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ABSTRACT 

 Avian influenzas are zoonoses, or pathogens borne by wildlife and livestock that 

can also infect people.  In recent decades, and especially since the emergence of highly 

pathogenic avian influenza (HPAI) H5N1 in 1996, these diseases have become a 

significant threat to animal and public health across the world.  HPAI H5N1 has caused 

severe damage to poultry populations, killing, or prompting the culling of, millions of 

birds in Asia, Africa, and Europe.  It has also infected hundreds of people, with a 

mortality rate of approximately 50%.  This dissertation focuses on the ecological and 

socioeconomic drivers of avian influenza risk, particularly in China, the most populous 

country to be infected.  Among the most significant ecological risk factors are landscapes 

that serve as “mixing zones” for wild waterfowl and poultry, such as rice paddy, and 

nearby lakes and wetlands that are important breeding and wintering habitats for wild 

birds.  Poultry outbreaks often involve cross infections between wild and domesticated 

birds.  At the international level, trade in live poultry can spread the disease, especially if 

the imports are from countries not party to trade agreements with well-developed 

biosecurity standards.  However, these risks can be mitigated in a number of ways.  

Protected habitats, such as Ramsar wetlands, can segregate wild bird and poultry 

populations, thereby lowering the chance of interspecies transmission.  The 

industrialization of poultry production, while not without ethical and public health 

problems, can also be risk-reducing by causing wild-domestic segregation and allowing 

for the more efficient application of surveillance, vaccination, and other biosecurity 

measures.  Disease surveillance is effective at preventing the spread of avian influenza, 

including across international borders.  Economic modernization in general, as reflected 
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in rising per-capita GDP, appears to mitigate avian influenza risks at both the national 

and sub-national levels.  Poultry vaccination has been effective in many cases, but is an 

incomplete solution because of the practical difficulties of sustained and widespread 

implementation.  The other popular approach to avian influenza control is culling, which 

can be highly expensive and raise ethical concerns about large-scale animal slaughter.  

Therefore, it is more economically efficient, and may even be more ethical, to target the 

socio-ecological drivers of avian influenza risks, including by implementing the policies 

discussed here.    
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CHAPTER 1 

INTRODUCTION 

This dissertation examines the socio-ecological drivers of avian influenza risk in 

China and at the international level.  Avian influenzas, such as H5N1 and H7N9, have 

become a major threat to human and livestock health in recent decades.  Propagated by 

both “natural” pathways, such as waterfowl migration, and anthropogenic means, such as 

the trade of live poultry, they have spread across the world.  My research focuses on 

China, the largest country to be infected by the disease, but also examines how China’s 

epidemic dynamics fit into the larger, global context of avian influenza risks.   

Previous research on avian influenza risks has generally not taken a socio-

ecological, system-level view of the phenomena.  More specifically, socioeconomic 

factors that facilitate or contain epidemic spread are usually overlooked in studies that are 

often discipline-specific.  My doctoral research has attempted to contribute to the 

literature by taking a more interdisciplinary approach, analyzing the interactions between 

ecological and socioeconomic factors, and drawing out the policy implications that 

follow from that analysis.  My dissertation is comprised of five chapters, including a 

literature review and a concluding review of policy solutions.  

 The next chapter provides an overview of the general epidemiological conditions 

of modern China, with emphasis on how environmental and demographic changes 

wrought by industrialization, urbanization, and globalization have changed the risks 

posed by infectious diseases to people and livestock.  It uses avian influenza, and 

particularly the highly pathogenic H5N1 strain, as an exemplar of the type of epidemics 

that are increasingly typical of modern China’s epidemiological conditions.  
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Chapter 3 takes a macro-level analysis of the socio-ecological drivers of avian 

influenza risk in China.  Although there have been numerous studies of environmental 

factors influencing the spread of H5N1 avian influenza in the country (it was first 

discovered in 1996 and has been in circulation in the country for over a decade), few 

have explicitly incorporated socioeconomic and administrative factors, such as 

biosecurity and public health controls.  By using provincial-level data, this study 

identifies key management variables such as the presence of epidemic control agencies as 

being important to mitigating disease risk. 

 Chapter 4 focuses more explicitly on a specific mechanism of disease 

transmission at the landscape level – namely, how protected areas separate agricultural 

land, with their attendant populations of susceptible poultry, from migratory birds, which 

have been identified as an important agent of avian influenza spread.  It puts forward the 

hypothesis that conserving biodiversity – in this case migratory birds, which are prevalent 

throughout China during the breeding and wintering seasons – may also mitigate the 

spread of avian influenza, thus offering a win-win scenario. 

 Chapter 5 takes an international outlook, analyzing avian influenza’s epidemic 

dynamics as a function of migratory birds, the “natural” pathway, and the live poultry 

trade, the socioeconomic pathway.  Over the past two decades, H5N1 (again the focus of 

the analysis) has spread throughout Asia, Europe, and Africa.  This chapter attempts to 

analyze the risk factors for its spread in three key regions which have been heavily 

impacted, and which are also framed by regional trade agreements: the Association of 

Southeast Asian Nations (ASEAN), the Economic Community of Western Africa 

(ECOWAS), and the European Union (EU).  This study identifies how spread dynamics 
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differ based on different regional and national ecological conditions, management and 

regulatory standards, and socioeconomic characteristics.   

 Finally, Chapter 6 summarizes and synthesizes the policy implications of the 

abovementioned analyses.  It reviews the history of attempts to contain or mitigate avian 

influenza outbreaks in China and across the world.  The review assesses both the benefits 

and drawbacks of certain interventions, such as livestock culling, vaccination, and land-

use zoning.  Overall, a primary conclusion of this policy review is that 

prevention/mitigation is more economically efficient than suppression/adaptation.  Going 

forward, as new avian influenzas continue to emerge and existing strains evolve, it will 

be necessary to tackle the basic socio-ecological drivers of epidemics, as opposed to 

merely trying to contain outbreaks after they occur. 

 Overall, I hope the research presented in this dissertation will contribute to the 

understanding of avian influenza epidemics as socio-ecological phenomena and to the 

development of effective policy responses.  The risks analyzed in this dissertation will 

continue to exist, and perhaps even worsen, for the foreseeable future.  Therefore, it is 

imperative to study and manage them in a systematic way, perhaps most importantly at 

the interface between wild birds and poultry.  Highly pathogenic avian influenza H5N1, 

the primary focus of this dissertation, is one of many avian influenzas, and it will likely 

be joined by novel strains in the coming years and decades.  However, I believe the 

results of this doctoral research can provide general insights that will apply to these other 

avian influenzas as well, given the epidemiological similarities among them. 
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CHAPTER 2 

A REVIEW OF ZOONOTIC DISEASE RISKS IN CHINA 

*A version of this chapter was published in Ambio in 2017 as “Economic Growth, 

Urbanization, Globalization, and the Risks of Emerging Infectious Diseases in China: A 

Review,” with my committee members Drs. Charles Perrings, Ann Kinzig, Jim Collins, 

Ben Minteer, and Peter Daszak. 

 

2.1. Introduction 

Today, an increasingly urban and interconnected world faces growing threats from 

emerging infectious diseases (Bradley and Altizer, 2007; Kapan et al., 2006; McMichael, 

2004).  This is of particular concern in the developing world, where managing fast-

spreading epidemics in the growing number of megacities is a pressing challenge (Rees, 

2013).  Recent epidemics have underscored the importance of linkages between host 

habitats and the global network of cities.  The Ebola virus, for example, has long survived 

among wildlife reservoirs in the hinterlands of Africa, “breaking out” in towns and cities 

in conspicuous but otherwise local epidemics.  As in earlier outbreaks, the 2014 epidemic 

is thought to have origins in the consumption of wild animal protein, while its spread 

occurred in densely populated African cities. The international threat it posed stemmed 

from the increasing air travel connections between these and other cities around the 

world.  

In the case of arboviruses like Zika, dengue, chikungunya, West Nile, and 

malaria, whose vectors have found ready habitat in urban areas, the primary mechanism 

for the spread of disease from one city to the next is international trade and travel (Alirol 
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et al., 2011; Hay et al., 2005; Kraemer et al., 2015; Tatem et al., 2006; Weaver, 2013).  

The same is true of coronaviruses such as Severe Acute Respiratory Syndrome (SARS) 

and Middle Eastern Respiratory Syndrome (MERS).  The latter emerged in Saudi Arabia 

in 2012, having been transmitted between animal reservoirs such as camels and their 

human handlers.  It has since spread throughout the surrounding region, and travel-related 

human infections have been recorded in Europe, North America, and East and Southeast 

Asia (Parlak, 2015; Zumla et al., 2015).  Urbanization and globalization have made 

outbreaks of these diverse zoonoses difficult to control, even with unprecedented levels 

of international cooperation (Chan, 2014; Khan et al., 2013; Kraemer et al., 2015; 

Weaver, 2013).   

For most emerging infectious diseases prevention is better than cure – ex ante 

mitigation of disease risk is more economically efficient than ex post adaptation to an 

outbreak (Graham et al., 2008; Langwig et al., 2015; Murphy, 1999; Voyles et al., 2014).  

Among mitigation strategies, vaccination has been a widespread and long-established 

practice for many DNA viruses such as chicken pox or small pox.  However, vaccination 

remains problematic for most RNA viruses, including Ebola, SARS, and avian influenza, 

due to their higher mutation rate; vaccination is simply not a feasible way to prevent the 

emergence of many novel zoonoses, which will inevitably encounter immunologically 

naïve populations.  Therefore, mitigating the risks from emerging and re-emerging 

zoonoses requires preemptive measures against their socio-ecological drivers (Pike et al., 

2014).  Identifying areas where the convergence of risk factors are occurring with 

greatest intensity, and at the largest scales, is a logical first step in the development of a 

mitigation strategy.  In this regard, China may be an important outlier among countries.   
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Assessment of the risks posed by zoonotic diseases requires an understanding of 

how socioeconomic, and ecological conditions affect two phenomena: emergence (the 

irruption of a pathogen originating in wildlife or livestock into human populations) and 

spread (the transmission of disease among both animals and people).  In this article, I 

review the evidence for changes in zoonotic risks in China.  More particularly, I show 

how income growth, urbanization, and globalization affect the likelihood of emergence 

and spread, using SARS and avian influenza as topical and representative examples, but 

also referring to other diseases when relevant.  I discuss the policy implications of 

changes in the epidemiological environment in China, and consider how the mitigation of 

zoonotic risk in China could benefit the global risk environment. 

China’s rate of economic growth over the last twenty-five years has been 

exceptional.  Real per-capita GDP (in purchasing power parity terms) rose from 1,516 

USD in 1990 to 12,608 USD in 2014, an average annual growth rate of over 9 percent.  

While this has generated the resources necessary to improve biosecurity and healthcare, it 

has also increased the likelihood of disease emergence and transmission. The presence of 

major migratory bird pathways (conduits for the transmission of influenzas), habitats that 

encourage mixing between wild and domesticated birds, and a dramatic increase in 

demand for fresh meat have increased the likelihood of disease emergence.  At the same 

time, urbanization and the growth of international trade and travel have increased the 

likelihood of disease spread (Alirol et al., 2011; Gong et al., 2012; Li et al., 2012a; Li et 

al., 2012b; Wang et al., 2008; Zhu et al., 2011).  In 1990, only one quarter of China’s 

population lived in cities; today, over 54% are urban residents, and by 2030 there will be 

at least one billion city-dwellers, or 70% of the population (Peng, 2011a).  Concurrently, 
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China’s integration into international networks of trade and travel has occurred rapidly.  

Between 1990 and 2015, China’s exports to the rest of the world grew annually by 

around 17 percent, and although exports in this period were dominated by manufactures, 

exports of food and live animals grew at an only slightly lower rate.  More importantly 

for China’s exposure to global disease risk, imports of food and live animals were 7-8 

times larger than exports in 1990, and have since grown by around 15 percent per year 

(World Bank, 2016).  

 

2.2. Economic Growth, Meat Consumption, and Zoonotic Risks in China 

The epidemiological boundary separating humans from wildlife- and livestock-borne 

pathogens has been breached repeatedly throughout history.  At the turn of the 20th 

century, it was estimated that 61% of all known human pathogens and 75% of all 

emerging diseases were zoonotic (Taylor et al., 2001).  Zoonotic “spillover” into human 

populations can occur in numerous ways.  Direct contact between people and pathogen-

carrying animals through, for example, the consumption of infected wildlife or livestock 

is a common pathway of emergence (Murray and Daszak, 2013; Patz et al., 2004). 

Increasing per-capita income has led to increasing per-capita meat consumption, 

and this has occurred more rapidly in China than in any other major economy.  Tracking 

rapid rates of GDP growth and rural-to-urban migration, China’s meat consumption has 

risen by around one-third since the turn of the century (Figure 1).  The pattern of 

consumption is also changing: while pork remains the main source of animal protein, 

chicken consumption and production are increasing more rapidly.  Between 1968 and 

2005, the growth in poultry numbers was around ten times the growth in pig numbers 
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(Wang et al. 2008).  Nor has the growth rate of these stocks slowed.  In 2013, China had 

the world’s largest stocks of poultry and swine, at 6.63 billion and 482 million 

individuals respectively.  By comparison, U.S. stocks stood at 2.16 billion and 64.8 

million individuals (FAO 2013).   

 

Figure 1. The growth of China’s poultry (1a) and pig (1b) stocks since 1979, compared to 

India and the United States. 
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What makes the changing pattern of meat consumption significant for infectious 

disease transmission in China is a persisting social preference for live and freshly 

slaughtered meat (the primary interface for animal-to-human transmission of many 

zoonoses) (Pi et al., 2014).  As the consumption of meat grows in the coming decades, so 

will contact between consumers and live or freshly slaughtered animals.  Over the next 

decade, per-capita consumption of chicken is expected to grow at an annual rate of 2.4%, 

compared to 1.5% for pork.  While meat imports will likely increase, most of the growth 

in supply is expected to be from domestic sources.  Annual production of poultry, pork, 

and beef is projected to rise from 70 million metric tons (mmt) today to 90 mmt by 2024 

(Westcott and Trostle, 2014).  The resulting increase in the levels and densities of pigs 

and poultry enlarges the potential pathogen reservoirs for zoonoses, especially influenzas.  
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A central mechanism that brings human, livestock, and wild animal populations 

together in China is the extensive network of wet markets – markets that sell live and 

freshly slaughtered domesticated and wild animals.  Although found in many parts of the 

world, wet markets are particularly common in East and Southeast Asia.  In China, they 

are the primary source of meat purchases, particularly of poultry.  In Shanghai, for 

example, where highly pathogenic avian influenza (HPAI) H7N9 first emerged in 2013, 

120 million of the approximately 190 million chickens consumed annually were 

purchased at wet markets (Pi et al., 2014).   

The spillover of H5N1 and H7N9 into human populations in China has been 

closely linked to these markets (Yu et al., 2007; Yu et al., 2014).  Wet markets are 

frequently under-regulated, have unhygienic environments with inadequate sanitation, 

and are subject to poor surveillance and little biosecurity (Woo et al., 2006).  Although 

the role of wet markets is expected to diminish in the coming decades, they will still 

account for a significant, perhaps even the majority, share of poultry sales (Pi et al., 

2014).  Income growth among urban consumers will increase the demand for meat, much 

of it bought in wet markets.  Indeed, dietary preference for freshly slaughtered meat and 

the enduring popularity of wet markets will remain important drivers of zoonotic risk for 

the foreseeable future.   

 

2.3. Urbanization and Disease Spread 

The growth of cities and changing agricultural conditions have shaped infectious disease 

ecology in China since at least the Tang Dynasty (7th – 10th Century CE), creating and 

connecting reservoirs of pathogens and vectors (Jannetta, 1993).  However, the speed and 
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scope of urbanization over the past three decades have been significantly greater than at 

any other time in the past, creating a primarily urban population for the first time in 

China’s history.  The rate of urbanization has also been markedly higher than that of 

other industrialized and industrializing countries.  For instance, in 1979, at the start of its 

own economic liberalization program, India had an urbanization level of 18.6% 

compared to China’s 22.7%.  Today, China’s urbanization has reached 54.4% compared 

to India’s 32.4% (UN 2015).   

In China, this has expanded the interface of contact between humans, wildlife, 

and livestock.  Urbanization and associated land-use changes, in conjunction with rising 

meat consumption, have brought reservoirs of wildlife diseases into closer contact with 

livestock and people (Daszak, 2000; Daszak et al., 2001; Myers et al., 2013; Wang et al., 

2008).  In particular, the emergence of HPAI strains has become more likely in southern 

China, where the growth of an increasingly affluent urban population has driven an 

increase in poultry production and land-use changes that brings humans, domesticated 

animals, and wildlife into closer contact (Davis, 2005; Wallace et al., 2010) (Figure 2).   
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Figure 2. The intersection of dense chicken and duck populations, human populations 

(concentrated by urbanization), and migratory birds increases the likelihood of 

interspecies transmission and the emergence of new influenza strains. 

 

Sources: Generalized bird migration routes adapted from Fang et al. (2008); poultry 

distribution data from Robinson et al. (2014). 

 

Changes in the configuration of natural, agricultural, and built-up land cover, as 

well as in the biotic and abiotic fluxes among them, also affect disease risks to people 

(Meentemeyer et al., 2012; Reisen, 2010).  Large and growing populations of livestock – 

particularly poultry – distributed across China are ideal sites of viral mutation and 

interspecies influenza transmission, most notably between wild and domesticated birds.  

China is also crossed by multiple migratory flyways, which allow numerous waterfowl 

and other bird species to carry avian influenza into and out of the country (Chen et al., 

2005b; Kilpatrick et al., 2006; Prosser et al., 2011; Takekawa et al., 2010).  Across East 

Asia, intensively cultivated rice fields are populated by poultry and ducks, but are also 

ready habitats for HPAI-carrying waterfowl (Gilbert et al., 2014; Gilbert et al., 2008; 
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Martin et al., 2011; Paul et al., 2010) (Figure 2).  The growing number of species infected 

by recent outbreaks of avian influenza suggests that epidemic risks are growing as a 

result (Webby and Webstter, 2003).  Livestock populations are also staging posts for 

pathogens to enter human populations.  For instance, poultry farming in China’s urban 

and peri-urban areas increases the likelihood of H5N1 spread (Fasina et al., 2007; Kapan 

et al., 2006). 

The risk of pathogen spread from diseases contracted in wet markets is 

exacerbated by the concentration and interconnectedness of human populations 

associated with urbanization (Fang et al., 2008; Hogerwerf et al., 2010; Paul et al., 2010).  

Wet markets in urban areas are now recognized to be the primary locus of infection for 

H7N9 (Gilbert et al., 2014).  The high density of people makes cities, particularly the 

large cities that have appeared rapidly in China, force multipliers of pathogen 

transmission (Alirol et al., 2011).  Patel and Burke (2009) argue that the outbreak of 

SARS in Hong Kong in 2002 and 2003, “demonstrated how dense urban living could 

ignite a global health crisis.”  The first phase of the SARS epidemic involved its spread 

through the interconnected metropolises of the Pearl River Delta (PRD) (Li et al., 2012b; 

Wang et al., 2008; Zhu et al., 2011).  The PRD was also an epicenter for HPAI H5N1 

(see Box 1), and remains a potential hotspot for other influenzas (Figure 3), though this 

has yet to be reflected in public health policies in the area (Fabre and Rodwin, 2011). 
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Figure 3. The increasing population of the Pearl River Delta urban area (black) and the 

annual rise in influenza-positive specimens from Shenzhen, one of its primary cities 

(gray). 

 

Sources: Urbanization data from Guangdong Statistical Yearbook (2013); Shenzhen 

influenza-positive specimen data from Cheng et al. (2013). 

 

One reason for the effectiveness of cities as force multipliers, relative to rural 

areas, is the higher prevalence of a range of communicable and non-communicable 

diseases, including sexually transmitted diseases and cancers.  Such conditions increase 

vulnerability to infection (Alirol et al., 2011; Gong et al., 2012; Li et al., 2012b), while 

co-morbidity can magnify the potential virulence of zoonotic pathogens and thus their 

spread (Weiss and McMichael, 2004).  In many Chinese cities, public health management 

has not kept pace with demographic and economic changes.  Despite progress in recent 
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decades, immunization coverage for even common infections such as tuberculosis, 

measles, and tetanus remains inadequate (Gong et al., 2012).  Infection risk is also related 

to the social inequality and dislocations caused by urbanization.  In the Pearl River Delta 

in 2009, for instance, 80% of migrants did not have access to medical insurance (Fabre 

and Rodwin, 2011).  This deprivation may deter people from seeking preventative care, 

or even immediate care after possible infection.   

HPAI H5N1 is an important example of these aforementioned dynamics.  It first 

emerged in southern China in the late 1990s.  After several outbreaks, contained with 

varying degrees of efficacy, it has now spread across the world, infecting people, poultry, 

wild birds, and other wild and domesticated animals.  Income growth has driven an 

increase in China’s protein consumption, which has resulted in a nearly 6-fold increase in 

domestic poultry stocks since 1979 (FAO 2015).  Urban wet markets are still the primary 

sources of poultry purchases – in Shanghai, for instance, 120 million of the 190 million 

chickens sold in 2013 were from wet markets (Pi et al. 2014).  That year, Shanghai, 

China’s largest city at 25 million people, was the site of HPAI H7N9’s emergence.  The 

most likely areas of future H7N9 spread in China are urban areas with a high density of 

wet markets (Gilbert et al. 2914).  China is also traversed by several migratory bird 

pathways, bringing growing and ever-denser populations of poultry and people into 

contact with influenza-bearing wild birds (Chen et al. 2005; Takekawa et al. 2010).  The 

heavily urbanized areas of southern China – such as the metropolitan Pearl River Delta, 

home to over 100 million people and a high concentration of poultry production – is at 

particular risk for the emergence of HPAI, and may be an important outlet for its spread 

within China and internationally (Davis 2005; Wallace et al. 2010). 
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2.4. China and the Globalization of Infectious Disease Risks 

The epidemiological implications of disease co-morbidity  – including the risks of “super 

spreaders” – are perhaps even more significant at the international level.  For instance, 

had the first SARS carrier reached the dense precincts of Durban, with its high incidence 

of AIDS, rather than the more ordered and hygienic environment of Toronto, the outcome 

may have been much worse (Weiss and McMichael, 2004).  Of course, the probability 

that an infection is transmitted abroad to a given city depends on the volume of trade and 

travel involved, but since trade between China and South Africa has been growing more 

rapidly than trade with China’s main international markets, this is not a trivial 

observation. China is now the world’s largest trading nation, and in recent years its trade 

to nearly every region of the world has increased significantly (Figure 4).  The global 

infectious disease risks created by China’s trade growth stem from the fact that 

international markets facilitate the movement of pathogens around the world as freely as 

commodities and people (Perrings et al., 2010a, b; Tatem et al., 2006).  
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Figure 4. The percent increase in the volume of commodities exported from mainland 

China to different global regions between 2001 and 2011. 

 

Source: Food and Agricultural Organization (http://www.faostat.org/). 

 

 In history, there have been several notable moments when trade and travel have 

bridged the natural epidemiological discontinuities created by geography.  The most 

famous of these is the Black Death of the 13th-14th Centuries, during which the plague 

bacillus Yersinia pestis spread from China to Europe along trade routes maintained by the 

Mongol Empire.  The same disease had also earlier spread across Eurasia from China in 

the 6th Century (Wagner et al., 2014).  That outbreak, known as the Plague of Justinian, 

had killed tens of millions across the Mediterranean region and critically damaged the 

economic and geopolitical fortunes of the Byzantine Empire (McNeill, 1998).  Not all 

epidemics have Chinese origins, though.  Several centuries later, overseas expansion by 

European powers led not only to the political and economic subjugation of foreign 
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peoples, but also to the introduction of many new species – pests and pathogens among 

them (Crosby, 1986).  The growth of maritime trade facilitated massive movements of 

people, plants, and animals, as well as the pathogens that these passengers and cargo 

carried, across the world’s oceans.  The so-called Columbian Exchange had particularly 

severe effects on human health on both sides of the Atlantic.  Old World diseases such as 

smallpox, typhoid, typhus, and measles were introduced to the Western Hemisphere by 

colonizers, resulting in significant depopulation and a decisive shift in the balance of 

power (Crosby, 2003; Diamond, 1999; McNeill, 1998).  

Nevertheless, China has remained a persistent and important source of infectious 

zoonotic disease.  For instance, a plague outbreak in southwestern China engulfed the 

country and then spread to the rest of the world in the late 1800s.  The spillover was 

likely mediated by rat-borne fleas, brought into contact with people due to ecological 

encroachments from settlement expansion (Benedict, 1996).  This plague first spread to 

the port cities of the Chinese coast and thence to Southeast Asia, the United States, and 

Europe.  In the western U.S., the bacillus remained epizootic among rodent species well 

into the 20th Century (McNeill, 1998).   

The archetypal modern pandemic – the one that remains a touchstone for thinking 

about global infectious disease risk – is the 1918-1919 Spanish Flu.  The severity of this 

pandemic was in large part a result of the integration forced by global conflict.  

Propagated by the movements of millions of servicemen during and after World War I, 

this strain of H1N1 influenza may have infected as many as 500 million people, or a 

quarter of the world’s population, and killed as many as 50-100 million (Taubenberger 

and Morens, 2006).  Recent forensic studies tracking mortality rates and other 
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contemporary evidence suggest that, contrary to its name, this pandemic actually 

originated in China (Humphries, 2014; Langford, 2005).  Indeed, China has been the 

epicenter of influenza both before and after the “Spanish Flu”.  At least two of four 

historically documented pandemics originated in China before 1918, as did both of the 

subsequent pandemics (Potter, 2001) (Figure 5).   

 

Figure 5. The geographic distribution of confirmed outbreaks of novel and/or pandemic 

influenza strains since 1900.  Of the four pandemic strains, three emerged in China.   

 

 

 The mechanism behind the global spread of diseases after 1918 has been the ever-

closer integration of the world economy.  Habitat suitability and transport distance 

determine the potential dispersal patterns of infectious disease vectors(Tatem et al., 

2006), while the relative costs and benefits of trade and infectious disease determine the 

likelihood that pathogens will be spread this way   (Perrings, 2014).  The potentially high 
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cost of the SARS epidemic led to prompt preventive action, but the volume of travel 

meant that the pathogen still managed to reach every continent.  In East Asia alone, 

SARS resulted in at least a 2% decline of GDP (Brahmbhatt, 2005).  It has been 

estimated that the economic losses from a major influenza pandemic could be as high as 

$7.3 trillion (12.6% of global GDP) – a downturn on par with the Great Depression – and 

cause over 140 million deaths (McKibbin and Sidorenko, 2006).  

 

2.5. Policy Implications of China’s Zoonotic Disease Risks  

Given its role as the “cradle of influenza” (Davis, 2005), and many other zoonoses, China 

should be a focus of international efforts to mitigate future infectious disease risk.  It is 

likely that the factors that facilitated the global spread of the 1894 plague and the 1918-

1919, 1957, and 1968 influenza pandemics that originated in China are even more 

forceful today.  The lesson of recent decades is that zoonoses such as HPAI, SARS, and 

Ebola cannot be reliably contained at the local, national, or even continental level.  It 

follows that infectious disease risk mitigation is a product not only of the probability of 

emergence, but also of the probability that an outbreak will be propagated to other parts 

of the world.  

Design and implementation of risk mitigation strategies require an understanding 

of the factors affecting the probability that zoonoses will emerge, and the likely pattern of 

their spread (Castillo-Chavez et al., 2015; Daszak, 2005; Daszak et al., 2001; McMichael, 

1999, 2004).  With regard to China, in particular, this involves understanding the way 

that income growth, urbanization, and globalization interact with predisposing socio-

ecological conditions (including changes in the interface between wild and domestic 
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species, and cultural practices surrounding the consumption of those species) to alter the 

likelihood of emergence.   

We also need an improved understanding of the role of more widespread 

processes in changing epidemiological environments.  Climate change is expected to alter 

ecosystem processes and functioning in ways that will influence the emergence and re-

emergence of infectious diseases worldwide (Morens et al., 2004; Piao et al., 2010), 

particularly for vector-borne pathogens (Chretien et al., 2015; Hales et al., 1999).  In 

China, climate change, including changes in the El Nino-Southern Oscillation (ENSO), is 

expected to increase human vulnerability to a spectrum of infectious diseases such 

malaria, dengue, and Japanese encephalitis (Bai et al., 2013; Bi et al., 2005).  Mitigating 

the infectious disease risks of climate change – both for vector-borne and directly-

transmissible zoonoses – requires a deeper understanding of how it interacts with 

urbanization and globalization to alter the vulnerability of human populations (Tong et 

al., 2015).  Encouragingly, a recent survey of provincial public health workers in China 

found that the large majority had “accurate” (i.e., in line with existing scientific 

consensus) perceptions and knowledge about climate change and its likely impacts on 

infectious diseases (Wei et al., 2014).   

 A second requirement for successful policy is to look beyond standard 

epidemiological measures for risk indicators.  For avian influenza, outbreaks among 

wild birds, poultry, and people reveal patterns that suggest new indicators (Figure 2).  

The urban areas bestriding the Pearl River and Yangtze River deltas were the 

emergence areas for H5N1 and H7N9, respectively.  Empirical studies have shown how 

both outbreaks were facilitated by similar socio-ecological changes (as discussed in 
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preceding sections).  Because of this, it has been argued that wet markets could be used 

as an early-warning system to detect emerging zoonoses (Webster, 2004),  and that 

control measures could focus on the norms and incentives underlying human-to-animal 

interactions in the marketplace (Gao, 2014; Goldman et al., 1999; Pi et al., 2014; Woo 

et al., 2006). 

A third requirement is to enable public health infrastructures to respond to a range 

of threat indicators.  SARS and HPAI, and the experiences of dealing with other zoonotic 

risks in recent years, have motivated Chinese policymakers to improve their capacity to 

respond to emerging infectious diseases.  Responsiveness, information dissemination, and 

infectious disease surveillance have all improved since the initial SARS and H5N1 

outbreaks (Wang et al., 2008).  The Ministry of Health has created the world’s largest 

online, real-time, case-based reporting system, called the China Information System for 

Disease Control and Prevention, with coverage from the national down to the county 

level (Gong et al., 2012; Li et al., 2012a; Li et al., 2012b; Wang et al., 2008).  This 

system is connected to a network of Center for Disease Control and Prevention (CDC) 

institutes (http://www.chinacdc.cn/en), which collaborates with government-funded labs 

and other academic organizations focused on zoonotic diseases (Wang et al., 2008; Zhang 

et al., 2008).  As of 2014, there were 3,490 CDC institutes across China (NBS, 2015).  

Nonetheless, surveillance and the overall public health infrastructure still has several 

weaknesses, namely under-coverage of rural areas (where zoonoses, particularly those 

borne by livestock, may originate), lack of training for health professionals in poorer 

areas, and a low per-capita level of funding (Tong et al., 2015).   
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Indeed, these weaknesses may have been reflected in the fact that management of 

zoonotic diseases has largely been ad hoc.  The reactions to HPAI outbreaks included 

widespread wet market closures and trade restrictions.  While this limited the spread of 

H7N9 after its initial occurrence (He et al., 2014; Webster, 2004; Yu et al., 2014), it was 

also very costly to authorities, vendors, and consumers, and is unsustainable as a policy 

framework for the long run (Gao, 2014).  Additionally, given the significant traditional 

values attached to wet markets and the live animal trade, policies of that kind may abrade 

cultural sensibilities.  For instance, abrupt and prolonged closures of live animal markets 

may deprive people of a traditional venue for social interaction (Gao, 2014; Goldman et 

al., 1999; Woo et al., 2006).  Improving public awareness and knowledge has been one 

form of intervention, but more generally, management has tended to take the form of 

response rather than prevention.  But given the changing zoonotic risks, mitigation (e.g., 

management at the human-animal-wildlife interface in anticipation of mutation and 

spillover) is likely to be more cost effective than adaptation (e.g., reducing contact rates 

through social distancing and trade and travel restrictions after an outbreak) (Pike et al., 

2014).   

A fourth requirement is to build the collective capacity to mitigate international 

risk. Evidence that this has received higher priority in recent times is China’s greater 

involvement in World Health Organization (WHO) initiatives (Wang et al., 2008; Zhang 

et al., 2008).  The U.S. Agency for International Development also has active programs 

in China assessing the risks of emerging zoonoses (e.g., the Emerging Pandemic Threats 

program: http://www.usaid.gov/ept2/).  Such ventures may provide an important medium 

for “science diplomacy” – i.e., using research collaboration and the exchange of ideas as 
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a platform to improve geopolitical relationships – between the two largest economies, 

and trading nations, in the world (Hoetz, 2012).  Additionally, Chinese health workers 

have, since 2001, received training from the WHO and the U.S. Center for Disease 

Control, although as of 2014 only 194 had graduated from the program (Tong et al., 

2015).  As with domestic disease surveillance and management efforts, this has 

implications for the allocation of resources needed to support initiatives and institutions. 

Finally, the underlying research efforts to model risk at different spatial scales and 

inform policy need to include factors that affect not only the abundance of susceptible, 

latent, infectious, and recovered individuals, but also the likelihood of contact and 

transmission.  There would be value in exploiting a class of models in economic 

epidemiology that addresses the decisions made by people and policymakers that affect 

the likelihood of both host contact and infectious disease transmission (Perrings et al., 

2014).  Income growth, rising trade in goods and services, and the demographic and land-

use changes caused by urbanization all affect private infectious disease risk management, 

and so should inform the public response.  The development of infectious disease models 

for China that capture such risk factors would have the potential both to enhance 

management domestically, and to comprehend the risks from trade and travel links with 

the rest of the world.   

In certain respects, the nature of infectious disease risk mitigation is similar to the 

nature of climate change mitigation.  In both cases, there is a closing window for timely 

action.  In both cases, too, the mitigation of global risk depends heavily on the efforts of a 

small number of countries, each of which has a disproportionate impact on global risk 
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(Pike et al., 2014).  To that end, improving the management of infectious disease risk in 

China is a necessary, though not sufficient, condition for managing such risks globally.   

 

6. Concluding Remarks 

It has been argued that the world has been undergoing an epidemiological transition, in 

which rising incomes and the dissemination of improved technologies and good practices 

has shifted the burden of disease away from communicable towards non-communicable 

diseases (McKeown, 2009; Sepulveda and Murray, 2014).  In part this is because 

development generates greater resources for biosecurity and the prevention and treatment 

of infectious disease.  There is ample evidence that an epidemiological transition is 

underway in China.  Rising affluence has lessened the burden of infections that once 

were socially devastating, such as malaria and tuberculosis, but has increased non-

communicable diseases, such as cancer, heart disease, and obesity (Yang et al., 2008).  At 

the same time, globalization has increased the potential for domestic infections to be 

exported to countries where infectious diseases are still the greater part of the disease 

burden (Bygbjerg, 2012).  Indeed, emerging infectious diseases have been identified as 

one of a few “catastrophic risks” facing humanity in the 21st Century, especially for 

developing countries (Rees, 2013).  In China – which, despite its remarkable 

development in recent decades remains an “emerging” economy – novel zoonotic risks 

have accompanied the classic health trends of the epidemiological transition (Cook and 

Drummer, 2004).   

 Large developing countries such as India, Indonesia, and Nigeria have a similar 

set of pre-disposing socio-ecological risk factors to China – e.g., large and growing 
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human and livestock populations, high levels of interaction between species, and large-

scale ecological change.  As the forces of economic modernization accelerate, so could 

the zoonotic risks that such countries face.  Unlike China, many of these countries are 

still in the early stages of the epidemiological transition.  While they are becoming more 

exposed to disease risk through the growth of trade and travel, they still experience many 

of the public health conditions that increase vulnerability to infections.  For instance, 

“silent epidemics” – i.e., those caused by high-risk pathogens that have not received 

international attention, and that are only pervasive at a local scale – may yet flare into 

epidemics of global impact.  A salient example is buffalopox, an emerging and re-

emerging zoonosis that has recorded many animal outbreaks and human cases in South 

Asia.  The pathogen dynamics indicate a reasonably high level of transmissibility 

between livestock and people, and the forces of income growth, urbanization, and 

globalization could contribute to its further spread (Singh et al., 2007; Venkatesan et al., 

2010).  

The degree to which China’s public health authorities and researchers, along with 

their international collaborators, keep pace with income growth, urbanization, and 

globalization – and how these changes interact with China’s pre-disposing socio-

ecological conditions – will be a major force shaping global epidemiology.  China is not 

the only emerging infectious disease hotspot, but it is among the most important.  As the 

world continues to navigate a potentially new era for infectious diseases, the management 

of risk in China will be critical to the management of risk everywhere. 
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CHAPTER 3 

A PROVINCIAL-LEVEL ANALYSIS OF HIGHLY PATHOGENIC H5N1 AVIAN 

INFLUENZA RISKS IN CHINA 

*A version of this chapter was published in Philosophical Transactions of the Royal 

Society B in 2017 as “Conservation, Development, and the Management of Infectious 

Disease: Avian Influenza in China, 2004-2012,” with my advisor Dr. Charles Perrings. 

 

3.1. Introduction 

A common ecological consequence of economic development is the promotion of some 

species and the suppression of others (Millenium Ecosystem Assessment, 2005).  Crops, 

livestock, and positively valued wild species are promoted along with the ecosystems on 

which they depend.  Pests, pathogens and their vectors are suppressed.  The ecological 

context within which such decisions are taken, however, means that there are tradeoffs to 

be made.  The promotion of domesticated species frequently compromises the existence 

of wild species.  Similarly, the conservation of wild species can threaten domesticated 

species. Aside from competitive or predatory interactions between wild and domesticated 

species, the susceptibility of both to common pathogens means that either can impact the 

disease risks faced by the other. A change in disease risk for domesticated species, for 

example, is amongst the potential benefits or costs of a change in the abundance of wild 

disease vectors and host species.  The dilution effect explored in several papers in this 

special issue is an example of the benefits from increasing the richness and abundance of 

wild reservoirs (Faust et al., 2017; Kilpatrick et al., 2017a; Millins et al., 2017; Wood et 

al., 2017).  Conversely, the transmission of zoonotic and enzootic diseases to 
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domesticated species in proximity to wild reservoirs is an example of the costs.  Both 

may be influenced by the patterns of land use change associated with economic 

development and urbanization (Jones et al., 2013; McMichael, 2004; Wood et al., 2017). 

In this paper I consider the relationship between poultry production, waterfowl 

conservation, and the risks posed by highly pathogenic avian influenza H5N1 (henceforth 

H5N1) in a rapidly developing and urbanizing economy.  More particularly, I model the 

risk of H5N1 outbreaks in both poultry and people as a function of land use change, 

urbanization, commercial integration, biosecurity and public health in China.  H5N1 was 

first identified in China in 1996, and has since posed a threat to both animal and human 

health nationally and internationally (King et al., 2006; Pfeiffer et al., 2011; Wang et al., 

2008).  The pathogen has spread throughout China, with poultry outbreaks and human 

infections nearly ever year (see Figure 6), each of which poses a risk to the rest of the 

world (Davis, 2005).  In addition to a high mortality rate for human cases, infections are 

fatal to both waterfowl and domesticated birds, thereby having the potential to cause 

significant ecological and economic damage (Thomas and Noppenberger, 2007). 
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Figure 6 

Total H5N1 poultry outbreaks and human cases across mainland Chinese provinces, 2004 

– 2012.  The shades of red represent the number of poultry outbreaks.  The black 

numerals within the provinces indicate the number of human cases. 

 

Sources: Emergency Prevention System for Animal Health (EMPRES). Food and 

Agriculture Organization of the United Nations (FAO) and World Organization for 

Animal Health (OIE). URL: http://empres-i.fao.org/eipws3g/. 

 

In order to understand H5N1 risks, I consider two sets of risk factors.  One is the 

set of environmental factors that determine the likelihood of contact and pathogen 

transmission between wild and domesticated birds.  The other is the set of socio-
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economic factors that determine value at risk and hence the biosecurity measures taken to 

reduce the probability of infection.  Amongst environmental factors, most attention has 

been focused on the abundance and distribution of wild birds.  These factors include 

vegetation cover, surface water, and climate (Gilbert and Pfeiffer, 2012).  Less attention 

has so far been paid to socio-economic factors affecting the abundance and distribution of 

domesticated poultry, and the biosecurity measures applied in their production and 

marketing.  This is partly due to limitations of the available data.  Many socio-economic 

data are reported at the national level and, unlike biophysical variables, cannot be 

ascertained by remote sensing, or are not readily disaggregated into finer-grained units.  

There are, for example, few studies of the role of socio-economic risk factors at 

provincial (the unit of analysis in this paper) or local scales (Gilbert and Pfeiffer, 2012).  

Yet many environmental management and public health decisions that affect disease risks 

are devolved to sub-national levels (Qi et al., 2008; Qi and Zhang, 2014). 

 

3.2. Avian Influenza Risk Factors 

High rates of interprovincial inequality1 across a range of development indicators are a 

defining feature of economic growth in China (see Table 1) (Jones et al., 2003).  

Provinces differ greatly in their infrastructure, industrial composition, and average 

income (Li and Xu, 2009; Sun, 2013).  This unevenness reflects differences in both the 

distribution of natural resources (Demurger et al., 2002), and patterns of human-

																																																								
1 In China, municipalities – Beijing, Shanghai, Chonqing, and Tianjin – and “autonomous 
regions” – e.g., Inner Mongolia and Xinjiang – are on the same level of the administrative 
hierarchy as “standard” provinces; all three categories are considered “provincial units,” but will 
be referred to as provinces in this paper for simplicity. 
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environmental interaction.  This is reflected in the existence of distinct “macroregions” 

dating back several centuries (Cartier, 2002; Pomeranz, 1993; Skinner, 1977, 1985).  As 

Spence (1982) observed, such historical “units in some cases coincid[e] with actual 

provinces… where combinations of economic and geographic factors gave rise to a kind 

of local cohesion.”  Provincial differences are central to understanding China’s 

development; recent studies have examined a range of issues within the framework of 

interprovincial inequality, including migration (Taylor, 2011), water flows embodied in 

commodities trade (Dalin et al., 2014; Jiang et al., 2015b), energy and embodied carbon 

flows (Feng et al., 2013; Li et al., 2014; Qi et al., 2013).  Additionally, as this paper will 

show, China’s interprovincial differences have implications for the dispersal and 

persistence of pathogens (Hogerwerf et al., 2010).   

 

Table 1 

Development Indicators of Mainland Chinese Provincial Units, 2013. 

Province Area (km2) Population Nominal 

GDP per 

capita 

Urbanization 

(% 

population) 

Human 

Development 

Index (2010)* 

Beijing  16,411  20,693,000   ¥93,213  86% 0.821 

Tianjin  11,917  14,131,500   ¥99,607  82% 0.795 

Hebei  188,434  72,875,100   ¥38,716  48% 0.691 

Shanxi  156,711  36,108,300   ¥34,813  53% 0.693 

Inner 

Mongolia 

 1,155,092  24,898,500   ¥67,498  59% 0.722 
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Liaoning  148,064  43,890,000   ¥61,686  66% 0.740 

Jilin  184,400  27,504,000   ¥47,191  54% 0.715 

Heilongjiang  452,645  38,340,000   ¥37,509  57% 0.704 

Shanghai  6,340  23,804,300   ¥90,092  90% 0.814 

Jiangsu  102,600  79,199,800   ¥74,607  64% 0.748 

Zhejiang  104,141  54,770,000   ¥68,462  64% 0.744 

Anhui  140,126  59,880,000   ¥31,684  48% 0.660 

Fujian  124,016  37,480,000   ¥57,856  61% 0.714 

Jiangxi  166,894  45,039,321   ¥31,771  49% 0.662 

Shandong  156,700  96,849,700   ¥56,323  54% 0.721 

Henan  165,536  94,060,000   ¥34,174  44% 0.677 

Hubei  185,888  57,790,000   ¥42,613  55% 0.696 

Hunan  211,855  66,389,300   ¥36,763  48% 0.681 

Guangdong  179,757  105,940,000   ¥58,540  68% 0.730 

Guangxi  237,558  46,820,000   ¥30,588  45% 0.658 

Hainan  35,354   8,865,500   ¥35,317  53% 0.680 

Chongqing  82,269  29,450,000   ¥42,795  58% 0.689 

Sichuan  485,000  80,762,000   ¥32,454  45% 0.662 

Guizhou  176,153  34,840,700   ¥22,922  38% 0.598 

Yunnan  383,194  46,590,000   ¥25,083  40% 0.609 

Tibet  1,228,400   3,076,200   ¥26,068  24% 0.569 

Shaanxi  205,800  37,530,900   ¥42,692  51% 0.695 

Gansu  454,000  25,775,500   ¥24,296  40% 0.635 

Qinghai  721,000   5,731,700   ¥36,510  49% 0.638 

Ningxia  66,000   6,471,900   ¥39,420  52% 0.674 
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Xinjiang  1,664,897  22,327,800   ¥37,181  44% 0.667 

* HDI scores for Chinese provinces were only calculated for 2010; >0.800 = “very high 

human development”; 0.800 – 0.700 = “high human development”; 0.700 - 0.550 = 

“medium human development” 

Sources: Chinese National Bureau of Statistics (2014); United Nations Development 

Program (2013) 

 

Interspecies transmission of enzootic and zoonotic diseases is in large part driven 

by human activities that bring susceptible and infected animals into contact, especially at 

the interface between domesticated and wild systems (Daszak et al., 2000; Rahman et al., 

2013).  At the global scale, there is considerable evidence that the risk of emergence of 

enzootic and zoonotic pathogens is closely related to development status (Chan et al., 

2013; Jones et al., 2008).  Changes in land use associated with economic development 

bring both people and domesticated animals into closer contact with wild disease 

reservoirs. Amongst predisposing ecological conditions for the interspecies transmission 

of avian influenzas, the most frequently cited factors are the migration and behavior of 

wild birds.  Migratory birds, particularly waterfowl, are argued to be responsible for both 

the long-distance (e.g., across Asia) and short-distance spread of avian influenza, 

infecting other wild bird populations as well as free-ranging poultry (Chen et al., 2005a; 

Gilbert and Pfeiffer, 2012; Prosser et al., 2011; Si et al., 2009).  Several major bird 

migration routes traverse China, and the country is a major destination for wintering and 

breeding birds.  Although economic development has taken a toll on biodiversity in 

China, the country’s wild bird populations have remained robust, stabilizing in numbers 



 34 

between 1970 and 2000 and increasing by over 40% since the turn of the millennium 

(Xie et al., 2015).   

Lakes and wetland areas have been cited as points at which migrating waterfowl 

and domesticated ducks come into contact, leading to the spread of avian influenza (Fang 

et al., 2008; Martin et al., 2011; Si et al., 2013b; Si et al., 2010).  Poyang Lake, the 

country’s largest freshwater lake and an important habitat for migratory waterbirds, is a 

frequently cited example.  A total of 310 species have been recorded in the area and it 

hosts approximately 1 million wintering birds (Ji et al., 2007).  At the same time, 

extensive livestock farming surrounds the lake.  Qinghai Lake, China’s largest saltwater 

lake, is another important destination for migratory birds.  In 2005, during the first major 

H5N1 outbreak among wild birds in the area, the population of bar-headed goose dropped 

by 5-10% (Kou et al., 2009).  To assess the influence of wild migratory birds, I use the 

subset of Bird Life International-designated “Important Bird and Biodiversity Areas” 

(IBA) for congregatory and migratory waterbirds (see Figure 7).  Both Poyang Lake and 

Qinghai Lake have been identified under this classification.  Similar data were used in an 

earlier study of H5N1 spread at the national level in Europe (Kilpatrick et al., 2006). 
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Figure 7 

The percentage of each province covered by “Important Bird and Biodiversity Areas” 

designated for migratory birds (Bird Life International). 

 

 

Aside from lakes and wetlands, agroecosystems are also potentially implicated in 

disease emergence—the interspecies transmission of infectious epizootic and zoonotic 

diseases.  The geographically uneven pattern of economic development has resulted in 

similarly uneven patterns of land-cover in China (Carter and Lohmar, 2002).  More 

specifically, land-use changes are argued to have turned particular provinces into “agro-

ecological niches” conducive to the establishment and persistence of H5N1 among both 
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people and livestock (Hogerwerf et al., 2010; Wallace et al., 2010).  Irrigated rice fields 

in China are at once habitats for wild birds, ducks, poultry and people, and consequently 

may increase the probability of interspecies influenza transmission.  In particular, free-

grazing ducks in rice-cropping areas have been argued to act as a conduit for H5N1 

infections (Gilbert et al., 2008; Martin et al., 2011; Paul et al., 2010).  

The relationship between economic development and the risk that novel diseases 

will spread among domesticated animals or people is less well understood (Alirol et al., 

2011; McMichael, 2004; Wilcox et al., 2004).  From an economic perspective, factors 

affecting spread risks include measures taken by people to alter either the probability of 

contact between infected and susceptible birds, or the probability that contact leads to 

infection (Perrings et al., 2014).  These measures in turn depend on the value at risk 

(Perrings et al., 2014). Value at risk refers to potential losses, usually accounted for in 

monetary terms, caused by an outbreak or an epidemic.  In the case of H5N1, this 

includes mass deaths of infected or culled poultry, or the medical costs and lost 

productivity from human cases (Qi et al., 204).  Biosecurity and public health measures 

adopted to protect value at risk include both measures adopted in the production and 

distribution of domesticate animals, and the establishment of preventive and curative 

health institutions aimed at reducing both the likelihood and the impact of infection 

(Fabre and Rodwin, 2011; Gong et al., 2012).   

There is some evidence that the growth of public health infrastructure in China 

has not kept pace with increasing infectious disease risks.  For example, immunization of 

urban populations against common infections is increasing, but not at the rate of urban 

immigration (Gong et al., 2012).  Nonetheless, since the first outbreaks of H5N1 and the 
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SARS epidemic, Chinese public health authorities have improved both their 

responsiveness and effectiveness (Wang et al., 2008).  The Chinese Center for Disease 

Control and Prevention (CDC) has a network of institutes across all provinces to prevent 

and manage epidemics, along with an extensive internet-based surveillance system (Gong 

et al., 2012; Wang et al., 2008; Zhang and Atkinson, 2008).  As of 2014, there were 3,490 

CDC institutes in China (National Bureau of Statistics, 2015), implementing an infectious 

disease surveillance system that is the largest in the world (Gong et al., 2012; Li et al., 

2012a). 

At the national level, one proxy for value at risk from human disease is per-capita 

income, and the same measure can be used to signal interprovincial differences.  Value at 

risk from animal diseases is more often measured by the value of trade that may be 

disrupted as a result of outbreaks.  Internationally, the relationship between the growth of 

trade and travel and disease risk is well understood (Patz et al., 2004; Tatem et al., 2006).  

Nationally, the trade and travel at risk is harder to measure, but may be proxied by the 

growth of transport infrastructure such as air, road and rail networks, and of the vehicles 

that use them.  The Pearl River Delta, where H5N1 was discovered, is a prime example: 

in 1990 there were only 16 km of expressways, but by 2020 there will be over 6,100 km 

(Hou and Li, 2011).  Nationally, highways grew from 1.87 million km to 4.24 million km 

between 2004 and 2012.  As with other indicators, however, road networks vary across 

provinces, with the more urbanized and affluent coastal provinces – e.g., Guangdong – 

having a more extensive infrastructure than the less urbanized and affluent inland 

provinces. 



 38 

A measure of the local trade at risk from H5N1 outbreaks is given by size of the 

poultry sector, the growth of which is closely related to economic development.  As 

incomes have grown in China, so has the demand for protein.  This has led to the 

expansion and intensification of poultry production.  Figure 8 shows that in the period 

covered by this study, poultry numbers grew at an average rate of 2.95% per year.  Nor is 

the rate of growth slowing significantly.  Over the coming decade, per-capita 

consumption of poultry is expected to grow by 2.4% annually (Westcott and Trostle, 

2014).  Economic development has been accompanied by the industry’s modernization, 

with poultry farming becoming increasingly concentrated in industrial facilities where 

production is more standardized and mechanized (Pi et al., 2014).  At the same time, 

backyard farming, which was likely the historical socio-ecological “engine” of avian 

influenza emergence and spread in China, has been on the wane (Cardona et al., 2009).  
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Figure 8 

The annual population of poultry in mainland China from 2004 to 2012 (bars) and the 

changes in poultry production intensity – i.e., average weight of a bird – over the same 

period (line). 

 

Sources: National Bureau of Statistics of China (NBS), 2005-2013. China Livestock 

Statistical Yearbooks. China Statistics Press, Beijing. URL: http://www.stats.gov.cn/. 

 

3.3. Data and Methods 

Our data comprise a balanced panel of provincial observations on a range of risk factors 

over the interval 2004-2012.  The panel allowed us both to explore a range of risk factors, 

and to analyze the risk consequences of heterogeneity among provinces.  The 2004-2012 

timeframe was chosen for several reasons.  First, 2004 was the year of a major outbreak 

of H5N1 on the Chinese mainland, likely constituting the re-emergence of the disease, 
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since it is epidemiologically discontinuous from earlier outbreaks in the late 1990s.  It 

was also one year after the end of the SARS epidemic, a watershed moment that 

prompted increased attention to infectious disease risks from policymakers and the 

general public.  The endpoint of 2012 was chosen because it was the year before the 

emergence and rapid spread of H7N9 in China.  This strain is epidemiologically distinct 

from H5N1, particularly in its effects on poultry and other bird species.  The years 2004-

2012, therefore, constitute a distinct period in which H5N1 was the primary avian 

influenza – if not the primary overall infectious disease – threat to livestock and people in 

China. 

Our observations on disease outbreaks and risk factors at the provincial level 

derive from three primary sources: the United Nations’ Food and Agricultural 

Organization (FAO), the World Organization for Animal Health (OIE) and China’s 

National Bureau of Statistics (NBS).  Most data on all environmental and socio-economic 

risk factors were taken from the annual statistical yearbooks published by the NBS, 

which provide data down to the provincial level.  Poultry comprise all main domesticated 

bird species: chickens, ducks and geese.  Currently, chickens account for 70 percent of 

meat production, while ducks and geese each account for about 15 percent (Bingsheng 

and Yijun, 2007).  Data on poultry outbreaks and human cases were gathered from the 

Emergency Prevention System for Animal Health (EMPRES) reporting system, a joint 

project of the FAO and OIE (Welte and Teran, 2004).  Data on important bird and 

biodiversity areas in China were taken from Bird Life International (Bird Life 

International, 2016).  Many of these data were in turn subject to unit conversions for the 
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sake of processing and interpretation, e.g., from hectares to square kilometers.  Most 

factors used in the analyses were also converted into density or per-capita measurements. 

Generalized linear models (GLM) have been frequently used in the study of avian 

influenza epidemiology (Gilbert and Pfeiffer, 2012).  For instance, these models have 

been used to identify high-probability areas for influenza reassortment (Fuller et al., 

2013), for predicting the spread of H5N1 (Fang et al., 2008; Gilbert et al., 2008; 

Hogerwerf et al., 2010; Martin et al., 2011; Si et al., 2013b; Si et al., 2010), and for 

predicting the spread of H7N9 (Fang et al., 2013; Zhu and Peterson, 2014).  The value of 

GLMs in epidemiological problems is that they allow tests of the statistical relationships 

between a numerical or binary dependent variable of disease outbreaks or cases and a set 

of risk factors.  I estimated three GLM models of H5N1 risk in China.  The first was a 

multivariate regression model quantifying the impact on H5N1 poultry outbreaks from 

the following risk factors: land area, the percentage of land covered by rice paddy, the 

percentage of land covered by IBAs for congregatory and migratory birds, a proxy for 

poultry production intensity (the average weight of birds produced for market in the 

different provinces) and a proxy for interprovincial trade (the density of commercial 

trucks on highways in the provinces). Land area is a confounding variable.  Rice paddy 

and IBAs are our two hypothesized environmental mixing zones between wild waterbirds 

and poultry. 

To assess whether I needed to control for the time-invariant characteristics of 

provinces I conducted a Hausman/overdetermination test for correlation between 

provincial errors and the regressors, which indicated the equivalence between a random-

effects panel analysis approach and a pooled OLS regression.  I favored the random 
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effects/OLS approach because it allowed me to take explicit account of the influence of 

interprovincial differences on the likelihood of H5N1 outbreaks.  While there were 

potentially significant temporal changes in risk factors – particularly in poultry numbers 

and income – I am more directly concerned with how differences across provinces 

determine the heterogeneity of risk.  Relatedly, a random effects model estimates the 

impact of important provincial risk factors that are invariant across our timeframe – in 

this case IBAs – instead of just controlling for them.  Nonetheless, I report the results for 

fixed-effects models as well.   

The first estimated model was a multivariate linear regression, estimated using 

robust standard errors to account for heteroskedasticity:   

                             Pit =α0 +α1x1it +α2x2it +α3x3it + ...+ui +εit  ,                             (1) 

in which  Pit  denotes the number of poultry outbreaks in province i at time t, 
 
x jit  is 

observations on risk factor j in province i at time t, and  uit  and  ε it  are ‘between’ and 

‘within’ provincial errors respectively2. The second model estimated was focused more 

directly on risk.   Using the same set of risk factors I estimated a negative binomial 

regression model, in order to calculate incidence rate ratios.  While both Poisson and 

negative binomial models are candidates for analyzing risk using count data, I selected 

the negative binomial because the data for poultry outbreaks turned out to be 

																																																								
2 I also conducted a regression was clustered standard errors, grouped by regions – e.g., 
provinces along the Yangtze River were grouped together, while those in the northwest 
and northeast constituted separate regions.  This was done to account for potentially 
unobserved influences from geophysical and economic correlation among adjoining 
provinces.  However, the results, including both coefficient values and significance 
levels, were almost identical to those from the first model, so I chose not to report them.   
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overdispersed – i.e., the variance was much higher than the mean.  For Yit ~ Negative 

binomial (θit,κ), the model took the form: 

                        θit = exp α0 +α1x1it +α2x2it +α3x3it + ...+ui +εit⎡⎣ ⎤⎦  .                         (2) 

The third model focused on the linkage between human and poultry cases.  Nearly 

every epidemiologically investigated human case in China identified exposure to infected 

poultry as the proximate reason for infection (Woo et al., 2006; Yu et al., 2007; Yu et al., 

2014).  To model this wild bird/environment-to-poultry-to-human sequence of infection, I 

employed a two-stage least squares (2SLS) regression approach.  The epidemiological 

logic is similar to the study by Chen et al. (2013), which used 2SLS regression to model 

human mortality from exposure to airborne pollutants in major Chinese cities (Chen et 

al., 2013).  The first stage estimated the relationship between poultry outbreaks and the 

same set of regressors as in model 1 (equation 1).  The second stage was of the general 

form: 

                              Yit = β0 +β1Pit +β2z1it +β3z2it + ...+µi +εit  ,                               (3) 

 where Yit is the number of human cases,  Pit  is the number of poultry outbreaks and z jit  

is observations on second-stage risk factor j in province i at time t.  Independent risk 

factors in this stage were human population (confounding variable), percent urban 

population, per-capita GDP and the number of CDC institutes.  These risk factors were 

chosen because of their direct impacts on human public health.  An overidentification test 

was run, and the resultant Sargan-Hansen test statistic had a p-value of 0.371.  This fails 

the five-percent significance test, meaning I fail to reject the null hypothesis of 

instrument validity, and implies that random effects regression is appropriate.  
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3.4. Results and Discussion 

The results of all three models are reported in Table 2.  In model 1, I found all five risk 

factors to be statistically significant at the 5% level: land area, the extent of rice 

cultivation, the extent of IBAs for migratory and congregatory waterbirds, poultry 

production intensity and commercial truck density on highways.  Many of the results 

conformed to expectations.  Risks were found to be increasing in land area. Larger 

provinces generally experienced more outbreaks.  They were also increasing in the proxy 

for trade levels, commercial highway traffic density. A one-percent change in 

commercial truck density is associated with a 0.05 percent increase in H5N1 poultry 

outbreaks.  This result is consistent with other studies of H5N1 in Asia that have 

identified transport infrastructure, and particularly highways, as sources of spread risk 

(Fang et al., 2008; Paul et al., 2010). 

 

Table 2 

Results for models of provincial-level risk factors of H5N1 poultry outbreaks and human 

cases in China, 2004-2012.  Regressor coefficients, and incidence rate ratios for negative 

binomial regression, are reported, with significance levels indicated by asterisks. 

Variables Units  Poultry outbreaks          

(robust SEs) 

Poultry outbreaks          

(Neg. Bin.) 

Human cases     (2SLS) 

RE FE RE FE RE FE 

Area km2  1.07x10-6** omitted 1.00** 1.00**   

Rice paddy %land area  0.0267** -0.433 1.06** 1.03   

IBA, migratory %land area  -0.0352** omitted 0.957** 1.03   
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Poultry production 

intensity (log) 
kg/bird  -0.821** -1.40* 0.212** 0.519   

Commercial trucks on 

highways 
vehicles/km  0.0498** 0.149** 1.09* 1.44**   

Poultry outbreaks † 
presence/ 

absence 
     0.746** -0.0790 

Population persons      6.33x10-9** 5.66x10-9 

GDP per capita  ¥/person      -5.25x10-6* -3.78x10-6 

Urbanization (log) %population      0.282 -1.18 

CDC institutes institutes      -0.00154* -0.000293 

Observations  278 278 278 215 248 248 

Within R2  0.0190 0.0378   0.0450 0.0439 

Between R2  0.4709 0.0151   0.4664 0.0248 

Overall R2  0.0822 0.0010   0.1071 0.0138 

Rho  0.0000 0.8421   0.0293 0.4935 

* statistically significant at the 10% level 

** statistically significant at the 5% level 

† Instrumented on area, poultry production intensity, rice paddy coverage, IBA for 

migratory birds and commercial truck density 

 

Average poultry weight, a proxy for the intensification of poultry production, was 

found to have a negative effect.  The industrialization of poultry production is an ongoing 

trend in China, and is progressively reducing the share of small-scale, backyard and other 

traditional forms of farming.  Large-scale and mechanized production, while not without 

environmental and public health risks (Leibler et al., 2009), is more insulated from the 

wildlife-livestock interface of disease transmission – i.e., wild birds carrying influenza 

are less likely to come into contact with and thereby infect poultry in factory farms.  

Additionally, the modernization of production also allows it to be more effectively 
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regulated, and Chinese authorities have taken steps in recent years to improve health 

safety in poultry production and marketing.  The improvements in technology and 

management that have accompanied the industrialization of the poultry industry, for 

which poultry production intensification is a proxy, therefore are likely to have a 

mitigating effect on avian influenza risks (Pi et al., 2014).    

The two habitat variables – percent rice cover and percent IBA for congregatory 

and migratory birds – were both hypothesized to be positively correlated with H5N1 

outbreaks in poultry.  The literature suggests that flooded rice paddies on the one hand, 

and lakes and wetlands on the other, are both mixing zones in which wild and 

domesticated birds can come into contact with each other and exchange pathogens.  I had 

accordingly expected both to be positively correlated with outbreaks in poultry.  As 

expected, the proportion of land under rice cultivation was positively correlated with 

H5N1 outbreaks in poultry.  This is in line with the conclusions of earlier studies, as well 

as with basic intuition. As a ready habitat for both wild birds and free-ranging poultry, 

rice paddy is likely to facilitate infections between wild and domesticated birds.  

What was not expected is that I found the proportion of land covered by IBAs to 

be negatively correlated with H5N1 outbreaks in poultry. This ran counter to expectations 

and conflicts with much of the literature.  There may nevertheless be a sound ecological 

rationale.  The mere presence of surface water and wetlands, as habitat for pathogen-

carrying birds, should enhance the likelihood of an outbreak.  However, as the size of a 

lake or wetland increases, the likelihood that wild birds make contact with domesticated 

birds or that contacts result in infection appears to decrease.  Fang et al. (2008) found that 

smaller water and wetland habitats caused birds to congregate in greater density, 
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increasing contact and the probability of transmission (Fang et al., 2008).  More surface 

area dilutes waterfowl density, thereby decreasing opportunities for transmission.  

Additionally, lakes and wetland areas – “natural” habitats – may also offer an alternative 

to paddy, where free-ranging poultry are often prevalent.  This segregation effect may be 

strengthened if the natural habitats are protected, as the majority of the IBAs in China 

are. The prohibition of agriculture in or near protected lakes and wetlands lowers the 

likelihood of mixing between wild and domesticated birds. 

One potential point of interest – or concern – when comparing the results from 

random-effects regression with those from fixed-effects regression (aside from the fact 

that predictor variables were more statistically significant across the random-effects 

models), is that the coefficient on rice paddy was significant and positive for the former 

but negative and insignificant for the later.  This appears counterintuitive, but the results 

are similar to those of Baltagi and Pinnoi (1995), a panel analysis of the economic output 

of U.S. states regressed on a set of state-specific variables (Baltagi and Pinnoi, 1995).  

The authors found the same coefficient sign change for the variable public investment, 

and concluded that this was due to the difference between the short- and long-run effects 

of the variable, with fixed effects capturing the former and random effects capturing the 

latter.  Additionally, the low Rho value for random-effects regression, which measures 

the amount of variance due to inter-panel differences, points to random effects as being 

the more appropriate model. 

Our second model was a negative binomial regression of H5N1 poultry outbreaks 

on the same set of risk factors as in model 1.  The regression coefficients had the same 

signs as in the previous model, and again all five variables were statistically significant, 
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with four at the 5% threshold and one at the 10% threshold.  Incidence rate ratios (IRRs) 

are reported instead of coefficients in Table 2.  An IRR measures relative risk, and can be 

interpreted as the factor change in H5N1 outbreaks resulting from a one-unit increase of 

the associated risk factor, holding all other factors constant.  Therefore, the results 

indicate that a one-percent increase in rice paddy cover increases the number of poultry 

outbreaks by 6%, while the same increase in IBA cover lowers outbreaks by 4.3%.  As a 

proxy for production intensity, a one-unit increase in the log-transformed value of 

average poultry weight (i.e., doubling the value) lowers the number of outbreaks by 79%.  

As a proxy for trade, increasing the density of commercial trucks by one vehicle per 

kilometer of highway increases poultry outbreaks by 9%.     

In the third, 2SLS, model, I analyzed the risk factors for human infections (results 

also in Table 2).  In this case I treated the presence or absence of H5N1 in poultry as an 

endogenous variable, and the independent variables analyzed in models 1 and 2 as 

instruments. I found that H5N1 outbreaks in poultry, instrumented on the same set of 

explanatory factors as in the first and second models, was statistically significant at the 

5% level. This is as expected, fits both with epidemiological intuition and with existing 

medical case studies of human H5N1 infections (Yu et al., 2007).  By implication, the 

risk factors that determine the likelihood of outbreaks in poultry also determine the 

likelihood of human infections.   

Of the four second-stage independent variables, three were statistically 

significant: population size at the 5% level, and per-capita GDP and the number of CDC 

institutes at the 10% level.  More people mean a larger pool of potential infections, and 

thus had a significant positive effect on human cases as expected.  Per-capita income was 
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selected as a proxy for value at risk.  I expected this to be negatively correlated with 

H5N1 infections, since greater value at risk generates a stronger incentive to undertake 

preventive biosecurity measures.  Our findings on the relationship between CDC 

institutes and H5N1 infections in people suggests that biosecurity measures have a 

significant role to play in mitigating human infections.  Since the SARS crisis and the 

initial outbreaks of H5N1, policymakers have invested considerable attention and 

resources to improving CDC effectiveness (Gong et al., 2012; Li et al., 2012b; Wang et 

al., 2008).  Additionally, Chinese public health authorities have expanded international 

collaboration to raise domestic standards, and have, for instance, sent CDC staff to 

receive training from the WHO and the U.S. Center for Disease Control (Tong et al., 

2015).  However, Chinese infectious disease management still has several weaknesses, 

including a lack of training for health workers in poorer areas and a low per-capita level 

of funding compared to international standards (Tong et al., 2015).  Greater investment in 

public health infrastructure and management may help mitigate human infections from 

avian influenza. 

Finally, caveats should be made about the data.  As Hogerwerf et al. (2010) 

observe, H5N1 circulation among poultry may be partly undetected (Hogerwerf et al., 

2010), and there is likely to be underreporting for both poultry and human infections.  

This may be particularly true for rural areas, where interactions at the human-livestock-

wild bird interface are acute, but where infections are less likely to be diagnosed and 

reported to relevant agencies (as mentioned above, public health management in poorer 

areas of China often suffer from a lack of funding and training).  Certainly, the ratio of 

reported human cases to the poultry outbreaks appears disproportionately low (41:118).  



 50 

Furthermore, the discreteness of poultry outbreaks may not be clear-cut.  The numbers of 

birds “at risk” and the numbers infected vary from 48 to 581,000 and from 2 to 82,000, 

respectively.  Multiple outbreaks have also been reported at the same location, or 

adjacent locations, and on the same date.  The extent to which these are separate incidents 

or are part of a larger, continuous outbreak may be blurred by observation and reporting 

error, which is difficult, if not impossible, to recognize and rectify after the fact.  

Nonetheless, this dataset offers one of the best available tabulations of H5N1 infections; 

and the models presented represent, at the very least, a reasonable approximation of a 

complex epidemiological, ecological and economic phenomenon. 

 

3.5. Conclusions 

Returning to the conservation question I posed at the outset, our findings have two broad 

implications for the effect on avian influenza risk of bird habitat.  First, since the 

correlation between outbreaks and rice paddy is positive, H5N1 risk may be treated as 

amongst the external costs of the use of paddy as habitat for domesticated birds.  The 

marginal external disease costs of paddy are positive.  This is due to the fact that paddy 

enables close enough contact between domesticated and migratory waterfowl so that the 

presence of infected birds poses a risk to susceptible birds.  Management of domesticated 

birds to reduce contact with wild birds in paddy would address this risk.   

The second, unexpected, finding is that the correlation between outbreaks and 

IBAs is negative, implying that the marginal infectious disease cost of IBAs is negative. .  

An increase in the area covered by IBAs for migratory and congregatory waterbirds, 

other things being equal, is associated with a reduction in the risk of H5N1 outbreaks in 
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poultry.  While the exact mechanisms behind this result are beyond the scope of this 

study (they are being explored in another, finer-grained study by the authors), the 

implication is that an increase in (protected) natural lakes and wetlands on flyways does 

not threaten the health of poultry populations (and consequently the livestock industry).  

At the margin, there are no disease costs to offset against the conservation benefits of 

such areas. 

Our results on the relation between economic development and infectious disease 

risks are less unexpected.  While growth in trade and transport volumes, and the 

concentration of people in urban areas are both risk-increasing, the improved biosanitary 

conditions that come with agricultural intensification, and the investment in public health 

facilities, are risk-reducing. They are associated with a reduction in the risk of infectious 

disease outbreaks amongst animals and people alike. Per capita income growth is closely 

associated with trade growth, and hence with the disease risks from trade, but it is also 

associated with many changes that have positive implications for human and animal 

health.  The modernization variables in our set are all negatively correlated with disease 

risk.  
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CHAPTER 4 

BIODIVERSITY CONSERVATION, MIGRATORY BIRDS, AND AVIAN 

INFLUENZA RISKS 

 

4.1. Introduction 

There is a general perception that the preservation of intact ecosystems should reduce the 

prevalence of infectious diseases (Keesing et al., 2010; Kilpatrick et al., 2017b; Wood et 

al., 2017).  Among the mechanisms most frequently cited are zooprophylaxis, by which 

protected species divert vectors from humans, and the dilution effect, by which the 

increased diversity of protected species lowers the probability and scale of an epidemic 

by distributing pathogen transmission across species with greater or lesser propensity to 

transmit infection (Ostfeld, 2009).  However, the evidence suggests that these effects 

apply in rather limited circumstances (Randolph and Dobson, 2012).  A major driver of 

the emergence and spread of zoonotic and epizootic diseases is transmission between 

infected wildlife and susceptible livestock, or vice versa—disease transmission from 

domesticated reservoirs to sympatric wildlife being a particular concern in conservation 

biology (Daszak et al., 2000).  Globally, wildlife species richness is a strong predictor of 

emerging zoonotic disease events (Jones et al., 2008; Olival et al., 2017).  A large number 

of zoonotic and epizootic diseases have been transmitted at the interface between 

managed landscapes and wildlands, including: Nipah (Pulliam et al., 2011); SARS (Wang 

and Eaton, 2007; Wang et al., 2006); Ebola and Marburg (Wood et al., 2012); bovine 

tuberculosis; paratuberculosis; avian tuberculosis (Gortázar et al., 2006); and avian 

influenza (Li et al., 2004).  
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Taking the case of highly pathogenic avian influenza (HPAI) H5N1, I consider 

how outbreaks are related to the distribution of more or less protected waterbird habitat in 

China.  Migrating waterbirds are known to spread H5N1 across and beyond China 

(Keawcharoen et al., 2008; Kilpatrick et al., 2006; Kou et al., 2009; Liu et al., 2005; 

Olsen et al., 2006; Tian et al., 2015).  China is traversed by three important flyways: the 

East Asia–Australasia flyway covers most of the country, while the East Asia-East Africa 

flyway affects the northwestern, and the Central Asia flyway stretches over the western, 

parts of the country (Olsen et al., 2006).   China also has abundant natural and man-made 

wetland and lake habitats suitable for wintering and breeding migratory waterbirds 

(Figure 9).  Opportunities for wild and domestic birds to come into contact in these 

habitats differs substantially.  In more densely populated areas, unprotected lakes, 

wetlands and paddy fields all provide opportunities for wild waterbirds to come into 

contact with free-ranging poultry such as chickens, ducks, and geese, which are common 

in rural areas across the country.  In recent decades, rising consumer demand and the 

scrapping of restrictions on rural husbandry have contributed to the rapid growth of 

poultry production in China, a large portion of which involves small-scale producers 

implementing few biosecurity measures (Conan et al., 2012; USDA Foreign Agricultural 

Service, 2017). 
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Figure 9 

The distributions of HPAI H5N1 poultry outbreaks in relation to lakes and wetlands, 

Ramsar sites, and rice paddy in mainland China.  A. Outbreak locations and unprotected 

wetlands and lakes and Ramsar sites.  B. Outbreak locations and rice paddy land cover. 

 

  

Yet, not all such waterbodies seem to be equally at risk – even those near rural 

areas with large poultry populations.  Consider Poyang Lake—the country’s largest 

freshwater lake.  A 2006 census recorded 50 million ducks, geese, and chickens with 

approximately one million wintering wild birds around the lake (Xiao et al., 2010).  

While Poyang has been identified as a potential avian influenza hotspot (Prosser et al., 

2013), the incidence of H5N1 poultry outbreaks in the neighborhood of the lake has been 

much lower than expected from prior risk assessments.  Between 2004 and 2017, Jiangxi 

province, the northern and middle sections of which are dominated by the Poyang Lake 

watershed, recorded only 6 out of 201 H5N1 poultry outbreaks in China.  Many other 
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natural waterbird habitats turn out to be only weakly related to H5N1 poultry outbreaks in 

China (Takekawa et al., 2010).  

Why?  One possible explanation lies in the quality of protection offered by these 

habitats. A Ramsar Convention-designated “Wetland of International Importance 

especially as Waterfowl Habitat,” Poyang Lake has been a focus of major conservation 

efforts.  The Poyang Lake Nature Reserve was established in 1983, and since 2009, the 

national government has expanded the area in which livestock husbandry, agricultural 

activity, and other forms of development are restricted.  This has had the dual effect of 

reducing contact between domestic and wild birds while protecting wintering and 

breeding birds.  In a decadal survey of the Poyang Lake area, Wu et al. (2014) found 

waterbird numbers and diversity to be increasing in protected wetland habitats relative to 

farmlands and unprotected waterbodies (Wu et al., 2014).  This is consistent with 

evidence elsewhere that migratory waterbirds prefer protected, natural lakes and wetlands 

to human-dominated landscapes such as farmlands (Beatty et al., 2014; Li et al., 2013).  

Both effects have potentially important epidemiological implications.   

In this study I used a case control approach to analyze the location of H5N1 

poultry outbreaks relative to waterbird habitats characterized by different rates of contact 

between wild and domestic birds, whilst controlling for general biosecurity levels. I 

focused on the period January 1, 2004 to September 1, 2017.  The highest rates of contact 

between domesticated and wild fowl were assumed to occur in paddy fields or 

unprotected water bodies.  The lowest rates of contact occur in water bodies protected by 

buffer zones from which domestic birds are excluded.  Our proxy for the existence of 
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effective buffer zones is Ramsar status (Figure 9). Our proxy for general biosecurity 

levels is a measure of development, per-capita gross domestic product (GDP).  

 

4.2. Data and Methods 

Data sources:  The timeframe of this analysis was from January 2004 to September 2017, 

during which time there were 201 H5N1 poultry outbreaks in China.  Data on H5N1 

poultry outbreaks in China, including locations and dates of observations, were taken 

from the Emergency Prevention System for Animal Health (EMPRES), a joint project of 

the FAO and OIE (Welte and Teran, 2004).  Land cover data, including for rice paddy 

and water bodies, came from the Institute of Geography at the Chinese Academy of 

Sciences and the Center for Human-Environment Systems Sustainability at Beijing 

Normal University.  Spatially explicit data for Ramsar sites were taken from the official 

database of the Ramsar convention (http://www.ramsar.org/): during the study period 

there were 48 Ramsar sites, corresponding to important large water bodies and their 

associated wetlands.  Data on per-capita income were taken from the databases and 

statistical yearbooks published by the National Bureau of Statistics of China (National 

Bureau of Statistics, 2016).  Data varied in availability and quality across prefectures.  

Where there were gaps in prefectural economic data, the missing values were 

extrapolated as a linear time series trend from data for previous or latter years, or 

substituted with the contemporary provincial-level values.   

Case-control approach: I used a case-control approach, in which the spatial 

locations of all H5N1 poultry outbreaks in the study period were treated as the population 

of cases, and a set of randomly selected uninfected locations was treated as the 
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population of controls (at a ratio of 5 controls per case).  Case-control research design is a 

comparative, population-level analysis of disease risk factors.  It produces odds-ratios 

that are a measure of relative risk, and are particularly sound when used to assess diseases 

with a low incidence rate – what is known as the “rare disease assumption” (Greenland 

and Thomas, 1982; Schulz and Grimes, 2002).  Although not without potential 

shortcomings, particularly with respect to selection biases, the relative flexibility in data 

requirements and efficiency of use has made the method widely used in epidemiology 

(Breslow, 1996; Grimes and Schulz, 2005).  Applications range from non-communicative 

pathologies, such as mental health disorders and cancer, to a wide range of infectious 

diseases (Jha et al., 2008; O'Donnell et al., 2016; Yusuf et al., 2004).  In particular, its 

value was shown in the early research into the causes of the AIDS epidemic (Schulz and 

Grimes, 2002).   

Avian influenza, whether in terms of poultry or human cases, has a low incidence 

rate given the sizes of the susceptible populations, and thus meets the “rare disease 

assumption” underlying the validity of a case-control research design.  Additionally, in 

the absence of a population roster from which to select a set of controls, random-digit 

dialing can be undertaken (Grimes and Schulz, 2005).  In this study, I implemented the 

approach through random selection of locations over the study area.  Other studies of 

environmental risk factors in avian influenza and other diseases at large scales have 

similarly identified cases by outbreak coordinates or administrative units, and controls by 

random selection of uninfected locations (the randomness producing a representative 

sample).  This was, for example, the approach taken by Fang et al. (2008) and Fang et al. 

(2013) in their respective analyses of the environmental drivers of H5N1 and H7N9 in 
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China.   Both studies used a ratio of 5 controls for every 1 case, as this study has also 

done. 

GIS analysis and data management: The land cover raster dataset and the Ramsar 

wetland dataset were inputted into the GIS software package ArcMap 10.4 to calculate 

the values of the explanatory variables.  The resolution of the dataset was 1000 meters, 

and the reference year was 2010.   Each outbreak (case) was placed on the land-cover 

map based on the reported coordinates of the location in which it was first observed.  The 

locations of the controls were generated using a random points generator algorithm in 

ArcMap, and distributed across the map of China.  I randomly generated a population of 

controls using two other methods, the uses of which did not lead to regression results 

significantly different from the ones reported here.  These additional results, and 

descriptions of the methods used to produce them, can be found in the Appendix.   

Proximity to nearest Ramsar site (of which there were 48 in the study period) 

values was calculated as the shortest direct distance to the edge of the wetland.  The 

Ramsar site identified also had to be contemporary to the outbreak (i.e., the site had to 

have acceded to the convention the year before the outbreak).  Proximity to nearest large 

water body – i.e., those larger than 1 square kilometer – values were also calculated as 

the shortest direct distance to the edge of the water body.  For the rice paddy variable, 

each outbreak was given a 20-km radius buffer zone, and the area in that buffer zone 

covered by rice paddy was estimated.  The per-capita income value associated with each 

outbreak was the officially reported value for the prefecture in which the outbreak was 

observed, for the year of occurrence. 
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Statistical analysis: The data generated by the GIS analysis were used to estimate 

a set of multivariate logistic regression models.  The general form of the models was:   

                                                    
Pr(yi =1) =

exp θi( )
exp θi( )+1 ,                                                   (4)  

                                                   
θi =α0 +

j

4

∑Xijβ j +εi ,                                                    (5) 

where Pr(yi=1) is the likelihood of a H5N1 poultry outbreak at location i (yi=0 in the 

absence of an outbreak), α0 is the intercept, ε is the error term, and Xi are the risk factors 

at location i: the proximity of the outbreak to the nearest Ramsar-designated wetland; the 

proximity of the outbreak to the nearest large water body; the amount of rice paddy land 

cover within a 20-kim radius buffer of the point of outbreak; the per-capita income of the 

prefecture in which the outbreak occurred (a proxy for the effectiveness of public health 

and biosecurity measures).   

General linear models of this kind are frequently used in epidemiological studies 

of avian influenza, including for H5N1 in wild birds and poultry (Fang et al., 2008; Fang 

et al., 2013; Si et al., 2013a; Si et al., 2010).  This study extends the analysis by focusing 

explicitly on the epidemiological effect of protected areas, which the existing literature 

has ignored.  The dependent variable used across all models was the presence or absence 

of a H5N1 poultry outbreak.  Explanatory variables across all models were: the proximity 

of the outbreak to the nearest Ramsar-designated wetland; the proximity of the outbreak 

to the nearest large water body; the amount of rice paddy land cover within a 20-kim 

radius buffer of the point of outbreak; the per-capita income of the prefecture in which 

the outbreak occurred (a proxy for the effectiveness of public health and biosecurity 
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measures).  The proximity measures were calculated as normalized indices of 100, based 

on the formula: ((maximum distance – location distance)/maximum-distance)*100.  A 

value of 100 represents maximal proximity – e.g., the location of the outbreak is within 

the Ramsar site, while a value of 0 represents maximal distance away. 

 

4.3. Results 

Our results are summarized in Figure 10, and in the Appendix (which includes results 

from alternative statistical models).  All risk factors in our analysis had high levels of 

statistical significance – below the 0.1% p-value threshold.  I found that proximity to a 

Ramsar site was associated with a reduced risk of an H5N1 poultry outbreak.  

Conversely, proximity to a large unprotected water body and the density of rice paddy 

were both associated with an increased risk of an outbreak.  While reliable data on wild 

and domestic bird abundance in these different habitats do not exist, it is known that rice 

paddy indicates the presence of free-ranging poultry in most areas.  Domestic waterbirds 

such as ducks and geese are often raised in rice paddy—a traditional rearing method that 

has been encouraged by agricultural policy in many provinces.  Rice paddy is therefore 

also a proxy for “at-risk” domestic birds. 
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Figure 10 

The relative risks of different environmental and socioeconomic factors in HPAI H5N1 

poultry outbreaks.  The odds-ratios and 95% confidence intervals are shown for each risk 

factor. 

 

  

 While I did not have direct measures of biosecurity, I found that the higher the 

per-capita GDP of a given area, the lower the likelihood of an outbreak.  Higher income 

levels mean more resources for conservation and public health, as well as higher 

standards for the implementation of regulations.  This is consistent with results reported 

in our earlier provincial-level analysis of H5N1 in China.  It reflects a “modernization 

effect” (Wu and Perrings, 2017a). 

 

4.4. Discussion 

This study hypothesizes that protection has two main epidemiological effects.  The first is 

that the segregation of wild birds and poultry, through restrictions on agriculture and 

animal husbandry at the boundaries of protected areas, reduces contact between infected 

wild and susceptible domestic birds.  In China, Ramsar sites have been accorded a high 
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priority for protection, given their status as key elements of a long-standing international 

convention (Jiang et al., 2015a; Wang et al., 2012).  A central feature of the protection of 

Ramsar sites has been the exclusion of agricultural activity, including the production of 

poultry. 

The second effect is that diversion of migratory wild birds away from 

farmlands—particularly from paddy fields where mixing between poultry and wild 

waterbirds is most common—reduces the abundance of infected wild waterbirds in 

agricultural areas.  Since migratory waterbirds prefer natural lakes and wetlands to 

human-dominated ones, farmlands in China benefit from the same “buffer effect” that has 

seen wild birds displaced to natural refugia across the world (Beatty et al., 2014; Gill et 

al., 2001).  

The relation between income and H5N1 outbreak risk reflects a number of 

different things. Biosecurity in this context covers both the way that poultry is produced, 

and the way that migratory waterbird habitat is protected. In the absence of direct 

measures of biosecurity, I took per-capita income as a proxy for the general quality of 

public health infrastructure, environmental protection, and biosecurity in livestock 

production and distribution (Hennessy and Wang, 2012).  At the same time, higher 

income could also mean greater consumption of poultry, and therefore increase risk.  

However, our results suggest that on balance more affluent areas in China had lower risk, 

suggesting they had better biosecurity and more resources to enforce the protection of 

habitats and therefore the separation of wild birds and poultry.  This is consistent with 

global evidence that more affluent, better-governed countries are more effective at 

enforcing protected areas and implementing waterbird conservation (Amano et al., 2018) 
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These results have important implications for the role that conservation can play 

in human and animal health.  It has become increasingly evident that existing strategies to 

prevent avian influenza outbreaks have not been sufficient.  Disease risk mitigation has 

relied heavily on poultry vaccination and the monitoring and management of poultry 

supply chains.  However, in China as elsewhere, it is often impractical to implement such 

measures at a sufficiently large scale and for long enough to contain disease risks.  

Furthermore, undetected pathogen spread can occur even among vaccinated flocks 

(Poetri et al., 2014).  And while vaccination may offer protection against circulating 

strains, it provides no guarantee against the novel influenzas that are still emerging at the 

nexus of wild birds, poultry, and people.   

Policies that lower the probability of wild bird-poultry transmission could be a 

useful complement to efforts at vaccinating high-risk flocks, as well as to efforts to 

control outbreaks after they occur.  Our findings suggest that protecting wetlands and 

lakes – the most important migratory waterbird habitat – is an effective means of doing 

so.  China is in the process of establishing a national park system to standardize and 

improve habitat protection across the country.  Current protected areas in China are 

relatively successful at protecting avian species (Xu et al., 2017), but greater protection of 

wetland habitats is still need to secure the long-term ecological prospects of waterbirds in 

the country (Yang et al., 2017; Zhang et al., 2017).  Further expansion and consolidation 

of the country’s protected areas could improve disease risk mitigation at the wild bird-

poultry interface.   

Avian influenza is a complex epidemiological phenomenon.  Despite a growing 

body of research, there is still an incomplete understanding of its many processes, 
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particularly with respect to the role of avian ecology (Yasue et al., 2006).  While I found 

a strong relationship between habitat protection and H5N1 risk in the largest country 

infected by the disease, I have yet to test and quantify the mechanisms involved in this 

relationship.  Nonetheless, what makes the “conservation-as-biosecurity” effect identified 

in this study potentially important for policy is that disease risk mitigation strategies that 

target the environmental drivers of contact between infected wildlife and susceptible 

livestock may be more cost effective in the long run than strategies that take contact as 

given (Pike et al., 2014).  Concern about avian influenza could undermine public 

willingness to pay for migratory bird conservation(Brouwer et al., 2008).  Therefore, 

providing scientific evidence for avian conservation as a means of preventing avian 

influenza could help turn a potential conflict between two meaningful objectives into a 

“win-win” solution that advances both.  
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CHAPTER 5 

THE LIVE POULTRY TRADE, MIGRATORY BIRDS, AND THE INTERNATIONAL 

SPREAD OF H5N1 

 

5.1. Introduction 

In recent decades, the world economy has been characterized by increasing 

interconnectedness.  This process of “globalization” has included the rapid growth of 

international trade.  While recognized as being essential for economic growth, trade 

networks have also facilitated the negative externality of pathogen dispersal, as many 

infectious diseases are borne by commercially traded animals and animal products (Levin 

and D'Antonio, 2003; Manuja et al., 2014; Pavlin et al., 2009; Perrings, 2010, 2016).  

These dynamics have been highlighted by recent epidemics of animal-borne pathogens 

such as foot-and-mouth disease or avian influenza – the focus of this study. 

Much of the existing literature on trade-related disease risks has explored the links 

between disease outbreaks, international trade and travel patterns, and attendant 

economic and regulatory structures.  The likelihood of a pathogen moving from one 

location to another is frequently taken to be a function of the destination’s environmental 

suitability and its distance from the origin, as well as the biosecurity measures undertaken 

at both locations (Hufnagel et al., 2004; Kimball, 2016; Tatem et al., 2006).  Much 

international trade is conducted under the auspices of regional agreements, usually 

involving geographically proximate countries.  Regional trade blocs differ in 

socioeconomic and regulatory characteristics as well as environmental conditions.  This 

makes regional trade blocs an important topic of epidemiological research (Otte et al., 
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2004).  For instance, analysis of highly pathogenic avian influenza H5N1 (henceforth 

H5N1) in east and southeast Asia found significant phylogenetic clustering, indicating 

high frequency circulation among adjacent countries (Wallace and Fitch, 2008; Wallace 

et al., 2007). 

Another important pathway for the regional, as well as global, spread of avian 

influenza is bird migration.  Large migratory corridors crisscross Africa and the Eurasian 

landmass (Figure 11), which are the principal areas of H5N1 infections.  Migratory 

waterbirds alight in wetlands, lakes, and nearby agricultural lands for wintering and 

breeding, in the process sharing habitats with domestic fowl such as ducks and chicken.  

By means of physical mixing and environmental pollution, wild birds can transmit avian 

influenza to poultry, which in turn become the primary source of human infections 

(Kilpatrick et al., 2006). 
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Figure 11 

The major migratory bird flyways that cover Africa, Europe, and Asia.   

 

 

In this study, I focus on the three regions of the world where the H5N1 epidemic 

has been most intense (as indicated by numbers of outbreaks) and extensive (as 

represented by contiguousness of infected countries): Europe, West Africa, and Southeast 

Asia.  These regions also happen to be framed, respectively, by three regional trade blocs: 

the European Union (EU), the Economic Community of West Africa (ECOWAS), and 

the Association of Southeast Asian Nations (ASEAN) (Figure 12).  The relative 

contributions to H5N1 spread by the two aforementioned pathways are quantified using a 

set of relevant indicators and proxy variables.  Additionally, this study explores how 

socioeconomic and environmental differences between these three regions may account 
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for contrasting impacts from different risk factors.  There is unlikely to be a “one-size-

fits-all” solution to the control of avian influenza risks, applicable in every epidemic 

location.  The development of effective policy responses needs to take these differences 

into account. 

 

Figure 12 

The three trade blocs heavily impacted by avian influenza under study: the European 

Union (EU), the Economic Community of West Africa (ECOWAS), and the Association 

of Southeast Asian Nations (ASEAN). 
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5.2. Methodology 

The conceptual model underpinning the statistical analysis in this study is based on a 

socio-ecological, or coupled human-environmental, systems approach. Kilpatrick et al. 

(2006) explored the relative risks posed by migratory birds and trade in the spread of 

H5N1 in the early years of the global epidemic.  This dual-pathways approach also 

provides the basis of our conceptual framework, but with an additional decade of data on 

both outbreaks and risk factors.  There is a large and growing literature on the 

relationship between trade and the spread of infectious diseases.  Studies have identified a 

strongly positive relationship between the opening of new markets and the introduction of 

a range of animal and plant diseases, and between growing trade volumes and the 

probability that these diseases will establish and spread (Cassey et al., 2004; Dalmazzone, 

2000; Dehnen-Schmutz et al., 2010; Drew, 2011; Fèvre et al., 2006; Karesh et al., 2005; 

Karesh et al., 2012; Li et al., 2005; Pavlin et al., 2009; Rweyemamu and Astudillo, 2002; 

Semmens et al., 2004; Smith et al., 2009; Tatem, 2009; Tatem et al., 2006; Vila and 

Pujadas, 2001; Xu et al., 2004).  In terms of trade-related risks, I focus on the imports of 

live poultry as the primary source of trade-related avian influenza risk.  Other poultry 

products, such as packaged meat and eggs, pose significantly lower risk of transmission.  

Although avian influenza can persistent in frozen meat, contact with that meat is unlikely 

to cause infection (Cobb, 2011b).  Furthermore, HPAIs are lethal to egg embryo (Cobb, 

2011a). 

With respect to wild bird migration as a pathway for H5N1 spread, I use habitat 

types as proxies for the presence and scale of migratory bird populations, and their 

likelihood of mixing with domestic birds or polluting shared environments.  In particular, 
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I use lakes, wetlands, and agricultural areas as habitat proxies because they have been 

consistently identified as wintering and breeding grounds for migratory birds and as 

places where these wild species may have a high likelihood of coming into contact with 

free-ranging poultry, especially if these habitats are unprotected; these ecological 

dynamics have been found in all three of the regions analyzed in this study (Bragstad et 

al., 2007; Cecchi et al., 2008; Ducatez et al., 2006; Gaidet et al., 2007; Gilbert et al., 

2008; Park and Glass, 2007; Si et al., 2010; Tian et al., 2015). 

 

5.2.1. Data 

Data on trade in live poultry were obtained from the United Nations’ Comtrade Database 

(comtrade.un.org) and resourcetrade.earth, a project of the Royal Institute of International 

Affairs (www.chathamhouse.org).   Country-level statistics on socioeconomic and agro-

ecological conditions were taken from the United Nations’ Food and Agriculture 

Organization (www.fao.org/faostat/en/) and the World Bank (data.worldbank.org).  The 

indicator for wild bird habitat used in this study was the set of “Important Bird and 

Biodiversity Areas” (IBAs) for “migratory and congregatory waterbirds” identified by 

BirdLife International (datazone.birdlife.org).  In their 2006 analysis H5N1 spread, 

(Kilpatrick et al., 2006) also identified IBAs as a proxy for migratory birds and the 

infection risks they pose.  Data on the annual biosecurity measures targeting avian 

influenza undertaken by each country was gathered from the World Organisation for 

Animal Health (OIE) (www.oie.int).  Data for 2016 was missing for certain variables; in 

these cases, the gap was filled by extrapolating the missing data as a linear trend of the 

preceding 11 years, for the sake of simplicity.  Additionally, in any given year, there were 



 71 

1 to 4 countries that did not provide a report of biosecurity measures to the OIE; I assume 

that this indicates an absence of action, and the dataset records these cases as zeroes.  

Finally, while data on the population of live chickens were available for all countries, 

those on live duck and other poultry populations were only reported for a fraction of the 

countries.  Therefore, I used live chickens as a proxy for live poultry more generally, and 

assume that agricultural land – where free-ranging chickens, ducks, and geese are 

commonly raised in all three regions – also acts as a relevant proxy for susceptible 

poultry. 

 

5.2.2. Statistical Analysis 

In this study, I used multiple linear regression models over an unbalanced panel dataset 

(the membership of the EU changed over the timeframe).  Generalized linear models 

(GLM), of which linear regression is a subclass, are frequently used in economics, 

epidemiology, and ecology.  In the study of avian influenzas, for instance, such models 

have been used to predict the spread of H5N1 (Fang et al., 2008; Martin et al., 2011; Si et 

al., 2013b) and H7N9 (Fang et al., 2013; Gilbert et al., 2014; Zhu and Peterson, 2014) as 

a function of myriad environmental factors.  GLMs are “general” because they can 

incorporate more than one predictor variable and “linear” because the response variable is 

expressed as a linear function of those predictors.  As Hogerwerf et al. (2010), who used 

multiple linear regression to analyze the agro-ecological drivers of H5N1 persistence, 

notes, GLMs are well suited to epidemiological studies because of their flexibility 

regarding data type, simplicity of application to different diseases (and hence familiarity 
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and reproducibility by other researchers), and frequency of use in both the natural and 

social sciences (which promotes interdisciplinary investigations).  

The response variables in all models were a log transformation of the number of 

H5N1 poultry outbreaks in a given country in a given year.  The log transformation was 

applied to account for the wide disparities in the numbers of the outbreaks across 

countries (e.g., in 2010, Indonesia recorded 1206 outbreaks while Romania, the only EU 

country to be infected that year, had only two).  In addition to reflecting the differing 

directions and intensities of risk factors, this wide range could also be due to under-

reporting, which could be widespread for H5N1 at the international level (Hogerwerf et 

al., 2010).  Differences in reporting conventions may also play a role, as a series of 

outbreaks in a given country could be reported separately but be treated as a single event 

in another.  The predictor variables fall into five categories: confounding, modernization, 

agro-ecological, trade, and biosecurity.  I developed three types of regression models.  

The first uses the confounding, agro-ecological, and modernization variables as 

predictors.  The second incorporates the trade variables and the third further adds the 

biosecurity measures, which are dummy variables (e.g., presence/absence).   

Each model type was run for all regions together and for each region separately.  

The first model specification (Model 1) included as predictors: land area, human 

population, per-capita GDP in purchasing power terms, agricultural area, wild bird 

habitat area, and live chicken population.  The second specification (Model 2) includes 

these above predictors in addition to intra-regional trade bloc and extra-bloc imports of 

live poultry.  The third specification (Model 3) includes all these along with the 

biosecurity measures: border precautions, general surveillance, vaccination prohibition, 
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and wild disease reservoir management.  These are categories of OIE-reported 

biosecurity measures taken against avian influenza.  The general form of the estimated 

models was:   

                      yit = β0 +
j=1

6

∑X jitβ j +
k=1

2

∑Zkitβk +
s=1

4

∑Usitβs +ui +εit  ,                             (6) 

where yit denotes the number of poultry outbreaks in country i in year t, X includes the 

predictors for Model 1, Z includes the additional predictors for Model 2, U includes the 

additional predictors for Model 3, and uit and eit are the “between” and “within” errors 

respectively. 

To account for heteroskedasticity, the models used robust standard errors.  

Although both random effects and fixed effects were used, Hausman tests conducted at 

the all-regions level indicated that random effects were more appropriate, as the p-values 

exceeded the 5% threshold below which fixed-effects regression is conventionally 

considered necessary.   Fixed effects are often preferred, particularly in economic 

analysis, because they better elucidate the impacts of predictors that change over time, 

and therefore produce less biased coefficient estimates by omitting time-invariant 

characteristics.  However, this omission may mean that the important causes of 

differences between individuals – countries in this case – are underestimated.  Many 

factors that influence the likelihood and number of outbreaks in a given country are not 

likely to change significantly over the course of several years, or even a decade.  In our 

dataset, for example, the amount of land covered by wild bird habitat is time-variant, and 

others, such as agricultural land and even per-capita GDP for many countries, 

experienced relatively modest variations over the timeframe of the study.  In this case, 



 74 

and as the Hausman diagnostics indicate, random effects are more appropriate.  

Nonetheless, I estimated both random- and fixed-effects models, in order to more 

comprehensively capture the international as well as inter-temporal dynamics of H5N1 

spread.  Finally, since the data used in this analysis are reported annually, and H5N1 has 

been a fast-moving epidemic, particularly among poultry, I did not use a lag structure in 

our statistical analysis.  In other words, I assumed that the outbreaks in a given year were 

independent of the conditions and biosecurity measures of the previous year.   

 

5.3. Results 

Regressions results from all models, including both random and fixed effects, are 

reported in Tables 3-6.  At the all-regions level, the results for the random- and fixed-

effects models were very similar, with the same set of predictor variables being 

statistically significant (i.e., p-values below the 5% or 10%) and the same direction of 

impact on the response variable.  This set of predictors was human population (positive 

direction), per-capita GDP (negative direction), intra-trade bloc live poultry imports 

(negative direction), extra-trade bloc live poultry imports (positive direction), and the 

biosecurity measure of surveillance (negative direction).  Additionally, although the 

coefficient values for the same predictor differed between the two effects type, all pairs 

were within the same order of magnitude.  The only exception to this consistency was the 

migratory waterbird habitat variable, percent of land area covered by IBAs for migratory 

and congregatory waterbirds: it was statistically significant and negative (i.e., had a 

mitigating impact on H5N1 poultry outbreaks) for the fixed-effects model but was not 

significant for the random-effects model.  The R-squared for the random-effects model 
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was significantly higher than that for the fixed-effects model (0.451 vs. 0.0181), and the 

former’s “between R-squared” value was particularly high (0.682).  Between R-squared 

measures the variation among individuals in a panel dataset (as opposed to “within R-

squared,” which measures the variation of an individual over time).  As the individuals in 

this dataset are countries, a high between R-square value means the model has explained, 

to a relatively high degree, why the incidence of outbreaks differed across countries. 

 

Table 3 

Results for regression models of agro-ecological, trade-related, and biosecurity factors of 

H5N1 poultry outbreaks across all member countries of the Association of Southeast 

Asian Nations (ASEAN), the Economic Community of West African States (ECOWAS), 

and the European Union (EU) from 2005-2016.  Regressor coefficients are reported; 

statistically-significant factors are marked by asterisks.  

Variables Units 

 

Model 1 Model 2  Model 3 

Random 

Effects 
Fixed Effects 

Random 

Effects 
Fixed Effects 

Random 

Effects 
Fixed Effects 

Population # people 1.32x10-8 ** 4.51x10-8 ** 1.35x10-8 ** 4.47x10-8 ** 1.36x10-8 ** 4.51x10-8 ** 

Area km2 -4.18x10-7 -0.0000225 -4.31x10-7 -8.41x10-6 -4.01x10-7 -2.94x10-6 

Agricultural 

land 
% land area -0.00769 -0.0106 -0.00736 -0.00691 -0.00777 -0.00923 

Live 

chickens 
1000 birds 1.30x10-6 4.75x10-7 1.28x10-6 5.42x10-7 1.25x10-6 4.22x10-7 

IBA for 

waterbirds 
% land area -0.000132 -0.176 -0.000107 -0.164 * -0.000140 -0.154 ** 

Per-capita 

GDP 

current 

international 
-9.74x10-6 ** 

-0.0000171 

** 
-8.37x10-6 ** 

-0.0000138 

** 
-8.05x10-6 ** -0.0000108 * 
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$ 

Intra-bloc 

live poultry 

imports 

kg    -5.84x10-6 ** -4.82x10-6 ** -5.10x10-6 ** -3.14x10-6 ** 

Extra-bloc 

live poultry 

imports 

kg   0.00179 ** 0.00189 ** 0.00177 ** 0.00184 ** 

Border 

precautions 

presence/ 

absence 
    0.125 0.196 

General 

surveillance 

presence/ 

absence 
    -0.299 * -0.370 * 

Vaccination 

prohibited 

presence/ 

absence 
    0.0506 0.122 

Wild 

reservoirs 

management 

presence/ 

absence 
  

 

 0.153 0.175 

Observations 621 621 621 621 621 621 

Within R2 0.0319 0.0410 0.0683 0.0785 0.0964 0.1082 

Between R2 0.6930 0.0114 0.6982 0.0072 0.6819 0.0277 

Overall R2 0.4319 0.0063 0.4500 0.0049 0.4507 0.0181 

Rho 0.2930 0.9978 0.3070 0.9974 0.3293 0.9971 

** statistically significant at the 5% level 

* statistically significant at the 10% level 

 

Table 4 

Results for regression models of agro-ecological, trade-related, and biosecurity factors of 

H5N1 poultry outbreaks across member countries of the Association of Southeast Asian 

Nations (ASEAN) from 2005-2016.  Regressor coefficients are reported; statistically-

significant factors are marked by asterisks.  

Variables Units  Model 1 Model 2 Model 3 
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Random 

Effects 
Fixed Effects 

Random 

Effects 
Fixed Effects 

Random 

Effects 
Fixed Effects 

Population # people 6.20x10-8 ** 1.92x10-7 8.96x10-8 ** 1.65x10-7 1.13x10-8 1.83x10-7 

Area km2 -5.96x10-6 * 0.00353 ** -8.29x10-6 0.00417 ** -1.13x10-6 0.00445 ** 

Agricultural 

land 
% land area -0.174 ** -0.647 ** -0.244 ** -0.549 ** -0.0467 ** -0.593 ** 

Live 

chickens 
1000 birds 9.85x10-7 -1.02x10-6 4.08x10-7 -4.59x10-7 1.69x10-6 -1.18x10-6 

IBA for 

waterbirds 
% land area -0.0290 0.322 -0.0577 0.190 -0.0122 0.380 

Per-capita 

GDP 

current 

international 

$ 

-0.0000522 * -7.25x10-6 -0.0000447 * -8.48x10-6 
-0.0000317 

** 
-8.33x10-7 

Intra-bloc 

live poultry 

imports 

kg    -4.86x10-6 1.00x10-6 -0.0000108 0.0000112 

Extra-bloc 

live poultry 

imports 

kg   0.00212 ** 0.00171 ** 0.00222 ** 0.00187 ** 

Border 

precautions 

presence/ 

absence 
    0.398 1.23 ** 

General 

surveillance 

presence/ 

absence 
    -0.625 -0.606 * 

Vaccination 

prohibited 

presence/ 

absence 
    -1.00 * -0.267 

Wild 

reservoirs 

management 

presence/ 

absence 
    0.881 ** -0.533 * 

Observations 120 120 120 120 120 120 

Within R2 0.1626 0.3038 0.2596 0.3472 0.2036 0.4759 

Between R2 0.4346 0.5503 0.2800 0.5504 0.8057 0.5503 

Overall R2 0.3252 0.3674 0.2346 0.3674 0.5921 0.3674 

Rho 0.7242 1.000 0.8798 1.000 0.0000 1.000 
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** statistically significant at the 5% level 

* statistically significant at the 10% level 

 

Table 5 

Results for regression models of agro-ecological, trade-related, and biosecurity factors of 

H5N1 poultry outbreaks across all member countries of the Economic Community of 

West African States (ECOWAS) from 2005-2016.  Regressor coefficients are reported; 

statistically-significant factors are marked by asterisks.  

Variables Units 

 

Model 1 Model 2 Model 3 

Random 

Effects 
Fixed Effects 

Random 

Effects 
Fixed Effects 

Random 

Effects 
Fixed Effects 

Population # people 6.05x10-9 3.85x10-8 ** 7.34x10-9 4.21x10-8 ** 1.82x10-9 1.95x10-8 * 

Area km2 1.30x10-8 0 -1.40x10-8 0 -3.50x10-8 0 

Agricultural 

land 
% land area 0.00247 0.00434 0.00233 0.00907 -0.00461 0.00626 

Live 

chickens 
1000 birds 2.02x10-7 0.0000112 -3.24x10-7 0.0000113 3.12x10-6 9.58x10-6 

IBA for 

waterbirds 
% land area -0.00744 * 0 -0.00646 0 -0.0119 ** 0 

Per-capita 

GDP 

current 

international 

$ 

0.000198 * 0.0000887 0.000173 0.000172 0.000290 ** 0.000303 

Intra-bloc 

live poultry 

imports 

kg    0.0122 ** 0.0124 ** 0.0138 ** 0.0107 ** 

Extra-bloc 

live poultry 

imports 

kg   -0.000638 -0.000990 ** -0.000895 * -0.000815 
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Border 

precautions 

presence/ 

absence 
    -0.552 ** -0.741 

General 

surveillance 

presence/ 

absence 
    0.103 0.0430 

Vaccination 

prohibited 

presence/ 

absence 
    0.476 ** 0.540 

Wild 

reservoirs 

management 

presence/ 

absence 
    0.477 ** 0.266 

Observations 180 180 180 180 180 180 

Within R2 0.0477 0.0582 0.0603 0.0782 0.1506 0.1722 

Between R2 0.8843 0.8672 0.8895 0.8733 0.8752 0.8314 

Overall R2 0.2492 0.2354 0.2648 0.2420 0.3303 0.2786 

Rho 0.0000 0.7844 0.0000 0.8101 0.0000 0.6304 

** statistically significant at the 5% level 

* statistically significant at the 10% level 

 

Table 6 

Results for regression models of agro-ecological, trade-related, and biosecurity factors of 

H5N1 poultry outbreaks across all member countries of the European Union (EU) from 

2005-2016.  Regressor coefficients are reported; statistically-significant factors are 

marked by asterisks.  

Variables Units 

 

Model 1 Model 2 Model 3 

Random 

Effects 
Fixed Effects 

Random 

Effects 
Fixed Effects 

Random 

Effects 
Fixed Effects 

Population # people 6.34x10-9 ** 1.37x10-7 9.46x10-9 * 1.09x10-7 1.07x10-8 ** 1.29x10-7 

Area km2 3.88x10-7 -0.0000108 2.65x10-7 -8.15x10-6 2.79x10-7 -0.0000149 

Agricultural 

land 
% land area 0.00333 * 0.0410  ** 0.00293 0.0395 * 0.00311 0.0399 
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Live 

chickens 
1000 birds -2.47x10-6 ** -8.66x10-6 * -2.98x10-6 ** -8.03x10-6 -3.51x10-6 ** -8.58x10-6 

IBA for 

waterbirds 
% land area 0.0000163 -0.109 ** 4.30x10-6 -0.115 ** 0.000116 -0.103 ** 

Per-capita 

GDP 

current 

international 

$ 

-1.74x10-6 -9.03x10-6 * -1.51x10-6 -7.34x10-6 -3.04x10-7 -9.52x10-6 * 

Intra-bloc 

live poultry 

imports 

kg    -2.82x10-6 -3.42x10-6 ** -3.34x10-6 * -2.22x10-6 

Extra-bloc 

live poultry 

imports 

kg   -0.00413 -0.00517 -0.00471 -0.00459 

Border 

precautions 

presence/ 

absence 
    0.0377 -0.116 

General 

surveillance 

presence/ 

absence 
    -0.0476 -0.0706 

Vaccination 

prohibited 

presence/ 

absence 
    0.107 ** 0.188 ** 

Wild 

reservoirs 

management 

presence/ 

absence 
    0.0657 0.0812 

Observations 321 321 321 321 321 321 

Within R2 0.0835 0.1134 0.0986 0.1319 0.0970 0.1552 

Between R2 0.3471 0.0384 0.2584 0.0319 0.3218 0.0271 

Overall R2 0.0682 0.0051 0.0858 0.0043 0.1075 0.0038 

Rho 0.0079 0.9992 0.0045 0.9993 0.0187 0.9992 

** statistically significant at the 5% level 

* statistically significant at the 10% level 

 

There were differences across trade regions.  In the random-effects model, 

ECOWAS diverged from all-regions conditions and from ASEAN with respect to per-
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capita GDP and extra-bloc imports: while the two predictors were, respectively, risk-

decreasing and risk-increasing at the all-regions level and in ASEAN, they had the 

opposite impacts in ECOWAS.  Furthermore, ECOWAS differed from the all-regions 

level and from the EU in terms of intra-bloc imports: while this was risk-decreasing for 

the former two, it was risk-increasing for ECOWAS.  Finally, there were predictors that 

were statistically insignificant at the all-regions level but had a significant effect within 

different regions.  For ASEAN, agricultural land cover was a mitigating factor for 

outbreaks while wild disease reservoir management showed a strong positive correlation 

with outbreaks.  For ECOWAS, wild waterbird habitats and border precautions had a 

mitigating effect on outbreaks while vaccination prohibition and wild reservoir 

management had a positive effect.  In the EU, the population of live chickens had a 

strong negative correlation with outbreaks, while vaccination prohibition, similar to the 

case with ECOWAS, was positively correlated.  

 

5.4. Discussion 

Among the predictors, per-capita GDP perhaps captures the broadest array of underlying 

mechanisms.  Generally, it is a measure of modernization.  Its mitigating effect on 

outbreaks is consistent with the evidence that industrial livestock production may protect 

poultry from contact with disease-carrying wild birds.  Unlike traditional methods of 

free-range or “backyard” husbandry, factory production minimizes the likelihood of 

poultry intermingling with wild birds or being exposed to environmental pathogen 

pollution.  At the same time, industrial livestock production – for all its epidemiological, 

ecological, and ethical problems – allows for more timely and widespread disease 
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surveillance and vaccination, and for the implementation of regulations more broadly 

(Hennessy and Wang, 2012).   

 However, the positive correlation of per-capita GDP and poultry outbreaks for 

ECOWAS suggests that this “modernization effect” is not a linear relationship, and that 

other mechanisms may also be at play.  To test this, I ran the all-regions, all-predictors 

regression model with a quadratic term, per-capita GDP-squared (Table 7).  Both per-

capita GDP and per-capita GDP-squared were statistically significant, and had opposite 

signs.  This indicates an environmental Kuznets Curve (EKC)-type relationship between 

affluence and avian influenza risk, with ECOWAS (a low-income region) on the 

ascending slope, ASEAN (a middle-income region) at the top of the curve, and EU (a 

high-income region) on the descending slope.  At low levels of economic development, 

increasing affluence may mean greater production and consumption of livestock, an 

important source of protein.  This is coupled with lower levels of regulation and 

biosecurity, as a greater share of poultry husbandry is done traditionally.  At high levels 

of economic development, in addition to more modern livestock production methods, 

protein demand may already have saturated.  This means higher income will not 

necessarily reflect greater poultry numbers, much less of the highly-susceptible, free-

ranging kind. 

 

Table 7 

Results for regression models of agro-ecological, trade-related, and biosecurity factors of 

H5N1 poultry outbreaks across all member countries of the Association of Southeast 

Asian Nations (ASEAN), the Economic Community of West African States (ECOWAS), 
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and the European Union (EU) from 2005-2016, with the additional quadratic term for 

per-capita GDP.  Regressor coefficients are reported; statistically-significant factors are 

marked by asterisks.  

Variables Units 

 

Random Effects Fixed Effects 

Population # people 1.39x10-8 ** 4.77x10-8 ** 

Area km2 -5.03x10-7 -6.07x10-6 

Agricultural 

land 
% land area -0.00770 -0.00866 

Live chickens 1000 birds 1.33x10-6 5.50x10-7 

IBA for 

waterbirds 
% land area 0.000148 -0.0317 

Per-capita 

GDP 

current 

internation

al $ 

-0.0000278 ** -0.0000469 ** 

Per-capita 

GDP-squared 
- 2.52x10-10 ** 3.39x10-10 ** 

Intra-bloc live 

poultry 

imports 

kg  -4.65x10-6 ** -2.54x10-6 * 

Extra-bloc 

live poultry 

imports 

kg 0.00171 ** 0.00177 ** 

Border 

precautions 

presence/ 

absence 
0.164 0.204 

General presence/ -0.298 * -0.345 * 
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surveillance absence 

Vaccination 

prohibited 

presence/ 

absence 
0.109 0.143 

Wild 

reservoirs 

management 

presence/ 

absence 
0.182 * 0.195 * 

Observations 621 621 

Within R2 0.1006 0.1137 

Between R2 0.7080 0.0728 

Overall R2 0.4684 0.0516 

Rho 0.3210 0.9474 

** statistically significant at the 5% level 

* statistically significant at the 10% level 

 

 Extra-trade bloc live poultry imports may be a significant source of avian 

influenza risk because they do not meet to the sanitary and phytosanitary standards 

embedded in many free-trade agreements.  The EU’s common market and the ASEAN 

free trade regime in particular have long-standing and standardized protocols, in 

accordance with the World Trade Organization’s Agreement on the Application of 

Sanitary and Phytosanitary Measures.  Other studies have come to similar conclusions.  

For instance, a study found that intra-EU imports of live poultry to Spain did not pose a 

significant threat of avian influenza introduction (Sanchez-Vizcaino et al., 2010), while 

another of Vietnam found that extra-ASEAN imports of live poultry increased the risk of 

introduction (Desvaux et al., 2016).  That intra-bloc live poultry imports are risk-

mitigating may, correspondingly, be a reflection of a “substitution effect” in which 
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imports of safer intra-bloc poultry crowds out riskier extra-bloc imports.  ECOWAS is 

the exception, inverting the dynamics – extra-ECOWAS imports are risk-mitigating 

while intra-bloc imports are risk-increasing.  This is likely due to poor internal 

biosecurity, such as lax standards and inconsistent execution of inspections.  In this case, 

imports from more biosecure countries could be risk reducing.  At the same time, it could 

also be due to low regulatory standards within the ECOWAS trade bloc (Hughes et al., 

2008), as harmonized sanitary and phytosanitary standards for its 15 member states were 

only adopted in 2010.  Even then, progress has been slow: as of 2017, most ECOWAS 

states had yet to submit legislation for international certification (Bachabi et al., 2017).   

Of the biosecurity measures, only surveillance was significant at the all-regions 

level.  General vigilance to poultry production and trade, as well as of wild waterbirds, is 

likely to reduce outbreaks.  The symptoms of H5N1 are acute and can be conspicuous 

among poultry, especially compared to low pathogenic avian influenzas such as H7N9.  

The divergent impacts of the other biosecurity measures across regions may be a 

reflection of regional disparities or post-hoc implementation (i.e., measures are 

undertaken after an outbreak has already occurred in the country).  This may be 

especially true for vaccination prohibition, which has a positive correlation to outbreaks 

for ECOWAS and EU.  In addition to signaling a lack of appropriate vaccination, such 

prohibition is associated with livestock culling, which is a post-outbreak measure.  For 

poultry, vaccination is often prohibited because the practice makes it difficult to 

distinguish infected from vaccinated flocks, hobbling the efficiency of culling (Callahan, 

2009).  The management of wild disease reservoirs can differ widely across countries, but 

techniques include: vaccination; treatment of infections with drugs; fencing off infected 
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populations; draining, flooding, or burning the environment; population translocation; 

reproduction reduction; and culling (World Organization for Animal Health, 2010).  As 

with vaccination prohibition, many of these measures may be post-hoc, therefore not 

reflecting the efficacy of preventative management. 

In their survey of the international spread of H5N1, Kilpatrick et al. (2006) found 

that transmission into Europe more likely to be caused by wild birds, into Southeast Asia 

by the poultry trade, and into Africa by a more even balance of both.  Our results suggest 

that after introduction into these regions, inter-country spread had differing dynamics.  

While regional trade facilitated H5N1 spread among West African countries, trade among 

members of their respective free trade agreements did not increase cross-border 

transmission in Europe and Southeast Asia.  In these latter two areas, greater risk was 

posed by out-of-region poultry imports.  Kilpatrick et al. (2006) do not make the 

distinction between intra-regional trade and international trade more broadly, but in the 

decade since their analysis, the continued spread of H5N1 points to it as being an 

important factor, particularly in the context of relevant biosecurity measures. 

 

5.5. Conclusion 

In recent decades, avian influenzas have emerged as a major threat to human and animal 

health across the world.  In particular, HPAI H5N1, which was first isolated in 1996, has 

been the most widespread and among the most devastating in terms of livestock and 

human mortality.  It has inflicted severe losses to poultry stocks as well as caused 

hundreds of human deaths.  Even today, as other avian influenzas have become epidemic, 

H5N1 remains in circulation among wildlife and livestock.  Identifying and quantifying 
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the mechanisms of its international spread can help lay the groundwork for prediction and 

mitigation, and may also provide an instructive framework for the management of other 

avian influenzas. 

In this study, I identified key risk factors for H5N1 spread among countries, 

particularly as facilitated or mitigated by regional trade and biosecurity measures.  

Differing agro-ecological and socioeconomic conditions across the trade regions were 

shown to influence epidemic dynamics in different ways, with certain factors being risk-

enhancing or risk-decreasing in one region but having the opposite effect, or no 

significant effect, in another.  In policy terms, there is no one-size-fits-all solution to 

preventing avian influenza outbreaks.  The particular conditions, including those related 

to the trade agreements and associated regulatory standards, of a given region need to be 

carefully considered.  But overall, biosecurity measures are potentially effective at 

controlling H5N1 risks, and should be undertaken as a means to forestall spread – in 

general, mitigation of epidemics is significantly more cost-efficient than suppression 

(Pike et al., 2014).  On-farm and other forms of domestic biosecurity may be more 

important than trade-related measures, but where the protection of trade pathways is 

weak, the risk of avian influenza spread is clearly higher. 
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CHAPTER 6 

CONTROLLING AVIAN INFLUENZA RISKS IN CHINA: A REVIEW OF POLICIES 

AT THE LOCAL, NATIONAL, AND GLOBAL LEVELS 

 
6.1. Introduction 

Over the past two decades, avian influenzas have become a major concern for livestock 

and public health across the world.  Outbreaks among poultry have increased globally, 

with consistently high mortality rates.  Between 1999 and 2003, poultry fatality from 

H5N1 exceeded 50 million birds in the European Union (Capua and Marangon, 2006), 

and during the 2003-2004 Asian epidemic, Vietnam lost 44 million birds, or roughly 

17.5% of the country’s total stock, while Thailand lost 29 million birds, or 14.5% of the 

national total.  Outbreaks cause mass die-offs or prompt mass slaughter to stem disease 

spread.  For instance, the 1997 H5N1 outbreak in Hong Kong led to the culling of 1.3 

million poultry.  In the winter of 2016-2017, 1.67 million Japanese chickens were culled 

over fears of H5N6 (Reuters, 2018).  The ramifications of such outbreaks and the 

measures they prompt can extend beyond narrowly agricultural concerns.  In the winter 

of 2017-2018, fears of an H5N8 epidemic prompted mass culling in Iran, leading to a 

major spike in the prices of poultry meat and eggs – important dietary staples for a 

Muslim-majority population.  This precipitous inflation coincided with broader economic 

difficulties and helped spark nation-wide protests (Vahdat and Gambrell, 2018). 

Although far fewer, human infections have also been characterized by high 

mortality rates, with the majority of cases being in Asia.  Given the convergence of risk 

factors within its borders, along with its vast geographic, economic, and demographic 
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scale, China in particular has been a country of concern – in the words of Davis (2005), it 

has been the world’s “cradle of influenza” (see Figure 13).  Both highly pathogenic 

H5N1 and H7N9 influenzas emerged in China and have since spread across the country 

and beyond.  These two strains have been the most lethal to people of all contemporary 

avian influenzas.  To date there have been 45 confirmed human cases of H5N1 in China, 

with a mortality rate of 67%.  The H7N9 epidemic, which emerged in Shanghai in 2013, 

has infected 681 people and killed 270.  Although differing in certain aspects of virology 

and ecology, the two influenzas share important epidemiological features.  Their ready 

transmissibility between wild and domesticated birds, and between infected poultry and 

people, are among the most important (Lai et al., 2016; Li et al., 2015). 

 

Figure 13 

Timeline of avian influenza poultry outbreaks and human cases in China, with the strains 

involved each year, 2004-2015. 
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* Poultry outbreaks, particularly from H9N2 and H7N9, may be over-reported: e.g., 

many reported outbreaks occur at the same location on the same day or within a few days 

of each other, therefore may be different manifestations of a continuous outbreak as 

opposed to being discrete events.   

Source: The Emergency Prevention System for Animal Health (http://empres-

i.fao.org/eipws3g/). 

 

China is traversed by several important migratory bird pathways, which are 

conduits of avian influenza spread.  Rice paddies also cover large sections of the country, 

providing habitats for both wild birds and free-ranging poultry.  This population overlap 

can facilitate interspecies influenza transmission (Gilbert et al., 2008; Martin et al., 2011; 

Paul et al., 2010).  Additionally, China has seen large increases in both wild bird and 

poultry numbers, the latter stimulated by rising consumer demand – per-capita 

consumption of poultry has risen from 1 kg to 9 kg over the past three decades (Pi et al., 

2014).  With rising poultry consumption, chickens, ducks, and other domestic bird 

species can act as an intermediary for human infection.  Once established within the 

poultry trade, avian influenzas can spread rapidly to China’s numerous live poultry 

markets (LPMs), as has been demonstrated by the H7N9 epidemic (Gilbert et al., 2014).  

And despite being “unique epicenters” of human infections, LPMs have been, and for the 

foreseeable future will remain, a major source of poultry sales in China (Pi et al., 2014; 

Webster, 2004; Woo et al., 2006).   

In China, efforts to control avian influenza risks have been both ad hoc and post 

hoc.  Against a background of rising zoonotic risks, policies should be anticipatory, 
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aiming to avoid outbreaks rather than merely respond to them (Castillo-Chavez et al., 

2015; Pike et al., 2014).  The present approach of managing avian influenza risks in 

China has been characterized by: (a) mass culling, with wholesale slaughter of entire 

flocks, often prompted only by the suspicion of infection; (b) attempts at widespread 

vaccination, the implementation of which has been insufficient and the potency of which 

is confined to circulating strains; (c) abrupt trade restrictions and market closures that can 

threaten livelihoods and abrade traditional values.  Such policies are unsustainable in the 

long run (Gao, 2014).  Policies should instead emphasize preventative management in the 

landscapes that serve as mixing zones for wild and domesticated birds on the one hand, 

and the LPMs that serve as the primary venues of human exposure on the other.  

Mitigation at these two points is integral to controlling avian influenza risks in China (see 

Figure 14). 

 

Figure 14 

Pathways of avian influenza transmission among migratory birds, poultry, and people, 

including environments of frequent infection, and common (italics) and potential policies. 
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6.2. Infected Landscapes: The Wild Bird-Poultry Interface 

China’s biodiversity has declined steeply in recent decades.  The major exception has 

been the avian population, which stabilized between 1970 and 2000 and has since 

increased by over 40% (Xie et al., 2015).  Three major migration corridors extend across 

China: the East Asia-Australasia, Central Asia, and East Asia-East Africa flyways (see 

Figure 15).  These flyways bring wild birds into landscapes populated by livestock, 

including free-ranging poultry.  This has significant epidemiological implications.  In 

Asia, migratory waterfowl are responsible for both the long- and short-distance spread of 

avian influenza, and is likely the principal, non-anthropogenic means by which the 

disease enters China (Chen et al., 2005a; Gilbert et al., 2010; Peterson et al., 2007; Si et 

al., 2009; Takekawa et al., 2010; Tian et al., 2015).  Given the length of these flyways, 

migratory birds pass over numerous and sizeable reservoirs of potential infection (e.g., 

both wild and domesticated bird populations) in a number of countries before finally 

arriving in China. 
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Figure 15 

The three major migratory bird flyways that traverse China: East Asia-Australasia, 

Central Asia, and East Africa-East Asia. 

 

 

Additionally, several of China’s largest lakes and wetland areas are located along 

these migratory corridors, such as Poyang Lake and Qinghai Lake.  These large water 

bodies and their wetlands are important habitats for wintering and breeding birds, and 

thus potential hotspots for avian influenza outbreaks ((Martin et al., 2011; Takekawa et 

al., 2010; Tian et al., 2015).  In general, areas with water and consistent NDVI values – 

that is, high seasonal consistency in vegetation cover – tend to be more susceptible to the 

spread of avian influenza (Williams and Peterson, 2009; Zhu and Peterson, 2014).  Along 

these lines, rice paddy is another high-risk type of land cover.  Multi-cropped rice fields 
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are prevalent throughout China, especially in the lake- and river-strewn southern 

provinces.  Free-ranging domestic ducks are widely raised in such landscapes (it is a 

traditional method of husbandry and has also been encouraged by agricultural policy), 

which when flooded also attract wild waterfowl (Gilbert et al., 2008; Muzaffar et al., 

2010).  Managing wild-domesticated bird interactions in such “mixing-zone” landscapes 

is therefore crucial to mitigating avian influenza risks, as this is the initial point of 

“spillover” into chains of transmission that could ultimately lead to human infections. 

 

6.2.1. Habitat Protection and Interspecies Segregation 

Although many aquatic and vegetated habitats attract pathogen-carrying birds, the 

landscapes of highest concern are those in which large numbers of wild and domesticated 

birds coexist.  Poyang Lake, for instance, has been frequently identified as a high-risk 

area because it is surrounded by rice cultivation and rural settlements: a 2006 census of 

the area recorded 50 million ducks, geese, and chickens, coupled with a wintering 

population of approximately one million wild birds (Xiao et al., 2010).  Many of China’s 

large freshwater lakes – including Poyang, Dongting, and Taihu, the top three, and their 

extensive networks of tributaries and wetlands – are located in rice-producing regions.  

The cropping systems along the middle stretches of the Yangtze River in particular are 

intensive, having been actively promoted by government policies in recent decades 

(Torbick et al., 2011).  Between 2002 and 2010, 90% of all sown areas around Poyang 

Lake were for rice, which accounted for 95% of all cereal production in the region.   

In these and similar landscapes across China, rice production and poultry farming 

are coupled.  There is often a synchronization of the duck production cycle and the arrival 
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of migratory birds in places like Poyang and Dongting.  This brings together hundreds-of-

thousands of wild birds with even larger numbers of juvenile poultry (which are most 

susceptible to avian influenza infection) (Cappelle et al., 2014).  In areas where wild 

birds and free-ranging poultry coexist, the movement patterns of the latter bring the two 

populations into close enough contact for pathogen transmission (Prosser et al., 2015).   

More generally, agricultural development increases infectious disease risks for livestock 

and people, in large part by amplifying interspecies interactions at the “wildlife-livestock-

human interface” (Jones et al., 2008).  As Patz et al. (2004) have argued, the 

encroachment of wildlife habitats from agriculture exacerbates the risk of novel 

pathogens entering livestock and human populations.   

In the middle Yangtze River basin alone, there are 159 recorded species of 

waterbirds, at least half of which are migratory (Wang, 2004).  An extensive 2004 census 

of waterbird populations in the entire lower Yantgze floodplain – which includes Poyang, 

Dongting, and several other important lakes and wetlands – identified the region as a 

critical area for avian conservation (Barter et al., 2005).  By contrast, Qinghai Lake is 

located in a sparsely populated landscape and is largely devoid of poultry production, and 

consequently has been of much lower concern (Cappelle et al., 2014; Prosser et al., 

2013).  Therefore, a priori, lakes and wetlands that attract significant numbers of 

migratory waterbirds, and which are nestled within extensively farmed and settled 

landscapes, are the highest risk areas for poultry outbreaks (Prosser et al., 2013).   

However, the recorded poultry outbreaks of avian influenza around such 

“hotspots” do not always match a priori risk assessments.  Although rice cultivation has 

been highly correlated with H5N1 poultry outbreaks in China, natural waterfowl habitats 
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such as lakes and wetlands have not (Takekawa et al., 2010).  Careful study of the 

connections between poultry production and disease ecology suggests a potential 

explanation: the protection of wild birds and their habitats mitigate avian influenza risks 

by segregating them from poultry populations; this may be called the “Conservation-as-

Biosecurity Effect” (CBE).  The scientific rationale for CBE comes from landscape 

epidemiology, which integrates concepts from disease ecology with those from landscape 

ecology (Meentemeyer et al., 2012; Reisen, 2010).   

Migratory birds and poultry can exchange pathogens when in close proximity, 

through physical contact or environmental pollution.  Protecting natural avian habitats 

therefore becomes a kind of de facto quarantine of the former.  In the terminology of 

landscape epidemiology, effective protection of wild bird habitats can reduce or eliminate 

the “nidus of infection,” in which interspecies transmission occurs (Reisen, 2010).  

Although the concept was initially developed with reference to vector-borne diseases, 

they can be instructively applied to avian influenza as well (Cumming, 2010; Cumming 

et al., 2015).  Our understanding of avian behavioral ecology seems to support this 

conclusion.  Empirical studies of migratory waterfowl in the US and China have found 

that they prefer natural wetlands to anthropogenic landscapes, and protected habitats to 

non-protected ones (Beatty et al., 2014; Li et al., 2013; Wu et al., 2014).  Recent analysis 

of “Important Bird and Biodiversity Areas” for migratory waterbirds in China 

(catalogued by Bird Life International) has shown that habitat protection may have a 

mitigating effect on H5N1 outbreaks among poultry (Wu and Perrings, 2017b).  

In China, avian conservation efforts have largely focused on the preservation and 

restoration of lakes and wetlands, which have come under stress from land use changes, 
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especially for agriculture and urbanization. Since the turn of the century, there has been 

extensive ecological restoration of such landscapes, returning farmland to wild land.  

Additionally, human settlements have also been relocated.  All these measures have 

improved the quality for migratory bird habitat (Fang et al., 2006; Sun et al., 2015).  

Among the many migratory bird habitats set aside for protection include large sections of 

both the Poyang and Dongting ecosystems.  Both have been classified as “Wetlands of 

International Importance” under the Ramsar Convention, and reserve areas with the 

specific aim of avian conservation have been set up.   

The Poyang Lake Nature Reserve (PLNR) was established in 1983, covering 

22,400 hectares in the northwestern part of the lake system.  In 2012, the government 

designated the 5,180 km2 of Poyang Lake proper and its surrounding wetlands as a “core 

protection zone,” where ecological preservation and restoration are given highest priority.  

There is also an auxiliary zone around this core where only limited development can 

occur (Wang and Li, 2012).  By strictly debarring human activity, including poultry 

husbandry, from the primary lake and wetland habitats, this zoning scheme is likely to 

diminish contact, and therefore pathogen transmission, between wild birds and poultry.  

However, to fully quantify the extent of CBE in China and elsewhere, as well as the 

general and particular conditions under which it occurs, more site-specific studies are 

needed. 

 

6.2.2. Vaccination and Industry Modernization 

Despite best efforts at the segregation of wild and domesticated birds, widespread 

husbandry of free-ranging poultry will persist in China for the foreseeable future.  
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Notwithstanding the country’s rapid urbanization, China’s rural population stands at 

approximately 600 million people; by 2030, that figure will decline markedly, but is still 

likely stand at around 400 million (National Bureau of Statistics, 2017; Peng, 2011b).  

Furthermore, an emerging civic ethos and policy momentum towards conservation will 

improve the ecological prospects of avian species in China (Ma et al., 2013; Wong, 2005; 

Yang and Calhoun, 2007).  The extent to which this will translate into improved habitat 

protection – e.g., of the Ramsar Convention quality – is unclear, but it means that large 

numbers of migratory birds will continue to arrive in China.  Given the practical 

difficulties of preventing mixing between wild birds and poultry, other preventative 

measures should be, and in certain cases have already been, taken.  However, 

collaboration between organizations and officials charged with conservation and those 

from public health have been conspicuously lacking.   

Currently, the most efficient means of addressing an outbreak after the fact is 

mass culling of infected and exposed poultry.  But such policies have become 

increasingly ineffective and uneconomical given the diversity and frequency of HPAI 

outbreaks (Peyre et al., 2009).  Furthermore, wholesale animal slaughter conflicts with 

bioethical and other humane values, creating social frictions that may delay or even 

forestall effective action.  Therefore, in managing avian influenza risks, as in managing 

risks from forest fires, lake pollution, or fishery collapse, mitigation is more 

economically efficient than adaptation (Castillo-Chavez et al., 2015; Pike et al., 2014).  

The risk of an undesirable event, from an economic perspective, is the probability of its 

occurrence multiplied by its cost.  The aim of poultry flock vaccination, which has 
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become an important prophylaxis in the poultry industry, is to lower occurrence 

probability (similar to the aim of wild bird-poultry segregation). 

Like all other epidemic control measures, vaccination is not a comprehensive 

solution, with efficacy varying geographically and across different HPAI strains.  

Nonetheless, when applied with sufficient consistency and scope, it can mitigate the 

spread of avian influenza among poultry flocks (Swayne, 2006).  The existing empirical 

and theoretical literatures suggest a general epidemiological relationship between HPAI 

spread and vaccination, and therefore guidelines for implementation.  In principle, 

vaccination, aims to reduce the pathogen reproduction value (R0) below 1, the threshold 

beyond which an infection precipitates an epidemic.  As Anderson and May (1985) 

showed, based on first epidemiological principles, the corresponding vaccination level 

should be 1-1/R0.  Quantifying the transmission rate of H5N1 among poultry flocks 

during the 2004 Thailand epidemic, Tiensin et al. (2007) found that a critical proportion 

of the susceptible poultry flock (80%) needs to be vaccinated to eliminate the virus.  For 

areas where backyard poultry farming is particularly high, the study concluded that 

critical proportion needs to be even higher, but a value has not been specified empirically. 

According to van der Goot et al. (2005), an experimental study of vaccination’s 

effect on H7N7 transmission among poultry, “Vaccination is able to reduce the 

transmission level to such an extent that a major outbreak is prevented… We conclude 

that vaccination of poultry can be an effective tool to prevent the spread of highly 

pathogenic AI viruses.”  This conclusion is reinforced by other studies of avian influenza 

vaccines, notably for H5N1.  For instance, Hong Kong launched a large-scale poultry 

vaccination campaign in 2002.  Although there have still been HPAI infections among 
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poultry and people, the campaign has been considered a success given the high number of 

risk factors favoring outbreaks in the city – e.g., its location directly along a major 

migratory bird flyway; its adjacency to mainland China and the high volume of poultry 

imports therefrom; and a subtropical climate conducive to viral persistence (Capua, 2014; 

Ellis et al., 2005).  In one of the few studies of poultry vaccination in China, a farm-level 

survey around the putatively high-risk Poyang Lake area found that poultry vaccination 

decreased the likelihood of infection from avian influenza and a number of other poultry 

diseases (Jiang et al., 2014). 

Nonetheless, given the large size of poultry populations across Asian countries 

and the high costs of implementation across a variety of livestock production methods, 

national-level immunity is difficult, if not impossible, to achieve in the region (Hinrichs 

and Otte, 2012).  Large-scale vaccination is often hampered by the practical difficulties 

of implementation.  The efficacy of avian influenza vaccines has been influenced by 

myriad genetic, ecological, and administrative factors (Capua, 2014; Capua and 

Marangon, 2006; Peyre et al., 2009).  It has also been found that “silent”, or undetected, 

spread of avian influenza can occur even among vaccinated flocks (Poetri et al., 2014).  

And more generally, vaccination doesn’t guard against viral mutations and novel strains.  

The costs of continual, widespread vaccination against both existing and recently 

emergent avian influenzas are likely to be prohibitively high. 

In recent years, China has greatly improved its institutions and regulations 

overseeing livestock health.  This has included improving surveillance, passing a series of 

laws outlining the necessary steps to contain outbreaks upon discovery, and developing a 

system of veterinary support extending down to the county level (Wei et al., 2015).  
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Despite these improvements, biosecurity is still underfunded compared to developed-

country standards (Tong et al., 2015).   Additionally, biosecurity in China’s livestock 

sector often suffers from administrative problems such as lack of accountability, 

inadequate instructional capacity, and low professional standards (Wei et al., 2015).  

These problems may be particularly acute in poorer inland areas, where rural poultry 

production is the least modernized.   

One way in which biosecurity against avian influenza may have improved is as an 

indirect consequence of poultry industry modernization.  The shift towards the industrial 

production of livestock in China will likely improve biosecurity in the long run (Wei et 

al., 2015).   For instance, more modern production methods can make it easier to 

implement and enforce sanitary regulations, including vaccination, and to carry out 

surveillance.  Factory production also helps insulate poultry populations from contact 

with wild birds.  The consumption of poultry meat has grown significantly in recent 

decades (Figure 16).  To cope with rising demand, the proportion of backyard husbandry 

– the traditional socio-ecological “engine” of avian influenza in China (Cardona et al., 

2009) – has declined as a share of production, giving way to factory-style farming.  This 

trend will likely continue into the foreseeable future (Pi et al., 2014).  This 

modernization, measured by the proxy of production intensity – i.e., average bird weight 

– has been found to be a mitigating factor of H5N1 poultry outbreaks at the provincial 

level (Wu and Perrings, 2017b).  Indeed, due to increasing returns to scale, the 

industrialization of livestock production could go hand-in-hand with increased 

biosecurity (Hennessy and Wang, 2012). 
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Figure 16 

Total annual poultry sales in China, 2004-2015. 

 

Source: The National Bureau of Statistics of China (2015). 

 

Nonetheless, industrial poultry production generates its own epidemiological risks 

(not to mention ethical concerns), perhaps most notably by creating extremely high 

population densities, rapid throughput of animals, and other acute ecological conditions 

(Leibler et al., 2009).  In the equation of risk, occurrence probability (i.e., exposure to 

infection) may consequently be lower due to the screening of susceptible poultry from 

wild birds; but the value-at-risk (e.g., a much larger population of poultry) is higher.  

Industry modernization by itself is not sufficient as a means of disease risk mitigation; it 
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needs to be coupled with rigorous biosecurity regulations and professional standards of 

operation.   

 

6.3. Live Poultry Markets: The Human-Poultry Interface 

So far, H5N1 and H7N9 have not achieved sustained person-to-person transmissibility.  

Exposure to diseased poultry has been the primary pathway of human infection in China, 

with the risk highest in LPMs (Gilbert et al., 2014; He et al., 2014; Webster, 2004; Woo 

et al., 2006; Yu et al., 2014).  Factors that make Chinese LPMs “unique epicenters of 

transmission” include the diversity of marketed animals, high densities of people and 

animals, carryover of animals day-to-day, daily introduction of new animals, constant 

traffic of people, and potentially unhygienic conditions (e.g., large amounts of blood and 

excreta) (Webster, 2004; Woo et al., 2006).  Connected by trade, LPMs are also nodes in 

a trade network that greatly expands the geographic scope of avian influenza spread 

(Fournié et al., 2013; Gilbert et al., 2014; Magalhaes et al., 2012).   

Despite their role in the emergence and spread of avian influenza, LPMs remain 

an important part of China’s cultural and commercial life (Gao, 2014; Goldman et al., 

1999; Woo et al., 2006).  As recently as 2010, more than a decade after the emergence of 

H5N1, 77% of China’s poultry were still sold in LPMs (Pi et al., 2014).  LPMs owe their 

preeminence to, inter alia, culinary culture (e.g., a strong preference for fresh ingredients, 

including meat), lower prices (or the perception thereof), more engaging service, product 

variety, and opportunities for social engagement (Goldman et al., 1999).  In China, the 

market share of LPMs will decline with continued economic modernization, but by 2020 

they will likely still constitute the largest source of poultry sales (Pi et al., 2014).  
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Consequently, LPMs are expected to remain a significant source of avian influenza risks 

for the foreseeable future (Gilbert et al., 2014; Webster, 2004; Woo et al., 2006; Yu et al., 

2007; Yu et al., 2014). 

 

6.3.1. The Live Poultry Trade and Supply-Side Management 

The mitigation of avian influenza risks in China’s LPMs has focused on the supply side: 

targeting poultry supply chains and improving monitoring, vaccination, and other 

biosecurity practices during delivery and vending.  For instance, ducks have been banned 

from Shanghai’s LPMs since 2004 in an attempt to mitigate H5N1 outbreaks.  However, 

this did not prevent the emergence and rapid spread from Shanghai of H7N9 less than a 

decade later.  In that metropolis of approximately 25 million people (ranked in per-capita 

GDP terms as the most affluent province in China), approximately 120 million of 190 

million chickens sold annually were purchased in LPMs (Pi et al., 2014).  In China as a 

whole, the further spread of H7N9 will most likely occur in urban LPMs (Gilbert et al., 

2014).    

Post-outbreak management has also focused on the supply side.  For instance, 

responses to successive H5N1 outbreaks in Hong Kong, where the disease first came to 

international attention, have included: the elimination of aquatic birds, and then selling 

them chilled; screening poultry truckloads for immunity; removal of quail, a known wild 

carrier of the disease, from markets; the implementation of cleaning days every month in 

which every market is emptied and cleaned; use of inactivated vaccines on Hong Kong 

poultry farms (Webster, 2004).  In 2013, after the initial H7N9 outbreak in Shanghai, 

local authorities closed all 464 LPMs in the city, subjected them to cleaning and 
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disinfection, and interdicted live poultry imports from adjacent provinces (He et al., 

2014; Yu et al., 2014).  These policies were effective in arresting the proximate forces of 

disease spread.  The 2013 H7N9 containment efforts in the Yangtze River Delta (YRD) 

prevented further human infections for the duration of their enforcement.  Controlling for 

environmental factors – namely humidity and seasonality – market and trade closures 

were shown to be the most effective means of containing spread (cases were reported in 

neighboring areas that did not implement such measures) (Yu et al., 2014).  Similarly, in 

Hong Kong, closures and cleanings reduced the spectrum of influenza strains compared 

to those circulating in the LPMs of mainland China (Webster, 2004).   

However, such ad-hoc and post-hoc measures are costly and complex, entailing 

surveillance, monitoring, reporting, closures, interdictions, and disinfections.  The 

implementation of such measures is also complicated by governance structures.  As 

evidenced by the responses to H5N1 and H7N9, implementing policies throughout 

poultry supply chains and containing outbreaks usually involves numerous administrative 

jurisdictions (e.g., counties, prefectures, and provinces) as well as various ministries (e.g., 

for agriculture, public health, and commerce).  Furthermore, due to their abruptness and 

heavy-handedness, market closures and trade restrictions may result in high costs to the 

local economy, the abrasion of cultural sensibilities, and social discontent provoked by 

prohibitions on communal and commercial activity.   

And perhaps most significantly, this strategy has not been successful at 

attenuating the underlying drivers of risk.  For instance, shortly after the stringent 

regulations in the YRD were lifted in early 2014, a new human infection was confirmed 

and the region’s LPMs had to be shut down once again (He et al., 2014).  Conventional 
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supply-side policies are important –including reactive measures to contain spread after an 

outbreak.  However, to be sustainable in the long term, these measures must be 

supplemented by policies that address the demand side, particularly factors relating to the 

behavior of participants in the live poultry markets and trade.  These are the primary 

drivers of human exposure, and therefore of infection risk. 

 

6.3.2. Behavioral Dynamics and Demand-Side Policies 

Demand-side policies should be based on an understanding of how LPM epidemiology is 

influenced by the behavior of vendors and consumers.  Their choices affect the quantities 

of poultry bought and sold, interactions with live poultry at the market, and the levels of 

biosecurity undertaken, including prophylaxes and hygiene – in sum, the likelihood of 

exposure to infection.  Following an outbreak, the aggregate effect of individual decisions 

largely determines the epidemic’s trajectory (Fenichel et al., 2011; Perrings et al., 2014).  

A systematic understanding of consumer and vendor choices in LPMs capacitates more 

cost-effective and less heavy-handed forms of intervention.  These include the use of 

market instruments to deter risky behavior, thereby more closely aligning private 

decision-making with public welfare (Morin et al., 2015). 

Studies suggest that the risks of avian influenza exposure in LPMs tend to be 

underestimated by consumers and vendors alike (Fielding et al., 2005).  For instance, 

traditional but risky practices such as blowing on cloacae to assay the health of live 

poultry can still be observed among LPM customers in China (Woo et al., 2006).  And 

even among workers who handle poultry daily, lack of knowledge often leads to 

inadequate levels of prophylaxis (Kim et al., 2011).  It follows that demand-side risk 
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management should use information to discourage unsafe behaviors and promote 

beneficial ones.  Fortunately, there is evidence that increased awareness of avian 

influenza risks prompts behavioral changes in Chinese LPMs that reduce disease 

exposure, such as not buying live poultry, avoiding markets during outbreaks (i.e., 

selective distancing), and wearing masks in (Kuo et al., 2011; Lau et al., 2008; Liao et al., 

2009).   

Mitigating the risks of food-borne pathogens is a general public health challenge.  

In the case of pathogens with animal-to-human, but not human-to-human, 

transmissibility, the principles of demand-side management for avian influenzas are 

similar to those for salmonella, another poultry-borne zoonosis of long-standing 

international concern.  To control salmonella exposure, the USDA outlined procedures 

for the handling of raw poultry, including the labeling of raw poultry to indicate that they 

must be fully cooked to ensure safe consumption (White et al., 1997; White et al., 2007).  

Explicitly identifying the potential health risks of poultry and attendant safe-handling 

practices could also lower human exposure to avian influenza.  When it comes to foods 

that are naturally pathogen-prone such as poultry, even small changes among vendors and 

consumers could significantly reduce the incidence of infection (Griffth and Redmond, 

2005).   

That said, for all their social functions LPMs are still markets: venues for 

commercial transactions where economic logic remains central.  Economically speaking, 

if the price of a product increases, the quantity demanded falls.  This offers another way 

to appeal to the agency of discriminating individuals, creating opportunities for less 

intrusive and less costly, and ultimately more sustainable, policies.  Consumers may not 
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always be equipped with adequate information about the riskiness of live poultry in 

certain markets, but if the risk is embodied in prices, the information is communicated 

and will likely be acted upon with the consumer switching to safer alternatives (e.g., 

frozen poultry or other types of meat).  Applying this logic to the control of avian 

influenza could yield new options for successful intervention (Zilberman et al., 2012).  

For instance, in a survey of consumer attitudes and preferences in China, Jin and Mu 

(2012) found that there was a significant premium associated with avian influenza in 

poultry purchases, and that consumers were willing to pay for traceability labeling to 

ensure product safety. 

Relatedly, prompted by costly epidemics in the 1950s and ‘80s, Sweden 

developed what is arguably the world’s most successful Salmonella control program.  In 

addition to standard supply-side quality control measures, it also developed an incentive 

structure that includes insurance schemes to compensate for potential losses in the event 

of outbreaks; this has encouraged voluntary participation by producers, which, by the 

1990s, approached industry-wide adoption (Altekruse et al., 1993).  Under such 

conditions, the costs of indemnification would be internalized by suppliers, which are 

then reflected in market prices.  To address avian influenza risks, a corollary policy 

would be to subsidize producers of frozen poultry, thereby lowering the price of their 

products and thereby offering a more economical substitute for LPM poultry.   

The design and implementation of such demand-side policies require new 

analytical frameworks, especially with an anticipatory/preventative dimension.  The 

existing literature on the role of LPMs in avian influenza epidemics is dominated by 

medical studies.  More social, and especially behavioral, models are needed to clarify the 
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drivers of avian influenza epidemics, and to inform timely interventions (Janes et al., 

2012).  Traditional epidemiological models abstract from how decision-makers weigh 

benefits, expected costs, and perceived risk, as well as from feedbacks between behaviors 

and the risk environment.  Models that incorporate dynamics in which parameters are not 

exogenous but endogenous, changing iteratively based on the choices of reactive 

individuals, can enhance predictive power and thereby improve the efficacy of disease 

control (Fenichel et al., 2011; Perrings et al., 2014).  Such behavioral models and their 

policy extensions require more research into the social ecology of LPMs, including 

ethnographic data to inform the parameters of behavioral models (Janes et al., 2012; 

Kapan et al., 2006).  There are already such efforts underway in China, notably with 

USAID’s Emerging Pandemic Threats program (PREDICT).   

 

6.4. Conclusion 

As we mark the centenary of the influenza pandemic of 1918-1919, in which upwards of 

a quarter of the world’s population was infected and 100 million people died (Lemon et 

al., 2005; Taubenberger and Morens, 2006), we should be mindful that many of its 

underlying risk factors still exist, and in a more populated and interconnected world.  

Indeed, that particular virus has left an long-lasting epidemiological legacy: it remained 

in circulation and contributed genes to other epidemic and pandemic influenzas over the 

past century (Morens et al., 2009).   Furthermore, it is believed to have been an avian-

borne virus that “jumped” directly into an immunologically naïve human population 

(Taubenberger et al., 2005).  Although widely referred to as the “Spanish Flu,” recent 

analyses have pointed to China as the actual origin of the pandemic (as it was for the 
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other two 20th Century influenza pandemics, of 1957 and 1968) (Langford, 2005).  

Mitigating the risks of a fourth influenza pandemic from China is an urgent challenge for 

global public health. 

The fact that avian influenzas have yet to acquire sustained human-to-human 

transmissibility makes the task of management simpler, but also more urgent.  Greater 

efforts need to be made to mitigate the risks posed by avian influenza at the wild bird-

poultry and poultry-human interfaces.  Once an avian influenza such as H5N1 or H7N9 

achieves sustained interpersonal transmission, it will likely precipitate a global pandemic.  

As this review has shown, the conventional strategies of culling and vaccination should 

be supplemented by policies that segregate wild and domesticated birds in their common 

habitats, which has the positive side effect of avian conservation (and vice versa).  

Additionally, traditional supply-side management of LPMs should be reinforced by 

demand-side policies focusing on market behavior, which would also be less disruptive 

than many existing measures.  With the emergence of new avian influenzas and the 

continued infections of poultry and people showing no signs of abatement, the time for 

effective action is dwindling.  
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THE RESULTS OF THE REGRESSION MODELS IN CHAPTER 4 
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Table 8 

Results for models of risk factors of H5N1 poultry outbreaks in China, from January 1, 

2004 to September 20, 2017.  Odds ratios and p-levels are reported (the latter in 

parentheses).  All are significant at the 1 per cent level.  Controls were generated at a 

ratio of 5 for each 1 case, distributed randomly over the map without reference to 

administrative boundaries.  Results from columns (a), (b) and (c) differed because of 

different values for rice paddy area radius.  The variables “Proximity to nearest 

unprotected large water body” and “Proximity to nearest Ramsar wetland” were unit-less 

because they were normalized (see Methods section). 

Variables Units 
 H5N1 Poultry Outbreaks 

(a) (b) (c) 

Proximity to nearest 

unprotected large water 

body 

- 1.0051 (0.000) 1.0455 (0.000) 1.0418 (0.000) 

Proximity to nearest 

Ramsar wetland 
- 0.98326 (0.001) 0.97906 (0.000) 0.97633 (0.000) 

Rice paddy area     

   within 10-km radius zone km2 1.0163 (0.000)   

   within 20-km radius zone km2  1.0052 (0.000)  

   within 50-km radius zone km2   1.0010 (0.000) 

Per-capita GDP ¥ 0.99999 (0.000) 0.99999 (0.000) 0.99998 (0.000) 

Observations 1206 1206 1206 

Pseudo R2 0.1940 0.2205 0.2293 
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Table 9 

Results for models of risk factors of H5N1 poultry outbreaks in China, from January 1, 

2004 to September 20, 2017.  Odds ratios and p-levels are reported (the latter in 

parentheses).  All are significant at the 1 per cent level.  Controls were generated at a 

ratio of 5 for each prefecture, regardless of the size of the prefecture, to account for 

geographically uneven distribution of population.  Results from columns (a), (b) and (c) 

differed because of different values for rice paddy area radius.  The variables “Proximity 

to nearest unprotected large water body” and “Proximity to nearest Ramsar wetland” 

were unit-less because they were normalized (see Methods section). 

Variables Units 
 H5N1 Poultry Outbreaks 

(a) (b) (c) 

Proximity to nearest 

unprotected large water 

body 

- 1.0777 (0.000) 1.0735 (0.000) 1.0715 (0.000) 

Proximity to nearest 

Ramsar wetland 
- 0.97168 (0.000) 0.96936 (0.000) 0.96834 (0.000) 

Rice paddy area     

   within 10-km radius zone km2 1.0065 (0.000)   

   within 20-km radius zone km2  1.0022 (0.000)  

   within 50-km radius zone km2   1.0004 (0.000) 

Per-capita GDP ¥ 0.99998 (0.000) 0.99998 (0.000) 0.99998 (0.000) 

Observations 1356 1356 1356 

Pseudo R2 0.1476 0.1571 0.1571 
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Table 10 

Results for models of risk factors of H5N1 poultry outbreaks in China, from January 1, 

2004 to September 20, 2017.  Odds ratios and p-levels are reported (the latter in 

parentheses).  All are significant at the 1 per cent level.  Controls were generated at a 

ratio of 5 for each case within a given province; the controls were then randomly 

distributed within the boundaries of the province.  There were five mainland provinces 

without reported cases during the study period: Hainan, Sichuan, Heilongjiang, Beijing, 

and Shandong.  Results from columns (a), (b) and (c) differed because of different values 

for rice paddy area radius.  The variables “Proximity to nearest unprotected large water 

body” and “Proximity to nearest Ramsar wetland” were unit-less because they were 

normalized (see Methods section). 

Variables Units 
 H5N1 Poultry Outbreaks 

(a) (b) (c) 

Proximity to nearest 

unprotected large water 

body 

- 1.0563 (0.000) 1.0546 (0.000) 1.0551 (0.000) 

Proximity to nearest 

Ramsar wetland 
- 0.98474 (0.002) 0.98333 (0.001) 0.98370 (0.002) 

Rice paddy area     

   within 10-km radius zone km2 1.0041 (0.003)   

   within 20-km radius zone km2  1.0013 (0.001)  

   within 50-km radius zone km2   1.0002 (0.004) 



 138 

Per-capita GDP ¥ 0.99999 (0.000) 0.99999 (0.000) 0.99999 (0.000) 

Observations 1206 1206 1206 

Pseudo R2 0.0861 0.0883 0.0856 

 

 


