen et al. (2015) ; 2) Quantization

which reduces the number of bits required by the weights in the network mentioned

in Han et al. (2015a); Kadetotad et al. (2016); 3) Pruning which removes negligi-

ble weights from the network referred in Han et al. (2015a); Le Cun et al. (1990);

Srinivas and Babu (2015), and 4) Knowledge transfer (KT) which trains smaller

networks (also termed students) under the supervision of the larger networks (also

termed teachers) to improve accuracy and speed.

11

Among all the aforementioned approaches, the KT approach is particularly inter-

esting, because it allows the student network to receive mentoring from the teacher

network while still learning independently. There are potentially several advantages

of this approach compared to the others. First, it can help the student network to

converge sooner by utilizing the information coming from the teacher in the form of

a single or multiple values. This information from the teacher model can help the

optimization phase of the student network by directing students’ parameters into the

same representations as teacher model parameters thereby allowing the student net-

work to approach local minima faster. Second, it can improve the accuracy of the

student network. KT allows the student models to arrive at better parameter values

based on the teacher model’s parameter values, which can deliver almost the most

optimized version of the classification function. Third, it helps the student network

to become more general by preventing from getting biased toward a certain set of

data.

Prior works Hinton et al. (2015); Ba and Caruana (2014); Romero et al. (2014);

Venkatesan and Li (2016) focused only on performance comparison of student and

teacher models, but they ignored the performance comparison between the student

models under supervision with the student models trained without supervision. This

can be of interest when the student with no KT utilization can perform the same

as student with KT utilization. The lack of comparison can invalidate the feasibil-

ity of KT technique. Further, in terms of performance, the related works focused

only on the accuracy of the student models, but they ignored the convergence time.

Faster convergence time can bring several benefits, such as less power consumption

and shorter training time. In addition, each of the works have limited coverage on

architecture types and make the assumption that a certain type of KT technique is

applicable on all types of architectures, which is not necessarily true.

12

The goal of this study is to provide a thorough analysis of the effectiveness of

the existing KT techniques. The existing KT techniques are broadly classified into

three categories based on the type of knowledge transferred from teacher networks to

student networks: First, the hard logits of a network mentioned by Ba and Caruana

(2014). Hard logits is defined as the output of the last layer of the teacher network

before passing to the softmax activation function; Second, the soft logits of a net-

work mentioned in Hinton et al. (2015). Soft logits are obtained by softening hard

logits with the help of temperature softmax variable and then passing softened logits

to the softmax activation function; Third, the intermediate layer representations of

a network mentioned in both Romero et al. (2014); Venkatesan and Li (2016). In-

termediate layer representations are the outputs of the middle layers of the teacher

network.

The above KT techniques are studied on three different types of student-teacher

architectures: 1) Type I is based on the networks used in Hinton et al. (2015); Venkate-

san and Li (2016); Ba and Caruana (2014), where the student network is shorter than

teacher network. For example, the student consists of six layers whereas the teacher

consists of 16 layers. 2) Type II utilizes a student network thinner than the teacher

network. For example, the student is MobileNet used in Howard et al. (2017) with

the width multiplier set to 0.05 whereas the teacher is the baseline MobileNet model

with the width multiplier of 1.0. 3) Type III student network mentioned by Romero

et al. (2014) is deeper and thinner than teacher network where the student consists

of 19 layers and the teacher consists of 5 layers.

The above models are built using TensorFlow introduced by Abadi et al. (2015),

and evaluated using CIFAR-10 and Caltech 101 datasets on a Tesla K40 testbed.

Following are the observations based on the experimental results: (1) Existing KT

techniques do not behave the same on all architectures ; Surprisingly, hard logits and

13

soft logits techniques Hinton et al. (2015); Ba and Caruana (2014) perform nega-

tively when applied to student networks of the Type II architecture; accuracy drops

by 9.48% on Caltech 101 and by 17% on CIFAR-10; (2) No significant improvement

is achieved in the student networks’ accuracy trained with soft logits and hard logits

techniques over the ones trained without applying KT techniques. (3) Intermediate

representations (single layer) technique improves the accuracy of Type I student net-

work by 7.36% while trained on Caltech 101. However, the same KT technique when

applied to Type III student network drops the accuracy by 5.23% on Caltech 101. (4)

With respect to convergence time, student network of Type I when trained with in-

termediate representations (single layer) based KT on Caltech 101 converges 16 times

faster than the student trained without any supervision. (5) At the same time, stu-

dent model of Type III converges as twice as independent student when trained with

soft logits, although improvement in the accuracy is only 1.85%. (6) Finally, among

all the KT techniques, intermediate representations KT technique seems to be the

best. Also, all the KT techniques trained the student models at a faster rate ranging

from 9% to 94% compared to student model trained without any KT techniques.

In short, in terms of accuracy, only the intermediate-representation KT technique

and Type I student architecture achieves significant improvement (7.36%) for the

dependent student (trained with KT) over the independent student (trained without

KT). The other KT techniques do not perform well on this architecture, and this

particular technique also does not perform well on the other architectures. In many

cases, the use of KT in fact reduces the accuracy of the dependent student compared to

an independent student and the drop can also be significant (up to 60.43%). In terms

of convergence time, KT can achieve some level of speedup on all the architectures,

where the best result (16X) is still from using the intermediate-representation KT

technique on Type I architecture.

14

There is lack of investigation in the granular level of KT. KT does have potential

to improve both accuracy and speed of a small network, but it is sensitive to how

the knowledge is transfered from the teacher and the architecture of the student.

In particular, transferring knowledge through the intermediate layers (in addition

to the last layer) is the most promising KT technique. Therefore, a more focused

study on the intermediate-representation KT technique should be performed in order

to understand its full potential. Thus, extensive study in how the knowledge is

transferred from the larger model to the smaller model is needed, to gain significant

improvement in the accuracy of the smaller model.

The rest of my work is organized as follows: Section 2 introduces the background;

Section 2.3 examines the related works; Sections 3 and 3.2 details the existing KT

techniques and their advantages; Sections 5 and 6 describe the evaluation methodol-

ogy and results; finally, Section 7 concludes my work.

15

Figure 1.4: Mentor-Mentee

16

Chapter 2

BACKGROUND LITERATURE

2.1 Neural Networks

Neural networks typically consist of convolution, pooling, activation and fully con-

nected layers. Each layer is made up of neurons with learnable weights and biases.

These neurons receive inputs, take weigthed sum over them, pass it through an acti-

vation function and respond with an output. Main purpose of the convolution layer is

to extract features from the input image. This is achieved through a filter which slides

over the input image by sharing the weights leading to lesser number of parameters.

The output of the convolution layer is the dot product between the filter and chunks

of the input image.

Activation layer, applied after every convolution layer, consists of an activation

function which decides whether a particular neuron should be considered or discarded

by the other connections in the network. Pooling layer, applied after few convolution

layers, reduces the spatial dimensions of the input resulting in reduction of number of

parameters and computations of the network. Fully connected layer, connects every

neuron with every other neuron in the network, without sharing the weights, leading

to larger number of parameters.

Weights and biases of the neural network are termed as parameters. In other

words, every connection in the neural network is treated as a parameter. Teacher

(mentor) is a sophisticated neural network with larger number of parameters com-

pared to the student (mentee) network.

Traditional knowledge transfer technique mentioned in Hinton et al. (2015) com-

17

bines two loss functions into one by adding them up. First, Root Mean Squared Error

Loss Function defined as the loss between the outputs of the last layers of the mentor

and mentee network as mentioned in Eq 2.1.

RMSE =

√√√√ n∑
i=1

(yLm − yLM)2 (2.1)

Lm is the output of mentee’s last layer, LM is the output of mentor’s last layer.

Second, Cross Entropy Loss Function is defined as the loss between the true labels

of the dataset and the output of the last layer of the mentee network expressed as

follows.

CE =

n∑
i=1

[yLmlogŷLm + (1− yLm)log(1− ŷLm)] (2.2)

The summation of the above two equations is the overall loss function as mentioned

in Eq 2.3.

J =

n∑
i=1

[yLmlogŷLm + (1− yLm)log(1− ŷLm)]

+

√√√√ n∑
i=1

(yLm − yLM)2

(2.3)

J is minimized by a single optimizer during the training of the mentee net-

work Hinton et al. (2015). Two major algorithms, forward-propagation and backward-

propagation, are used during the training.

In Forward-propagation, the output of the last layers of the mentor and the mentee

is evaluated by taking the weighted sum of the input dataset.

During Backward-propagation, J is minimized by updating the weights of each

layer of the mentee network with the gradients. The gradient is the partial derivatives

of J w.r.t weights.

Other publications Venkatesan and Li (2016), Romero et al. (2014) discuss a

different type of knowledge transfer, which includes an extra loss from the middle

18

layers of mentee and mentor. In this study, for better understanding, only 2nd and

3rd layer losses are shown and the overall loss function is mentioned below,

J =

√√√√ n∑
i=1

(yLm0 − yLM0)2

+

√√√√ n∑
i=1

(yLm1 − yLM1)2

+

√√√√ n∑
i=1

(yLm2 − yLM2)2

+
n∑

i=1

[ymlogŷLm2 + log(1− ŷLm2)(1− ym)]

(2.4)

Lm0, LM0 are the outputs of 2nd layer of mentee and mentor. Lm1, LM1 are the

outputs of 3rd layer of mentee and mentor. Lm2, LM2 are the outputs of last layer of

mentee and mentor as mentioned in Venkatesan and Li (2016), Romero et al. (2014).

2.2 Deployment of DNN’s on Edge Devices

DNNs require large volumes of input data to train the models, while the train-

ing also requires large amounts of computational resources in order to reach a good

accuracy within a reasonable time. Therefore, DNNs have been traditionally hosted

on large-scale systems such as cloud datacenters. The learning-based applications

(e.g., Siri, Google Now, Cortana, Alexa) running on the edge devices have to send

their requests (e.g., image classification, voice recognition) to the cloud where DNNs

are used to perform inference and return the results to the applications across the

network. A significant drawback of this cloud-based learning approach is that it relies

solely on the cloud resources for the learning and cannot perform well when the cloud

is overloaded or the network is unreliable.

Although in some cases, it is possible to download a trained DNN from the cloud

19

to an edge device and use the model to perform inference for prediction, classification,

etc. on the device, it still requires substantial space (to store the model) and time to

perform the inference.

Deployment of neural networks on edge devices has attractive prospects as studied

in Han et al. (2016, 2017), and related works have studied how to reduce the com-

putational complexity and storage requirement of DNNs in order to fit the networks

to the edge devices. One of the early works applies singular value decomposition

(SVD) to a pre-trained model to achieve weight compression as mentioned in Denton

et al. (2014). Magnitude-based weight pruning was introduced in Han et al. (2015b,a)

based on the observation that many weights have small values that produce negligi-

ble output response. Making these weights zero could remove connections between

neurons which saves memory. Adaptive quantization and weight sharing can also be

applied to reduce the number of bits needed per weight as mentioned in Han et al.

(2015a). Huffman coding has also been explored to quantize the weights in Han et al.

(2015a).

Modifying the original architecture of large DNNs was explored in Iandola et al.

(2016), based on certain guidelines, such as replacing most 3× 3 filters with those of

1×1, thereby saving 8× parameters. Delayed downsampling was employed to produce

large activation maps early on the network that helps maximize accuracy with a given

number of parameters. Other line of research includes developing specialized hardware

accelerators mentioned in Han et al. (2016, 2017) and guiding shallow CNNs using

the activations of deeper ones as mentioned in Venkatesan and Li (2016).

Binarized neural networks (BNN) that have binary weights and activations (1 or

−1) are proposed in Courbariaux et al. (2016). Only real-valued quantities in these

networks are the gradients that are obtained through standard DNN optimization al-

gorithms such as stochastic gradient descent or Adam. BNN reduces time complexity

20

by almost 60%.

Operation replacement was considered to replace convolutions with less compu-

tational intensive ones, without much loss of accuracy mentioned in Howard et al.

(2017); Chollet (2016). Le Cun et al. (1990) is showing that certain number of pa-

rameters are duplicating the knowledge representation, and by eliminating we can

reduce the size of model while preserving the accuracy. This is the only work, which

reduces number of parameters during the training phase. Knowledge distillation was

explored to transfer the knowledge from a large model to a small model, that is more

suitable for deployment as described in Romero et al. (2014); Hinton et al. (2015); Sau

and Balasubramanian (2016). Han et al. (2015a) is demonstrating pruning and com-

pression techniques on trained model. Their results are showing feasibility of model

size reduction, while preserving the same accuracy. Finally, related work Kang et al.

(2017) also studied the approach of partitioning a large model between the cloud and

edge device.

While these existing solutions are able to reduce a trained DNN and deploy it

on a device for inference, none of them can support the training (and re-training) of

a network on the device with the same level of accuracy as a DNN trained on the

cloud. However, there are important reasons on why the capabilities of edge devices

to support deep learning should be exploited:

• Personalization: For many applications, custom DNNs tailored to individual

users’ behaviors and/or requirements are important to deliver accurate results

to the users. While it is possible to train and run all the personalized models

on the cloud, it can be slow, costly, and difficult to scale. Although existing

works allow a generic model to be downloaded to edge devices and use the

local resources to perform inference, they do not allow such a model to be

personalized on the devices to meet the user’s specific needs. In comparison, it

21

is advantageous if the personalized models can be trained in situ on the devices,

while the user-specific training data is collected by the local sensors and user

interfaces.

• Responsiveness: Using edge devices to support deep learning can provide

better responsiveness than relying only on the cloud resources. On one hand, a

locally stored model on an edge device can be readily used to perform training

and inference and respond to user requests using local resources, regardless

of the network connectivity and the load on the cloud system. On the other

hand, by using the local data and resources to continuously train the model

on the device, it can also quickly respond to the dynamic changes in the user’s

behaviors, situations, and requirements.

• Privacy: For certain DNN applications (e.g., biometric authentication), the

privacy of the data and/or model needs to be protected. Such privacy con-

cerns can be more effectively addressed if a user’s personal data and model are

stored and used only on the user’s own device, while cloud resources can still

be involved to train a non-private, generic model to assist the learning on the

devices.

Nonetheless, it is also important to recognize the limitations of edge devices (lim-

ited computing and storage capacity, limited battery life, limited access to data, etc.),

and it is inappropriate and infeasible to train and run large models entirely on the de-

vice. Therefore, in this study, distributed, collaborative deep learning is advocated, a

new paradigm that utilizes the complementary strengths of edge and cloud resources

to substantially improve the speed and accuracy of learning for diverse applications.

22

2.3 Related Work

As DNNs require large memory and huge computational power, different tech-

niques to reduce their size without affecting the performance of the model have gained

a lot of attention. Related works proposed several model compression techniques,

which can be broadly classifed into three categories as mentioned below.

• Weight Sharing: This technique reduces the memory occupied by the model

by sharing weights. K-means clustering technique was used to find out weights

that can be shared by the network mentioned in Han et al. (2015a). HashedNets

model was proposed in Chen et al. (2015). They shared weights by using a

hash function which groups weights into hash buckets mentioned in Chen et al.

(2015).

• Quantization: Memory occupied by the model is reduced by shrinking the

number of bits needed by the weights. This technique was adopted in Han

et al. (2015a) and showed that the number of bits reduced from 35 to 5 for every

connection in the network. Kadetotad et al. (2016) applied blockwise structured

sparsity and quantized the weights and activations after training was complete

resulting in reduction of 5-6 bit. Number of effective weights to be stored can

be limited by having multiple connections sharing same weights.

• Pruning Techniques: Memory occupied by the model can be reduced ex-

tensively using pruning techniques. Magnitude based pruning removes weights

or connections which produce negligible response. This technique is adpoted

in Han et al. (2015a). They remove all the weights which are below a particular

threshold value, resulting in reduction of number of parameters by 9x and 13x

for AlexNet and VGG-16 model. The Optimal brain damage method reduces

23

the number of weights based on the Hessian loss function mentioned in LeCun

et al. (1990). Identifying redundant neurons and removal of such neurons is ex-

plored in Srinivas and Babu (2015). They used data-driven pruning technique

to remove redundant neurons.

Above mentioned categories focused on reducing memory, thereby the computa-

tional cost of the student model while keeping the accuracy same. However, none

of the categories focused on improving the accuracy of the student model. In other

words, the above mentioned techniques all focus on reducing the size of a model so

that it can be deployed in a resource-constrained environment.

KT is one of the model compression techniques, which aims for improving the

accuracy of the student models. It achieves this with the help of a teacher model

which provides hints (knowledge) in order to perform and generalize better. None

of the related works have performed a thorough investigation on the effectiveness of

these existing knowledge transfer techniques.

Although there are several related works on KT, none of them provides a thorough

study on the effectiveness of such techniques, and still several key questions do not

have good answers: 1) Do all the KT techniques bring significant improvement to

the accuracy of the student network? 2) Can we apply a single KT technique on

any student architecture with any training dataset and yet see consistent results?

3) Do all the KT techniques improve the convergence speed of the student model?

Therefore, the goal of this study is to provide a good understanding of KT by finding

answers to these questions through a comprehensive analysis of accuracy and speed

of different KT techniques on different model architectures.

In this study, following details are discussed: (1) Various forms of KT techniques,

(2) Effectiveness, (3) Limitations, and (4) Feasibility of applying them to train student

models.

24

Chapter 3

KNOWLEDGE TRANSFER

Transfer of knowledge from a larger model to a smaller model is termed as knowl-

edge transfer.

3.1 Different Techniques of Knowledge Transfer

As mentioned in Section 2, large DNNs require substantial space and time, while

they perform better and are more accurate compared to compact models. Prior works

adopted KT techniques for training a fast and compact model as it approximates

functions learned by a larger and more accurate model (DNN). Difference between

KT and other model compression techniques is the existence of a teacher model

which provides supervision. In this method, large amounts of training data are passed

through the teacher model to collect the output, to be used as target labels for training

student models. In this technique, unlabeled data is passed through the large and

accurate model to collect the output (logits). These logits are used as target labels

for training compact models. The compact models are not trained on original labels.

By doing so, student models have the potential to learn the representation that is

being learned by the teacher model and perform close to the teacher despite being

small. In this section, the existing KT techniques are broadly classified into three

categories, and the basic approach is explained. Further, the potential strengths of

each of the techniques is discussed.

25

3.1.1 Transfering Hard Logits

Hard logits KT technique was introduced by Ba et al. Ba and Caruana (2014).

They first trained a deep teacher model to achieve a good accuracy. Then they trained

a shallow student model on TIMIT and CIFAR-10 datasets to mimic the behavior of

the deep teacher model, by formulating a regression problem which minimizes squared

difference (RMSE) between logits (output of the last layer) of the deep teacher model

and softmax output of shallow student model, as shown in Fig. 3.1. They used the

logits of the teacher model directly as opposed to probabilities produced by passing

logits to softmax activation function, in order to learn the valuable similarity structure

over the data. Since these logits are not softened and used directly to train student

network, this KT approach is named transferring the hard logits.

In this approach, the student network is trained only on the teacher network’s

logits, unlike the other approaches mentioned in this section where original labels of

the dataset are also used. Loss function of this approach is formulated in Eq. 3.1.

√√√√ n∑
i=1

(ŷs − zt)2 (3.1)

Where:

• ŷs: predicted softmax output of student

• zt: predicted hard logits of teacher

This technique can be helpful for two major reasons. First, if true labels have

errors, the teacher model may eliminate few of them making the student model learn

easily. Second, the original labels may depend on the features that are not available

as inputs to the student network. Thus, teacher model eliminates those that are

26

dependent on unavailable data and gives the labels which are dependent only on the

input features.

This was the first model compression technique which trained a shallow network

using the outputs of a deeper network and could learn complex functions previously

learnt by the deeper model and empirically showed that shallow neural networks can

be trained to achieve performances comparable to that of deep neural networks.

3.1.2 Transferring Soft Logits

Hinton et al. proposed a knowledge distillation approach Hinton et al. (2015)

which helps compress the knowledge of ensemble models into a student model. They

achieved this by introducing a temperature softmax variable (T) as mentioned in

Eq. 3.2.

qi = exp(zi/T)/
∑
j

exp(zj/T) (3.2)

where,

• zi: is the output of i th neuron of teacher’s layer termed as hard logits;

• T : is the temperature softmax variable - parameter to control the relative im-

portance of the soft targets provided by the larger model. Higher the value of

T softer are the targets;

• qi: is the output of i th neuron of teacher’s softmax layer termed as soft logit;

and

• j: is the number of neurons at the teacher’s softmax layer.

27

Hard logits of teacher and student models are divided by temperature softmax

variable (T) and passed through softmax activation function to obtain softer proba-

bilities (soft logits). The student model minimizes the sum of two objective functions:

(1) mean squared difference (RMSE) between the soft logits, and (2) cross entropy

loss between the softmax output and correct labels of the dataset as shown in Fig. 3.2.

I name this KT approach as transferring soft logits because soft logits of the

teacher network are used to train the student network. They evaluated their approach

on MNIST dataset and showed that soft targets can effectively transfer information

including the knowledge (about the data which smaller model has never seen before)

from complex model to distilled smaller model.

The loss function of this technique is mentioned in Eq. 3.3. Interpretation of the

loss function is as follows: the first term indicates the student’s cross entropy loss; the

second term indicates the MSE loss between the soft logits of teacher and student. The

student model minimzes the MSE loss while minimizing the overall loss. By doing

so, parameters of the student’s model (weights and biases) tend to move towards

parameters of the teacher’s model, which results in learning same representations as

that of teacher’s. The soft logits approach is similar to the hard logits approach

but with a slight difference. Soft logits approach uses the loss function mentioned in

Eq. 3.3.

n∑
i=1

[yslogŷs + (1− ŷs)log(1− ys)] +

n∑
i=1

(qs − qt)
2 (3.3)

Where:

• ys: true labels of the datasets

• ŷs: same as qs but at a temperature softmax variable (T) of 1

28

Figure 3.1: Hard-Logits

• qs: predicted softened softmax output of student (soft logits)

• qt: predicted softened softmax output of teacher (soft logits)

It is claimed that by using soft targets instead of hard targets (logits), more useful

information can be carried which is not possibly be encoded with hard targets Hinton

et al. (2015). The other advantage of this approach is that the student network can be

trained with much less data than before, since soft targets with high entropy provide

more information compared to hard targets and much less variance in the gradient

between training cases.

3.1.3 Transferring Intermediate Layer Representations

Both above approaches use only the hard or soft logits of the teacher model as

knowledge to the student model. In addition to these logits, knowledge from the

teacher’s intermediate layers is also used to train the student model. Therefore this

type of approach is named as transferring intermediate layer representations.

Romero et al. proposed to use the output of the middle layer of the teacher model

as hint to improve the performance of the deep and thin student model Romero et al.

29

Figure 3.2: Soft-Logits

Figure 3.3: Intermediate-Representations (Single Layer)

(2014).

Unlike shallow models used in the previous two approaches, this approach assumes

that the compact model is thin but deep. Thinner model reduces the computational

burden whereas deeper model takes advantage of depth to reuse the features and are

exponentially more expressive than the shallow ones. They termed these intermediate

layers representations (knowledge) as hints.

By using the hints derived from the intermediate layer representations, on the

CIFAR-10 dataset, they claim that a student network, which is thin and deep and

30

Figure 3.4: Intermediate-Representations (Multiple Layer)

contains ten times fewer parameters, outperforms a larger teacher network.

Knowledge transfer is achieved by training the student model in two stages. In

the first stage, the student model is trained up to the guided layer (the 11th layer

of the student network) with the output of teacher’s hint layer (the 2nd layer of the

teacher model) as target labels as shown in Fig. 3.3. During the training, student

network updates the weights of all the layers up to the guided layer by minimizing

the loss between the teacher’s hint layer and the student’s guided layer. The reason

for training up to the guided layer is to obtain a good starting point in the parameter

space, which helps training teacher model easily. Reason behind carrying out the first

stage is this kind of curriculum learning would initialize the student network in a way

that it would receive exampls of increasing and appropriate difficulty w.r.t already

learned concepts.

In the second stage, the student model continues training on the pre-trained pa-

rameters obtained in the first stage. Further, it updates the weights of entire network

by minimizing the Knowledge distillation (KD) loss. KD loss is defined as the sum

of two cross entropy loss functions: (1) cross entropy loss between the outputs of

student network and true labels of the dataset and (2) cross entropy loss between the

31

softened outputs of student and teacher network. The overall loss function of this

approach is formulated in Eq. 3.4.

The loss function is interpreted as follows: the First term is the MSE loss between

the outputs of teacher-student intermediate layer pairs; the Second term is the cross-

entropy loss of the student model; and the third term is the cross entropy loss between

the soft logits of the teacher and student models.

Student model minimizes the MSE loss while minimizing the overall loss func-

tion. By doing so, parameters of student’s model (weights and biases) tend to move

towards parameters of teacher’s model. Thus, student’s intermediate layers outputs

are approximated to teacher’s intermediate layers outputs. As a result, student net-

work generalizes well and perform in comparison to teacher network. They term this

approach as hint based training.

J =

√√√√ n∑
i=1

(ysji − ytji)2

+
n∑

i=1

[yslogŷs + (1− ŷs)log(1− ys)] +
n∑

i=1

(qs − qt)
2

(3.4)

Where:

• ysji: output of student’s j th layer

• ytji: output of teacher’s j th layer

• ŷs: predicted softmax output of student

• qs: predicted softened softmax output of student (soft logits)

• qt: predicted softened softmax output of teacher (soft logits)

The technique of transferring of intermediate representations is extended further by

Venkatesan et al. Venkatesan and Li (2016). Here, instead of considering only the

32

middle layer pairs of student-teacher they experimented with multiple intermediate

layer pairs, including softmax layers, as shown in Fig. 3.4. First, they trained a

teacher model on Dataset D1. Then they used the representations from the middle

layers including last layers of the pre-trained teacher model to train a student model

on Dataset D2. D2 is much smaller and less general compared to D1. Overall loss

function of this approach is formulated in Eq. 3.5

J =

m∑
j=1

√√√√ n∑
i=1

(ysji − ytji)2

+

n∑
i=1

[yslogŷs + (1− ŷs)log(1− ys)] +

n∑
i=1

(ŷs − ŷt)
2

(3.5)

Where:

• m: indicates number of teacher-student layer pairs

• ysji: output of student’s j th layer

• ytji: output of teacher’s j th layer

• ŷs: predicted softmax output of student

• ŷt: predicted softmax output of teacher

Romoreo et al. claims that a student network with 10 times fewer parameters than

a teacher network could outperform the teacher network with the help of knowledge

transferred through intermediate layer representations. Venkatesan et al. claimed

that multi-layer KT provides better generalization accuracy compared to the popular

regularization techniques, such as L2 , L1 and dropout.

33

3.2 Architectures

In this section, three different types of student-teacher architectures are discussed.

In each of the architectures, student model is constructed in a way that it has fewer

parameters compared to teacher model. These architectures are used to evaluate the

effectiveness of KT techniques. Each KT technique in Section 3 is applied on all

three architectures to examine whether a particular KT technique is equally effective

on three architectures. Further, to drive general conclusions on the effectiveness of

KT techniques, we analyze the behavior of KT techniques on different architectures.

Details of the architectures are mentioned below.

• Type I: Teacher model is VGG16 described in Simonyan and Zisserman (2014).

Student model is mentee network in Venkatesan and Li (2016). Here, student

network is shorter than the teacher network and consists of 3.2M parameters.

On the other hand, number of parameters in teacher model are 8.5M (2.5 times

more than the student model). Fig. 3.2 demonstrates Type I architecture.

• Type II: Teacher and student models use the MobileNet architecture of Howard

et al. (2017) with different widths. The width is changed by tuning the width

multiplier parameter present in mobilenet architecture. Width multiplier of

baseline model is 1.0. In all the experiments the width multiplier of teacher

is set to 1.0 and that of student to 0.1 as mentioned in Howard et al. (2017).

Unlike Type I, here, student network is thinner and of same depth as that of

teacher. In terms of number of parameters, student model consists of 1.3M

whereas teacher model consists of 4.2M. This architecture is shown in Fig. 3.2.

• Type III: Teacher model is Maxout model of Goodfellow et al. (2014). Student

model is FitNet4 in Romero et al. (2014). In this case, student network is thin-

34

Student Teacher

Figure 3.5: Type I Architecture:: Student Model is Shorter than the Teacher Model

ner and deeper compared to teacher network.. Number of parameters in student

model equals 2.5M which is approximately 4 times lesser than the number of

parameters in teacher model (9M). Fig. 3.2 shows architecture of Type III.

All the related works have a limited coverage on the architecture types. Hard-

logits, soft-logits, and intermediate-representations (multiple layer) based KT

techniques were evaluated only on shallow models similar to Type I used by Hin-

ton et al. (2015); Venkatesan and Li (2016); Ba and Caruana (2014). Intermediate-

representations (single layer) based KT technique was applied only on Type III.

None of these works justified why they evaluated their KT techniques only on

specific architectures. In order to drive general conclusions on the effectiveness

of KT techniques, the behavior of KT techniques on different architectures is

analyzed.

35

Student Teacher

Figure 3.6: Type II Architecture:: Student Model is 1/20 Times Thinner than the
Teacher Model but Both have Same Height

Student Teacher

Figure 3.7: Type III Architecture:: Student Model is Thinner and Deeper Than the
Teacher Model

36

Chapter 4

MOTIVATION & PROPOSED WORK

4.1 Knowledge Transfer from Multi Task Learning Perspective

Multi task learning (MTL) as mentioned in Ruder (2017) has been used in various

areas of machine learning such as natural language processing and computer vision

described in Collobert and Weston (2008) and Ren et al. (2015). MTL is a machine

learning technique which learns multiple tasks at the same time. In neural networks

perspective, the learning technique becomes MTL if the neural network is trained to

classify more than one task. For instance, a neural network while classifying an image

as a cat or a dog can also predict the breed of it. In this case, classifying the image

as an animal is one task and predicting it’s breed is another task.

MTL in neural networks is achieved by having multiple loss functions; each as-

signed to a task. Neural network learns each task by optimizing the assigned loss

function. Traditional knowledge transfer in student-teacher neural networks can effec-

tively be viewed as MTL, where the student network learns two tasks simultaneously

by optimizing two loss functions: (1) cross entropy loss between the true labels of

the dataset and the predicted labels of the student. By optimizing the cross entropy

loss, student learns the representations from the dataset; (2) RMSE loss between

the guided layers of the student and the hint layers of the teacher. By minimizing

the RMSE loss, the student network learns the representations of the teacher’s hint

layers. Here, learning the representations from the teacher is one task and learning

from the dataset is another. In this way, the student also learns from the teacher’s

hint layers while learning from the dataset, leading to better performance. So far,

37

student-teacher knowledge transfer was not seen from the perspective of MTL.

The proposed knowledge transfer technique in the student-teacher network is also

based on the idea of multi task learning with the following tasks: (1) to learn the

representations of the teacher’s layers by minimizing the RMSE loss between the

outputs (representations) of the xth layers of the teacher and the student; (2) to learn

the representations of the dataset. However, as opposed to traditional knowledge

transfer technique, the tasks here are independent of each other. For example, one

of the tasks is, student’s xth layer learns the representations from the xth layer of the

teacher; the other task is, student’s yth layer learns the representations of the teacher’s

yth layer. In this case, while the student’s xth layer learns the representations from the

teacher’s xth layer, student’s yth layer learns only from the yth layer of the teacher as

opposed to traditional knowledge transfer technique where the student’s yth layer not

only learns the representations from the teacher’s yth layer but also from the teacher’s

xthlayer.

The proposed knowledge transfer technique brings an improvement of 10% over the

traditional knowledge transfer techniques. Reason for this improvement is, since the

tasks are independent, in every task, student is determined to learn only appropriate

representations rather than learning all the representations of the teacher. For a better

understanding, assume the first layer of the teacher and student network extract edges

of the input image. Second layer extracts objects like circles. Hence, learning the

representations of the first layer of the teacher for the second layer of the student is

not beneficial.

Now let’s see, how to map the layers of student-teacher? the mapping of x and

y layers of student-teacher is analysed and found that the performance varies based

on the combination of x and y. Random mapping of the teacher-student layers can

sometimes be lucky but not always. I propose to use cosine similarity metric to

38

Table 4.1: Mapping of Teacher→Student Layers of Same Widths

Architecture Same Width Mapping

Type I 2nd→ 1st, 4rd→2nd,5th→3rd, 10th→4rd, 12th→5rd

Table 4.2: Mapping of Teacher→Student Layers of Different Widths

Architecture Different Width Mapping

Type I 3nd→ 1st, 5rd→2nd, 8th→ 3rd, 10th→4th, 12th→5th

find the mapping between student-teacher layers. In cosine similarity metric, 1)

the outputs of the student-teacher layer pairs are normalized; 2) dot product of the

normalized outputs is calculated; (3) layer pair with highest dot product value is

chosen.

The proposed technique is implemented on Type I architecture. Table 4.1 and 4.2

show the layers mapped from the teacher model to the student model. In Table 4.1,

the mapping is obtained by (1) calculating the cosine similarity metric between the

student-teacher layer pairs having the same width, where width is defined as the

number of feature maps of the layer; (2) choosing the layer pair with the highest cosine

similarity value. On the other hand, in Table 4.2, mapping between the student-

teacher layer pairs is obtained by calculating cosine similarity metric between all the

student-teacher layer pairs including the ones with different widths, and the layer pair

with highest cosine similarity value is chosen.

Mapping between the student-teacher layers of the same width is straightforward.

Fig 4.2 demonstrates student-teacher mapping layers of same width. Here, the over-

all loss function is the sum of RMSE losses evaluated between the student-teacher

mapping layers. RMSE loss between the student-teacher mapping layers is evaluated

by summing up the RMSE values between its feature maps as shown in Fig. 4.5. In

Fig. 4.5, a,b indicate the feature maps of the student-mapping layer, and c, d indicate

39

64

128

512

256

512

512

128

128

64

64

256

256

256

512

512

512

512

512

Teacher Student

2 3

1

4

RMSE

RMSE

Figure 4.1: Demonstrates Mapping between Teacher and Student Layers of Different
Widths. Teacher’s 3rd Layer Consisting of 128 Neurons is Mapped to Student’s 1st

Layer Consisting of 64 Neurons. RMSE loss is Evaluated Between 1 and 2 Mapping
Layers. Similarly, RMSE loss is Evaluated Between 3 and 4 Mapping Layers.

the feature maps of the teacher-mapping layer. Thus, the RMSE loss of the student-

teacher mapping layer is the addition of the RMSE evaluated between a and c feature

maps and the RMSE evaluated between b and d. Further, RMSE between the fea-

ture maps is calculated element wise. On the other hand, Fig 4.1, shows the mapping

of the student and teacher layers of different widths. Here, the RMSE between the

student-teacher mapping layers cannot be evaluated as the number of feature maps

of the student and teacher mapping layers are not equal as shown in Fig. 4.6. In Fig

. 4.6, a, b are two feature maps of the student layer and c is the only feature map of

the teacher layer. Thus, RMSE of the c feature map cannot be evaluated.

For the student-teacher mapping layers of different widths, an extra layer, which

is called as embed, and consists of 64 neurons is added to both the teacher and

student mapping layers to produce equal number of feature maps. This is achieved

40

64

128

512

256

512

512

128

128

64

64

256

256

256

512

512

512

512

512

Teacher Student

2 3

1

4

RMSE

RMSE

Figure 4.2: Demonstrates Mapping Between Teacher and Student Layers of Same
Widths. 3rd Layer of Teacher Consisting of 128 Neurons is Mapped to 1st Layer of
Student Consisting of 128 Neurons. RMSE loss is Evaluated Between 1 and 2 Mapping
Layers. Similarly, RMSE loss is Evaluated Between 3 and 4 Mapping Layers.

by connecting an embed layer in the form of fully connected or convolution layer to

the teacher-mapping layer; similarly, connecting another embed layer to the student-

mapping layer as shown in Fig 4.3 and Fig 4.4. As a result, RMSE loss between the

teacher-student mapping layers can be evaluated by calculating the RMSE between

the feature maps of the student-teacher embed layers.

In order to have equal number of feature maps for the teacher-student mapping

layers, an embed layer is utilized. However, the embed layer connects the mapping

layers having features maps of same size. Now, let’s discuss how to connect layers

having feature maps of different sizes? As shown in Fig 4.5, if the feature maps have

the same size the RMSE value is calculated element wise. However, as shown in

Fig 4.6 the RMSE value cannot be calculated on the feature maps of different sizes

such as 2X2 of student and 2X3 of teacher. Thus, all the feature maps are reduced

41

64

128

512

256

512

512

128

128

64

64

256

256

256

512

512

512

512

512

Teacher Student

64 64

Embed

RMSE

Embed

CV

CV

Figure 4.3: CV Indicates Convolution Layer; Embed Layers Consists of 64 Fea-
ture Maps and are Connected to Teacher and Student Layers as Convolution Layers.
RMSE Loss Between the Embed Layers of Teacher and Student is Calculated

to equal size of 1x1 by taking the mean of all the elements of each feature map as

shown in Fig 4.9.

42

64

128

512

256

512

512

128

128

64

64

256

256

256

512

512

512

512

512

Teacher Student

64 64

Embed

RMSE

Embed

FC

FC

Figure 4.4: FC Indicates Fully Connected Layer; Embed Layers Consists of 64
Feature Maps and are Connected to Teacher and Student Layers as Fully Connected
Layers.

0.1 0.2

0.2 0.4

0.2 0.3

0.4 0.5

Student Teacher

0.1 0.2

0.2 0.4

0.2 0.3

0.4 0.5

a b c d

RMSE

RMSE

Figure 4.5: a, b are the Feature Maps of the Student Layer. c,d are the Feature
Maps of the Teacher Layer. Both Student and Teacher Layers have Equal Number of
Feature Maps.

43

count of feature maps is not the same

0.1 0.2

0.2 0.4

Student Teacher

0.1 0.2

0.2 0.4

0.1 0.2

0.2 0.4

a b c

RMSE

Figure 4.6: a, b are the Feature Maps of the Student Layer. c is the Feature Map
of the Teacher Layer. Student and Teacher Layers have Unequal Number of Feature
Maps.

0.1 0.2

0.2 0.4

0.2 0.3

0.4 0.5

Student Teacher

a b

1

2

3

4

Figure 4.7: a is the Feature Map of the Student Layer. b is the Feature Map of the
Teacher Layer. a, b Feature Maps have Same Shape of 2X2.

0.1 0.2 0.8

0.2 0.4 1.0

0.2 0.3

0.4 0.5

Student Teacher

a b

1

2

3

4

Figure 4.8: a is the Feature Map of the Student Layer. b is the Feature Map of the
Teacher Layer. a, b Feature Maps have Different Shape. a is of Shape 2X3; Whereas,
b is of Shape 2X2.

44

0.1 0.2 0.8

0.2 0.4 1.0

0.2 0.3

0.4 0.5

Student Teacher

a b

0.2 0.3

0.4 0.5

0.1 0.2 0.8

0.2 0.4 1.0

c d

Mean Mean Mean Mean

4.5 3.53.54.5

Figure 4.9: Mean of all the Elements of Each Feature Map a, feature map b is
Calculated. Similarly, Mean of all the Elements of the Feature Map c and d is
Calculated. The Output Feature Maps are of Size 1X1.

45

Chapter 5

METHODOLOGY

In this section, details of the methodology are discussed to evaluate the per-

formance in terms of accuracy and convergence rate of student models trained by

applying different KT techniques described in Section 3.

In addition, (1) Characteristics of datasets, (2) Training methodology and (3)

Hyperparameters tuned while training networks are also discussed. Tensorflow in-

troduced by Abadi et al. (2015) is used to build the models, and are run on a Tesla

K40 GPU, hosted on a server equipped with dual Intel Xeon E5-2630 processors and

64GB of main memory (unless otherwise noted). Although the experiments were run

on a server, all the student models can also run on a typical edge device such as a

smart phone (Google Nexus 5). The relative performance of KT w.r.t. the baselines

should hold on edge devices.

5.1 Benchmark Datasets

• CIFAR-10 dataset consists of 60,000 (32X32) RGB natural images from 10 dif-

ferent object classes with 6000 images per class Krizhevsky and Hinton (2009).

There are 50,000 training images and 10,000 test images.

• Caltech 101 dataset consists of 9145 RGB images (224X224), belonging to

101 classes. Each class has 40 to 800 images. We divided the dataset into three

parts: the training set consists of 5853 images (64% of total dataset), the testing

set consists of 1829 images (20%), and the validation set consists of 1463 images

(16%) Fei-Fei et al. (2007).

46

CIFAR-10 and Caltech 101 data sets are augmented with random left and right

flipping during training. Both the datasets are normalized with zero mean and unit

standard deviation before feeding into network. This preprocessing is being done to

better generalize the trained model.

5.2 Training Methodology

Two baselines are considered:

• Teacher: Teacher model can be used for comparison with student model, in

order to see how much the student represents the state-of-the-art accuracy.

Teacher model provides supervision for the student model. Thus, the teacher

model should be trained ahead of the student model. All three types of teacher

models mentioned in Section 3.2 are trained from scratch on target datasets Cal-

tech 101 and CIFAR-10 in the usual way using the cross-entropy loss formulated

in Eq. 5.1.

n∑
i=1

[ytlogŷt + (1− ŷt)log(1− yt)] (5.1)

Where:

– yt: True labels of the datasets Cifar10/Caltech101

– ŷt: Predicted softmax output of teacher

• Independent Student: As a baseline, an independent student model is also

considered which is trained independently from scratch without any form of

knowledge transfer techniques. Input data to the student model is the image and

target data is the true labels of the datasets Caltech 101/CIFAR-10. Student

model is trained to minimize the cross-entropy loss formulated in Eq. 5.2.

47

In order to measure the effectiveness of the KT techniques, the performance

of the student models trained under supervision is compared with the baseline

independent student model.

n∑
i=1

[yslogŷs + (1− ŷs)log(1− ys)] (5.2)

Where:

– ys: True labels of the datasets CIFAR-10/Caltech 101

– ŷs: Predicted softmax output of student

• Dependent Student: In this approach, the student model is trained under the

supervision of the teacher model using KT techniques mentioned in Section 3.

In order to apply each of these KT techniques same batch of input data (Caltech

101/CIFAR-10) is passed to the teacher and student models. The teacher model

does the inference on the input data and predicts the output. Student model

is trained by minimizing the loss function formulated with teacher’s output, as

mentioned in Section 3.

While applying intermediate-layer-representations (single layer) KT technique,

7th layer of the teacher and 3rd layer of the student are chosen as intermediate

layers in Type I architecture. In Type II, 7th layer of the teacher and 7th layer

of the student are chosen. Finally, in Type III, 2nd layer of the teacher and 11th

layer of the student are chosen as demonstrated in Fig. 5.1.

Similarly, while applying intermediate-layer-representations (multiple layers)

KT technique, 2nd, 3nd and 5th layers of the teacher and 1st, 2nd and 3rd layers

of the student are chosen as intermediate layers in Type I architecture. In Type

48

Table 5.1: Mapping of Teacher→Student Single Layer Pairs

Single Layer Mapping

Type I 7th→ 3rd

Type II 7th→ 7th

Type III 2nd→ 11th

Table 5.2: Mapping of Teacher→Student Multiple Layer Pairs

Multiple Layers Mapping

Type I 2nd→ 1st, 3rd→2nd, 5th→ 3rd

Type II & Type III 1st→ 1st, 2nd→2nd, 3rd→ 3rd

II and Type III, 1st, 2nd, and 3rd are chosen as intermediate layers of the teacher

and student models as shown in Fig. 5.2.

5.3 Hyperparameters

Batch size of 128 is used to train networks of all three types on CIFAR-10

dataset and batch size of 25 on Caltech 101 dataset. Initial learning rates for

all three types are set to 10e−2. They are decayed exponentially each epoch with

a factor of 0.98. All the networks are trained for 100K iterations and validation

and test accuracy are calculated at each epoch. Final accuracy of the model is

determined as the test accuracy attained at the epoch with highest validation

accuracy.

49

Chapter 6

DISCUSSION AND RESULTS

In this section, the performance in terms of accuracy and convergence time of the

dependent student that belongs to Type I, Type II, and Type III architectures with

the corresponding independent student models are compared, in order to measure the

effectiveness of KT techniques.

• Convergence Time, which is the total training time required by the network to

reach the smallest possible validation loss. After convergence, loss value will not

decrease, but only fluctuates around a specific value. In this study, convergence

time of the network is evaluated as the total number of iterations required to

reach 90% of the Top-1 accuracy.

• Classification Accuracy , is termed as the proportion of correct predicted labels

among all the predictions obtained by the network. Following are the observa-

tions and analysis of the convergence time and Top-1 accuracy.

6.1 Results & Discussion on Convergence Time

Fig. 6.1 and Fig. 6.2 represent top-1 accuracy after every thousand iterations

of the dependent student and baseline models. Dependent student and baseline

models in Fig. 6.1 are of Type I architecture and are trained on Caltech 101

dataset whereas the ones in Fig. 6.2 follow Type III architecture while trained

on CIFAR-10 dataset.

In Fig. 6.1, dependent student outperforms independent student after every iter-

ation. Further, the number of iterations required by the independent student to

50

reach 90% of its top-1 accuracy (55.11%) is 17K whereas the dependent student

model trained using intermediate layer representations (single layer) requires

only 0.95K iterations to reach 90% of its best accuracy (61.74%). This shows

dependent student converges approximately 17 times faster than the indepen-

dent student.

Similarly in Fig. 6.2, dependent student outperforms independent student after

every iteration. Moreover, number of iterations required by the independent

student to reach 90% of its top-1 accuracy (66.12%) is 15K whereas the depen-

dent student model trained using soft logits requires only 7K iterations to reach

90% of its best accuracy (67.78%). This indicates KT improves the convergence

time of the student model drastically, allowing the dependent student to con-

verge in less than half of the number of iterations required by the independent

student.

In addition, difference in the accuracy gap between the dependent and inde-

pendent student in Fig. 6.1 is higher compared to Fig. 6.2. Reason could be

the teacher model lacks the capability to capture more complicated features

compared to Type I teacher model. Thus, the knowledge transferred from the

teacher model is not as effective as Type I. Moreover, CIFAR-10 dataset con-

sists of 40,000 images in the training set. Since the student model is trained on

40,000 images, student model gets sufficient supervision from the dataset itself.

As a result, the extra supervision from the teacher model does not improve the

accuracy of the student model drastically.

In short, the results show that some level of speedup is achieved on all the

architectures, whereas the best improvement (16X) still comes from Type 1

architecture with the use of intermediate-representation KT.

51

6.2 Results & Discussion on Top-1 Accuracy

Table. 6.1 and Table. 6.2 shows Top-1 accuracy of the dependent student and

baseline models that belong to Type I architecture, while trained on Caltech 101

and CIFAR-10 datasets. Here, dependent student, trained using Intermediate

layer representations (single layer) KT technique on Caltech 101, performed

7.36% better than the independent student. We believe, the huge improvement

in the accuracy of the dependent student is because, in Type I, the teacher

model is deeper than the student model. Thus, the teacher model can capture

more complicated features, which results in more effective knowledge transfer.

However, dependent student trained using hard logits technique on CIFAR-10

performed only 1.88% better than the independent student. Since, student

model is trained on CIFAR-10 dataset which has 40,000 images in the training

set as opposed to 5853 images in Caltech 101, student model gets sufficient su-

pervision from the dataset itself which makes extra supervision from the teacher

model ineffective.

Results in Table. 6.1 are similar to the results shown in Hinton et al. (2015);

Ba and Caruana (2014). Table. 6.3 and Table. 6.4 indicates Top-1 accuracy of

dependent and baseline models of Type II architecture while trained on Caltech

101 and CIFAR-10. None of the KT techniques improved the accuracy of the

dependent student trained on Caltech 101 over the independent student.

However, dependent student trained using Intermediate layer representations

(single layer) technique on CIFAR-10, performed 1.4% better than the indepen-

dent student.

Table. 6.5 demonstrates that the independent student outperformed the teacher

52

model. Here, all models belong to Type III architecture and are trained on

CIFAR-10 dataset. Although Romero et al. (2014) claims that the student

model trained using intermediate layer representations (single layer) KT tech-

nique outperformed the teacher model, I believe the major improvement is due

to the depth of the student model, but not because of KT technique. To elab-

orate on this, non-linearity increases with the increase in depth of the student

model. This results in learning more complex representations, thereby higher

classification accuracy.

Similar to Romero et al. (2014), I also observe that student model with inter-

mediate layer representations (single layer) KT technique gained an accuracy

of 68.24% compared to the baseline teacher model accuracy, which is 68.08%.

However, the accuracy of student trained with intermediate layer representa-

tions (single layer) KT technique is much lower than the independent student,

making the usage of KT technique ineffective.

In addition, the improvement in the accuracy of the student model combined

with soft logits KT technique is only 1.85%. I believe the knowledge transfer

through teacher is not much effective in this case for two reasons: (1) Since

the teacher model is not deeper than the student model as opposed to Type I

architecture, it cannot capture more complicated features. Thus, the knowledge

transferred from the teacher model is not as effective as Type I. (2) Same as

Table. 6.2 student model gets sufficient knowledge from the dataset, allowing

the supervision from teacher model inadequate.

Further, intermediate layer resentations KT technique decreased the accuracy of

the dependent network over the independent network opposed to the behavior

shown in Table. 6.1 and Table. 6.2. This shows, a particular KT technique

53

Table 6.1: Type I architecture & Caltech 101 Dataset

KT techniques Top-1 accuracy (%)

Baseline (Teacher) 74.12

Baseline (Independent Student) 61.24

Hard Logits 61.27

Soft Logits 63.73

Intermediate Representations (Single Layer) 68.60

Intermediate Representations (Multiple Layers) 68.22

behaves differently on different architectures.

Table 6.13 shows number of iterations required by the independent and depen-

dent student (trained with respective best KT techniques) to reach 90% of its

best accuracy. Fig. 6.1 - Fig. 6.4 shows how their Top-1 accuracies evolve over

time. Note that each iteration of the dependent student does slightly more work

than the independent student, because the former requires the transfer of the

teacher’s output values. However, the time spent on this transfer is insignificant

compared to the student’s training time (especially when the student runs on

a resource-constrained edge devcie). Therefore, here we use only the number of

iterations to measure the convergence speed.

The results show that some level of speedup is achieved on all the architectures,

whereas the best improvement (16X) still comes from Type 1 architecture with

the use of intermediate-representation KT.

54

Table 6.2: Type I Architecture & CIFAR-10 Dataset

KT techniques Top-1 accuracy (%)

Baseline (Teacher) 77.71

Baseline (Independent Student) 73.31

Hard Logits 75.19

Soft Logits 75.01

Intermediate Representations (Single Layer) 74.98

Intermediate Representations (Multiple Layers) 74.47

Table 6.3: Type II Architecture & Caltech 101 Dataset

KT techniques Top-1 accuracy (%)

Baseline (Teacher) 70.74

Baseline (Independent Student) 60.11

Hard Logits 29.89

Soft Logits 50.63

Intermediate Representations (Single Layer) 29.68

Intermediate Representations (Multiple Layers) 10.25

Table 6.4: Type II Architecture & CIFAR-10 Dataset

KT techniques Top-1 accuracy (%)

Baseline (Teacher) 75.64

Baseline (Independent Student) 47.72

Hard Logits 41.09

Soft Logits 29.08

Intermediate Representations (Single Layer) 49.12

Intermediate Representations (Multiple Layers) 39.09

55

Table 6.5: Type III Architecture & CIFAR-10 Dataset

KT techniques Top-1 accuracy (%)

Baseline (Teacher) 68.08

Baseline (Independent Student) 73.47

Hard Logits 14.54

Soft Logits 75.32

Intermediate Representations (Single Layer) 68.24

Intermediate Representations (Multiple Layers) 72.56

Table 6.6: Type III Architecture & Caltech 101 Dataset

KT techniques Top-1 accuracy (%)

Baseline (Teacher) 64.04

Baseline (Independent Student) 70.67

Hard Logits 10.24

Soft Logits 74.32

Intermediate Representations (Single Layer) 68.35

Intermediate Representations (Multiple Layers) 73.34

Table 6.7: Proposed KT on Type I Architecture & CIFAR-10 Dataset

KT techniques Top-1 accuracy (%)

Baseline (Teacher) 77.71

Baseline (Independent Student) 73.31

Student with Best KT 75.19

Student with proposed KT 77.80

56

Table 6.8: Proposed KT on Type I Architecture & Caltech 101 Dataset

KT techniques Top-1 accuracy (%)

Baseline (Teacher) 74.12

Baseline (Independent Student) 61.24

Student with Best KT 68.60

Student with proposed KT 78.79

Table 6.9: Proposed KT on Type II Architecture & CIFAR-10 Dataset

KT techniques Top-1 accuracy (%)

Baseline (Teacher) 75.64

Baseline (Independent Student) 47.72

Student with Best KT 49.12

Student with proposed KT 44.57

Table 6.10: Proposed KT on Type II Architecture & Caltech 101 Dataset

KT techniques Top-1 accuracy (%)

Baseline (Teacher) 70.74

Baseline (Independent Student) 60.11

Student with Best KT 50.63

Student with proposed KT 47.90

Table 6.11: Proposed KT on Type III Architecture & CIFAR-10 Dataset

KT techniques Top-1 accuracy (%)

Baseline (Teacher) 68.08

Baseline (Independent Student) 73.47

Student with Best KT 75.32

Student with proposed KT 76.47

57

Table 6.12: Proposed KT on Type III Architecture & Caltech 101 Dataset

KT techniques Top-1 accuracy (%)

Baseline (Teacher) 64.04

Baseline (Independent Student) 70.67

Student with Best KT 74.32

Student with proposed KT 75.87

 0

 10

 20

 30

 40

 50

 60

 70

1K 2K 3K 4K

T
o
p
-1

 a
c
c
u
ra

c
y
 (

%
)

Number of Iterations

Independent-Student
Intermediate Representations (Single layer)

Teacher

Figure 6.1: Top-1 Accuracy of Dependent Student and Baseline Models of Type I
on Caltech 101

 0

 10

 20

 30

 40

 50

 60

 70

1K 2K 3K 4K

T
o
p
-1

 a
c
c
u
ra

c
y
 (

%
)

Number of Iterations

Independent-Student
Soft-Logits

Teacher

Figure 6.2: Top-1 Accuracy of Dependent Student and Baseline Models of Type III
on CIFAR-10

 0

 10

 20

 30

 40

 50

 60

 70

1K 2K 3K 4K

T
o
p
-1

 a
c
c
u
ra

c
y
 (

%
)

Number of Iterations

Independent-Student
Intermediate Representations (Single layer)

Teacher

Figure 6.3: Top-1 Accuracy of Dependent Student and Baseline Models of Type I
on CIFAR-10

58

 0

 10

 20

 30

 40

 50

 60

 70

 80

1K 5K 10K 15K 20K
T

o
p

-1
 a

c
c
u

ra
c
y
 (

%
)

Number of Iterations

Independent-Student
Soft-Logits

Teacher

Figure 6.4: Top-1 Accuracy of Dependent Student and Baseline Models of Type III
on Caltech 101

Table 6.13: Number of iterations required by the independent and dependent stu-
dent models (trained with respective best KT techniques) to reach 90% of its best
accuracy

Student Model
Caltech 101 CIFAR-10

Type 1 Type 3 Type 1 Type 3

Independent 17K 17K 1.1K 15K

Dependent 1K 6K 1K 7K

SpeedUp 1600% 183.33% 10% 114%

59

Chapter 7

CONCLUSIONS AND FUTURE DIRECTIONS

This paper provides a comprehensive study of existing KT techniques, which is

important to understand the effectiveness of the knowledge transfer approach for

enabling deep learning on resource-constrained edge devices. Four different KT tech-

niques and three different model architectures are considered to evaluate their per-

formance in terms of both accuracy and convergence time. Results show that only

intermediate-representation KT technique and Type I model achieve significant ac-

curacy improvement (up to 7.36%) for the dependent student model compared to the

independent student.

Empirically, the effectiveness of KT techniques depend on type of the dataset and

architecture used to train the student model. Among the three architectures only

Type I architecture showed a significant improvement in the accuracy and convergence

time. Although KT did not bring much improvement in the accuracy of Type III the

model to achieve best performance much faster than the independent student. Thus

student models of Type I can take the advantage of KT to get trained faster and

achieve better accuracy.

The intermediate-representation KT technique is the most promising as it allows

knowledge to be transferred from the intermediate layers in addition to the last layer.

With respect to convergence time, all KT techniques help the dependent student

model converge faster with a speedup ranging from 10% to 1600% compared to inde-

pendent student model. The intermediate-representation KT technique also achieves

the best speedup in convergence time compared to the other KT techniques.

60

REFERENCES

Abadi, M., A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Cor-
rado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,
D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems”, URL
https://www.tensorflow.org/, software available from tensorflow.org (2015).

Ba, J. and R. Caruana, “Do deep nets really need to be deep?”, in “Advances in
neural information processing systems”, pp. 2654–2662 (2014).

Bengio, Y. et al., “Learning deep architectures for ai”, Foundations and trends R© in
Machine Learning 2, 1, 1–127 (2009).

Chan, W., N. Jaitly, Q. Le and O. Vinyals, “Listen, attend and spell: A neural
network for large vocabulary conversational speech recognition”, in “Acoustics,
Speech and Signal Processing (ICASSP), 2016 IEEE International Conference on”,
pp. 4960–4964 (IEEE, 2016).

Chandakkar, P. S., Y. Li, P. L. K. Ding and B. Li, “Strategies for re-training a
pruned neural network in an edge computing paradigm”, in “IEEE International
Conference on Edge Computing”, (2017).

Chen, W., J. Wilson, S. Tyree, K. Weinberger and Y. Chen, “Compressing neural net-
works with the hashing trick”, in “International Conference on Machine Learning”,
pp. 2285–2294 (2015).

Chollet, F., “Xception: Deep learning with depthwise separable convolutions”, arXiv
preprint arXiv:1610.02357 (2016).

Collobert, R. and J. Weston, “A unified architecture for natural language process-
ing: Deep neural networks with multitask learning”, in “Proceedings of the 25th
international conference on Machine learning”, pp. 160–167 (ACM, 2008).

Courbariaux, M., I. Hubara, D. Soudry, R. El-Yaniv and Y. Bengio, “Binarized neural
networks: Training deep neural networks with weights and activations constrained
to+ 1 or-1”, arXiv preprint arXiv:1602.02830 (2016).

Denton, E. L., W. Zaremba, J. Bruna, Y. LeCun and R. Fergus, “Exploiting linear
structure within convolutional networks for efficient evaluation”, in “Advances in
neural information processing systems”, pp. 1269–1277 (2014).

Fei-Fei, L., R. Fergus and P. Perona, “Learning generative visual models from few
training examples: An incremental bayesian approach tested on 101 object cate-
gories”, Computer vision and Image understanding 106, 1, 59–70 (2007).

61

Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville and Y. Bengio, “Generative adversarial nets”, in “Advances in neural
information processing systems”, pp. 2672–2680 (2014).

Han, S., J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo, S. Yao, Y. Wang et al.,
“Ese: Efficient speech recognition engine with sparse lstm on fpga”, in “ISFPGA”,
(2017).

Han, S., X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz and W. J. Dally, “EIE:
efficient inference engine on compressed deep neural network”, in “ISCA”, (2016).

Han, S., H. Mao and W. J. Dally, “Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding”, arXiv preprint
arXiv:1510.00149 (2015a).

Han, S., J. Pool, J. Tran and W. Dally, “Learning both weights and connections for
efficient neural network”, in “NIPS’15”, (2015b).

He, K., X. Zhang, S. Ren and J. Sun, “Deep residual learning for image recognition”,
in “Proceedings of the IEEE conference on computer vision and pattern recogni-
tion”, pp. 770–778 (2016).

Hinton, G., O. Vinyals and J. Dean, “Distilling the knowledge in a neural network”,
arXiv preprint arXiv:1503.02531 (2015).

Howard, A. G., M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-
dreetto and H. Adam, “Mobilenets: Efficient convolutional neural networks for
mobile vision applications”, arXiv preprint arXiv:1704.04861 (2017).

Huang, J.-T., J. Li, D. Yu, L. Deng and Y. Gong, “Cross-language knowledge transfer
using multilingual deep neural network with shared hidden layers”, in “Acoustics,
Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on”,
pp. 7304–7308 (IEEE, 2013).

Iandola, F. N., S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally and K. Keutzer,
“Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <1mb model
size”, arXiv preprint arXiv:1602.07360 (2016).

Kadetotad, D., S. Arunachalam, C. Chakrabarti and J.-s. Seo, “Efficient memory
compression in deep neural networks using coarse-grain sparsification for speech
applications”, in “Computer-Aided Design (ICCAD), 2016 IEEE/ACM Interna-
tional Conference on”, pp. 1–8 (IEEE, 2016).

Kang, Y., J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars and L. Tang, “Neu-
rosurgeon: Collaborative intelligence between the cloud and mobile edge”, in “Pro-
ceedings of the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems”, pp. 615–629 (ACM, 2017).

Krizhevsky, A. and G. Hinton, “Learning multiple layers of features from tiny images”,
Citeseer (2009).

62

Le Cun, Y., J. S. Denker and A. Sara, “Solla, optimal brain damage in advances in
neural information processing systems 2, edited by david s”, (1990).

LeCun, Y., J. S. Denker and S. A. Solla, “Optimal brain damage”, in “Advances in
neural information processing systems”, pp. 598–605 (1990).

Ren, S., K. He, R. Girshick and J. Sun, “Faster r-cnn: Towards real-time object detec-
tion with region proposal networks”, in “Advances in neural information processing
systems”, pp. 91–99 (2015).

Romero, A., N. Ballas, S. E. Kahou, A. Chassang, C. Gatta and Y. Bengio, “Fitnets:
Hints for thin deep nets”, arXiv preprint arXiv:1412.6550 (2014).

Ruder, S., “An overview of multi-task learning in deep neural networks”, arXiv
preprint arXiv:1706.05098 (2017).

Sau, B. B. and V. N. Balasubramanian, “Deep model compression: Distilling knowl-
edge from noisy teachers”, arXiv preprint arXiv:1610.09650 (2016).

Simonyan, K. and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition”, arXiv preprint arXiv:1409.1556 (2014).

Srinivas, S. and R. V. Babu, “Data-free parameter pruning for deep neural networks”,
arXiv preprint arXiv:1507.06149 (2015).

Venkatesan, R. and B. Li, “Diving deeper into mentee networks”, arXiv preprint
arXiv:1604.08220 (2016).

63

