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ABSTRACT

The two-dimensional electron gas (2DEG) at SrTiO3-based oxide interfaces has

been extensively studied recently for its high carrier density, high electron mobility,

superconducting, ferromagnetic, ferrroelectric and magnetoresistance properties, with

possible application for all-oxide devices. Understanding the mechanisms behind the

2DEG formation and factors affecting its properties is the primary objective of this

dissertation.

Advanced electron microscopy techniques, including aberration-corrected electron

microscopy and electron energy-loss spectroscopy (EELS) with energy-loss near-edge

structure (ELNES) analysis, were used to characterize the interfaces. Image and

spectrum data-processing algorithms, including subpixel atomic position measurement,

and novel outlier detection by oversampling, subspace division based EELS background

removal and bias-free endmember extraction algorithms for hyperspectral unmixing

and mapping were heavily used. Results were compared with density functional theory

(DFT) calculations for theoretical explanation.

For the γ-Al2O3/SrTiO3 system, negative-Cs imaging confirmed the formation of

crystalline γ-Al2O3. ELNES hyperspectral unmixing combined with DFT calculations

revealed that oxygen vacancies, rather than polar discontinuity, were the key to the

2DEG formation. The critical thickness can be explained by shift of the Fermi level

due to Ti outdiffusion from the substrate to the film.

At the LaTiO3/SrTiO3 interface, aberration-corrected imaging showed crystallinity

deterioration in LaTiO3 films a few unit cells away from the interface. ELNES showed

that oxygen annealing did not alter the crystallinity but converted Ti3+ near the

interface into Ti4+, which explained disappearance of the conductivity.

At the EuO/SrTiO3 interface, both high-resolution imaging and ELNES confirmed

i



EuO formation. ELNES hyperspectral unmixing showed a Ti3+ layer confined to

within several unit cells of the interface on the SrTiO3 side, confirming the presence

of oxygen vacancies.

At the BaTiO3/SrTiO3 interface, spontaneous polarization and lattice parameters

were measured directly in each unit cell column and compared with oxidation state

mapping using ELNES with unit-cell resolution. The unusually large polarization

near the interface and the polarization gradient were explained by oxygen vacancies

and the piezoelectric effect due to epitaxial strain and strain gradient from relaxation.

ii



ACKNOWLEDGMENTS

Foremost, I would like to express my sincere gratitude to my advisors, Regents’

Professor David J. Smith and Professor Martha R. McCartney, for supporting me

in doing advanced microscopy in their group. Under their guidance, I gained a lot

of knowledge and experience in electron microscopy. Besides, I learned enthusiasm

towards work and the optimistic attitude towards life.

Besides my advisors, I would like to thank the rest of my committee: Prof. Peter

A. Crozier and Prof. Andrew Chizmeshya, for very helpful discussions during my

research and their insightful comments, suggestions and questions.

My sincere thanks also goes to our collaborators Prof. Alexander A. Demkov,

Prof. John G. Ekerdt, Dr. Agham Posadas, Kristy J. Kormondy, Thong Q. Ngo,

Patrick Ponath and Bryce Edmondson in UT-Austin, for providing samples in this

dissertation research and very helpful discussions on thin film growth. Also, thanks

Prof. Xuan P. A. Gao and Martin D. McDaniel in Case Western Reserve University

for providing electrical measurements results. Thanks Lingyuan Gao in UT-Austin for

very useful discussions on DFT models. Thanks Dr. Toshihiro Aoki and Hsinwei Wu

for electron microscopy experiments. Thanks Zhaofeng Gan for very useful discussions

on STEM imaging and electron holography. Thanks Prof. Peter Rez and Tara Boland

for very helpful discussions on EELS simulations and DFT calculations.

I appreciate all staff members in Eyring Materials Center in Arizona State Uni-

versity for high resolution electron microscopy experiments. Particular thanks to Mr.

Karl Weiss, Dr. Katia March, Dr. Shery Chang for their technical support.

I thank all other members in our research group for help and discussions during

my PhD study. I thank AFOSR (contract FA9550-12-10494) for financial support.

I thank my parents for understanding and support all through the years.

iii



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Transition Metal Oxides (TMO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Two-Dimensional Electron Gas (2DEG) at Oxide/Oxide Interfaces 3

1.2.1 Polar Catastrophe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Charge-Carrier Doping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.3 Oxygen Vacancies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.4 Atomic Intermixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.5 Electronic Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 Outline of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1 Transmission Electron Microscopy and Scanning Transmission

Electron Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.1 Negative Cs Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.2 Scanning Transmission Electron Microscopy Imaging . . . . . . . 26

2.1.3 Image Quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.3.1 Comparison of Experimental and Simulated Images . . 29

2.1.3.2 Limitations from Electron Dose and Resolution . . . . . . 30

2.1.3.3 Limitations from Background Noise . . . . . . . . . . . . . . . . . 32

2.1.3.4 Limitations from Pixelation . . . . . . . . . . . . . . . . . . . . . . . . 34

iv



CHAPTER Page

2.1.3.5 Strategies and Algorithms Used . . . . . . . . . . . . . . . . . . . . . 35

2.2 Electron Holography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.1 Mean Inner Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3 Electron Energy-Loss Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3.1 Electron Energy-Loss Near-Edge Structure . . . . . . . . . . . . . . . . 40

2.3.1.1 Ti-L edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3.1.2 O-K edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4 Hyperspectral Unmixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.4.1 Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.4.2 Outlier Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.4.3 Removal of EELS Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.4.4 Dimensionality Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.4.5 Endmember Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.4.6 Goodness of Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.5 First-Principles Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.5.1 Hohenberg-Kohn-Sham Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.5.2 Numerical Solutions of Kohn-Sham Equations and Software

Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.5.3 Hubbard U Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.5.4 Structural Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.6 Image, Spectrum and Phase Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.6.1 TEM and STEM Image Simulation . . . . . . . . . . . . . . . . . . . . . . . 75

2.6.2 Spectrum Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.6.3 Electric Potential and Polarization Calculations . . . . . . . . . . . . 76

v



CHAPTER Page

3 INVESTIGATING THE γ-Al2O3/SrTiO3 INTERFACE . . . . . . . . . . . . . . . 80

3.1 Spectrum and phase mapping across the epitaxial γ-Al2O3/SrTiO3

interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.1.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.2 ELNES Hyperspectral Unmixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.2.1 Comparison between samples with and without 2DEG . . . . . 91

3.2.2 Comparison between sample grown by MBE at high tem-

perature and by ALD at low temperature . . . . . . . . . . . . . . . . . 95

3.3 Electrical Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.4 Electron Holography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.5 Spectrum Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.6 DFT Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4 LaTiO3/SrTiO3 INTERFACES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.1 The LaTiO3/SrTiO3 interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.2 HRTEM imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.3 Aberration-corrected STEM imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.4 ELNES hyperspectral unmixing and mapping . . . . . . . . . . . . . . . . . . . 111

4.4.1 As-deposited LaTiO3/SrTiO3 sample . . . . . . . . . . . . . . . . . . . . . 111

4.4.2 Oxygen-annealed LaTiO3/SrTiO3 sample. . . . . . . . . . . . . . . . . . 114

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

vi



CHAPTER Page

5 EuO/SrTiO3 INTERFACES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.1 The EuO/SrTiO3 interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.2 Imaging and ELNES mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.2.1 Aberration-corrected STEM imaging . . . . . . . . . . . . . . . . . . . . . . 119

5.2.2 ELNES hyperspectral unmixing and mapping. . . . . . . . . . . . . . 120

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6 BaTiO3/SrTiO3 INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.2 Image Quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.3 ELNES Hyperspectral Unmixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.4 DFT Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7 SUMMARY AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

APPENDIX

A JOURNAL PUBLICATIONS DURING PHD RESEARCH . . . . . . . . . . . . 170

B PUBLISHED CONFERENCE ABSTRACTS DURING PHD STUDY . . 172

vii



LIST OF TABLES

Table Page

3.1 Information of Samples with and without 2DEG . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.2 Information of Samples Grown by MBE and ALD . . . . . . . . . . . . . . . . . . . . . . . . 95

3.3 Models Used in DFT Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

viii



LIST OF FIGURES

Figure Page

1.1 Crystal Structure of Bulk SrT iO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Five Proposed Models for the 2DEG at Oxide / Oxide Interfaces. . . . . . . . . . 4

1.3 The Polar Catastrophe Model Illustrated for Atomically Abrupt (001)

Interfaces between LaAlO3 and SrT iO3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Defect Energy Levels of Point Defects at LaAlO3/SrT iO3 Interface. . . . . . . 14

2.1 Scheme of Transfer Function from the Exit Wave to the Image Plane by

Means of the Aberration χ(R). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Ti− L3,2 ELNES Spectra of Several Ti Oxides. . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3 Ti− L3,2 ELNES Spectra of BTO, STO and Several Ti Oxides. . . . . . . . . . . 44

2.4 Ti− L3,2 ELNES Spectra in SrT iO3−δ with Oxygen Vacancies. . . . . . . . . . . . 45

2.5 O−K ELNES Spectra of Several Ti Oxides. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.6 O−K ELNES Spectra of BTO, STO and Several Ti Oxides. . . . . . . . . . . . . 47

2.7 O−K ELNES Spectra in SrT iO3−δ with Oxygen Vacancies. . . . . . . . . . . . . . 47

2.8 Illustration of the Simplex Set C for p = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.9 Standard Procedure Developed for ELNES Map Unmxing. . . . . . . . . . . . . . . . . 50

2.10 Illustration of Spike Noise Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.11 Illustration of Variance and Bias in Power-Law EELS Background Subtrac-

tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.12 Illustration of Background Removal by Polynomial Fitting. . . . . . . . . . . . . . . . 56

2.13 Illustration of the Orthogonality Principle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.14An Example of Hyperspectral Unmixing for 3-Layer Oxide Heterostructure. 60

2.15 Scheme of Kohn-Sham Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.1 NCSI of Sample Grown by ALD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

ix



Figure Page

3.2 Electron Holography of Sample Grown by ALD . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.3 Ti-L Edge near the γ-Al2O3/SrT iO3 Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.4 HAADF Image and 2D Map on Ti-L Edge at γ-Al2O3/SrT iO3 Interface. . . 87

3.5 O-K Edge near the γ-Al2O3/SrT iO3 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.6 Comparison of Ti-L Edge between Samples with 2DEG and without 2DEG 92

3.7 Geometry for Removing Film Signal from the Interfacial Signal. . . . . . . . . . . . 93

3.8 Comparison of O-K Edge between Samples with and without 2DEG . . . . . . . 94

3.9 Comparison of Error Analysis Using 2 or 3 Endmembers for the Sample

with 2DEG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.10Comparison of O-K Edge between Sample with 2DEG and without 2DEG . 96

3.11Temperature Dependence of the Hall Mobility and Carrier Density. . . . . . . . 97

3.12 Experimental and Simulated Phase Map from Electron Holography . . . . . . . . 101

3.13Two Structural Models (with and without Oxygen Vacancies) Relaxed by

DFT Were Fed into Multiplets Simulation for the Ti-L Edge. . . . . . . . . . . . . 102

3.14 LDA+U Calculation (with U=5 EV) of Projected Density of State of

Oxygen Atoms at Different Positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.15Atomic Model for the DFT Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.1 HRTEM Images and Diffractograms of LaT iO3 Film Grown on SrT iO3 at

Different Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.2 Aberration-Corrected STEM Images for the As-Grown and Annealed

LaT iO3/SrT iO3 Samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.3 ELNES Hyperspectral Unmixing for Ti-L and O-K Edges of As-Deposited

LaT iO3 Film on SrT iO3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

x



Figure Page

4.4 Summary of Profiles from Different Ionization Edges for the As-Deposited

Sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.5 ELNES Hyperspectral Unmixing of Ti-L and O-K Edge of the Oxygen-

Annealed LaT iO3 Film on SrT iO3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.6 Summary of Profiles from Different Ionization Edges for the Oxygen An-

nealed Sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.1 Aberration-Corrected STEM Imaging for the EuO/SrT iO3 Interface. . . . . . 119

5.2 ELNES Hyperspectral Unmixing on Eu-N, Ti-L and O-K Edge of the

EuO/SrT iO3 Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.1 Aberration-Corrected STEM Images for BaT iO3/SrT iO3 Interface. . . . . . . . . 126

6.2 O1 and O3 Atomic Column Displacements Measured from ABF Image. . . . 128

6.3 Ti Atomic Column Displacements and Lattice Parameters Measured from

HAADF Image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.4 ELNES Hyperspectral Unmixing for Ti-L and O-K Edges of the BaT iO3

Film on SrT iO3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.5 Summary of DFT Calculations on Strained BaT iO3. . . . . . . . . . . . . . . . . . . . . . 133

6.6 Polarization Density Map and Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

xi



Chapter 1

INTRODUCTION

1.1 Transition Metal Oxides (TMO)

Transition metal oxides have many important physical and electronic properties

such as ferromagnetism, magnetoresistance, conductivity, and superconductivity,[1]

because electrons in the strongly correlated metal d orbitals are close to the Fermi level

and deeply involved in chemical bonding. These d electrons exhabit a wide variety

of phenomena such as spin, charge and orbital ordering, metal-insulator transitions,

multiferroics, spin-orbit ordering and superconductivity. The electronic structure can

be tuned by manipulating the chemical composition and atomic structure.[2] The

research of this dissertation has primarily focused on using oxide heterostructures to

create a highly conducting layer at oxide-oxide interfaces, especially at the SrTiO3

substrate surface.

The perovskite-type oxides have the chemical formula of ABO3. They also share the

same pseudo-cubic crystal structure with type A atoms at cube corners, type B atoms

at body-center positions, and oxygen atoms at face-centered positions. The space group

of the perovskite-type oxide structure with highest symmetry is Pm3̄m. However,

many perovskite-type oxides have different space groups because the ferroelectric

distortion, the Jahn-Teller (J-T) distortion and/or octahedral distortion break the

Pm3m symmetry.[3]

SrTiO3 is a typical ABO3 perovskite-type oxide with lattice parameter of 3.905

Å. Figure 1.1(a) shows the cubic unit cell of SrTiO3 in space group Pm3̄m.[4]. The
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coordination numbers of the Sr2+ and Ti4+ cations are 12 and 6, respectively. There is

an soft optical phonon mode associated with rotation of the TiO6 octahedra along the

z axis. A cubic-to-tetragonal phase transition occurs at 105K. Below 105K, SrTiO3

is in space group I4/mcm and antiferroelectric.[5, 6] Figure 1.1(b) is a schematic

diagram showing the antiferrodistortion in tetragonal SrTiO3. SrTiO3 is a band

insulator with the Ti4+ cations in d0 configuration. The band gap between the oxygen

2p and titanium 3d is 3.25eV. However, if SrTiO3 is donor doped (e.g. by oxygen

vacancies or Nb), it can become conductive. The Hall mobility of Nb-doped SrTiO3

is up to 2.2× 104cm2/V · sec at low temperature, and it is about 4 times larger than

SrTiO3 doped with oxygen vacancies. The activation energy of donors introduced by

oxygen vacancies is about 0.08eV, but very small in Nb-doped SrTiO3 and the Nb

donor remains fully ionized down to 1.6K.[7]

Under the octahedral crystal field, the Ti-3d orbitals in cubic SrTiO3, which

are in 3d0 configuration, split into three degenerate t2g orbitals (dxy, dxz and dyz)

at lower energy and two degenerate eg orbits (dx2−y2 and d3z2−r2) at higher energy.

Compared with the empty Ti-3d orbitals in bulk SrTiO3, bulk LaTiO3, in which Ti

reveals a 3d1 configuration, is more complicated. The ground state of bulk LaTiO3 is

under some debate. LaTiO3 is a Mott insulator that has G-type anti-ferromagnetic

ordering[8] with an ordered magnetic moment of 0.45-0.57µB[8–10] below TN =

146K[10]. Under the “Goodenough-Kanamori” framework,[11] in which the orbital

occupation is determined by electron-lattice interaction, orbital angular momentum of

3d1 configuration is quenched by Jahn-Teller distortion.[10, 12–19] However, a single

electron (d1) with quenched angular momentum should have magnetic moment of 1µB,

which is significantly larger than the experimental value. Considering that the Jahn-

Teller coupling in the t2g orbitals is weak, the orbital moment may not be fully quenched,
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(a) (b)

Figure 1.1. Crystal structure of bulk SrTiO3

(a) The cubic unit cell of SrTiO3. Large green spheres represent Sr atoms. Small red
spheres represent O atoms. Blue medium-size spheres represent Ti atoms.

(b) Antiferrodistortive phase of SrTiO3. The neighbouring oxygen octahedra are
rotated in opposite directions, resulting in the symmetry elements of the 4′mm point
group. From Ref.[4].

which reduces the total magnetic moment.[9] An orbital liquid state is proposed for

the magnetic ordered phase,[20, 21] as supported by recent RIXS[22] and Raman[23]

experiments. Thermo-expansion[13] and Raman shift[24] data indirectly show orbital

ordering below TN . Thermo-conductivity data is interpreted as a transition from

orbital liquid to an orbitally ordered phase at TN .[25]

1.2 Two-Dimensional Electron Gas (2DEG) at Oxide/Oxide Interfaces

Several perovskite-type oxides, including SrTiO3, LaTiO3 and LaAlO3 (band

insulator with band gap of 5.5eV), as well as spinel-type oxide γ-Al2O3 (band insulator

with band gap of 8.7eV), are insulators. However, it has been reported that a layer of

conducting two-dimensional electron gas (2DEG) can form at the LaTiO3/SrTiO3[26],
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Figure 1.2. Five proposed models for the 2DEG at oxide / oxide interfaces.

(a) Polar discontinuity model.[27] Upper image shows the nominal charge of each
atomic layer. Lower image shows the band diagram. The potential diverges unless
compensated by a layer of negative charge. (b) Modulation doping.[26] Figure shows
the spatial distribution of Ti3+ and La across a single LaTiO3 monolayer. The Ti3+

signal is significantly wider than that of the La. The y axis is in linear scale in the
upper image but logarithmic scale in the lower image. (c) Oxygen vacancies.[28] Blue
spheres represents oxygen atoms. Vacancies form between SrTiO3 and γ-Al2O3 (d)
Atomic intermixing.[29] The figure schematically shows the cation intermixing at
LaAlO3/SrTiO3 interface. The large blue circles, small blue circles, large red circles,
small red circles represents Sr, Ti, La and Al, respectively. (e) Electronic
reconstruction.[30] The figure shows the density of states of the n-type interface. The
upper sub-plot shows the total DOS. The middle sub-plot shows d states of the
magnetic Ti3+ with split-off dxy band. The lower sub-plot shows the DOS of
conventional Ti4+.

LaAlO3/SrTiO3[27] and γ-Al2O3/SrTiO3[28] interfaces. Seeking an understanding of

the mechanism(s) behind this conductivity is central to the research of this dissertation.

A 2DEG with very high electron mobility (103cm2V−1s−1) at low temperature

is reported at interfaces with SrTiO3 on one side.[27, 28, 31] The carrier density of

the 2DEG is also very high (∼ 1013 to 1014cm−2 at room temperature).[27, 28, 31] In

contrast, the sheet-carrier density in semiconductor heterostructures is usually 1011 to
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1012.[32] The 2DEG at oxide interfaces exhabits a variety of extraordinary electronic

properties, such as superconductivity[33–35], colossal magnetoresistance[36, 37] and

ferromagnetism[38, 39]. The conductivity can also be tuned by an electric field, and

has potential applications to all-oxide devices.[32, 34, 40, 41]

The origins of the 2DEG at oxide interfaces are still heavily debated. Several differ-

ent models as indicated in Figure 1.2 have been proposed to explain the conductivity

at the interface between insulating oxides. It is also possible and quite likely that

several mechanisms coexist in one system. In the following section, several material

systems exhibiting interfacial 2DEGs are discussed and various models are explained.

However, there are still discrepancies between theory and experiment, and there is

considerable ongoing debate about which model best explains a specific system.

1.2.1 Polar Catastrophe

LaAlO3/SrTiO3

The LaAlO3/SrTiO3 system has attracted much attention. Bulk LaAlO3 is polar.

When the LaAlO3 crystal is ’broken’ into many (200) mono-layers, it consists of

alternating LaO+ and TiO−2 layers. Bulk SrTiO3 is non-polar. The pseudo-cubic

lattice parameter of LaAlO3 is 3.787 Å, which is 3% smaller than for SrTiO3, but it can

be grown coherently on SrTiO3 substrate, as illustrated in Figure 1.3. Experimentally,

when polar LaAlO3 is grown on non-polar SrTiO3, the p-type interface (i.e. AlO2/SrO)

is insulating. Only the n-type interface (i.e. LaO/TiO2)[27] for LaAlO3 films thicker

than a critical thickness of ∼ 3 unit cells (uc) show conductivity.[40] In addition, when

the separation distance between the n-type interface and the p-type interface is less

than about six perovskite unit cells of either LaAlO3 or SrTiO3, corresponding to

5



Figure 1.3. The polar catastrophe model illustrated for atomically abrupt (001)
interfaces between LaAlO3 and SrTiO3.

(a) Atomically abrupt n-type interface: the potential diverges negatively if there is no
compensation. (b) Atomically abrupt p-type interface: the potential diverges
positively if there is no compensation. (c) The polar discontinuity can be
compensated by transferring 1/2 electrons to each Ti atom. (d) The polar
discontinuity can be compensated by introducing 1/4 oxygen vacancies at the
interfacial SrO layer. Figure taken from Ref.[29].

approximately 23Å, electronic coupling between the two interface cannot be neglected.

The conductivity and carrier density will decrease.[42]

The polar catastrophe model [43, 44] has been used to explain conductivity at

this polar-nonpolar interface.[27] The electric potential, and thus the energy, diverges

with LaAlO3 film thickness, as shown in Figures 1.3(a) and (b), unless a layer of extra

charge is created at the interface to compensate for the polar discontinuity, either by

reduction of Ti at the n-type interface (Figure 1.3(c)) or by oxygen vacancies (Figure

1.3(d)) at the p-type interface. Taking into consideration that the band gap of SrTiO3

is relatively small (3.2 eV), and the LaAlO3/SrTiO3 valence band offset is 0.1eV, DFT

calculations show that it takes about 13 Å (four LaAlO3 unit cells) for charge transfer
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to occur,[45] which is in reasonable agreement with the experimental value of critical

thickness.

Biaxial epitaxial strain may change the polarization of SrTiO3, which in turn could

have a strong influence on the 2DEG at the LaAlO3/SrTiO3 interface. By growing

coherently strained single-crystal SrTiO3 on single-crystal substrates with different

lattice parameters, it was found that tensile-strained SrTiO3 had no conducting

2DEG, while the carrier density was reduced at the compressively-strained SrTiO3.

DFT calculations suggest that compressively-strained SrTiO3 forms <110> polarized

nanoscale domains which lead to localization of the carriers in a 2DEG, whereas the

tensile-strained SrTiO3 has a ferroelectric-like structural distortion along the <001>

direction, which weakens the polar discontinuity.[46]

1.2.2 Charge-Carrier Doping

LaTiO3/SrTiO3

In the LaTiO3/SrTiO3 system, the Ti3+ in LaTiO3 has the electron configuration of

d1, but it is a Mott-Hubbard insulator due to strong Coulomb repulsion.[47] However,

the LaTiO3/SrTiO3 interface is metallic. Observations using electron-energy-loss

spectroscopy (EELS) for a metallic LaTiO3/SrTiO3 superlattice show that while the

oxygen concentration across a single LaTiO3 layer remains unchanged, the width of the

Ti3+ signal across the same single LaTiO3 layer is larger than that of the La signal.[26]

This result indicates that the mechanism is similar to charge modulation doping in

semiconductors. DFT+U calculations show that electron reconstruction happens at

the interface, and the region near the interface is metallic and ferromagnetic over a

wide parameter range.[48] The charge density after considering lattice relaxation agrees
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with the experimental results, and the lattice relaxation also shifts the lower Hubbard

band upwards.[49] Ferromagnetic orbit ordering may occur at high U values, leading

to the insulating phase.[48–50] However, Hall measurements show that the electronic

correlation is suppressed at the interface and no ferromagnetism is observed.[51] When

La is substituted with rare-earth elements such as Sm or Y, which give more electron

correlation[52], the interface is insulating.[53] A superconducting transition at a critical

temperature T onsetc ∼300 mK was also reported in this system. The superconducting

2DEG with a typical thickness of 12nm is located mostly on the SrTiO3 side.[35]

1.2.3 Oxygen Vacancies

γ −Al2O3/SrTiO3

A high mobility (1.4× 105cm2V−1s−1 at 2K) and high density (3.7× 1014cm−2)

2DEG is reported for the γ-Al2O3/SrTiO3 system grown by Pulsed Laser Deposition

(PLD) at 600◦C [28]. Room temperature PLD growth is also achieved, with electron

mobility at low temperatures of 3200cm2V−1s−1, providing an opportunity to design

nano-electron oxide devices.[54] Both γ-Al2O3 and SrTiO3 are non-polar and γ-Al2O3

has no d electrons. This 2DEG is believed to be caused by a chemical redox reaction

at the interfaces between SrTiO3 and oxides with large negative enthalpy of formation

such as γ-Al2O3.[55] It is energetically favorable for oxygen atoms near the interface

in SrTiO3 to diffuse out of SrTiO3 and leave oxygen vacancies, which thus create a

metallic layer. The oxygen substrate-to-film transfer is experimentally observed for

film grown on 18O-exchanged substrate.[56] The Ti3+ is confined within a layer of

0.9nm. The conductivity in samples with 8uc γ-Al2O3 can survive annealing at 300◦C

for 24h in 1 bar of pure O2, but it vanishes in a sample with 2uc γ-Al2O3.[28] This
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result suggests that oxygen vacancies and the 2DEG are stabilized by an interface

effect.[28]

A critical thickness exists in the polar-nonpolar LaAlO3/SrTiO3 system. However,

there also appears to be a critical thickness in the γ-Al2O3/SrTiO3 system. The

heterostructure is conducting only when the γ-Al2O3 film is thicker than approximately

2uc for samples grown at 600◦C by PLD. The carrier density and Hall mobility

reach maximum values between 2uc to 3uc.[28]. The critical thickness increased to

approximately 8uc when sample were grown at room temperature by PLD.[54] A

critical thickness between 2.1nm to 4.3nm is also observed in a sample grown by

atomic layer deposition (ALD) at 345◦C.[57]

As well as oxygen vacancies for the γ-Al2O3/SrTiO3 interface, the polar catastrophe

mechanism has also been discussed, where the cation site occupancy of the γ-Al2O3

structure is taken into account,[58], or by considering γ-Al2O3 as a Tasker [59] Type

3 crystal.[60] Despite the fact that this is different from the LaAlO3/SrTiO3 system

[61], no potential gradient has been found in the γ-Al2O3 film [60].

LaAlO3/SrTiO3

Oxygen vacancies were found at both n-type and p-type LaAlO3/SrTiO3 interfaces

by EELS. The oxygen vacancies for n-type interfaces are fewer than for p-type. The

oxygen vacancies at p-type interfaces can compensate for the polar catastrophe,

while reducing the band offset at n-type interfaces.[29] The effect of growth and

annealing conditions were later systematically investigated. Changing the oxygen

partial pressure during growth from 10−6mbar to 10−4mbar leads to a carrier density

reduction from ∼ 1016cm−2 down to ∼ 1013cm−2.[62] The conduction in a sample

deposited at 10−6mbar was completely dominated by oxygen vacancies.[38] The

Shubnikov–de Haas (SdH) oscillations show the 3D character of the conductivity for
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deposition with oxygen pressure PO2 < 10−5mbar while samples deposited at high

oxygen temperature are either insulating or highly resistive.[63] Another SdH oscillation

measurement on a sample annealed in 200mbar of O2 showed 2D character.[64] All

these findings showed that oxygen vacancies are also important at the LaAlO3/SrTiO3

interface.[65]

LDA+U calculations with Up = 7eV and Ud = 8eV and without ionic relaxation

show that the p-type interface of LaAlO3/SrTiO3 is insulating and non-magnetic if the

polar discontinuity is compensated by oxygen vacancies. These calculations showed

that if there are no oxygen vacancies at the interface, the p-type interface is insulating

only when a disproportionated, charge-, orbital-, and spin-ordered OPπ magnetic

hole is formed.[30] For the n-type interface, several different configurations of oxygen

vacancies have been investigated by GGA+U (with UTi = 2eV) calculations with

ionic relaxation. A complex multi-orbital reconstruction is produced, which depends

strongly on clustering of oxygen vacancies. Oxygen vacancies can create magnetic

splitting of the interface dxy orbital.[66]

SrTiO3 surfaces

The 2DEG present at bare SrTiO3 surfaces is similar to the 2DEG at

LaAlO3/SrTiO3 interfaces. In both cases, the Ti 3dxy (z is the film growth di-

rection) state of light carriers is the first occupied level. Surface oxygen vacancies may

be the origin of the 2DEG.[67] The impurity level introduced by oxygen vacancies on

bare SrTiO3 surfaces was investigated by Angle-Resolved Photoemission Spectroscopy

(ARPES), and a single deep impurity level was found.[68–70] To explain the donor

behavior of oxygen vacancies, GGA+U calculations with Ueff=4.36eV were performed

and the results were verified using a hybrid functional (HSE06). This work showed

that the oxygen vacancies energetically preferred the singly-ionized state V+
O rather
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than neutral V0
O or doubly ionized V2+

O . Thus, a singly occupied localized state in

the band gap and a delocalized state in the conduction band were introduced.[71]

An oxygen vacancy-based Anderson impurity model taking electron correlation into

account has been used to explain the donor behavior of oxygen vacancies.[72]

Other non-polar or amorphous oxide/SrTiO3

It was found recently that a 2DEG exists at the (110) and (111) LaTiO3/SrTiO3

interfaces,[73] and even at the interfaces between crystalline SrTiO3 and various

amorphous insulating overlayers of LaAlO3, SrTiO3 and yttria-stablized zirconia (YSZ)

grown at PO2 ≤ 10−2mbar.[73] No polar discontinuity exists at (110) or amorphous

LaTiO3/SrTiO3 interfaces. This 2DEG can be removed by annealing in 0.5-1 bar

pure O2, suggesting that redox reactions at the SrTiO3 substrate surface play an

important role.[74] By ion-milling the overlayer, the insulating state for the oxygen-

annealed crystalline LaAlO3/SrTiO3 heterostructure is restored, but not in the case

of the amorphous unannealed structure, suggesting that the polar catastrophe alone

accounted for the conductivity for the oxygen-annealed crystalline heterostructure,

but both polar catastrophe and oxygen vacancies contributed to the unannealed

crystalline heterostructure.[75] The critical thickness for the conductivity depends

on the material[74] and the deposition conditions[75]. The critical thickness for the

amorphous LaAlO3 layer can be explained by the diffusivity of oxygen in amorphous

LaAlO3 being different from crystalline LaAlO3. The interface can be “instantly”

oxidized once a sample with a very thin overlayer is exposed to air.[57, 76]

1.2.4 Atomic Intermixing

LaAlO3/SrTiO3
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Diffusion of all four cations into the opposite material near the LaAlO3/SrTiO3

interface has been observed by several experimental techniques such as EELS [29, 58,

77], Rutherford backscattering spectrometry (RBS) [78], Time-of-Flight Secondary Ion

Mass Spectrometry (ToF-SIMS) [78], angle-resolved X-ray photoelectron spectroscopy

(XPS) [79] and surface X-ray diffraction (SXRD) [80]. These different types of cation

intermixing will affect the electronic structure differently.[81, 82] From both annular-

dark-field (ADF) images and EELS maps, the n-type interface is found to be rougher

than the p-type interface. A-site atomic intermixing (exchange of Sr and La atoms)

across the interface will reduce the dipole introduced by the Ti3+delocalized electron,

which prevents the polar catastrophe. There is no delocalized screening electron or

hole charge at the p-type interface so there is less cation mixing.[29]

The A site intermixing itself does not remove the polar instability at the n-type

interface. However, La substitution for Sr (LaSr) in SrTiO3 is a shallow donor-type

defect. Intermixing can form either one or two metallic La1−xSrxTiO3 layers, which

could be the origin of the 2DEG,[80] or else form a charge neutral Sr1−1.5xLaxO layer,

which will compensate the potential buildup for 1-5 uc thin films.[83] Experimentally,

the annealed amorphous-LaAlO3/SrTiO3 interface with La diffused into the SrTiO3

substrate for a depth of about 1.5nm turns out to be insulating.[84] DFT calculations

show LaSr defects do not contribute free carriers at p-type and n-type interfaces.[82]

In addition, no A site occupancy variance across the interface is found,[58] which is in

conflict with the possible formation of Sr1−1.5xLaxO.

The La/Ti ratio also plays a very important role in the conductivity. It was

found that the crystalline quality and tetragonality of the LaAlO3 films decreased

with increasing La/Al ratio.[85] Moreover, the conducting interface only exists in

La-deficient or Al-excess films,[86] which requires that the La/Al ratio ≤ 0.97 ±
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0.03. STEM-EELS shows that the A site (La + Sr) cation occupancy in both La-rich

and Al-rich samples does not show variation across the interface. However, there

is a dip in the B site (Al + Ti) occupancy at the interface in the La-rich sample,

indicating that B site vacancies accumulate at the interface. On the contrary, there

is no B-site occupancy variance in the Al-rich sample.[58] DFT calculations were

used to determine the energetically favored defect structure. In the La-rich film, the

diverging potential is screened by Al2O3-vacancy complexes formed at the interface

so electronic reconstruction is no longer required. In the Al-rich film, Al substitutes

for La, which does not modify the alternating polarity from stoichiometric LaAlO3

film.[58]. Although A site mixing is at a greater depth,[80] the B site intermixing

plays an important role. Al-on-Ti antisite is an electron-trapping defect and will

reduce the 2DEG density, while Ti-on-Al antisite defects located on the LaAlO3 side

cause the interface magnetic moment. The polar discontinuity across the interface

is believed to trigger spontaneous thermodynamic formation of the defects.[82] The

different defect energy levels at LaAlO3/SrTiO3 interface, as illustrated in Figure 1.4,

have been summarized.[82].

1.2.5 Electronic Reconstruction

Correlated electrons at the interface may undergo electronic reconstruction anal-

ogous to reconstructions in which atomic arrangements at surface or interface are

different from the bulk, presenting a electronic phase that is different from that in the

bulk.[48]

LaTiO3/SrTiO3

In the LaTiO3/SrTiO3 system, DFT+U calculations show that ferromagnetic spin
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Figure 1.4. Defect energy levels of point defects at LaAlO3/SrTiO3 interface.

1○- 4○ are four types of donor-acceptor pairs. (a) n-type interface. (b) p-type
interface. From Ref[82].

ordering happens at intermediate and large U values, while orbital ordering happens

at large U values. In the orbital ordering phase with one LaO layer, dxy orbitals are

dominant 2uc away from the interface, although the electron density is low. At both

sides of the LaTiO3 layer inside SrTiO3 near the interface, the dxz and dyz orbitals

are dominantly occupied, respectively, when not considering atomic relaxation.[48]

The dxy orbital is still dominant when considering atomic relaxation.[49]. A small

Mott gap also opens up at large U value, separating the lower Hubbard band and

resulting in a correlated insulator phase.[50]

Experimentally, the LaTiO3/SrTiO3 interface undergoes a superconducting tran-

sition. The temperature dependence of conductivity measured at critical magnetic

fields exhibits a disordered 2D electronic structure,[35] which is different from DFT

calculation results using very large U values.[48, 50] Multiple carriers have been

reported from the observation of nonlinearity in Hall resistance.[51, 87] Low mobility

carriers exist at the interface while the high mobility carriers are present deep in the

SrTiO3.[87]. Superconductivity is associated with the high mobility carriers, and can

be tuned by the gate voltage.[88]
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LaAlO3/SrTiO3

In the LaAlO3/SrTiO3 system, LDA+U study shows that t2g degeneracy at the

n-type LaAlO3/SrTiO3 interface is broken by the asymmetry at the interface. The

dxy orbital shifts down into the gap. Using U value of 7eV and no ionic relaxation,

a charge-ordered ferromagnetic interface is obtained, and the conductivity can be

explained by electron hopping on the 50% occupied Ti sublattice with occupied dxy

orbitals at checkerboard arranged Ti3+ sites.[30] Ionic relaxation is shown to suppress

the charge order but dxy orbital occupation remains at the interface layer, and t2g

occupation exists in deeper layers after relaxation.[89] Polar catastrophe can also

be avoided by relaxation when the LaAlO3 film is thinner than 5 monolayers.[90]

The ground state for different U values has also been investigated.[91] Transitions

from metal to insulator, non-charge ordering to charge ordering, and non-magnetic to

ferromagnetic to antiferromagnetic ordering are observed with U increasing. Coulomb

corrections (Hubbard U) were not included in another calculation because they might

not properly describe electron correlation in the low carrier density case.[92] This

calculation without U correction similarly showed a down-shift of dxy in the first

Ti layer at the interface and partial occupation of multiple subbands. Although

not showing charge ordering, the lowest conduction band may still not participate

in transport because it has a strong 2D character consisting mostly of dxy in the

first Ti layer and thus it may be Anderson localized. dxz and dyz may also be

localized due to large effective mass along the planar direction. The mobile electron

is attributed to electrons in Ti dxy orbitals spreading over several Ti layers. The

temperature dependence of sheet resistance varying with the SrTiO3 thickness can also

be explained by the Anderson localization model.[93] The dxy preferential occupation

is confirmed by X-ray linear dichroism (XLD) measurement[94] and dxz/dyz orbitals
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are 50meV above dxy ones.[95]. The measured differences in mobility and density

between optical transmission spectroscopy and DC-transport measurement,[96] as well

as the differences between the Hall effect and SdH oscillations[64], could be due to

multiple channel transport, which also appears in δ-doped SrTiO3.[97] The non-linear

Hall effect[98–100] also indicates multiple conducting paths.

The magnetic properties and the superconductivity of the 2DEG are also related

to partial occupation of different 3d subbands. Ferromagnetism is observed at the

LaAlO3/SrTiO3 interface,[38] even though both materials are non-magnetic in their

bulk phase. A possible spiral magnetism is proposed.[101] The ferromagnetism shows

Ti3+ character in the dxy orbital by XMCD experiments.[39] The ferromagnetism

can be quenched by annealing in oxygen, showing a decisive role of oxygen vacan-

cies,[102] which is explained by an oxygen-vacancy-induced orbital reconstruction

which lowered the dxy state.[103] The magnetic moment density variation between

different samples [104–106] and the enhancement of ferromagnetism for higher oxygen

growth pressure [38, 107] is explained by elimination of oxygen vacancies in the bulk

region which reduces the depth of itinerant electrons.[108] Superconductivity with

Tc ∼ 200mK at the interface is also reported.[33] Interestingly, superconductivity

and ferromagnetism, which are usually considered to be incompatible, can coexist at

the interface.[104, 109, 110] A multi-orbital superconductivity model is proposed and

suggests that superconductivity is mainly caused by heavy quasiparticles consisting of

dyz and dxz, and the Rashba spin-orbit coupling will stabilize the superconductivity

against paramagnetic depairing effects.[111, 112] An electronic phase separation at

the LaAlO3/SrTiO3 interface is reported and directly imaged with a scanning su-

perconducting quantum interference device (SQUID) with micrometer-scale spatial

resolution.[113] The interface charge is separated into regions of a quasi-2DEG phase,
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a ferromagnetic phase persisting above room temperature or a (superconductor-like)

diamagnetic/paramagnetic phase below 60 K.[107]

The conductivity of the 2DEG at LaAlO3/SrTiO3 interface is limited by different

factors at different temperature and magnetic field. The temperature dependence of

sheet resistance for samples grown at relatively high partial oxygen pressure is suggested

to be a Kondo effect.[38, 114] The Kondo-like scattering is enhanced by increases in

the lattice mismatch and growth temperature.[108] The Kondo effect at amorphous-

LaAlO3/SrTiO3 interfaces can be suppressed by light irradiation due to light-induced

decoherence of localized spin states.[115] Positive out-of-plane magnetoresistance

and negative in-plane magnetoresistance is found at the interface and is explained

as spin-orbit interactions becoming stronger when electrons move parallel to the

magnetization.[116] As the magnetic field rotates in plane, the magnetoconductance

oscillates periodically with angle, which is due to the Rashba spin-orbit term opening

and closing a gap at Γ points for the Ti out-of-plane orbitals.[117] Giant negative

magnetoresistance at low temperature is explained by the combination of spin-orbit

coupling and scattering from finite-range impurities rather than Kondo screening.[118,

119] Colossal positive magnetoresistance (CPMR) is achieved in SrTiO3 capped with

low-pressure high-temperature homoepitaxial grown SrTiO3/LaAlO3 bilayer, and is

attributed to the multiple types of carriers and inhomogeneous transport.[37] The

tetragonal-to-cubic phase change of SrTiO3 at 105K can affect the conducting path.

At low temperature, the conducting path exists at the walls between ferroelectric

domains due to enhancement of the polarization. The path also changes with the

thermal history of the sample.[120]

The conductivity of LaAlO3/SrTiO3 interface[33, 121], as well as Nb-doped

SrTiO3[122, 123] shows T 2 resistivity at higher temperature, which typically in-
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dicates electron-electron scattering. The Fermi-liquid theory is applied to explain the

T 2 term.[124] However, the Fermi-liquid model is questioned because of the small

Fermi vector and lack of electron reservoir in doped SrTiO3 [125], and the scattering

rate showing the independence of carrier density in both doped SrTiO3 and gate

controlled SmTiO3/SrTiO3 interface.[126] The ρ ∝ T 2 may not be sufficient evidence

for electron-electron scattering.[127] At room temperature and higher, the mobility is

limited by electron-phonon scattering.[128, 129]

1.2.6 Discussion

The novel functionalities of the 2DEG present at complex oxide-oxide interfaces

offers possibilities to design all-oxide electronic devices.[27, 40, 130] This is demon-

strated experimentally since the LaAlO3/SrTiO3 interface can be reversibly switched

between insulating and conducting states.[40] The field effect can persist for >24h at

room temperature.[41] Switching between superconducting phase and non-magnetic

insulating phase [121] and room-temperature control of ferromagnetism [131] are

also demonstrated by applying gate voltage. The Rashba spin-orbital coupling and

superconductivity can be modulated by controlling the 2DEG subband filling using

applied electric field or different crystal orientations.[132–136] Magnetoresistance can

be tuned using an applied electric field on the SrTiO3 surface and Kondo effect appears

at higher applied gate voltage.[114]
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1.3 Outline of Dissertation

Fundamental questions about the 2DEG at complex oxide interfaces are still under

much debate, including the discrepancy between the charge density predicted by

the simple polar catastrophe model and the measured values, the role of oxygen

vacancies and atomic intermixing, the origin of the superconductivity, etc. In this

dissertation research, several different types of complex oxide interfaces have been

investigated. Electron microscopy is the major experimental tool. Various microscopy

and microanalysis techniques have been used, in combination with other experimental

methods such as electrical measurements. Image and spectrum simulations, as well as

DFT calculations, have also been used in order to compare the experimental results

with different theoretical models. The origin and differences of the 2DEGs at complex

oxide interfaces investigated is also discussed.

Chapter 2 will introduce the experimental, data analysis and simulation methods

used in the dissertation. Both existing and newly developed methods will be described.

This chapter will cover the NCSI, HAADF, BF and ABF techniques, image quan-

tification, EELS techniques, ELNES data analysis, and simulation methods which

include DFT simulations, image, spectrum and phase simulations.

Chapter 3 will describe the experimental and simulation results and their analysis

from γ-Al2O3/SrTiO3 interface, The origin of the 2DEG and the physical meaning of

the experimental data will be explained.

Chapter 4 will describe the imaging and spectral analysis results for the

LaTiO3/SrTiO3 system. Differences between the as-deposited sample and the oxygen-

annealed sample will be discussed and explained.
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Chapter 5 will describe the microscopy analysis for the EuO/SrTiO3 interface.

Links between the structural, chemical and electrical properties will be discussed.

Chapter 6 will describe the unusually large polarization and polarization gradient

found in the BaTiO3/SrTiO3 system. Different mechanisms are discussed based on

simulations and theoretical calculations.
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Chapter 2

METHODS

The four apexes of the materials science tetrahedron (MST), are structure, proper-

ties, processing and performance, with characterization at the center. Transmission

electron microscopy (TEM) is a very powerful tool for characterization since it can

provide both structural and chemical information at resolutions down to the sub-

Ångstrom scale. In this chapter, several TEM experimental methods used in this

research, including high-resolution TEM, high resolution-STEM, EELS and electron

holography are discussed. Moreover, since huge amounts of data are collected in

modern TEM experiments, related big-data processing methods (mainly hyperspectral

unmixing) are also discussed. DFT calculations are also very powerful for simulations

at the atomic scale. In this dissertation research, DFT is used to explain the TEM

results, and to provide insights into the physics behind the experimental data. Thus,

related techniques and further processing of DFT calculations for TEM simulations

are introduced in this chapter.

2.1 Transmission Electron Microscopy and Scanning Transmission Electron Mi-

croscopy

In this dissertation research, both TEM and STEM have been used. In TEM mode,

the specimen is illuminated by a nearly-parallel electron beam. The exit wave is imaged

by an objective lens and further magnified. The final image is normally recorded using

a doped-YAG screen–coupled CCD camera. In STEM mode, the electron beam is
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converged into a small probe which is scanned across the specimen. Electron detectors

on the opposite side of the specimen are synchronized with the scanning probe and

electrons transmitted at each pixel of the specimen are collected. An image of the

specimen is then rebuilt with contrast related to the detector geometry.

2.1.1 Negative Cs Imaging

A very thin specimen is preferred for conventional high-resolution TEM. When the

coherent parallel illumination beam passes through the specimen, both the amplitude

and the phase are changed. The exit wave is given by

f(x, y) = exp[−iσ
∫
V (x, y, z)dz + µ(x, y)] (2.1)

= exp[−iσVt(x, y) + µ(x, y)] (2.2)

where (x, y) is a vector in real space, V is the crystal potential, σ is the interaction

constant describing the effect of crystal potential on the phase change, µ is the

absorption. Since the sample is thin, both the amplitude change (µ) and the phase

change φ = −σVt are very small.

exp[−iσVt(x, y)] ≈ 1− iσVt(x, y) (2.3)

exp[µ(x, y)] ≈ 1 + µ(x, y) (2.4)

Then,

f(x, y) ≈ 1 + µ(x, y)− iσVt(x, y) (2.5)

The weak-phase-object approximation (WPOA) condition assumes that µ(x, y) = 0

and that σVt is small. The exit-surface wavefunction under WPOA will not give

any image contrast because only the imaginary part of the wavefunction varies with
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Figure 2.1. Scheme of transfer function from the exit wave to the image plane by
means of the aberration χ(R).

The term sin(χ) provides the cross-talk between phase and amplitude. Figure taken
from Ref.[137].

position. In order to obtain phase contrast, the amplitude signal should reflect the

phase variation of the exit wavefunction.

Fourier transformation of the exit wavefunction then gives,

f(u) = δ(u) + µ(u)− iσVt(u) (2.6)

In which u = (1/x, 1/y). If an extra phase shift ∆φ = χ(u) is added to each non-zero

Fourier component of the image (i.e. every diffracted beam), then the final image

wavefunction f ′(x, y) will have some cross-talk between the real and imaginary part.

f ′(u) = δ(u) + [µ(u)− iσVt(u)] exp(−iχ(u)) (2.7)

= δ(u) + [µ(u)− iσVt(u)](cos(χ(u))− i sin(χ(u))) (2.8)

= δ(u) + σVt(u) sin(χ(u)) + µ(u) cos(χ(u))− iσVt(u) cos(χ(u))− iµ(u) sin(χ(u))

(2.9)

The desired crosstalk terms between the phase and the amplitude are provided.

The relationship is illustrated schematically in Figure 2.1.

In practice, the required phase shift ∆φ is provided by the transfer function of the
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objective lens. The total transfer function can be represented in the following form.

T (u) = A(u)E(u)e−iχ(u) (2.10)

where A(u) is an aperture function that cuts off all information beyond the boundary

of the objective aperture. E(u) is an envelope function, which is the product of several

different factors including chromatic aberration, beam divergence, specimen drift,

specimen vibration and detector properties. E(u) is close to 1 at low u values but

decays rapidly to zero near the information limit of the electron microscope. Both

A(u) and E(u) are real functions. The phase shift χ(u) of the objective lenses is

given to a first approximation by

χ(u) = π∆fλu2 +
1

2
πCSλ

3u4 (2.11)

Where ∆f is the defocus, CS is the spherical aberration coefficient of the objective

lenses, and λ is the wavelength of the electron beam. CS has a fixed value at fixed

lens current for a conventional TEM. The optimized defocus is obtained by making

the variance of the transfer function small. Let

dχ

du

∣∣∣∣
χ=− 2π

3

= 0 (2.12)

The so-called Scherzer Focus[138] is then obtained

∆fSch = −
(

4

3
CSλ

) 1
2

(2.13)

According to the famous Scherzer Theorem [139] the spherical aberration can

be corrected by breaking the rotational symmetry of the objective lens. Aberration

correction for TEM can be achieved by using two electromagnetic hexapoles and four

additional round lenses.[140]
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To maximize information transfer, the steepest ascent of the wave aberration

|dχ/du|max should be minimized in the reciprocal frequency range [0, umax]

(dχ/du)|umin = −(dχ/du)|umax (2.14)

where umin and umax are u values at which dχ/du reaches minimum or maximum

(the maximum is taken as the information limit). The optimized defocus under this

condition is

∆fLichte = −3

4
CSλ

2u2
max (2.15)

This defocus is known as the Lichte defocus, which is also the condition where the

image has the least delocalization or least confusion[141], and it was originally used

for recording electron holograms.[137] In conventional TEM, CS is always positive, so

both ∆fSch and ∆fLichte are negative (underfocus). Aberration correction makes it

possible to control the CS value over a large range. For aberration-corrected TEM,

∆fSch = ∆fLichte (2.16)

So that the optimized CS and defocus values can be derived. Under WPOA, both

conditions (positive CS with negative ∆f and negative CS with positive ∆f) should

have the same effect. However, when negative CS is used with positive ∆f , then

the electron-channeling-induced amplitude contrast, which gives a bright spot at the

location of the atomic column, will enhance the phase contrast, which will give brights

spot at the locations of the atomic columns.[141, 142] Thus, the negative CS imaging

(NCSI) is preferred. For an aberration-corrected microscope with information limit

umax = (0.08nm)−1, the optimized CS is -13 µm, and the optimized defocus is +6nm.

Light elements in transition metal oxides, such as oxygen atomic columns, which

were not visible in conventional TEM, give detectable contrast under these imaging

conditions provided that the specimen is thin enough to comply with the WPOA.[143]
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2.1.2 Scanning Transmission Electron Microscopy Imaging

Bright Field (BF)

The NCSI condition requires small negative CS, whereas the CS is usually set

to be as small as possible in aberration-corrected STEM imaging in order to form

the smallest probe. A slightly negative CS can be used to balance the positive fifth-

order spherical aberration.[144] Coherent imaging using phase contrast is achieved

using a bright-field (BF) detector. The difference with the TEM counterpart is the

Fourier transform of the phase change due to aberrations, which is the probe amplitude

distribution P (R), which is referred as the point spread function in the TEM case.[145]

FT {exp[−iχ(u)]} = P (R) =

∫
e2πiu·Re−iχ(u)du (2.17)

The bright field image intensity is given by

IBF (R) = |f(R)⊗ P (R)|2 (2.18)

where f(R) is given in equation 2.2. The image contrast can be improved by using

the annular-bright-field (ABF) imaging mode (implemented using a BF detector in

conjunction with a beam stop).[146] ABF imaging is similar to hollow cone illumination

in STEM[147], in which the tilted incident beam can reduce the effect of the chromatic

aberration CC .[148] It has been demonstrated that atomic columns as light as hydrogen

can be directly imaged using this imaging mode.[149]

When a small BF detector on the optic axis is used, STEM is equivalent to CTEM

imging based on the reciprocity principle.[150, 151] However, if a large coherent

convergent beam is used and the collection angle is set equal to the convergence angle,

the phase contrast will be suppressed.[152] The contrast has very weak defocus and

thickness dependence.[153, 154] The incoherent high-angle bright-field (HABF) image
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contrast is a simple convolution between the object function O(R0) and the effective

probe intensity Peff (R0)

IHABF (R0) = O(R0)⊗ Peff (R0) (2.19)

high-angle annular-bright-field (HAABF) imaging is used in this dissertation research

for determining the position of oxygen atomic columns in the lattice.

Dark Field (DF)

When the inner collection angle is increased to avoid the bright field region, both

coherently and incoherently scattered electrons are collected. The coherent part can

give diffraction contrast and has been used in tomography reconstruction.[155] For

the incoherently scattered part, any effect that leads to dechannelling of the incident

electron beam will give rise to contrast.[156]

Low-Angle Annular-Dark-Field (LAADF)

The random strain fields from point defects can give rise to incoherently scattered

contrast which is more pronounced at low scattering angles.[157, 158] The low-

angle annular-dark-field (LAADF) imaging mode has been used for detecting oxygen

vacancies in SrTiO3 with unit-cell resolution, with the collection semi-angle at 25-50

mrad and acceleration voltage at 200 kV.[156] Atomic-resolution defect contrast in

LAADF is also observed in γ/γ′ Ni-superalloys[159] and CeO2 nanoparticles (known

as oxidation-state-sensitive imaging)[160]. However, when the collection angle is small

enough, coherently scattered diffraction contrast such as thickness fringes may occur,

and multi-slice image simulations are required to interpret the intensity.[161]

High-Angle Annular-Dark-Field (HAADF)

In high-angle annular-dark-field (HAADF) imaging, diffraction contrast is fully

27



suppressed and thermal diffuse scattering (TDS) is dominant. This requires [162]

θHAADF ≥ λ/dthermal (2.20)

where λ is the electron wavelength and dthermal is the amplitude of atomic thermal

vibration. For silicon at room temperature, and an acceleration voltage of 200 kV,

θHAADF > 40 mrad.[145]. In TDS at high scattering angle, the atomic form factor has

the following form [163, 164]

f ′HA(M, s) ≈ σTDS ∝
∫

detector

f 2(s)
[
1− exp(−2M · s2)

]
d2s (2.21)

where M is Debye-Waller factor proportional to the mean square of the thermal

verbration amplitude < u2 >. Since f(s) is related to atomic number Z, the HAADF

contrast is often referred as Z-contrast. At very high angle, the scattering cross-

section approaches Z2 dependence, which is similar to Rutherford scattering from an

unscreened nucleus. Lower-angle scattering cross sections range from Z2 to Z3/2.[165,

166] For collection angles of (50-250 mrad) with acceleration voltage of 200 kV, HAADF

signal scales approximately as Z1.7.[156] For mass-thickness contrast, HAADF is more

effective than bright-field imaging.[164] Similar to other imaging modes, the HAADF

signal is also affected by channelling when a low-index zone axis of a crystal sample

is aligned with the electron beam direction. The channelling effect reduces the

spreading of the beam as it propagates through the sample, which is useful for imaging

atomic columns in thick samples in probe-corrected microscopes.[167] Channelling also

enhances the high-angle scattering, thus increasing the HAADF signal.[166, 168] In

comparison, phase contrast modes such as NCSI can also benefit from channelling for

thin samples. However, for thicker samples where the WPOA does not hold, contrast

reversal occurs due to phase wrapping.
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2.1.3 Image Quantification

2.1.3.1 Comparison of Experimental and Simulated Images

Image quantification can provide structural or even chemical information about

the sample, as introduced in previous sections. The projected atomic columns in a

crystalline sample often appear as bright or dark spots in atomic-resolution images.

The positions of the spots are related but often not directly to atomic positions in the

sample. Assuming the brightest (or darkest in BF mode) position in a high-resolution

image as corresponding to the atomic position is often biased for two reasons. First,

when the sample is not extremely thin, Equations 2.2 to 2.5 are no longer valid

anymore. the wave propagation inside a sample cannot be expressed as the projected

atomic potential and absorption function convoluted with the atomic positions. The

exit wave at any atomic column will be affected by neighboring atomic columns in

a complicated way. An example is the channelling effect. [169–171] Second, when

atomic columns are not well separated, the tail of one intensity peak may affect the

positions of neighboring peaks, unless the local symmetry around that atomic column

ensures the effect of all nearby atomic column have canceled each other. However,

most important cases of atomic position measurement are dealing with local symmetry

breaking such as ferroelectric displacements or surface/interface displacements.

A feasible method to recover atomic structure information from TEM or STEM

images is as follows. Different structure models are constructed and the corresponding

images are simulated. The simulated images are compared with experimental data and

the parameters of the structure model and the imaging conditions in the simulation

are then adjusted through an iterative procedure until a close match is reached.[172]
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Recent experimental examples of this method include using an aberration-corrected

STEM to determine the depth position of a individual dopant atom in crystalline

SrTiO3,[173], and using the aberration-corrected TEM to determine the 3D surface

structure of a MgO crystal from a single micrograph.[174]

For phase contrast images, cross-correlation coefficients between an experimental

image and simulated images are often used as the matching criterion.[175] However,

in many high-resolution images, especially STEM-HAADF images, the intensity of an

atomic column is a 2D Gaussian function (due to central limit theorem).

I(x, y) = f(x, y) (2.22)

=
A · exp

(
− 1

2(1−ρ2)

[
(x−µX)2

σ2
X

+ (y−µY )2

σ2
Y
− 2ρ(x−µX)(y−µY )

σXσY

])
2πσXσY

√
1− ρ2

(2.23)

Such a 2D Gaussian function will only have a few adjustable parameters A, σX , σY , ρ,

µX and µY . When comparing experimental and simulated images, comparison of the

parameters derived from the images as the criterion would be sufficient if the intensity

of the atomic columns does not deviate from a 2D Gaussian function. Comparing

these parameters instead of comparing pixel-by-pixel can also avoid over-fitting, and

make the calculation simpler.

2.1.3.2 Limitations from Electron Dose and Resolution

The ultimate limit of accuracy in estimating the position of an individual atomic

column is set by the electron dose. The intensity (electron count) of each pixel around

the atomic column is measured. An estimator of the central position uses this intensity

data.

(µ̂X , µ̂Y ) = µ̂(I(x1, y1), I(x2, y2), ..., I(xn, yn)) (2.24)
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where I(xi, yi) are the intensity of n pixels (x1, y1), (x2, y2), ..., (xn, yn) around the

atomic column and the total electron count

N =
n∑
i=1

I(xi, yi) (2.25)

A good estimator should be both unbiased and having minimum mean-squared

error.[176] Consider an ideal case in which the position (Xi, Yi) of each individual

electron that forms a high-resolution image can be measured individually and accurately

on the image. When the shape of the atomic column is a Gaussian function (e.g., in

HAADF), the sample set {(Xi, Yi), i = 1, 2, ..., N} is from a 2D Gaussian distribution

with mean (i.e. the center of the atomic column) (µX , µY ), standard deviation (i.e.

the size of the atomic column) (σX , σY ) and ρ = 0. The uniformly minimum-variance

unbiased estimator (UMVUE) [177] for (µX , µY ) is the mean position of all the

electrons.

(µ̂X , µ̂Y )UMV UE =
1

N

N∑
i=1

(Xi, Yi) (2.26)

The mean squared error of this unbiased estimator is

MSE = var((µ̂X , µ̂Y )UMV UE) =
1

N
(σ2

X , σ
2
Y ) (2.27)

where the population standard deviation σX and σY can be estimated from the

sample standard deviation SX and SY . Therefore, the standard error of the estimator

in equation 2.26 is 1/
√
N of the standard variation (σX and σY ) of the Gaussian

intensity profile in equation 2.23. Two factors determines σX and σY . First, the atomic

column in the exit wavefunction already have finite size. Second, the instabilities and

aberrations in the microscope further increase the apparent size of the atomic column

in the recorded image.

As an example, when using an aberration-corrected STEM to record a HAADF

image, if there is an atomic column with 95% percent of the HAADF intensity within a
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radius of 50 pm and there are 104 electrons in the atomic column, then the center of the

Gaussian intensity peak can be estimated with no better than 50pm/
√

104 = 0.5pm

accuracy at the 95% confidence level.

In microscopes where a CCD or a direct electron detector is used, the expected

accuracy will be lower, because the intensity data is pixelated. The estimator in

equation 2.26 using the mean position of all electrons turns into a calculation of the

moment of the intensity.

(µ̂X , µ̂Y ) =
1

N

N∑
i=1

(Xi, Yi) (2.28)

=
(
∑n

i=1 xi · I(xi, yi),
∑n

i=1 yi · I(xi, yi))∑n
i=1 I(xi, yi)

(2.29)

In equation 2.29, the estimated position is a weighted mean of each pixel. and

the weight is proportional to its intensity. This can be understood by the fact

that each pixel effectively has a variance of (σ2
X , σ

2
Y )/I(Xi, Yi). By multiplying the

weight I(Xi, Yi), each pixel (not each electron) becomes independent and identically

distributed (IID). The least square estimator, which is the weighted mean, is then

used (the Gauss–Markov theorem [176]). This transformation will be used again later

when the effect of noise is considered.

The intensity moment is the best estimator (UMVUE) and should be preferentially

used when the pixel size is negligible compared to the radius of the atomic column

and there is no background or additional noise except for the Poisson shot noise.

2.1.3.3 Limitations from Background Noise

When additional noise, which usually comes from positive background due to

inelastic scattering, or from thermal noise of the CCD camera or electron detector,
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is added, then equation 2.26 and 2.29 are no longer UMVUE. If the additional

noise comes from a uniform positive background with average electron count of λ,

the background count follows a Poisson distribution and can be approximated by

a Gaussian distribution with mean value of λ and standard deviation of σcnt =
√
λ

when λ > 10. The mean intensity of the background λ can be deducted from the

intensity before further data processing. If the additional noise is the dark thermal

noise, the background can also be approximated by a Gaussian with mean value of 0

and standard deviation of σ2
cnt which depends on the property of the CCD camera or

the detector. Here a weighted average method is suggested and the derivation is as

follows.

Let σcnt represent the overall variance of electron count (not the position) caused

by background in each pixel. In order to use the Gauss–Markov theorem, which

requires all pixels to have the same finite variance, each pixel needs to be reweighted.

Let c represent the actual electron count on each pixel . c′ represents the recorded

electron count. (i.e. I(Xi, Yi) = c′). The expected value of the “effective” variance of

the position (not the count) contained in each pixel is calculated as follows.

E

[
var(

∑
iXi

c
)

]
=

∫ ∞
−∞

σ2
X

c

1√
2πσcnt

exp

[
−(c− c′)2

2σ2
cnt

]
dc (2.30)

This integral cannot be solved. However, assuming σcnt � c (excluding very noisy

pixels) and using Taylor expansion for 1
c
around c′, let ∆ = c− c′

1

c
=

1

c′ + ∆
(2.31)

=
1

c′
− ∆

c′2
+

∆2

c′3
+O(∆4) (2.32)

The integral in equation 2.30 is then solved as

E

[
var(

∑
iXi

c
)

]
=
σ2
X(σ2

cnt + c′2)

c′3
(2.33)
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where the
∑

i is summing over a pixel. The same derivation can be done for Y

direction. In order to use the Gauss–Markov theorem, weight is inversely proportional

to the variance in equation 2.33. Thus, each pixel should be weighted by (I(Xi,Yi))
3

σ2
cnt+(I(Xi,Yi))2

(µ̂X , µ̂Y ) =
1

N

N∑
i=1

(Xi, Yi) (2.34)

=

(∑n
i=1 xi ·

(I(Xi,Yi))
3

σ2
cnt+(I(Xi,Yi))2

,
∑n

i=1 yi ·
(I(Xi,Yi))

3

σ2
cnt+(I(Xi,Yi))2

)
∑n

i=1
(I(Xi,Yi))3

σ2
cnt+(I(Xi,Yi))2

(2.35)

In another extreme, when background noise is dominant, σcnt � c is not valid almost

everywhere, and the weighted moment in equation 2.35 cannot be calculated. The

direct 2D Gaussian fit[178] is another algorithm to find the center of an individual spot.

The intensity around a bright spot is fitted to a 2D Gaussian function in equation

2.23. An iterative method is used and the parameters in the 2D Gaussian function

are updated until the least-square error reaches a minimum. In this case, direct 2D

Gaussian fit is the best estimator because the variance is mostly background noise,

and it is the same for every pixel.

2.1.3.4 Limitations from Pixelation

In atomic-resolution electron microscopy, it has been demonstrated that the

positions of a single atomic column can be determined with sub-pixel accuracy.[179]

With such accuracy, the effect of pixelation becomes an issue because the positions

of pixels are discrete and the electron count is integrated over the area of the pixel.

When the size of a spot is not significantly larger compared to the size of a pixel, the

effect of pixelation is more obvious. It would very complicated to investigate this

problem using analytical methods. Numerical methods can instead be used.
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The scenario of relatively low SNR and very small object size (large pixel size) has

been investigated using numerical simulations by people working on single-particle

tracking in biophysics and star-image positioning in astronomical studies, where the

radius of an object to be measured is only 1-2 pixels. Although the radius of an atomic

column is often 5-20 pixels in high-resolution electron microscopy, simulation results

tested for small objects may still be useful.

First, giving higher weight to brighter pixels in any algorithms generally increases

the accuracy.[180, 181] This is consistent with the analytical analysis in previous

sections.

Second, proper sub-pixel interpolation will reduce the bias and increase the ac-

curacy.[182, 183] The analytical form of the interpolation function, even without

considering the noise, is very complex.[182]

Third, the 2D Gaussian–fitting method outperforms the simple moment method

over a wide parameter range, especially at low SNR.[180, 183] The moment method

tends to bias towards the geometric center of the area being included in the calculation

when the area is defined by the pixels above a certain threshold.[183] The bias and

standard deviation of position using the moment method also fluctuates with the

actual position of the center inside the pixel.[183] However, these results are for small

objects with radius of 1-2 pixels. Both the bias and standard deviation are less than 1

pixel in both methods. Results for atomic columns have not yet been evaluated.

2.1.3.5 Strategies and Algorithms Used

From the discussions above in chapter 2.1.3.1 to 2.1.3.4, in order to do quantification

for high-resolution images, the strategy should be as follows:
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1. Calibrate the analogy amplifier for the detector or CCD so that the electron

count being read reflects the actual electron count.

2. The dark noise and the background should be measured for the same conditions

as for the image acquisition. These data are needed for calculating the parameters of

the noise distribution.

3. Unless the material is beam-sensitive, use large electron dose and dose rate for

the exposure in order to obtain high SNR. Large dose rate is preferred because part of

the dark noise is proportional to the exposure time. If the material is beam-sensitive,

a balance between the increment of dark noise and beam damage will be needed. For

the same reason, although sampling higher than the Nyquist frequency (using pixel

size smaller than the information limit) does not carry any useful information except

noise, it increases the sub-pixel accuracy.

The intensity data is then processed off-line for determining the atomic column

positions in the image.

A small program has been developed and it works as follows:

1. Three parameters are defined for rough peak finding:

MAX_THRESHOLD. Any pixels brighter than this threshold are recognized as

spike noise and are excluded.

MIN_THRESHOLD. Pixels darker than this are recognized as random fluctuations

in the background instead of a peak.

PEAK_RADIUS. No second pixel within this distance to an existing peak will be

recognized as another peak.

2. Sort the list LIST_OF_PIXELS with all pixels between maximum and minimum

threshold in the image by brightness.

3. Label the brightest pixel in the list as a peak, move it to another list named
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LIST_OF_PEAKS, remove every pixel within a distance of PEAK_RADIUS from

LIST_OF_PIXELS. Then label the brightest pixel in the reduced list again. Step 3

will be looped until the LIST_OF_PIXELS is empty. This procedure finds all pixels

with the intensity local maximum as a rough position.

4. Define a FITTING_RADIUS, For each pixel in LIST_OF_PEAKS, use the

position of that pixel as starting, use moment method or 2D Gaussian fit to refine

the position ATOMIC_CENTER with sub-pixel resolution. The refined position

is put into LIST_OF_CENTERS. The moment method is currently implemented.

The weight and background level can be given. If not given, the simple moment

method will be used and the background level will be set to the minimum inten-

sity within FITTING_RADIUS. the refinement will be iterated until convergence

(i.e. ATOMIC_CENTER does not change anymore.). The total electron count

ATOMIC_BRIGHTNESS can also be calculated at the same time. The atomic

column position data and the intensity data in the experimental image can then be

compared with the same data obtained from the simulated image.

2.2 Electron Holography

Transmission electron microscopy usually only provides intensity information for

the electron wave, whereas both the amplitude and phase information are available

in electron holography. Experimental methods include in-line holography, off-axis

holography, etc.[184] In this dissertation research, off-axis TEM holography has been

used. A very thin conducting wire is inserted into the microscope perpendicular to the

electron beam close to the image plane of the objective lens. This wire is connected

to a positive voltage to serve as a biprism and deflect the electron waves on each

37



side so that interference fringes form at a distance. The specimen is put on one

side, and the amplitude and phase of the sinusoidal interference fringes represent the

amplitude and phase of the exit wavefunction.[184] Electron holography is a useful

tool for material analysis. It has been demonstrated that magnetic fields, electrostatic

potential, polarization fields and 2DEG charge density in semiconductors can be

mapped using off-axis electron holography.[185–188]

2.2.1 Mean Inner Potential

The transfer function of the objective lens have already been discussed in Chapter

2.1.1. In holography, both amplitude and phase information are collected. The cross-

talk between amplitude and phase is illustrated in Figure 2.1 Unlike NCSI, the CS

should be adjusted to a value as small as possible to minimize delocalization when

recording a hologram in an aberration-corrected microscope.

The interaction of the high energy incident electron with electromagnetic fields

inside the sample is described by the time-independent Schrödinger equation [184](
1

2m
· (−ih∇+ eA)2 − eV

)
ψ = Eψ (2.36)

where ψ, A and V are the wavefunction, the vector potential and the scalar potential.

In equation 2.36, one electron approximation is used. Only elastic scattering is

considered because the inelastic terms are at least an order of magnitude smaller.[184]

Different from holography using low energy electron diffraction (LEED), exchange-

correlation potential Vxc in solid state physics does not need to be considered because

of the high energy difference between the incident and atomic electrons.[189]

Instead of solving Bloch states, apply the Wentzel–Kramers–Brillouin (WKB)

approximation to solve equation 2.36, and assume the object electron wavefunction
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has the form of ψ(x, y) = a(x, y)eiψ(x,y)[184]

ψ(x, y) =
π

λE

∫
L

V (x, y, z)dz − 2πe

h

∫
L

AZ(x, y, z)dz (2.37)

Assume that the magnetic field to be zero and V (x, y, z) is constant within the

space. Integrating over the sample with thickness t.

ψ =
2π

λUA
· 2m0c+ eUA
m0c2 + eUA

= CV0t (2.38)

UA is the accelerating voltage. C = 1.039× 106m−1eV −1 for 300 kV electrons. V0 is

the mean inner potential.[184] In the normal experiments, the sample is tilted off-zone

in order to avoid dynamical diffraction.

V0 is the electrostatic (Coulomb) potential V (r) averaged within the material of

volume Ω.

V0 =
1

Ω
·
∫

Ω

V (r)dr (2.39)

The use of DFT calculations to estimate the mean inner potential (MIP) (V0) will

be introduced in Chapter 2.6.3. Another way to estimate V0 from experiment other

than holography is assuming atoms in the specimen consist of neutral free atoms, and

using the sum of the 0th atomic scattering amplitudes as the V0

V0 =
h2

2πm0eΩ
·
∑
j

fj(0) (2.40)

where the sum is performed over the j atoms in the unit cell. V0 is often overestimated

because equation 2.40 ignores the valence electrons.[184]

The MIP is affected by valence charge. Give an example, MgO is an oxide with

simple FCC structure. For a pro-crystal made of charge neutral Mg and O atoms,

the calculated MIP is 18.43V. If Mg2+ and O2− are considered, the calculated MIP is

12.85V, which is close to the experimental value of 13.01V.[190]
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In analogy to the work function being affected by the surface, the MIP is also

affected by surface and adsorbates. DFT calculations show that the MIP depends on

the surface orientation, surface reconstruction, surface atom relaxation and adsorbed

atoms.[191, 192] As an example, the MIP of Si ranges between 12.01V to 14.12V with

different surface orientation, type of surface reconstruction, surface composition and

surface relaxation.[191] All of these factors give discrepancies between theoretical and

directly measured MIP values. Consider that Si is a non-polar material and atoms in

Si have neutral charge, while oxides often consist of charged ions and are polarized.

The MIP of oxides may also be affected more by their surface states.

2.3 Electron Energy-Loss Spectroscopy

2.3.1 Electron Energy-Loss Near-Edge Structure

STEM-EELS is used for acquiring the Electron Energy-Loss Near-Edge Structure

(ELNES) because this approach gives both high spatial resolution and energy resolution,

which is necessary for investigating complex oxide interfaces.

The transition probability can be expressed in the double differential scattering

cross section (DDSC) form by [193]

∂2σ

∂E∂Ω
=

4γγ′

a2
0q

4

k′

k
S(q, E) (2.41)

where σ is the cross-section. E is the energy-loss. Ω is the solid angle. γ2 =

1/(1− v2/c2). γ′2 = 1/(1− v′2/c2). v and v′ are velocity of incident and scattered fast

electrons. a0 = 4πε0~2
me2

is the Bohr radius. k and k′ are the wave vectors of the incident

and scattered fast electrons and k′

k
≈ 1. The dynamic form factor (DFF) S(q, E) is
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given by[193]

S(q, E) =
∑
junoc

∣∣〈φi|eiq·r|φj〉∣∣2 δ(Ei + E − Ej) (2.42)

i and j are initial and final states. q is the momentum transfer.

Because the core-level states are highly localized, the sum in DFF is mainly

determined by the unoccupied density of state.[194] Thus, ELNES can be regarded as

a probe of the local density of state with spatial, energy and momentum resolution.

Several factors limit the spatial and energy resolution. In addition to limitations due

to the microscope such as acceleration voltage and lens instability, the spatial and

energy resolution are further limited by the electron-specimen interaction.

The spatial delocalization due to the long-range nature of the electrostatic in-

teraction between the incident electron and atomic electrons increases with incident

electron wavelength λ and decreases with scattering angle θ.[195] Thus, higher incident

energy and larger energy loss give smaller delocalization. For the ELNES signals used

in this research, incident beam energy of 100-200 keV and energy losses of 100-2000

eV have been used. The delocalization width is then in the range of 0.1-0.4 nm[195]

for thin samples. Unit-cell resolution should therefore be possible.[156]

The spectral broadening (energy resolution) is limited by the core-hole lifetime and

the final-state lifetime, as defined by Heisenberg’s uncertainty relation Γτ ≈ ~. Both

the core-level broadening and the final-state energy broadening increase with energy

threshold.[195]. This effect will be considered in simulations described in chapter 2.6.2.

Energy losses higher than 500 eV will give broadening greater than approximately 0.2

eV. Therefore, a cold-field-emission electron gun might be helpful but an ultra-fine

monochromator is not necessary.

Plural scattering in thick samples creates a broad double-scattering peak at Ek+Ep,

where Ek is the main edge and Ep is the energy of plasmon peak.[195] This can be
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removed from the spectrum by deconvolution using low-loss spectrum. To avoid the

complexity of acquiring low-loss spectrum and losing SNR, all experimental spectra

in this dissertation were collected at thicknesses t/λ < 0.8 where λ is the inelastic-

scattering mean free path. This was verified by the zero-loss and low-loss spectra in

the same area.

When doing ELNES quantification, the complexity of the electron wave propagation

inside the sample has to be considered. Channelling happens before and after the

inelastic scattering process. The double-channelling results can be as much as 20%

different from single channelling predictions even for a thin sample.[196] Despite

this restriction, an linear model which assumes that the ELNES signal is linearly

proportional to the area density is still used for semi-quantification in this dissertation

research.

2.3.1.1 Ti-L edge

The Ti− L3 edge (originating from 2p3/2 to 3d transitions) and Ti− L2 edge

(originating from 2p1/2 to 3d transitions) are separated by about 5.5 eV. In Ti4+, each

of them is further separated into t2g and eg peaks due to crystal-field splitting of

Ti-3d. As the oxidation state decreases, in mixed Ti3+ and Ti4+ states such as the

Magneli phases Ti4O7 and Ti5O9, a pre-peak a′ and b′ (see Figure 2.2) appears due

to orthorhombic polyhedra distortions.[197] The t2g and eg merge together in Ti3+.

In Ti2+ and metallic Ti, the peaks systematically shift to lower energy, as shown in

Figure 2.2. The shapes of the Ti white lines are dominated by the multiplet effect[198,

199] and are sensitive to the Ti oxidation state.[156]
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Figure 2.2. Ti− L3,2 ELNES spectra of several Ti oxides.

Notice the crystal field splitting and merging of peaks for lower oxidation states.
Figure taken from Ref.[197].
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Figure 2.3. Ti− L3,2 ELNES spectra of BTO, STO and several Ti oxides.

(a) Experimental spectra of bulk BTO and STO compared to TiO2 anatase, brookite,
and rutile. Notice the crystal field splitting, especially the eg splitting indicated by
the dashed line. Satellite structures appear above the white lines. (b) Comparison of
Ti− L3,2 edges measured in STO, BTO, and at the BTO/STO interface. Figures
taken from Ref[200]

The satellite peaks above the white lines originate from the backscattering at

neighboring atoms and the shifts of these satellite peaks are sensitive to inter-atomic

distance.[200]
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Figure 2.4. Ti− L3,2 ELNES spectra in SrTiO3−δ with oxygen vacancies.

Figure taken from Ref[156]

2.3.1.2 O-K edge

The oxygen K edge originates from the transition from inner K shell to the empty

hybridized O-2p orbits with Ti-3d, 4s, 4p orbits.[201] Peaks before 537 eV originate

from the transition to t2g and eg states.[201] The peak between 537 eV to 546 eV

originates from transitions into Ti-4s, 4p orbits.[202] An alternative explanation for

the peaks above 537 eV is backscattering at neighboring atoms.[203]

The O-K ELNES is sensitive to local environment and it is a good approximation

to the projected density of state at the oxygen atom[204] Figure 2.5 to 2.7 show the

O-K edge in different materials.
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Figure 2.5. O−K ELNES spectra of several Ti oxides.

Notice the crystal field splitting (peak A and B) and merging of peaks at lower
oxidation states. Figure taken from Ref.[197].
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Figure 2.6. O−K ELNES spectra of BTO, STO and several Ti oxides.

(a) Comparison of the O−K edge in BaTiO3, SrTiO3 and their interface. (b)
Experimental and simulated oxygen K edges of bulk BaTiO3 and BaTiO3 thin film.
Figures taken from Ref[200]

Figure 2.7. O−K ELNES spectra in SrTiO3−δ with oxygen vacancies.

Figure taken from Ref[156]
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2.4 Hyperspectral Unmixing

ELNES is sensitive to small atomic or electronic structural changes. High accuracy

chemical analysis, especially at interfaces or at dislocation core, or for detection of

orbital or magnetic signals, requires more accurate quantitative spectral analysis.

Limited by the electron dose, the SNR cannot increase proportionally. On the other

hand, with improving spectral and energy resolution, the amount of data acquired

in one spectrum image is large. In modern microscopes, an 512 pixel x 512 pixel x

2048 channel spectrum image with 16 bits of quantization will produce 1 gigabyte per

spectrum image. New methods for quantitative spectrum image analysis are necessary

to handle such large data sets.

The hyperspectral unmixing technique is a powerful tool for spectrum analysis,

and has been succesfully applied to geometrical data in remote sensing[205]. The

hyperspectal image in EELS and the geometrical data have many similarities. They

both have many pixels (to form an image) and multiple channels (to form a spectrum).

An important similarity is that the spectrum in each pixel in many cases is not just a

spectrum from a pure material, but a mixture from several different materials. For

example, due to resolution limits, each pixel in geometrical data can be a mixture of

roadways and vegetation, which have two different spectra. In material analysis, the

oxidation state may change gradually over an area and in each pixel spectrum appears

as a mixture of the two spectra for high and low oxidation states. An important

difference is that the geometrical data acquired by modern remote sensing devices can

give high SNR (> 500 or ∼ 27dB[206] in AVIRIS data [207] for example), whereas

the electron count per channel in EELS mapping is usually less than 104, or even as

few as several dozen, giving a typical SNR of 10-20dB, even without considering the
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EELS background. In this section, a standard procedure with several improvements,

including pre-processing, is introduced so that ELNES data will fit the hyperspectral

unmixing algorithms, The approach can then be applied to ELNES data having low

SNR.

2.4.1 Basis

In a linear mixing model, the data in a spectrum image is represented by a matrix

r of size L×N , where each column represents a pixel in the image with a total of N

pixels, and each row represents a channel in the spectrum with a total of L channels

(dimensions). In the linear mixing model, the spectrum image is a product of the

endmember matrix M and an abundance matrix α,[205]

r = Mγα + n (2.43)

M is a matrix of size L × p, p is the number of independent endmembers, γ is a

scale factor, and n is the random noise. The abundance matrix has the following

constraints.[205]

Non-negativity αi,j ≥ 0 (2.44)

Sum-to-one 1Tα = 1 (2.45)

Linear unmixing algorithms take dataset r as input and calculate the endmember

matrix M and abundance matrix α. There are several different approaches. Take a

simplex-based algorithm as an example. The convex hull of the columns of M forms a

p− 1 simplex in RL, as illustrated in Figure 2.8. The N-FINDR algorithm maximizes

the simplex volume with endmembers within the dataset.[209]
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Figure 2.8. Illustration of the simplex set C for p = 3.

C is the convex hull of the columns of M. Green circles represents N spectral vectors
in dimension L. Red circles represent the p endmembers. Figure taken from Ref[208].

In this work, a set of improved algorithms optimized for ELNES map unmixing

has been developed. Figure 2.9 is an outline of the unmixing procedure. The details

are discussed in the following sections.

Figure 2.9. Standard procedure developed for ELNES map unmxing.
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2.4.2 Outlier Detection

The spike-noise peaks are outliers in the dataset. For second-order statistics–based

algorithms such as PCA, a single data point with spike noise will give large variance.

For the simplex-based algorithms, data points with spike noise are usually far away

from the original simplex. Therefore, these algorithms will always fail when spike

noise is still present in the data. However, spike noise is very common in any CCD or

electron detector in the TEM due to X-Rays or background radiation. Hence, it is

very important to remove them before further processing.

Oversampling in the energy dimension is used for outlier detection. Oversampling

(using a dispersion (in eV/channel) finer than the energy resolution of the equipment)

is usually undesirable because thermal noise in the CCD will add up when using more

pixels to collect the same number of electrons. Here it is possible make a trade-off

between some loss of SNR and a gain of spike noise detection. The dispersion is set to

be several times the energy resolution. After data acquisition, a low-pass filter with

cut-off frequency above the energy resolution but below the cut-off of the transfer

function of CCD camera is applied to each spectrum. For example, in an EELS

system with energy resolution of 0.6eV, the dispersion is set to be 0.1eV/channel. A

low-pass filter with cut-off at 0.2-0.3eV/channel is then applied. The filtered spectrum

is compared with the original spectrum. If the difference is greater than a threshold,

such as 6σ, the data point is considered to have spike noise and it is discarded. σ2 is

estimated from the variance of a dark reference plus the Poisson shot noise.

After outlier detection, a simple spatial and energy drift correction based on cross-

correlation is applied to the spectrum image. Unchanged features in the spectrum are

used for reference in the cross-correlation calculation.
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Figure 2.10. Illustration of spike noise detection.

The black line is a spectrum with spike noise. The red line is the same spectrum after
low-pass filtering. The difference is greater than 6σ

2.4.3 Removal of EELS Background

The pre-edge power-law background model may not work very well for background

substation when the electron dose is low. If there is not enough region for pre-edge

fitting, there will be too much variation in the background. In particular, the variance

will be magnified when the signal range is large comparing to the pre-edge region. Even

a small variance in the pre-edge region will introduce large variance in the signal region

(See figure 2.11(a)). If the pre-edge region has some feature, then a systematical bias

associated with that feature will be mixed with the signal (See figure 2.11(b)). It might

be unnoticeable from the spectrum itself, but it will sometimes cause the endmember

extraction algorithms to fail. Error associated with the feature in the background

may be regarded as a new endmember, especially when the background-to-signal ratio

is high.

The solution is to use the signal region instead of using the pre-edge region

for background subtraction. The algorithm presented here resolves the background

subtraction problem from the point of view of signal separation. Compared with the

conventional power-law background subtraction algorithm which aims to separate
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Figure 2.11. Illustration of variance and bias in power-law EELS background
subtraction.

The power-law EELS background subtraction algorithm is applied to Ti-L edge and
O-K edge of a SrTiO3 sample. The pink box indicates the pre-edge region used to fit
the power-law function, the black line is the raw EELS spectrum, the green line is the
signal after background extraction. The red line is the power-law background, The
orange area is the 95% confidence interval of the background. (a) Pre-edge power-law
background subtraction for Ti-L2,3 edge. The confidence interval of the background,
which is also the variance of the extracted signal, becomes wider further away from
the pre-edge region. (b) Pre-edge power-law background subtraction for O-K edge.
Features remain in the background region, which are most likely due to plural
scattering of the Ti-L edge. Features in the pre-edge region cause bias in the signal.

the exact signal and background, recovering only part of the exact signal in a linear

subspace which only have the rapidly-oscillating part could be as good or even better,

as long as the error and the SNR are better than the conventional method. Assume

ctotal(E) is the total electron count (background plus signal) per channel at energy-loss

E. ctotal(E) is the sum of the “background” (denoted by c′bkg(E)) and the “signal”
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(denoted by c′signal(E)).

ctotal(E) = c′bkg(E) + c′signal(E) (2.46)

A low-order polynomial least-square fitting over the signal range can be applied

instead of the normal power-law pre-edge background model. The low-order polynomial

function is discarded as background and the residual of the fitting is taken as the

signal. This is illustrated in figure 2.12.

c′bkg(E) =
J∑
j=0

bj(E − E0)j (2.47)

where E0 is the beginning of the signal range. J is a small number such as 2 or 1,

depending on whether or not the 2nd term needs to be included. The residual of the

polynomial fitting is considered as the “signal” (c′signal(E)). The sum of the squared

error is calculated as the sum of squared signal.

e =

E1∑
E=E0

(c′signal(E))2 (2.48)

where E1 is the highest energy of the signal. The fitting coefficients b1, . . . , bj are

determined by minimizing the squared error e.

(b1, . . . , bj) = arg min
b1,...,bj

e(b1, . . . , bj) (2.49)

and can be calculated by setting the gradient to zero.

∂e

∂bj
= 0, j = 1, . . . , J (2.50)

The power-law background has most of its component in the 0th and 1st terms.

Consider the power-law background function and expand it into a polynomial function

at the beginning of the edge E0:

cbkg(E) = AE−r (2.51)

= A

∞∑
n=0

(E − E0)nE−n−r0

(
−r
n

)
(2.52)
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A and r are constants defining the shape of the power-law background. The coefficients

of high-order terms AE−n−r0

(−r
n

)
decay rapidly with n. Thus, low-order terms will

be good approximations for the power-law background. Using the 0th and 1st order

terms is usually sufficient. However, when the signal range is large, the 2nd-order

term might also need to be included. The higher-order terms are so small that they

can be neglected. On the other hand, the signal, which is usually rapidly varying with

energy E, has both low-order terms and high-order terms.

csignal = a0 + a1(E − E0) + a2(E − E0)2 + a3(E − E0)3 + . . . , aj 6= 0 (2.53)

The high-order terms in the signal will be preserved after background removal.

The theory behind this method can be explained as follows: Let V be a Hilbert

space of random variables ctotal(E) with an inner product defined by

< c1, c2 >=

E1∑
E=E0

(c1(E) · c2(E)) (2.54)

SupposeW represents the space of possible polynomial estimators, spanned by {bj(E−

E0)j| j = 0, . . . , J}. According to the orthogonality principle [210], when the squared

error e reaches its minimum, the residual c′signal is orthogonal to the subpace W . i.e.,

c′bkg ∈ W , c′signal ∈ W . W is the orthogonal complement of subspace W of V .

From the approximation in equation 2.52, cbkg is approximately completely in W

(cbkg ∈ W ). So there is approximately no information about the background cbkg in

W . i.e., the background is removed in W , whereas csignal has components in both W

and W . Its component in W is c′signal. Its component in W , along with cbkg, becomes

c′bkg and is discarded. Although other methods like pre-edge power-law fitting do not

lose any component, they have the cost of introducing bias and variance from the

pre-edge region.
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Figure 2.12. Illustration of background removal by polynomial fitting.

The total spectrum (ctotal, shown in black) is fitted by a polynomial function (c′bkg,
shown in red). Here the polynomial function is a linear function. The residual (shown
in green) is the signal c′signal

c′signal losing its component inW will not introduce error in further data processing.

In the linear-mixing model described by equation 2.43, csignal can be expressed as a

linear combination of endmembers m1, . . . ,mp.

csignal = α1m1 + α2m2 + · · ·+ αpmp (2.55)

If the same polynomial background removal is also applied for every endmember

m1, . . . ,mp, and the residual (signal) is m′1, . . . ,m′p. As long as none of m′1, . . . ,m′p

is zero (which is the usual case because signal is usually fast varying with E), the

following equation is still valid in subspace W

c′signal = α1m
′
1 + α2m

′
2 + · · ·+ αpm

′
p (2.56)

Therefore, the background removal method based on polynomial-least-squares fitting

will not alter the resulting linear combination coefficients α1, . . . , αp.
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Figure 2.13. Illustration of the orthogonality principle.

Both cbkg and c′bkg are in W . c′signal is csignal projected in W

In summary, in this background removal method, the space ctotal is divided into

a subspace W where cbkg is located, and the orthogonal complement W . Anything

in W is removed as background. All of the following signal processing is done in W .

Bias and variance in other methods depending on pre-edge or post-edge region are

avoided in this approach, at the cost of losing some signal in W , which is usually not

an issue for EELS signals varying rapidly with energy loss E.

2.4.4 Dimensionality Reduction

The Principle Component Analysis (PCA) algorithm on covariance (equivalent

to Singular Value Decomposition (SVD) on centered data) is used for dimensionality

reduction[205]. Generally, PCA finds a set of orthogonal axes where the data have

the largest variance. As a second-order statistics–based algorithm, it is desirable to

make sure that the random noise variance has the same expected value everywhere in

the sample space so that the PCA will not bias towards directions with more noise

variance. Therefore, the electron count should be weighted by the inverse of noise
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variance, which is the sum of the variance of dark noise and the variance of Poisson

shot noise.

wi = 1/(σ2
dark + σ2

Poisson) (2.57)

The dark noise σdark of each channel in each pixel is a fixed value for one spectrum

map acquisition. Considering when the electron dose is low, the dark noise will be

comparable or greater than the Poisson noise. If the jump ratio of the edge is not

too high at the same time, it is expected that σPoisson will not vary much at different

channels and different pixels. For EELS data, especially 2D scans of core-loss edges,

wi can approximately be set to 1. However, for data with good SNR, weighting is

required. An extreme case is when Poisson noise is dominant, such as in EDX data,

weighted PCA is needed.[211–213]

Currently, only PCA is implemented in the dimensionality reduction process.

When there is a non-linear signal in the hyperspectral data, such as a peak shift,

PCA results in more dimensions than the actual number. Non-linear dimensionality

reduction, possibly manifold learning, might be added at a later stage.

Take the simple unweighted PCA as an example. As already introduced in chapter

2.4.1, the total number of pixels is N . The total number of channels is L. r is the

data matrix of dimension L×N .

r = [c′signal,1, . . . , c
′
signal,N ] (2.58)

where each column vector c′signal,n is the ELNES signal in n-th pixel with background

removed pixel by pixel using the polynomial least-square fitting method introduced in

chapter 2.4.3.

Let rl,n be the matrix element of r at l-th row and n-th column. rm is a L×N
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matrix with every element of l-th row being the mean value of l-th row vector of r.

r = [rl,n]L×N (2.59)

rm =

[
1

N

N∑
j=1

rl,j

]
L×N

(2.60)

Data centering

ro = r− rm (2.61)

To speed up the matrix factorization, calculate the SVD on matrix ror
T
o instead of

PCA on rTo

ror
T
o = VΣ2VT (2.62)

Σ2 is an L× L matrix with the squares of the singular values. V is an L by L matrix

whose columns are orthogonal unit vectors. To reduce data into p dimensions, take

the first p columns of matrix V and name it Vp.

Project the data into p dimensions using Vp

Xp = VT
p ro (2.63)

The noise level (squared error) can be estimated from the residuals in the L− p

space. The mean squared error (MSE) per channel per pixel is

e =
1

L×N

(∑
l,n

r2
l,n −

∑
l,n

X2
p;l,n −

∑
l,n

r2
m;l,n

)
(2.64)

where rl,n, Xp;l,n and rm;l,n are matrix elements of r, Xp and Rm at l-th row and n-th

column.

A threshold for e can be set to determine the number of endmembers p. This

threshold can be set close to (σ2
dark + σ2

Poisson).
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Figure 2.14. An example of hyperspectral unmixing for 3-layer oxide heterostructure.

Spectrum are collected over a 2D area and averaged along the direction of the
interface. After background removal there are N = 64 pixels and L = 151 channels.
(d) PCA loadings for centered spectra. (e)-(i) are 1st to 5th PCA scores. The colors
of the points are from a simple k-means clustering only for reference and not used in
the following processes. (j)-(l) are low-dimensional projections of the dataset. The
projected plane is spanned by 1st and 2nd PCA axes for (j), by 1st and 3rd PCA
axes for (k), and by 2nd and 3rd axes for (l). Color points are X′p. The red line
connecting them shows the 1D manifold. Small black “+” are X̂p;n|X′p;n|, showing
that the bias from N-FINDR and k-NN canceled each other. p = 3 endmembers are
identified. Large color “+” are endmembers identified by N-FINDR. (a) endmember
signatures in L dimensional space (in r). (b) same endmember signatures with noise
in the null space being removed by PCA. i.e. Xp + rm. (c) same endmember
signatures, with noise removed by PCA, and then scaled by λq. The endmembers in
(c) is used for fitting. (m) fitting coefficients of the data averaged along the direction
of the interface, which can be regarded as a density profile of each species. The line
in (n) is the χ2 statistic. The terrain map is the residual plot. (o) fitting coefficients
for the 2D data in false color map. Large color “+” show positions of endmembers
identified. (p) is the corresponding HAADF image acquired simultaneously with the
spectral map. Large color “+” show the positions of the endmembers.
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2.4.5 Endmember Extraction

Dimensionality reduction algorithms such as PCA give the best p-dimensional

subspace of the original L-dimensional spectral data vectors in terms of preserving

the variance of the signal. However, the axes (principal components) of PCA are

required to be orthogonal and therefore might not have physical meaning. Figure

2.14(d) shows PCA loadings and Figures 2.14(e)-(i) show PCA scores. They are a

mixture of several physical effects and difficult to interpret. Endmember extraction

will find p linearly independent (but not necessarily orthogonal) vectors in the signal

space, which satisfies equation 2.43. They usually have physical meaning because they

also have the constraints in equation 2.44 and 2.45

Although dimensionality reduction is not a prerequisite for endmember extraction,

it is desirable to do endmember extraction in the low-dimensional subspace. First,

the noise in the null space is removed. Second, Euclidean distance does not work well

in high dimensions.

The N-FINDR algorithm[209] is used for endmember extraction. Other algorithms

like VCA[214] are also tried but N-FINDR gives best accuracy. Although N-FINDR

has speed issues on large data sets, EELS spectra have ∼ 103 data points, so that

N-FINDR can finish within several seconds using the single-replacement iterative

N-FINDR (1-IN-FINDR)[205]. N-FINDR is a simplex based algorithm. It assumes

all the endmembers are in the data sample set. It will maximize the volume of the

p-vertex simplex formed by any set of p data sample vectors.

Here, a modified N-FINDR algorithm is used. For p endmembers, the data

dimensionality is reduced from L to p instead of p− 1 in the dimensionality reduction

step. Because the data is centered before PCA, the original zero point can also be
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project into the p dimension subspace. In L-dimensional space centered at rm, the

zero point of original data is at −rm. Project it onto the p-dimensional space. The

data points projected in the p-dimensional space are then being translated so that the

projected zero point is again at the origin in the p-dimensional space.

X′p = Xp −VT
p (−rm) (2.65)

Note that steps from equation 2.60 to 2.65 are different from simply doing SVD

on non-centered data r because the p-dimensional subspace derived from SVD in

equation 2.62 would be different.

Normalize all data vectors so that the Euclidean norm of every data vector becomes

1. i.e., project all data points to a hypersphere with radius of 1.

X′′p;n =
X′p;n
|X′p;n|

(2.66)

X′′p;n and X′p;n are the n-th column of X′′p and X′p. X′′p is the normalized data matrix.

| · | is the Euclidean norm.

The p−1 dimensional space on the hypersphere is the subspace N-FINDR algorithm

works in later. This subspace only has information about the shape of the spectrum.

Because the Euclidean norm of all data points is re-scaled to 1, amplitude information

is not in this subspace. Therefore, we can exclude the effect of amplitude change and

focus on the shape of the spectrum. However, a side effect comes. After the step in

equation 2.66, the noise variance is not normalized on the hypersphere. Data points

with low SNR will be magnified and therefore big errors will be introduced. Simplex

volume-based algorithms such as N-FINDR will be affected by noise and introduce

bias.

In additional to this problem, there is an inherent problem of N-FINDR. Because

N-FINDR always find the simplex with maximum size, the endmembers found by N-
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FINDR will always bias towards the outside part of the simplex when noise is present.

This problem becomes very obvious for ELNES data due to low signal-to-noise ratio,

especially worse when the concentration of the element is low, giving a close-to-zero

SNR.

To resolve the two problems at one time, a transformation similar to weighted

k-nearest neighbors (k-NN) regression[215] is applied to every data point X′′p;n, n =

1, . . . , N before endmember extraction.

X̂p;n =
N∑
j=1

wjX
′′
p;j (2.67)

The
∑N

j=1 is summing over all data points (pixels), including the n-th data point

itself. In practice, a threshold distance can be defined and only the points within

the threshold distance are calculated. Points at large distances will have very small

weight.

The weight wj has two parts wj,1 and wj,2. wj,1 and wj,2 is combined using

wj =
wj,1wj,2∑N
n=1wj,1wj,2

(2.68)

wj,1 is the weight decays exponentially with distance.

dn,j = |X′′p;j −X′′p;n| (2.69)

wj,1 = exp(−
dn,j|X′p;n|
a
√
ep

) (2.70)

Ideally, the spherical distance on the hypersphere should be used instead of the

Euclidean distance in equation 2.69. However, the Euclidean distance is a good

approximation considering only small d is contributing wj,1. In equation 2.70, the term
√
ep scales the standard error

√
e per channel per pixel into p dimensions for |X′p;n| in

p dimensions. dn,j|X′p;n| scales the distance dn,j from the space on the hypersphere

63



back to the space near X′p;n. a is a constant which will be explained in the last part

of this section.

wj,2 is the inverse-variance weight.

wj,2 = |X′p;j| (2.71)

The N-FINDR is then performed on the hypersphere for dataset {X̂p;n|n =

1, . . . , N} using the simplex volume on the hypersphere. The volume on the hyper-

sphere is calculated using formulas in Ref.[216]. Let {em(q)|q = 1, . . . , p} represents

the index of the endmembers N-FINDR found from the columns of X̂p. Now project

Xp back into L dimensions using Vp,

X = VpXp (2.72)

X can be considered as ro with noise removed by PCA. Corresponding {em(q)|q =

1, . . . , p} columns in X are the p endmember signatures {γqXem(q)|q = 1, . . . , p}. γq is

a scaling factor which will be explained later.

The endmembers can then be taken as the basis of the p dimensional space and

decompose other data points into the form of equation 2.56. In order to do semi-

quantification, the ELNES cross-section in the same core-loss edge is assumed to be the

same regardless of the difference in shape due to different oxidation states or chemical

environment. Then, if the corresponding ELNES signal for different endmembers

have the same total electron count, the linear combination coefficients α1, . . . , αp in

equation 2.56 are directly proportional to the area density of each endmember species.

However, the endmembers N-FINDR found are directly derived from the dataset.

They need to be scaled by

γq = 1/

E1∑
E=E0

csignal;q(E) (2.73)
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csignal;q(E) is the electron count per channel in the em(q) data point that corresponds

to the q-th endmember. csignal;q(E) is derived from regular power-law background

model so that the count have physical meaning. Then a multiple linear least square

(MLLS) fitting can be done for each column of ro, as shown in Figure 2.14(m) and (o).

In equation 2.56 again,

c′signal,n = ro;n (2.74)

m′q = Xem(q) (2.75)

where n = 1, . . . , N , q = 1, . . . , p. The resulting α1, . . . , αp will be exactly the same as

doing decomposition using basis {Xp;em(q)|q = 1, . . . , p} for data {Xp;n|n = 1, . . . , N}

in p dimensional space, except that the residual can be derived in L dimensional space.

The weighting algorithm can be understood as a trade-off between bias introduced

by N-FINDR and k-NN. Bias is not avoidable in either case. However, N-FINDR

always biases towards outside the simplex, while k-NN always biases towards areas

with more data points, which is usually inside the simplex. When combined, bias can

be limited within an acceptable range in most cases. The following part will explain

how to choose a in equation 2.70 so that the combination of the two biases can be

minimized.

Assume any the data points is a ground truth plus a random noise with squared-

error e. The ground truths near the endmembers are always on a low-dimensional

manifold of dimension t. This can be ensured by slight oversampling during spectral

line-scan or map data collection. Choose the distance between two adjacent pixels

always being smaller than the smallest feature on the sample, which is usually limited

by the spatial resolution of the scope. For a 2D scan, t ≤ 2. For a line-scan, t ≤ 1.

Assume the ground truths on the manifold are evenly distributed on the manifold

within the simplex. This is a loose restriction. Later it will be shown that even if
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the distribution deviates from this assumption, the result will not be altered much.

Choose an arbitrary axis x which is not perpendicular to the manifold and let the

ground truth of the endmember be located at zero point. Assume the simplex where

all ground truths are located is at the x > 0 part. Thus, for every ground truth

position xtrue > 0. The position of the data point with noise is x = xtrue + xnoise

First, consider the case t = 0. Data points near the endmember follow a Gaussian

distribution with variance e. The density of the data point can be expressed as

ft=0(x) =
1√
2πe

exp

[
−x

2

2e

]
(2.76)

Then assign each data point j with weight wj,1

wj,1 = exp

[
− xj
a
√
e

]
(2.77)

and sum up all points using equation 2.67, The weight-averaged position x̂ is

x̂ =

∑
j wj,1x∑
j wj,1

(2.78)

lim
N→+∞

x̂ =

∫∞
−∞w1(x)xft=0(x)dx∫∞
−∞w1(x)ft=0(x)dx

(2.79)

=

∫∞
−∞ exp

[
− x
a
√
e

]
x 1√

2πe
exp

[
−x2

2e

]
dx∫∞

−∞ exp
[
− x
a
√
e

]
1√
2πe

exp
[
−x2

2e

]
dx

(2.80)

= −1

a

√
e (2.81)

If a is set to 1, the bias will be −
√
e, and the bias will converge with increasing

number of data points. On the contrary, if the weighting algorithm is not applied,

the probability that the extreme value exceeds 1.65
√
e will be greater than 50% when

there are as few as N > 4 data points near the ground truth of the endmember, and

the bias will get even worse with increasing N .
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Second, consider the case t ≥ 1 The density of the data points can be expressed as

a convolution of xt−1 and a Gaussian function with variance e.

ft(x) ∝
∫ ∞

0

xt−1 1√
2πe

exp

[
−(x− s)2

2e

]
ds (2.82)

where xt−1 is the density of points, which are originally in t dimensional manifold and

evenly distributed within a simplex, projected onto one dimensional x axis. Similar to

equation 2.79, but let the expected value of position

x̂ = 0 (2.83)

Because the ground truth of the endmember is at zero, the bias is also the expected

value of weight-averaged position, calculated as follows,

x̂ =

∫∞
−∞w1(x)xft(x)dx∫∞
−∞w1(x)ft(x)dx

(2.84)

Combine equation 2.77, 2.82, 2.83 and 2.84, gives

a =
1√
t

(2.85)

in this condition, the bias is zero.

Now consider the assumptions that the ground truths are in t dimensional manifold

and evenly distributed. If the assumptions do not hold, it affects the x projected density

xt−1. Now assume a = 1
t1
. The real projected density is xt2−1. ( If the assumption that

data is evenly distributed is also not true, simply expand the distribution into sum of

polynomial terms x0, . . . , xt2−1. The numerator and denominator in equation 2.84 will

be expanded, the resulting x̂ should be in between the ones calculated by individual

terms. ) Substitute t = t1 into equation 2.82. Substitute t = t2 into equation 2.85.

Then combining equation 2.77, 2.82, and 2.84, gives

x̂ =
t2 − t1√

t1

√
e (2.86)
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Therefore, no matter the real dimension of the manifold near the endmember is 1 or

2, choosing a = 1 or a = 1/2 can both guarantee the bias to be within ±
√
e.

2.4.6 Goodness of Fit

The error analysis is done in the L-dimensional space. Both the χ2 test and the

visualized residual plot are used. In a good fit, reduced χ2 should be close to 1 and

there should be no pattern appearing in the residual plot. Example of the χ2 statistic

and the residual plot are shown in Figure 2.14(n).

2.5 First-Principles Calculations

First-principles calculations are widely used in materials research, and in combina-

tion with electron microscopy. First-principles (Ab-initio) refers to calculations on

the basis of quantum-mechanical considerations without using high-order parameters.

The density functional theory (DFT) calculations are heavily used in this research.

2.5.1 Hohenberg-Kohn-Sham Theory

Directly solving the N-body Schrödinger equation is impossible for the coupled

electron-ion system in materials. The Born-Oppenheimer approximation considers

that the time scales of nuclear and electronic motions are vastly different, so the

two can be decoupled. The total wavefunction can be separated into the electron

wavefunction ψ(x,R) and the nuclear wavefunction χ(R).[217]

φ(x,R) = ψ(x,R)χ(R) (2.87)
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Electronic eigenvalue εn(R) depends parametrically on the ionic positions R. The

ions feels the Hellmann-Feynman force, given by the expectation value of the gradient

of the electronic Hamiltonian in the ground state. Kohn and Hohenberg proved that

the effective single electron potential is uniquely determined by an electron density.

The Hohenberg-Kohn-Sham (HKS) theorem states,[218]

(1) The ground-state energy of a many-body system is a unique functional of the

particle density

E0 = E[n(r)] (2.88)

(2) The functional E[n(r)] has its minimum relative to variations δn(r) of the

particle density n(r) at the equilibrium density n0(r),

E = E[n0(r)] = min{E[n(r)]} (2.89)

δE[n(r)]

δn(r)

∣∣∣
n(r)=n0(r)

= 0 (2.90)

which subject to the constraint ∫
n(r)d3r = N (2.91)

This gives

δ

δn(r)
[E[n(r)]− λ

(∫
n(r)d3r −N

)
]
∣∣∣
λ,n(r)=λ0,n0(r)

= 0 (2.92)

For N -electron system, V (r) is the external potential, n(r) is the electron density.

Kohn and Sham give the total energy functional E[n] into the functional of electron

density as follows,[219]

E[n] = T [n] + EH [n] + Exc[n] +

∫
V (r)n(r)d3r (2.93)
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where T [n] is the kinetic energy term, EH [n] is the Hartree energy (electron electron

repulsion energy), representing the long-range interactions between electrons

EH [n] =
e2

2

∫∫
n(r)n(r′)

|r− r′|
d3rd3r′ (2.94)

Eex[n] is the exchange-correlation energy. According to Hohenberg-Kohn theorem,

variation of the total energy E[n] with electron density n(r) gives all ground-state

properties. The problems then turns into finding T [n] and Exc[n].

For electron density n, consider a reference system without electron-electron

interaction. The electron density is the sum of square of all single-electron orbitals.[219]

n(r) =
∑
i

|φi(r)|2 (2.95)

The non-interaction kinetic energy based on φi(r) is[219]

T [n] = T0[n] =
∑
i

∫
φ∗i (r)

(
− ~2

2m
O2

)
φi(r)d3r (2.96)

Exc can be estimated from the reference system with similar electron density. The

Local Density Approximation (LDA) gives,[220]

Exc[n(r)] =

∫
n(r)εxc[n(r)]d3r (2.97)

The Generalized Gradient Approximation (GGA) gives,[220]

Exc[n(r)] =

∫
n(r)εxc[n(r),On(r), . . . ]d3r (2.98)

εxc have a lot of different forms such as PW91[221], PBE[222, 223], etc.

The minimum of energy is achieved by determining the optimal one-electron

orbitals using the variational condition under constraint.[219]

δ

{
E[n(r)]−

∑
i,j

εi,j
(〈
φi
∣∣φj〉− δi,j)} = 0 (2.99)

〈
φi
∣∣φj〉 = δi,j (2.100)
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After diagonalizing εi,j the Kohn-Sham equations is derived.{
− ~2

2m
O2 + V (r) + e2

∫
n(r)

|r − r′|
d3r + µxc[n(r)]

}
φi(r) = εiφi(r) (2.101)

with the exchange-correlation potential

µxc[n(r)] =
δExc[n(r)]

δn(r)
(2.102)

The total energy can be calculated as

E =
∑
i

εi −
1

2

∫∫
n(r)(r′)

|r − r′|
d3rd3r′ +

∫
n(r){εxc[n(r)]− µxc[n(r)]}d3r (2.103)

Where the first term is the sum of single electron energy, the second term is the

double-counting corrections.

2.5.2 Numerical Solutions of Kohn-Sham Equations and Software Packages

Using the plane-wave basis to expand the wavefunction is convenient. Plane-wave

periodic boundary conditions (PBC) and fast fourier transformation (FFT) are used.

The efficiency of numerical calculation is high.[224]

According to the Bloch Theorem in crystallography,

ψn,k = un,k(r)ei
~k·~r (2.104)

un,k(r) has the same periodicity with lattice potential. Doing Fourier expansion

for un,k

un,k(r) =
1

Ω1/2

∑
G

CGnke
i ~G·~r (2.105)

n(r) =
∑
G

nGe
i ~G·~r (2.106)

V (r) =
∑
G

VGe
i ~G·~r (2.107)
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There are an infinite number of plane waves in the complete basis. However, in

reality only the plane waves meeting the following condition are calculated.[224]

~2

2me

|G+ k| < Ecut−off (2.108)

Figure 2.15 is the scheme of Kohn-Sham method[225]. It is a self-consistent method.

The Hamiltonian in the Kohn-Sham equation is the functional of the electron density.

The electron density is calculated from the wavefunction, which is solved from the

Kohn-Sham equation.[225]

Vext(r) ⇐
HK

n0(r) ⇔ n0(r) ⇒
HK

VKS(r)

⇓ KS − eq ⇑ ⇑ ⇓ KS − eq
ψ({ri}) ⇒ ψ0({r}) ψi=i,··· ,N({r}) ⇐ ψi(r)

Figure 2.15. Scheme of Kohn-Sham method

HK represents Hartree potential. KS − eq represents the Kohn-Sham equation. This

figure is reproduced from Ref.[225]

The real Coulomb potential is very deep near the nucleus, causing the wavefunctions

to oscillate near the nucleus. Plane waves with very high k must be included in order

to maintain numeric accuracy. There are two approaches to solve this issue. The

linearized-augmented plane-wave (LAPW) method and the pseudo-potential method.

In this dissertation research, both methods are used.

In the LAPW method, the space is devided into non-overlapping atomic spheres

(the muffin-tin (MT) region) and an interstitial region. Inside the atomic sphere with

radius Rt, a linear combination of radial functions times spherical harmonics Ylm(r) is
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used. In the interstitial region, a plane wave expansion is used.[226, 227] Software

packages such as WIEN2k[227] and Elk[228] implement the LAPW method.

The pseudopotential (PP) method can significantly reduce the complexity of numer-

ical calculations. The frozen core approximation is used in which the core electrons are

pre-calculated in an atomic environment, and kept frozen in the course of the remain-

ing calculations.[224] Inside the atomic-centred spheres, a “soft” pseudo-wavefunction

is used with polynomials[229] or spherical Bessel-functions (by RRKJ in Ref.[230])

The latter is more commonly used. There are different approaches to construct the

pseudo-wavefunctions, including normconserving pseudopotentials (NC-PP), ultra-

soft pseudopotentials (US-PP) and projector augmented-wave method (PAW). The

pseudopotential is “softer” than the Coulomb potential and the wavefunction becomes

node-less pseudo-wavefunction. Therefore, a smaller Ecut−off can be used. Software

packages such as VASP[231] and QUANTUM-ESPRESSO (QE)[232] implement the

pseudopotential method. Usually more than one type of pseudopotential is available

for each atomic species in each software package. In this dissertation research, PAW

is used for VASP, while GBRV[233], which is a variant of US-PP, is used for QE. The

Materials Project[234] and the Standard Solid State Pseudopotentials (SSSP)[235] are

taken as reference for choosing pseudopotentials.

2.5.3 Hubbard U Correction

There are limitations for the DFT methods introduced above. The HKS theorem is

not valid for excited states so it usually underestimates the band gap. LDA and GGA

functionals still neglect strong correlations in d and f electrons so exchange-splitting

is usually underestimated. One solution is using hybrid functionals[236], such as
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B3LYP[237], PBE0[238] and HSE[239], which incorporate a portion of exact exchange

from Hartree-Fock theory. However, calculating the non-local Fock exchange is slow.

Another approach is to use empirical parameters U and J to describe the Coulomb

repulsive force.[240] The Hubbard-Hamiltonian becomes

H =
U

2

∑
m,m′,s

nm,snm′,−s +
U − J

2

∑
m6=m′,s

nm,snm′,s (2.109)

where nm,s is the number operator for electrons with the magnetic quantum number

m and spin s.

For oxygen-deficient SrTiO3, or Mott insulators such as LaTiO3, the LDA+U

correction is necessary for predicting the splitting of the 3d band, although accurately

predicting the gap between O-2p and Ti-3d still requires hybrid functional calculations.

Different choices of U sometimes strongly vary the predicted properties of the 2DEG.[30,

48–50, 66, 71, 91, 92] Therefore, calculations with different U values are performed

and compared for each atomic structure.

2.5.4 Structural Model

For calculating the interface and surface structure, supercell models with slabs are

built. The c axis of the supercell is the film growth direction and is relatively long. a

and b of the supercell are the same as the lattice parameter. The substrate material is

put at the center of the supercell, the film is built symmetrically above and below the

substrate, in order to avoid polarization or electric field buildup. The top and bottom

parts of the supercell are vacuum with a thickness of at least 5Å. Considering the

periodic boundary condition, the slabs are separated by at least 10Å of vacuum. The

short range interaction can be neglected. For structures with SrTiO3 substrate, a and

b in the supercell are chosen to be about 5.6Å, which is
√

2 times the cubic SrTiO3
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lattice parameter so that possible antiferrodistortion is taken into consideration and

oxygen deficiency can be varied.

2.6 Image, Spectrum and Phase Simulation

2.6.1 TEM and STEM Image Simulation

The multi-slice method (described in Ref.[241]) implemented by the Dr.Probe

software package[242–244] has been used for both TEM and STEM image simulations.

In the multi-slice method, the specimen is split into thin slices. The wave propagation

inside each slice is simulated using approximations in equation 2.2 to 2.5. In between

slices, the Fresnel propagator is used.

f(x, y, z + u) =
1

iλu
f(x′, y′, z)⊗ exp

(
πik

x2 + y2

u

)
(2.110)

where u is the distance between slices.

For thermal diffuse scattering (TDS, discussed in chapter 2.1.2) simulations, the

frozen-lattice (or “frozen-phonon”) method[245], in which different frozen states of

the crystal lattice are calculated using the multi-slice method and then averaged

for each pixel and slice, is very time-consuming. A time-efficient implementation

of the multi-slice algorithm is applied by Dr.Probe, in which different frozen states

are randomly assigned to different pixels and slices.[243] The simulation speed is

significantly improved.
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2.6.2 Spectrum Simulation

As already mentioned in chapter 2.3.1.1, the shape of the Ti white lines are

dominated by the multiplet effect.[198, 199] The Ti-L edge of SrTiO3 is simulated

using multiplet simulation implemented by software package multiX[246], taking

polarization (for X-Ray), Coulomb, spin-orbit and crystal-field interactions into con-

sideration. MultiX is originally designed for X-ray absorption spectroscopy (XAS)

and resonant inelastic x-ray scattering (RIXS) simulations. Considering that ELNES

is the counterpart of XAS in electron microscopy, the simulation results from MultiX

are also valid for ELNES. In principle, it can also simulate electron magnetic circu-

lar dichroism (EMCD, as a counterpart to X-ray magnetic circular dichroism) and

momentum-resolved ELNES (as a counterpart of the X-ray linear dichroism).

Since the O-K edge is a good approximation to the projected density of state

(PDOS) at the oxygen atom[204], the PDOS of each atom is calculated using DFT

and compared with the O-K ELNES.

2.6.3 Electric Potential and Polarization Calculations

Mean Inner Potential

The mean inner potential (MIP, discussed in chapter 2.2.1) can be calculated by

averaging the Coulomb potential inside the material using equation 2.39. In chapter

2.5.2, it was discussed that the pseudopotential used in some DFT software packages

is not the same as the real Coulomb potential inside the atomic spheres. And there

is currently no software interface that can transform the pseudo-wavefunctions back

to real wavefunctions. Therefore, the full potential (FP) LAPW method, which
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calculates the full Coulomb potential and all-electron wavefunction, is necessary for

MIP simulation. A slab model is built and the Coulomb potential in the vacuum far

away from the surface is used as the zero reference. This method has been used for

calculating the MIP of several II-VI semiconductors[247]. The LAPW5 program[227] in

WIEN2k software package can calculate the Coulomb potential (without the exchange-

correlation term) in real space. Set IPRINT tag to R2V in input file “case.in0” to

allow LAPW0 program to generate the output file “case.vcoul”. Then use LAPW5

program to calculate the Coulomb potential in a specific lattice plane. The program

GO_LAPW5[248] is a script that run LAPW5 at a series of crystal planes parallel

to each other and take the average. Since the script GO_LAPW5 in Ref.[248] is not

released in public, a small script that can run LAPW5 in parallel has been written.

It averages the Coulomb potential using equation 2.39 inside the vacuum and the

material, respectively. This should be exactly the same as GO_LAPW5. The mesh is

slightly shifted from the origin in order to avoid any potential singularity at atomic

positions.

Born Effective Charge

While the atomic displacements can be estimated from the TEM/STEM images,

the Born effective charge links the atomic displacement in the unit cell with the

macroscopic polarization. The Born effective charge tensor is defined as[249]

Z∗ν,ij =
Ω

|e|
∂Pi

t

∂rνj
(2.111)

where Ω is the unit cell volume, Pi
t is the total polarization in direction i, and rνj is

the coordinate of ion v in direction j. The Born effective charge often differs from the

nominal ionic charge. In ferroelectric materials, it is often greater than the nominal

ionic charge.

77



The Born effective charge is calculated by using a small displacement method.[232]

∂Pz
t

∂rνz
=

∆Pz
t

δ
≈ Pz

t (+δẑ, ν)−Pz
t (−δẑ, ν)

2δ
(2.112)

The total polarization difference can be divided into the ionic and electron part

∆Pz
t = ∆Pz

ion + ∆Pz
e (2.113)

The ionic part is given by

∆Pz
e =
|e|Zνδ

Ω
(2.114)

where Zν is the valence atomic number of pseudoatom ν.

The electronic contribution is calculated using the Berry phase technique.[250]

(Details are in the modern theory of polarization.[251])

∆Pz
e = Pe(+δẑ, ν)−Pe(−δẑ, ν) (2.115)

with

Pλ
e = −if |e|

8π3

M∑
n=1

∫
BZ

d3k < u
(λ)
nk |Ok|u(λ)

nk > (2.116)

where λ parameterizes changes in potential such as atomic displacement of δ, u(λ)
nk is the

cell-periodic part of the Bloch wavefunction ψ(λ)
nk , and the sum is over M bands.[252,

253]

In this dissertation research, the Born effective charge in strained SrTiO3 and

strained BaTiO3 in BaTiO3/SrTiO3 system have been calculated. The results are

then compared with reported values,[254–256] except that the calculations here cover a

larger strain range to fit the epitaxial strain values at BaTiO3/SrTiO3 and SrTiO3/Ge

interfaces.
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Lattice relaxation in DFT can give the relative displacements of different atomic

species and their ratios. Therefore the atomic displacement for a specific polarization

density can be calculated by using the Born effective charge, or vice versa.

As discussed above, the atomic displacement is directly related to polarization

density by Born effective charge. In chapter 2.1.3 and 2.6.1, it has already been

discussed that the apparent atomic column displacements can be measured from the

image and compared with image simulations. In this dissertation, a series of atomic

models with different strain has been built. Ionic relaxation of these models are done

using DFT and atomic displacements, and the Born effective charges are obtained. The

relaxed models are then used as input of image simulation. The simulated images are

compared with experimental ones. The predicted polarization density is also calculated

and compared with the electrical measurements. Thus, electrical measurements and

microscopy measurements are connected together by first-principles calculations.
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Chapter 3

INVESTIGATING THE γ-Al2O3/SrTiO3 INTERFACE

The γ-Al2O3/SrTiO3 interface displays a two-dimensional electron gas (2DEG) de-

pending on growth conditions and film thickness, which however disappears when sam-

ples are annealed in oxygen.[28, 55, 57] The 2DEG has high mobility ∼ 104cm2V−1s−1

at low temperature and high carrier density ∼ 1014cm−2 at room temperature. Sam-

ples grown by ALD at low temperature[57] and MBE at high temperature[55] show

slightly different electrical behavior These properties will be investigated and explained

in this chapter.

The first section of this chapter reports spectrum and phase mapping across

the epitaxial γ-Al2O3/SrTiO3 interface. The spectrum mapping was done using the

conventional MLLS method as described previously. These spectrum and phase

mapping results from γ-Al2O3/SrTiO3 have already been published[257]. The second

part of this chapter involves other techniques and methods that provide further and

more detailed analysis, including ELNES hyperspectral unmixing, electron holography,

DFT and spectrum simulations. By combining experimental results and simulations,

the analysis explains the role of oxygen vacancies in the formation of the high mobility

2DEG, and the origin of the critical thickness.

The samples investigated were provided by our collaborators at the University of

Texas-Austin.
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3.1 Spectrum and phase mapping across the epitaxial γ-Al2O3/SrTiO3 interface

3.1.1 Introduction

In this study, a range of electron microscopy techniques, including aberration-

corrected negative-Cs imaging (NCSI), high-angle annular-dark-field (HAADF) imag-

ing, off-axis electron holography, and energy-loss near-edge structure (ELNES) analysis,

have been used to characterize the nature of γ-Al2O3/SrTiO3 interfaces, for samples

grown by atomic layer deposition (ALD) and molecular beam epitaxy (MBE). As

described elsewhere,[55, 57] these two techniques span a large growth window for

deposition of crystalline γ-Al2O3 onto SrTiO3 (001) substrates. The MBE samples

were grown in the temperature range of 400-800 ◦C,[55] while the ALD samples

were grown in the range of 200-345◦C.[57] Electrical characterization showed that a

6-nm-thick sample grown by MBE at 700 ◦C had a carrier density of ∼ 8× 1013cm−2

and electron mobility of 22cm−2V−1s−1 at room temperature[55] and corresponding

values of 3× 1013cm−2 and 560cm2V−1s−1 at 15 K, while a 2.1-nm-thick sample grown

by ALD at 345◦C had a carrier density of ∼ 6× 1013cm−2 and an electron mobility of

4cm2V−1s−1 at room temperature, and corresponding values of ∼ 5× 1012cm−2 and

3000cm2V−1s−1 at 15 K.[57] Post-deposition annealing of these samples under oxygen-

rich conditions suppressed the interfacial conductivity and the Ti3+ photo-emission

signal was no longer visible.
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3.1.2 Methods

Cross-sectional samples suitable for electron microscope observation were prepared

by mechanical polishing, followed by Ar-ion-milling. The NCSI studies were performed

with an FEI Titan 80-300 image-corrected TEM operated at 300 keV with the

spherical aberration coefficient fixed at -13 µm and the objective lens defocus set

at +6 nm. Under these imaging conditions, the oxygen atomic columns can be seen

with high intensity due to enhancement of both the phase contrast and the amplitude

contrast.[141, 143] Electron holograms were recorded at 300 keV with the FEI Titan 80-

300, using a biprism voltage of ∼200 V, corresponding to an interference-fringe spacing

of ∼0.14 nm. Electron-energy-loss spectroscopy (EELS) and spectrum mapping were

carried out using a JEOL ARM 200F operated at 200 kV with dispersion set at 0.25

eV/channel.

3.1.3 Results

Figure 3.1 shows an NCSI image of a 2.1-nm-thick γ-Al2O3 layer grown by ALD on

a TiO2-terminated SrTiO3 (001) substrate at 345 ◦C. This sample had demonstrated

enhanced interfacial conductivity, which was attributed to the presence of a quasi-

2DEG at the interface.[28] As shown by comparison with the inset structural model,

and confirmed by image simulations, the positions of the Sr and O mixed atomic

columns in the substrate are identified by the strong bright spots, the O atomic-column

positions correspond to the weak bright spots, and the intensities of the Ti atomic

columns are in between.

Off-axis electron holography is a TEM-based technique that is well-suited to
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Figure 3.1. NCSI of sample grown by ALD

Left: Aberration-corrected NCSI showing γ-Al2O3/SrTiO3 interface for sample grown
by ALD at 345 ◦C, previously shown to have a quasi-2DEG at the interface. SrTiO3

in [110]-type projection. The intensity of spots in γ-Al2O3 appears random because
of inherent disorder in Al site occupancy. Right: image simulated using Dr. Probe
software.[242] Image conditions were: sample tilt 0.3◦ in x and 0.6◦ in y directions.
Spherical aberration coefficient C3 = -10 µm, Defocus = +5 nm. Other residual
aberrations were ignored. A super-cell with varying local Al tetrahedral site
occupancy is used to simulate the structure disorder of γ-Al2O3.

quantifying electrostatic and magnetic fields within electron-transparent specimens

with nanometer-scale resolution.[258] The technique was previously used to quantify

the 2DEG present in a GaN/InAlN/AlN high-electron-mobility transistor device,[188]

and the approach was used in the current studies to investigate the quasi-2DEG at

the γ-Al2O3/SrTiO3 interface. Figure 3.2 shows off-axis electron holography results

for the sample shown in Figure 3.1, which was grown by ALD at 345 ◦C. Figures

3.2(a) and 3.2(b) show reconstructed thickness and phase images, where the former is

calibrated in units of inelastic mean free path. Some diffraction contrast is apparent

near the edge of the field of view, which could have some effect on the amplitude

image profile. The phase profile is less affected. Figures 3.2(c) and 3.2(d) show line

profiles from (a) and (b), averaged over the boxes, as shown, to decrease the effects of

signal noise. The periodic oscillations, most notably visible in the thickness profile,

correspond to unit-cell spacings in the SrTiO3 substrate. The different heights of the

amplitude and phase profile shown in red and blue, respectively, on either side of the
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interface indicated by the vertical line in Figures 3.2(c) and 3.2(d), can be attributed

to differences both in the mean inner potential (MIP) and the inelastic mean-free-path

between γ-Al2O3 and SrTiO3.

What is significant here is that the amplitude profile on the SrTiO3 side of the

interface rises abruptly within a distance of about one unit cell moving away from

the interface, whereas the phase profile relatively rises more slowly. Any oxygen

vacancies present in this region would have the immediate effect of reducing the mean

inner potential. However, a simple calculation based on the atomic number of SrTiO3

(38 + 22 + 3 × 8 = 84) compared with SrTiO2 (38 + 22 + 2 × 8 = 76) suggests

that the presence of oxygen vacancies would have a relatively small effect (∼9.5%)

on the phase profile compared with the much larger drop (∼25% - 30%) measured

experimentally. The additional reduction is consistent with the presence of excess

negative charge associated with a quasi-2DEG that is highly confined to within ∼1

nm of the interface plane. The situation here is clearly different from the previously

mentioned example of the 2DEG occurring in nitride/nitride heterostructures that

was induced by polar discontinuity, where the presence of the 2DEG was identifiable

from the positive curvature in the phase profile near the interface on the substrate

side.[188] Further holography studies of samples with and without the quasi-2DEG

are needed to evaluate whether the curvature of the interfacial phase profile can be

used to quantify the magnitude of the quasi-2DEG.

Energy-loss near-edge fine structure contains rich information about the local

density of states.[259] The technique can be used to determine the oxidation state of

Ti atoms within the SrTiO3 layer. Figure 3.3(a) shows spectra averaged along the

interface direction, summarizing the results of the EELS analysis. These spectra were

collected over an energy range between about 250 eV and 762 eV. The Ti-L edge

84



Figure 3.2. Electron holography of sample grown by ALD

Off-axis electron holography of the same γ-Al2O3/SrTiO3 sample shown in Figure
3.1: (a) Thickness image reconstructed from the hologram, in units of mean free path;
(b) Reconstructed phase image. (c) and (d) Line profiles from (a) and (b), averaged
horizontally. Interface position indicated. Note abrupt rise in phase profile over a
distance of ∼1 nm within the γ-Al2O3, which is unlike the behavior of the amplitude
profile, which shows an abrupt increase.

and O-K edge were then investigated in more detail. For the Ti-L edge, the energy

range between 342 eV and 450 eV was used to remove the background via power-law

fitting.[259] In spectra taken from within one unit cell (<0.5 nm) of the interface, the

Ti-L edge shows mostly two peaks, whereas spectra taken at locations away from the

interface clearly show four peaks. This difference in peak shapes is direct evidence for

substantial reduction in the Ti oxidation state at the interface from Ti4+ to Ti3+.[156]

Two-dimensional spectrum mapping across the γ-Al2O3/SrTiO3 interface was also

carried out. Figure 3.4(a) is a HAADF image from the same sample already shown in

Figure 3.1, indicating the area used for mapping purposes. Multiple linear least-square

(MLLS) fitting was performed on the extracted ELNES spectrum map between 455 eV
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Figure 3.3. Ti-L edge near the γ-Al2O3/SrTiO3 interface.

ELNES spectra taken from near the γ-Al2O3/SrTiO3 interface on the SrTiO3 side
showing variation of the Ti-L edge as the distance from the interface increases: (a)
Line-averaged spectra over the box indicated in Figure 3.4(b). Black lines are
experimental spectra and color lines are fitted data. Vertical lines show positions of
eg peak and t2g peak in L2 and L3 edges in the bulk. (b) Corresponding fitting
coefficient of SrTiO3 (Ti3+-rich) in green and SrTiO3 (Ti4+) in red. (c) Spectra
acquired at the location indicated by the arrow in Figure 3.4(b) where Ti3+ has the
maximum concentration. Black line is the experimental spectrum, the mixed color
line is the fitted spectrum, the red line is the component of SrTiO3 (Ti3+-rich), and
the green line is the component of SrTiO3 (Ti4+).
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Figure 3.4. HAADF image and 2D map on Ti-L edge at γ-Al2O3/SrTiO3 interface.

(a) HAADF STEM image of γ-Al2O3/SrTiO3 interface showing region where the
EELS spectra were later collected. Gamma value adjusted in order to show both
SrTiO3 and γ-Al2O3. Interface indicated by arrows; (b) False color map showing
distribution of Ti3+ and Ti4+. Green is fitting coefficient of the Ti-L edge in SrTiO3

(Ti3+-rich), and red is fitting coefficient of the Ti-L edge in SrTiO3 (Ti4+). Box
indicates area used for line-averaged spectra shown in Figure 3.3.

and 467 eV using spectra for SrTiO3 and SrTiO2.75 taken from Ref. [156]. Because the

instrumental operating conditions in these experiments were different from those used

previously, a numerical average (low-pass) filter, scaling and shifting were applied to

the reference spectra such that the SrTiO3 reference spectrum had closest agreement

(minimum difference) with the spectrum in the bulk SrTiO3. Figure 3.3(b) shows the

results of applying the MLLS fitting using the Ti-L edges in Figure 3.3(a). Figure

3.4(b) shows the same fitting over the entire 2-D area. Clearly, reduced Ti species are

segregated at the interface and highly confined to within about two unit cells. The

fine structure of the O-K edge can also show some differences that reflect local oxygen

ordering and/or oxidation state, as demonstrated in Ref. [156].

Figures 3.5(a) and 3.5(b) show line profiles of the different atomic species as a

function of position. All of the fitting coefficients are on the same scale except that

87



the Ti-L edges and the O-K edge are on different scales. The reference spectrum for

γ-Al2O3 was taken from previously published results,[260, 261] and has been scaled

to the same count values here by assuming that the cross-section of the O-K edge in

SrTiO3 is the same as in γ-Al2O3. In Figure 3.5(b), the thin black line is the sum over

all fitting coefficients for the O-K edge of SrTiOx and γ-Al2O3. This line decreases

gradually due to the wedge shape of the specimen. The interface position is located at

around 10-11 nm along the horizontal axis. No abrupt change in the total O-K edge

signal can be identified at the interface, thus indicating that the specimen does not

have an abrupt change in thickness across the interface. At the interface, the fitting

for the Ti-L edge of SrTiO2.75 clearly shows a peak, with a FWHM of 1.0 nm. The

fitting for the O-K edge of SrTiO2.75 also shows a peak, although it is much noisier

due to the lower overall signal count, and the difference in fine structure is less obvious.

The reduced χ2 statistic for the O-K edge to indicate the goodness of the fit is shown

in Figure 3.5(c). These two peaks directly show that the reduction in oxidation state

of Ti occurs right at the interface and must be highly confined to a distance of no

more than 2 unit cells. This result is consistent with the electron holography analysis

of the same sample, which also showed that the phase change happened over similar

specimen dimensions. ELNES spectrum mapping and MLLS fitting has also been

applied to an MBE-grown sample, and the results (not shown here) again confirmed

the presence of a reduced Ti oxidation state in the region immediately adjacent to the

γ-Al2O3/SrTiO3 interface.
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Figure 3.5. O-K edge near the γ-Al2O3/SrTiO3 interface

Line profile of the ELNES MLLS fitting coefficients using the same color as the false
color map in arbitrary units. (a) Ti-L edge and (b) O-K edge. Red lines are fitting
coefficients of SrTiO3, green lines are fitting coefficients of SrTiO2.75, green line is the
fitting coefficients of γ-Al2O3, black line in (b) is the sum of the three colored lines.
The line of dots below (b) shows the reduced χ2 statistic for the O-K edge as a
measure of goodness of fit (χ2 = 1 is a good fit). Underfitting (χ2 > 1) is probably
related to the plural scattering.
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3.1.4 Summary

These electron holography studies of the γ-Al2O3/SrTiO3 interface suggested the

presence of a quasi-2DEG that was closely confined to the SrTiOx side of the interfacial

region. This result differs from previous holography studies of the AlN/GaN system,

where the observed 2DEG had been introduced by polar discontinuity.[188] Moreover,

the EELS results provided direct evidence for a reduction in the overall oxidation

state at the interfacial layer. Further studies of samples grown by MBE and ALD

at different temperatures are still needed, in particular to facilitate quantitative

comparisons between the quasi-2DEG measured by electron holography with the Ti3+

concentrations measured by ELNES, and with electrical measurements.

3.2 ELNES Hyperspectral Unmixing

The MLLS fitting method was used for the EELS analysis in chapter 3.1. However,

this approach has several drawbacks:

1. Reference spectra are always required. However, the interfacial region may

actually have an unknown spectral component.

2. Reference spectra found in the literature are likely to have been acquired

under operating conditions that are quite different from those used in this research,

including differences in beam energy spread, acceleration voltage, convergence angle,

collection angle, and sample thickness. These differences will cause differences in

energy resolution, monopole or quadrupole transitions, anisotropic effects, electron

channeling, plural scattering, and etc. The resulting spectral shape is also likely to be

slightly different. These differences may cause large errors in MLLS fitting, especially
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considering that the differences in the different spectral components (such as Ti4+ and

Ti3+) are not large.

Unsupervised hyperspectral unmixing methods, which do not require any external

reference spectra, have been developed as part of this dissertation research. This

approach allows these problems and difficulties to be avoided.

3.2.1 Comparison between samples with and without 2DEG

Table 3.1. Information of samples with and without 2DEG

Temperature Substrate Termination PO2 Thickness Post-deposit anneal
700◦C Mixed TiO2/SrO 10−6 Torr 2 nm No
600◦C Crystec TiO2 10−6 Torr 3 nm 400 ◦C in air for 1hr

Ti-L edge

The sample used in this comparison are listed in Table 3.1. The results shown

in Figures 3.6(a)-(d) are taken from a 2-nm γ-Al2O3 film on SrTiO3 sample grown

by MBE at 700◦C under the oxygen partial pressure of 1 × 10−6 Torr. In Figure

3.6(a), the green spectrum with 2 peaks instead of 4 peaks shows the partially reduced

Ti3+-rich SrTiO3, which appears at the interface, as shown in Figures 3.6(b) and

(c). Figures 3.6(e)-(h) are from a 3-nm γ-Al2O3/SrTiO3 sample grown by MBE at

600◦C under the oxygen partial pressure of 1× 10−6 Torr. The red and green spectra

in Figure 3.6(e) show little difference, indicating that the Ti3+ has been re-oxidized

during the annealing process. In both samples, some Ti has diffused from the SrTiO3
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Figure 3.6. Comparison of Ti-L edge between samples with 2DEG and without 2DEG

(a)-(d) are from a sample with 2DEG grown by MBE. (e)-(h) are from an annealed
sample without 2DEG. (a)(e) are spectral signatures. (b)(f) are the profiles of fitting
coefficients (the abundance) averaged along the in-plane direction and the black lines
in each profile is the sum of the color lines. (c)(g) are 2D maps of the fitting
coefficients. (d)(h) are HAADF images acquired simultaneously with the spectral
map.

substrate into the γ-Al2O3 film. From the spectra, it is apparent that Ti in the film

has similar oxidation state as at the interface.

O-K edge

Because of the de-localized nature of the ELNES signal, as discussed in Chapter

92



m1 m2

m′′3

m′3

m3

Figure 3.7. Geometry for removing film signal from the interfacial signal.

m1 m2 and m3 are three extracted endmember signatures. m1 is in the film, m2 is in
the substrate, m3 is at the interface. The estimated “pure” interfacial spectral
siguature is m′′3

2.3.1, the interfacial signal will always be mixed with signal from the film. For

the O-K edge, the signal from the film will not be zero because the film is also

an oxide. Although the unmixing algorithms can still detect the three different

spectral signatures, the interfacial signature does not represent a “pure” interfacial

component, i.e., a “pure” interfacial component does not exist in the dataset. The

following geometry is used to estimate the “pure” interfacial component by assuming

the spectrum at the interface is orthogonal to the bulk. As illustrated in Figure 3.7,

m1 represents signal from the film. m2 is for the substrate, m3 is at the interface.

Assuming that the line m1-m2 is orthogonal to line m2-m′′3, then the estimated “pure”

interfacial spectral siguature is m′′3

Figure 3.8 shows a comparison of the O-K edges from the samples already shown

in Figure 3.6. In the sample with 2DEG (Figures 3.8(a)-(d)) there is an interfacial

component. The spectrum signature of the interfacial component (green) has a

significantly higher t2g peak, whereas only two endmember signatures were detected

in the sample without 2DEG (annealed sample) . Figure 3.9 shows a comparison

between the error analysis using 3 endmembers (a) and 2 endmembers (b) for the
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Figure 3.8. Comparison of O-K edge between samples with and without 2DEG

(a)-(d) are from sample with 2DEG grown by MBE. (e)-(h) are from annealed sample
without 2DEG. (a)(e) are spectral signatures. (b)(f) are line profiles of fitting
coefficients (the abundance) averaged along the in-plane direction and the black lines
in each profile is the sum of the color lines. (c)(g) are 2D maps of the fitting
coefficients. (d)(h) are HAADF images acquired simultaneously with the spectral
map.

annealed sample. The residual at the interface in (b) is clearly abnormal in both χ2

statistic and residual plot.
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Figure 3.9. Comparison of error analysis using 2 or 3 endmembers for the sample
with 2DEG

(a) Error analysis using 3 endmembers. The black line is the χ2 statistic. The color
map is the residual. (b) Error analysis using 2 endmembers. At the interface (x ∼
1.5-2 nm), χ2 significantly deviates from 1 and there is some pattern in the residual
map.

3.2.2 Comparison between sample grown by MBE at high temperature and by ALD

at low temperature

Table 3.2. Information of samples grown by MBE and ALD

Temperature Substrate Termination Thickness Resistance (2pt)
700◦C Mixed TiO2/SrO 2 nm ∼900kΩ
345◦C Crystec TiO2 2.1 nm ∼20kΩ

O-K edge

The sample used in this comparison are listed in Table 3.2. Differences in the

O-K edge interfacial signatures show up in comparisons between the MBE sample

grown at 700◦C and the ALD sample grown at 600◦C. The interfacial component

in the MBE sample (green line in Figure 3.10(a)), has smaller A1 (t2g) peak and

smaller C1 O-2p∗ peak compared with the ALD sample (Figure 3.10(e)), although

both have similar width (∼2nm). This difference indicates higher oxygen vacancy

concentration in the MBE sample. The onset energy of the interfacial component in

the MBE sample is also slightly higher than in the bulk. This difference does not

95



525 530 535 540 545 550 555

−
2
0
0
0

0
2
0
0
0

energy−loss (eV)

C
e
n
te

r 
(a

.u
. 
C

o
u
n
t)

525 530 535 540 545 550 555

−
2
0
0
0

0
2
0
0
0

energy−loss (eV)

v
c
a
re

s
$
A

e
[,
 1

]

525 530 535 540 545 550 555

−
0
.5

0
.0

0
.5

1
.0

energy−loss (eV)

v
c
a
R

e
f$

c
[,
 1

]

530 535 540 545 550 555

−
0
.4

0
.0

0
.4

energy−loss (eV)

L
o
a
d
in

g
 (

a
.u

. 
C

o
u
n
t)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

−
5
0
0
0

5
0
0
0

Position (nm)

C
o
m

p
o
n
e
n
t 
1
 S

c
o
re

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

−
2
0
0
0

0

Position (nm)

C
o
m

p
o
n
e
n
t 
2
 S

c
o
re

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

−
1
0
0
0

0
1
0
0
0

Position (nm)

C
o
m

p
o
n
e
n
t 
3
 S

c
o
re

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

−
1
0
0
0

0
5
0
0

Position (nm)

C
o
m

p
o
n
e
n
t 
4
 S

c
o
re

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

−
1
0
0
0

0
5
0
0

Position (nm)

C
o
m

p
o
n
e
n
t 
5
 S

c
o
re

−10000 −5000 0

6
0
0
0

7
0
0
0

8
0
0
0

9
0
0
0

1
0
0
0
0

vca_xp_shifted[1, ]

v
c
a
_
x
p
_
s
h
if
te

d
[2

, 
]

+ ++
+

+
+

+

+

+

+

+
+

+

+

+

+

++
+

−10000 −5000 0

−
5
0
0
0

−
4
0
0
0

−
3
0
0
0

vca_xp_shifted[1, ]

v
c
a
_
x
p
_
s
h
if
te

d
[3

, 
]

+
+++

+

+

+

+
+

+

+
+

+

+

+

+

+

+

+

6000 7000 8000 9000 10000

−
5
0
0
0

−
4
0
0
0

−
3
0
0
0

vca_xp_shifted[2, ]

v
c
a
_
x
p
_
s
h
if
te

d
[3

, 
]

+
++ +

+

+

+

+
+

+

+
+

+

+

+

+

+

+

+

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0
1
0
0
0

2
0
0
0

3
0
0
0

Position (nm)

C
o
e
ff
ic

ie
n
ts

 (
a
.u

.)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0
1

2
3

4
5

Position (nm)

re
d
u
c
e
d
 C

h
i 
s
q

+++
−2 0 2 4 6

0

1

2

3

4

5

Position (nm)

P
o
s
it
io

n
 (

n
m

)

−2 0 2 4 6

0
1

2
3

4
5

Position (nm)

P
o
s
it
io

n
 (

n
m

)

+++

(a)

525 530 535 540 545 550 555

−
5
0
0
0

0
5
0
0
0

energy−loss (eV)

C
e
n
te

r 
(a

.u
. 
C

o
u
n
t)

525 530 535 540 545 550 555

−
5
0
0
0

0
5
0
0
0

energy−loss (eV)

v
c
a
re

s
$
A

e
[,
 1

]

525 530 535 540 545 550 555

−
0
.5

0
.0

0
.5

1
.0

energy−loss (eV)

R
e
f 
S

p
e
c
 (

a
.u

.)

530 535 540 545 550 555

−
0
.4

0
.0

0
.4

energy−loss (eV)

L
o
a
d
in

g
 (

a
.u

. 
C

o
u
n
t)

0 2 4 6 8 10

−
5
0
0
0

1
5
0
0
0

Position (nm)

C
o
m

p
o
n
e
n
t 
1
 S

c
o
re

0 2 4 6 8 10 12

−
4
0
0
0

0
2
0
0
0

Position (nm)

C
o
m

p
o
n
e
n
t 
2
 S

c
o
re

0 2 4 6 8 10 12

−
1
0
0
0

1
0
0
0

Position (nm)

C
o
m

p
o
n
e
n
t 
3
 S

c
o
re

0 2 4 6 8 10 12

−
2
0
0
0

0
2
0
0
0

Position (nm)

C
o
m

p
o
n
e
n
t 
4
 S

c
o
re

0 2 4 6 8 10 12

−
2
0
0
0

0
2
0
0
0

Position (nm)

C
o
m

p
o
n
e
n
t 
5
 S

c
o
re

−25000 −15000 −5000 5000

1
6
0
0
0

1
8
0
0
0

2
0
0
0
0

2
2
0
0
0

vca_xp_shifted[1, ]

v
c
a
_
x
p
_
s
h
if
te

d
[2

, 
]

+

+

+

++
++

++
++++

+

+
+

+

+++

+

+

+

+

+

+

+

+

−25000 −15000 −5000 5000

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

vca_xp_shifted[1, ]

v
c
a
_
x
p
_
s
h
if
te

d
[3

, 
]

+

+

+

+++++++++++++++++++++

+

+

+

+
+

+

+

16000 18000 20000 22000

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

vca_xp_shifted[2, ]

v
c
a
_
x
p
_
s
h
if
te

d
[3

, 
]

+ ++ ++++++++++++ ++++++

+

+

+

+
+

+

+

0 2 4 6 8 10

0
2
0
0
0

6
0
0
0

1
0
0
0
0

Position (nm)

C
o
e
ff
ic

ie
n
ts

 (
a
.u

.)

0 2 4 6 8 10

0
1

2
3

4
5

Position (nm)

re
d
u
c
e
d
 C

h
i 
s
q

+ ++
0 5 10

0

2

4

6

8

Position (nm)

P
o
s
it
io

n
 (

n
m

)

0 5 10

0
2

4
6

8

Position (nm)

P
o
s
it
io

n
 (

n
m

)

+ ++

(e)

525 530 535 540 545 550 555

−
2
0
0
0

0
2
0
0
0

energy−loss (eV)

C
e
n
te

r 
(a

.u
. 
C

o
u
n
t)

525 530 535 540 545 550 555

−
2
0
0
0

0
2
0
0
0

energy−loss (eV)

v
c
a
re

s
$
A

e
[,
 1

]

525 530 535 540 545 550 555

−
0
.5

0
.0

0
.5

1
.0

energy−loss (eV)

v
c
a
R

e
f$

c
[,
 1

]

530 535 540 545 550 555

−
0
.4

0
.0

0
.4

energy−loss (eV)

L
o
a
d
in

g
 (

a
.u

. 
C

o
u
n
t)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

−
5
0
0
0

5
0
0
0

Position (nm)

C
o
m

p
o
n
e
n
t 
1
 S

c
o
re

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

−
2
0
0
0

0

Position (nm)

C
o
m

p
o
n
e
n
t 
2
 S

c
o
re

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

−
1
0
0
0

0
1
0
0
0

Position (nm)

C
o
m

p
o
n
e
n
t 
3
 S

c
o
re

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

−
1
0
0
0

0
5
0
0

Position (nm)

C
o
m

p
o
n
e
n
t 
4
 S

c
o
re

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

−
1
0
0
0

0
5
0
0

Position (nm)

C
o
m

p
o
n
e
n
t 
5
 S

c
o
re

−10000 −5000 0

6
0
0
0

7
0
0
0

8
0
0
0

9
0
0
0

1
0
0
0
0

vca_xp_shifted[1, ]

v
c
a
_
x
p
_
s
h
if
te

d
[2

, 
]

+ ++
+

+
+

+

+

+

+

+
+

+

+

+

+

++
+

−10000 −5000 0

−
5
0
0
0

−
4
0
0
0

−
3
0
0
0

vca_xp_shifted[1, ]

v
c
a
_
x
p
_
s
h
if
te

d
[3

, 
]

+
+++

+

+

+

+
+

+

+
+

+

+

+

+

+

+

+

6000 7000 8000 9000 10000

−
5
0
0
0

−
4
0
0
0

−
3
0
0
0

vca_xp_shifted[2, ]

v
c
a
_
x
p
_
s
h
if
te

d
[3

, 
]

+
++ +

+

+

+

+
+

+

+
+

+

+

+

+

+

+

+

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0
1
0
0
0

2
0
0
0

3
0
0
0

Position (nm)

C
o
e
ff
ic

ie
n
ts

 (
a
.u

.)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0
1

2
3

4
5

Position (nm)

re
d
u
c
e
d
 C

h
i 
s
q

+++
−2 0 2 4 6

0

1

2

3

4

5

Position (nm)

P
o
s
it
io

n
 (

n
m

)

−2 0 2 4 6

0
1

2
3

4
5

Position (nm)

P
o
s
it
io

n
 (

n
m

)

+++

(b)

525 530 535 540 545 550 555

−
5
0
0
0

0
5
0
0
0

energy−loss (eV)

C
e
n
te

r 
(a

.u
. 
C

o
u
n
t)

525 530 535 540 545 550 555

−
5
0
0
0

0
5
0
0
0

energy−loss (eV)

v
c
a
re

s
$
A

e
[,
 1

]

525 530 535 540 545 550 555

−
0
.5

0
.0

0
.5

1
.0

energy−loss (eV)

R
e
f 
S

p
e
c
 (

a
.u

.)

530 535 540 545 550 555

−
0
.4

0
.0

0
.4

energy−loss (eV)

L
o
a
d
in

g
 (

a
.u

. 
C

o
u
n
t)

0 2 4 6 8 10

−
5
0
0
0

1
5
0
0
0

Position (nm)

C
o
m

p
o
n
e
n
t 
1
 S

c
o
re

0 2 4 6 8 10 12

−
4
0
0
0

0
2
0
0
0

Position (nm)

C
o
m

p
o
n
e
n
t 
2
 S

c
o
re

0 2 4 6 8 10 12

−
1
0
0
0

1
0
0
0

Position (nm)

C
o
m

p
o
n
e
n
t 
3
 S

c
o
re

0 2 4 6 8 10 12

−
2
0
0
0

0
2
0
0
0

Position (nm)

C
o
m

p
o
n
e
n
t 
4
 S

c
o
re

0 2 4 6 8 10 12

−
2
0
0
0

0
2
0
0
0

Position (nm)

C
o
m

p
o
n
e
n
t 
5
 S

c
o
re

−25000 −15000 −5000 5000

1
6
0
0
0

1
8
0
0
0

2
0
0
0
0

2
2
0
0
0

vca_xp_shifted[1, ]

v
c
a
_
x
p
_
s
h
if
te

d
[2

, 
]

+

+

+

++
++

++
++++

+

+
+

+

+++

+

+

+

+

+

+

+

+

−25000 −15000 −5000 5000

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

vca_xp_shifted[1, ]

v
c
a
_
x
p
_
s
h
if
te

d
[3

, 
]

+

+

+

+++++++++++++++++++++

+

+

+

+
+

+

+

16000 18000 20000 22000

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

vca_xp_shifted[2, ]

v
c
a
_
x
p
_
s
h
if
te

d
[3

, 
]

+ ++ ++++++++++++ ++++++

+

+

+

+
+

+

+

0 2 4 6 8 10

0
2
0
0
0

6
0
0
0

1
0
0
0
0

Position (nm)

C
o
e
ff
ic

ie
n
ts

 (
a
.u

.)

0 2 4 6 8 10
0

1
2

3
4

5

Position (nm)

re
d
u
c
e
d
 C

h
i 
s
q

+ ++
0 5 10

0

2

4

6

8

Position (nm)

P
o
s
it
io

n
 (

n
m

)

0 5 10

0
2

4
6

8

Position (nm)

P
o
s
it
io

n
 (

n
m

)

+ ++

(f)

525 530 535 540 545 550 555

−
2
0
0
0

0
2
0
0
0

energy−loss (eV)

C
e
n
te

r 
(a

.u
. 
C

o
u
n
t)

525 530 535 540 545 550 555

−
2
0
0
0

0
2
0
0
0

energy−loss (eV)

v
c
a
re

s
$
A

e
[,
 1

]

525 530 535 540 545 550 555

−
0
.5

0
.0

0
.5

1
.0

energy−loss (eV)

v
c
a
R

e
f$

c
[,
 1

]

530 535 540 545 550 555

−
0
.4

0
.0

0
.4

energy−loss (eV)

L
o
a
d
in

g
 (

a
.u

. 
C

o
u
n
t)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

−
5
0
0
0

5
0
0
0

Position (nm)

C
o
m

p
o
n
e
n
t 
1
 S

c
o
re

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

−
2
0
0
0

0

Position (nm)

C
o
m

p
o
n
e
n
t 
2
 S

c
o
re

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

−
1
0
0
0

0
1
0
0
0

Position (nm)

C
o
m

p
o
n
e
n
t 
3
 S

c
o
re

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

−
1
0
0
0

0
5
0
0

Position (nm)

C
o
m

p
o
n
e
n
t 
4
 S

c
o
re

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

−
1
0
0
0

0
5
0
0

Position (nm)

C
o
m

p
o
n
e
n
t 
5
 S

c
o
re

−10000 −5000 0

6
0
0
0

7
0
0
0

8
0
0
0

9
0
0
0

1
0
0
0
0

vca_xp_shifted[1, ]

v
c
a
_
x
p
_
s
h
if
te

d
[2

, 
]

+ ++
+

+
+

+

+

+

+

+
+

+

+

+

+

++
+

−10000 −5000 0

−
5
0
0
0

−
4
0
0
0

−
3
0
0
0

vca_xp_shifted[1, ]

v
c
a
_
x
p
_
s
h
if
te

d
[3

, 
]

+
+++

+

+

+

+
+

+

+
+

+

+

+

+

+

+

+

6000 7000 8000 9000 10000

−
5
0
0
0

−
4
0
0
0

−
3
0
0
0

vca_xp_shifted[2, ]

v
c
a
_
x
p
_
s
h
if
te

d
[3

, 
]

+
++ +

+

+

+

+
+

+

+
+

+

+

+

+

+

+

+

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0
1
0
0
0

2
0
0
0

3
0
0
0

Position (nm)

C
o
e
ff
ic

ie
n
ts

 (
a
.u

.)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0
1

2
3

4
5

Position (nm)

re
d
u
c
e
d
 C

h
i 
s
q

+++
−2 0 2 4 6

0

1

2

3

4

5

Position (nm)

P
o
s
it
io

n
 (

n
m

)

−2 0 2 4 6

0
1

2
3

4
5

Position (nm)

P
o
s
it
io

n
 (

n
m

)

+++

(c)

525 530 535 540 545 550 555

−
5
0
0
0

0
5
0
0
0

energy−loss (eV)

C
e
n
te

r 
(a

.u
. 
C

o
u
n
t)

525 530 535 540 545 550 555

−
5
0
0
0

0
5
0
0
0

energy−loss (eV)

v
c
a
re

s
$
A

e
[,
 1

]

525 530 535 540 545 550 555

−
0
.5

0
.0

0
.5

1
.0

energy−loss (eV)

R
e
f 
S

p
e
c
 (

a
.u

.)

530 535 540 545 550 555

−
0
.4

0
.0

0
.4

energy−loss (eV)

L
o
a
d
in

g
 (

a
.u

. 
C

o
u
n
t)

0 2 4 6 8 10

−
5
0
0
0

1
5
0
0
0

Position (nm)

C
o
m

p
o
n
e
n
t 
1
 S

c
o
re

0 2 4 6 8 10 12

−
4
0
0
0

0
2
0
0
0

Position (nm)

C
o
m

p
o
n
e
n
t 
2
 S

c
o
re

0 2 4 6 8 10 12

−
1
0
0
0

1
0
0
0

Position (nm)

C
o
m

p
o
n
e
n
t 
3
 S

c
o
re

0 2 4 6 8 10 12

−
2
0
0
0

0
2
0
0
0

Position (nm)

C
o
m

p
o
n
e
n
t 
4
 S

c
o
re

0 2 4 6 8 10 12

−
2
0
0
0

0
2
0
0
0

Position (nm)

C
o
m

p
o
n
e
n
t 
5
 S

c
o
re

−25000 −15000 −5000 5000

1
6
0
0
0

1
8
0
0
0

2
0
0
0
0

2
2
0
0
0

vca_xp_shifted[1, ]
v
c
a
_
x
p
_
s
h
if
te

d
[2

, 
]

+

+

+

++
++

++
++++

+

+
+

+

+++

+

+

+

+

+

+

+

+

−25000 −15000 −5000 5000

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

vca_xp_shifted[1, ]

v
c
a
_
x
p
_
s
h
if
te

d
[3

, 
]

+

+

+

+++++++++++++++++++++

+

+

+

+
+

+

+

16000 18000 20000 22000

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

vca_xp_shifted[2, ]

v
c
a
_
x
p
_
s
h
if
te

d
[3

, 
]

+ ++ ++++++++++++ ++++++

+

+

+

+
+

+

+

0 2 4 6 8 10

0
2
0
0
0

6
0
0
0

1
0
0
0
0

Position (nm)

C
o
e
ff
ic

ie
n
ts

 (
a
.u

.)

0 2 4 6 8 10

0
1

2
3

4
5

Position (nm)

re
d
u
c
e
d
 C

h
i 
s
q

+ ++
0 5 10

0

2

4

6

8

Position (nm)

P
o
s
it
io

n
 (

n
m

)

0 5 10

0
2

4
6

8

Position (nm)

P
o
s
it
io

n
 (

n
m

)

+ ++

(g)

525 530 535 540 545 550 555

−
2
0
0
0

0
2
0
0
0

energy−loss (eV)

C
e
n
te

r 
(a

.u
. 
C

o
u
n
t)

525 530 535 540 545 550 555

−
2
0
0
0

0
2
0
0
0

energy−loss (eV)

v
c
a
re

s
$
A

e
[,
 1

]

525 530 535 540 545 550 555

−
0
.5

0
.0

0
.5

1
.0

energy−loss (eV)

v
c
a
R

e
f$

c
[,
 1

]

530 535 540 545 550 555

−
0
.4

0
.0

0
.4

energy−loss (eV)

L
o
a
d
in

g
 (

a
.u

. 
C

o
u
n
t)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

−
5
0
0
0

5
0
0
0

Position (nm)

C
o
m

p
o
n
e
n
t 
1
 S

c
o
re

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

−
2
0
0
0

0

Position (nm)

C
o
m

p
o
n
e
n
t 
2
 S

c
o
re

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

−
1
0
0
0

0
1
0
0
0

Position (nm)

C
o
m

p
o
n
e
n
t 
3
 S

c
o
re

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

−
1
0
0
0

0
5
0
0

Position (nm)

C
o
m

p
o
n
e
n
t 
4
 S

c
o
re

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

−
1
0
0
0

0
5
0
0

Position (nm)

C
o
m

p
o
n
e
n
t 
5
 S

c
o
re

−10000 −5000 0

6
0
0
0

7
0
0
0

8
0
0
0

9
0
0
0

1
0
0
0
0

vca_xp_shifted[1, ]

v
c
a
_
x
p
_
s
h
if
te

d
[2

, 
]

+ ++
+

+
+

+

+

+

+

+
+

+

+

+

+

++
+

−10000 −5000 0

−
5
0
0
0

−
4
0
0
0

−
3
0
0
0

vca_xp_shifted[1, ]

v
c
a
_
x
p
_
s
h
if
te

d
[3

, 
]

+
+++

+

+

+

+
+

+

+
+

+

+

+

+

+

+

+

6000 7000 8000 9000 10000

−
5
0
0
0

−
4
0
0
0

−
3
0
0
0

vca_xp_shifted[2, ]

v
c
a
_
x
p
_
s
h
if
te

d
[3

, 
]

+
++ +

+

+

+

+
+

+

+
+

+

+

+

+

+

+

+

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0
1
0
0
0

2
0
0
0

3
0
0
0

Position (nm)

C
o
e
ff
ic

ie
n
ts

 (
a
.u

.)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0
1

2
3

4
5

Position (nm)

re
d
u
c
e
d
 C

h
i 
s
q

+++
−2 0 2 4 6

0

1

2

3

4

5

Position (nm)

P
o
s
it
io

n
 (

n
m

)

−2 0 2 4 6

0
1

2
3

4
5

Position (nm)

P
o
s
it
io

n
 (

n
m

)

+++

(d)

525 530 535 540 545 550 555

−
5
0
0
0

0
5
0
0
0

energy−loss (eV)

C
e
n
te

r 
(a

.u
. 
C

o
u
n
t)

525 530 535 540 545 550 555

−
5
0
0
0

0
5
0
0
0

energy−loss (eV)

v
c
a
re

s
$
A

e
[,
 1

]

525 530 535 540 545 550 555

−
0
.5

0
.0

0
.5

1
.0

energy−loss (eV)

R
e
f 
S

p
e
c
 (

a
.u

.)

530 535 540 545 550 555

−
0
.4

0
.0

0
.4

energy−loss (eV)

L
o
a
d
in

g
 (

a
.u

. 
C

o
u
n
t)

0 2 4 6 8 10

−
5
0
0
0

1
5
0
0
0

Position (nm)

C
o
m

p
o
n
e
n
t 
1
 S

c
o
re

0 2 4 6 8 10 12

−
4
0
0
0

0
2
0
0
0

Position (nm)

C
o
m

p
o
n
e
n
t 
2
 S

c
o
re

0 2 4 6 8 10 12

−
1
0
0
0

1
0
0
0

Position (nm)

C
o
m

p
o
n
e
n
t 
3
 S

c
o
re

0 2 4 6 8 10 12

−
2
0
0
0

0
2
0
0
0

Position (nm)

C
o
m

p
o
n
e
n
t 
4
 S

c
o
re

0 2 4 6 8 10 12

−
2
0
0
0

0
2
0
0
0

Position (nm)

C
o
m

p
o
n
e
n
t 
5
 S

c
o
re

−25000 −15000 −5000 5000

1
6
0
0
0

1
8
0
0
0

2
0
0
0
0

2
2
0
0
0

vca_xp_shifted[1, ]
v
c
a
_
x
p
_
s
h
if
te

d
[2

, 
]

+

+

+

++
++

++
++++

+

+
+

+

+++

+

+

+

+

+

+

+

+

−25000 −15000 −5000 5000

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

vca_xp_shifted[1, ]

v
c
a
_
x
p
_
s
h
if
te

d
[3

, 
]

+

+

+

+++++++++++++++++++++

+

+

+

+
+

+

+

16000 18000 20000 22000

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

vca_xp_shifted[2, ]

v
c
a
_
x
p
_
s
h
if
te

d
[3

, 
]

+ ++ ++++++++++++ ++++++

+

+

+

+
+

+

+

0 2 4 6 8 10

0
2
0
0
0

6
0
0
0

1
0
0
0
0

Position (nm)

C
o
e
ff
ic

ie
n
ts

 (
a
.u

.)

0 2 4 6 8 10

0
1

2
3

4
5

Position (nm)

re
d
u
c
e
d
 C

h
i 
s
q

+ ++
0 5 10

0

2

4

6

8

Position (nm)

P
o
s
it
io

n
 (

n
m

)

0 5 10

0
2

4
6

8

Position (nm)

P
o
s
it
io

n
 (

n
m

)

+ ++

(h)

Figure 3.10. Comparison of O-K edge between sample with 2DEG and without 2DEG

(a)-(d) are from a sample with 2DEG grown by MBE at 700◦C. (e)-(h) are from a
sample with 2DEG grown by ALD at 345◦C.

appear in the ALD sample. The higher onset energy is indirect evidence for higher

2DEG concentration in the MBE sample. The relationship between the Fermi level

and the electrical properties of the 2DEG is further discussed in Chapter 3.6.
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3.3 Electrical Measurements

A 4-wire electrical transport measurement using less than 1 lA current at a

frequency of 7 or 13 Hz. was made by our collaborators at Case Western Reserve

University are summarized in Figure 3.11. Details of the measurement can be found in

Ref.[55, 57]. The temperature dependence of resistance and mobility are fitted using

the variable range hopping (VRH) model, the electron-electron scattering model, and

the electron-phonon scattering. The temperature dependence of the carrier density

are fitted using the Arrhenius relationship.

(a) (b) (c) (d)

Figure 3.11. Temperature dependence of the Hall mobility and carrier density.

Black: ALD sample with 1.3nm γ-Al2O3 film grown at 345◦C. Red: ALD sample
with 2.1nm γ-Al2O3 film at 345◦C. Blue: ALD sample with 4.3nm γ-Al2O3 film at
345◦C. Green: ALD sample with 8.5nm γ-Al2O3 film at 345◦C. Gray: MBE sample
with 4nm γ-Al2O3 film grown at 400◦C. Dark blue: MBE sample with 6nm γ-Al2O3

film grown at 700◦C. Orange: MBE sample with 6nm γ-Al2O3 film grown at 700◦C
with post-annealing in oxygen. (a) Resistance (b) Mobility (c)(d) Carrier density.
Thick lines are fitted curves. Error bars are added when available. This figure uses
the same data as in Ref.[57] and Ref.[55], but reproduced with a different axis.

As shown in Figure 3.11(a), in all samples with a negative sheet resistance -

temperature relationship at low temperature, the temperature dependence of sheet
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resistance can be modeled very well using the VRH model.[262]

RS ∝ exp[(T0/T )ν ] (3.1)

In the case of a flat density of states (DOS) near the Fermi energy, the resistance

obeys Mott’s VRH law with ν = 1/(d + 1), d is the dimension of the system.[263]

ν = 1 if there is a simple gap in the DOS and v = 1/2 if there is a Coulomb gap.[264].

In Figure 3.11(a), The fitted value of ν for the black, green, blue and orange line are

1.04, 1.27, 0.93, 0.50, respectively. The variation could be due to measurement errors

or resistance sources other than VRH.

Figure 3.11(b) shows the temperature dependence of electron mobility. The

electron mobility in the low conductive ALD sample (1.3nm γ-Al2O3 film), shows

T−2.01 relationship within the measurable range (76-300K), which is very close to the

T−2 dependence of electron-electron scattering.[265] The T 2 dependence of resistance

has been previously observed in n-doped SrTiO3,[125] although details of the process

were not fully understood.[124, 126–128, 266] This behavior differs from conventional

semiconductors such as silicon, in which the low temperature mobility is limited by

ionized impurity scattering with a temperature dependence of T 3/2,[267] although

impurities may still play an important role in the electron-electron scattering in SrTiO3

by affecting the relaxation rate.[266]

Temperature dependence of electron mobility in other samples ranges from T−1

for the high conductive ALD (red line) and MBE (dark blue line) samples at low

temperature to T−4.4 for the high conductive ALD sample (red line) near room tem-

perature. The T−5 dependence could originate from electron-phonon scattering.[268,

269] However, the T−1 dependence at low temperature needs further investigation.

The temperature dependence of electron density can be analyzed using classical

98



theory for a doped semiconductor. At low temperature,

n =

√
NCND

2
e
−EC−ED

2kBT (NA = 0, n << ND) (3.2)

or

n =
NC(ND −NA)

2NA

e
−EC−ED

kBT (NA > 0, n << ND, NA) (3.3)

At intermediate temperature,

n ≈ ND (3.4)

At high temperature,

n ≈ ni > ND (3.5)

ni =
√
NCNV e

− EG
2kBT (3.6)

where n is the electron density, NC is the density of states in the conduction band, ND

is the donor concentration, NA is the acceptor conecntration, EC is the conduction

band energy level, ED is the donor level, EA is the acceptor level, EF is the Fermi

energy level, KB is the Boltzmann constant, and T is temperature. By plotting log n

vs 1/T , EC − ED or EG can be derived from the slope.[270, 271]

In Figure 3.11(d), the calculated EG from the low conductive ALD sample (the black

line) is about 1-2eV near room temperature, which is smaller than the experimental

value (3.2eV). However, considering that only a number of data points are used for

the fitting, this deviation is within an acceptable range. Below room temperature,

the low conductive ALD sample shows a good linear relationship. The calculated

EC−ED from the Arrhenius plot in Figure 3.11 is 87meV if the acceptor concentration

NA is not zero. In DFT simulations described in Chapter 3.6, it is shown that this

value matches the calculated subband gap near the interface. For samples with higher

99



carrier density, the carrier density varies very slowly with temperature, indicating that

the donors are fully ionized (n = ND) or in a degenerate state (EC − EF < 3kBT ).

Considering that the carrier density does not decrease even at temperatures as low as

15K, the latter explanation seems more plausible.

3.4 Electron Holography

Further off-axis electron holography observations were performed on the FEI Titan

microscope operated at 300kV in imaging mode. CS and defocus were set close to zero

to optimize information transfer.[137] The sample was tilted along the film-growth

direction in order to avoid strong Bragg diffraction. Two MBE samples with 6nm

γ-Al2O3 grown at 700◦C were used in these observations. One was as-deposited,

the other had been annealed in oxygen at 500◦C for 1 hour. Electrical potential

simulations were carried out using methods described in Chapter 2.6.3.

Holography results showed no significant difference in phase profiles between the

samples with or without the 2DEG, which is consistent with the DFT calculations.

Also, there was no significant differences in the slope of the potential in the γ-Al2O3

film between the as-deposited sample and the annealed sample, indicating there was

no significant potential gradient difference between the sample with and without

2DEG. Electron holography observations of the potential gradient caused by polar

discontinuity has been previously reported[272] The electric field across LaAlO3 in

LaAlO3/SrTiO3 system is reported as large as 0.8V/nm.[61] However, the potential

gradient difference was not seen in this experiment. By combining this experimental

result with results of DFT simulations, where the system with 2DEG did not show
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(a) (b) (c)

Figure 3.12. Experimental and simulated phase map from electron holography

Holography phase image of (a) sample with 2DEG and (b) sample without 2DEG.
Both films are 6nm thick. (c) Phase profile across the interface (Right side is the
substrate). Green is the sample with 2DEG. Red is the sample without. (d)(e)
Potential profile calculated by DFT for the model with 2DEG (d) and without 2DEG
(e). Thick lines are smoothed.

any electric field in the γ-Al2O3 film, it is concluded that the polar discontinuity

mechanism[58] does not explain formation of the 2DEG in the γ-Al2O3/SrTiO3 system.

3.5 Spectrum Simulation

Multiplet simulations using multiX were carried out, using the method described

in Chapter 2.6.2. Two structural models were relaxed using DFT, one with oxygen

vacancies at the interface and the other without. More details of the structural models

are provided later in Chapter 3.6. The Ti atoms in the TiO2 layer at the interface

is chosen as the core atom. The DFT-relaxed structural models were then fed into

the multiplet simulation program. Empirical parameters, including the scalars of the

Coulomb potential, the crystal field and the spin-orbital coupling were acquired from
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(a) (b) (c)

Figure 3.13. Two structural models (with and without oxygen vacancies) relaxed by
DFT were fed into multiplets simulation for the Ti-L edge.

(a) Ti4+ in SrTiO3 bulk. (b) Ti4+ at the interface without oxygen vacancies, showing
the effect of geometrical distortion on ELNES. (c) Ti3.5+ at the interface with oxygen
vacancies, showing the effect of oxidation state on ELNES.

Ref.[246] in order to match experimental values in the bulk SrTiO3. The result for

Ti3.5+ was an average of Ti4+ and Ti3+.

The results in Figure 3.13 show that both the lattice relaxation near the interface

(Figure 3.13(b)) and the oxygen vacancies near the interface (Figure 3.13(c)) smear

out the 4 peaks of the Ti-L edge. However, a change in oxidation state has a much

greater influence than lattice relaxation. At the oxidation state of Ti3.5+, the Ti-L

edge shows two major peaks (Figure 3.13(c)), which also matches the experimental

result in Ref.[156]. However, 4 peaks remain for Ti4+ without oxygen vacancies even

when lattice relaxation is taken into consideration (Figure 3.13(b)), although the

peaks are slightly broader than in the bulk (Figure 3.13(a)).

By comparing the simulated results in Figure 3.13 with the experimental spectra in

Figure 3.6, it can be concluded that the green spectrum in Figure 3.6(a) is introduced

by oxygen vacancies, and the green spectrum in Figure 3.6(e) is introduced by lattice

relaxation near the interface rather than by oxygen vacancies.
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For the O-K edge, since the electron dipole transition is dominant under our

experimental conditions using 200keV electrons, in which the convergence semi-angle

is 20 mrad and collection semi-angle is 22 mrad, the dipole selection rule ∆L = ±1

limits the transition to be O-1s to O-2p.[273] The core state O-1s has a very sharp

density of state. Therefore, the projected density of state of the O-2p orbital should

be close to the joint density states, which in turn is proportional to the experimentally

observed O-K edge.[194]

The DFT-calculated projected O-2p density of state in bulk SrTiO3 (the black

line in Figure 3.14) has four major peaks, which is consistent with experimental O-K

ELNES (the red lines in Figure 3.8 and Figure 3.10). Meanwhile, the spectral features

for the oxygen atoms near the interface, such as decrease of amplitude in the A1 (t2g)

peak, and the smearing of the peaks, are visible in both simulated projected density of

states (color lines in Figure 3.14) and the experimental spectra (green lines in Figure

3.8). The Fermi level (0eV in Figure 3.14) is just above the bottom of the A1 peak,

running through the t2g states in the SrO layer. The bottom of the A1 peak in the

second layer (SrO) layer is lower than in the first layer (Al-Ti mixed layer), while there

is an extra peak below the Fermi level in the first layer existing only in the spin-up

DOS. Because this peak is filled, it cannot be seen in the O-K ELNES. However, the

gap above the sub-band peak is about 90meV, which matches the measured EC − ED

value in the Hall measurement described in the previous section.

3.6 DFT Simulations

Slab models described in Chapter 2.5.4 were build for DFT calculations. The

models are set to be centrosymmetric in order to avoid polarization divergence. Charge
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Figure 3.14. LDA+U calculation (with U=5 eV) of projected density of state of
oxygen atoms at different positions

Spin-polarized projected density of state using LDA+U for a model with oxygen
vacancies at the interface and one layer of Ti-Al intermixing at the interface. Black:
bulk O atom. Red, orange and yellow: three oxygen atoms at the interfacial TiO2

layer occupying different positions. Green: oxygen atom in the SrO layer below the
interfacial TiO2 layer.
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neutrality is ensured by making slight changes to the γ-Al2O3 layers. Because both

the γ-Al2O3 crystal structure and the positions of oxygen vacancies can be random,

many structural models were built and relaxed with DFT. The starting point of the

models is shown in Figure 3.15. Modifications of each model are listed in Table 3.3.

The structures with relative lower energy were further processed for LDOS, spectrum

and image simulations. In order to balance between the number of structures and

our calculation capability, a
√

2 ×
√

2 cell with 10 uc SrTiO3 slab are used in all

calculations. The k point density was set to be 4× 4× 1.

2 1 0 -1-2

Figure 3.15. Atomic model for the DFT relaxation

Atomic model of γ-Al2O3/SrTiO3 interface. Red is O, green is Sr, light blue is Ti,
dark blue is Al. Atomic layers are labeled using numbers.

DFT calculations showed that the models with Al atoms at the tetrahedral center

between the interfacial TiO2 layer and the γ-Al2O3 layer[274] were not stable. However,

the structure with Ti-Al intermixing at the interfacial layer stabilized the oxygen

vacancy at the interface.

A gap above the interfacial sub-band and the conduction band minimum (CBM)

showed up at the interface in the DFT calculation. This gap is indirectly confirmed in

the temperature dependence of the carrier density measured by the Hall effect. The

DFT calculation also showed that the Fermi level is running through this gap at the

interfacial TiO2 layer. Therefore, the interfacial TiO2 layer is not participating in

transport at low temperature. DFT calculations show that the Fermi level was above

the CBM in the layer below the interfacial TiO2 layer. Therefore, the high mobility
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Table 3.3. Models used in DFT relaxation

#
Atom(s) between
layer 0 and 1

layer contain
oxygen vacancy

layer with
intermixing

free e− per
supercell

A Al No No 0
B Al layer 0 at (1/4, 1/4) No 4
C Al layer 0 at 3/4, 3/4) No 4
D TiO2 No No 0
E TiO2 TiO2 between layer 0 and 1 No 2
F No No No 0
G No No layer 0 at (0, 0) 0
H No No layer 0 at (1/2, 1/2) 0
I No layer 0 at (1/4, 1/4) No 4
J No layer 0 at (3/4, 3/4) No 4
K No layer 0 at (3/4, 3/4) layer 0 at (0, 0) 2
L No layer 0 at (3/4, 3/4) layer 0 at (1/2, 1/2) 2
M No layer -1 at (0, 0) layer 0 at (0, 0) 2
N No layer -1 at (1/2, 1/2) layer 0 at (0, 0) 2

O No layer -1 at (0, 0)
layer 0 at (0, 0) 2layer 2 at (1/2, 1/2)

electrons are actually located below the interfacial layer on the SrTiO3 side. Because

the concentration of the oxygen vacancies near the interface in the MBE sample is

higher than in the ALD sample, the Fermi level is also higher in the MBE sample,

which explains the higher onset energy of the O-K edge at the interface in Figure

3.10(a). More Ti atoms out-diffused into the γ-Al2O3 as the film became thicker.

DFT calculations showed that the potential at the Ti in the γ-Al2O3 film was lower

than in the SrTiO3 bulk. Therefore, as the γ-Al2O3 film became thicker, the diffused

Ti started to deplete the 2DEG, causing a drop in the electron carrier density. On the

other hand, for very thin ALD samples, the interface can be “instantly” oxidized once

the sample is exposed to air,[76] which would also deplete the 2DEG. Because both

thin and thick γ-Al2O3 films may deplete the 2DEG, the critical thickness can be

explained. At higher temperature, electrons in the sub-band will be thermally excited
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into the conduction band, giving the large 1013 − 1014cm−2 carrier density observed

at room temperature.

3.7 Conclusions

This chapter reports a comprehensive investigation of the γ-Al2O3/SrTiO3 interface,

in particular the high density sheet charge observed in epitaxial films subject to different

growth and annealing conditions. The principal observations can be summarized as

follows:

1. ELNES hyperspectral unmixing analyses show that there are detectable oxygen

vacancies in the sample with the 2DEG whereas none were seen in sample without

2DEG. Thus, oxygen vacancies must be the key to the 2DEG. Electron holography

results show no significant potential gradient difference between samples with and

without 2DEG. Thus, polar discontinuity is not necessary for the 2DEG in the γ-

Al2O3/SrTiO3 system. These results are consistent with DFT calculations, as well as

spectrum and Coulomb potential simulations.

2. DFT modeling shows that the interfacial Al is not stable, whereas other models

with oxygen vacancies and mixed Al atoms occupying different positions have similar

energies. Thus, different atomic configurations are likely to coexist at the same time.

3. Intermixing at the interfacial TiO2 layer can stabilize the oxygen vacancy. Al -

Ti interdiffusion causes a drop in the Fermi level that might be responsible for the

drop in carrier density for thicker samples and the existence of an optimal γ-Al2O3

film thickness.
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Chapter 4

LaTiO3/SrTiO3 INTERFACES

4.1 The LaTiO3/SrTiO3 interface

The LaTiO3/SrTiO3 interface displays a 2DEG which has been attributed to

charge doping from the Mott insulator LaTiO3 into the band insulator SrTiO3, as

discussed in Chapter 1.2.2. However, it can be anticipated that oxygen vacancies will

also affect the film quality and the 2DEG.[275]

In this chapter, high-resolution imaging has been used to characterize

LaTiO3/SrTiO3 heterostructures grown by our collaborators at UT-Austin. ELNES

hyperspectral unmixing and mapping has also been used to investigate oxidation

states and oxygen vacancies in combination with electrical measurement.

4.2 HRTEM imaging

The LaTiO3/SrTiO3 samples were grown by molecular beam epitaxy (MBE) using

5 mm × 5 mm × 0.5 mm TiO2-terminated SrTiO3 (001) single-crystal substrates.

Pre-processing treatment included degreasing (solvent sonication and UV-ozone (UVO)

cleaning) followed by ultra-high vacuum (UHV) annealing at 750◦C for 30 min. The

partial pressure of oxygen during the growth and the annealing process varied between

samples, as summarized in the caption of Figure 4.1. The LaTiO3 films in Figures 4.1

(a)(b) and (c) show good crystallinity, but the LaTiO3 films in Figures 4.1 (d)(e) and

(f) are amorphous. In contrast, the SrTiO3 substrates in all samples have excellent
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cyrstallinity. Thus, it is clear that growth at an oxygen partial pressure of lower than

10−7 Torr without post-growth annealing results in amorphous LaTiO3 films.

(a)(a) (b)(b) (c)(c)

(d)(d) (e)(e) (f)(f)

Figure 4.1. HRTEM images and diffractograms of LaTiO3 film grown on SrTiO3 at
different conditions

In each figure, the lower part is SrTiO3 substrate. The middle part is the LaTiO3

film. The upper part is the epoxy glue introduced during TEM sample preparation.
Diffractograms in the upper left corners are from the LaTiO3 film, indicated by the
red box in the middle. Diffractogram in the upper right corners are from the SrTiO3

substrate, indicated by the red box at the bottom right. (a) (b) ∼15 nm
LaTiO3/SrTiO3. (c) ∼15 nm LaTiO3/SrTiO3 with post-growth oxygen anneal (10−7

Torr O2, 750◦C, 30 min). (d) ∼15 nm LaTiO3/SrTiO3 grown under 10−7 Torr O2. (e)
∼15 nm LaTiO3/SrTiO3 grown under 10−8 Torr O2. (f) ∼15 nm LaTiO3/SrTiO3

grown under 10−9 Torr O2.
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4.3 Aberration-corrected STEM imaging

(a)(a) (b)(b) (c)(c)

(d)(d) (e)(e) (f)(f)

Figure 4.2. Aberration-corrected STEM images for the as-grown and annealed
LaTiO3/SrTiO3 samples.

(a)(b) and (c) are images of the as-grown sample. (d)(e) and (f) are images of the
sample with post-growth oxygen anneal (10−7 Torr O2, 750◦C, 10min). (a) and (d)
are BF images. (b) and (e) are LAADF images. (c) and (f) are HAADF images.

Aberration-corrected STEM imaging was used to investigate the sample crys-

tallinity in more detail. BF, HAADF and LAADF images were collected as de-

scribed in Chapter 2.1.2. The BF, LAADF and HAADF images for the as-grown

LaTiO3/SrTiO3 sample and the post-growth oxygen-annealed sample are compared

in Figure 4.2. Differences between the as-grown sample and the annealed sample are

not obvious. The LaTiO3 near the interface has good crystallinity, but defects starts

to appear after several unit cells above the interface. The defects gives significant
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contrast in the LAADF images. In the upper part of the film, both crystalline and

amorphous structure seem to coexist. The diagonal stripes along the (110) plane in

the upper part of the film are very similar to the reported structure of La2Ti2O7,[276]

suggesting that significant Ti4+ may be present in the film.

4.4 ELNES hyperspectral unmixing and mapping

To further investigate the relationship between the structural, chemical and elec-

trical properties of the LaTiO3/SrTiO3 interface, the ELNES hyperspectral unmixing

and mapping method, as discussed in Chapter 2.4, was carried out for the as-deposited

and annealed samples.

4.4.1 As-deposited LaTiO3/SrTiO3 sample

Figure 4.3 shows the hyperspectral unmixing results for the as-deposted

LaTiO3/SrTiO3 sample. As discussed in Chapter 2.3.1.1, and simulated in Chapter

3.5, the Ti-L edge is sensitive to the Ti oxidation state: Ti4+ shows 4 peaks, whereas

Ti3+/2+ shows 2 peaks. (Although local lattice distortion also affects the shape of

the Ti-L edge.) The green spectra in Figures 4.3 (a)(b) and (c) show reduction of

Ti (Ti3+) at the LaTiO3/SrTiO3 interface. Comparing these spectra with a reported

spectrum[276] indicates that LaTiO3 is almost (but not fully) Ti3+. In particular, the

blue spectrum is a mixture of 2 peaks and 4 peaks, indicating that the upper part of

the sample (right part in the profile and map) has more Ti4+.

The O-K edge is sensitive to cation type and oxidation state, and oxygen sub-lattice

ordering. Peaks in reduced SrTiO3 are “smeared”. The result in the as-deposited
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Figure 4.3. ELNES hyperspectral unmixing for Ti-L and O-K edges of as-deposited
LaTiO3 film on SrTiO3.

(a)-(d) are from Ti-L edge. (e)-(h) are from O-K edge. (a)(e) are spectral signatures.
(b)(f) are profiles of fitting coefficients (the abundance) averaged along the in-plane
direction and the black lines in each profile is the sum of the color lines. (c)(g) are 2D
maps of the fitting coefficients. (d)(h) are HAADF images acquired simultaneously
with the spectral map. The substrate is at the left part of each profile or map.

sample is different from the reported LaTiO3/SrTiO3 interface where no oxygen

vacancies are seen.[53] Comparing our spectra with reported spectra indicates that the

dark blue spectrum is close to SrTiO2.75 in Ref.[156], indicating that there is oxygen
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Figure 4.4. Summary of profiles from different ionization edges for the as-deposited
sample.

sublattice disordering in the interface and in the upper part (left part in the profile

and the map) of the LaTiO3 film.

Figure 4.4 summarized the comparison between results from different ionization

edges. The peak in the HAADF intensity corresponds to the LaO layer right at the

interface. According to this peak, the position of the interface is labeled by the gray

vertical line. The Ti3+ profile (green line) goes deeper into SrTiO3 (to the left of the

gray line) than the La profile (orange line), indicating the presence of the 2DEG at

the interface on the STO side. This result is consistent with the previous report.[26]

From this hyperspectral unmixing study, it can be concluded that LaTiO3 is not

very uniform in the as-deposited sample, since both Ti3+ and Ti4+ are present in

LaTiO3. Moreover, there is a Ti3+ peak at the LaTiO3/SrTiO3 interface. Oxygen
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sublattice disorder exists at the interface and in the upper part of the LaTiO3. Oxygen

vacancies may exist at the interface and may contribute to the conductivity. This

is different from the reported LTO/STO system where the 2DEG was attributed to

modulation doping.[26, 53]

4.4.2 Oxygen-annealed LaTiO3/SrTiO3 sample

Figures 4.5(a)-(d) shows the Ti-L ELNES hyperspectral unmixing result for the

oxygen-annealed LaTiO3/SrTiO3 sample. Comparing our spectra with reported

spectra, the LaTiO3 film is actually a mixture of Ti3+ and Ti4+. In comparison with

the as-deposited sample shown in 4.3, the spectra in the Ti-L edge in the LaTiO3

(green and blue) are closer to 4 peaks rather than 2 peaks. The spectrum in the upper

part of the film (the right side in the profiles and maps in Figure 4.5) is closer to 2

peaks because it has more of the blue spectrum, and the blue spectrum is closer to 2

peaks rather than 4 peaks. This result is different from the as-deposited sample. In the

as-deposited sample, the interface had more 2-peak component, whereas the interface

had more 4-peak component in the oxygen-annealed sample. Increase in oxidation

state or crystallinity can change the spectrum from 2 peaks into 4 peaks. In the case

of the as-deposited sample, the area near the interface showed good crystallinity in the

aberration-corrected images. Hence, Ti3+ at the interface in the as-deposited sample

should be the most reasonable explanation. In the case of the annealed sample, there

must be Ti4+ in the LaTiO3 film, since Ti3+ should always show 2 peaks but 4 peaks

were observed,

Figure 4.5(e)-(h) shows the O-K ELNES hyperspectral unmixing results. Compar-
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Figure 4.5. ELNES hyperspectral unmixing of Ti-L and O-K edge of the
oxygen-annealed LaTiO3 film on SrTiO3.

(a)-(d) are from Ti-L edge. (e)-(h) are from O-K edge. (a)(e) are spectral signatures.
(b)(f) are the profiles of fitting coefficients (the abundance) averaged along the
in-plane direction and the black lines in each profile is the sum of the color lines.
(c)(g) are 2D maps of the fitting coefficients. (d)(h) are HAADF images acquired
simultaneously with the spectral map. The substrate is in the left part in each profile
or map.

ing our spectra with reported spectra, the dark blue spectrum is close to SrTiO2.75 in

Ref.[26], indicating there is oxygen sublattice disorder at the upper part (right part of

the profile and the map) of the LaTiO3 film. This is different from the as-deposited

sample, where the oxygen vacancies are located near the interface.
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Figure 4.6. Summary of profiles from different ionization edges for the oxygen
annealed sample.

Figure 4.6 is the summary of the oxygen-annealed sample from different ionization

edges. The Ti3+ profile rises later than the La profile from the substrate to the

film. This behavior is different than for the as-deposited sample and the reported

LaTiO3/SrTiO3 interface with 2DEG.[26]

From the hyperspectral unmixing analysis, it can be concluded that the oxygen-

annealed LaTiO3 film is still not very uniform. ELNES spectra show both Ti3+ and

Ti4+ present in the LaTiO3. Moreover, there is a peak of Ti4+ at the LaTiO3/SrTiO3

interface, suggesting possible removal of the 2DEG as a result of by oxygen annealing.

116



4.5 Discussion

Both HRTEM and HRSTEM imaging show deterioration in film crystallinity in

LaTiO3 films a few unit cells away from the interface. Oxygen annealing did not

significantly alter the crystallinity. ELNES hyperspectral unmixing and mapping

showed that while the disordered structure in the upper part of LaTiO3 remained

largely unchanged, the lower part of the LaTiO3 film changed from Ti3+ to Ti4+

with removal of oxygen vacancies and possibly 2DEG as well after oxygen annealing.

This is consistent with the electrical measurement (not shown here) that the sheet

carrier density is ∼ 6− 7× 1016cm−2 in the as-deposited sample but reduced to

∼ 4− 5× 1016cm−2 after annealing. However, from the line profile in Figure 4.4, the

Ti3+ region in the SrTiO3 is ∼ 1 nm in thickness, corresponding to a sheet carrier

density of ∼ 1014 at most, which is much smaller than the electrical measurement.

Hence, carriers deep in the bulk SrTiO3, which might have been introduced by oxygen

vacancies or La intermixing, may also contribute to the conductivity. The carrier

doping in the bulk SrTiO3, which may have very low volume concentration and large

thickness, is below the detection limit of ELNES mapping.
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Chapter 5

EuO/SrTiO3 INTERFACES

5.1 The EuO/SrTiO3 interface

The half-filled Eu 4f shell in EuO produced a large mangetic moment of 7µB[277,

278] and EuO shows ferromagnetic ordering below the Curie temperature of 69K.[279]

As a ferromagnetic semiconductor, EuO is a promising material for spintronics. Lattice-

matched EuO thin films have been grown on Si[280, 281], GaN[280] and yttria-

stabilized ziconia (YSZ)[282]. DFT calculations predict a spin-polarized 2DEG at

the LaAlO3/EuO interface.[283, 284] However, EuO can be easily oxidized under

conditions when crystalline LaAlO3 is deposited.[285] Previous studies on depositing

EuO on SrTiO3 required BaO buffer layers in between to avoid the formation of

Eu2O3, which is a non-magnetic material.[286] In the present study, EuO was grown

on SrTiO3 (001) surfaces directly using MBE at low temperature. It has been shown

that the out-diffusion of oxygen can leave an oxygen-deficient SrTiO3 layer near

the interface even at room temperature.[285] In the following sections, aberration-

corrected STEM imaging and ELNES hyperspectral unmixing and mapping are used

for characterizing the EuO/SrTiO3 system, and relating the structural and chemical

properties to electrical measurements.
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5.2 Imaging and ELNES mapping

5.2.1 Aberration-corrected STEM imaging

(a)(a) (b)(b)

(c)(c) (d)(d) (e)(e)

Figure 5.1. Aberration-corrected STEM imaging for the EuO/SrTiO3 interface.

(a)(b) are HR-STEM images for the EuO/SrTiO3 interface viewed along SrTiO3[010]
and EuO[110] projections. (c)(d)(e) are HR-STEM images for the EuO/SrTiO3

interface viewed along SrTiO3[110] and EuO[010] projections. (a)(c) are BF images,
(b)(e) are HAADF images, (d) is LAADF image. In each image, the lower part is the
SrTiO3 substrate, the upper part is the EuO film.

Figure 5.1 shows images of the EuO/SrTiO3 interface. The heavy Eu atoms
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give bright contrast in the DF images and dark contrast in the BF images. The

cubic lattice in the thin film matches the rock-salt crystal structure of EuO, and the

measured out-of-plane lattice parameter matches the reported value of 5.14Å.[287]

Lattice mismatch between materials is partially compensated by a small rotation

between the SrTiO3 and EuO crystal. Contrast variation in the EuO film indicates

the presence of structural defects, which may be due to Eu3+, possibly introduced

during film growth or the TEM sample preparation process.

5.2.2 ELNES hyperspectral unmixing and mapping

Figure 5.2 summarizes the Eu-N, Ti-L and O-K ELNES hyperspectral unmixing

results. A metallic Ti capping layer was deposited after EuO in the sample shown in

order to prevent EuO from oxidation when exposed to air. It has been reported that

the Eu-N edge shows two peaks in Eu2O3 but only one in EuO.[288] Although two

spectral components are detected, in Figures 5.2 (a)-(d) the second peak can only be

seen in the green component and it is very small. Therefore, the EuO film is slightly

oxidized, which might happen during sample growth or TEM sample preparation. The

slight oxidation of EuO film leaves the defects shown in the EuO film in Figure 5.1.

The upper part of the film remains as Eu2+. Three spectral components are detected

for the Ti-L edge in Figure 5.2(e). The blue is Ti4+ in the bulk SrTiO3, and the green

is metallic Ti. The red is Ti2+/3+, which appears at the top surface (left part in the

profile and map in Figures 5.2(f) and (g)) due to oxidation of metallic Ti when the

top surface was exposed to air. The red spectrum also appears above and below the

EuO layer (about 10 nm and 18 nm in Figure 5.2(f)). The red peak at ∼ 10 nm is

possibly due to chemical reaction between the metallic Ti and residual Eu3+ in the
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Figure 5.2. ELNES hyperspectral unmixing on Eu-N, Ti-L and O-K edge of the
EuO/SrTiO3 interface.

(a)-(d) are from Eu-N edge. (e)-(h) are from Ti-L edge. (i)-(l) are from O-K edge.
(a)(e)(i) are spectral signatures. (b)(f)(j) are the profiles of fitting coefficients (the
abundance) averaged along the in-plane direction and the black lines in each profile is
the sum of the color lines. (c)(g)(k) are 2D maps of the fitting coefficients. (d)(h)(l)
are HAADF images acquired simultaneously with the spectral map. The SrTiO3

substrate is in the right part in each profile or map. EuO is at about 10 nm to 17 nm.
Metallic Ti capping layer is at about 0 nm to 10nm.
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EuO film, which has been reported in Ref.[288] The red peak at ∼ 15-20 nm is likely

to be due to oxygen vacancies in the SrTiO3 during growth of EuO. Due to SNR

limitations in the experiment, and the small concentration of oxygen vacancies, the

oxygen vacancies in SrTiO3 are not shown as a separable component in the unmixed

O-K edge in Figures 5.2(i)(j) and (k). However, the reduction of Ti in the SrTiO3

(shown in Ti-L edge) proves the existence of 2DEG near the EuO/SrTiO3 interface in

the SrTiO3 side.

5.3 Discussion

Large positive linear magnetoresistance (MR) was demonstrated at the

EuO/SrTiO3 interface, with the ordinary quadratic MR present below 150K,

while the linear component emerges below ∼ 80K.[285] This behavior is different from

the reported colossal positive magnetoresistance (CPMR) in the LaAlO3/SrTiO3

system, in which the linear behavior happens at high magnetic field.[37] Soft-x-ray

angle-resolved photomission spectroscopy (SX-ARPES) shows the t2g nature of the

carriers.[285] The transition region from quadratic to linear dependence coincides

with the Curie temperature of EuO. Thus, the origin of the positive linear MR is

attributed to spin-polarized oxygen vacancies.[285] Under the magnetic field, dxy shifts

downwards. However, the measured electron density is about 3 orders of magnitude

larger than the value derived from Hall measurements. This discrepancy could be due

to the temperature effect, or because carriers in the bulk and near the interface both

participate in the transport. However, the existence of confined oxygen vacancies is

confirmed from the reduction of Ti near the interface. Future work on this system
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should include measuring the partial occupancy in different bands near the surface

below the Curie temperature using the angle-resolved ELNES.
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Chapter 6

BaTiO3/SrTiO3 INTERFACE

6.1 Introduction

BaTiO3 is a promising lead-free candidate material for ferroelectric field-effect

transistors due to its large spontaneous polarization (0.26 C/m2)[289] at room temper-

ature and a Curie temperature (TC) of between 120 and 130◦C. The ferroelectricity

and spontaneous polarization behavior are directly linked to the atomic structure. At

low temperature, soft phonon modes emerge in BaTiO3. As the phonon frequency is

pure imaginary, displacement of Ti atoms from the center of the oxygen octahedra

lowers the free energy, which leads to the spontaneous polarization.[290] In all phases

of BaTiO3, the Ti atom always displaces along the 8 equivalent <111> directions.

In the cubic phase, the partial Ti displacement forms a short-range order-disorder

structure along three different <100> directions, whereas the partial displacement

in the tetragonal phase along the macro polarization direction P = [001] is fully

ordered.[291] The order-disorder model explains the diffuse scattering observed in

electron diffraction and X-ray diffraction patterns.[291, 292]

For device applications, the biaxial epitaxial strain introduced by lattice mismatch

between the film and the substrate, affects the Curie temperature and the remanent

polarization. For example, BaTiO3 films grown on DyScO3 with -1.7% in-plane

strain have a ferroelectric transition temperature nearly 500◦C higher and a remanent

polarization of 250% higher than bulk BaTiO3.[293] This behavior can be understood
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in terms of the piezoelectric and elastic constants[294], and has been studied by DFT

in the case of BaTiO3 and SrTiO3.[254–256]

Another phenomenon in the epitaxial system is that many as-deposited ferroelectric

films tend to have a preferred polarization direction, commonly called self-polarization.

The self-polarization can be affected or even tailored by dislocations, oxygen vacancies

or other types of charged defects,[295–299] substrate vicinality,[300, 301] interface

bonding,[302] chemical environment at the surface,[303, 304] polar discontinuity,[305]

and flexoelectric effect.[298, 306] These effects not only cause changes in the hysteresis

loops, but they can also change ferroelectric domain structure[301, 307] or even

produce non-switchable interfaces.[308]

This chapter examines an unusually large polarization field and polarization

gradient observed at the BaTiO3/SrTiO3 interface. The BaTiO3 films were grown by

MBE by our collaborators at UT-Austin. ELNES hyperspectral unmixing, and HR-

STEM image quantification, combined with DFT calculations, were used to investigate

this phenomenon.

6.2 Image Quantification

Figure 6.1 shows the ABF and HAADF images of the interface. The lower part is

the SrTiO3 substrate and the upper part is the BaTiO3 film. Contrast variations are

visible in the BaTiO3 film in the HAADF image (6.1(b)), especially in the region near

the interface and about 15 nm above the interface. The contrast variation originates

primarily from the dechanneling effect due to the local random strain introduced by

defects. Hence, defects in the layer are segregated near the interface and 15 nm above

the interface in the BaTiO3 film. An edge dislocation with the extra half-plane in the
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(a)(a)

SrTiO3SrTiO3

BaTiO3BaTiO3

(b)(b)

SrTiO3SrTiO3

BaTiO3BaTiO3

(c)(c) (d)(d)

O3 O3

O1

O1

(e)(e)

Figure 6.1. Aberration-corrected STEM images for BaTiO3/SrTiO3 interface.

(a) and (c) are the ABF image. (b) and (d) are the HAADF image. (c)(d) magnify a
small part of BaTiO3 in (a) and (b). (e) is the atomic model showing the ferroelectric
displacement. Green is Sr, blue is Ti, red is O, corresponding to the big, medium and
small dots in the ABF and HAADF images, respectively.

lower part is visible at the lower left part of the image, about 5 nm away from the

interface. Figure 6.1(e) shows the ferroelectric displacement in the tetragonal phase

with the polarization direction pointing up. Atomic displacements can be directly

observed from the ABF and HAADF images, as shown in the enlarged images (Figure

6.1(c)(d)). The origin of the defects and the influence on polarization are discussed

later in this chapter.

Both the positions of atomic columns and the lattice parameters change with
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polarization field in BaTiO3. In order to quantify the polarization field and lattice

parameters unit-cell-by-unit-cell, image quantification as described in Chapter 2.1.3

was carried out. The notations are adopted from Ref.[255] in order to be consistent

with the literature. The Ti displacement is defined as the relative displacement

between the position of the Ti atomic column and the center of the 4 nearest Sr atomic

columns. The O displacement is defined as the relative displacement between the

position of the O atomic column and the center of the 2 nearest Sr atomic columns.

The oxygen atomic column in the TiO2 layer is labelled as O1, and the oxygen atomic

column in the SrO layer is labelled as O3. The lattice parameters were measured

from HAADF images for better SNR. The positions of Ti atomic column were also

measured from HAADF because image simulations show that the position of Ti atomic

columns varies much less significantly with thickness in HAADF images than ABF

images.

The image in Figure 6.1 was cropped to avoid the dislocation core on the left

part and the blurred part on the right which is due to local sample tilt. Figure 6.2

shows large downward out-of-plane displacements (from the upper surface of the film

pointing towards the substrate) of both O1 and O3 atomic columns. This displacement

corresponds to a polarization field from the substrate pointing upwards to the surface.

This polarization field arises near the interface on the SrTiO3 side and reaches its

maximum near the interface on the BaTiO3 side. The field then slowly decaysmoving

towards the upper part of the film. The in-plane displacement is significantly smaller

than the out-of-plane direction and has much less variance.

Figures 6.3(a)-(d) show that the Ti displacements are similar to that of O1 and

O3 except the magnitude is smaller and in the opposite direction, which also gives
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(a)(a) (b)(b)

(c)(c) (d)(d)

O1

O1

(e)(e) (f)(f)

(g)(g) (h)(h)

O3

O3

Figure 6.2. O1 and O3 atomic column displacements measured from ABF image.

(a)(c)(e)(g) are false color maps showing atomic displacement. Each pixel represents
a unit cell. In each map, the x axis is the position in out-of-plane direction (film
growth direction), and y axis is the position in in-plane direction (parallel to the
surface). The substrate is on the left side. (b)(d)(f)(h) are displacement profiles
averaged in each atomic plane parallel to the surface. The bar associated with each
data point shows the 1.96σ (95% confidence) interval in each atomic plane. x axis is
the position in film growth direction. The position of the BaTiO3/SrTiO3 interface is
indicated by the vertical line. y axis is the atomic displacement in nanometers.
(a)(b)(c)(d) are displacements of O1 atomic columns. (e)(f)(g)(h) are displacements
of O3 atomic columns. (a)(b)(e)(f) are displacements in the out-of-plane direction
(film growth direction). (c)(d)(g)(h) are displacements in the in-plane direction
(parallel to the surface).
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(a)(a) (b)(b)

(c)(c) (d)(d)

Ti

Ti

(e)(e) (f)(f)

(g)(g) (h)(h)

Figure 6.3. Ti atomic column displacements and lattice parameters measured from
HAADF image.

(a)(b)(c)(d) are displacements of Ti atomic columns using the same representations as
in Figure 6.2. (e)(f)(g)(h) are lattice parameters. (e)(f) are out-of-plane (film growth
direction) lattice parameters. (g)(h) are in-plane (parallel to the surface) lattice
parameters. In (a)(c)(e)(g) each pixel corresponds to one unit cell. x axis is the
out-of-plane direction. y axis is the in-plane direction. The substrate is on the left
side. (a)(d)(f)(h) are line profiles averaged along the in-plane direction. In
(b)(d)(f)(h), x axis is the out-of-plane direction. The bar associated with each data
point shows the 1.96σ (95% confidence) interval in each atomic plane. The red line is
the fitted lattice parameters from DFT calculation using the measured c/a ratio as
self variable.
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a polarization field pointing upwards (from the substrate to the surface) in the out-

of-plane direction. Figures 6.3(e)-(h) shows that the out-of-plane lattice parameters

have similar trend as Ti displacements. Although the map in Figure 6.3(g) is largely

affected by scanning noise, the profile in Figure 6.3(h) still has a narrow confidence

interval because of averaging. It shows that the in-plane lattice parameter steadily

increases in the BaTiO3 film from the interface up to the surface. Most of the increases

are in the 5 nm to 10 nm range. The trend of in-plane lattice parameters indicates

strain relaxation. The relaxation is achieved by many misfit dislocations similar to

the one shown in the lower left corner of Figure 6.1(a)(b), as well as the anti-phase

boundaries (APB)[309].

Because of the presence of the strain gradient (lattice parameter changes with

position), sample bending is unavoidable. The relative displacement of the same

atomic column (Sr) between HAADF and ABF is sensitive to sample tilt. The sample

tilt will give opposite displacement directions in HAADF and ABF[310] whereas the

polarization displacement will give the same displacement direction in HAADF and

ABF. Figures 6.6 (e)-(h) shows the relative displacement of Sr between HAADF and

ABF. The relative displacement is not zero: it reaches its maximum at about 5 nm

position due to the strain relaxation from edge dislocations. However, the in-plane

displacement and out-of-plane displacement shows the same trend and similar values,

which does not appear in Ti, O1 and O3 displacements. Therefore, the variation of

Ti, O1 and O3 atomic displacements are not from sample tilt.

The correlation between lattice parameter and atomic displacement is partially due

to the piezoelectric effect. The BaTiO3 film near the interface is under compressive

biaxial strain in the in-plane directions. The tetragonal BaTiO3 with larger c/a ratio

will have larger polarization. If c/a ratio is taken as self-variable, then the lattice
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parameters matched the DFT predictions, as shown by the red line in Figure 6.3(f)(h),

indicating that the measured Poisson ratio matched the DFT calculations. The small

discrepancy near the surface (above 17 nm) is probably because the BaTiO3 turns

from tetragonal phase back into cubic phase when eptixial strain is fully relaxed while

a tetragonal structure is always used in the DFT calculation. However, the measured

displacement is significantly larger than given by DFT predictions. Indeed, it is almost

twice as large as DFT predictions near the interface where the displacements reach

the maximum. Therefore, the extra polarization field may be induced by electrical

field.

6.3 ELNES Hyperspectral Unmixing

The aberration-corrected images in Figures 6.1(a)(b) shows defects in the BaTiO3

film. To characterize these defects, ELNES spectrum mapping was conducted using

the aberration-corrected Nion STEM operated at 100kV. The convergence semi-angle

for the EELS was 30 mrad. The collection semi-angle was 45 mrad. The ELNES

hyperspectral unmixing method, discussed in Chapter 2.4, was carried out for this

BaTiO3/SrTiO3 sample.

Figure 6.4 shows the result of hyperspectral unmixing and mapping. Red and

dark blue are spectra from bulk SrTiO3 and BaTiO3, respectively. Sky blue shows

spectra from TiN capping electrode. Green is reduced Ti. In the Ti-L edge, the green

spectrum is not completely 4 peaks, indicating the existence of Ti3+ in the BaTiO3,

especially near the interface. The eg and t2g peaks in O-K edge are not well separated,

and the C1 - C3 peaks are also not well separated, suggesting the presence of oxygen

vacancies at almost the same place where Ti3+ emerges.
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Figure 6.4. ELNES hyperspectral unmixing for Ti-L and O-K edges of the BaTiO3

film on SrTiO3.

(a)-(d) are from Ti-L edge. (e)-(h) are from O-K edge. (a)(e) are spectral signatures.
(b)(f) are the profiles of fitting coefficients (the abundance) averaged along the
in-plane direction and the black lines in each profile is the sum of the color lines.
(c)(g) are 2D maps of fitting coefficients. (d)(h) are HAADF images acquired
simultaneously with spectral map. The substrate is on the left side in each profile or
map.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 6.5. Summary of DFT calculations on strained BaTiO3.

In each plot the x axis is the biaxial strain. (a) Minimum energy (in Ry). (b)
In-plane lattice parameter (in atomic unit) (c) c/a ratio. (d) Ti atomic position in
fractional coordinate. (e) O1 atomic position in fractional coordinate. (f) O3 atomic
position in fractional coordinate. (g) Polarization calculated using Berry phase.

6.4 DFT Calculations

DFT calculations were performed using the QUANTUM-ESPRESSO software

package.[232] The k point density is set to be 6× 6× 6, and a series of Tetragonal

BaTiO3 unit cells with biaxial strain from -3% to +3% was built. Energy was

minimized by varying atomic displacements in the inner loop and the c/a ratio in the

outer loop. The results are summarized in Figure 6.5.

In order to relate the microscopic atomic displacement and the macroscopic

polarization field, Born effective charges were adopted from Ref.[311], with Z∗Ti=7.10,
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(a)(a) (b)(b)

(c)(c) (d)(d)

(e)(e) (f)(f)

(g)(g) (h)(h)

Figure 6.6. Polarization density map and profile

(a)(b) are out-of-plane (film growth direction) polarization density. (c)(d) are in-plane
(parallel to the surface) polarization density. (e)(f) are out-of-plane displacement of
Sr atomic column between the ABF and HAADF images. (g)(h) are in-plane
displacement of Sr atomic column between the ABF and HAADF images. In
(a)(c)(e)(g) each pixel corresponds to one unit cell. x axis is the out-of-plane direction.
y axis is the in-plane direction. The substrate is on the left side. (b)(d)(f)(h) are line
profiles averaged along the in-plane direction. x axis is the out-of-plane direction. y
axis is the lattice parameter in nanometers. The bar associated with each data point
shows the 1.96σ (95% confidence) interval in each atomic plane.
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Z∗O1=-2.12, and Z∗O3=-5.56. The calculated polarization density is shown in Figure.

6.6

6.5 Discussion

The piezoelectric effect and large compressive biaxial strain at the interface con-

tributes half of the unusually high polarization field in BaTiO3 film near the interface.

The presence of oxygen vacancies is likely to be responsible for the electric field that

contributes the other half of the field. The origin of the oxygen vacancies remains to be

investigated. It has been reported that compressive strain will increase the formation

energy in perovskite CaMnO3[312] and BaTiO3,[313] and vice versa. The migration

energy of oxygen vacancies in BaTiO3 will also increase under compressive strain.

However, the oxygen vacancies in this sample segregate near the interface where the

compressive strain reaches its maximum. The oxygen vacancies are also unlikely to be

introduced during sample growth, considering that the temperature is at 600◦C while

the migration energy is 0.45-0.8eV.[313–315] It has also been reported that BaTiO3

films can be grown on SrTiO3 substrate with automatic feeding of oxygen from the

substrate.[316] Even if the oxygen vacancies form during sample growth, they can

easily move away from the interface. The oxygen vacancies may be stabilized by

the polarization discontinuity from BaTiO3 to SrTiO3. The maximum polarization

density in the BaTiO3 film is about 1.2C/m2 near the interface, as shown in Figure

6.6(b). This polarization density corresponds to a charge density of ∼ 1e−/uc2, The

Ti oxidation state can be estimated from the Ti-L edge shown in Figure 6.4(a), since

Ti3.5+ already shows 2 peaks but the green spectrum is still 4 peaks. Therefore, the

oxidation state of Ti near the interface is between 3.5+ and 4+. It requires several
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unit cells in thickness to fully compensate the 1.2C/m2 polar discontinuity, which

is consistent with the thickness of the reduced Ti at the interface. The defect state

introduced by oxygen vacancies can charge or discharge depending on the Fermi level.

Therefore, the oxygen vacancies in the BaTiO3, particularly 15 nm above the interface,

may also compensate the polarization gradient in the BaTiO3 film.

The possibility of flexoelectricity was also been considered. The out-of-plane

polarization density is given by

P3 = µ12
∂ε11

∂x3

(6.1)

where ε is the strain tensor. µ12 is one of the components of the flexoelectric coeffi-

cients. The theoretically predicted flexoelectric coefficients are usually on the order

of nC/m.[317–319] By considering that the strain gradient shown in Figure 6.3(h)

is on the order of 10−3nm−1, the resulting polarization density is about 10−3C/m,

which is pointing in the correct direction but 3 orders of magnitude smaller than the

observed value. The experimental flexoelectric coefficients of µ12 are much greater than

calculated values, ranging from 400nC/m to 50µC/m.[320, 321] Assuming that the

other half of the polarization is from the flexoelectric effect, µ12 should be ∼ 800nC/m,

which on the same order as in SrMnO3 film[321]. The discrepancy between the exper-

imental and theoretical predicted flexoelectric coefficients needs to be clarified. If it is

not related to other effects such as oxygen vacancy migration, the possibility that the

flexoelectric effect caused the self-polarization cannot be ruled out.

In summary, unusually large polarization field was observed at the BaTiO3/SrTiO3

interface. The polarization field decayed when moving away from the interface, and

became almost constant at 15 nm above the interface. Oxygen vacancies were

observed in the BaTiO3 film and separated near the interface. The piezoelectric effect

contributes about half of the unusually large polarization field, The other half may
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from oxygen vacancies or a flexoelectric effect. Oxygen vacancies are stabilized near

the interface as it compensates the polar discontinuity across the interface. Future

work should include a comparison between the as-deposited sample and annealed

sample, and relating the electric properties with local atomic structure.
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Chapter 7

SUMMARY AND FUTURE WORK

As discussed in Chapter 1, complex oxide interfaces exhibit a wide variety of prop-

erties such as ferromagnetism, magnetoresistance, conductivity, and superconductivity.

Electron microscopy is a very useful tool for characterization, and not only provides

structural information, but also provides chemical, or even electrical information at

high spatial resolution. Chapter 2 discussed the microscopy methods used in this

dissertation research, as well as other methods used in combination with microscopy.

The γ-Al2O3/SrTiO3 system was investigated in Chapter 3. The 2DEG at the in-

terface is attributed to oxygen vacancies. The critical thickness is attributed to the

out-diffusion of Ti that changes the Fermi level. Chapter 4 discussed the role of oxygen

vacancies at the LaTiO3/SrTiO3 interface. The oxygen vacancies may also contribute

to the conductivity besides the charge doping model, and they can be removed by

oxygen annealing. In Chapter 5, a confined layer of oxygen vacancies is shown at

the EuO/SrTiO3 interface. The role of oxygen vacancies and their relationship with

large positive linear magnetoresistance are discussed. Chapter 6 shows mapping of the

unusually large polarization and polarization gradient found in BaTiO3 films grown

on SrTiO3. The possible origins of the polarization are discussed.

There are problems still remaining unresolved or under debate. For example, how

does the partial occupancy of the sub-bands at the interface between SrTiO3 and

other oxides relate to the conductivity, superconductivity and ferromagnetism? Would

an interface free from oxygen vacancies lose all of the interesting interfacial effects

discussed above? At what conditions will the polar discontinuity be compensated?
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What is the origin of the large discrepancy between the experimental and theoretical

predicted flexoelectric coefficients? Microscopy analysis already gave some hints to

these questions. However, more microscopy techniques should be used to investigate

these problems. Because properties such as ferromagnetism only exist at low tem-

perature, cooling holders for in situ TEM may be used to investigate whether or not

there is a phase transition. For the ferromagnetism and partial occupation of certain d

orbitals, EMCD and angular-resolved EELS can be used. In situ TEM with electrical

bias applied to the film can also be considered. The signal might be too weak if only

kinetic effects are taken into consideration. Therefore, the experimental conditions

must be tuned so that dynamic effects[322] can give good SNR.

The image or spectrum analysis methods can also be improved. The core of the

problem is data reduction. For image processing, methods described in Chapter 2.1.3

use Gaussian fitting or moment method to reduce information from the image to

positions and intensities of individual atomic columns, under the assumption that

every atomic column is a Gaussian peak. If this assumption is not valid then bias

will emerge. A better way to solve this issue might be two-dimensional PCA,[323]

which has been used in human face representation and recognition. It has already

been shown that only 2 eigen-images are needed to describe changes in thickness t and

defocus Z.[324] Therefore, PCA eigen-images should be able to present the features on

images better than Gaussian peaks. For hyperspectral analysis, only linear unmixing

are currently considered. For non-linearly mixed spectra, such as a continuous shift

of a peak, linear unmixing can only be an approximation. Manifold learning[325]

is a promising method for non-linear dimensionality reduction and should be used.

Moreover, noise modeling should be more carefully considered to avoid potential

overfitting. For electron-beam-sensitive samples, electron dose is a problem. Real-
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time data analysis should be implemented and provide feedback to the scanning and

acquisition system in order to save electrons for regions or collection ranges that give

the most variance from the sample.
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