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ABSTRACT 

 When preparing for and responding to disasters, humanitarian organizations must 

run effective and efficient supply chains to deliver the resources needed by the affected 

population. The management of humanitarian supply chains include coordinating the 

flows of goods, finances, and information. This dissertation examines how humanitarian 

organizations can improve the distribution of information, which is critical for the 

planning and coordination of the other two flows. Specifically, I study the diffusion of 

information on social media platforms since such platforms have emerged as useful 

communication tools for humanitarian organizations during times of crisis. 

In the first chapter, I identify several factors that affect how quickly information 

spreads on social media platforms. I utilized Twitter data from Hurricane Sandy, and the 

results indicate that the timing of information release and the influence of the content’s 

author determine information diffusion speed. The second chapter of this dissertation 

builds directly on the first study by also evaluating the rate at which social media content 

diffuses. A piece of content does not diffuse in isolation but, rather, coexists with other 

content on the same social media platform. After analyzing Twitter data from four distinct 

crises, the results indicate that other content’s diffusion often dampens a specific post’s 

diffusion speed. This is important for humanitarian organizations to recognize and carries 

implications for how they can coordinate with other organizations to avoid inhibiting the 

propagation of each other’s social media content. Finally, a user’s followers on social 

media platforms represent the user’s direct audience. The larger the user’s follower base, 

the more easily the same user can extensively broadcast information. Therefore, I study 

what drives the growth of humanitarian organizations’ follower bases during times of 

normalcy and emergency using Twitter data from one week before and one week after the 

2016 Ecuador earthquake.   
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PREFACE 

Humanitarian operations management is concerned with the coordination and 

delivery of resources that can alleviate the suffering of those affected by a disaster. Like 

the commercial sector, humanitarian operations must run efficient supply chains to be 

successful (Van Wassenhove 2006), but key differences distinguish humanitarian from 

commercial operations. First, the mission of humanitarian operations is not necessarily to 

minimize operational costs but, rather, to minimize human suffering (Holguín-Veras et al. 

2013). Humanitarian organizations (HOs) face extreme levels of variability from the 

demand side since disasters cannot always be predicted as well as from the supply side 

since HOs are dependent on the availability of a highly uncertain resource amounts under 

varying lead times. Moreover, the operating environment is turbulent due to destabilized 

infrastructure and the convergence of many stakeholders (e.g., local government, military, 

and other HOs) with goals that may not be aligned toward a common objective (Kovács 

and Spens 2007, Van Wassenhove and Pedraza Martinez 2012). 

Despite these challenges, humanitarian operations must fulfill their objective of 

distributing all required resources and services to beneficiaries. Examples of commonly 

demanded resources and services include food, water, and medical services. Another vital 

resource is information, especially since information facilitates the sourcing and delivery 

of other resources and services to beneficiaries and other stakeholders. In fact, the 

effective management of information is one of the most critical factors in determining the 

success of humanitarian operations (Long and Wood 1995). With accurate information 

about beneficiaries’ needs, for instance, HOs can allocate resources such that the right 

products can reach the right population at the right time. HOs also issue donor appeals 

and exchange information with collaborating HOs to enhance coordination and avoid 

redundant efforts. 
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However, the management of information has been reported as a major struggle 

for humanitarian operations. As noted previously, the operational environment during a 

disaster is volatile due to factors like a damaged physical landscape, population migration, 

and disrupted economic and political states (Holguín-Veras et al. 2012). This means that 

decision parameters related to the operational environment are changing constantly, and 

what may have been relevant or accurate information yesterday is no longer so today. For 

example, the number of beneficiaries that a HO expects to serve may change suddenly due 

to notices of mandatory evacuations. Because information is highly perishable in the 

humanitarian context (Meier 2015), HOs require a robust information network that can 

quickly diffuse information among the appropriate stakeholders. 

 Social media platforms have emerged as a useful tool to address this need, and 

many HOs maintain an active presence on these platforms. HOs have found social media 

platforms to be valuable because information is shared in real-time and propagates rapidly 

through platforms’ sharing functions. Using these platforms, HOs broadcast information 

about their available services and share updates about their projects. Furthermore, HOs 

employ social media platforms to collect information from beneficiaries that post first-

hand knowledge of conditions at disaster sites (Gao et al. 2011). The purpose of this 

dissertation is to develop insights into how social media platforms can disseminate 

information during times of crisis by answering the following three research questions: 

1. What user-related and content-related factors affect the diffusion speed of 

information on social media platforms in a disaster?  

2. How is the dissemination rate of social media content affected by the concurrent 

diffusion of other content?  

3. What mechanisms drive the growth of HOs’ social media networks in periods with 

and without a disaster?  
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CHAPTER 1 

Evaluating Information Diffusion Speed and its Determinants 

in Social Media networks during Humanitarian Crises1 

 

Abstract 

The rapid diffusion of information is critical to combat the extreme levels of uncertainty 

and complexity that surround disaster relief operations. As a means of gathering and 

sharing information, humanitarian organizations are becoming increasingly reliant on 

social media platforms based on the Internet. In this paper, we present a field study that 

examines how effectively information diffuses through social media networks embedded 

in these platforms. Using a large dataset from Twitter during Hurricane Sandy, we first 

applied Information Diffusion Theory to characterize diffusion rates. Then, we empirically 

examined the impact of key elements on information propagation rates on social media. 

Our results revealed that internal diffusion through social media networks advances at a 

significantly higher speed than information in these networks coming from external 

sources. This finding is important because it suggests that social media networks are 

effective at passing information along during humanitarian crises that require urgent 

information diffusion. Our results also indicate that dissemination rates depend on the 

influence of those who originate the information. Moreover, they suggest that information 

posted earlier during a disaster exhibits a significantly higher speed of diffusion than 

information that is introduced later during more eventful stages in the disaster. This is 

because, over time, participation in the diffusion of information declines as more and more 

communications compete for attention among users.  

                                                        

1 This paper was previously published. The citation is as follows: Yoo, E., Rand, W., Eftekhar, M. 
and Rabinovich, E., 2016. Evaluating information diffusion speed and its determinants in social 
media networks during humanitarian crises. Journal of Operations Management, 45, pp.123-133. 
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1. Introduction 

The management of humanitarian operations during disasters is often highly 

complex due to the extreme uncertainty and diversity of stakeholders involved in these 

crises (Van Wassenhove 2006). In such instances, gathering and sharing timely 

information regarding infrastructure, supply of resources, and needs is critical to develop 

an understanding of existing conditions and coordinate an effective response (Pettit and 

Beresford 2009). To that end, researchers have stressed the importance of rapid 

information diffusion for humanitarian organizations (HOs) to gather intelligence about 

conditions in affected communities (e.g., Oloruntoba and Gray 2006) and for HOs to 

distribute information among stakeholders in order to foster collaboration (Altay and Pal 

2014). 

Internet-based social media hosted on platforms like Twitter or Facebook may help 

facilitate information diffusion because they provide the means through which 

stakeholders can upload and share information with others in real-time and at virtually 

no cost. Many HOs have recognized the value of social media platforms and have started 

using them to access and share information from various sources. This includes data from 

informants with first-hand knowledge of what is occurring in affected areas (Gao et al. 

2011), and recently, HOs have aggregated these data to create crisis maps showing 

landmarks like damaged infrastructure and shelters (Meier 2012). HOs have also used 

social media to share capacity levels and resource availability to enhance coordination 

among stakeholders (Sarcevic et al. 2012). 

Despite these experiences, and calls by experts for additional research on the use 

of social media for humanitarian operations (e.g., Holguín-Veras et al. 2012, Kumar and 

Havey 2013), the literature on this subject is still at an embryonic stage. Most of this work 

has focused on descriptions and characterizations of social media responses to 
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humanitarian crises (e.g., Kaigo 2012, Kogan et al. 2015) and has yet to rigorously consider 

the dynamics of information dissemination during these events and their influence on 

humanitarian operations.  

Our paper addresses this deficiency by analyzing diffusion dynamics of 

information in social media from a disaster case. To that end, we follow Ellison et al. 

(2007) and focus on a network representation of social media platforms on the Internet in 

which users can forge connections and share information directly with each other, as well 

as indirectly through other users. These connections will form social media networks in 

which information produced by a user (i.e., an originator) will create cascades when those 

connected directly to her receive it and, in turn, share it with those with whom they are 

connected. These information cascades will continue to spread as long as more users join 

these cascades by sharing the information they receive with those connected to them. 

To address this objective, we develop and test a set of theoretical propositions 

regarding the role played by three key determinants of information diffusion dynamics in 

social media networks. Although past work has discussed the importance of these 

determinants in the crisis informatics literature  (e.g., Ringel Morris et al. 2012, Starbird 

and Palen 2010, Vieweg et al. 2010), their impact on information diffusion across social 

networks remains undetermined. The first determinant focuses on the influence that 

information cascade originators have in these networks as a function of their social 

connections. The second one focuses on the type of content being shared in these networks 

and whether it contributes to improving situational awareness during a crisis. The third 

determinant corresponds to the timing in the introduction of information in these 

networks with respect to the progression of disaster events. Since the propositions focus 

on characteristics of cascades, the unit of analysis in our study is a cascade. 
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Our results show that information can spread faster when it originates from users 

that are influential in these networks. They also indicate that the timing when information 

is initially posted by an originator relative to a disaster’s development of events will impact 

the information’s rate of diffusion across social media networks. Information that is 

originally posted later, as a disaster intensifies, will spread at a lower rate than information 

that is posted at earlier stages of the disaster because, over time, participation in the 

diffusion of information cascades declines as more cascades compete for attention among 

users. This phenomenon underscores a paradox in which as a disaster’s effects build up, 

there will be more cascades contributed by originators, but the information in those 

cascades will spread more slowly.  

In the next section, we expand on theoretical explanations for the diffusion of 

information on social media networks and develop the propositions that guided our study. 

In Section 3, we detail how we collected the data and operationalized the variables to test 

the propositions. We then present the empirical model and the results pertaining to the 

evaluation of the propositions in Section 4, followed by a discussion of the results, 

implications, and conclusions in Section 5. 

2. Information Diffusion on Social Media Networks: Background, Theory, 

and Propositions 

Research based on Information Diffusion Theory has relied on different types of 

models of adoption to explain the dynamics of information cascades’ diffusion in network 

settings. Two of the seminal models are the Independent Cascade (IC) model developed 

by Goldenberg et al. (2001) and Kempe et al. (2003) and the Linear Threshold (LT) model 

developed by Granovetter (1978). These models assume each member contributes 

monotonically to the diffusion of information (i.e., there is no dis-adoption or forgetting 

of the information). In these models, information diffusion proceeds iteratively over time 
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starting from a set of members that contribute information to be subsequently distributed 

by other members across the network (Guille et al. 2013). IC and LT models also account 

for information diffusion due to a member receiving information from sources external to 

the network or internally from those informed participants that are adjacent to her in the 

network (Myers et al. 2012).  

IC and LT models, however, differ from each other in several aspects. IC models 

assume that an informed member has one chance at a time of independently sharing 

information with one uninformed member adjacent to her in the network (Kempe et al. 

2003). Thus, at any point in time, an uninformed member has a likelihood, q, of becoming 

aware of the information when at least one of her neighbors in the network has already 

become aware of the information. But, in many versions of the IC model (Goldenberg et 

al. 2001), there is also a probability, p, that the individual will become aware of this 

information from external sources. High values for q and p will denote a high information 

diffusion rate throughout the network due to the internal influence of network connections 

or influence of sources external to the network, respectively (Guille et al. 2013). 

In LT models, it is assumed that a participant will share information with her 

uninformed neighbors in the network if, over time, the number of informed members 

adjacent to her in the network exceeds her own influence threshold (Granovetter 1978). 

The lower this threshold across the network, the faster the participant will share 

information with her uninformed neighbors and the faster information will diffuse 

internally throughout the network. In prior work, this threshold is denoted by ϕ (Watts 

and Dodds 2007). In our paper, we operationalize this threshold by setting ϕ = 1 - q. This 

allows us to maintain a relationship consistency with the IC model where high values of q 

indicate faster diffusion, and low values of q indicate slower diffusion. In some prior work, 

the q parameter is fixed for all individuals, while in other contexts it is chosen from a 
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distribution for each individual (Watts 2002). Traditionally, the LT model has not 

incorporated a p parameter, instead relying on the initial seeds of the network to propagate 

the information (Kempe et al. 2003, Watts and Dodds 2007), but a p parameter playing 

the same role that it does in the IC model can be added to this model instead of an initial 

seed (Dodds and Watts 2005). 

Though previous work has created a generalized model that incorporates both the 

IC and LT models (Dodds and Watts 2005), we developed a framework that allows for 

versions of both the IC and LT models to be described using the same two parameters of 

p and q. To that end, we modeled the user decision process in the following sequential 

steps:  

(1) Effect of p: Independent of the adoption model (LT or IC), each agent who has 

not yet adopted the information adopts the information with probability p due to 

discovering the information from a source of information diffusion outside the 

network structure. 

(2) Effect of q:  Depending on the adoption model, users take different actions. 

a. q in the LT model: Each user who has not adopted observes the number of 

neighbors who have adopted divided by the total number of neighbors they 

have. If that ratio exceeds ϕ, the focal user adopts the information (Watts and 

Dodds 2007). 

b. q in the IC model: Each user who adopted information in the most recent 

previous time step has q probability of transmitting the information to any 

neighbor who has not adopted the information (Goldenberg et al. 2001). 

Though each of these models has found success in analyzing diffusion processes 

(e.g., Goldenberg et al. 2001, Guille et al. 2013, Rand et al. 2015, Watts and Dodds 2007), 

it is not obvious whether both models can be used jointly in studying information diffusion 
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on social media networks in the same context. As part of our contribution to the literature, 

we will first examine how IC and LT models explain these cascades’ diffusion dynamics 

within the same context. Then, we will use this analysis to focus our line of inquiry on the 

effects of the three diffusion determinants we introduced in Section 1. We will expand on 

these determinants’ effects below. 

2.1. The Effect of Influential Originators on the Diffusion of Cascades 

The diffusion of an information cascade will depend on the level of influence that 

the cascade’s originator carries in the social network. An originator’s influence is 

particularly relevant to the context of cascades in social media networks during 

humanitarian crises since users previously reported having significant concerns about the 

credibility of disaster information they received through social media (Ringel Morris et al. 

2012). While influence can be assessed in a number of different ways, prior results from 

information diffusion models concentrate on influence measured by a user’s number of 

social connections and suggest that users with large network audiences are perceived to 

have superior credibility (Bhattacharya and Ram 2012). These perceptions will allay 

concerns about trustworthiness and induce individuals to conform to cascades launched 

by influential originators (Goldenberg et al. 2009). Based on this evidence, we expect that 

users will be inclined to join cascades originated by network members with extensive 

influence, and as a result, these cascades will exhibit greater rates of internal diffusion.  

Moreover, research has relied on the principle that influential cascade originators 

usually have numerous social connections that will expose large audiences to their 

cascades soon after they are launched (Kempe et al. 2003). This implies that if a cascade’s 

originator is well-connected, the cascade will diffuse rapidly because a wider audience will 

be exposed early on to the cascade. We anticipate that this principle will also apply in the 

context of information diffusion in social media networks during a disaster. Hence, we 
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conjecture that an information cascade’s diffusion may experience a surge soon after a 

highly influential user exposes the cascade’s information to her network links. This will 

contribute to the cascade’s overall rate of diffusion throughout the social media network. 

Proposition 1 summarizes this argument for our setting. 

Proposition 1: In the context of cascades carrying disaster-related information 

throughout social media networks, the influence of a cascade’s originator contributes 

positively to the cascade’s speed of diffusion. 

2.2. The Effect of Content Promoting Situational Awareness on the Diffusion of Cascades 

Research shows that diffusion rates will increase if network members perceive that 

cascades’ contents are informational and that sharing these contents will be helpful to 

others (Rogers-Pettite and Herrmann 2015). Based on this evidence, we argue that, during 

humanitarian crises, network members are more inclined to participate in cascades 

carrying informational content that is seen as useful to disaster relief operations. For many 

of these members, the decision to join cascades conveying informational content related 

to disaster relief will follow altruistic and emotional motivations to help victims. In joining 

these cascades, these members anticipate no material gains. Instead, they look to obtain 

rewards resulting from their cooperation with other cascade participants and from 

offering support to others in need (Fowler and Christakis 2010).  

In a humanitarian context, these information cascades will convey content that will 

heighten situational awareness. Situational awareness, in itself, is defined as a complete 

and coherent understanding of what is going on during emergencies, and it is gained from 

information that helps to assess the situation at hand (Sarter and Woods 1991, Vieweg et 

al. 2010). In humanitarian operations, information supporting situational awareness is 

vital because decision parameters are highly dynamic (Holguín-Veras et al. 2012). Hence, 
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situational awareness is required to make decisions that are well-informed and reflective 

of current events. 

Given the value of situational awareness, we expect that network members will 

have a greater disposition to join cascades that carry information that could improve 

situational awareness. Our expectation follows evidence showing that cascades with 

information that improves situational awareness exhibit greater participation among 

social media users (Vieweg et al. 2010). Thus, messages meant to improve situational 

awareness during a crisis are likely to strengthen the diffusion of information cascades 

across social networks. Proposition 2 formalizes this argument. 

Proposition 2: In the context of cascades carrying disaster-related information 

throughout social media networks, speed of diffusion will be higher for cascades carrying 

information that heightens situational awareness than for cascades carrying other types 

of information. 

2.3. The Effect of Timing in the Launch of Cascades on the Diffusion of Cascades 

Past work on information diffusion has underscored the role played by temporal 

patterns in the dissemination of information across networks. As part of this body of work, 

Boyd et al. (2010) identified a preference by participants in social media networks to share 

time sensitive information with others. This is particularly relevant in a humanitarian 

context, in which participants will be motivated to share urgent information that will help 

address directly their own needs and those of others in the network. 

Leskovec et al. (2009) argued that the level of motivation among network 

participants to share time-sensitive information will contribute to the likelihood of certain 

topics gaining initial traction among network participants and eventually forming a 

cascade. These topics, for example, may comprise the development of urgent news events 

during a humanitarian crisis. At an early stage during a disaster, cascades addressing such 
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topics will spread quickly as more participants imitate one another in sharing information. 

But over time, the rate of participation in the diffusion of cascades will decline as newer 

topics compete with older ones for attention. As a result, the diffusion of new cascades is 

likely to become increasingly difficult, regardless of the urgency embedded in an 

information cascade. Cascades that are launched at later stages during the course of a 

crisis are therefore expected to diffuse at a lower rate than cascades launched at earlier 

stages. That is, the diffusion of information cascades on social media networks will decline 

as a disaster unfolds. Proposition 3 formalizes this argument. 

Proposition 3: In the context of cascades carrying disaster-related information 

throughout social media networks, the speed of diffusion will be lower for cascades that 

are launched later than for cascades launched earlier during the progression of a disaster 

event. 

3. Research Methodology 

3.1. Context: Twitter and Hurricane Sandy 

We focused on Twitter to test our propositions. Social networks on Twitter are 

based on directional links between users. On Twitter, a user can follow, or track, the 

messages (or “tweets”) of another user or be followed by other users (called “followers”). 

Users can receive the tweets of those they follow and broadcast all of their own tweets to 

their followers. Twitter also gives a user the ability to “retweet” original tweets or other 

retweets posted by users that she follows in order to share these messages with her own 

followers. A user’s retweets preserve the contents of the original message, and these 

retweets may be shared in turn by the user’s own followers, who may or may not be a part 

of the network of the user who uploaded the original tweet. 

Our study focused on Twitter data associated with Hurricane Sandy, a disaster for 

which Twitter usage has received some research attention (e.g., Rand et al. 2015). 
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Hurricane Sandy is considered to be the largest Atlantic hurricane on record in the United 

States (U.S.). It began as a tropical storm in the Caribbean in October of 2012, grew into a 

Category 3 hurricane at its peak, and impacted the Eastern U.S. We determined Hurricane 

Sandy to be an appropriate disaster case for our study for two reasons. First, the 

hurricane’s major effects were felt in a densely populated, highly developed area. Because 

of the hurricane’s magnitude and Twitter’s popularity in this area, a large volume of tweets 

were posted in relation to this event, creating a rich dataset for empirical analyses. Second, 

as the main effects of Hurricane Sandy were felt in the U.S., tweets were mostly sent in 

English. This eliminated the need for translation to address our research objectives.  

3.2. Data Collection 

Our data contain original tweets and retweets posted from October 26 until 

October 30, 2012. These dates correspond to the periods before, during, and after 

Hurricane Sandy effects were experienced in the U.S and overlap with the stages when 

preparation and response activities to the hurricane occurred. Preparation and response 

stages are usually the most relevant for humanitarian operations in many disasters as high 

levels of uncertainty and volatility in conditions on the ground are pervasive at these times 

(Van Wassenhove 2006). 

The collected data include the actual contents of the tweets and retweets, 

information about the users responsible for these posts, and the date and time, to the 

second, when each of the posts appeared on Twitter. The data were gathered in real-time 

using Twitter’s Search API, an interface through which one can program queries to collect 

tweets and retweets posted within the past seven days. Twitter limits the amount of data 

that can be downloaded per IP address using the Search API. To overcome this limit, a 

script using the Search API was run constantly on ten different machines with a rule that 

would pull tweets and retweets containing the keywords “Sandy,” “hurricane,” “storm,” 
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and/or “superstorm”. Based on the volume of data downloaded, we were confident that 

the Search API extracted a high percentage of the tweets and retweets that contained our 

search keywords during our data collection period. Nevertheless, we decided to evaluate 

the completeness of the data gathered through the Search API by comparing it against a 

sample we acquired from Gnip, a Twitter subsidiary with access to the entire Twitter 

firehose (i.e., all activity ever posted on Twitter). To draw the Gnip sample, we used 

identical keywords and date ranges to those specified for the Search API sample. Our 

comparison demonstrated that the Search API only missed 7.81% of the messages in the 

Gnip dataset. This suggests that our sample contains a vast majority of the tweets and 

retweets posted during Hurricane Sandy and with the selected keywords. 

Subsequently, we used a program to separate the original tweets from the retweets 

that the Search API extracted. We manually reviewed all of the original tweets and filtered 

out those that we deemed irrelevant along with their retweets. Although they contained 

the chosen keywords, irrelevant tweets included jokes, song lyrics, emotional responses, 

and discussions of topics unrelated to Hurricane Sandy. Please refer to Table 1 for more 

detail on irrelevant tweets. After removing the irrelevant messages, we were left with 

18.27% of the original tweets in the sample along with their retweets2. In total, these tweets 

and retweets corresponded to 333,968 messages.  

Table 1: Irrelevant Tweets 

Irrelevant Category Example Tweet 
Emotional Response “actually really scared of the hurricane coming :(“ 
Joke “Hurricane Sandy sounds like a delicious mixed drink.” 
Not Related to Sandy “Yay!!(: hanging out with my bestfriend @strong_sandy” 
Opinion “I get the feeling this hurricane in gonna be just like irene and 

barley [sic] hit us..” 
Song Lyric “The voice that calmed the sea would call out through the rain and 

calm the storm in me... -Casting Crowns. I love this song! 
#whoami” 

Vague Forecast “Sandy is coming“ 

                                                        

2 The process of cleaning and categorizing the cascades took approximately 45 hours to complete. 
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Because our propositions dealt with information cascade effects, the unit of 

analysis for our study is the cascade. In view of this, we organized the tweets and retweets 

in the dataset into cascades. We followed the lead of authors who have previously 

conceptualized information cascades in Twitter as retweet chains (e.g., Galuba et al. 2010, 

Lerman and Ghosh 2010). Each original tweet represented the start of a cascade, and 

retweets by additional users signaled participation in a cascade. In Twitter, the text in all 

retweets is usually identical to the text in the original tweet that launched the cascade since 

Twitter makes retweets possible through the push of a single button. Retweets are also 

marked at the beginning by “RT@username,” followed by the original tweet’s text. The 

username following “RT@” identifies the user that posted the original tweet and launched 

the cascade.  

Based on these attributes, we compiled cascades in our data by identifying and 

grouping retweets that shared the same text and embedded originator usernames. Then, 

to ensure that each group of matching retweets constituted an actual cascade and not 

background conversations among select users, we confirmed that each cascade consisted 

of at least ten retweets issued at varying intervals. This process generated 5,683 cascades. 

We chose a threshold of ten retweets because cascades on Twitter usually do not require 

many retweets to develop (Lerman and Ghosh 2010).  

We then developed a program to examine in detail the original tweets that began 

each cascade. Through this program, we isolated the username embedded in the beginning 

of each retweet’s “RT@username” and separated the original tweet’s text that followed. 

Then, the program searched through the dataset and pulled each original tweet with the 

matching username and content. In this process, we found that 249 cascades (comprised 

of 19,558 retweets) could not be matched to their original tweet because they had missing 
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information about the originating users3. This prevented us from identifying the time 

when each of these cascades started, and therefore, we were unable to examine their 

diffusion. Although this left us with no option but to drop these cascades from our sample, 

the removal of these cascades had a negligible impact on our results since they constituted 

only 4.3% of our observations. After we filtered these cascades, we were left with a final 

sample of 311,429 retweets forming 5,434 cascades to evaluate our propositions. Table 2 

shows the distribution of the cascades across six content categories.  

Table 2: Breakdown of Cascade Categories* 

Category 
Count of 
Cascades 

Description Sample Retweet 

Advisories 2,024 

Transportation 
shutdowns, evacuation 
warnings, 
survival/safety tips, and 
updates on hurricane 
intensity/trajectory 

RT @Timcast: Reports that all NYC 
bridges will be closing at 7pmEST via 
@NYScanner #Sandy 
#Frankenstorm 

Business 445 

Reports of business-
related shutdowns and 
forecasts of economic 
impacts 

RT @Reuters_Biz: Stock bond 
markets shut on Tuesday may 
reopen Wednesday 
http://t.co/JL6fEHea 

Declarations 141 
Declarations of 
emergencies by states 

RT @USNationalGuard: So far 
governors in MD VA NY DC PA CT 
NC NJ DE MA and VT have declared 
states of emergency ahead of 
#Hurricane #Sandy. 

Forecasts 640 
Forecasts of weather 
and hurricane effects 

RT @twc_hurricane: BREAKING: 
TWCs experts now expect localized 
wind gusts of 90+ mph near the 
coast of NJ NYC and Long Island 
later today. #Sandy 

Humanitarian 246 
Information related to 
shelters, relief efforts, 
and deployment of aid 

RT @femaregion2: #Sandy Search 
for open shelters by texting: 
SHELTER + a zip code to 43362 
(4FEMA). Ex: Shelter 01234 (std 
rates apply) 

Reports 1,938 
Status updates of 
weather, damage, 
outages, etc. 

RT @News12LI: As of 10:32am LIPA 
is reporting 15695 outages across 
Long Island. #Sandy 

*Adapted from Olteanu et al. (2014) and Vieweg et al. (2010)  

                                                        

3 This information may be missing from the data because privacy settings chosen by the originators 
did not allow the Search API to access this information or because the original tweet was posted 
before the start of the data collection.  
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3.3. Operational Measures 

 In this section, we expand on the operationalization of the variables introduced in 

the propositions. Moreover, we introduce a set of control variables to be used as part of 

the empirical testing of these propositions. Table 3 lists the variables in the propositions 

and the control variables along with their operationalization. 

Table 3: Variable Operationalization 

Construct 
Variable 

Label 
Operationalization 

Information Cascade’s 
Diffusion Speed 

DIFFUSION Ratio of q/p values obtained from the IC 
model 

Cascade Originator's 
Influence 

INFLUENCE Number of users following the cascade 
originator (at the time of cascade launch)  

Cascade Content’s 
Contribution to Situational 
Awareness 

AWARENESS 
Dummy variable coded 1 if the cascade 
content contributed to situational 
awareness; 0 otherwise 

Lateness in the Launch of the 
Cascade during the Disaster  

LATENESS 
Lag in the launch of the cascade relative to 
the start of the data collection (measured in 
hours) 

Incidence of Cascade Boosts 
by Originator 

BOOST Dummy variable coded 1 if originator 
boosted the cascade; 0 otherwise 

Misleading Cascade 
FALSE Dummy variable coded 1 if the cascade 

content was misleading; 0 otherwise 

 
3.3.1. Dependent Variable 

To measure the cascades’ diffusion speed on Twitter’s network, we followed Rand 

et al. (2015)’s approach and ran an agent-based model (ABM) to evaluate how well the IC 

and LT models we introduced in Section 2 represented the cascade data. This generated 

an overall adoption rate of information at discrete time steps. ABM offers a robust 

understanding of information diffusion on social networks since it represents not only the 

properties of the individual agents but also their communication channels via local 

network connections. Rand and Rust (2011) identify up to six properties of a system that 

make it useful to model using ABM: (1) a medium number of agents, (2) local and 

potentially complex interactions among agents, (3) agents’ heterogeneity, (4) rich 

environments, (5) temporal aspects, and (6) agents’ adaptability. Information diffusion on 

social media features all six of these properties to an extent, making ABM a suitable 
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method for our study. Please refer to Part I of Appendix A that accompanies this paper for 

a more detailed discussion of the appropriateness of ABM. The ABM was constructed, 

verified, and validated following the guidelines of Rand and Rust (2011). Parts II through 

IV of the appendix contain supplemental information of model construction, verification, 

and validation beyond the details given below, and Part VI shows the natural language 

version of the code used to create the ABM. 

There were two basic entities in the ABM: (1) a Twitter user interested in receiving 

and transmitting information and (2) the relationship between each pair of users in a 

cascade, i.e., a social tie or a link. Ties between users enabled the transmission of 

information across each cascade. In Twitter, two users are connected to each other if one 

of the users follows the other and/or vice versa. Thus, the agents in the ABM possessed a 

set of links that corresponded to the social links of each user to other users based on their 

“following” relationships. We patterned these relationships against the links observed 

across a sample of 4,076 participants in the longest cascade in our dataset. Using Twitter’s 

RESTful API, we identified the users followed by each cascade participant at the time of 

Hurricane Sandy. This yielded a total of 1,322,814 links, of which 3,315 served to cascade 

the information by being direct connections between users who were part of the cascade. 

Because of the rate limits on Twitter’s RESTful API, it would have taken a prohibitive 

amount of time to pull all of the networks for each cascade. Therefore, we used the network 

for the longest cascade as the pattern for all of the other cascades we examined. While this 

decision simplified the modeling process, it is not a major limitation since Twitter exhibits 

scale-free properties, meaning that subnetworks are similar to their corresponding larger 

networks (Kwak et al. 2010). 

Since the main observation in the ABM was the overall adoption of information at 

each time step for each cascade, agents had a property that specified whether or not they 
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had adopted new information. By adoption of new information, we mean the joining of a 

cascade by retweeting. In addition, agents had both a coefficient of external influence (p) 

and a coefficient of internal influence (q) that controlled the rate of adoption of a new piece 

of information in each cascade following external or internal stimuli, respectively. At the 

beginning of the ABM, all agents started in an “un-adopted” state, and a directed social 

network linking the agents was formed based on the empirical Twitter networks described 

above. Then, at each time step, any agents that still had not adopted the information 

decided whether to adopt the information based on p, q, and the state of their neighbors 

in the network. Agents followed the unified model discussed in Section 2 to make these 

decisions. The agents first chose whether to adopt based on external influence. To do this, 

they drew a random number from the uniform distribution of [0,1). If that number was 

less than p, they then adopted that information. This decision rule for external influence 

was identical regardless of whether the LT or IC models were considered. 

The role of internal influence of network links was subsequently considered. In the 

LT model, each agent counted the number of neighbors that had adopted the information 

and divided this sum by the total number of neighbors. The agent then compared this 

number to ϕ = 1 - q, and if the ratio was higher than ϕ they proceeded to adopt the 

information. In the IC model, each agent who adopted the information in the most recent 

time step transmitted the information to all of its neighbors who had not adopted. These 

uninformed agents drew a random number from the uniform distribution of [0,1), and if 

the number was less than q, they adopted the information. After all of the non-adopting 

agents had considered whether or not to adopt according to the rules described above, 

statistics on the number of adoptions that occurred during that time step were calculated. 

The model then iterated again until every agent in the network had adopted the 

information. We calibrated our model so that a time step was roughly one minute. This 
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enabled a seamless comparison to the observed data, which was also set in a resolution of 

one-minute increments. 

The ABM provided observations for each cascade on the adoption of information 

at each time step for the IC and the LT models. We then compared this information to the 

empirical data to determine for each adoption model and each cascade which values of p 

and q best matched the empirical data. To complete this task, we used a simulated 

annealing (SA) approach. This method works by generating iterative values of p and q and 

measuring the performance of the model between the time series of the model data and 

the observed data for each cascade until identifying the parameter values for p and q that 

optimize this performance. We chose to use SA since a full search of the parameter space 

was precluded by the computational cost, and SA provides a robust way to search the space 

quickly for a set of parameters that minimizes errors. For technical details on the number 

of runs and implementation of the SA algorithm, please refer to Part V of the electronic 

appendix. 

To estimate the performance measure from each model run for each cascade 

network, we obtained values for Y(t), the number of agents in the network who had 

adopted the information at each time step, t. Next, we compared Y(t) to the actual number 

of adopters per time step from our empirical data, Empirical(t), using the Mean Absolute 

Percentage Error (MAPE). As Equation 1 shows, the MAPE is equal to the absolute 

difference between the empirical value of information adoption observed at time step, t, 

throughout the duration of the cascade and the ABM’s value at that same time step, 

divided by the empirical value at time step t and averaged over all values (n). 

MAPE=100×
1

𝑛
 ∑

|𝐸𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙(𝑡)−𝑌(𝑡)|

𝐸𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙(𝑡)
𝑛
𝑡=0                                                                                    (1) 

We then averaged the MAPE across k runs. For a sample of the cascades, we 

observed that the average MAPE did not change markedly with more than ten runs for a 
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given parameter setting. Thus, we chose to use ten model runs to provide an adequate 

estimate of the underlying adoption patterns for a given cascade network and a given set 

of parameters. It was this average MAPE value over ten runs that was then used by the SA 

approach to optimize the parameter values. 

Table 4 provides a distribution of the MAPE values across all the cascades for the 

IC and LT models. A comparison of the MAPE values for p and q across the cascades 

revealed that the MAPE values for p and q were consistently low across the IC and the LT 

models and similar to values identified for this metric in previous studies (Rand et al. 

2015). Since both the IC and LT models performed well, we chose to focus on the IC model 

to operationalize information cascades’ diffusion speed as our dependent variable 

(henceforth labeled as DIFFUSION). This is because the IC model allowed for a more 

direct measurement of DIFFUSION as the ratio of q/p values obtained from the model’s 

output4. By operationalizing the dependent variable as q/p, we were able to account for 

diffusion forces due to sources internal and external to the networks underlying the 

cascades. 

Table 4: Descriptive Statistics for MAPE Values 

Model  Median Mean SD Min Max 
IC 13.36 22.91 94.58 0.61 5,611.07 
LT 12.97 21.89 86.26 1.08 4,821.76 

 

                                                        

4 In the IC model, q represents a probability of internal influence, i.e., adoption due to internal 
influence is q multiplied by the fraction of neighbors who have adopted. Therefore, q/p describes 
the difference in spreads due to internal influence vs. external influence. However, in the LT model, 
q is a measure of how low the threshold to adoption is due to internal influence. This is different 
than a probability of adoption. Hence, q in the LT model is not directly comparable to p in the LT 
model since p is a direct measure of the probability of adoption due to external influence. This 
makes it difficult to make direct claims about the rate of internal vs. external adoption in the LT 
model based on these parameters. Nevertheless, since we developed the ABM under both IC and 
LT models, the ABM could serve to evaluate which rules cause the agents to adopt, and, from that, 
count up the number of agents that adopt due to internal influence and external influence in the LT 
model and compare those numbers to gauge diffusion speed indirectly.  
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3.3.2. Determinants 

We are interested in investigating three determinants: (1) the cascade originator’s 

influence, (2) the cascade content’s contribution to improving situational awareness, and 

(3) the timing of the launching of the cascade. To measure a cascade originator’s influence, 

we followed Cha et al. (2010), who explained that an agent is influential when it acts as an 

information channel to a large audience. This is consistent with opinion leadership models 

that support the notion that individuals are influential when they have a high number of 

connections with others (Bonacich 1972). Thus, we measured a cascade originator’s 

influence as the number of the originator’s followers on Twitter at the time the cascade 

was launched (INFLUENCE). 

The second explanatory variable serves to identify those cascades that spread 

information related to situational awareness. To identify whether a cascade included this 

type of content, we created a dummy variable using the categorization scheme introduced 

in Section 3.2. This dummy (AWARENESS) equals 1 if the cascade belonged to advisories, 

humanitarian, or reports categories since, as detailed in Table 2, all dealt with information 

about safety, shelters, or the functional state of the affected areas. Otherwise, 

AWARENESS equals 0. We validated this operationalization by having four raters 

independently classify whether a randomly sampled set of 100 cascades pertained to 

situational awareness as defined in this study. We then checked the inter-rater agreement 

of our and the raters’ classifications using Fleiss’ kappa (Fleiss 1971). The kappa statistic 

was equal to 0.68, which indicates substantial agreement (Landis and Koch 1977). 

Finally, the third explanatory variable captures the timing of each cascade’s launch during 

the disaster. To that end, we measured the difference in hours between each cascade’s 

launch and the time when we began our data collection. By calculating these intervals, we 
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captured how late a cascade was launched during the disaster. We labeled the variable for 

this measure as LATENESS.  

3.3.3. Control Variables 

As part of our empirical model, we accounted for instances in which cascade 

originators attempted to artificially increase the rate of diffusion of information in their 

cascades. Therefore, our first control variable accounts for instances when users boosted 

(or bumped up) those cascades that they themselves originated in order to increase the 

cascades’ visibility on Twitter. A user may attempt to give a cascade that she originated a 

“boost” by reposting, at least once, the same tweet that initiated a cascade. However, in 

doing so, the originator may contribute to artificially distorting the cascade’s growth 

pattern and its rate of diffusion. We controlled for this effect by using a binary indicator 

(BOOST) that specified which cascades in our sample were boosted by their originators or 

not. We set BOOST to 1 if a cascade was boosted by its originator or 0 otherwise. 

Moreover, we controlled for whether the information conveyed in a cascade was 

misleading. Prior studies have documented the circulation of manufactured information 

in online social networks during disasters (e.g., Kaigo 2012). In our sample, some cascades 

contained information that purposefully exaggerated the size of the hurricane while others 

conveyed messages designed to convey outlandish claims about damages caused by the 

hurricane. Because such reports can generate a sense of panic among users (Gupta et al. 

2013), they may artificially increase the rate of diffusion of information in these cascades. 

We controlled for this effect with a dummy variable (FALSE) that is set to 1 if the cascade’s 

contents were false and 0 otherwise.  

4. Empirical Analysis 

We used regression analysis to test the propositions based on Equation 2. The use 

of regression analysis enabled us to specify the rate of diffusion for a cascade, i, as a 
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function of the explanatory and control variables discussed in Section 3.3 in addition to 

an error term, ui. 

𝐷𝐼𝐹𝐹𝑈𝑆𝐼𝑂𝑁𝑖 = 𝛽0 + 𝛽1𝐼𝑁𝐹𝐿𝑈𝐸𝑁𝐶𝐸𝑖 + 𝛽2𝐴𝑊𝐴𝑅𝐸𝑁𝐸𝑆𝑆𝑖 + 𝛽3𝐿𝐴𝑇𝐸𝑁𝐸𝑆𝑆𝑖 +

                                                     𝛽4 𝐵𝑂𝑂𝑆𝑇𝑖+ 𝛽5𝐹𝐴𝐿𝑆𝐸𝑖 + 𝑢𝑖                                                (2) 

 Figure 1 shows a cumulative distribution of the cascades’ originations over time, 

and Table 5 lists the descriptive statistics for the variables in Equation 2. Since the mean 

for DIFFUSION (37.28) is statistically higher than 1 (p<0.01), our data suggest that 

internal information diffusion on social media networks advances at an average rate that 

significantly exceeds the average speed at which information originates from external 

sources. Please note that we limited the range of our parameters to historically observed 

values (Chandrasekaran and Tellis 2007). Thus, it might be argued that we did not explore 

a large enough range to observe model fits with very large p values. As a robustness check, 

we examined the number of cascades where the optimal p values were at the maximum 

range of exploration we allowed. Out of 5,434 cascades, only 648 of the IC model fits had 

p values at their maximum value, and of those 648, only 12 had the minimal q values. This 

means that for at least approximately 88% of our cascades, the best model fit was one 

where internal influence of network connections was much higher than external influence. 

In fact, removing the runs where p reached its maximum value changes the mean for 

DIFFUSION to 40.25, which illustrates how strong a role internal influence plays in the 

vast majority of these cases.  

 

 

(Figure 1 and Table 5 on next page) 
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Table 5: Correlations and Descriptive Statistics 

 

 

4.1. Statistical Modeling  

We used a Generalized Linear Model (GLM) with a gamma distribution to model 

Equation 2. This approach was suitable for our model because DIFFUSION only took on 

positive values and displayed a right-skewed distribution of values. Also, after probing the 

relationship between DIFFUSION and INFLUENCE and LATENESS, we observed that 

the variance of DIFFUSION increased with the mean. This is consistent with the gamma 

distribution (Var [Yi] = µ2/𝜈). Separate plots of DIFFUSION versus INFLUENCE for each 

of the two categories in AWARENESS also revealed that there were some outlying 

 1 2 3 4 5 6 

1. DIFFUSION 1      
2. INFLUENCE 0.03* 1     
3. AWARENESS  -0.01 -0.04** 1    
4. LATENESS  -0.25** 0.01 0.16** 1   
5. BOOST 0.28** 0.01 0.01 -0.09** 1  
6. FALSE -0.01 -0.04** 0.11** 0.16** -0.03 1 

Mean 37.28 234,447.66 0.78 55.34 0.02 0.04 
Std. Deviation 55.63 848,551.55 0.42 18.04 0.13 0.19 
Minimum 12.67 0 0 0.00 0 0 
Maximum 737.80 9,133,950 1 74.65 1 1 
* p<0.05, **p<0.01 
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DIFFUSION values at extreme INFLUENCE values, which is another property consistent 

with the gamma distribution (Dobson and Barnett 2008). 

To ensure an appropriate use of GLM, we also followed several additional steps. First, we 

used a Pearson Chi-Squared estimation method to estimate the GLM scale parameter 

(McCullagh and Nelder 1989). Second, we examined a log link function and an identity 

link function as possible alternatives to transform the dependent variable to estimate the 

GLM. Although the GLM results were fully consistent across both link functions, the 

identity link function provided significantly better Akaike's Information Criterion (AIC) 

and Bayesian Information Criterion (BIC) fit measures than the log link function. Thus, 

the results we report in this paper correspond to those obtained using the identity link 

function (Hardin and Hilbe 2007). The results obtained using the log link function are 

available upon request. Third, we used the Huber-White sandwich estimators to estimate 

standard errors that are robust to possible misspecification of the variance and link 

functions in the GLM. Finally, we checked for multicollinearity among the explanatory and 

control variables and found that almost all correlations among these variables were fairly 

small (Table 5).  

4.2. Results 

Table 6 presents the results from the GLM. To generate these results, we used a 

hierarchical approach. We first considered a restricted model in which we regressed the 

dependent variable only upon the control variables (GLM 1). Then, we regressed the 

dependent variable on the control variables as well as the explanatory variables in the 

propositions (i.e., unrestricted model or GLM 2). The results from likelihood ratio chi-

squared test of GLM 2 indicate that the group of explanatory variables is statistically 

significant. Significant reductions of the AIC, BIC, and Deviance measures for GLM 2 also 

confirm that the addition of the predictors in GLM 2 makes a statistically significant 
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contribution in explaining our dependent variable’s variance, above and beyond the 

contribution made by the control variables (Coxe et al. 2013, Hardin and Hilbe 2007).  

Table 6: GLM Results 

  
GLM 1 

Coeff. (Std. Errors) 
GLM 2 

Coeff. (Std. Errors) 
INFLUENCE  1.05E-6 (4.92E-7)* 
AWARENESS  -0.27 (1.25) 
LATENESS  -0.75 (0.05)** 
BOOST 124.31 (20.37)** 100.65 (18.12)** 
FALSE -1.76 (1.64) 9.13 (1.61)** 
Intercept 35.36 (0.68)** 77.15 (3.36)** 
Scale Factor 1.84 1.45 
Likelihood Ratio Chi-Square 181.51** 612.32** 
AIC 49864.94 49320.01 
BIC 49884.74 49359.61 
Deviance 3170.49 2619.56 
Obs. 5434 5434 

*p< 0.05, ** p< 0.01   
 

From Table 6, the coefficient for INFLUENCE was positive and statistically 

different from zero (p<0.05). Therefore, Proposition 1 is confirmed: as a cascade 

originator’s influence rises, the speed of information diffusion in the cascade increases. 

Moreover, the effect by LATENESS on the dependent variable was negative and 

statistically different from zero (p<0.01). This means that, during a disaster event, the rate 

of information cascades’ diffusion decreases over time as cascades are launched later 

during the disaster event. Proposition 3, therefore, is also confirmed. Proposition 2, 

however, received no support since the coefficient for AWARENESS was not significantly 

different from zero. Thus, we have no evidence to conclude that cascades carrying 

information that heightens situational awareness during a crisis will experience faster 

diffusion than cascades carrying other types of information. The lack of support for 

Proposition 2 is surprising based on theory and previous findings (Vieweg et al. 2010) but 

raises an important point that social media networks like Twitter may be limited in 

effectively spreading certain types of content. This is vital for HOs to understand as they 

create policies and strategies for managing information in a crisis. 
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Among the control variables, we observed that the coefficient for BOOST was 

positive and significant (p<0.01). Hence, boosting a cascade’s original message is 

associated with an increase in the cascade’s diffusion rate. Another result is that cascades 

that contain false information circulate at a faster rate than cascades that do not. This is 

evident from the positive and statistically significant coefficient for the control variable 

FALSE (p<0.01). 

5. Discussion of Results and Conclusions 

The planning and execution of humanitarian operations depends on a variety of 

resources that have very short shelf lives. Our research builds on the fact that information 

constitutes one of those resources. During times of crisis, it is critical to gather and share 

information quickly, but accomplishing this goal has been difficult for reasons that include 

a restricted diffusion of information relevant to humanitarian operations during the 

course of disasters (Day et al. 2012). While it has been theorized that social media 

networks built on open Internet platforms can contribute to address these restrictions 

(Meier 2015), there is limited work in the humanitarian operations literature that 

examines whether and how this can be accomplished. Moreover, while extant research in 

this field has focused on the development of analytical models to manage information 

(Özdamar and Ertem 2015), it is only recently that empirical research has begun to study 

these phenomena, particularly in social media settings (e.g., Korolov et al. 2015). 

Our study addresses this deficit in the literature by applying Information Diffusion 

Theory to the context of humanitarian disasters. Our findings show that, in this context, 

cascades on social media networks can advance at a rate that significantly exceeds the 

speed at which information originates from external sources. This finding is important 

because, during humanitarian crises, speed is key in the diffusion of information among 

HOs and other stakeholders in order to plan and respond effectively to rapid changes that 
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occur during this type of events. Establishing that social media networks can diffuse 

information via connections among its users at a rate above that in which external sources 

of information permeate these networks during a crisis constitutes an important 

contribution to assessing these networks’ effectiveness. 

Another contribution from our results is that they show that this speed of diffusion 

is contingent upon the type of users that originally publish this information. When 

information is issued by users with high levels of influence, as measured by their number 

of followers, it will diffuse quickly. However, this will not be the case if the originators’ 

influence is limited. For HOs, this implies that the development of social connections in 

these networks will be a valuable strategy to pursue in order to ensure fast communication 

with stakeholders like public donors and beneficiaries during times of crisis. Still, a 

question that deserves further investigation is whether information diffusion speed will 

experience different rates of growth as a function of the originator’s number of followers 

once that number reaches certain thresholds. An examination of our data revealed that 

the rate of growth in diffusion speed as a function of the number of followers seems to 

increase as that number reaches a threshold of approximately 600,000 followers. 

Originators with an amount of followers above this threshold appear to have a significant 

leverage on the diffusion of information. A reason for this is that observations above this 

threshold sit at the head of a power law distribution across users in our dataset and, thus, 

can exert a significant pull on diffusion. This is in line with past research that has identified 

the presence of power law distributions underlying properties of social media networks 

like Twitter (e.g., Hodas et al. 2013). 

The speed of information diffusion on social media networks during a disaster is 

also contingent upon the time when information is introduced in these networks. 

Information that is posted earlier during a disaster exhibits a significantly higher speed of 
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diffusion than information that is introduced later during the disaster. This is because, 

over time, participation in the diffusion of information cascades declines as more cascades 

compete for attention among users. Such a phenomenon is particularly acute in the 

context of a hurricane like the one in our study in which the number of new cascades 

increases sharply over time after hurricane effects materialize in large population areas 

(see Figure 1). This phenomenon also underscores a paradox in which, as a disaster 

progresses, there are increasingly more cascades contributed by originators, but the 

information in those cascades diffuses more slowly. As a result, a major challenge emerges 

for HOs trying to introduce urgent information and promoting its diffusion among an 

increasingly larger volume of new messages posted by other users. How can HOs increase 

the rate of diffusion of information among all this chatter? Addressing this information 

directly to followers or requesting explicitly that they retweet the information can augment 

diffusion (Huberman et al. 2008), particularly if those followers are themselves 

influential. Including hashtags and links in messages can influence the rate in which users 

spread information as well (Galuba et al. 2010). 

We also observed that cascade originators may be able to increase the speed of 

diffusion by posting the same information repeatedly in order to raise its visibility. This 

practice can be justified among HOs in particular situations where information is of urgent 

nature, particularly during times of excessive chatter like those described above. However, 

it remains to be seen whether this practice carries with it diminishing marginal returns in 

increasing the rates of information diffusion. Moreover, we observed that cascades with 

fabricated information infect the network at a faster pace. Although our data demonstrate 

that cascades transmitting misleading information transpire rarely (only 4% of the 

cascades were false), this finding does raise troublesome questions about the ability by 

HOs and other participants in social media networks to detect and correct this type of 
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cascade. For instance, what attributes do cascades carrying misleading information share 

that could be used to identify them before they spread too far? What mechanisms can be 

instated in order to alert the public about these cascades and reverse their diffusion? The 

design of policies that address these questions and their joint implementation by a wide 

variety of HOs will help improve the effectiveness of social media in diffusing reliable 

information to other stakeholders. 

It is also important to note that our research found no evidence to suggest that 

cascades carrying content that enhances situational awareness exhibit significantly higher 

diffusion rates relative to other cascades. This is surprising given that authors have 

previously noted that user participation is greater for cascades with information related to 

situational awareness (e.g., Vieweg et al. 2010). It is possible that the effects of other 

content-related factors, such as the use of Twitter hashtags or directional operators, on 

cascades’ diffusion rates supersede the effect of situational awareness content. It is also 

possible that high diffusion rates may be observable but only for those cascades 

contributing new situational awareness content. That is, content that offers the most up-

to-date information of how a disaster event is unfolding. 

Another limitation in our research is that it does not assess the geographical 

implications of information flows in social media networks. We do know from our data 

that as information diffused on the networks, it reached a substantial amount of local 

individuals affected by our study’s focal disaster. We found that almost 35% of all users in 

our data were located in geographical areas affected by the disaster. In total, users located 

in the areas affected by Hurricane Sandy participated in almost all (96.87%) of the 

cascades. In addition, in 80% of the cascades in our data, 20% or more participants were 

located in areas affected by the disaster. Thus, a large amount of information in these 

cascades did manage to reach people located in areas of need. 
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Prior evidence suggests that local individuals who are geographically vulnerable 

during a disaster share information differently in social media networks than individuals 

located in areas unaffected by the disaster (Starbird and Palen 2010). In particular, local 

individuals are more likely to contribute information during a humanitarian crisis than 

other individuals. Those local to a disaster are also more likely to propagate information 

received from other local individuals during a disaster (Kogan et al. 2015). Given this 

evidence, we expect that an increase in local users’ participation in information cascades 

will improve the cascades’ rate of diffusion in social media networks. Future research in 

the context of cascades carrying disaster-related information in social media networks 

could assess empirically whether local users’ participation in these cascades will 

contribute positively to the cascades’ rate of diffusion. 

Lastly, this research empirically tests theoretical propositions using data from a 

disaster that was not completely unexpected or unpredictable. However, some disasters 

that HOs must respond to occur without warning (e.g., earthquakes, terrorist attacks). 

Future research can analyze whether the theoretical propositions presented in this paper 

hold in the context of sudden-onset emergencies and whether additional factors specific 

to this setting impact the diffusion rate of information on social media platforms. 

Inspired by the emergence of social media usage during disasters, our study 

examined the effectiveness of information propagation on social media platforms and 

identified factors that affected the rate of information diffusion. Beyond this context, 

commercial firms have also started to leverage social media to catalyze word-of-mouth 

marketing and enhance brand awareness and engagement (Hoffman and Fodor 2010). 

However, key differences exist regarding information cascades on social media in 

humanitarian versus commercial settings. For instance, in an anticipated event, such as 

the release of a new product, firms often initiate cascades and engage with consumers to 
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generate buzz. HOs and other stakeholders can also use social media platforms to share 

preparation information as forecasted disasters draw closer and intensify. However, 

commercial firms are better able to control and manipulate cascade formation and 

diffusion in these events since information typically originates from the firm and does not 

involve as many stakeholders as in humanitarian settings.  

Firms also utilize social media as an information tool during unexpected events 

involving product and service failures. For example, firms in the electronics industry 

frequently monitor social media to identify information about hardware and software 

defects reported by consumers while firms in the transportation industry routinely use 

social media to trace information about unexpected service failure events. Cascades with 

this information are more likely to originate from dispersed geographical areas unlike 

cascades with information from victims of unexpected, sudden-onset disaster events (e.g., 

earthquakes, terrorist attacks), which can largely be traced to more limited geographical 

areas. While these characteristics help differentiate cascades on social media in 

commercial and humanitarian contexts, we encourage researchers to continue 

investigating cascade behavior to increase our understanding of how information 

disseminates on social media. 
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CHAPTER 2 

The Interaction of Similar Content on Social Media Platforms during Disasters 

Abstract 

Humanitarian organizations use social media platforms to communicate information 

about their work and services. To ensure that information reaches the intended audience 

before it expires, humanitarian organizations’ content must diffuse rapidly. The focus of 

our study is exploring the diffusion speed of social media content. Our approach is novel 

since we also account for the influence of content that is simultaneously disseminating on 

a piece of content’s propagation speed. Specifically, we evaluate if social media posts that 

carries the same meaning and is textually similar interact positively or negatively with one 

another. We formulate a generalized Hawkes model and evaluate the model using Twitter 

data from four distinct disasters. The results from our analysis indicate that similar 

content generally impedes the diffusion rate of a specific piece of content. However, the 

interaction can sometimes be cooperative in the sense that similar content can enhance 

the diffusion speed of a post. This research underscores the importance of incorporating 

the impact of concurrent content on social media platforms when analyzing diffusion 

speed. In addition, our findings carry implications for humanitarian organizations on how 

to coordinate with one another to amplify and jointly maximize the dissemination rate of 

each other’s social media content. 
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1. Introduction 

 When a disaster occurs, the humanitarian community mobilizes itself to respond 

and provide aid to those in need. In such emergency situations, responders strive to 

minimize human suffering and to make decisions that lead to the greatest social good 

(Holguín-Veras et al. 2013). The effective management of humanitarian supply chains is 

crucial in achieving these objectives. An overarching goal is to coordinate flows of goods, 

funds, and information to ensure the availability and accessibility of required resources in 

the right quantities and at the right time and place (Van Wassenhove 2006). In this study, 

we focus on the management of information flows in humanitarian supply chains. While 

the other flows are important, the distribution of information is essential to make 

educated decisions about the movement of goods and finances. Furthermore, due to the 

extreme uncertainty that characterizes the humanitarian context, information has been 

cited as the most perishable resource during times of crisis (Meier 2015). Because the rate 

of information perishability is exacerbated by the turbulence of the operational 

environment often associated with disaster events, information may lose its accuracy and 

relevance within very short time periods. 

 As a result, humanitarian organizations (HOs) must leverage information 

networks to disseminate information rapidly before it expires. HOs have found internet-

hosted social media platforms, like Facebook, Twitter, and Instagram, to be very effective 

for creating content and making it available instantaneously to other users connected 

through networks on these platforms. HOs routinely utilize social media platforms as a 

communication tool to broadcast donor appeals as well as updates on their work and 

services. Additionally, HOs frequently use social media platforms as sources of data from 

those affected by a disaster since stakeholders located within disaster zones can easily post 
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valuable reports on these platforms related to subjects like damaged infrastructure and 

injuries (Gao et al. 2011). 

We concentrate on developing insights for HOs’ usage of social media platforms as 

a communication tool. Our work responds to calls for research on the implications of the 

use of social media platforms for HOs (Holguín-Veras et al. 2012, Swaminathan 2018) and 

contributes to the growing body of literature that has explored this topic (e.g., Pedraza 

Martinez and Yan 2016, Yoo et al. 2016). Like Yoo et al. (2016), this study is specifically 

concerned with expanding our understanding of how HOs can enhance the diffusion speed 

of their social media content. By improving the rate at which their content on social media 

platforms disseminates, HOs can counter the problem of information perishability and 

transmit to more stakeholders their content before its expiration. After investigating 

Twitter data from Hurricane Sandy, Yoo et al. (2016) discovered that information 

diffusion slows down during times of high traffic, and we directly build on this work by 

analyzing how the diffusion speed of social media content is affected by the 

contemporaneous diffusion of peripheral content. 

The diffusion of user-generated content is marked by sharing through social media 

platforms’ sharing functions. By sharing a piece of content, users forward that information 

to their network, and propagation continues as long as the same content is shared. A social 

media post and its chain of shares can be viewed as a cascade, and cascades lengthen with 

more shares (Lerman and Ghosh 2010). The diffusion speed of a cascade reflects the rate 

at which the cascade grows. A cascade’s likelihood of being shared depends on a number 

of variables, such as the number of connections that cascade participants have and the 

visibility of the cascade (Bakshy et al. 2011, Lerman and Ghosh 2010). Network effects also 

have been shown to play a role in that weak ties are more likely to share content (Shi et al. 
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2014). Content attributes, like the inclusion of URLs, influence a cascade’s dissemination 

rate as well (Boyd et al. 2010). 

Beyond the factors mentioned above, we argue that a cascade’s diffusion speed is 

also a function of interactions with other cascades. Because there are no costs to 

generating content, there is a tremendous volume of cascades on social media platforms. 

Therefore, an analysis of a cascade’s diffusion rate cannot view the cascade in isolation but 

must account for the influence imposed by other cascades. We are particularly interested 

in the interactions between cascades conveying essentially the same message through 

content that is textually similar. A cascade’s propagation may benefit from the existence 

of cascades communicating a similar message since the content appears legitimate (Myers 

and Leskovec 2012). Alternatively, the presence of similar content in other cascades may 

introduce a competitive dynamic and render a specific cascade as redundant. As a result, 

the cascade may struggle to attract attention away from its competitors and be shared. The 

purpose of our study is to examine how a cascade’s diffusion speed is affected by other 

cascades expressing similar content and what determines whether the effects by other 

cascades are competitive or cooperative.  

While others have researched interactions among cascades (e.g., Coscia 2018, 

Myers and Leskovec 2012, Weng et al. 2012), we are the first to evaluate this phenomenon 

in the humanitarian setting. Consequently, we contribute to the research stream related 

to the interplay of information on social media platforms by analyzing this topic during 

situations that require the urgent and rapid diffusion of content. Our study also carries 

implications for the literature on the coordination of information resources in 

humanitarian operations (e.g., Altay and Pal 2014, Ergun et al. 2014). It can be expected 

that HOs sometimes issue similar social media content as that of other HOs, especially 

once an emergency has occurred and HOs converge to respond. Our research supplies 
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guidelines on how HOs can work together to coordinate the release of similar content such 

that the spread of their cascades benefit, rather than compete with, one another. This will 

help HOs jointly maximize the diffusion speed of their content across social media 

platforms and spread information quickly to their combined audiences. 

Our research offers a methodological contribution to the literature as well. To 

analyze cascades’ diffusion speed, we formulated a generalized point process model that 

is based on the Hawkes model (Hawkes 1971). Based on the history of shares, the Hawkes 

model calculates the intensity of a cascade, which can be interpreted as its diffusion rate 

(Zhao et al. 2015). This model is also known as a self-exciting point process since the 

intensity for a cascade increases every time that the cascade is shared. Our model is 

distinctive because we not only considered the effects of the cascade’s own shares but also 

incorporated the effects of the shares of cascades with similar content. To the best of our 

knowledge, ours is the first point process model to calculate a cascade’s dissemination 

speed as a byproduct of the diffusion history of cascades other than itself. Moreover, we 

allowed the latter effects to be positive or negative to model the possible cooperative and 

competitive effects of other cascades. This extension is not commonly implemented as it 

makes the model difficult to estimate. Another methodological contribution from our 

paper is the implementation of a near-duplicate detection algorithm called the simhash 

algorithm to cluster similar content. Thus far, near-duplicate detection techniques have 

not been utilized in the operations management literature. Using simhash, we were able 

to successfully and efficiently identify for each cascade what other cascades were carrying 

similar (i.e., near-duplicate) information.  

We evaluated the model using Twitter data from four distinct disasters that 

unfolded in different parts of the world to increase the generalizability of our findings. 

Twitter is a prominent social media platform that is known for microblogging since posts, 
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or “tweets,” on this platform are limited in length. Twitter boasts approximately 330 

million users that publish more than 500 million tweets per day5. On Twitter, users can 

share, or “retweet”, a tweet and distribute that tweet to their connections. Therefore, 

cascades comprised a tweet and its retweets, and our sample size included almost 27,000 

cascades. Beyond Twitter’s popularity, we chose to collect data from this social media 

platform because of its value to HOs. The United Nations Office for the Coordination of 

Humanitarian Affairs (OCHA), for instance, published a policy brief related to HOs’ usage 

of social media (Moore and Verity 2014), and in this document, OCHA singled out Twitter 

as the social media platform best suited for HOs. 

Our findings indicate that a cascade’s diffusion speed is affected by its own history 

of shares as well as the history of shares for cascades conveying similar content. Therefore, 

the dissemination of a cascade is not immune from the influence of other cascades 

belonging to the same topic. We also observed that the effect of cascades with similar 

information on a specific cascade’s diffusion rate varies across the cascades in our sample, 

and the range of this effect included both negative and positive values. This provides 

evidence of a competitive and cooperative dynamic among cascades. On average, however, 

a competitive effect was imposed by cascades sharing similar content, so our study 

suggests that HOs should attempt to produce novel information to avoid being clustered 

with other cascades based on similarity of content. We also conducted an additional 

analysis to identify determinants of whether a competitive or cooperative dynamic 

emerged among cascades. Our results reveal that the diffusion speed of cascades published 

by producers of larger size is more likely to benefit from the spread of cascades in the same 

topic. HOs may thus strive to increase their size on social media platforms. We also found 

that the number of cascades diffusing simultaneously to a focal cascade carrying content 

                                                        

5 https://blog.hootsuite.com/twitter-statistics/ 



38 
 

under a common topic has a curvilinear relationship with the focal cascade’s diffusion rate. 

As the count of cascades carrying similar content increases, the impact is initially positive 

due to the content becoming validated but then becomes negative from a crowding effect. 

These results shed light on how cascades interact and provide guidance for HOs on what 

to expect concerning the diffusion of their social media content. 

 We organize the rest of the paper as follows. In Section 2, we position our paper in 

the extant literature, discuss its contributions to these areas, and outline key factors and 

conditions behind the dynamics of diffusion involving multiple cascades. Then, we 

formulate the point process model in Section 3 and provide an overview of the data in 

Section 4. Subsequently, we discuss how we estimated the model and present the results 

in Sections 5 and 6. We conclude in Section 7 with a summary of our findings and 

extensions of our study for future research to consider. 

2. Background 

Our paper contributes to the literature on information diffusion in a humanitarian 

context. For HOs, the diffusion of information to stakeholders like beneficiaries, donors, 

and other HOs is imperative to effectively prepare for and respond to a crisis. However, 

there are many obstacles for sharing information in a humanitarian setting. Disasters may 

damage infrastructure and the physical landscape, making it difficult to access data 

sources and to transmit information (Holguín-Veras et al. 2012). Moreover, many HOs 

converge at the scene of the disaster to work for response and recovery efforts, and the 

lack of centralized leadership hinders an understanding of each group’s capabilities as well 

as the systematic information exchange among the involved parties (Day et al. 2012, Van 

Wassenhove 2006). Other reported challenges include unreliable data from inaccurate or 

untimely information and inconsistent data formatting from using different 

measurements and systems (Altay and Labonte 2014). 
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To combat the challenges mentioned above, HOs have embraced a UN system that 

organizes HOs into clusters based on their specialties. Each cluster has an appointed 

leader. Altay and Pal (2014) showed that the cluster system helps to facilitate information 

sharing, especially if cluster leads coordinate the flows of information and filter 

information to the proper HOs. Furthermore, HOs have collaborated with commercial 

firms to develop technological solutions that have standardized data collection procedures 

and reduced informational delays associated with manual data entry (Ergun et al. 2014). 

HOs have also embraced open platforms, like Sahana, that reduces barriers against inter-

organizational information sharing. On these platforms, HOs can freely view crisis maps 

and share information about camps and missing persons (Currion et al. 2007). Finally, 

many HOs have become active users on social media platforms, which are also free 

available and are effective at diffusing information during emergencies (Yoo et al. 2016). 

Social media platforms are also particularly useful because HOs can broadcast 

information to their stakeholders as well as gather first-hand information posted by users 

located within the disaster zone (Starbird et al. 2010).  

Our paper extends this research by examining how the diffusion of HOs’ social 

media content is impacted by the spread of similar content during the same timeline. To 

that end, our study builds on the economy of attention literature. The concept of the 

economy of attention was first introduced in the seminal piece by Simon (1971). According 

to Simon (1971), we currently live in an information-rich economy as our lives are 

inundated with information, especially since the rise of the internet. In such an economy, 

the wealth of information leads to a scarcity of what information expends: attention. 

Therefore, producers must develop strategies for attracting attention, and consumers 

must determine how to distribute their attention resources among competing pieces of 

information (Falkinger 2007, Simon 1971). 
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Economies of attention consist of producers and consumers of information, and 

depending on the amount of available information, they can be characterized as 

information-rich or information-poor. Researchers have adopted this framework to 

examine a variety of problems involving competition for limited attention resources across 

different contexts. For example, Gabaix et al. (2006) studied how information acquisition 

for economic decision-making is affected by limited attention, and Haas et al. (2015) 

investigated how individuals select which problems to pay attention to and solve on online 

forums. This theoretical lens was also used to examine how animation can draw attention 

towards online ads (Hong et al. 2004). The economy of attention framework has been 

applied to the area of computer science as well to argue that users cannot process (or grant 

attention to) all information returned by search results. Accordingly, competing search 

results should be prioritized based on relevance and usefulness (Huberman and Wu 

2008). 

Recently, social media platforms like Twitter (Weng et al. 2012) and Digg (Wu and 

Huberman 2007) have been analyzed under the economy of attention model. These 

platforms are certainly information-rich and facilitate immense amounts of traffic because 

each user faces minimal costs to upload user-generated content. In this context, each user 

that creates a post and thereby launches a cascade is viewed as a producer of information. 

A producer then has to compete for users’ attention against other producers, and it earns 

greater utility as more users pay attention to its content (Iyer and Katona 2015). One way 

that consumers can signal their attention to a piece of content is by propagating the 

cascade through the platform’s sharing function (Wu and Huberman 2007). Hence, 

Twitter cascades that receive higher amounts of attention in the form of retweets 

experience greater diffusion. Attention allocation on social media platforms has been 

studied from an individual perspective (e.g., Hodas and Lerman 2012, Weng et al. 2012) 
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and an aggregate perspective (e.g., Ciampaglia et al. 2015, Huberman et al. 2009). The 

latter examines the distribution of collective attention across cascades, and the focus of 

our study is at the aggregate level.  

 A key factor we consider in the examination of diffusion dynamics among multiple 

cascades is the novelty of information presented in the cascades since novel content 

typically experiences greater diffusion (Vosoughi et al. 2018). The content communicated 

in a cascade will vary in terms of its degree of novelty, or conversely similarity, relative to 

the content conveyed in other cascades. To the extent that a group of cascades relays 

content similar to that of a focal cascade while diffusing within the same timeline, this set 

of cascades is considered to be running in “parallel” to the focal cascade. The information 

embedded in the focal cascade and its parallel cascades is also said to belong to the same 

topic. Prior research has found that the presence of parallel cascades makes it difficult for 

a focal cascade to collect attention and diffuse (Coscia 2014). Other research, however, has 

found evidence that a focal cascade’s diffusion is enhanced by the existence of parallel 

cascades, perhaps because the proliferation of the content in multiple cascades makes the 

information appear more important and valid (Myers and Leskovec 2012). In this study, 

we aim to deepen our understanding of the interplay between a focal cascade and its 

parallel cascades and identify when the effects of the latter are positive versus negative. In 

order to understand some of the reasons driving the possible manifestation of these 

contradictory results in a humanitarian setting, we follow Coscia (2018) and Dellarocas et 

al. (2015) and examine the diffusion dynamics between focal and parallel cascades. Our 

aim is to identify when the latter have positive versus negative (or cooperative versus 

competitive) effects on the diffusion of the former.  

Several conditions can determine whether parallel cascades detract from or attract 

attention to a focal cascade. First, the diffusion of focal cascades supplied by large 
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producers may be less susceptible to competitive effects by parallel cascades. This is 

because large producers can generate stronger and more extensive information signals, 

and thus, they are capable of tapping into a greater pool of attention resources (Falkinger 

2007). Because larger producers also tend to be viewed as more credible (Castillo et al. 

2011), it may be easier for their content to become validated by the presence of parallel 

cascades. Second, the volume of parallel cascades will determine the extent to which 

cascades will contribute or undermine attention to a focal cascade. Haas et al. (2015) 

discovered a curvilinear relationship between the number of parallel cascades and a focal 

cascade’s diffusion. As the volume of parallel cascades rises, the focal cascade’s 

dissemination increases because its content appears more interesting and becomes 

legitimized from other cascades carrying similar information. At some point, however, the 

topic may become too crowded, and a high number cascades running in parallel will make 

it difficult for the focal cascade to distinguish itself and earn attention to diffuse. 

Another consideration is the timing of when the focal cascade started relative to 

when the parallel cascades were initiated. Specifically, a cascade’s diffusion may be subject 

to a first-mover advantage if the same cascade’s producer is the first among producers of 

cascades in the same topic to broadcast the topic’s content. A first-mover advantage over 

traditional news outlets has been observed for blogs that react immediately to an event. 

Such blogs are able to direct attention towards themselves and steer public opinion 

(Farrell and Drezner 2008). In contrast, Ciampaglia (2015) has demonstrated that content 

attracts more attention when it is issued during, rather than before, the period of peak 

interest in the topic that the piece of content pertains to. Since it generally requires some 

time to generate interest in a topic, a first-mover advantage may not exist for a focal 

cascade with parallel cascades.  



43 
 

3. Point Process Model for the Diffusion of Cascades 

We consider Twitter cascades indexed by 𝑖 = 1,… , 𝐼  during the observation 

interval [𝟎, 𝑻]. Upon publishing a tweet, cascade i is launched by producer 𝑝𝑖, and we label 

the time that the cascade was initiated as 𝑡0
𝑖 , where 𝑡0

𝑖 ≥ 𝟎. Cascades on Twitter grow as 

they are retweeted by other users, or by retweeters. We only include cascades that have 

been retweeted at least once to guarantee minimum diffusion. Cascade i comprises 𝑘 =

1,… , 𝐾 retweets, and the times that these retweets arrived are denoted as 𝑡1
𝑖 , … , 𝑡𝐾

𝑖 , where 

𝑡𝐾
𝑖 ≤ 𝑻. Therefore, the time that retweet k of cascade i occurred is equal to 𝑡𝑘

𝑖 . 

In our study, we follow Zhao et al. (2015) and model a cascade’s diffusion based on 

the occurrence of retweets as a point process. Point processes are a collection of stochastic 

points that represent the occurrence of an event along a finite line or space. Examples of 

events modeled as point processes include advertisement clicks (Xu et al. 2014), 

earthquakes (Ogata 1988), and crime (Mohler et al. 2011). Retweets for a cascade are 

described as a point process, or as a series of points along a finite and nonnegative line 

that represents time. A point process can also be characterized through a counting 

measure, 𝑅𝑖(𝑡), which gives the number of retweets that cascade i has accumulated by t. 

This means that 𝑅𝑖(𝑡𝑘
𝑖 ) − 𝑅𝑖(𝑡𝑘−1

𝑖 )  corresponds to the number of retweets that 

materialized for i between (𝑡𝑘−1
𝑖 , 𝑡𝑘

𝑖 ]. We note that 𝑅(0) = 0. The counting measure is 

increasing and integer-valued, making it a step function that increases by a value of 1 at 

every 𝑡𝑘
𝑖  (Daley and Vere-Jones 2003).  

 The simplest type of point processes is the Poisson process. Under the Poisson 

process, event occurrences transpire independently at a mean rate, or intensity, equal to 

𝜆. The intensity is assumed to be constant across time, and consequently, this process is 

also called the homogeneous Poisson process. The homogeneous Poisson process is useful 

to model the arrival rates of points belonging to an event that conform to this assumption, 
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but there are many events for which this assumption is too restrictive. As such, the 

inhomogeneous Poisson process allows the intensity to vary over time, which can be 

expressed as 𝜆(𝑡). The event realizations are still assumed to be independent under the 

inhomogeneous Poisson process (Daley and Vere-Jones 2003). Because event occurrences 

are treated as independent, Poisson processes are sometimes referred to as being 

“memoryless” (Gardner et al. 1995). 

 It may be the case, however, that the realization of an event is dependent on 

previous realizations. Such point processes cannot be modeled by the either of the Poisson 

processes mentioned previously since the assumption of independence is violated. This 

property of dependence among event observations has been observed within the context 

of social media platforms, such as Twitter (Kobayashi and Lambiotte 2016, Zhao et al. 

2015) and YouTube (Crane and Sornette 2008). Accordingly, we utilize a point process 

model that allows the arrival of a cascade’s retweets to be influenced by earlier retweets. 

The self-exciting point process, also known as the Hawkes process, is able to 

handle dependence among event occurrences by specifying the intensity as a conditional 

function of time and the history of the point process (Hawkes 1971). The history of the 

point process until t encompasses information about all realizations prior to t as well as 

the times that the realizations happened, and we express this variable as ℋ𝑡
𝑖 (Daley and 

Vere-Jones 2003). The conditional intensity function for cascade i is formally defined as: 

𝜆𝑖(𝑡|ℋ𝑡
𝑖) = lim

𝑡→0

Pr {𝑅𝑖(𝑡 +△ 𝑡) − 𝑅𝑖(𝑡) > 0|ℋ𝑡
𝑖
}

△𝑡
, (1) 

where 𝜆𝑖(𝑡|ℋ𝑡
𝑖) > 0. Within our context, the intensity represents the rate at any moment 

that a cascade is retweeted, conditional on the history of past retweets. The intensity can 

alternatively be interpreted as the diffusion rate for a cascade. 

 In the self-exciting point process by Hawkes (1971), every event realization 

increases the conditional intensity function in an additive fashion. This means that the 
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occurrence of one retweet heightens the cascade’s diffusion speed and makes the arrival 

of the next retweet faster. The self-exciting point process for i is equal to: 

𝜆𝑖(𝑡|ℋ𝑡
𝑖) = 𝜇𝑖𝑒−𝛾

𝑖𝑡 + ∫ 𝑔𝑖(𝑡 − 𝑠)𝑑𝑅𝑖(𝑠)
𝑡

−∞
, (2) 

where 𝜇𝑖 > 0, 𝛾𝑖 > 0, and 𝑠 < 𝑡. Here, 𝜇𝑖  is the homogeneous Poisson process rate that 

represents the baseline intensity of the cascade (Hawkes and Oakes 1974). We allow 𝜇𝑖 to 

decay exponentially over time to reflect the temporal decay patterns of cascades on Twitter 

(Asur et al. 2011), and the decay rate is parametrized by 𝛾𝑖. Furthermore, 𝜇𝑖 and 𝛾𝑖 are 

heterogeneous across cascades since we anticipate variation in how easily cascades 

disseminate and how quickly interest in them declines. 

The other component of the self-exciting point process describes the impact of a 

retweet at time s on cascade i’s diffusion speed at time t. This exciting effect is not 

permanent but wears off over time. As is common in extant research (e.g., Embrechts et 

al. 2011, Xu et al. 2014), we specify the effect of previous realizations to decay 

exponentially: 

𝑔𝑖(𝑡 − 𝑠) = 𝛼𝑖𝑒−𝛽
𝑖(𝑡−𝑠), (3) 

where 𝛼𝑖 > 0 and 𝛽𝑖 > 0. We also enforce the restriction 𝛼𝑖 < 𝛽𝑖 (Hawkes 1971, Masuda et 

al. 2013). The parameter 𝛼𝑖  represents the exciting effect, or the increase in intensity, 

attributed to retweet of i at s, and 𝛽𝑖 reveals how quickly such an effect dissipates. Note 

that 𝛼𝑖  and 𝛽𝑖  are cascade-specific to model the heterogeneity of exciting effects across 

cascades. Given this information, Equation 2 can be rewritten as: 

𝜆𝑖(𝑡|ℋ𝑡
𝑖) = 𝜇𝑖𝑒−𝛾

𝑖𝑡 + ∫ 𝛼𝑖𝑒−𝛽
𝑖(𝑡−𝑠)𝑑𝑅(𝑠)

𝑡

−∞
= 𝜇𝑖𝑒−𝛾

𝑖𝑡 + ∑ 𝛼𝑖𝑒−𝛽
𝑖(𝑡−𝑡𝑘

𝑖 )
𝑡𝑘
𝑖<𝑡  (4) 

From Equation 4, it is clear that a cascade’s intensity at time t is a function of the sum of 

the exciting effects imposed by all retweets that occurred before t. Figure 2 is based on a 

figure by Rizoiu et al. (2017) and illustrates an example of a cascade i’s self-exciting point 
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process in three panels. Panel (a) portrays the arrival of retweets as points at the time that 

they occurred. Panel (b) shows the counting measure as a step function increases as 

retweets arrive in Panel (a).  Lastly, Panel (c) depicts the intensity over time given that 

𝜇𝑖 = 4, 𝛾𝑖 = 0.8, 𝛼𝑖 = 1.2, and 𝛽𝑖 = 3. 

Figure 2 – Self-Exciting Point Process for a Sample Cascade 

 

However, recall that a cascade does not diffuse in isolation, and its dissemination 

may be susceptible to influence from other cascades. As discussed in Section 2, parallel 

cascades are cascades that spread during the same timeline while carrying similar content 

to that of a focal cascade. These are of particular interest as they have been shown to both 

impede and accelerate a focal cascade’s diffusion. Thus, we modify the self-exciting point 

process to include another point process that represents the arrival of retweets belonging 

to parallel cascades. This is similar to a multivariate point process in which the intensity 

of each process is affected by all other point processes under consideration (Hawkes 1971). 

Our model is not a multivariate point process since we only consider how the retweets of 

parallel cascades impact the intensity of a focal cascade and exclude the inverse 

relationship. 

Under the modified model, 𝑅𝑖(𝑡) = [𝑅1
𝑖 (𝑡), 𝑅2

𝑖 (𝑡)] , where 𝑅1
𝑖 (𝑡)  is the counting 

measure for retweets belonging to cascade i and 𝑅2
𝑖 (𝑡) is the counting measure for retweets 
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belonging to parallel cascades of i. The retweets of parallel cascades are indexed by 𝑙 =

1,… , 𝐿, and the time that retweet 𝑙 occurred is marked as 𝑡𝑙
𝑖. The time that L was issued is 

𝑡𝐿
𝑖 , and  𝑡𝐿

𝑖 ≤ 𝑇. In addition, we introduce two new terms, 𝜙
𝑡𝑘
𝑖  and 𝜙

𝑡𝑙
𝑖, which respectively 

measure the natural logarithm of the number of followers that the retweeter of 𝑘 had at 𝑡𝑘
𝑖  

and that the retweeter of 𝑙 had at 𝑡𝑙
𝑖. The follower counts are logged to address skewness. 

Like Mishra et al. (2016) and Zhao et al. (2015), we include retweeters’ follower counts to 

account for the change in intensity from retweeters with higher follower counts exposing 

a larger audience to the original piece of content. Equation 5 presents the model that 

includes both point processes: 

     𝜆𝑖(𝑡|ℋ𝑡
𝑖) = 𝜇𝑖𝑒−𝛾

𝑖𝑡 + ∑ (𝛼11
𝑖 ∗ 𝜙

𝑡𝑘
𝑖 ∗ 𝑒−𝛽11

𝑖 (𝑡−𝑡𝑘
𝑖 ))𝑡𝑘

𝑖<𝑡 +∑ (𝛼21
𝑖 ∗ 𝜙

𝑡𝑙
𝑖 ∗ 𝑒−𝛽21

𝑖 (𝑡−𝑡𝑙
𝑖))𝑡𝑙

𝑖<𝑡   (5) 

We differentiate the exciting effects of i’s own retweets and the retweets of parallel 

cascades by having 𝛼11
𝑖  and 𝛽11

𝑖  characterize the former and 𝛼21
𝑖  and 𝛽21

𝑖  characterize the 

latter. Since we incorporate 𝜙
𝑡𝑘
𝑖  and 𝜙

𝑡𝑙
𝑖 , the parameters 𝛼11

𝑖  and 𝛼21
𝑖  represent the 

magnitude of the effect of retweets of the corresponding point processes while controlling 

for retweeters’ follower counts. As before, 𝛼11
𝑖 , 𝛽11

𝑖 > 0, and 𝛼11
𝑖 < 𝛽11

𝑖 . Moreover, we add 

the constraints  𝛽21
𝑖 > 0 and 𝛼21

𝑖 < 𝛽21
𝑖 , but 𝛼21

𝑖  is not restricted to be positive-valued. This 

allows us to model the effects of parallel cascades’ retweets on a focal cascade’s intensity 

to be both exciting and inhibitive (Bowsher 2007, Mei and Eisner 2017). In doing so, we 

implement a more generalized version of the Hawkes model, and we acknowledge that the 

diffusion of parallel cascades may compete against or cooperate with a focal cascade’s 

diffusion rate. 
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4. Data 

4.1. Sample 

 A common dimension on which to classify disasters is the amount of warning time 

that is possible before the events occur. Sudden-onset disasters are those that transpire 

instantly with no warning (e.g., earthquakes, industrial accidents) while slow-onset 

disasters are those with gradual and foreseeable arrivals (e.g., hurricanes, floods) 

(Holguín-Veras et al. 2012, Olteanu et al. 2015). We obtained Twitter data for four sudden-

onset disasters from WeLink, which is a social media data services firm. We chose to 

concentrate on sudden-onset disasters since these have a finite starting point. The four 

disasters were sampled from EM-DAT6, which is a database of disaster events hosted and 

maintained by the Centre for Research on the Epidemiology of Disasters (CRED) at the 

Université Catholique de Louvain. This database has been employed to sample disasters 

in previous publications (e.g., Acimovic and Goentzel 2016, Sodhi 2016). Humanitarian 

events were only eligible to be sampled if they occurred between 2009 and 2015 because 

2009 is approximately when Twitter started experiencing rapid growth in the number of 

its users and when researchers began to study how Twitter can be used during 

emergencies. Additionally, we limited our sample to disasters from regions that spoke 

English or Spanish to avoid any need for translation. Table 7 provides information about 

the disasters that were selected for our sample, including data on the number of casualties 

and the size of the affected population. 

 

(Table 7 on next page) 

 

                                                        

6 D. Guha-Sapir, R. Below, Ph. Hoyois - EM-DAT: International Disaster Database – www.emdat.be – 

Université Catholique de Louvain – Brussels – Belgium. 
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Table 7 – Information on Sampled Disasters 

Disaster Event Location 
Event Time 

(UTC) 
End of Data 

(UTC) 
Total 

Deaths* 
Total 

Affected* 

Joplin tornado Joplin, MO, USA 5/22/2011 22:34 6/2/2011 23:59 176 1,150 

Black Forest fire 
Black Forest, CO, 

USA 
6/11/2013 19:00 6/21/2013 23:59 2 1,617 

Lac-Megantic 
rail disaster 

Quebec, Canada 7/6/2013 05:15 7/10/2013 23:59 47 2,000 

2014 Iquique 
earthquake 

Iquique, Chile 4/1/2014 23:46 4/6/2014 23:59 6 513,837 

* Source: EM-DAT     
 
 To collect the data, we submitted to WeLink a set of queries specific to each disaster 

event. These queries comprised keywords and phrases that were commonly present in 

hashtags and content associated with the emergencies. We also specified the date ranges 

that we were interested in, starting from the time the disaster materialized to 

approximately the end of the response period. As the selected events were sudden-onset 

disasters, we were able to clearly delineate if content was published before or after the 

disasters. The precise end of the data collection period is shown in the fourth column of 

Table 7. WeLink collected all tweets and retweets that were issued within the stipulated 

timeline and contained the keywords and phrases (not case sensitive) anywhere within the 

body of the text, including within hashtags. We followed Olteanu et al. (2015)’s approach 

to selecting the keywords and phrases. That is, we detected keywords in hashtags by 

searching on Google for “hashtag” in conjunction with the name of the event. We also 

included in our queries combinations of the location of the disaster and the event name. 

Table 8 lists the exact keywords and phrases that we used to collect Twitter data through 

WeLink. 

 

(Table 8 on next page) 
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Table 8 – Keywords and Phrases in Queries 

Joplin 
tornado 

Black Forest 
fire 

Lac-Megantic  
rail disaster 

2014 Iquique 
earthquake 

joplin blackforestfire lacmegantic iquique temblor 

prayersforjoplin colorado fire lacmégantic iquique terremoto 

joplintornado black forest megantic3rec iquique earthquake 

joplinmissouri   chile earthquake 

joplinmidmo   chile temblor 
     chile terremoto 

 

 The data set provides detailed information about the tweets and retweets that 

matched our queries, such as timestamps and profile statistics for the users that issued the 

tweets and retweets. We can identify which tweet was being shared by every retweet since 

the tweet ID is recorded for all retweets. Subsequently, we organized the tweets and 

retweets into cascades in accordance with previous studies (e.g., Lerman and Ghosh 2010, 

Vosoughi et al. 2018). A cascade is composed of a user’s tweet and its chain of retweets, 

and we label the user that posted the tweet as the cascade’s producer to be consistent with 

the terminology presented in Sections 2 and 3. At a minimum, a cascade was required to 

have gained at least one retweet. During the years when the four disasters took place, 

Twitter limited the amount of characters in a tweet to 140, so tweets were often short 

messages. In line with previous researchers’ guidelines (Davidov et al. 2010, Wang et al. 

2012), we eliminated any cascades with text containing less than five words because tweets 

with too few words are difficult to extract meaning from. Based on these considerations, 

we obtained a total of 110,628 cascades across all of the events in our sample. In Figure 3, 

we illustrate the number of cascades initiated over time, and each of the panels 

corresponds to a disaster. 

 
(Figure 3 on next page) 
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Figure 3 – Count of Cascades Initiated over Time 

 

4.2. Parallel Cascades 

 For each cascade, we detected its parallel cascades (i.e., cascades carrying similar 

content). We were interested in a narrow view of similarity so that each cascade and its 

associated parallel cascades represent fine-grained rather than broad topics. This allowed 

us to model the effects of parallel cascades on the diffusion of a focal cascade in a more 

nuanced way. To find very similar pieces of content, we applied near-duplicate detection 

techniques, which rely on identifying similar content based on a measure of the textual 

distance between cascades. The Jaccard similarity coefficient is a commonly used 

similarity score for a pair of cascades, and it is calculated as the intersection of two 

cascades’ words divided by the union of two cascades’ words. Thus, a Jaccard similarity 

coefficient of 1 means that the two cascades are textually identical while a score of 0 means 

that the two cascades have no words in common (Manning and Schütze 1999). This 

distance measure requires pairwise comparisons among all possible pairs of the cascades. 

Because the number of pairwise comparisons grows exponentially, calculating the Jaccard 

similarity coefficient for all cascades in the sample is too computationally complex. 
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 As such, we used the simhash algorithm, which was developed by Charikar (2002), 

to more efficiently locate parallel cascades. This algorithm has been implemented by 

Google to ascertain whether a web page is a near-duplicate of another page while web 

crawling (Manku et al. 2007). We briefly describe the algorithm here. Simhash is a 

dimensionality reducing algorithm that creates one B-bit fingerprint to represent a 

document (i.e., in our study, a cascade’s text). To implement the algorithm, we performed 

the following steps for each cascade. First, we maintained a vector V of length B, and each 

element of this vector was initialized to equal 0. The subsequent step of the algorithm was 

to calculate a B-bit hash for every document feature. We chose to tokenize cascades’ text 

into words and submit tokens as features. Next, we regarded hash values equal to 1 as 1 

and hash values equal to 0 as -1. For 𝑏 = 1,… , 𝐵, we summed the hash values in the bth bit 

across the tokens, and we set the bth element of V equal to this sum. Negative sums in V 

were recorded as 0 while positive sums in V were marked as 1. The fingerprint of the 

cascade’s text is equal to V. The simhash algorithm’s performance is fast and scales linearly 

with the number of cascades. Moreover, this algorithm is particularly useful for finding 

near-duplicates because it produces similar hashes for similar content. Hence, textual 

similarity can be evaluated by comparing a cascade’s fingerprint with that of another 

cascade. The Hamming distance, which is measured as the number of differing bits 

between two cascade’s fingerprints, is often used for this task, and a low Hamming 

distance is correlated with a high Jaccard similarity coefficient. 

 A cascade’s content was represented by the text extracted from the tweet that 

launched the same cascade. Technically, the text in retweets only differs from the text in 

tweets by crediting the cascade producer at the beginning with “RT@username”, where 

“username” equals the producer’s Twitter handle. Before applying the algorithm, we 

preprocessed the text. First, we converted all of the cascade’s text to lowercase, and any 
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punctuation marks were removed. We stripped the text of URLs and emojis, but we 

preserved hashtags as long as they did not match the queried keywords and phrases. Also, 

we eliminated all English and Spanish stop words, which are common, short function 

words like “and”, “the”, and “which”. We attempted to reduce variation in users’ spelling 

by modifying any words with characters repeated more than three times in a row to having 

the characters repeated only three times in a row (i.e., “hahaaaa” to “hahaaa”).  

Once text preprocessing was complete, we ran a Python implementation of 

simhash7 for each disaster’s collection of cascades. This implementation generated 64-bit 

fingerprints for cascades. A cascade was deemed to be a near-duplicate of another cascade 

if the Hamming distance of their fingerprints was not larger than 8 bits. Please refer to 

Table 9 for examples of near-duplicates identified by the simhash algorithm. Locating 

near-duplicates is critical for identifying similar content, but we must consider duplicates 

as well. Duplicate detection only involves searching for exact matches, and this process is 

much easier and does not require the application of an algorithm. Therefore, for each 

cascade in our sample, we found its near-duplicates (if any) and duplicates (if any), and 

the joint set of near-duplicate and duplicate cascades constituted the set of parallel 

cascades. Since our study is concerned with the interactions between a focal cascade and 

its parallel cascades, we only kept cascades that matched with at least one near-duplicate 

or duplicate cascade. Our final sample consisted of 26,896 cascades, so approximately 

24.3% of the 110,655 cascades communicated content that was textually similar to content 

carried by at least one other cascade. 

 

(Table 9 on next page) 

 

                                                        

7 https://github.com/seomoz/simhash-py 
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Table 9 –  Examples of Cascades and Their Near-Duplicates 

Disaster Sample Cascade Text Sample Near-Duplicate Text 

Joplin tornado 

You can help us respond in #Joplin! 
Text REDCROSS to 90999 to make 

a $10 donation, or give online: 
http://ht.ly/50NRD 

To help those in #joplin text 
REDCROSS to 90999 to make a $10 

donation. 

Black Forest fire 

REMINDER: MANDATORY 
EVACUATION means you are in 

immediate danger. Load your 
family and pets , and GO NOW. 

#BlackForestFire 

“@EPCSheriff CLARIFICATION: 
MANDATORY EVACUATION 

means you are in immediate danger. 
Load your family and pets and GO 

NOW. #BlackForestFire” 

Lac-Megantic 
rail disaster 

Train Carrying Crude Oil Derails in 
Quebec http://t.co/e5jiBmTKux 

Crude Oil-Carrying Train Derails 
And Explodes in Quebec Town 

http://t.co/gDJ7MI7b7p via 
@thinkprogress | 

http://t.co/tIwgnl9ClX #nokxl 

2014 Iquique 
earthquake 

Major Earthquake Strikes Off Chile 
Coast, USGS Reports 

http://t.co/3wwy4gJOox 

Strong earthquake strikes off coast 
of Chile http://t.co/916gJ3BG1d 

 

Because the unit of analysis in our study is the cascade, we organized the data for 

each cascade into two sets of arrivals, which listed retweets for the same cascade and 

retweets of the parallel cascades. As we combined all of the retweets of parallel cascades, 

we considered the effects of similar cascades on a focal cascade’s diffusion in an aggregate 

form. The average number of retweets that a cascade accumulated during the data 

collection period was 9.779, and the mean number of retweets earned by parallel cascades 

over the identical time horizon was 99.799. The second statistic is higher because we 

aggregated the retweets across all of the parallel cascades that the focal cascade matched 

with. Table 10 gives a breakdown of the sample size by disaster along with the mean 

number of retweets in both point processes. 

Table 10 – Breakdown of Sample Size and Retweets by Disaster 

Disaster 
Cascade 

Count 

Mean Retweet 
Count for Focal 

Cascade 

Mean Retweet 
Count for Parallel 

Cascades 

Joplin tornado 9,868 6.428 64.875 

Black Forest fire 2,281 4.749 14.664 

Lac-Megantic rail disaster 1,951 7.112 25.336 

2014 Iquique earthquake 12,796 13.666 153.261 
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On Twitter, the diffusion of cascades is generally small and short (Goel et al. 2016). 

Kwak et al. (2010), for example, found that over 90% of cascades only had been retweeted 

once. Our data exhibits a similar pattern. While the mean count of retweets for cascades 

in our sample was almost 10, the median was 2. Figure 4 portrays the kernel density plot 

of the number of retweets accumulated by every cascade in our study. From Figure 4, we 

can clearly observe that the distribution of cascades’ retweet amounts is heavily right-

skewed and resembles a power law distribution. The distribution of cascades’ retweet 

counts by disasters resembled the distribution exhibited in Figure 4. The longest cascade 

was retweeted 5,047 times, which is more than 2.5 times more retweets than the second-

longest cascade. This cascade was produced by the Spanish-language division of CNN and 

broadcasted information about which countries received tsunami warnings after the 2014 

Iquique earthquake. 

Figure 4 – Kernel Density Plot of Cascades’ Retweet Counts 

 

5. Model Estimation 

 We estimated the parameters for the model presented in Equation 5 using a 

maximum likelihood estimation procedure. The model parameters were estimated 

individually for every cascade in our sample (i.e., I = 26,896). Therefore, for cascade i, we 

estimated the vector of parameters 𝜃𝑖 = (𝜇𝑖 , 𝛾𝑖 , 𝛼11
𝑖 , 𝛽11

𝑖 , 𝛼21
𝑖 , 𝛽21

𝑖 ). We created the counting 
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measures 𝑅1
𝑖 (𝑡) and 𝑅2

𝑖 (𝑡) based on the arrivals of retweets for i and i’s parallel cascades 

respectively. The data for 𝑡𝑘
𝑖  and 𝑡𝑙

𝑖 were obtained from the timestamp information of the 

same set of arrivals. Across all i, the number of realizations in the first point process was 

equal to 263,005 and in the second point process was equal to 2,684,189. We measured 𝑡𝑘
𝑖  

and 𝑡𝑙
𝑖 as the number of hours elapsed between when k and l occurred and 𝑡0

𝑖 , where 𝑡0
𝑖  was 

equal to the difference in hours from the time of i’s launch to the start of the disaster. 

Lastly, the profile statistics of the retweeters record the number of followers that 

retweeters possessed at the moment that they issued any retweets in our data set. We 

relied on this data to evaluate 𝜙
𝑡𝑘
𝑖  and 𝜙

𝑡𝑙
𝑖. 

The observation interval [𝟎, 𝑻] was the data collection period for the disaster that i 

belonged to. The time when the disaster transpired corresponded to 0, and T was 

calculated as the number of hours between 0 and the end of data collection (see Table 7 

for details). Because the observation interval covered the entire data collection timeline, 

𝑅2
𝑖 (𝑡) may have included points that arrived between 0 and 𝑡0

𝑖  or points that arrived after 

𝑡𝐾
𝑖 . We maintained such realizations of 𝑅2

𝑖 (𝑡)  to account for the influence of parallel 

cascades’ retweets not only during but also before and after i’s lifetime. The conditional 

intensity function for i, however, is technically null prior to 𝑡0
𝑖 . Consequently, we evaluated 

the conditional intensity function from [𝑡0
𝑖 , 𝑻]. Time was treated as a continuous variable 

in this study, and this continuous-time framework enabled us to capture any time effects 

(Xu et al. 2014). Given the realizations of 𝑅1
𝑖 (𝑡) and 𝑅2

𝑖 (𝑡) during [𝑡0
𝑖 , 𝑻], the likelihood 

function for cascade i is as follows: 

ℒ𝑖 = [∑ 𝜆𝑖 (𝑡𝑘
𝑖 |ℋ

𝑡𝑘
𝑖
𝑖 )𝐾

𝑘=1 ] ∗ exp (−∫ 𝜆𝑖(𝑡|ℋ𝑡
𝑖)

𝑻

𝑡0
𝑖 𝑑𝑡) (6) 

 Recall that we formulated a generalized point process model by permitting 𝛼21
𝑖  to 

have an inhibitory effect on the intensity. After summing over the history of the cascade, 
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it is possible that the intensity at t becomes negative if  𝛼21
𝑖  takes on a negative value. 

However, by definition,  𝜆𝑖(𝑡|ℋ𝑡
𝑖)  must be positive (Daley and Vere-Jones 2003). To 

guarantee that the intensity is always non-negative, we executed the following nonlinear 

specification of our model, which was also applied in Bremaud and Massoulie (1996) and 

Reynaud-Bouret and Schbath (2010): 

𝜆̃𝑖(𝑡|ℋ𝑡
𝑖) = max(𝜆𝑖(𝑡|ℋ𝑡

𝑖), 0) (7) 

Under the nonlinear specification, the likelihood function for i now becomes: 

ℒ̃𝑖 = [∑ 𝜆̃𝑖 (𝑡𝑘
𝑖 |ℋ

𝑡𝑘
𝑖
𝑖 )𝐾

𝑘=1 ] ∗ exp (−∫ 𝜆̃𝑖(𝑡|ℋ𝑡
𝑖)

𝑻

𝑡0
𝑖 𝑑𝑡) (8) 

The log-likelihood to estimate 𝜃𝑖 given the observed data for cascade i is presented 

in Equation 9. 

ℒℒ𝑖 = −∫ 𝜆̃𝑖(𝑡𝑖|ℋ𝑡
𝑖)𝑑𝑡

𝑻

𝑡0
𝑖 + ∫ log 𝜆̃𝑖(𝑡𝑘

𝑖 |ℋ𝑡𝑘
𝑖 ) 𝑑𝑅1(𝑡)

𝑻

𝑡0
𝑖   

        = −∫ 𝜆̃𝑖(𝑡𝑖|ℋ𝑡
𝑖)𝑑𝑡

𝑻

𝑡0
𝑖 + ∑ log 𝜆̃𝑖(𝑡𝑘

𝑖 |ℋ𝑡𝑘
𝑖 )𝐾

𝑘=1   (9) 

To reduce the dimensions of the functional space that the parameters can be estimated 

from, we used a penalized maximum likelihood function (Reynaud-Bouret and Schbath 

2010, Zhou et al. 2013). We imposed the L2 regularization technique, which is also known 

as a ridge regression. The L2 regularization technique shrinks estimations of parameters 

as it penalizes the parameters based on their size. The penalty is equal to the tuning 

parameter, 𝜌, multiplied by the sum of the squared coefficients. The tuning parameter 

controls the amount of the penalty such that a larger tuning parameter leads to a higher 

penalty and more shrinkage (Hastie et al. 2009). The penalized log-likelihood function 

that we estimated for i is: 

ℒℒ̅̅̅̅ 𝑖 = −∫ 𝜆̃𝑖(𝑡𝑖|ℋ𝑡
𝑖)𝑑𝑡

𝑻

𝑡0
𝑖 +∑ log 𝜆̃𝑖(𝑡𝑘

𝑖 |ℋ𝑡𝑘
𝑖 )𝐾

𝑘=1 − 𝜌∑(𝜃𝑖)2  (10) 

 We maximized the penalized log-likelihood function each of the cascades in our 

sample using R. In order to make sure that we reached the global maximum, we provided 
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three different vectors of starting values and estimated the parameters using the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) algorithm. This optimization algorithm is an efficient 

quasi-Newton method that has been proven to reach global convergence (Fletcher 2013). 

Details about the integration of the first term in the penalized log-likelihood function are 

provided in Appendix B. Depending on the coefficients and the data, it was sometimes 

difficult to solve the integral analytically. In those cases, we numerically approximated the 

integral using a quadrature rule. We also note that the computation of the second term in 

Equation 10 is infeasible when 𝜆̃𝑖(𝑡𝑘
𝑖 |ℋ𝑡𝑘

𝑖 ) equals 0. Thus, we set 𝜆̃𝑖(𝑡𝑘
𝑖 |ℋ𝑡𝑘

𝑖 ) equal to 𝜀, or 

the smallest positive decimal number in R, when the conditional intensity function was 

negative. 

6. Results of Model Estimation 

 Using the estimation approach discussed in Section 5, we obtained parameter 

estimates that characterized the point process model for each cascade. The optimization 

algorithm was unable to converge for 58 cascades, reducing our sample size to 26,838 

cascades. As this was a low percentage of the count of cascades that we attempted to 

optimize (58/26896 = 0.22%), the estimation procedure and results are still valid. In 

Table 11, we show the descriptive statistics for the parameter estimates in 𝜃𝑖 across all 

cascades. Due to space constraints, we omitted the parameter estimates for each cascade, 

but these are available from the authors upon request. Furthermore, we provide a 

breakdown of the descriptive statistics in Table 11 by disaster in Appendix C.  

Table 11 – Descriptive Statistics for Parameter Estimates 

  Mean Median 
Std. 
Dev. Min. Max. 

𝛼11
𝑖   0.080 0.001 0.212 7.27E-14 3.827 

𝛽11
𝑖   0.927 0.799 0.983 2.00E-06 18.632 

𝛼21
𝑖   -0.134 -0.009 0.320 -4.59E+00 3.356 

𝛽21
𝑖   0.571 0.355 0.641 1.79E-07 9.882 

𝜇𝑖  0.576 0.575 0.505 1.74E-06 8.128 

𝛾𝑖  0.356 0.335 0.298 7.83E-07 3.995 

26,838 observations       
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According to Table 11, the mean value of 𝛼11
𝑖  is 0.080, and the mean value of 𝛼21

𝑖  is -0.134. 

These parameters respectively represent the effects of retweets of a focal cascade and of 

its parallel cascades on the focal cascade’s intensity, after controlling for the logged count 

of retweeters’ followers. Retweeters possessed 1,951 followers on average at the time of 

their retweets, and the retweeter with the highest count of followers in our sample was 

followed by 12,381,846 users. The extreme range of follower counts is the reason we logged 

the follower counts in the point process model. Figure 5 illustrates the kernel density plot 

of retweeters’ logged follower counts. 

Figure 5 – Kernel Density Plot of Logged Follower Counts for Retweeters 

 

The mean values of 𝛼11
𝑖  and 𝛼21

𝑖  demonstrate that the effect of parallel cascades’ 

retweets on the intensity of a focal cascade is negative on average. That is, on average, a 

focal cascade’s diffusion rate is inhibited by the arrival of retweets for other cascades 

belonging to the same topic. We therefore find support for the existence of a competitive 

dynamic among cascades carrying similar content, which suggests that HOs should aim to 

produce novel content to avoid the negative effects imparted by parallel cascades. At the 

same time, however, the descriptive statistics for 𝛼21
𝑖  indicate that the parameter is 

positive for some cascades. This provides evidence of the existence of a cooperative 

dynamic among cascades and their parallel cascades as observed in Myers and Leskovec 
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(2012). We also observed that, in absolute terms, the average value of 𝛼11
𝑖  is smaller than 

that of 𝛼21
𝑖 . Hence, the inhibitive effect of parallel cascades’ retweets on the intensity of a 

focal cascade tends to be stronger than the self-exciting effect of the same cascade’s 

retweets. One implication of this finding is that any impetus gained from a cascade’s own 

diffusion history can be drowned out by the dissemination of parallel cascades. 

 Table 11 also gives information on the decay rates for how the two point processes 

influence a cascade’s diffusion speed. The average value of 𝛽11
𝑖  is 0.927 and of 𝛽21

𝑖  is 0.571, 

which suggests that the self-exciting effects of a cascade’s retweets wear off faster than the 

effects of the parallel cascades’ retweets. Given this outcome in conjunction with the 

magnitude of 𝛼11
𝑖  being generally smaller than that of 𝛼21

𝑖 , we can infer that parallel 

cascades have a more significant and longer-lasting effect on a focal cascade’s intensity. 

These findings underscore the drawbacks of analyzing focal cascades’ diffusion speed in 

isolation. The analyses should integrate the influence of other cascades to obtain 

estimations that are more realistic. Our results also indicate that the baseline intensity for 

a cascade is not constant over time since the mean parameter estimate for 𝛾𝑖 is equal to 

0.356. By allowing the baseline intensity to be time-varying, we were able to model the 

natural decay of interest in a cascade’s content as time progresses.  

To visualize how a cascade’s intensity changes as a reaction to arrivals of retweets 

from two distinct point processes, we present the observed point process realizations and 

intensity for one cascade from the Joplin tornado data in Figure 6. Like Figure 2, Figure 6 

contains three panels. Panel (a) shows the arrivals of the cascade’s 9 retweets in blue and 

the arrivals of the parallel cascades’ 8 retweets in orange. Next, Panel (b) exhibits the 

counting measures for both point processes, and Panel (c) graphs the intensity over time 

given that the estimated parameters for this cascade were 𝜇𝑖 = 0.798, 𝛾𝑖 = 0.575, 𝛼11
𝑖 =

1.105, 𝛽11
𝑖 = 1.501, 𝛼21

𝑖 = −1.304, and 𝛽21
𝑖 = 1.305. As the graph in Panel (c) illustrates, the 
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initial intensity level is equal to 𝜇𝑖 = 0.798. As retweets of the focal cascade arrive, the 

intensity experiences a self-exciting effect and increases by a function of 𝛼11
𝑖 = 1.105. 

Panel (c) depicts the inhibitory effects of parallel cascades’ retweets as well. When retweets 

of parallel cascades occur, the intensity is lowered by a factor of 𝛼21
𝑖 = −1.304. The decay 

of the self-exciting and inhibitory effects is also shown through the decline in intensity 

between realizations of the point processes. 

Figure 6 – Sample Cascade’s Arrivals and Intensity Based on Estimated 
Parameters 

 

7. Analysis of Competitive vs. Cooperative Effects by Parallel Cascades 

The results from the model estimation procedure revealed that parallel cascades 

can both impede and augment a focal cascade’s diffusion rate. To better understand what 

determines the type of effect that parallel cascades’ retweets impose on the diffusion of a 

focal cascade, we specified a linear regression model with the estimated values of 𝛼21
𝑖  as 

the dependent variable. The predictors in this regression correspond to the conditions that 

we identified in Section 2 as determining whether parallel cascades compete or cooperate 

with a focal cascade’s diffusion. 
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The first independent variable of interest is the producer’s size. As argued in 

Section 2, we expect cascades contributed by large producers to be less susceptible to 

competitive effects by parallel cascades. Hence, we anticipate that 𝛼21
𝑖 is positively 

associated with the size of cascade’s producer. We operationalized a producer’s size (sizei) 

as the producer’s follower count. The second determinant is the number of parallel 

cascades tied to a focal cascade. A higher volume of parallel cascades indicates that there 

are more cascades discussing the same topic as the focal cascade. We measured the volume 

of parallel cascades (paralleli) as the number of individual cascades with realizations in 

the point process for retweets of parallel cascades. Based on Haas et al. (2015)’s findings, 

we conjectured that a curvilinear relationship exists between 𝛼21
𝑖  and the count of parallel 

cascades. Accordingly, we tested the curvilinear effect of parallel cascade count by 

including in the regression the linear and the quadratic term for this variable.  

We also analyzed whether a first-mover advantage exists for focal cascades.  To 

that end, we used a binary variable (firstmoveri) that is set to 1 if the focal cascade was the 

first cascade in its topic and 0 otherwise. In addition, we controlled for when in relation to 

the disaster the cascade was launched since the timing of content release has been shown 

to affect cascades’ diffusion speed during humanitarian events (Yoo et al. 2016). We 

measured this variable (timei) as the number of hours between the time that the cascade 

was initiated and the time that the disaster materialized. Table 12 provides the descriptive 

statistics for the determinants in our regression. 

Table 12 – Descriptive Statistics for Determinants of 𝜶𝟐𝟏
𝒊  

  Mean Median Std. Dev. Min. Max. 

sizei 89,011 2,871.5 503,087.9 0 16,172,110 

paralleli 6.874 3 11.701 1 125 

firstmoveri 0.351 - - 0 1 

timei 34.388 18.040 45.165 0.056 264.582 

26,838 observations  
 



63 
 

 We estimated the coefficients of the determinants of 𝛼21
𝑖  using the Ordinary Least 

Squares (OLS) method. To address nonlinearity, we logged the producer’s follower counts. 

We also mean-centered paralleli prior to creating the quadratic term to reduce 

multicollinearity. Finally, we included fixed effects (𝜉1, 𝜉2, 𝜉3) to capture the non-time-

varying unobserved heterogeneity of each disaster. The regression equation that we 

estimated is given in Equation 11: 

𝛼21
𝑖 = 𝛿0 + 𝛿1 log 𝑠𝑖𝑧𝑒𝑖 + 𝛿2𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑖 + 𝛿3𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑖

2 + 𝛿4𝑓𝑖𝑟𝑠𝑡𝑚𝑜𝑣𝑒𝑟𝑖 + 𝛿5𝑡𝑖𝑚𝑒𝑖 +

𝛿6𝜉1 + 𝛿7𝜉2 + 𝛿8𝜉3 + 𝜀𝑖 (11) 

The results of the OLS regression are listed in Table 13. 

Table 13 – OLS Regression Results 

  Coeff. (Std. Error) 

𝛿0 (intercept)  -9.31E-02 (1.02E-02)*** 

𝛿1 (log 𝑠𝑖𝑧𝑒𝑖)  6.18E-03 (8.23E-04)*** 

𝛿2 (𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑖)  1.00E-04 (1.14E-05)*** 

𝛿3 (𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑖
2)  -1.41E-08 (2.14E-09)*** 

𝛿4 (𝑓𝑖𝑟𝑠𝑡𝑚𝑜𝑣𝑒𝑟𝑖)  -1.13E-01 (4.17E-03)*** 

𝛿5 (𝑡𝑖𝑚𝑒𝑖)  -6.44E-04 (4.63E-05)*** 

Observations 26,838 

Adj. R-squared 0.043 

*** p<0.01  

Note: Fixed effects for each disaster are not reported 

 

 The coefficient for sizei is positive and significant, which confirms that the effect of 

parallel cascades’ retweets on a cascade’s intensity is positively related to the size of the 

cascade’s producer. Extant research has shown that the diffusion of social media content 

is augmented for producers with more followers (e.g., Hong et al. 2011, Suh et al. 2010, 

Yoo et al. 2016). Our finding contributes to previous work by demonstrating that larger 

producers are able to take advantage of parallel cascades and experience faster diffusion 

from parallel cascades’ retweets. The results in Table 13 also lend support to a curvilinear 

relationship between 𝛼21
𝑖  and the count of parallel cascades in the direction that we 
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expected. Specifically, the linear term for paralleli is positive and significant while the 

quadratic term is negative and significant. This means that HOs should not always view 

cascades spreading similar content as competitors but realize that participation in popular 

topics may enhance the diffusion of their content. Moreover, our results indicate that a 

cascade’s diffusion speed is diminished when the cascade is the first among those in its 

topic to publish the topic’s content. An implication of this finding is that HOs do not have 

to be pressured to be the first to broadcast a piece of information but can rely on parallel 

cascades’ diffusion to improve their own cascades’ propagation rate. Lastly, we found that 

the coefficient for timei is negative and significant. Therefore, cascades that are launched 

closer to the start of the disaster are less likely to face competitive effects from parallel 

cascades. This implies that HOs can expect retweets of parallel cascades to enhance the 

diffusion of their content in the immediate aftermath of a disaster when rapid information 

is most critical. 

8. Conclusion 

 In this study, we assessed the diffusion speed for content posted on social media 

platforms using Twitter data from four disasters. We traced the propagation of content 

from its origin as a tweet through it being shared by other users in the form of retweets. 

We created cascades from this data, and each cascade was made up of a tweet and its series 

of retweets. Instead of calculating a cascade’s rate of diffusion solely as a function of 

attributes of itself and of the users involved, we broadened our analysis to include the 

spread of parallel cascades. This allowed us to account for interactions among cascades 

that carry similar content, and we tested whether cascades interacted according to a 

competitive or cooperative dynamic. To evaluate the direction of cascades’ effects on one 

another, we formulated a point process model based on the Hawkes model (Hawkes 1971). 

We extended the Hawkes model first by incorporating another point process that 
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represented the arrivals of retweets for parallel cascades. Secondly, we allowed the effect 

of the parallel cascades’ retweets on a focal cascade’s intensity to hold positive and 

negative values. This modification required us to implement a nonlinear version of the 

Hawkes model, which is not commonly performed due to difficulties in estimating such 

models. 

 The parameter estimates from our point process model reveal that a focal cascade’s 

own retweets heighten the cascade’s intensity, or diffusion speed. Our results also indicate 

that the influence of parallel cascades’ retweets is negative, or competitive, on average and 

that the magnitude of this effect supersedes that of the focal cascade’s retweets. However, 

we found evidence of a cooperative dynamic as well since some cascades’ diffusion rate 

benefited from the concurrent dissemination of parallel cascades. Consequently, we 

conducted an additional analysis to identify what factors drive whether the effect of 

parallel cascades’ retweets is positive or negative for a focal cascade’s diffusion speed. The 

results of this analysis demonstrate that a focal cascade launched by a producer with more 

followers is more likely to experience cooperative effects, which highlights the value of 

producers having large follower bases for reasons beyond access to a greater audience. We 

also showed that the impact of parallel cascades’ retweets on a focal cascade’s intensity 

has a curvilinear association with the number of parallel cascades and that the first-mover 

advantage appears to be absent. 

 A major implication from our research is that parallel cascades typically exert a 

negative impact on the diffusion speed of a focal cascade. This suggests that HOs may want 

to spend time on curating their content to improve the novelty of their information, 

especially during non-emergency periods when time is less constrained. Additionally, this 

study provides guidelines for coordination among HOs with regards to information 

resources. Since our results show that a positive interaction is possible among cascades 
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broadcasting similar content, HOs can coordinate the publishing of their social media 

content to try to avoid any slowdown of their diffusion from parallel cascades produced by 

other HOs. For instance, we observed that a focal cascade’s diffusion speed increases as 

the number of parallel cascades rises but only up to a certain point. Eventually, the topic 

becomes too crowded and the effects of parallel cascades’ retweets on a focal cascade’s 

intensity become negative. One implication, therefore, is for HOs to work together to 

release a limited amount of content belonging to the same topic in order to legitimize the 

information and take advantage of cooperative effects by parallel cascades. 

 While our study makes significant contributions to the literature and generates 

managerial implications for HOs, it is not without limitations. The sampled disasters 

represent only sudden-onset disasters, but there are many disasters that are not classified 

as sudden-onset but develop over time (e.g., hurricanes, floods). Future research may 

consider expanding the type of crises in our sample to include slow-onset disasters as well. 

Diffusion patterns may differ across such events since information is produced during 

both preparation and response stages. Another limitation of this work is that we lack data 

on users’ exposure to the content, which could impact a cascade’s intensity. When a 

cascade is retweeted, the content is forwarded to the retweeters’ followers, and some of 

these followers may have already been exposed to the same content through another 

retweeter. We anticipate that a user’s likelihood of retweeting is affected by the number of 

times they receive the same information. While our model accounts for the retweeters’ 

follower counts, it does not measure how many times the followers have previously been 

exposed to the cascade’s content. We call on future research to evaluate if our results hold 

after including a measure of the number of times retweeters’ followers have been sent the 

same information. 
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 Finally, our point process model can be extended and applied for predictive 

purposes. Like the SEISMIC model (Zhao et al. 2015), the point process model in this study 

may be leveraged to predict the number of retweets that a cascade will earn in its lifetime. 

This would be valuable for HOs that not only need to spread information quickly but also 

to as many users as possible. Another predictive element for future research to assess is 

the launch of parallel cascades. Certain variables, especially content attributes, may 

determine the number of other cascades that will transmit similar content. For HOs, it 

would be helpful to be able to anticipate the arrival of parallel cascades to better gauge if 

the effect of parallel cascades’ diffusion will positively or negatively influence their 

cascades’ dissemination rate. 
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CHAPTER 3 

Expanding the Reach of Humanitarian Organizations on Social Media Platforms 

Abstract 

On social media platforms, all content published by a user is instantly transmitted to its 

set of followers. Therefore, a user’s direct audience is composed of its followers. In order 

to reach a larger audience in real-time, humanitarian organizations that are active social 

media users aim to increase their follower counts. The purpose of our paper is to analyze 

what mechanisms motivate the growth of humanitarian organizations’ social media 

networks during times of normalcy and emergency. We collected a unique data set from 

Twitter that includes dynamic network information for 47 organizations that were directly 

involved with relief efforts for the 2016 Ecuador earthquake. The network data 

encompassed over 170 million links. Our analyses indicate that the organizations in our 

sample collectively increased their follower counts by 275,359 followers and that a 

significant driver of these new connections was the exposure gained from existing network 

members sharing the organizations’ content. In addition, we specified a structural model 

to investigate what determines a user’s choice to become a new follower after learning 

about an organization from a shared piece of content. We found, for instance, that the type 

of content that humanitarian organizations broadcast and the frequency that this content 

is produced impact users’ probability of starting to follow the organizations.  
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1. Introduction 

To distribute all required goods and services to their stakeholders, humanitarian 

organizations (HOs) must manage a complex flow of physical resources, including food, 

water, and medications. Another vital flow involves information resources, especially 

since this flow facilitates the sourcing and delivery of physical resources to stakeholders. 

In fact, the effective management of information is one of the most critical factors in 

determining the success of humanitarian operations (Long and Wood 1995). Traditionally, 

the management of information flows has been a major challenge for HOs.  As noted by 

Holguín-Veras et al. (2012), the operational environment during a disaster is volatile due 

to factors like a turbulent physical landscape, population migration, and disrupted 

economic and political states. This means that decision parameters related to the 

operational environment are changing constantly, and what may have been relevant or 

accurate information yesterday is no longer so today. Because information is highly 

perishable in a humanitarian context (Meier 2015), HOs require a robust information 

network that can quickly diffuse information among a wide array of stakeholders.  

Such a network is difficult for HOs to establish, particularly when dealing with the 

effects of a disaster. As a result, HOs have sought to leverage social media platforms on 

the internet. These platforms provide a space for HOs and other users to generate, discuss, 

and share a wide variety of user-generated content. Moreover, because these platforms 

pose low entry barriers to users, they are easily accessible for not only HOs but also for 

their stakeholders. In addition, social media platforms have been observed to be highly 

reliable as a means of communication during times of crisis because users can access these 

platforms through internet or cellular network infrastructure. In the case that such 

infrastructure goes down, responders often prioritize restoring these services to facilitate 

communication. One of the most popular social media platforms is Twitter. As of 2018, 
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Twitter has 330 million monthly active users that send 500 million messages per day. 

Twitter users are global in that almost 80% of user accounts are from outside of the United 

States8. Numerous humanitarian organizations, such as the Red Cross and UNICEF, have 

accounts that represent their organizations and are active Twitter users. Moreover, the 

United Nations Office for the Coordination of Humanitarian Affairs (OCHA) announced 

Twitter as the social media platform of choice for humanitarian organizations (Moore and 

Verity 2014). 

A key objective when a HO uploads content to Twitter is to broadcast this 

information as quickly and to as many other users as possible. According to Stieglitz and 

Dang-Xuan (2013), Suh et al. (2010), and Yoo et al. (2016), the size of a user’s direct 

audience, also known as its follower base, is important to fulfill this goal. When users 

publish content, those with larger follower bases can instantly transmit that content to a 

broader set of users, and consequently, the initial wave of content dissemination will be 

greater for users with more followers. Moreover, as the number of followers increases, it 

opens more avenues for content to be further distributed and shared across the platform. 

Given the importance that the size of the follower base has on the diffusion of 

information, this paper investigates the mechanisms that drive the growth of these 

audiences for HOs.  One way for users to become followers of a HO is for them to find the 

HO and establish connections out of their own initiative. To find the HO, users may look 

specifically for the organization on Twitter or receive Twitter recommendations to start 

following the organization. The first method is highly dependent on the reputation or 

prominence of the HO while the second requires financial resources. Most HOs, however, 

                                                        

8 https://blog.hootsuite.com/twitter-statistics/ 
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do not have the type of recognition or the financial capital required to raise their visibility 

among users and draw new followers via this mechanism.  

A second mechanism to expand a HO’s follower base is derived from users learning 

about the HO when they receive content contributed by the HO from other users they 

follow on the Twitter platform. If users find value in the type of content contributed by the 

HO, they may opt to form a follower relationship directly with the HO. Naturally, users 

will have a greater chance of learning about the HO from content transmitted through 

their Twitter networks as the frequency with which the HO contributes content to Twitter 

increases. Therefore, to the extent that the HO actively contributes content to the platform, 

users may have more opportunities to come across this information and establish follower 

links directly with the HO. Nevertheless, an HO that floods Twitter with content may not 

necessarily maximize its chances of gaining new followers. Increases in the frequency of 

the HO’s contributions may have marginally decreasing returns on the likelihood of new 

users’ following the HO due to the additional information processing costs that users 

anticipate incurring from receiving greater amounts of content from the HO. Finally, in 

addition to the HO’s decisions on the type of content and the frequency of its 

contributions, the likelihood of users deciding to follow a HO will depend on the frictions 

imposed on the diffusion of content from the HO by the layers of intermediaries in the 

network separating the HO and the users. To the extent that these frictions will generate 

delays or a breakdown in the diffusion of information, the likelihood that the users will 

choose to bypass the network and follow the HO directly may increase. 

We study these mechanisms using data collected directly from Twitter during two 

periods: immediately before and immediately after the start of a sudden-onset disaster 

event. Specifically, we utilized data related to the 2016 Ecuador earthquake. The 

evaluation during these two periods is important because it allows us to assess the 
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mechanisms that drive the growth of HOs’ follower base sizes during times of normalcy 

and emergency. Users may experience different utilities for these mechanisms depending 

on whether or not a disaster has occurred. Moreover, by considering both of these periods 

for our study, we can account for variations in information production requirements for 

the HOs. When they are not facing a crisis event, HOs can strategically plan the type of 

content and the timing in their release of information. However, an emergency will compel 

HOs to become more reactive in deciding the type and frequency of information releases 

in order to maintain the public informed as the crisis unfolds. 

Our results show that the diffusion of Twitter posts contributed by HOs not only 

serves to distribute information but also as a powerful and effective driver of new follower 

relationships, particularly during times of crisis. To explain why users would form these 

relationships, we formulated and estimated a two-stage structural model comprising the 

users’ consumption of content contributed by a HO in the first stage and their decisions to 

follow the HO in the second stage. According to the results from our model, users that 

receive content contributed by a HO through their follower relationships with other users 

have a higher probability of forming a follower relationship with the HO after the onset of 

a crisis event than before the event. These users are also more likely to form follower 

relationships with the HO when they receive actionable information (e.g., content that 

contains instructions for evacuation and directions to shelters) from the HO. Moreover, 

we found that users are more prone to follow the HO when they anticipate they will obtain 

more information more completely and rapidly from doing so. Specifically, users have a 

greater probability of following the HO if doing so will result in an increase in the expected 

amount of information received from the HO and will lead to a decrease in the delay of 

information receipt relative to what they have experienced through their follower 

relationships with other users. These effects vary depending on whether the HO finds itself 
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attending to a crisis event or not. After a disaster, we observed that users demonstrate a 

greater sensitivity with regards to reducing the delay of receiving information and 

increasing the amount of content received when making their decisions about whether to 

follow HOs. 

We organize the rest of the paper as follows. We expand on the related literature 

for our research in Section 2. We describe in detail the mechanisms for the formation of 

follower links in Section 3. In Section 4, we formulate the structural model for 

understanding when users form follower relationships with HOs after receiving content 

contributed by the HO through their follower relationships with other users. We describe 

our data in Section 5 and present our results in Sections 6 through 8.  We discuss our 

results and conclude in Section 9. 

2. Literature Review 

Our paper furthers the current understanding that exists in the literature about how HOs 

can improve their use of social media platforms to diffuse information to their 

stakeholders. In so doing, our paper contributes to two different areas of literature. 

2.1. Information Management in Humanitarian Operations 

 The management of information for an HO entails coordinating information flows 

within itself, with other organizations, and with individuals. To monitor information 

within, HOs have implemented databases for tracking and tracing the movement of 

inventory (Pettit and Beresford 2009) as well as for monitoring donors (Ryzhov et al. 

2015). Those that have adopted such systems have improved the visibility and accessibility 

of data for their staff. HOs also record data about supply distribution to update inventory 

levels and to forecast future demand (van der Laan et al. 2016). The implementation of 

information technology (IT) tools, like scanners, has enhanced HOs’ ability to collect and 

maintain data on supply allocation as well as demand (Ergun et al. 2014). Additionally, 
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HOs rely on their local teams for information when preparing for and responding to a 

crisis since these staff are already on the ground and thereby have a better understanding 

of demand and the environment (Tomasini and Van Wassenhove 2009).  

 HOs also exchange information with entities outside of their own organizational 

boundaries. Information sharing has been observed to be a challenge in the humanitarian 

setting due to factors like competition for resources and the convergence of many 

organizations (Balcik et al. 2010). However, HOs have started to establish 

interorganizational channels of information to combat this issue. The United Nations 

(UN) initiated the cluster approach, which groups HOs into clusters based on their area of 

expertise, and organizations within a cluster are encouraged to communicate. Altay and 

Pal (2014) found that cluster leaders play a pivotal role and should act as information hubs 

to achieve this goal. The UN has designed several platforms to promote information 

sharing and transparency. Its Joint Logistics Centre designed an online platform where 

logistics groups can exchange and view information about issues like weather and 

warehousing availability (Tomasini and Van Wassenhove 2005). The UN Humanitarian 

Response Depots, which house HOs’ prepositioned inventory, also publish online the 

owners and quantities of inventory at each warehouse (Acimovic and Goentzel 2016). 

Finally, HOs collaborate with government and private groups to acquire information like 

census data, weather forecasts, and satellite images of areas affected by a disaster (Sodhi 

and Tang 2014). 

 The final set of information flows that HOs must manage are with individuals. The 

internet and mobile technology have made communication between HOs and individuals 

radically more accessible and pervasive as well as opened new opportunities for HOs to 

improve their responsiveness (Swaminathan 2018). One example of how HOs exchange 

information with individuals is through collaboration-based crowdsourcing, which occurs 
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when self-selected people from the crowd from work jointly to solve a problem (Afuah and 

Tucci 2012). In the immediate aftermath of the 2010 Haiti earthquake, a crowdsourced 

crisis map was set up and populated by incident reports from the crowd. This map was 

used by HOs to gain awareness about the operational environment and plan response 

efforts (Gao et al. 2011). HOs also utilize social media platforms to engage with individual 

stakeholders like beneficiaries and donors in real-time and at no cost (Yoo et al. 2016). 

Social media users upload relevant content, such as reports on injuries and damage, and 

many of the active users during an emergency are located within the disaster zone 

(Starbird et al. 2010, Vieweg et al. 2010). Consequently, HOs collect social media data as 

a supplemental of information on demand and the general situation. HOs not only 

leverage social media platforms to gather data but also to broadcast information to 

individuals. This may include messages expressing social support, instructions on how to 

find shelters, and donor appeals to drive donations (Eftekhar et al. 2017, Pedraza Martinez 

and Yan 2016). Our paper adds to this area of literature by being the first to study the 

growth of HOs’ social media networks over time and during periods of normalcy and crisis. 

2.2. Social Media Platforms and Operations Management 

 Additionally, our paper belongs to the growing literature on the applications of 

social media platforms in operations management. Due to the volume of users and the 

content they generate, social media platforms offer a trove of valuable data on consumers’ 

preferences and behavior. As a result, the integration of social media data has been shown 

to raise the accuracy of sales forecasts (Cui et al. 2017). Social media platforms have also 

been recognized to be important in managing a firm’s services. For example, firms can 

utilize these platforms to address instances of service failure described in online reviews 

by unsatisfied customers (Gu and Ye 2014). Firms can also use social media data on 

customers, such as their number of friends, level of engagement, and economic value, to 
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improve customer targeting (Allon and Zhang 2018, Momot et al. 2017). Furthermore, the 

adoption of social media platforms enhances firms’ operational efficiency and 

innovativeness. This is because these platforms enable employees to easily share 

knowledge and interact with one another and with customers (Lam et al. 2016).  

 Users interact and exchange information with one another on social media 

platforms, which allows some users to influence others. Users conforming to other users’ 

opinions and behavior has been observed in the case of online movie reviews (Lee et al. 

2015), subscribing to a service (Bapna and Umyarov 2015), and making purchases (Lobel 

et al. 2016). On social media platforms, one measurement of influence is a user’s number 

of followers since this translates into the potential pool of other users that may be 

influenced by the user’s content. With higher counts of followers, users can broadcast 

content more efficiently and instantly reach a larger audience than those with smaller sets 

of connections (Goel et al. 2016). This jumpstarts content diffusion, and therefore, content 

produced by users with more followers tends to experience faster and greater contagion 

(Susarla et al. 2011, Yoo et al. 2016). In order to expand their follower base sizes, users 

have to invest time and effort to develop strategies to attract new followers (Iyer and 

Katona 2015). Caro and Martinez-de-Albeniz (2018) found, for instance, that the timing 

of content production affects follower base growth. In our paper, we consider the 

frequency of information supplied by HOs and identify other factors that drive the 

expansion of HOs’ followers. Therefore, we contribute to this stream of literature by 

investigating not only the strategies that HOs can adopt to increase their follower counts 

but also how these strategies evolve when HOs are operating under normal versus 

emergency conditions. 
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3. Mechanisms for the Formation of Follower Links 

 On Twitter, a user can post short messages called “tweets” that may contain text as 

well as URLs and multimedia content. Through Twitter’s sharing function (known as 

“retweeting”), users can forward another user’s original tweet to their own network. 

Retweets sent by these users (commonly referred to as “retweeters”) preserve the original 

tweet’s content and timestamp and also assign credit for the content to the original tweet’s 

author. Like other social media platforms, Twitter operates on an underlying user 

network. A user can have a list of other users that are its “followers” or that it is “following”, 

which we refer to as “friends”. Twitter feeds display messages (both tweets and retweets) 

by a user’s friends in reverse chronological order and without any delay from when the 

content is posted onto the Twitter platform. This feature is key because it gives Twitter 

users the ability to instantly diffuse this information to their followers. Moreover, because 

followers that consume this information can retweet it to their own followers, they can 

quickly diffuse it to a broader set of users potentially beyond those that follow the author, 

or the “supplier”, of the original tweet. The dissemination of a supplier’s tweet can be 

extended even further, such as by followers of a retweeter, because Twitter allows users 

that are not following the supplier to still retweet its content. 

As a byproduct of this diffusion, recipients of a retweet can learn who the content 

supplier is, which may prompt these users to form new connections and start following 

the supplier. We label this mechanism of generating connections as internal because it 

produces new follower relationships out of the diffusion of information within the 

underlying social networks. Follower relationships can also originate externally because 

of stimuli outside the network of retweeters. For instance, users may simply search and 

start following other users because of their reputation. This is most likely to occur for 

celebrities or for users that represent large entities, such as news organizations. Moreover, 
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Twitter, like other social media platforms, provides recommendations on who to follow, 

and this may motivate some users to start following the suggested users. Twitter may 

provide these recommendations as part of campaigns in which users pay a fee for each 

new follower referred to them by Twitter. 

The vast majority of HOs do not have the resources to generate the different types 

of external stimuli that can lead to the formation of new follower relationships. An internal 

mechanism like the one we described above constitutes a more cost-efficient option to 

foster the development of these links for these organizations. The internal mechanism is 

founded on the principle of triadic closure, which states that two individuals are more 

likely to be connected if they are both associated with a third individual (Granovetter 

1973). For instance, if A and B do not know one another, but each of them is linked with 

C, the property of triadic closure implies that a connection between A and B is likely to 

transpire due to the fact that both A and B know C. On Twitter, this mechanism would 

essentially involve a user (C) issuing a retweet of a supplier (B) to its followers (including 

A). Since retweeting credits the supplier (in this case, B) of the message being shared, the 

follower (A) that receives and consumes the retweet will learn about the identity of the 

supplier and may choose to follow the supplier directly.  

More formally, we label the author of a tweet as the information supplier, S. 

Assume that S is followed by n users that make up its follower base (i.e., F = [F1, F2,…,Fn]). 

Once S supplies a tweet, its set of followers, F, immediately receives the content. The users 

in F can distribute information by retweeting S’s content to their own followers. These 

retweeters belong to the set R = [R1, R2,…,Rm], where m is the total number of retweeters. 

Continuing the example, assume that F1 becomes R1 by retweeting a tweet of S. This 

generates an “exposure” of S’s tweet in each of the R1 followers’ feeds. Assuming R1’s 

followers consume these exposures, they will face the decision of whether or not to follow 
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S. We refer to R1’s followers as “candidates” (i.e., 𝑰𝑹𝟏= [I11, I12,…, I1k], where k is the number 

of users following R1) since they now have the opportunity to start following S. Therefore, 

candidate I11’s decision to follow S and join F as Fn+1 marks the establishment of a link 

based on the internal mechanism. Figure 7 illustrates this example. Moreover, the internal 

mechanism can be present in a generalized version of triadic closure where users with 

greater distance between them, or more degrees of separation, become connected 

(Kossinets and Watts 2006). This is due to Twitter’s property that allows users to retweet 

a supplier’s content without following the supplier. As a result, candidates (that may or 

may not have converted to new followers) in 𝑰𝑹𝟏 can join the set of retweeters in R . To 

exemplify this phenomenon, suppose that I12 does not choose to connect with S but does 

convert to R2 by also sharing the retweet initially distributed by R1. The internal 

mechanism is complete when one of R2’s followers (labeled as I21 to be consistent) 

consumes the exposure from R2 and subsequently starts following S, thereby joining F as 

Fn+2. A candidate can thus connect with a supplier on account of a retweet issued by a user 

that is not necessarily linked with the supplier. This scenario will become increasingly 

common as the diffusion of a tweet broadens. Please refer to panel (e) in Figure 7 for an 

illustration. 

Figure 7 – The Internal Mechanism 
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4. Structural Model 

 One of our objectives is to understand how the internal mechanism described 

above drives link formation. In particular, we want to know how HOs can benefit from this 

type of mechanism in converting candidates to new followers. For ease of exposition, we 

refer in the remainder of this paper to these new follower relationships as “internal links”. 

Conversely, we refer to links formed from an external mechanism as “external links”.  

In broad terms, we aim to trace the distribution and consumption of tweets 

through the Twitter network leading to candidates’ decisions to form internal links with 

the suppliers of those messages. To that end, we formulate a two-stage structural model 

to specify attributes of social media platforms like Twitter and candidates’ decision-

making processes to form these links. This modeling approach is consistent with those 

employed by Huang et al. (2015), Shi et al. (2014), and Tang et al. (2012) in the literature 

on social media platforms. The first stage assesses a candidate’s consumption of an 

exposure in its feed of a supplier’s tweet, and the second stage models the candidate’s 

decision to follow the supplier. We elaborate on the two stages of our structural model 

below. 

4.1. Stage 1: Consumption 

The first stage models whether a candidate, i, consumes, or reads, an exposure of 

tweet t contributed by supplier s. Candidate i’s Twitter feed will not only contain the 

exposure of t by s but also other content posted by i’s friends in reverse chronological 

order. Whether or not i actually consumes the exposure of t depends on several factors, 

such as how frequently i logs in, i’s attention span, and how much information i receives 

from its friends on Twitter. Since i is unlikely to constantly monitor its Twitter feed nor 

read all the activity published between its current and last login, some exposures may go 

unseen. In such cases, it is not possible for i to legitimately learn about s from the exposure 
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of t and form an internal link with s. This means that i must consume the exposure of t in 

the first stage to advance to the second stage of our structural model. 

To evaluate whether a candidate consumes an exposure, we apply a modified 

version of Shi et al. (2014)’s consumption model, which was originally designed to test 

whether content is consumed by potential retweeters. Like Shi et al. (2014), we assume 

that, upon login, candidates consume a limited number of their friends’ activity starting at 

the top of their Twitter feeds and that candidates do not favor consumption of certain 

friends’ content over others’. The amount consumed depends on i’s attention span (i.e., 

αi), which is directly unobserved by the researcher. Each candidate will read its friends’ 

tweets and retweets that are within the index [1, αi] on its Twitter feed. As long as the place 

of t’s exposure lies within this index, the candidate will consume the exposure.  

The condition for consumption by i of the exposure of t authored by s is: 

1

𝑏
𝑠𝑡𝑖
𝛽1
> 𝐿𝑠𝑡𝑖, (1) 

where bsti represents i’s number of friends, Lsti stands for i’s unobserved inverse login 

frequency, and β1 is the effect of bsti on consumption. We assume that bsti and Lsti are 

uncorrelated (Shi et al. 2014) and that bsti is linearly associated with the volume of activity 

in Twitter feeds (Gomez Rodriguez et al. 2014). The left side of the inequality signifies the 

scaled proportion of activity in i’s Twitter feed that is the exposure of t. Candidates that 

login more frequently will have a lower value of Lsti, making it more likely that this 

condition will be satisfied. At the same time, candidates will have a higher amount of 

activity in their feeds when they have more friends and, thus, will be less likely to consume 

an exposure. Following Shi et al. (2014), we assume that the unobserved αi is absorbed 

into Lsti and that Lsti is log-normally distributed with mean L and variance 𝜎𝐿
2. Based on 

this, Equation 1 can be rewritten as: 

−
𝐿

𝜎𝐿
2 −

𝛽1

𝜎𝐿
2 log 𝑏𝑠𝑡𝑖 >

log𝐿𝑠𝑡𝑖−𝐿

𝜎𝐿
2 ,  
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where log (⋅) means taking the natural logarithm in Equation 1 and throughout the rest of 

the paper. The following equation is the probability that i consumes the exposure of t: 

𝑃1 = 𝑃 (−
𝐿

𝜎𝐿
2 −

𝛽1

𝜎𝐿
2 log 𝑏𝑠𝑡𝑖 >

log𝐿𝑠𝑡𝑖−𝐿

𝜎𝐿
2 ) (2) 

4.2. Stage 2: Follow Decision 

 Given i‘s consumption of t’s exposure in the first stage, i must decide whether or 

not to follow s. We model this decision in the second stage of our model as a function of 

the utility and the cost that i will incur after following s.  

 The utility that i derives from following s after the consumption of t’s exposure 

(Usti) depends on the value attached to the type of content in t consumed by i (asti). It is 

also contingent on the value i can earn by potentially becoming a first-hand distributor of 

s’s content to its own network of followers. By gaining immediate access to s and 

retweeting s’s content, i may disseminate information that was not previously available to 

its followers and subsequently improve its standing as an information distributor (Boyd 

et al. 2010). The utility for i of becoming a retweeter of s after following s is a function of 

i’s audience size (psti), or its number of followers, and how active i is on Twitter, 

particularly in its commitment to sharing content with its followers (qsti).  

 The topology of the network separating i from s also influences the utility that i will 

obtain from following s. For i, its utility will depend on the size of the follower base for s 

(rsti). This is because suppliers with larger counts of followers tend to be viewed as more 

credible and as producers of higher-quality information (Ringel Morris et al. 2012). The 

calculation of utility also includes the distance, or the degree of separation, between i and 

s when i consumes t’s exposure (gsti). Since information typically does not propagate far 

on Twitter (Goel et al. 2016), i will be able to access content that is more innovative relative 

to what is available through its local network as the distance between i and s grows (Aral 
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and Van Alstyne 2011). As such, we expect that i will find more value in following s when 

gsti is large. 

 Finally, the utility that i will obtain from following s depends on the performance 

of the retweeters that distribute s’s content to i. One aspect of performance is the amount 

of s’s content that i receives through its network. When the volume of s’s information that 

i receives via retweets falls short of the total volume of information s contributes on 

Twitter, i will find utility in following s. That is, i will gain utility from following s directly 

when the entire quantity of content that s contributes on Twitter does not diffuse 

completely down to i. This may occur, for instance, because users in the network between 

i and s, including s’s followers and i’s friends, do not retweet a lot of the content posted by 

s or retweet very infrequently. Let fsti be the number of tweets published by s over a fixed 

amount of time prior to i's consumption of the exposure of t, and let zsti be the count of 

these tweets that i ultimately receives through retweets from friends in the same amount 

of time. Thus, the expected increase in coverage of s’s activity for i after following s will 

equal fsti - zsti, and as this difference increases, i will obtain greater utility from following s. 

Another facet of the performance of the retweeter network is the speed at which 

information is circulated. Consequently, i’s utility will be contingent on the lag between 

the time s posts content on Twitter and the time retweets of this content reach i (wsti). The 

longer this delay, the greater the utility that i will obtain from following s. 

Equation (3) formally presents the utility function and includes coefficients 

(𝛾1, … , 𝛾9) that measure the change in utility from their associated variables. This function 

assumes a Cobb-Douglas functional form (Arrow et al. 2011). Please note that the function 

allows the utility from following s as wsti expands to increase exponentially in order to 

account for the exponential decay in the value of information over time, as has been 

observed for information on social media (e.g., Wu and Huberman 2007) and assumed for 
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other perishable resources (e.g., Blackburn and Scudder, 2009). In addition, we interact 

wsti with a binary indicator (dsti) to take into consideration differences in utility as wsti 

increases depending on whether t’s exposure in i’s feed occurs during a crisis event (dsti= 

1) or not (dsti= 0). This is important to evaluate because the extreme uncertainty and 

volatility in emergencies causes information to expire more quickly (Meier 2015), which 

may impact how candidates assign value to the speed at which information is distributed 

to them. 

𝑈𝑠𝑡𝑖 = 𝑎𝑠𝑡𝑖
𝛾1 ∗ 𝑝𝑠𝑡𝑖

𝛾2 ∗ 𝑞𝑠𝑡𝑖
𝛾3 ∗ 𝑟𝑠𝑡𝑖

𝛾4 ∗ 𝑔𝑠𝑡𝑖
𝛾5 ∗ (𝑓𝑠𝑡𝑖 − 𝑧𝑠𝑡𝑖)

𝛾6 ∗ 𝑒(𝛾7𝑤𝑠𝑡𝑖+𝛾8𝑑𝑠𝑡𝑖+𝛾9𝑤𝑠𝑡𝑖∗𝑑𝑠𝑡𝑖), (3) 

The cost for i of following s is primarily driven by the information processing cost 

of the expected increase in contents that i will receive from s after becoming a follower. 

Equation (4) presents the cost function. In this function, we assume that information 

processing cost is a strictly convex function of the quantity of information (Anderson and 

de Palma 2009). Moreover, because we know that during times of crisis people actively 

seek out information to cope with stress and to improve their responses (Sutton et al. 

2008), we conjecture that the additional effort required to process more information may 

be lower during times of crisis. We test this by moderating the information processing cost 

component with dsti in our cost function. In addition, we let εsti represent the unobserved 

cost component and be log-normally distributed with mean ε and variance 𝜎𝜀
2.  

𝐶𝑠𝑡𝑖 = (𝑒
𝑓𝑠𝑡𝑖 − 𝑒𝑧𝑠𝑡𝑖)

𝛾10 ∗ (𝑒𝑓𝑠𝑡𝑖 − 𝑒𝑧𝑠𝑡𝑖)
𝛾11∗𝑑𝑠𝑡𝑖 ∗ 𝜀𝑠𝑡𝑖, (4) 

where γ10 marks the change in cost from the anticipated increase in the quantity of 

information received by a candidate and γ11 represents the change in cost from the same 

variable if the exposure occurred after a disaster. The cost function, like the utility 

function, adopts the Cobb-Douglas functional form. 

For i to follow s, utility must be greater than cost. That is, 

 𝑈𝑠𝑡𝑖 > 𝐶𝑠𝑡𝑖. (5) 
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We can rewrite Equation 5 as follows: 

−
𝜀

𝜎𝜀
2 +

𝛾1

𝜎𝜀
2 log 𝑎𝑠𝑡𝑖 +

𝛾2

𝜎𝜀
2 log 𝑝𝑠𝑡𝑖 +

𝛾3

𝜎𝜀
2 log 𝑞𝑠𝑡𝑖 +

𝛾4

𝜎𝜀
2 log 𝑟𝑠𝑡𝑖 +

𝛾5

𝜎𝜀
2 𝑔𝑠𝑡𝑖 +

𝛾6

𝜎𝜀
2 log(𝑓𝑠𝑡𝑖 − 𝑧𝑠𝑡𝑖)

+
𝛾7

𝜎𝜀
2𝑤𝑠𝑡𝑖 +

𝛾8

𝜎𝜀
2 𝑑𝑠𝑡𝑖 +

𝛾9

𝜎𝜀
2𝑤𝑠𝑡𝑖 ∗ 𝑑𝑠𝑡𝑖 −

𝛾10

𝜎𝜀
2 log(𝑒

𝑓𝑠𝑡𝑖 − 𝑒𝑧𝑠𝑡𝑖)

−
𝛾11

𝜎𝜀
2 log(𝑒

𝑓𝑠𝑡𝑖 − 𝑒𝑧𝑠𝑡𝑖) ∗ 𝑑𝑠𝑡𝑖 >
log𝜀𝑠𝑡𝑖 − 𝜀

𝜎𝜀
2  

Subsequently, the probability of becoming a new follower conditional on consumption is 

𝑃2 = 𝑃 (−
𝜀

𝜎𝜀
2 +

𝛾1

𝜎𝜀
2 log 𝑎𝑠𝑡𝑖 +

𝛾2

𝜎𝜀
2 log 𝑝𝑠𝑡𝑖 +

𝛾3

𝜎𝜀
2 log 𝑞𝑠𝑡𝑖 +

𝛾4

𝜎𝜀
2 log 𝑟𝑠𝑡𝑖 +

𝛾5

𝜎𝜀
2 𝑔𝑠𝑡𝑖 +

𝛾6

𝜎𝜀
2 log(𝑓𝑠𝑡𝑖 −

𝑧𝑠𝑡𝑖) +
𝛾7

𝜎𝜀
2𝑤𝑠𝑡𝑖 +

𝛾8

𝜎𝜀
2 𝑑𝑠𝑡𝑖 +

𝛾9

𝜎𝜀
2𝑤𝑠𝑡𝑖 ∗ 𝑑𝑠𝑡𝑖 −

𝛾10

𝜎𝜀
2 log(𝑒

𝑓𝑠𝑡𝑖 − 𝑒𝑧𝑠𝑡𝑖) −
𝛾11

𝜎𝜀
2 log(𝑒

𝑓𝑠𝑡𝑖 − 𝑒𝑧𝑠𝑡𝑖) ∗ 𝑑𝑠𝑡𝑖 >

log𝜀𝑠𝑡𝑖−𝜀

𝜎𝜀
2  | −

𝐿

𝜎𝐿
2 −

𝛽1

𝜎𝐿
2 log 𝑏𝑠𝑡𝑖 >

log 𝐿𝑠𝑡𝑖−𝐿

𝜎𝐿
2 ) (6) 

5. Data 

For this study, we obtained Twitter data generated one week before and one week 

after a 7.8 magnitude earthquake that occurred in Ecuador on April 16, 2016. The 

earthquake devastated Ecuador’s coastal provinces, caused over 650 casualties, and 

injured approximately 16,600 people (Symmes Cobb and Ore 2016). Since the earthquake 

occurred in Ecuador, the language that was predominantly represented in our data was 

Spanish. We selected this event as the setting for our research because it represented a 

sudden, unexpected incident; as of now, earthquakes cannot be reliably predicted. Thus, 

we were able to cleanly compare effects before versus after the earthquake in our structural 

model. Another reason for our selection of this crisis for our research is that Ecuador is a 

small country, which helped guarantee that the national level of attention was focused on 

the crisis and minimized the possibility that another event happened around the same 

time, which could have interfered with our analysis. Ecuador is also a country where the 

internet and cellular network infrastructures are well-developed. These networks also 

proved to be robust enough to withstand the effects of the earthquake and provided the 
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support necessary to facilitate the communication of information among the population 

(CNN Español 2016). 

Because our goal is to investigate the growth of follower bases for HOs, we sampled 

Twitter users that represented Ecuadorean organizations involved with disaster relief. We 

found the users by locating those in the days after the earthquake that were contributing 

information under nine commonly used hashtags in tweets related to the crisis. These 

hashtags included “#TerremotoEcuador”, “#EcuadorEarthquake”, and 

“#EcuadorListoySolidario”. To control for unobserved effects of content, only those 

organizations that tweeted exclusively about the earthquake in the week following the 

disaster were included in our sample. This process resulted in a sample of 55 

organizational users. After filtering out users with privacy issues or that had not published 

Twitter activity both before and after the disaster, our final sample was made up of 47 

organizations, or suppliers. These suppliers represented four categories of organizations 

directly involved with relief efforts: (1) humanitarian; (2) government; (3) medical; and 

(4) emergency services. Table 14 lists the categories and the suppliers’ Twitter handles in 

each category.  

Table 14 – Categorization of Suppliers Listed by Twitter Handles 
 

Emergency Svcs.   Government   Humanitarian   Medical 

BOMBEROSGIRECAN   AdmPublicaEc InclusionEc   ANEPPCE   HGuayaquil 

BomberosGYE   AgriculturaEc IndustriasEc   aldeasosecuador   HVCMCuenca 

BomberosQuito   alcaldiagye MFAEcuador   cruzrojaecuador   IESSHCAM 

ECU911Esmeralda   ANT_ECUADOR MinInteriorEc   cruzrojaguayas   IESSHJCA 

Ecu911Macas   CancilleriaEc MunicipioQuito   CRUZROJAZUAY     

ECU911PVO   CancilleriaEcZ8 ObrasPublicasEc   OPSECU     

ecu911Riobamba   ComunicacionEc Riesgos_Ec   PNUDEcuador     

ecu911sambo   Ecuador_OEA Salud_CZ6   worldvisionEC     

PoliciaEcuador   eerssaoficial Salud_CZ7         

    goberazuay Salud_Ec         

    GoberdelGuayas Seguridad_Ec         

    GoberLoja SENAE_Aduana         

    gobermorona_s SocialEc         
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The data in our study is compiled from multiple sources as we obtained data from 

Gnip (a Twitter subsidiary) and scraped additional data using Twitter’s application 

programming interface (API). The Gnip data provide information on the tweets published 

by the sampled suppliers along with all of the retweets of those tweets from the week 

before and after the earthquake. In total, the 47 suppliers issued 15,399 tweets across the 

two weeks, which were retweeted 376,732 times in the same amount of time. These 

retweets were posted by 66,308 retweeters, meaning that each retweeter in our sample 

contributed 5.68 retweets on average. Nearly 65% of the tweets and 85% of the retweets 

occurred after the earthquake, and this highlights the surge in Twitter activity in the post-

earthquake scenario. In Figure 8, we show the amount of tweet and retweet activity over 

the two weeks of our study.  

Figure 8 – Count of (a) Tweets and (b) Retweets 

 
For the suppliers and retweeters, the Gnip data set also incorporates information from 

their Twitter profiles, such as the account creation dates as well as the counts of followers, 

friends, and cumulative number of tweets that they have posted. The profile data are 

longitudinal since the data were captured for every supplier each time it tweeted or was 

retweeted and for every retweeter each time it retweeted. The number of followers across 

all of the suppliers totaled 3.6 million while the count of candidates was 168 million. 
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Clearly, the amount of candidates dwarfs the number of suppliers’ followers. This 

exemplifies how Twitter, through the retweet function, enables suppliers to expand the 

reach of their content far beyond their immediate networks and communicate their 

content to a large audience. We portray the magnitude of the audiences that received 

content from the suppliers directly as well as through retweets in our sample in Figure 9. 

Additionally, the median number of followers for each supplier was 13,115 and for each 

retweeter was 156. Figure 10 illustrates the cumulative distribution functions of the 

follower counts (logged due to extreme skewness) for the suppliers and retweeters in this 

study.  

Figure 9 – Magnitude of Audiences for Suppliers’ Content 

 

Figure 10 – Cumulative Distribution Functions of Logged Follower Counts 
for Suppliers and Retweeters 
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The data we obtained using our second source (the Twitter API) provides more 

detailed information on the suppliers’ followers and the retweeters’ followers (that is, the 

candidates). Specifically, this data include the follower lists for every supplier and 

retweeter in our sample. Through these lists, we obtained the identities of the suppliers’ 

followers and the candidates. We could not download this data for 411 retweeters due to 

their profiles being set to private or being deleted, so we dropped these retweeters and 

their 1,034 retweets. Given that the dropped retweeters represented a minimal fraction of 

the entire set of retweeters (411/66,308=0.62%) and of retweets (1,034/376,732=0.27%), 

we do not expect any changes in our results due to their removal from our sample. In 

addition, we used Twitter’s API to scrape the candidates’ profile data in order to collect 

the same statistics available in the Gnip data set for suppliers and retweeters (e.g., account 

creation dates, follower counts). Except for those with deleted profiles (1% of the total 

count of candidates), we were able to acquire this data successfully9. 

6. Internal and External Link Analysis 

From our data, we were able to identify whether new follower relationships 

materialized as a result of internal or external mechanisms. The first step was to identify 

which new followers each supplier gained during the week before and the week after the 

earthquake. We employed the scraped follower lists for the suppliers for this task. Each 

list provided a supplier’s follower identities in reverse chronological order according to the 

time they started following the supplier. The exact times that followers started following 

were not accessible and, to the best of our knowledge, this information is not available to 

                                                        

9 We gathered candidates’ profile statistics one year after the earthquake, and it is to be expected 
that the statistics evolved during the elapsed time. To test the consistency of candidates’ scraped 
profile data, we compared the profile information obtained from Gnip and from Twitter’s API for 
1,000 randomly sampled candidates that we had both sets of information for. Because the 
correlation between both types of measurements was greater than 90%, the measurements in the 
scraped data constitute a valid proxy for the candidates’ profile statistics at the time of the 
earthquake. 
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scrape or to purchase, even from Twitter. One method of approximating following times 

is to download each supplier’s list of followers at regular intervals (e.g., hourly or daily) 

and see what followers were added. Due to the size of the suppliers in the sample and limits 

imposed by Twitter’s API, it was infeasible to frequently and repeatedly download the 

suppliers’ follower lists. As such, we estimated which followers from each list were new 

followers by leveraging the Gnip data that capture the suppliers’ follower counts at the 

time that suppliers tweeted or were retweeted. Using this data, we deduced the suppliers’ 

follower counts at the time of the supplier’s first record (i.e., b) and the last record (i.e., e) 

of the two weeks of interest. We also counted the total number of followers (i.e., n) from 

the scraped lists of suppliers’ followers10. The suppliers’ new followers corresponded to the 

followers that matched with the following index on the suppliers’ follower lists: [n-e+1, n-

b] (see Figure 11). We assumed that users did not unfollow, or dissolve their connection 

with the supplier during the two-week period of analysis, which would have altered the 

index of each follower. Research shows that unfollowing rates tend to be negligible, 

particularly during short periods of time (Antoniades and Dovrolis 2015, Xu et al. 2013). 

We confirmed the low unfollowing rate by tracking the follower lists of 40 randomly 

selected Twitter users every day for a month, and we found that the average daily 

unfollowing rate was minimal (approximately 0.02% of the total follower count across all 

40 users). Furthermore, of the new followers added in the two weeks of this study, 

suppliers retained on average 94% one year later. 

 

(Figure 11 on next page) 

                                                        

10  The suppliers’ follower lists were scraped immediately once the week after the earthquake 
concluded. However, during the time it took to download these lists, suppliers could have gained 
more followers, which would have been reflected in the scraped data. As a result, n may be slightly 
different than e.  
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Figure 11 – Locating New Followers in Scraped Follower Lists 

 

The second step was to determine if each supplier’s new followers were candidates. 

That is, we verified if, for every supplier, new followers received exposures from their 

friends of content posted by the supplier. This process involved attempting to match each 

new follower also as a follower of one of the supplier’s retweeters at the time the exposure 

was sent. If a match was successful, we inferred that the new follower decided to follow 

after learning about the supplier through an exposure and classified that follower 

relationship as an internal link. If not, we classified the new follower relationship as an 

external link. Appendix D provides the technical details into the process of determining 

whether new follower relationships were internal or external links. Based on this analysis, 

the mean lag time between a candidate’s receiving an exposure of a supplier’s tweet and 

the candidate’s decision to follow the same supplier was 9.28 hours, and 89.6% of 

candidates made this decision within 24 hours of receiving an exposure. As noted 

previously, retweeters may or may not have been following a supplier when they retweeted 

the supplier’s content. A single retweeter could also have exposed its followers to multiple 

suppliers by retweeting more than one supplier’s content. In fact, 41.2% of the retweeters 

in our sample issued retweets of more than one supplier. We also observed that on average 

 

 Index Follower's Twitter ID 

Most recent  1 4100064 

 2 3511860 

 3 4188869 

 4 4518973 

 5 3429531 

 6 4360721 

 7 4949372 

 8 3948740 

 9 4262104 

Oldest  10 3898730 
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approximately 30% of each supplier’s retweeters distributed the same individual 

supplier’s content multiple times. This means that candidates following such retweeters 

were exposed repeatedly to a supplier by the same retweeter. 

In total, the 47 suppliers’ follower bases grew by 275,359 followers during the week 

before and after the earthquake. Figure 12 displays the cumulative number of followers 

gained across all of the suppliers in the studied two weeks. A little over 93% of the new 

followers connected with the suppliers after the earthquake, demonstrating that not only 

was tweeting and retweeting up after the disaster (see Figure 8) but network activity too. 

This finding also implies that the demand for information provided by the suppliers in our 

sample increased post-earthquake, which seems appropriate given that the suppliers 

provided information relevant to relief efforts.  

Figure 12 – Cumulative Count of New Followers 

  
 

Table 15 breaks down the number of new followers into the frequencies of those 

that were classified as internal and external links. The table compares these numbers 

before versus after the earthquake across all of the suppliers as well as by supplier type. 

The results underscore the value of the internal mechanism as a means of gaining new 

followers since the percentage of internal links was substantial, especially once the 

emergency occurred. Prior to the earthquake, the percentage of total new follower 
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relationships classified as internal links was 35.4%, and this percentage climbed to 78.2% 

in the subsequent week. We observed that the number of retweets rose dramatically after 

the earthquake too, which could have driven the escalation of internal link formation in 

that period. However, our data reveal that the mean number of internal links per retweet 

before the earthquake was 0.117 but was 0.628 after the event. Therefore, the sharing of 

Twitter posts not only serves as a method to distribute information but also as a powerful 

and effective driver of new follower relationships, particularly during times of crisis. 

Table 15 – External and Internal Links 

 Pre-earthquake  Post-earthquake 

  External Internal  External Internal 
Overall 11,972 6,561  56,017 200,809 
Emergency Services 4,243 1,582  18,148 46,374 
Government 7,524 4,782  36,042 145,987 
Humanitarian 158 167  1,626 8,027 
Medical 47 30  201 421 

 

7. Structural Model Analysis  

To estimate our structural model, we allowed each exposure to count as one 

observation since each exposure represented an opportunity for a candidate to consume 

and then start following a supplier in our sample. Once candidates established a new 

follower link with a supplier, they ceased to receive exposures of that supplier’s tweets to 

motivate their decision to follow the supplier regardless of the amount of retweets they 

continued to receive from the supplier’s retweeters. The total number of observations in 

our data was 2,042,306,645, and these exposures were generated by 65,897 retweeters 

that transmitted 375,698 retweets during the weeks before and after the disaster. Table 16 

offers a summary of the notation used and an explanation of the operationalization of the 

variables in our model. The dependent variable ysti represents the joint outcome of the two 

stages of our model and is binary. That is, ysti is equal to 1 if i started to follow s after 

consuming an exposure of t published by s, and ysti is equal to 0 otherwise. From the 
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analysis of internal and external mechanisms in Section 6, we were able to trace 207,370 

internal links, and this translates into 207,370 observations where ysti = 1. 

Table 16 – Summary of Notation and Variable Operationalization 

ysti Binary variable equal to 1 if the candidate followed the supplier from an exposure 
bsti Candidate's number of friends 
Lsti Candidate's unobserved inverse login frequency 
asti Type of content (categorical variable distinguishing Actionable, Informative, and 

Other) 
psti Candidate's number of followers 
qsti Candidate's retweeting frequency (measured as average daily tweeting rate) 
rsti Supplier's count of followers 
gsti Degrees of separation between candidate and supplier 
fsti Number of tweets published by the supplier within 24 hours of the exposure 
zsti Number of fsti received by the candidate within 24 hours of the exposure 
wsti Expected decrease in delay of information receipt (measured in hours) 
dsti Binary variable equal to 1 if the exposure happened after the earthquake 
εsti Candidate’s unobserved cost component 

 
In the first stage of our model, we included bsti and measured this variable as the 

number of friends that was scraped from i’s profile. The second stage of our model 

introduced asti, which was operationalized as a categorical variable that indicates if the 

content in t is Actionable, Informative, or Other. We based this classification on previous 

research regarding the types of information issued during humanitarian events, (Altay and 

Pal 2014, Moore and Verity 2014, Pedraza Martinez and Yan 2016, Qu et al. 2011). 

Actionable content attempts to motivate behavior through directions or suggestions, and 

Informative content contains factual reports, descriptions, and updates about the state of 

the operating environment and relief efforts. Finally, tweets belonging to the Other 

category convey messages that could not be defined as actionable or informative. 

Typically, they involved content related to opinions or emotional support. Due to the large 

number of tweets, we utilized text-mining techniques, specifically a supervised learning 

approach, to categorize the tweets. Appendix E provides the technical details related to 

this analysis. 

As shown in Table 17, the Informative category had the highest amounts of tweets 

followed by the Actionable category. The Other category had the lowest number of tweets, 
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but the share of tweets belonging to this class experienced the most change by increasing 

from 4.15% before the earthquake to 10.87% after the earthquake. We compared the most 

frequently used words in each category during the pre and post-earthquake scenarios to 

understand how content evolved within each class. Before the earthquake, Actionable 

tweets were mainly concerned with instructing drivers where to drive based on accidents 

and road closures, whereas after the earthquake, the most common words for Actionable 

tweets were related to calls for donations and specific instructions for where and what to 

donate. Informative tweets in the pre-earthquake period were related to general news or 

updates about organizations’ services and in the post-earthquake period presented 

information regarding emergency zones, rescue efforts, casualties, and updates on 

domestic and international humanitarian aid. Lastly, Other tweets discussed opinions and 

ideals of the country of Ecuador before the disaster. Following the earthquake, the most 

common words for tweets in the Other category pertained to uplifting and encouraging 

messages, such as solidarity, support, and unity.  

Table 17 – Classification of Tweets and their Content 

  Pre-earthquake   Post-earthquake 

Category Count 

Example  
(translated from 

Spanish)   Count 
Example  

(translated from Spanish) 

Actionable 1431 

Road Macas-
##SanJoséDeMorona is 
open for driving. Drive 
within the speed limits. 

  2487 

When donating, prioritize 
bottled and non-perishable 
food. 
#EcuadorListoYSolidario 
#SismoEcuador 
https://t.co/JWaI5PPhOJ 

Informative 3667 

For the first time in history, 
Ecuador is a country that 
exports electrical energy 
#CocaCodoSinclair 
#InicioCocaCodo 
https://t.co/GACbz7S8lG 

  6184 

A state of emergency has been 
declared in 6 provinces: 
Esmeraldas, Los Ríos, Manabí, 
Santa Elena, Guayas y Santo 
Domingo @JorgeGlas 
#SismoEcuador 

Other 221 

#Ecuador is considered one 
of the best destinations for 
retirees. 
#AllYouNeedIsEcuador 
https://t.co/tdzY8sAAVU 

  1058 

We thank the security forces, 
doctors, and workers that have 
mobilized themselves with the 
patriotism that this emergency 
requires 
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To measure psti, we utilized the number of followers listed in i’s profile data. While 

Twitter profiles do not provide aggregate statistics on a user’s retweeting behavior, the 

number of tweets posted by a user in its lifetime along with its account creation date is 

available. From this information, we can calculate a user’s average daily tweeting rate as 

the total number of tweets divided by its tenure on Twitter. We posit that there exists a 

positive correlation between a user’s tweeting and retweeting (Yang et al. 2010), so we 

employed i’s average daily tweeting rate as a proxy to measure qsti. Because profile data for 

candidates was scraped once, the values for psti and qsti (as well as for bsti) vary across but 

not within the candidates. In contrast, rsti was operationalized as the count of s’s followers 

at the time of each observation, which was available from the Gnip data. 

The next variable in our model is gsti, or the distance in the network between 

candidates and suppliers. We closely followed Goel et al. (2016)’s tree construction 

method for retweets. A tree represents the diffusion path for a tweet by marking each 

retweeter of that tweet as a node and drawing a link between nodes and their inferred 

parent, and a parent is the user that distributed the tweet to the retweeter. A retweeter’s 

parent can be determined as the supplier of the original tweet or another retweeter, but it 

is also possible that a parent cannot be located. In such cases, the node is marked as a 

“root”. Following Goel et al. (2016), we identified the parents of every retweeter in our data 

by first finding the set of potential parents. We then, if possible, connected each retweeter 

to the parent that most recently passed on the content. After constructing trees for all of 

the tweets in our data set, we were able to trace the degrees of separation between the 

retweeter of tweet t and s, and we used this value to measure gsti
11. We assigned missing 

values to nodes that were designated as roots since we could not completely trace how 

                                                        

11 Technically, gsti should be equal to the degrees of separation between the retweeter of t and s plus 
the value of 1 since the candidate is one more degree separated from s. Both measurements of gsti 
are perfectly correlated and should yield the same results. 
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information reached these users, and this affected 41,228 retweets (or 10.9% of the total 

number of retweets).   

We measured fsti as the number of tweets published by s during a period of time 

leading up to t’s exposure by i and measured zsti as the count of fsti received in i’s feed 

during the same amount of time. Due to the rapid decay of information diffusion on social 

media platforms (Leskovec et al. 2009, Yang and Leskovec 2011), we focused on tweeting 

and retweeting activity during the 24 hours prior to t’s exposure by i. Finally, we calculated 

wsti as the time elapsed in hours between the time s published tweet t and the time i 

received t’s exposure. Also, recall that wsti, fsti, and zsti are moderated with dsti, which is a 

binary variable that is established as 1 if the exposure occurred after the earthquake and 0 

otherwise.  

7.1. Model Estimation  

The two stages described earlier together form the full model that analyzes the 

likelihood of a candidate beginning to follow a supplier after consuming an exposure. The 

outcome of the first stage is binary and unobserved, but success here is necessary to 

progress to the second stage. This means that ysti=1 implies success at both stages of our 

model; however, if ysti=0, we cannot distinguish in which stage there was a failure. Because 

of these aspects, we used a bivariate probit model with partial observability (Poirier 1980). 

We allowed the unobserved variables at each stage to be correlated, and the vector θ 

contains the model parameters to be estimated. We note that the estimation process, for 

example, cannot distinctly identify 𝛽1 and 𝜎𝐿
2 but can identify 

𝛽1

𝜎𝐿
2. The signs for 𝛽1 and 

𝛽1

𝜎𝐿
2 

are identical, and determining the direction of 𝛽1 without the exact parameter estimate 

still allows us to gauge the partial effect of the associated variable on the dependent 

variable. Thus, estimating the value of the ratio  
𝛽1

𝜎𝐿
2 is sufficient for our study.  
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We rewrite Equations 2 and 6 in a simpler form, and the full specification of the 

model for estimation is provided in Equation 7.  

𝑃1 = 𝑃 (𝛽0 − 𝛽1 log 𝑏𝑠𝑡𝑖 >
log 𝐿𝑠𝑡𝑖−𝐿

𝜎𝐿
2 )  

𝑃2 = 𝑃 (𝛾0 + 𝛾1 log 𝑎𝑠𝑡𝑖 + 𝛾2 log 𝑝𝑠𝑡𝑖 + 𝛾3 log 𝑞𝑠𝑡𝑖 + 𝛾4 log 𝑟𝑠𝑡𝑖 + 𝛾5𝑔𝑠𝑡𝑖 + 𝛾6 log(𝑓𝑠𝑡𝑖 −

𝑧𝑠𝑡𝑖) + 𝛾7𝑤𝑠𝑡𝑖 + 𝛾8𝑑𝑠𝑡𝑖 + 𝛾9𝑤𝑠𝑡𝑖 ∗ 𝑑𝑠𝑡𝑖 − 𝛾10log(𝑒
𝑓𝑠𝑡𝑖 − 𝑒𝑧𝑠𝑡𝑖) − 𝛾11log(𝑒

𝑓𝑠𝑡𝑖 − 𝑒𝑧𝑠𝑡𝑖) ∗

𝑑𝑠𝑡𝑖 >
log𝜀𝑠𝑡𝑖−𝜀

𝜎𝜀
2  | 𝛽0 − 𝛽1 log 𝑏𝑠𝑡𝑖 >

log 𝐿𝑠𝑡𝑖−𝐿

𝜎𝐿
2 )  

𝑃(𝑦𝑠𝑡𝑖 = 1) = 𝑃1 ∗ 𝑃2 

𝑃(𝑦𝑠𝑡𝑖 = 0) = 1 − 𝑃1 ∗ 𝑃2 

𝐿𝑠𝑡𝑖, 𝑒𝑠𝑡𝑖 ~ 𝑁(0,1) 

𝑐𝑜𝑟(𝐿𝑠𝑡𝑖, 𝑒𝑠𝑡𝑖) = 𝜌 

                                                            𝜃 = {𝜌, 𝛽0, 𝛽1, 𝛾0, … , 𝛾11} (7)  

The two stages must be estimated jointly, so the log-likelihood function is 

ℒ(𝛽, 𝛾, 𝜌) =  ∑[𝑦𝑠𝑡𝑖 log(𝚽(X1β, X2𝛾, 𝜌)) + (1 − 𝑦𝑠𝑡𝑖) log( 1 −𝚽(X1β, X2𝛾, 𝜌))], (8)  

where β represents the vector of parameters in the first stage and γ represents the vector 

of parameters in the second stage. Note that 𝚽(⋅) represents the bivariate standard normal 

distribution. 

 Recall that the total number of observations in our data is roughly 2.042 billion 

and that the count of observations where ysti=1 is 207,370. Thus, the percentage of 

successful events is very small (approximately 0.01%), and our sample can be considered 

to include rare event data. Estimating models using samples with rare event data can be 

problematic since coefficients are biased. A strategy to address this bias involves the use 

of response-based or choice-based sampling (King and Zeng 2001). Suppose that in a 

sample of rare event data, the percentage of successful events (i.e., Y=1) is µ and the 

percentage of unsuccessful events (i.e., Y=0) is 1-µ. Response-based sampling involves 
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creating a new sample composed of two sub-samples: (1) all or a random sample of 

observations where Y=1 and (2) a random sample of observations where Y=0. In this new 

sample, the proportion of observations where Y=1 is now 𝑦̅ and 𝑦̅ > 𝜇. While response-

based sampling helps ensure there is a sufficient number of positive events, it yields 

inconsistent and asymptotically biased estimates since observations are selected on the 

dependent variable, but this can be statistically corrected for using Manski and Lerman 

(1977)’s weighted maximum likelihood estimator (WMLE). For the bivariate probit model 

with partial observability, the WMLE can be obtained by maximizing the weighted log-

likelihood function presented in Equation 9. 

      ℒ𝑤(𝛽, 𝛾, 𝜌) = ∑ [
𝜇

𝑦̅
𝑦𝑠𝑡𝑖 log(𝚽(X1β, X2𝛾, 𝜌)) +

1−𝜇

1−𝑦̅̅̅ ̅̅ ̅̅
(1 − 𝑦𝑠𝑡𝑖)log (1 − 𝚽(X1β, X2𝛾, 𝜌))] (9)  

We applied the response-based sampling technique and formed a new sample. In 

line with Singh (2005), we included all of the observations where ysti=1, and we selected a 

stratified random sample across the suppliers for an equivalent number of observations 

where ysti=0. The percentage of positive events therefore was 50%. Because we dropped 

observations with missing values for gsti, the size of the sample from response-based 

sampling was 371,420. We mean-centered wsti and log(𝑒𝑓𝑠𝑡𝑖 − 𝑒𝑧𝑠𝑡𝑖) since these variables 

are moderated with dsti, and we estimated the model using WMLE with robust standard 

errors. Additionally, we verified that our choice of how the response-based sampling 

method was adopted did not drive our results by creating other samples. These alternates 

included samples that maintained the same ratio of positive to negative events as well as 

samples that varied the ratio of positive to negative events. We estimated our model with 

the alternate samples, and the results were consistent and robust to changes in how the 

response-based sampling method was applied. The results are available from the authors 

upon request. 
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7.2. Results 

We list the descriptive statistics of the key variables for the sample used to estimate 

the model in Table 18. The table presents the binary and categorical variables along with 

their means first, followed by the descriptive statistics for continuous variables before any 

transformation is applied. We then present the results attained from the WMLE method 

in Table 19. The table displays the first stage results in the top set of coefficients. In our 

model, we assumed that the amount of incoming information into a user’s Twitter feed is 

linearly associated with the user’s count of friends, so, we conjectured that a candidate is 

less likely to consume a certain exposure as its number of friends increases. The value of 

the coefficient (β1) for bsti is negative and statistically significant, which implies a negative 

association between a candidate’s friend count and the probability of consumption for an 

exposure. This result not only aligns with our expectations but with what researchers have 

previously found (e.g., Shi et al. 2014). 

Table 18 – Descriptive Statistics for Key Variables 

  Mean Std. Dev. Min Max 
ysti 0.514    
asti (Actionable) 0.265    
asti (Other) 0.052    
asti (Informative) 0.683    
dsti 0.902    
bsti 824.960 11,505.240 1 1,548,099 
psti 1,298.447 31,985.390 0 8,091,149 
qsti 1.032 8.298 0 1,580.021 
rsti 230,527.600 164,278 532 648,749 
gsti 1.210 0.653 1 29 
fsti 90.257 55.165 0 361 
zsti 10.941 14.276 0 192 
wsti 1.726 5.350 0.001 302.214 
371,420 observations       

 
 

(Table 19 on next page) 
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Table 19 – Results of the Weighted Maximum Likelihood Estimation 

 Coeff. 
(Robust Std. 

Err.) 

Stage 1: Consumption 

𝛽0 (Intercept)  -2.074*** (0.092) 

𝛽1 (𝑏𝑠𝑡𝑖)  -0.240*** (0.011) 

Stage 2: Follow Decision 

𝛾0 (Intercept)  -4.860*** (0.029) 

𝛾1𝑎𝑐𝑡𝑖𝑜𝑛  (𝑎𝑠𝑡𝑖 = Actionable)  0.031*** (0.003) 

𝛾1𝑜𝑡ℎ𝑒𝑟  (𝑎𝑠𝑡𝑖 = Other)  0.062*** (0.006) 

𝛾2 (log 𝑝𝑠𝑡𝑖)  0.042*** (0.002) 

𝛾3 (log 𝑞𝑠𝑡𝑖)  0.127*** (0.011) 

𝛾4 (log 𝑟𝑠𝑡𝑖)  0.016*** (0.002) 

𝛾5 (log 𝑔𝑠𝑡𝑖)  -0.087*** (0.004) 

𝛾6 (log(𝑓𝑠𝑡𝑖 − 𝑧𝑠𝑡𝑖))  0.149*** (0.003) 

𝛾7 (𝑤𝑠𝑡𝑖)  0.016*** (0.002) 

𝛾8 (𝑑𝑠𝑡𝑖)  0.318*** (0.007) 

𝛾9 (𝑤𝑠𝑡𝑖 ∗ 𝑑𝑠𝑡𝑖)  -0.018*** (0.002) 

𝛾10 (log(𝑒
𝑓𝑠𝑡𝑖 − 𝑒𝑧𝑠𝑡𝑖))  -0.004*** (2E-04) 

𝛾11 (log(𝑒
𝑓𝑠𝑡𝑖 − 𝑒𝑧𝑠𝑡𝑖) ∗ 𝑑𝑠𝑡𝑖)  0.002*** (2E-04) 

rho 0.954*** (0.006) 

Observations 371,420 

Pseudo log-likelihood -383.259 

* p<0.1, ** p<0.05, *** p<0.01 

 

The second set of coefficients presented in Table 6 corresponds to the estimated 

parameters for the second stage of our structural model. To measure the type of content 

in t, we included a categorical variable, asti, which distinguishes the content in t as 

Actionable, Informative, or Other. Because the frequency of messages classified as 

Informative was highest, we set the Informative category as the baseline category. The 

results demonstrate that a candidate is more likely to begin following a supplier when the 

content in t belongs to the Actionable or Other classes as compared to the Informative 

class (see the positive and significant values for the 𝛾1𝑎𝑐𝑡𝑖𝑜𝑛  and 𝛾1𝑜𝑡ℎ𝑒𝑟 coefficients). This 

finding is important for HOs that often send crucial information in Actionable tweets (e.g., 
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evacuation instructions, directions to shelters) to learn that Actionable content may also 

spur online action in the form of initiating new follower links.  

Furthermore, we observed that the future benefit of becoming a distributor of a 

supplier’s content affects a candidate’s decision to follow the supplier. In particular, a 

candidate that has a larger audience of followers and retweets more frequently is more 

likely to begin following a supplier, as shown by the positive and significant coefficient 

estimates for γ2 and γ3 respectively. We also evaluated the relationship between a 

supplier’s number of followers and a candidate’s likelihood of following the supplier since 

we argued that candidates will prefer to follow larger suppliers. We found support for this 

since the estimated value of the coefficient (γ4) for rsti was positive and statistically 

significant. The outcome that candidates have a higher probability of following suppliers 

that have already accumulated a substantial amount of followers also provides evidence of 

preferential attachment in social media networks (Barabási and Albert 1999).  

The value of the coefficient (γ5) for gsti was negative and significant, implying that 

candidates farther away in the network are less probable to follow a supplier. This result 

diverges from our expectation that a candidate’s probability of becoming a supplier’s new 

follower is positively associated with network distance since the candidate is more likely 

to obtain a greater utility from information that is locally scarce and novel (Aral and Van 

Alstyne 2011). One explanation for our finding of a negative coefficient for gsti is that as 

the degrees of separation grow between a candidate and supplier, the supplier’s content 

becomes too novel such that there is no overlap with the interests of the candidate. 

Therefore, a candidate at a significant distance from the supplier may anticipate not 

earning much utility from receiving the supplier’s tweets in the future, which will lessen 

its propensity to start following the supplier. 
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According to the table, the coefficients (γ6 and γ7) for the variables log(𝑓𝑠𝑡𝑖 − 𝑧𝑠𝑡𝑖) 

and wsti are positive and statistically significant. These findings mean that a candidate’s 

conditional probability of starting to follow a supplier increases if doing so will result in 

an increase in the expected amount of coverage of the supplier’s activity in addition to a 

decrease in the delay of information receipt. That is, candidates are more prone to follow 

a supplier when they anticipate they will obtain information more completely and rapidly 

from doing so. As such, a candidate’s decision to follow a supplier is partly contingent 

upon the performance of the retweeters with regards to how fully and quickly information 

is distributed. We also tested how the effect of the decrease in the delay of information 

receipt on the probability of following is moderated by whether or not the exposure 

happened after the disaster. Our results indicate that a candidate’s conditional probability 

of becoming a supplier’s new follower is higher after a disaster since the estimated value 

of the coefficient (γ8) for dsti is positive and significant. In addition, the coefficient estimate 

for the interaction of wsti and dsti (γ9) is negative and significant, which suggests that 

candidates that receive exposures after an emergency tend to convert to new followers 

when the expected reduction in the time lag for information receipt is smaller than the 

expected reduction under no emergency conditions. Our finding demonstrates that, after 

a disaster, a candidate is prompted to follow a supplier even when the improvement in 

how quickly it can obtain the supplier’s information is not as large, and this behavior may 

be driven by the urgent atmosphere and by information perishing at a faster rate. 

Finally, we tested how the change in information processing cost, driven by the 

change in the amount of information received from a supplier after following, affects a 

candidate’s choice to follow a supplier. The value of the coefficient (γ10) for 

log(𝑒𝑓𝑠𝑡𝑖 − 𝑒𝑧𝑠𝑡𝑖) is negative and statistically significant, so as the marginal increase in the 

volume of information received by a candidate upon following rises, the candidate is less 
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likely to connect with the supplier. This behavior is not surprising given that candidates 

do not want to incur a higher information processing cost. However, we also found that 

the parameter estimate for the interaction between log(𝑒𝑓𝑠𝑡𝑖 − 𝑒𝑧𝑠𝑡𝑖) and dsti is positive and 

significant (see value for γ11). This means that, under a crisis event, a candidate’s 

conditional probability of following a supplier increases even though the amount of 

information to be received and thereby the cost to process this information escalates also. 

An implication from our finding is that candidates may perceive the cost of information 

processing to be lower under a crisis scenario. The change in the calculation of information 

processing cost may be attributed to users feeling the need to obtain as much information 

as possible to alleviate the uncertainty that is typically rampant once a disaster 

materializes. 

8. Robustness Checks 

 To validate the robustness of our findings, we conducted several robustness 

checks. First, we accounted for our data being potentially right-censored. Candidates that 

received exposures towards the end of the week after the earthquake may have consumed 

an exposure of a supplier and started following the supplier, but these decisions may have 

been made after data collection was complete. We ensured that censoring did not affect 

our results by eliminating any observations where the time of exposure occurred within 

the last 24 hours of the period of interest. By the termination of the week after the 

earthquake, candidates that received exposures during the final day may not have had 

enough time to complete the stages of consumption and deciding whether to follow the 

supplier. We chose to drop observations within the last 24 hours since nearly all of the 

candidates in our data that followed a supplier after consuming an exposure of the supplier 

did so within 24 hours of receiving the exposure. This reduced our sample by 20,146 

observations (0.001% of the sample). Using this data, we re-estimated the model, and the 
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results were consistent with those presented in Table 6, demonstrating that our findings 

are robust to potential censoring effects. The results are available in Appendix F. 

 Second, it is possible that some candidates are more likely to follow a specific 

supplier because they follow other suppliers in our sample. While the sampled suppliers 

belong to four different categories (see Table 1), all represent legitimate organizations that 

are involved with disaster relief and public services. Candidates that follow multiple 

suppliers from our data demonstrate an interest in these organizations’ content and thus 

may be more inclined to follow another supplier after consuming an exposure of that 

supplier. Of the 126,576 unique candidates that established a new follower relationship 

with a supplier during the weeks before and after the earthquake, 62,048 candidates 

followed more than one supplier in the same time interval. We controlled for this type of 

behavior for candidate i by counting how many other suppliers i followed at the time that 

i received an exposure of s’s tweet t (𝜐𝑠𝑡𝑖). On average, candidates already followed 0.275 

suppliers at the time of an exposure. We included this variable in the second stage of our 

model and estimated the model again. The results indicated that the parameter estimates 

and significance levels were robust and consistent with those listed in Table 6. 

Furthermore, the coefficient for vsti was positive and significant (p-value <0.001), 

confirming that candidates are indeed more likely to follow a supplier when they have 

previously connected with other suppliers. The results from this analysis are also available 

in Appendix F. 

 While we account for a candidate’s number of followers in our model, another 

important characteristic of a candidate is its ratio of its counts of followers-to-friends 

count. Typically, Twitter accounts that represent organizations or celebrities have high 

ratios of followers-to-friends. As a result, it is generally perceived to be advantageous for 

a user’s reputation to have a larger followers-to-friends ratio, and users with a high 
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followers-to-friends ratio may be more reluctant to follow to maintain this ratio. Research 

on spam detection also indicates that spammers and bots tend to follow many other users 

and therefore possess low followers-to-friends ratios (Yardi et al. 2009). We controlled for 

users’ preferences to sustain their followers-to-friends ratios in addition to the possible 

presence of bots among the candidates in our study by including a measure of candidates’ 

followers-to-friends ratios (𝜙𝑠𝑡𝑖) . This variable was logged to account for possible 

nonlinearity. We re-estimated the parameters after including candidates’ followers-to-

friends ratios in the second stage of the model. The parameters and significance levels are 

again robust and consistent with those listed in Table 6. We also observed that, as 

expected, a candidate’s followers-to-friends ratio was negatively associated with the 

probability of following a supplier (p<0.001). Please refer to Appendix F for the results 

from the third robustness check. 

 The final robustness check we conducted controlled for the expectation that 

retweets of popular tweets have a higher probability of being consumed by the candidate. 

To accomplish this, we identified how many retweets a tweet t had accumulated at the time 

that the candidate received the exposure of t (𝛿𝑠𝑡𝑖). A tweet’s popularity rises as it earns 

more retweets. We logged the count of retweets for possible nonlinearity and inserted this 

variable into the consumption stage of our structural model. The results of the model with 

log 𝛿𝑠𝑡𝑖 are consistent with the outcomes presented in Table 6, and we found support for 

our argument that a candidate’s probability of consuming an exposure of t is positively 

related to the popularity of t. The results of the fourth robustness check are also shown in 

Appendix F. 

9. Conclusion 

 During humanitarian crises, HOs need to relay important and potentially life-

saving information rapidly and to as many of their stakeholders as possible. HOs have 
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started to leverage social media platforms because information is shared instantaneously 

to their followers through this technology. Furthermore, these platforms typically have a 

sharing function that allows users to distribute another user’s content to their own 

networks, which further accelerates the diffusion of social media content. One method for 

HOs of guaranteeing the diffusion of their social media content is to have a larger set of 

followers, which translates into a larger audience size for HOs’ content. This study 

examines the mechanisms that drive the growth of HOs’ follower bases. Specifically, the 

external mechanism relies on stimuli outside of the network of users involved in sharing 

HOs’ content while the internal mechanism depends on users learning about HOs through 

content distribution. We specified a two-stage structural model to analyze what influences 

the probability that an individual user becomes an internal link, or starts to follow a HO 

after learning about the organization through the sharing of content authored by the HO. 

To estimate the model, we collected a unique data set from Twitter with dynamic network 

data for HOs and other organizations directly involved with disaster relief during the 2016 

Ecuador Earthquake.  

  The results from our study indicate that, especially in the post-disaster scenario, 

the internal mechanism is a significant driver of the expansion of HOs’ follower bases. This 

means that the sharing of content is not only valuable for disseminating HOs’ content but 

also to catalyze the formation of new follower relationships. Our finding carries important 

implications for HOs. First, HOS may not be able to spend the time or financial capital 

required to build follower links through the external mechanism since they are often 

constrained by limited resources. However, our study shows that HOs can rely on their 

networks to help expand follower bases at no cost. Another implication is that HOs should 

develop policies towards mobilizing and encouraging users to distribute their content. For 
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example, the American Red Cross initiated the Digital Volunteer Program in 201312, and 

volunteers in this program help monitor online conversations during disasters and answer 

questions from social media users. Based on this study’s result of the prominence of 

internal links, Digital Volunteers should also play an active role in disseminating content 

to spread awareness about the American Red Cross and motivate users to start following 

this organization. 

 Moreover, this study provides guidance towards differentiating what HOs can do 

and what HOs must rely on their network of information distributors to do in order to gain 

internal links. HOs can adjust the type of content and the frequency of publishing new 

content to attract new followers. In particular, we found that users prefer to not follow 

HOs that publish social media content too frequently before the disaster, but this 

preference reverses once a disaster has materialized, likely to reduce the uncertainty from 

the emergency. Hence, under non-emergency conditions, HOs should concentrate on 

determining the optimal timing of social media content release as in Caro et al. (2018). 

After a disaster, HOs should attempt to keep their audience well-informed and produce 

information frequently. 

 This study and its investigation of the drivers of new follower links for HOs can be 

extended by future research. Because of data limitations, we do not include the geographic 

location of candidates in the structural model. However, we anticipate that users located 

within the disaster zone are more likely to start following HOs due to being personally 

impacted by the disaster. HOs may also value earning new followers that are local to the 

disaster to ensure that information about resources and services are received by 

beneficiaries. Therefore, future research can evaluate how the physical location of users 

influences their decision to start following an HO. An alternative avenue of future research 

                                                        

12 https://redcrosschat.org/digitalvolunteer/ 
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is to more deeply explore the behavior of new followers once the time of crisis has passed. 

We found that, on average, the 47 organizations in our data retained 94% of their new 

followers one year after the end of data collection. Future research can further study the 

retention rate of new followers in addition to their level of engagement as information 

distributors. Finally, future research can assess the economic value of internal links given 

that followers can be purchased. Twitter, as an example, allows firms to purchase followers 

through their “followers campaigns” product for approximately $3 per new follower. Using 

this value as a benchmark, future research can assign monetary value to internal links 

overall as well as to the individual variables that affect the probability of internal link 

conversion from our structural model. 
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This appendix describes the agent-based model (ABM) used in this paper, which 

is based on Rand et al. (2015). This model and this documentation were created using the 

guidelines for building ABMs recommended in Rand and Rust (2011). We begin by 

explaining why ABM is appropriate for the present application. We then describe the 

model along with the two major variants discussed in the paper: Independent Cascade (IC) 

and Linear Threshold (LT). Next, we discuss the verification and validation of the model. 

Finally, we describe the parameter optimization approach that we used and present the 

pseudocode for the underlying model, as well as the parameters for the ABM used in the 

search and the parameters for the search itself. 

I. Appropriateness of ABM 

Rand and Rust (2011) lay out six conditions for determining whether or not ABM 

is appropriate for a given problem. As they describe, the more of these conditions are met, 

the more useful ABM will be. The conditions are: 

1. A Medium Number of Agents – Is there a medium number of agents as opposed to 

a very small or a very large number of agents? In this case, we are investigating a 

medium number of agents since we are not interested in how one or two agents 

process and share information during a disaster nor are we interested in billions 

of agents. Rather, we seek to model how, at most, around three thousand 

individuals on Twitter find and distribute information in order to form a cascade. 

2. Local and Potentially Complex Interactions among Agents – Do the agents interact 

only among their local neighborhood and potentially maintain memories about 

those interactions? In our case of information diffusion on Twitter during a 

disaster, both of these conditions are met. The model as proposed has the agents 

mainly paying attention to their local neighborhoods for information. Moreover, 

the agents do not just directly respond to each piece of information but, rather, 

judge based on the IC and LT rules if they should adopt the information. 
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3. Agents’ Heterogeneity – Are the agents different from each other in substantial 

ways? In the system we are examining, agents have one important source of 

heterogeneity, which is that they differ substantially based on their exact location 

within the overall social network. This is an important source of heterogeneity, 

and, in fact, it is this network position that creates the diffusion dynamics that we 

observe. 

4. Rich Environments – Does the environment enable a rich set of interactions? The 

environment of information diffusion on Twitter in a crisis is defined by the agents’ 

social connections. As the social connections are quite varied between individuals, 

the environment can be considered rich. Moreover, the network is not just defined 

by user connections but also by the agents at the other end of those links, which 

further enhances the environment’s richness. 

5. Temporal Aspects – Is the phenomenon of interest something that evolves over 

time or is it static? In this case, we are interested in how quickly information 

spreads through the network, so this requirement is clearly met. 

6. Agents’ Adaptability – Do agents change their actions based on previous 

experience? It should be noted that Rand and Rust (2011) denote that this is not a 

common element of ABM. In our model, agents are not adaptive, though this could 

be explored in future research. 

Because these six conditions were generally fulfilled, ABM is clearly an appropriate 

methodology for understanding the phenomenon at hand. 

II. Model Construction 

We constructed this model in the popular ABM language NetLogo (Wilensky 

1999). There are seven design choices that we needed to consider for the model (Rand and 

Rust 2011): 
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1. Scope – The scope of our model is a local Twitter network of communication in the 

context of a particular tweet and its retweets. We do not seek to replicate the whole 

Twitter network or to study effects beyond simple information diffusion processes. 

2. Agents – There is essentially only one type of agent in the model. This agent is an 

information diffuser on Twitter. 

3. Properties – Agents have four properties: [i] probability of external influence (p); 

[ii] parameter of internal influence (q); [iii] whether or not they have adopted the 

product (adopt?); and [iv] their local social network. Both p and q are set 

exogenously by the optimization algorithm, and they are not modified during the 

runs. adopt? is initially set to FALSE for all agents and then updated based on 

either the IC or LT adoption rule. Finally, agents' social networks include the links 

among agents. These are drawn from an empirical network of the largest cascade 

in our data. If the cascade we are examining is smaller than the largest cascade, 

then we trim the network by eliminating any nodes (and their accompanying links) 

that would expand the network beyond the size of the current cascade. 

4. Behaviors – Agents in this model have essentially one behavior: decide whether or 

not to adopt new information. We examine two forms of this behavior governed by 

either the LT model (Granovetter 1978) or the IC model (Goldenberg et al. 2001). 

a. The LT Model 

i. External Influence - Agents first decide whether to adopt based on external 

influence. To do this, they draw a random number, x, from the uniform 

distribution of [0,1). If x < p, they adopt that information. Agents keep their 

state hidden until the end of the turn. Thus, if an agent adopts during this 

phase of the model, it is still counted as not having adopted during the 

internal influence stage. This is known as synchronous updating and is 

standard practice (Wilensky and Rand 2015).  
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ii. Internal Influence - Each agent then counts up the number of neighbors 

that have adopted the information, n_adopt, and divides by the total 

number of neighbors, n. They then compare this number to ϕ= 1-q, and if 

(n_adopt / n) > ϕ, they adopt the information. It should be noted that this 

is a directed network based on the following / follower relationship in 

Twitter, so users only consider their neighbors to be those people they are 

following, not the neighbors that are following them. Moreover, agents do 

not reveal again if they have adopted during this turn, so if a neighbor has 

just adopted, it is counted as not having adopted during this time step. 

b. The IC Model 

i. External Influence – Agents first decide whether to adopt based on external 

influence. To do this, they draw a random number, x, from a uniform 

distribution [0,1). If x< p, they adopt that information. Agents hide their 

state until the end of the turn. 

ii. Internal Influence – Each agent who adopted the information in the most 

recent time step (a record is kept of which time step the agent adopted in 

to facilitate this) transmits the information to all of its neighbors who have 

not adopted via the “following” relationship, i.e., neighbors who are 

following the focal user. These uninformed agents draw a random number, 

x, from the distribution of [0,1), and if x < q, then they adopt the 

information. Agents who just adopted in this time step or who adopted 

more than one time step before do not influence adoption13. 

                                                        

13 A note of clarification: The LT model uses ϕ , while the IC model uses q directly. Since ϕ  is a 
threshold that must be exceeded before diffusion occurs in the LT model, a lower value of ϕ  
indicates a higher level of internal influence, while a higher level of ϕ  indicates a lower level of 
internal influence. In the IC model, q is a probability of internal diffusion: a high q value indicates 
a high rate of diffusion whereas a low q value indicates a low rate of diffusion. To compare ϕ  and 
q, therefore, we measure internal influence in the LT model using q = 1- ϕ . 
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5. Environment – The main environment of the model is defined by the empirically 

grounded Twitter network of the largest cascade, which consisted of 3,315 users. 

The network was trimmed when appropriate to fit smaller cascades. 

6. Input and Output – Three parameters control the basic model, and the results are 

examined through one output variable. The three parameters are: (a) p, (b) q, and 

(c) the cascade number to examine. Both p and q are set homogenously for all 

agents in the network. The cascade number loads in the appropriate network 

structure by trimming the network of 3,315 users to the size of the current cascade. 

It also loads in the actual time series of retweets / adoptions in the empirical data 

at one minute resolutions, i.e., the cumulative new retweets at each minute. This 

time series is called Empirical(t). Once all the data is loaded, the model is run until 

all nodes have adopted. A time series, Y(t), is recorded, which corresponds to the 

cumulative number of adoptions in each time step. The output is a Mean Absolute 

Percentage Error (MAPE), described in Section 3.3.1 of the paper. Y(t) may be 

longer or shorter than Empirical(t). If Y(t) is shorter, then it is padded with 0’s to 

reach the same length. If it is longer, it is trimmed from the end to reach the same 

length. 

7. Time Step – Almost all ABMs have two phases: an initialization phase and an 

iterative phase. In our model’s initialization phase, agents are created and given 

their initial properties (p and q) to then be embedded in the social network. In the 

iterative step, agents decide whether to adopt according to the behaviors in (4). In 

the first time step, no one has adopted, so only external influence affects adoption. 

After this, all statistics, Y(t), are recorded.  
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III. Verification of the Model 

There are three standards in place to ensure that our implemented model 

corresponds to the conceptual model as described, i.e., the process of verification (Rand 

and Rust 2011).  

1. Documentation – The model was well-documented both within the code and 

within lab notes. This documentation and the code will be published on 

OpenABM.org, a repository that maintains such information. This appendix serves 

as another source of documentation. 

2. Programmatic testing – To examine the model, we used a combination of unit 

testing and code walk-throughs. In unit testing, as each additional level of 

complexity was added to the model, we ran the model to see if prior results could 

still be created. Then, a code walk-through was carried out as a coauthor reviewed 

the program with another coauthor. 

3. Test Cases – Corner cases and sampled cases were examined to see if the model 

was creating any aberrant behavior. 

IV. Validation of the Model 

Validation involves the comparison of the implemented model to the real world in 

some meaningful way. Rand and Rust (2011) describe four standards for validating a 

model: (1) Micro-face validation, (2) Macro-face validation, (3) Empirical input validation, 

and (4) Empirical output validation. Most of our model’s validation is documented in the 

main body of the paper.  

Micro-face validation involves determining that the agents at the micro-level 

behave the way real agents do. The IC and LT models are drawn from literature that claims 

they are reasonable models of actual behavior at the individual level (Goldenberg et al. 

2001, Granovetter 1978). Macro-face validation involves determining whether the 

processes at the macro-level reflect real-world macro-processes. Given that our model 
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shows the standard s-shaped diffusion curves found in many empirical settings (Rogers 

1995), the model is valid from a macro-face perspective. 

Empirical input validation and empirical output validation relate to comparing the 

model’s input and outputs to real data. For empirical input validation, we used an 

empirically derived network from the actual Twitter following network. This is an accurate 

representation for the largest cascade in our network. Due to computational constraints it 

was not feasible to pull down the networks of all cascades, but by using a trimmed network 

version, we can represent the same topological constraints and properties observed by the 

Twitter network in general. As to p and q, we constrained these values to ranges that have 

been empirically observed in similar diffusion models (Chandrasekaran and Tellis 2007). 

It should be noted that in our context, empirical input validation is tied to empirical output 

validation. Therefore, we searched over the space of all reasonable input parameters to 

find parameters that produced empirical output data, which is explained in the next 

section. Thus, our model also has the best possible fit given the computational power 

expended to the empirical data. 

V. Parameter Optimization 

To identify the parameters for the ABM that best created output patterns matching 

the real data, we used a method known as parameter optimization. Through this method, 

we identified a set of input parameters and an output measure, often called a fitness 

function, and then applied an optimization procedure to select the best possible 

parameters to minimize or maximize the fitness function (Miller 1998, Stonedahl et al. 

2010). In our context, we identified the parameters p and q that offered the best match 

between the output of the model and the empirical adoption patterns that we observed. As 

our fitness function, we chose to minimize the MAPE between our model data and the 

empirical data in line with previous work (Rand et al. 2015).  
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To robustly test each model, we needed to examine all 5,434 cascades in our data 

with multiple runs per model setting due to the stochastic nature of the models. This 

precluded a full sweep of the parameter space. Consequently, we turned to machine 

learning methods to intelligently search the parameter space. We used BehaviorSearch, 

which is an add-on to NetLogo that carries out parameter optimization automatically on 

NetLogo models (Stonedahl and Wilensky 2010a). BehaviorSearch provides three 

standard parameter optimization methods: simulated annealing, genetic algorithms, and 

mutation hill climbing (Stonedahl and Wilensky 2010b). During robustness checks on a 

smaller number of cascades, we found that using the simulated annealing (SA) algorithm 

provided quick convergence while at the same time identifying parameters with a low 

overall error compared to the other two methods. For these reasons, we utilized the SA 

approach for optimization of the parameters and results presented in this paper. We note 

that for all of our searches, we restricted the search space to previously empirically 

observed values for p and q in similar models (p range= [0.0007, 0.03], q range= [0.38, 

0.53]) (Chandrasekaran and Tellis 2007). 

For each cascade, BehaviorSearch carried out the SA algorithm with 150 

evaluations, i.e., 150 different p and q values. For each of these values, BehaviorSearch 

executed the model ten times and then averaged the results since the model runs are 

stochastic. This yielded an average idea of the underlying fitness. Anytime we encountered 

a best solution, we re-ran the model 25 times to determine a more precise value for that 

solution. We then executed the overall SA algorithm three times to make sure that we had 

the best possible fit, and we kept the parameter values that gave us the lowest MAPEs 

overall. Thus, for each cascade we evaluated up to 450 p and q values with at least 10 runs 

per value for a total of 4,500 runs per cascade. It should be noted that since it is possible 

to generate through the SA algorithm the same value twice, we enabled caching of fitness 

values so that if we returned to the same value, we did not re-run the model. We repeated 
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this process for every cascade and for both models (LT and IC), resulting in 48,906,000 

runs at most14 (not including the additional runs for checking best results). 

VI. Pseudo-code of Models 

In this section, we describe each of the model variants using pseudo-code, which 

is a natural language version of the code used to create the models. The full code of the 

model as well as documentation will be available from OpenABM.org. 

Base Model 
to setup 
 read in Empirical(t) from data 
 read in Network from data 
 trim Network  so that the number of nodes in Empirical(t) is equivalent to the number of 

nodes in the Network 
 set p and q for all nodes 
 set adopted? to false for all nodes 
 set adopt-time -1 
end 
to go 
 for all agents that have not adopted 
  x = U[0,1) 
  if x < p then adopt 
  if model = threshold then 
   n = inbound neighbors 
   n_adopt = inbound neighbors with [adopted? = true] 
   ϕ = 1 - q 

if n_adopt / n > ϕ then adopt 
  if model = cascade then 
   for all agents with adopt-time = current-time – 1 
    for all outbound neighbors with [ adopted? = false ] 
     x = U[0,1) 
     if x < q then adopt 
 Y(current_time) = count agents with [ adopted? = true ] 
 MAPE = calc_MAPE(Y(t), Empirical(t)) 
end 
to adopt 
  set adopted? true 
  set adopt-time current-time 
end 
 

 

                                                        

14 Since ten runs provided a reasonable estimation of the MAPE, we allowed the SA to reuse MAPE 
values for points in the parameter space that it revisited for a given network. This saved time in the 
runs and did not alter significantly the results. The calculation on the runs corresponded to an 
upper limit since points that were revisited were not rerun. For the runs, we used three different 
machines in parallel with 68 cores between all of them. It took about 38 hours to carry out all of the 
model runs. Based on the number of each machine’s cores and the time it took to execute the runs 
per machine, it would have taken over 99 days to run all of these model iterations on one CPU. 
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VII. Parameters of Paper 

The table below details the exact parameters used to create and run the models. 

 

Base ABM parameters Behavior Search Parameters 
Simulated Annealing 

Parameters 

Parameter Value Parameter Value Parameter Value 

Diffusion 
Model 

Linear Threshold 
or Independent 

Cascade 

Number of 
Searches per 

Cascade 
3 Mutation Rate 0.5 

p [0.0007,0.03] Fitness Caching True 
Temperature 

Change Factor 
0.99 

q/ϕ [0.38, 0.53] Fitness Function 
Minimizing 

MAPE 
Initial 

Temperature 
1.0 

cascade_num [0, 5433] 
Function for 
Combining 

Replications 
Mean   

Number of 
Agents 

size of cascade 
Model Runs per 

Parameter Setting 
10   

Length of 
Run 

2000 time steps 
or full adoption 
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APPENDIX B 

INTEGRATION OF THE CONDITIONAL INTENSITY FUNCTION 
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In this appendix, we provide the integration of the initial term in the penalized log-

likelihood function expressed in Equation 10. This term can be expanded into the 

following system of equations: 

∫ 𝜆̃𝑖(𝑡𝑖|ℋ𝑡
𝑖)𝑑𝑡

𝑻

𝑡0
𝑖

= ∫ max(𝜆𝑖(𝑡𝑖|ℋ𝑡
𝑖), 0)

𝑻

𝑡0
𝑖

=

{
 
 

 
 ∫ 𝜆𝑖(𝑡𝑖|ℋ𝑡

𝑖)𝑑𝑡
𝑻

𝑡0
𝑖

       when 𝜆𝑖(𝑡𝑖|ℋ𝑡
𝑖) ≥ 0

∫ 0𝑑𝑡
𝑻

𝑡0
𝑖

                          when 𝜆𝑖(𝑡𝑖|ℋ𝑡
𝑖) < 0 

 

We now present the analytical integration of the first equation within the system of 

equations. To simplify some of the integrals, we set 𝑡0
𝑖  equal to 0. As such, we evaluated 

the integrals over [0, 𝑻 − 𝑡0
𝑖 ]. This change did not affect the model or the interpretation of 

the results. 

∫ 𝜆𝑖(𝑡𝑖|ℋ𝑡
𝑖)𝑑𝑡

𝑻−𝑡0
𝑖

0

= ∫ 𝜇𝑖𝑒−𝛾
𝑖𝑡 + ∑ (𝛼11

𝑖 ∗ 𝜙
𝑡𝑘
𝑖 ∗ 𝑒−𝛽11

𝑖 (𝑡−𝑡𝑘
𝑖 ))

𝑡𝑘
𝑖<𝑡

𝑻−𝑡0
𝑖

0

+∑ (𝛼21
𝑖 ∗ 𝜙

𝑡𝑙
𝑖 ∗ 𝑒−𝛽21

𝑖 (𝑡−𝑡𝑙
𝑖))

𝑡𝑙
𝑖<𝑡

𝑑𝑡

= −
𝜇𝑛
𝑖

𝛾𝑛
(𝑒−𝛾(𝑻−𝑡0

𝑖 ) − 1) + ∑ [
𝛼11
𝑖 ∗ 𝜙

𝑡𝑘
𝑖

𝛽11
𝑖

∗ (1 − 𝑒
−𝛽11

𝑖 ((𝑻−𝑡0
𝑖 )−𝑡𝑘

𝑖 )
)]

𝑡𝑘
𝑖<𝑡

+∑ [
𝛼21
𝑖 ∗ 𝜙

𝑡𝑙
𝑖

𝛽21
𝑖

∗ (1 − 𝑒
−𝛽21

𝑖 ((𝑻−𝑡0
𝑖 )−𝑡𝑙

𝑖)
)]

𝑡𝑙
𝑖<𝑡
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APPENDIX C 

DESCRIPTIVE STATISTICS OF PARAMETER ESTIMATES BY DISASTER 
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Joplin tornado 

  Mean Median Std. Dev. Min. Max. 

𝛼11
𝑖   0.057 0.001 0.157 7.27E-14 2.264 

𝛽11
𝑖   0.883 0.826 0.774 2.62E-05 10.615 

𝛼21
𝑖   -0.133 -0.018 0.299 -4.45E+00 2.006 

𝛽21
𝑖   0.576 0.418 0.584 2.62E-05 6.518 

𝜇𝑖  0.577 0.569 0.490 1.74E-06 8.128 

𝛾𝑖  0.373 0.360 0.291 2.62E-05 2.886 

9,849 observations 

            

Black Forest fire 

  Mean Median Std. Dev. Min. Max. 

𝛼11
𝑖   0.074 0.001 0.175 1.12E-12 1.901 

𝛽11
𝑖   0.925 0.901 0.660 1.31E-04 4.726 

𝛼21
𝑖   -0.109 -0.012 0.295 -3.05E+00 1.120 

𝛽21
𝑖   0.654 0.499 0.629 1.31E-04 3.527 

𝜇𝑖  0.605 0.615 0.438 6.08E-05 3.923 

𝛾𝑖  0.410 0.408 0.290 1.31E-04 2.983 

2,280 observations 

           

Lac-Megantic rail disaster 

  Mean Median Std. Dev. Min. Max. 

𝛼11
𝑖   0.066 0.001 0.156 4.11E-12 1.390 

𝛽11
𝑖   0.925 0.856 0.783 2.00E-06 5.458 

𝛼21
𝑖   -0.121 -0.014 0.284 -2.17E+00 1.090 

𝛽21
𝑖   0.594 0.403 0.633 1.65E-06 5.245 

𝜇𝑖  0.631 0.645 0.478 3.78E-05 4.999 

𝛾𝑖  0.370 0.347 0.297 7.83E-07 2.309 

1,947 observations 

            

2014 Iquique earthquake 

  Mean Median Std. Dev. Min. Max. 

𝛼11
𝑖   0.101 0.001 0.256 6.66E-13 3.827 

𝛽11
𝑖   0.961 0.739 1.181 5.36E-05 18.632 

𝛼21
𝑖   -0.142 -0.005 0.345 -4.59E+00 3.356 

𝛽21
𝑖   0.549 0.260 0.683 1.79E-07 9.882 

𝜇𝑖  0.562 0.558 0.529 5.18E-06 7.253 

𝛾𝑖  0.332 0.300 0.304 1.57E-05 3.995 
12,762 observations 
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APPENDIX D 

DETERMINING NEW FOLLOWERS AS INTERNAL OR EXTERNAL LINKS 
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In Section 5, we explained how we used the Gnip data and the scraped follower 

lists to identify every supplier’s set of new followers. The new followers were the users 

within the index [n-e+1, n-b] on the suppliers’ follower lists in reverse chronological 

order. Next, we determined if the new followers were internal or external links. This 

process required knowledge on when new followers started following the suppliers, but 

unfortunately, such data are not available. For each supplier, we estimated the times that 

users became new followers by again relying on Gnip’s records of the supplier’s follower 

count at the time that the supplier tweeted or was retweeted. For each record, we noted 

the time as τ and the follower count of the supplier as rτ, and we also located the 

immediately preceding record and logged its time as τ-1 and the associated follower count 

as rτ-1. We then estimated that the users within the index [n-rτ-1, rτ-rτ-1+1] on the 

supplier’s scraped follower list started following the supplier at τ. We performed this 

analysis for every record of the suppliers’ follower counts to approximate the following 

times of new followers. While this method is not exact, it is highly precise since the 

supplier’s follower counts were logged frequently due to the large amount of activity by 

suppliers and retweeters, especially after the earthquake. 

 The internal mechanism requires that candidates start following a supplier after 

being exposed to the supplier via a retweet of the supplier’s content. Because we already 

knew who the new followers were, we worked backwards to verify if they had formerly 

been candidates using the following method. We conducted this process for every supplier 

and for each of the supplier’s new followers (i.e., nf): 

1. Check if nf was following any of the supplier’s retweeters. We accomplished this by 

matching the nf’s Twitter ID in the scraped list of followers for every one of the 

supplier’s retweeters. Multiple matches meant that nf was following multiple 

retweeters of the supplier.  
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2. For each match, make sure that nf was following the retweeter prior to the time 

that nf started to follow the supplier (or “s-follow time” for brevity). We relied on 

the same method that we adopted to ascertain the following times of suppliers’ 

followers for retweeters’ followers as well. The information for this process came 

from the follower counts for retweeters logged in the Gnip data set. We then 

removed from consideration any retweeters for whom this condition did not hold 

since such retweeters could not have distributed any of the supplier’s tweets to nf 

before s-follow time. 

3. For the remaining matched retweeters, pull all of their retweets of the supplier. 

Retain only the retweets that occurred after the time that nf started following the 

retweeter and before s-follow time. This guarantees that the retained retweets were 

sent as valid exposures of the supplier to nf by the retweeters. 

4. Sort the retained retweets from most recent to oldest. Assign the nf as an internal 

link, and in line with Antoniades and Dovrolis (2015), assign the most recent 

retweet as the exposure that motivated nf to follow the supplier.  

If this method failed at any point for a new follower, this implied that we could not trace 

the user to the diffusion path of a supplier’s tweet, so we categorized that user as an 

external link. In other words, we were unable to match the new follower as a legitimate 

candidate of any of the supplier’s retweeters. We note that the final step rests on the 

assumption that new followers actually consumed, or read, the most recent retweet. We 

argue that our assumption is valid for several reasons, the first being that new followers 

appear to be active since we observed their decision to start following a supplier (which 

implies that these users logged into Twitter). This raises the likelihood that new 

followers saw the retweet. Furthermore, nearly all of the new followers identified as 

internal links (89.6%) started following the supplier within 24 hours of the retweet they 

were assigned to. We anticipate little delay between a candidate consuming a retweet 
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and following a supplier. Even so, this means that the content is relatively new and 

should be near the top of the candidates’ Twitter feeds, again increasing the likelihood 

that the assigned retweet was read. 
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APPENDIX E 

TEXT CLASSIFICATION 
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To analyze the type of content presented in the suppliers’ tweets, we categorized 

the tweets as belonging to one of the following three categories: (1) Actionable; (2) 

Informative; or (3) Other. In total, the suppliers published 15,399 tweets during the weeks 

before and after the earthquake. To classify the text in these tweets, we adopted a 

supervised learning approach, which involves training a classifier based on a labeled 

training data set (Manning and Schütze 1999).  

First, we preprocessed the tweets according to the following standard natural 

language processing procedures: 

1. All text was converted to lowercase. 

2. Any punctuation and emojis were removed. 

3. All links and hashtags outside of those used to query the data for this study were 

retained. 

4. Tweets were tokenized, or split up into tokens that consisted of one word each. 

To maintain the consistency of our data and improve the classifier’s accuracy, we removed 

215 tweets that were not written in Spanish and 367 tweets that contained less than five 

words. We coded these tweets manually. 

Next, we randomly selected 1,500 tweets and manually coded each tweet as 

Actionable, Informative, or Other. We divided the manually classified tweets into a 

training data set (80%) and test data set (20%). Using the training data set, we extracted 

several features to develop the classifier. First, we calculated the term frequency-inverse 

document frequency (TF-IDF) scores, which measure the frequency of a token (i.e., a 

word) in a tweet while also accounting for how common the term is across all of the tweets 

(Manning and Schütze 1999). We also added as features part-of-speech tags that were 

obtained using the Spanish module of the Stanford POS Tagger. Lastly, we included the 

supplier’s Twitter handle as another feature since suppliers may tend to post certain types 

of content. 
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We applied the Naïve Bayes and Support Vector Machine (SVM) algorithms to the 

training data set. Using 10-fold cross-validation on the training data, we found that the 

classification accuracy for Naïve Bayes was 70.6% and for SVM was 74.3%. Thus, we 

primarily relied on SVM for text classification in our study. We trained the classifier using 

the features described above with and without stop words, which are commonly used 

terms (e.g., “the”, “and”). Furthermore, we used the grid search approach to tune the SVM 

parameters. The trained classifier was then applied to the test data set, and accuracy was 

measured as the percentage of tweets that were categorized correctly by the classifier. The 

most accurate SVM classifier (86%) utilized all of the features in conjunction with stop 

words. Since we were able to achieve high accuracy, we applied the trained classifier on 

the remaining tweets in our data. 
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APPENDIX F 

RESULTS FROM ROBUSTNESS CHECKS 

  



 

 
 

145 

 
 

 

  Robustness Check #1  
Robustness Check 

#2 Robustness Check #3 Robustness Check #4 

  Coeff. 
(Robust 

Std. Err.) Coeff. 
(Robust 

Std. Err.) Coeff. 
(Robust 

Std. Err.) Coeff. 
(Robust 

Std. Err.) 

Stage 1: Consumption 

𝛽0 (Intercept)  -2.056*** (-0.100) -2.331*** (0.047) -0.577* (0.358) -2.160*** (0.092) 

𝛽1  (𝑏𝑠𝑡𝑖 )  -0.241*** (0.012) -0.119*** (0.008) -0.408*** (0.036) -0.233*** (0.011) 

𝛽2 (𝛿𝑠𝑡𝑖 )        0.009*** (0.001) 

Stage 2: Follow Decision 

𝛾0 (Intercept)  -4.784*** (0.030) -4.718*** (-0.039) -4.833*** (0.047) -4.858*** (0.030) 

𝛾1𝑎𝑐𝑡𝑖𝑜𝑛
 (𝑎𝑠𝑡𝑖 = Actionable)  0.023*** (0.003) 0.038*** (0.004) 0.030*** (0.003) 0.030*** (0.003) 

𝛾1𝑜𝑡 ℎ𝑒𝑟
  (𝑎𝑠𝑡𝑖 = Other)  0.0173*** (0.006) 0.056*** (0.007) 0.055*** (0.006) 0.065*** (0.006) 

𝛾2 (log 𝑝𝑠𝑡𝑖 )  0.043*** (0.002) 0.017*** (0.001) 0.088*** (0.002) 0.043*** (0.002) 

𝛾3 (log 𝑞𝑠𝑡𝑖 )  0.131*** (0.012) 0.052*** (0.004) 0.139*** (0.010) 0.134*** (0.013) 

𝛾4 (log 𝑟𝑠𝑡𝑖 )  0.011*** (0.002) 0.011*** (0.002) 0.008** (0.002) 0.015*** (0.002) 

𝛾5 (log𝑔𝑠𝑡𝑖 )  -0.093*** (0.004) -0.065*** (0.005) -0.083*** (0.005) -0.092*** (0.004) 

𝛾6 (log(𝑓𝑠𝑡𝑖 − 𝑧𝑠𝑡𝑖 ))  0.142*** (0.004) 0.199*** (0.006) 0.161*** (0.004) 0.150*** (0.003) 

𝛾7 (𝑤𝑠𝑡𝑖 )  0.016*** (0.002) 0.017*** (0.002) 0.014*** (0.001) 0.017*** (0.002) 

𝛾8 (𝑑𝑠𝑡𝑖 )  0.335*** (0.007) 0.339*** (0.012) 0.327*** (0.008) 0.316*** (0.007) 

𝛾9 (𝑤𝑠𝑡𝑖 ∗ 𝑑𝑠𝑡𝑖 )  -0.017*** (0.002) -0.020*** (0.002) -0.016*** (0.002) -0.019*** (0.002) 

𝛾10  (log(𝑒𝑓𝑠𝑡𝑖 − 𝑒𝑧𝑠𝑡𝑖 ))  -0.004*** (2E-04) -0.005*** (2E-04) -0.004*** (2E-04) -0.004*** (2E-04) 

𝛾11  (log(𝑒𝑓𝑠𝑡𝑖 − 𝑒𝑧𝑠𝑡𝑖 ) ∗ 𝑑𝑠𝑡𝑖 )  0.002*** (2E-04) 0.003*** (2E-04) 0.003*** (2E-04) 0.002*** (2E-04) 

𝛾12  (𝜐𝑠𝑡𝑖 )    11.121*** (0.087)     

𝛾13  (𝜙𝑠𝑡𝑖 )     -0.255*** (0.009)   

rho 0.953*** (0.006) 0.660*** (0.027) 0.759*** (0.042) 0.956*** 0.005 

Observations 352,288 371,420 371,420 371,420 

Pseudo log-likelihood -368.913 -371.059 -382.798 -383.250 

* p<0.1, ** p<0.05, *** p<0.01             


