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ABSTRACT 

This comprehensive library of photovoltaic functions (PVSimLib) is an attempt to help the 

photovoltaics community to solve one of its long-lasting problems, the lack of a simple, flexible and 

comprehensive tool that can be used for photovoltaic calculations. The library contains a collection 

of useful functions and detailed examples that will show the user how to take advantage of the 

resources present in this library. The results will show how in combination with other Python 

libraries (Matplotlib), this library becomes a powerful tool for anyone involved in solar power. 
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INTRODUCTION 

When it comes to the study of any science, modeling and simulations are inevitably 

necessary. The case of photovoltaics is no different, and most students and researchers of solar 

cells and modules wind up creating an excel sheet with thousands of rows and columns that does 

the necessary math or the equivalent.  In the end, solar scientists and scholars often invest 

hundreds of hours to create some sort of automated calculator that satisfies their own needs but 

no one else’s.  The objective of PVSimLib is to provide the ultimate resource for anyone interested 

on solar power.  It contains all the resources that any photovoltaics student needs to complete 

his/her courses, as well as serving as a baseline for any scholar planning to do research in this 

field.  

As an example of the power of this tool, it will be shown that all the projects required on 

solar classes can be solved in a few tens of lines by calling different functions from this library. In 

case the student is not proficient in programing, the library includes several examples to help the 

student to figure out how to use the library. Yet, to extract the maximum potential of this library, the 

student is required to have basic knowledge of programming. Including how to write a loop, display 

a variable or import a library. 

A library like PVSimLib will be in an ever-lasting developing phase as there will always be 

new effects to include, more complex functions to add or simply new functions coming from the 

latest advances in solar science. Therefore, PVSimLib serves as a baseline for any scholar 

researching on solar power. Although scholars will need to tweak some functions or improve them 

according to their particular needs.  
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METHODOLOGY 

To achieve the flexibility necessary to be useful for both scholars and students, PVSimLib 

has been designed as a collection of functions with several examples included. This structure will 

allow the user to apprehend with a quick look how to use the functions and cherry pick the functions 

that they need. Ideally, the user will write a script, imitating the examples provided.  

Collection of Functions 

This collection has separated in 6 different modules: Common, Constants, Radiation, 

Semiconductors, Solar Cells and Systems. Files and Examples are folders. Examples contains all 

the examples enclosed in this library. 

Figure 1: Structure of PVSimLib. 

 Each of these modules includes all the functions necessary to do the most frequent 

calculations and will be explained in further detail later. However, I want to bring attention to “Files”, 

which has not been mention earlier as it is not a Python module. It is actually just a folder that 

contains 3 types of files: Solar Spectrum files, absorption files and TMY files. If any user wants to 

add any of these types of files, it is mandatory to place them in the mentioned folder. Also, it is 

critical that the added files follow the same structure of its kind located there. The reason is that the 

file reading functions are really sensitive to changes in the structure and location of files. Therefore, 

a modification in the location or the structure of the file could end in a run-time error. 
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Some of the functions require as input, values that can be calculated from functions present 

in other modules. This has been done on purpose to allow maximum flexibility in the usage. This 

way, any function can be called using experimental results or using values previously calculated 

with other functions. Following the standard approach on computed science, more complex 

functions have encapsulated the more basic functions, making impossible using experimental 

values. 

 

Figure 2. Example Flowchart of Possible Execution. 

Also, it is worth noticing that some functions have been overloaded. One example of this 

overload are the functions that calculate intrinsic carrier concentration or the carrier’s mobility. The 

reason behind the overload is that, often, students learn in class more simplistic equations that do 

not include effects that are considered when doing research. This approach will allow the students 

to use the more basic functions, that implements the equations that they might study in their 

classes, and the scholars to use the more complex and accurate functions.  

  

Radiation
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Semiconductors

•Photocurrent

•Quantum Efficiency

•Recombination 
Current Density
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Systems

•Power output

•Anual energy

•Efficiency

•Thermal losses
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Modules Description 

The code has been placed in modules attending to the concept that they relate. Also, the 

name of the module has been chosen to relate to that same concept. The number of modules 

is certainly arbitrary, although it has been my intention to keep the structure simple, so anyone 

interested can easily navigate through the code. 

• Common: Contains the function that helps with conversion of units or simple 

calculations like thermal voltage, sine or cosine that can be useful in any other module. 

As well as all the functions to read files. 

• Constants: it is simply a group of useful constants put together.   

• Radiation: Includes function to read, manipulate and make calculations on the solar 

spectra. 

• Semiconductors: Contains all the functions related to semiconductor parameters, such 

as recombination, mobility, recombination current, lifetimes, quantum efficiency, etc. 

• Solar Cells: Includes all the functions necessary to calculate solar cell parameters, 

such as open-circuit voltage, short-circuit current density, series resistance, maximum 

power point, etc. 

• Systems: Allow to calculate efficiency and power output of solar cells and photovoltaics 

panels. It is possible to take into account series resistance losses, thermal losses and 

shading losses. 

Dependency 

In the diagram below it is represented the dependency relationship between the different 

modules within the library. In blue, the modules that belong to PVSimLib. In green, other Python 

libraries that are necessary for the well-functioning of this library. Those libraries (scipy and 

Numpy) need to be downloaded through pip or any other method in order to be able to use 

PVSimLib. Last, in orange, a Python built-in function that is needed as well. Built-in functions 

do not need to be downloaded, as they come with Python.  
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Understanding the dependency within the library is not useful for a user that is not 

interested in developing new content in the library, but it will become critical if the user intends 

to do so.  

 

 

Figure 3: Dependency diagram 

Dependency means that modules above import the modules or libraries right underneath 

them, as shown in the diagram above. It is extremely important that the dependency always 

happen in only one direction. If someone introduces a function in one the modules at the bottom 

(i.e. Solar Cell) and that function requires another function from a module in a level above (i.e. 

System), it will require an import and that import will necessarily create an issue known as 

“circular dependency”. This is not only a common mistake in programming, it could also force 

a run-time error. Most compilers would highlight this as a compilation error, so the developer 

has to solve it. However, Python is an interpreted language, therefore there is a real danger of 

the program crashing if this type of dependency is introduced. 
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Examples 

The examples included in PVSimLib are meant to ease the learning curve necessary to be 

able to use this library. Any unexperienced user should be able to learn how to use the library by 

simply replicating what the examples show and substituting some functions or parameters for 

another. 

Among the examples provided, there are implemented cases of use that are expected to 

be the most frequent. Therefore, allowing in many cases to simply execute the example with the 

desired input values. 

1. Blackbody_plot.py: Plots the blackbody spectrum for a certain temperature between 

200nm and 3000nm. 

2. Plot_solar_reference_spectra.py: Plots the spectral irradiance of AM0, AM1.5G and 

AM1.5G between 200nm and 2000nm of the spectrum. 

3. Sunlight_examples.py: Calculates and displays a few parameters related to the sun 

position depending on a certain location and module parameters. 

4. Current_in_band.py: Calculates and plots the current density available in each band of 

0.5nm from 200nm to 1400nm of the spectrum. The bands are not constant on the file 

provided. 

5. Plot_declination.py: Plots the declination in degrees along the year according to different 

methods of calculation. 

6. Plot_DLARC_with_slider.py: Plots the reflectivity between 2 dielectrics, based on their 

indexes and thickness. It can be modified on the fly and it updates the graph automatically. 

7. Plot_mobility_resistivity.py: Plots the resistivity of a semiconductor as a function of doping. 

8. Plot_silicon_mobility.py: Plots the mobility of electrons in silicon as a function of doping 

according to two different models available in the library (Masetti and Thurber). 

9. Semiconductor_examples.py: Calculates and displays the band-gap narrowing effect 

based on doping and temperature. 

10. Quantum_efficiency.py: Plots the quantum efficiency of a solar cell by regions. 
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11. Plot_ideal_cell.py: Calculates and plots the IV curve of an ideal solar cell. 

12. Solar_cell_parameters.py: Calculates and displays all the base parameters (Jsc, Voc, J0, 

FF, Jmp, Vmp and Efficiency) of an ideal solar cell based on the detail balance. 

13. Series_resistance.py: Calculates the series resistances and the power losses caused by 

this series resistance. The calculation is done by regions (base, emitter, fingers and 

busses). 

14. Module_ser_temp.py: Calculates and displays the effect of series resistance and 

temperature on the yearly energy produced by a module and its efficiency. 

15. One_cell_shaded.py: plots the IV curve of a series of solar cells with 1 shaded. Also, 

calculates and displays the yearly energy produced by the system and its efficiency. 
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RESULTS 

In this section, I will show some results that can be achieved by using a script that call the 

functions from PVSimLib to calculate and plot them using the library Matplotlib. PVSimLib does not 

include plotting functions as there are already several available to use on Python.   

All the results shown in this section come from the execution of the script listed in the 

section “2. EXAMPLES” under the chapter “METHODOLOGY”. The input parameters used to 

obtain all the results in this section are shown in the figure 4.  

# General Parameters 
T = 300                     # Temperature (K) 
E_Si = 11.7                 # Relative electric permittivity of Silicon (No dimension) 
W = 15.6                    # Solar cell width (cm) 
Z = 15.6                    # Solar cell height (cm) 
 
# Emitter parameters 
We = 0.25e-4        # emitter thickness (cm) 
Le = 3.87e-4        # emitter diffusion length (cm) 
De = 3              # emitter diffusivity (cm2/s) 
Se = 1000           # front surface recomb (cm/s) 
 
# Base Parameters 
Wb = 250e-4         # Base thickness (cm) 
Lb = 158.11e-4      # Base diffusion length (cm) 
Db = 5              # Base diffusivity (cm2/s) 
Sb = 2000           # Back surface recomb (cm/s) 
 
# Concentration parameters 
Nd = 2e19           # Majority carrier concentration on N side 
Na = 3e16           # Majority carrier concentration on P side 
 
# Front contacts parameters 
bus_resistivity = 1.6e-6    # Bus resistivity (Ohm*cm) 
bus_width = 0.2             # Bus width (cm) 
bus_height = 400e-4         # Bus height (cm) 
bus_number = 3              # Number of buses 
 
finger_resistivity = 4.8e-6                 # Finger resistivity (Ohm*cm) 
finger_spacing = 0.2                        # Finger spacing (cm) 
finger_width = 120e-4                       # Finger width (cm) 
finger_length = Z/(2*bus_number)            # Finger length (cm) 
finger_height = 20e-4                       # Finger height (cm) 
finger_number = round(W/finger_spacing)     # Number of fingers 

 
 

Figure 4: Input parameters needed for results section. 

In the example 4, it is shown the current density available in each band of 0.5nm from 

200nm to 1400nm of the spectrum. This window has been chosen because is the band that is 

normally absorbed on solar cells. The result is show on figure 5. 
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Figure 5. Current in band between 200nm and 1400nm. 

From the execution of example 8, it is obtained a comparison between both models 

implemented to calculate electron mobility from doping (show on figure 6). It is interesting to see 

how both models predict almost identical mobilities until the doping is heavier than 1020 cm-3. Once 

the doping crosses this threshold, both models differ in their predictions. Since doping rarely goes 

beyond this limit, it does not seem too relevant which model to choose. Unless the user is interested 

on studying limit cases. 

 

Figure 6: Comparison between Masetti and Thurber mobility functions. 
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After running example 10, two plots are obtained and shown on figure 7. The graph on the 

left has been generated using an absorption coefficient input file that has less points than the 

spectrum. This is corrected by an interpolation function included in PVSimLib that adapts one vector 

number of points to another that has been specified. The graph on the left is the result of using an 

absorption coefficient with the same accuracy as the spectrum file. It is easy to see that the 

interpolation function introduces a small ripple on the output. The error introduced by this 

interpolation is minimal.  

 

Figure 7: Comparison of quantum efficiency by regions. 

In the figure 8, it is shown the result from the execution example 11. This is the ideal IV 

curve of a silicon solar cell. Parameters are shown at the beginning of this chapter. 

 

Figure 8: Ideal silicon solar cell IV curve. 
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The example 12 output is shown on figure 9. Each parameter shown is calculated from an 

individual function in PVSimLib. Jsc comes from the detail balance, J0 from the narrow base 

equation (including surface recombination), Voc from the diode equation, FF from the Voc 

approximation, MPP parameters from the fill factor and Voc and Jsc.  

Built-in voltage:  0.94 V 

Depletion region width: 0.20 um 

 

Max photocurrent: 43.62 mA cm2  

J_SC: 36.43 mA cm2  

J_0(Narrow Base): 1.78e-10 mA cm2  

 

Voc: 0.67 V 

FF: 0.84 

Jmp: 33.41 mA cm2  

Vmp: 0.62 V 

Efficiency: 20.64 % 

 

Figure 9: Ideal solar cell parameters calculation results 

Base resistivity: 0.54 Ωcm 

Base Resistance: 0.01 Ωcm2 

Base Losses: 0.07 % 

 

Emitter resistivity: 3.18e-03 Ωcm 

Sheet resistance: 127.16 Ω □  

Emitter Resistance: 0.42 Ωcm2 

Emitter Losses: 2.28 % 

 

Finger Resistance: 0.09 Ωcm2 

Finger Losses: 0.49 % 

 

Bus Resistance: 0.08 Ωcm2 

Bus Losses: 0.45 % 

 

transparency: 90.38 % 

 

Rseries: 0.61 Ωcm2 

 

Figure 10: Series resistance calculations. 
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The example 13 output is shown on figure 10. The series resistances are calculated from 

the formulas of power losses and the dimensions, as well as the maximum power point parameters. 

The resistance is adjusted to area, since it is calculated from current density. This has been chosen 

this way because simplifies the calculations of losses in other modules.  

The output of example 14, shown in figure 11, presents a comparison between the three 

different ways of calculating the yearly power output for the same solar module. This is done by the 

same function but introducing different set of parameters. The function has been overloaded to 

allow the user to call it with or without a vector of temperature. That feature allows to introduce the 

temperature effect or leave it with only the series resistance effect. Last, to avoid using any series 

resistance effect, a series resistance of 0Ω has been set as input. 

 

Figure 11: Comparison of the power of a module under different effects. 

However, in the same example 14 there is another interesting result that shows more 

clearly the effect of temperature. In figure 12, it can be observed a change in the ripple of the 

efficiency calculated. The temperature vector mentioned and the incident power vector to the 

module comes from the TMY file selected. 

 



13 
 

 

Figure 12: Comparison of the efficiency of a module under different effects. 

 Last, it is important to highlight that despite these calculations being done over the period 

of a year, only first 200 hours have been shown in the graphs to be able to show clearly the different 

effects involved. 

 Finally, example 15 has been coded to calculate IV curve for 9 solar cells in series with 

one of them shaded.  Below, in figures 13 and 14, it is shown the output two different runs of that 

example 15. 

 

Figure 13: Comparison of IV curves of 9 solar cells in series with 1 shaded.
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Energy from Sun over year 3087.997 

Energy from Module 506.31 kWh/m² 

Energy from Module with shading 390.70 kWh/m² 

Average Efficiency = 12.65% 

 
   

Energy from Sun over year 3087.997 

Energy from Module 506.31 kWh/m² 

Energy from Module with shading 446.47 kWh/m² 

Average Efficiency = 14.46% 

 

 

Figure 14: Efficiency calculations of 9 solar cells in series with 1 shaded at 40% and 20%. 

 It seems obvious that increasing the percentage of shading over one cell, will reduce the 

voltage on that cell and therefore the MPP, yearly energy and efficiency. However, this will not 

continue happening once the shading percentage crosses a certain threshold. This threshold is set 

by the capacity of the solar cell to stay in forward bias, when this becomes impossible, the solar 

cell goes into reverse bias. Once the solar cell is on reverse bias, the cell does not participate in 

the power generation process, therefore the output becomes independent from it. 

 In order to calculate the shading threshold, mention above, a sweep of the shading 

percentage has been included in example 15. The outcome of the mentioned sweep is on figure 

15 and shows clearly how around 32% shading is enough to push the solar cell out of forward bias. 

 

Figure 15: Yearly energy of 9 solar cells in series with 1 shaded.
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CONCLUSION 

 Along the present document and specially under the chapter “Results” has been shown 

how PVSimLib presents itself as a powerful and comprehensive tool to anyone interested on solar 

power. PVSimLib will save to thousands of people the precious time and the tedious work 

necessary to create their own excel sheet calculators, allowing them to spend that precious time to 

climb another step in the ladder of knowledge of photovoltaics. 

 Again, it is important to understand that this library is not final, and will probably never be, 

it serves as a baseline for everyone. That has been the intention from the beginning, to be as 

general as possible so it can server both students and scholars as just that, a baseline. For students 

it will probably be enough, but scholars are expected to get deep into the code and modify it to their 

needs if necessary. For that purpose, the code has been implemented without any encapsulation 

to simplify the discovery process that will lead to understanding the code. A necessary step to be 

able to modify it successfully. 
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APPENDIX A 

PVSIMLIB LIBRARY SOURCE CODE IN PYTHON  

[Consult Attached Files] 


