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ABSTRACT 

 

The larger tolerance to lattice mismatch in growth of semiconductor nanowires (NWs) 

offers much more flexibility for achieving a wide range of compositions and bandgaps 

via alloying within a single substrate. The bandgap of III-V InGaAsP alloy NWs can be 

tuned to cover a wide range of (0.4, 2.25) eV, appealing for various optoelectronic 

applications such as photodetectors, solar cells, Light Emitting Diodes (LEDs), lasers, 

etc., given the existing rich knowledge in device fabrication based on these materials. 

This dissertation explores the growth of InGaAsP alloys using a low-cost method that 

could be potentially important especially for III-V NW-based solar cells. The NWs were 

grown by Vapor-Liquid-Solid (VLS) and Vapor-Solid (VS) mechanisms using a Low-

Pressure Chemical Vapor Deposition (LPCVD) technique. The concept of 

supersaturation was employed to control the morphology of NWs through the interplay 

between VLS and VS growth mechanisms. Comprehensive optical and material 

characterizations were carried out to evaluate the quality of the grown materials. 

The growth of exceptionally high quality III-V phosphide NWs of InP and GaP was 

studied with an emphasis on the effects of vastly different sublimation rates of the 

associated III and V elements. The incorporation of defects exerted by deviation from 

stoichiometry was examined for GaP NWs, with an aim towards maximization of 

bandedge-to-defect emission ratio. In addition, a VLS-VS assisted growth of highly 

stoichiometric InP thin films and nano-networks with a wide temperature window from 
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560◦C to 720◦C was demonstrated. Such growth is shown to be insensitive to the type of 

substrates such as silicon, InP, and fused quartz. The dual gradient method was exploited 

to grow composition-graded ternary alloy NWs of InGaP, InGaAs, and GaAsP with 

different bandgaps ranging from 0.6 eV to 2.2 eV, to be used for making laterally-arrayed 

multiple bandgap (LAMB) solar cells. Furthermore, a template-based growth of the NWs 

was attempted based on the Si/SiO2 substrate. Such platform can be used to grow a wide 

range of alloy nanopillar materials, without being limited by typical lattice mismatch, 

providing a low cost universal platform for future PV solar cells.  
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1 INTRODUCTION 

1.1 Compound III-V Semiconductors 

Semiconductors are materials with conductivity between metal and insulator which 

contain a relatively small concentration of current carries. The main difference between a 

metal and semiconductor is the magnitude their bandgap (Eg), which is a crucial term to 

determine the conductivity of material. Bandgap is referred as the minimum energy 

needed to excite an electron contributing into a bond between two atoms (valence band) 

to a free state (conduction band), where it can participate in conduction process. This 

process results in creation of mobile holes and electrons as the current carriers. The 

Figure 1 shows a section from the periodic table with the most common constituent 

elements of semiconductors that are highlighted in blue color.  Group IV semiconductor 

elements such as Si, Ge, etc., with four valence electrons are crystalized in a face-

centered cubic (FCC) crystal structure, such that each atom forms four covalent bonds 

with neighbor atoms in a tetrahedral arrangement. 

 

 

Figure 1. Semiconductors in periodic table of elements.  The most common 

constituent elements of semiconductors that are shown in blue color. The area 

marked by black solid line refers to InGaAsP material system, which is the interest 

of the current study [1]. 
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Combination of isoelectronic elements with elemental silicon, in periodic table, forms 

binary compound III-V or II-VI semiconductors such as GaAs or ZnTe. As it can be 

inferred from the name, III-V compounds are made of a non-metal group V and a group 

III metallic element. III-V semiconductor compounds are of central importance among 

the others because of their known preferred material properties such as their high electron 

mobility and chemical stability compared to II-V materials. 

1.2 Bandgap Engineering  

 

The optoelectronics properties of semiconductors are primarily determined by their 

bandgap energy.  Bandgap engineering is a powerful technique that allows for design of 

new semiconductor materials and devices for desired optoelectronic application. A 

precise control over the composition, size and doping concentration of semiconductors 

directly influences their emission wavelength, thereby the carrier transport properties. 

Bandgap of semiconductors can be tuned by altering variety of factors and variables as 

explained in the following;  

1.2.1 Semiconductor Alloying 

Alloying is the most common way for making semiconductors of various bandgaps with 

specific desired optical and electronic properties. Unlike other solid solutions, 

semiconductor alloying must result in formation of a second-phase-free and single crystal 

structure. This requires the semiconductors to be mixed perfectly within a single 

crystalline body. Semiconductor alloys of made of two or three types of single elemental 

semiconductors (e.g., Si, Ge) or binary compounds (e.g., GaAs, InP) can form a crystal 

structure within which the constituent elements are distributed in a periodic fashion. 
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 Unit cells of specific binary, ternary or quaternary alloys can be formed, each of which 

having a desired composition and bandgap value (Figure 2). Vegard’s law is an empirical 

approximate rule used to correlate the composition with the most important 

characteristics of a semiconductor such as lattice constant of the crystal and energy 

bandgap for the alloyed semiconductor based on the concentration of constituent 

semiconductor (e.g., A and B) present in the structure. According to Vegard’s law the 

bandgap values and lattice parameters of the semiconductor alloy can be determined 

based on a linear interpolation between those values for pure A and B. Sometimes there is 

a deviation between values obtained by experiments and linear estimation by Vegard’s 

law, so that a quadratic coefficient called bowing parameter is introduced to compensate 

the deviation. However, the bowing parameter can usually be neglected in our 

calculations, depending on the alloy system.  For example, the associated bandgap or 

other physical quantities such as lattice constant of a III-V ternary alloys of AxB1-xC can 

be obtained by the formula below: 

Q(AxB1-xC)= x.Q(AB)+ (1-x).Q(BC)-bx(1-x),                                (1.1) 

Figure 2. Crystal structure of semiconductor alloys; binary IV alloy of Si0.5Ge0.5 (a), 

ternary III-V alloy of In0.25Ga0.75P (crystal structures are drawn by VISTA). 
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where Q is the physical quatity, x is the fraction of AC semiconductor (1-x is the fraction 

of BC) in composition of ternary alloy, and b is the bowing parameter which describes 

the deviation from linearity.   

1.2.2 Size Effect 

By decreasing the size of the materials from three-dimensional (3D)-bulk structure down 

to 2D,1D or 0D, it is also possible to change the band structure of the semiconductor 

materials by altering the density of states (DOS) which is a key factor in band 

engineering of various semiconductors (Figure 3). DOS describes the number of available 

electronic states in a particular system which is essential for determining the carrier (e
-
 

and h
+
) concentration and the energy distribution of the carriers in a semiconductor with 

0D, 1D, 2D and 3D structures. 

 

 
Figure 3. Electronic density of states of materials; for a 3D bulk crystalline material, a 2D 

quantum well a 1D nanowire, and a 0D quantum dot. The inset shows the confinement 

behavior of electrons in each case [2]. 
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It is known that the 3D bulk semiconductors usually have fixed bandgap values owing to 

their continues band structure. For smaller dimensions such as the 0D quantum dots 

(QDs) (i.e., CdSe nanoparticles) with a size of 10s of nanometers (comparable to 

wavelength of the electrons) the motion of the randomly moving electrons is confined in 

all three directions. This is called quantum confinement effect which leads to a transition 

from continuous band to discrete energy levels and the bandgap to widen up under the 

energy quantization effect. This can enable us to change the bandgap energy simply by 

altering the size of the nanoparticles to achieve various emission wavelength of interest.  

One-dimensional (1D) semiconductor nanowires (NWs) with sufficiently small diameters 

can have different bandgap values than their 3D bulk value sizes, due to the confinement 

of electrons in two other dimensions. 

1.2.3 Doping Dependence of Bandgap 

Introducing a high density of dopants in both intrinsic and extrinsic semiconductors 

results in shrinking the bandgap. This effect is explained by the fact that the 

wavefunctions of the electrons bound to the impurity atoms start to overlap with their 

wavefunctions as the density of the impurities increase. For instance, at two different 

dopant densities of 10
15

 and 10
17

 cm
-3

, the average distance between two impurities is 

different at each case. This overlap causes energy band to be formed rather than a discrete 

energy level (unlike the size reduction effect). Therefore, presence of very high 

concentration of impurity band can result in reduced energy band of the matrix/host 

semiconductor material [3]. 
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1.3 Significance of III-V Nanowires Growth in a Wide Bandgap Range 

 
III-V compound semiconductor NWs have attracted considerable attention during the 

past decades as the building block of next generation of optoelectronic devices such as 

solar cells, transistors, laser diodes, and light emitting diodes (LEDs) and many others. 

Their tunable direct bandgaps, high carrier mobility and excellent mechanical properties 

make them superior candidates to other semiconductor materials [4-5]. The challenging 

issue with epitaxial technology for growth of high quality thin film of semiconductors is 

mainly the lack of the lattice-matched single crystal substrate with respect to lattice 

matching requirement. This somewhat limits us in terms of bandgap engineering. Shown 

in Figure 4 is the bandgap versus lattice constant for various semiconductors. The red 

color dashed-line rectangular area illustrates such limitation with maximum tolerable 

lattice mismatch that is a quite small value.  Alternatively, NWs because of the smaller 

cross section that they have, can accommodate larger lattice mismatches compared to thin 

films. For example if GaAs is chosen as the growth substrate, it is possible to grow 

materials of different bandgaps from 0.5 to 2.2 eV with up to ~10% tolerance to lattice 

mismatch [6]. Therefore, InGaAsP alloy nanopillars (NPs) with all the needed bandgaps 

can be potentially grown on GaAs substrate. The large range of achievable bandgap 

through NW growth with a such relax lattice mismatch requirement makes this process 

almost arbitrary alloying. However, for the epitaxial growth of NWs on a lattice-

mismatched substrate there is a critical diameter below which the defect-free vertically 

aligned NWs are grown, and above this critical value NWs are not grown or have a high 

concentration of defects [7]. Therefore, heteroepitaxial growth of NWs with larger 
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diameter always remains a challenge due to high lattice mismatch and large thermal 

expansion coefficients for different semiconductors [8].  

For solar cell applications, the NW layers of a few microns thickness absorb a much 

higher percentage of the incident light compared to the planar thin films of the same 

thickness for the same material [9]. Therefore, it is a great improvement to use NWs for 

the fabrication of highly efficient solar cells beyond the theoretical Shockley-Queisser 

limit under one-sun illumination [10]. 

 

Figure 4 Bandgap versus lattice constant for different semiconductors. The red dashed-line rectangular area 

represents the maximum tolerable lattice mismatch in thin film (planar) growth for various single crystal 

substrate. The green rectangular area illustrates the relaxed lattice mismatch requirement in NW growth on 

single crystal GaAs substrate that allows for wide range of achievable bandgap within a given single 

substrate. [Figure adapted from ASU MBE Optoelectronic Group]. 
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Fabrication of solar cell devices based on NWs has advantage of lower cost by both 

reduced amount of material being used compared to thin film, and eliminating the 

necessity for expensive single crystal substrates. Having direct bandgaps, most of the III-

V NWs can be rationally designed and synthesized to cover a wide range of the bandgap 

energy by tuning the composition, on a single substrate or monolithically for variety of 

applications. Monolithic integration of semiconductor with different lattice constant on a 

single substrate has attracted great interest during the recent years making them appealing 

for new applications such as tunable lasers [11] and photodetectors [12] on a single chip, 

monolithic white laser [13], etc. Growth of composition graded semiconductor alloy 

NWs using the dual gradient method [14] has produced an interesting material platform 

for developing monolithic solar cells for dispersive concentration photovoltaic systems 

[15]. At the same time, such growth also provides a unique means to study semiconductor 

alloys in high quality single crystal form and in a wider composition range that is 

otherwise impossible to grow. Such growth and the resulting materials using ZnCdSSe in 

its full composition range have been studied in the past [14-16].   

In the current work, it will be shown that how dual gradient method provides a 

combinatorial chemistry type of platform for growing the composition-graded ternary 

NW alloys of InGaAsP material system by tuning the supersaturation rate in an Au-

catalyzed growth process on a single substrate. More specifically, the vapor phase growth 

of InGaAs, InGaP, GaAsP ternary alloys with emphasis on the effects of vastly different 

sublimation rates of the associated elements is studied using a facile vapor transport 

method. The dual gradient approach provides an especially effective tool for rapidly 
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identifying growth conditions in terms of adjusting the temperature and source element 

gradients. As a result, the bandgap gradually changes on a single substrate for different 

alloy systems. It is believed that growth of III-V NW alloys in a wide range of bandgaps 

within a single substrate can pave the way for fabrication of different types of new 

multifunctional optoelectronic devices such as multispectral photodetectors, broad band 

tunable LEDs and lasers on a single chip, and high-efficiency solar cells.  

1.4 Vapor-Liquid-Solid Growth of Nanowires/ Nanobelts 

Nanowires are generally produced by two main methods including “top-down” etching 

process [17] and “bottom-up” growth mechanisms. But the most commonly used 

approach to grow one-dimensional (1D) NWs is using chemical vapor deposition (CVD) 

via so called Vapor-Liquid-Solid (VLS) mechanism, hereafter called VLS which was first 

introduced for growth of silicon NWs by Wagner and Ellis [18]. 

 

A schematic of the VLS method for growth of NWs and NBs is shown in Figure 5.  

Figure 5. Schematic of VLS-VS growth mechanisms for various nanostructures. 
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In order to grow NWs via VLS approach, a metallic catalyst (usually noble metals such 

as Au or Ni, etc.) with a high melting point is used. In VLS mechanism, the metal 

catalyst forms a liquid alloy droplet (Au reservoir) at a high temperature by impingement 

of the vapor phase species into alloy droplet. When the concentration of the vapor 

components inside the liquid droplet is higher than equilibrium concentration, the 

nucleation of NW crystal occurs at the interface of solid-liquid (substrate and droplet). 

This is called supersaturation level which is required to be sustained for growth of NW to 

be continued in axial direction. A very important requirement for the axial NW growth is 

that the nanocluster catalyst should be a suitable catalyst, in terms of solubility of vapor 

phase species. This means the catalysts must form a liquid solution with the components 

of solid phase, which requires high solubility limit for catalyst in liquid than its solid 

form [19]. Thus, the most suitable metal clusters should be selected to use as a catalyst. 

Gold is found to be one the most commonly used catalysts for VLS growth of NWs. As it 

can be inferred from the schematic of VLS growth, the diameter and the areal density of 

the NWs are governed by size and position of the Au alloy droplet. If a thin layer of the 

Au film is used prior to growth, under Ostwald ripening at high temperatures, the large 

discrete Au droplets are formed on the surface of substrate at the expense of shrinking 

smaller Au droplets. However, depending on the growth condition the self-catalyzed 

growth of NWs occurs without requiring a pre-deposited Au catalyst. In self-catalyzed 

growth, the metallic source materials often can form metal seeds that play the role of 

catalyst. The autocatalytic growth requires the homogenous nucleation of the metal 

cluster on the surface of the flat substrate which is usually higher than energy barrier for 

incorporation of the vapor species into Au reservoir. it is required for the nucleated metal 
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clusters to exceed the critical diameter to be survived and not decompose at high 

temperatures. The advantage of catalyst-free growth is the minimized contamination 

caused by Au catalyst that may raise some concern for possible III-V contamination, even 

though there are systematic studies showing such concerns are not serious. Generally, the 

growth of NWs occurs through the Au alloys droplet. However, when the partial vapor 

pressure of the gas phase species that are introduced into the growth chamber is so high, 

the vapor-solid (VS) mode becomes activated. In VS growth, the direct nucleation and 

growth of crystals occur without mediation of liquid droplet. VS growth results in 

expansion of NWs in lateral direction. Various nanostructures such as tapered NWs and 

NBs can be grown via interplay between VLS and VS mechanisms. Radial core/shell 

heterostructures can be grown by favoring the growth condition for vapor-solid (VS) 

mechanism in conjunction with the proper compositional modulation to grow different 

NW architectures for device applications.   

From thermodynamics point of view, the VLS growth should be energetically favored for 

nucleation and growth of NWs. To better understand this, the term chemical potential (𝜇), 

known as the partial molar free energy of species (𝜇i=
𝜕𝐺

𝜕𝑛𝑖
), needs to be explained first. 

Chemical potential is the potential energy that is released or absorbed in a chemical 

reaction or phase transition. In VLS growth, the chemical potential is the affinity of the 

vapor phase components to enter inside the liquid alloy droplet which must be 

sufficiently high to achieve the supersaturation.  



  12 

 

 

 

To better explain this, the VLS process is treated as a three-phase system with the supply 

(s), collector (c) and crystal (k) in the vapor, liquid and solid phase, respectively, as 

shown in Figure 6. The boundary between all three-phase (TPB) is where the nucleation 

occurs. Hence, by taking into account the chemical potential concept, the Gibbs free 

energy of nucleation at TPB can be expressed as follows  

      ΔGTPB = −nΔµsk + Pckhσck + Pskhσsk ,                                                  (1.2) 

where Δµsk is the chemical potential difference between the vapor (supply) and solid 

(crystal) phases, Pck (Psk) and σck (σsk) are perimeter length and the interface energy of the 

collector/crystal (supply/crystal), n is number of atoms nucleated, and h is the growth 

height in this nucleation event [20]. The ΔGTPB is obtained by difference of energy 

released from chemical potential (negative term) and energy needed for creation of the 

new interfaces (positive term). Apparently, it should be a negative value for the 

continuous layer by layer nucleation at the TPB which leads to NWs to grow longer. 

1.5 Challenge with High Sublimation Rate of Group V Species in III-Vs 

For III-V compounds such as InGaAsP, it has been experimentally proven that when  

the temperature is above the congruent sublimation temperature, Tcs, the sublimation rate 
 

Figure 6. Schematic of the nanowire growth dynamics (a); (A) Three different phases of the vapor, solid 

and liquid during the nanowire growth. (B) nucleation at the TPB. (C) propagation of nucleated layer along 

the TPB. (D) Complete formation of first nucleated layer. b) A geometrical dimension of the nucleated 

layer at the TPB. Figure adapted from reference [20]. 
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 of the group V element is higher than that for group III elements [21-24]. Figure 7 shows 

the partial vapor pressure of group V species above some of the III-V compounds and 

their related alloys.  

 

Therefore, for binary compounds with evaporation temperature of higher than Tcs , e.g., 

630 ◦C for GaAs [25] and 387 ◦C for InAs [21],  the outcome is an early loss of 

significant amount of As in very first few minutes of the growth due to higher 

sublimation rate of As than In and Ga. Zi et al. have shown for InAs NWs grown via 

vapor transport method, due to a significant decrease in arsenic vapor pressure after a few 

minutes growth, this factor becomes the rate-limiting factor for the growth affecting the 

kinetics of growth, thereby morphology of NWs [26]. Since above the Tcs, vapor pressure 

of the III and V species leaving the surface are different, and technologically this is 

important for determination of upper-bound of growth temperature in MBE growth of 

stoichiometric III-V materials. It is also experimentally proved that Tcs can be directly 

controlled by changing the group V flux [27]. 

Figure 7. Partial vapor pressure group V species above the III-V compounds (Springer US, 

1989. 267-277). 
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Due to the higher sublimation rates of As and P than those for In and Ga, the 

stoichiometry of the resulting alloys is greatly influenced, such that the EDS elemental 

analysis for as grown NWs shows significant deviation from perfect stoichiometric 

composition. Furthermore, the EDS analysis of remaining precursors from source 

materials boats of different growth experiment (Figure 8) confirmed the high sublimation 

rate of As and P from InAs and InP compounds, respectively. This is due to preferential 

evaporation of As and P from the surface leaving behind liquid group III metal with small 

amount of As or P dissolved. To address this issue, different growth strategies are 

experimented to compensate the deficiency of As and P which will be shown later.  

Figure 8. Quantitative elemental analysis of nanowires grown via vapor transport method; 

EDS analysis of a) InP precursor boat heated at =800°C for 10 min and total pressure of 

3.3 Torr, b) InAs precursor boat heated at 840°C for 10 min and total pressure of 3.3 Torr, 

and EDS results of corresponding NWs obtained at the end of growth; c) InAs NWs grown 

at 650 ◦C, and d) InP NWs grown at 440 ◦C. 
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1.6 Growth of InGaAsP Nanowire for Design of LAMB Solar Cells 
 
To reduce the cost per watt ($/W) of photovoltaic solar cells, the current research and 

technology attempts to address both numerator and denominator by decreasing the cost 

and increasing the efficiency, respectively. Since 2002, the efficiency of solar PV has 

increased by ~0.9%, in average per year [28]. The highest efficiency for concentrated 

triple-junction (GaInP/GaAs/GaInAs) and four-Junction (GaInP/GaAs/GaInAsP/GaInAs) 

tandem solar cells that was ever reported is made by Sharp [29] and Fraunhofer ISE [30] 

with efficiencies of 44.4% and 46.0%, respectively. However, their application is 

practically limited by expensive fabrication costs, difficulties in adding the new junction 

and lattice-matching requirements. Monolithically Integrated Laterally Arrayed Multiple 

Bandgap (MILAMB) solar cells for making dispersive concentration PV solar cells has 

been demonstrated at C. Z. Ning’s ASU Nanophotonics Group, recently [15, 31]. Design 

of such system based on an InGaAsP material platform requires growth of subcells of 

various bandgaps with a continuous spatial composition gradient over a single substrate. 

As illustrated in Figure 9a, the full composition InGaAsP alloys are able to cover a wide 

bandgap range spanning from InAs (0.35 eV) to GaP (2.26 eV). Figure 9b is a 2D plane 

representing all the possible compositions with the associated bandgap for InGaAsP alloy 

system. The four corners of the figure represent the four binaries, InAs, GaAs, InP, and 

GaP, while the four edges represent the corresponding four possible ternaries with 

varying composition, and each given (x, y) point in the interior represents a quaternary 

InGaAsP alloy of a given composition. 
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 The bandgap distribution on each cell should be optimized to meet the current-matching 

constraint for integrating the manufactured MILAMB cells with a dispersive micro-

optical array acting as prism. The spectral splitter used in such design divides the solar 

spectrum into different wavelengths, which will be absorbed by laterally arranged 

subcells with corresponding bandgap energy cells. 

 

A home-made dual gradient system based on the low-pressure CVD is used to grow the 

LAMB subcells of InGaAsP alloy NPs with variable compositions on a single substrate. 

A schematic of solar cell design on a platform of LAMB cells is depicted in Figure 10. It 

is made of three p-i-n junction solar cells with the dielectric interlayer filling the gaps 

between NPs. An example of such subcell design would be C1: InAsP (0.6-1.35 eV), C2: 

InGaAs (1.35-1.8 eV), and C3: InGaP (1.8-2.0 eV). 

NW solar cells are believed to be potentially able to achieve higher efficiency than their 

counterpart planar thin film absorbers, if designed properly to efficiently trap the striking 

light onto the cell [9]. Our preliminary 3D optical-electronic simulation using the finite-

difference time-domain (FDTD) method compares the Power Conversion Efficiency 

Figure 9. Bandgap of InGaAsP alloys;  a) Bandgap vs. lattice constant for InGaAsP alloys covering 

the bandgap range of (0.35,  2.25) eV. b) bandgap contour plots in two-dimensional composition 

plane of InGaAsP alloying system 



  17 

(PCE) achieved based on 3-NP-LAMB cells with that from thin-film 3-LAMB cells by 

taking into account the potential recombination paths in bulk and surface (Figure 11). As 

can be seen from the figure, the entire cell is predicted to be able to deliver a PCE of 

higher than 50% under 400x concentrated sun illumination. 

 

 

To obtain higher PCE, a semiconductor silicon platform must be integrated beneath this 

optical array system to capture diffused non-directional sunlight.  

 

 

Figure 12 shows the illustration obtained by simulation of a compact dispersive lens 

design, coupled with a 3-junction lateral solar cell, which is done by our collaborators at 

Massachusetts Institute of Technology (MIT). 

Figure 10. Schematic of a 3-subcell NP-LAMB cell structure based on InGaAsP 

Figure 11. Power conversion efficiency (PCE) of 3-NP-LAMB cells predicted based on 3D optical-

electronic simulation in comparison with thin-film 3-LAMB cells. SR: surface recombination. 
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1.7 Summary 

The current dissertation will be mostly devoted to the development of CVD growth of III-

V InGaAsP alloy NWs for the design of a LAMB material platform for PV solar cells. In 

addition, a templated growth without use of an expensive single crystal substrate or 

precursor that can be a universal platform for growth of a wide range of alloys will be 

presented.  It is strongly believed that composition-graded III-V subcells of various 

bandgap could be a potentially more suitable alternative to substitute multi-junction solar 

cells. Our proposed approach is expected to address the issue associated with the high 

cost and complexity in design, mostly by elimination of lattice-matching requirement for 

growth of stacked layers of various bandgap materials. 

 

 

 

  

Figure 12. Preliminary baseline design model of LAMB solar cell that allows the co-design 

between dispersive lens system and lateral sub-cells to maximize overall conversion efficiency. 
 



  19 

2 EXPERIMENTAL TECHNIQUES 

2.1 Introduction 

 

The current chapter will be mostly giving an introduction into experimental techniques 

including materials growth and processing techniques and characterization methods that 

are used throughout the entire work shown in the current dissertation. Given that, the high 

cost is one of the most critical issues in crystal growth of in semiconductor technology, it 

is important to reduce both preparation and precursor expenditure. The vapor transport- 

based chemical vapor deposition that is used in our work is advantageous compared to 

more expensive techniques such as molecular beam epitaxy (MBE) and metal organic 

chemical vapor deposition (MOCVD), given the high material quality that can be 

obtained. However, the lower growth rate rendered by those methods make them more 

suitable for growth of high quality thin films for applications including, for example, 

tandem solar cells, quantum-well laser diodes, where precise control over the thickness of 

grown layer in nanometer range is required. The entire growth of III-V binaries and 

ternary alloys are performed using a homemade-CVD setup with a hot wall horizontal 

reactor configuration. Therefore, a brief introduction into the principle and theory of 

vapor transport method is important to be discussed beforehand. Also, the template 

fabrication procedure as well as a solar cell device fabrication and characterization will 

be presented. The material characterization techniques that are utilized for structural and 

optical properties of the NWs and thin films are described in the current chapter to give 

an insight for the reader prior to moving into results and discussion section. 
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2.2 Materials Processing Techniques 

2.2.1 Low Pressure Chemical Vapor Deposition 

III-V Semiconductor materials are mostly grown by variety of techniques such as MBE, 

MOCVD, hydride vapor phase epitaxy (HVPVE), and liquid phase epitaxy. Single crystal 

high quality binary substrates can be also obtained by conventional methods such as 

Bridgman [32] or Czochralski [33] method. However, growth of III-V materials using all 

aforementioned methods is limited by more complexity, precursor chemistry and purity 

issue as well as potential incorporation of unwanted dopants such as carbon or chlorine in 

MOCVD or HVPE methods. These dopants are considered as the main cause of point 

defects that are required to be driven off during or after the growth via different post-

growth treatment techniques. Vapor transport method has the advantage of minimized 

impurity level introduced by metalorganic precursors and so on. This growth technique 

relies on sublimation of the precursor, of either elemental reagents or binary powder, as 

the parent source material and the reaction of gaseous species occurring at the surface of 

the substrate forming a solid deposition. Low pressure chemical vapor deposition 

(LPCVD) with sub-atmospheric pressure range [34] is widely used to grow crystalline 

semiconductors at relatively high temperatures. The hot-wall horizontal tube 

configuration, with a parabolic temperature profile, with a maximum falling at the center 

of the CVD furnace enables us to achieve different temperatures along the tube axis. The 

total pressure of the CVD chamber affects the mean free path (MFP) of the gaseous 

species which is defined as the average distance traveled by a gas molecule before 

colliding with another, given by the formula: 
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                                                        𝜆 =
𝐾𝑏𝑇

√2 𝜋𝑃𝑑2
                                                    (2.1) 

 

, where P is the total pressure, d is the diameter of molecule, Kb is the Boltzmann 

constant and T is the temperature [35]. For the pressure range of below atmospheric value 

(760 Torr) and 1 Torr, the corresponding MFP of the molecules can be less than 100 

micron range which is a very small λ value compared to ultra-high vacuum (10
-8

 – 10
−9 

Torr) systems, such as MBE with a MFP in the order of several kilometers. Such small 

MFP in circular tubes with diameter of D, where λ≪ D , results in a laminar flow regime, 

where the carrier gas undergoes a layer flux within the reaction medium until it reaches to 

the surface of the substrate. The flow regime at extremely low pressure or ultra-high 

vacuum condition turns to molecular flow, with molecules moving inside the tube with 

less intermolecular collisions in random directions (λ≫ D) [35].  

In the current work, the growth set up used to grow III-V alloy NWs was a hot wall 

system with a horizontal quartz tube embedded in a single zone CVD furnace 

(Lindberg/Blue M) extended along the tube axis with a maximum set temperature up to 

1100°C. The technique simply relies on sublimation of solid source materials at upstream 

side which can migrate under the flow of inert carrier gas such as ultra-high-purity 

nitrogen (N2) or Ar+5%H2 towards the substrate placed at downstream the furnace. The 

main concept behind the growth of nanostructures is supersaturation which is defined as 

the ratio between the actual vapor pressure of species and the equilibrium vapor pressure 

of compounds.  The driving force for crystal nucleation and growth is supersaturation 

which is the most important term by which the morphology and size of the grown crystals 
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are controlled. Growth of high quality epitaxial film requires low supersaturation that is 

equivalent to low growth rate, while polycrystalline and gas-phase nucleated powdery 

film are grown at extremely high supersaturation rates. Growth of NWs favors a low to 

medium supersaturation level [36]. By adjusting the supersaturation level under both Au- 

and self-catalyzed growth condition and taking into account the interplay between VLS 

and VS growth modes, various nanostructures can be obtained. In the current dissertation, 

it will be shown that by changing the superstation level nanostructures such as NWs, 

nanobelt (NBs), nano-network and polycrystalline thin film can be grown using the vapor 

transport method. This requires careful engineering of the growth condition to obtain the 

desired morphology only by adjusting the growth parameters such as the source material 

and substrate (growth) temperature, carrier gas flow rate, total system pressure, growth 

time, etc. In order to grow binary and ternary alloy NWs with different compositions the 

unique methodologies were introduced and developed. Growth of templated NPs was 

achieved using both VLS and phosphorization approaches. Composition-graded III-V 

alloy NWs with spatial composition variation across the single substrate were grown 

using the dual gradient method in a CVD system. These subcells with different bandgap 

ranges will be potentially used for making laterally arrayed multiple bandgap (LAMB) 

solar cells [15]. 

2.2.2 Langmuir-Blodgett Coating 

The Langmuir-Blodgett technique is a well-established way of coating a single molecule 

thick film on a surface. Coating such thin a layer with proper control over the packing 

density of the molecules is carried out by immersion of a substrate of interest into a liquid 
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containing the molecules floating on top surface of liquid or solution. A thick layer of 

Langmuir-Blodgett film can be obtained by coating a multiple layer of molecules since 

the thickness of the monolayer is already known [37]. The substrate being used for the 

coating must be clean and sufficiently hydrophilic to avoid formation of defect in close-

packed monolayer structure. In this research, this technique is used to coat the 

polystyrene (PS) microspheres of 0.5 to 1.0 μm size on the surface of SiO2-coated silicon 

substrate. Figure 13 shows a schematic of how this refined technique works. 

 

Figure 13. A schematic of Langmuir-Blodgett technique for the coating close-packed PS microspheres; the 

self-assembly of microspheres(a), the coating process by immersion of substrate into liquid(b), the close-

packed PS spheres (c), the SEM image of colloidal film made of PS spheres (d) [38]. 

 

The PS-coated substrate is further processed by other fabrication steps to make a porous 

etched-through template that is used as a universal template for growth of NWs. The 

detailed procedure about fabrication of such template is discussed in chapter 7. The 

formation of monolayer is, in principle, based on (1) first immersion of the PS spheres 

inside water, and then (2) floating on the top surface of water that prevents them from 

sinking due to the high surface tension and the very close density value of PS spheres 
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(1.05 g/cm
3
) to that of water [39]. The moving behavior of the PS spheres is dominated 

by Brownian motion rather than their gravity, thanks to the surface tension of water and 

the Brownian motion of the PS spheres helping them to make a close-packed monolayer 

film at the top surface.  

2.2.3 Plasma-Enhanced Chemical Vapor Deposition (PECVD) 

Plasma is often called the unique state of matter after gas, solid and liquid that is 

composed of ionized gas. Plasma-Enhanced Chemical Vapor Deposition (PECVD) is a 

process by which the thin films can be deposited in a plasma environment often created 

between two parallel electrodes (a grounded electrode and an RF-energized electrode as 

shown in Figure 14). Once the reactant gases are introduced into PECVD chamber, the 

capacitive coupling between two electrodes results in excitation of gaseous species 

(silane (SiH4), etc.) into plasma. This will result in formation of solid thin film deposition 

on the ground electrode which has a temperature of as low as 100-400 ◦C, though that 

might be even higher for different models. 

 

 

 

 

 

 

 

Figure 14. Schematic of PECVD setup  
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PECVD has an advantage of operation at low temperatures over thermally activated 

conventional CVD. It can be used for deposition of various materials such as SiOx, SiNx 

for wide range of applications such as photonic crystals, surface passivation and 

dielectric layers used in transistors, etc. In the current work, PECVD is utilized for 

various purposes such as a dielectric layer of SiO2 of a few microns for fabrication of 

etched-through templates for nanopillar growth. It is also used for surface passivation of 

as-grown III-V nanostructures in solar cell fabrication. Depending on the functionality of 

the whole device architecture or the growth methods it will require to choose different 

deposition recipes, mostly with respect to deposition temperature. For example, to deposit 

a few hundred nanometers of silicon dioxide on indium thin film, which is pre-deposited 

using thermal evaporation, it is required to choose the PECVD growth temperature of 

below-melting point of indium (157 ◦C) to prevent formation of indium droplets at top 

surface.    

 

2.2.4 Wet Etching 

 

Wet etching is used to remove the unwanted layers such as oxide, residual thin film, etc. 

via the chemical reaction between liquid etchant and the material that is required to be 

removed from the surface of a wafer or as grown layer before or during the fabrication. 

Wet etching is usually an isotropic or multidirectional process with an almost equal 

etching rate in all directions. In general, the etching rate depends on the concentration of 

acidic or basic solutions, which is usually used in diluted form for controlled etching rate. 

Wet etching usually includes a sequence of steps as follows: a) transferring the etchant 

solution to the surface; b) waiting for a certain period (depending on the etching rate) and 
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let the reaction occurs between etchant molecules and material at surface moving to depth 

of thin film; 3) desorption of the reaction product; 4) rinsing the sample with deionized 

water (DI water) to remove the reaction product away from the surface. In this work, 

mostly the wet etching is applied either for substrate preparation prior to growth or during 

different steps of nanopillar solar cell fabrication. For instance, to remove native SiO2 

layer from the surface of silicon, a dilute HF (2-5%) solution is used. Since the etching 

rate of concentrated HF (49%) is too high, in order to decrease the etching rate, a buffer 

etchant solution made of a mixture of 35-40% NH4F in DI water and 49% HF in DI with 

volume ratio of 6:1 is used to etch (modify) a few microns thick PECVD-grown SiO2 that 

are etched through by dry etching techniques (described next). The oxide compounds 

such as InPO4, In2O3, etc., formed on the surface of, for instance, InP, were removed 

using a dilute (5%) hydrochloric acid (HCl), prior to moving to the next step. On the 

contrary, concentrated (36-38%) HCl as a strong acid was used to remove metals such as 

Aluminum (Al) or Indium (In). It is already established, but important to mention that 

HCl: Glycerol with 1:1 volume ratio can be used as an efficient etchant to dissolve the 

Chromium (Cr) vigorously, which is important during the fabrication of templates for 

growth of NWs. Apparently, sonication in water bath and increasing the temperature can 

result in increasing the etching rate in some cases. To be able to achieve the controllable 

and reproducible results it is recommended to make a fresh etchant solution each time.   

2.2.5 Dry Etching 

 

Dry etching relies on gaseous species playing the role of etchants for removing the 
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unwanted material from the surface or etching through the micron thick films.It is one of 

the core processes that is necessary for fabrication of microelectronic devices. Unlike wet 

etching, the dry etching does not require using any liquid solution, so it does not damage 

the whole film but rather it has the advantage of the anisotropic (unidirectional) etching 

process. 

 

 This helps us to vertically etch, for example, a thin layer of SiO2 coated with a metal 

mask in a vertical direction regardless of the crystal structure or SiO2 being amorphous 

material. Dry etching is based on plasma environment containing reactive ionic species 

that remove material under ion bombardment that diffuse to the surface and reacts with 

atoms at top surface. The most commonly used gas in dry etching for SiO2 is a mixture of 

CHF3 and O2 that turns into free radical that are highly selective for SiO2   in terms of 

high etching rate over Cr or photoresist that are used in fabrication of template. 

Directional etching in dry plasma etching is due to acceleration of the ions from plasma 

by high electric field. Figure 15 shows a schematic of the differences between isotropic 

wet etching and anisotropic plasma-based dry etching.  

Figure 15. Schematic of etch-through process in wet and dry etching. 
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2.2.6 Metal Electroplating 

To grow III-V NWs via a catalyst based VLS mechanism, it is required for the surface of 

the substrate to be seeded by nanoparticles of noble metals such as Au that turns into 

liquid when it makes alloy with other (usually metal) species that present inside the 

growth chamber. However, It is proposed that growth of NWs on lattice-mismatched 

substrate requires using a universal template that eliminates the necessity for using single 

crystal lattice-matched substrate. In chapter 7, it will be presented how such platform 

which is made of pore arrays created on a SiO2- coated substrate is fabricated through 

inexpensive polystyrene nanosphere lithography. Once the template is fabricated, as the 

next step metal electroplating at the bottom of the pores will be performed by exploiting 

electrochemistry to embed small nanoparticles of Au acting as the catalyst at the bottom 

of the pores for subsequent VLS growth of NPs. The contamination of III-V materials 

caused by Au, which can adversely affect optoelectronic properties of the grown 

materials, must be prevented. In solving this, a new recipe has been developed for the 

successful electroplating of group III metals (In and Ga) which are no longer considered 

as a contamination sources for their parent III-V materials. The In or Ga plated inside the 

pores will be either used as the catalyst for VLS growth or it can be exposed by 

phosphorous or arsenic flow to grow III-V NPs.   

2.3 Materials Characterization 

 

2.3.1 Electron Microscopy 

 

Electron microscopy is a useful technique for study of the nanostructures which can 

reveal information about the surface topography and crystallographic features of the 
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specimen of interest. The analysis is based on illumination of the surface of a 

nanostructure using an electron beam to create an enlarged image of the sample with a 

high magnification. The very high resolution of electron microscope compared to the 

regular optical microscope, often referred to as light microscope, is due to the much 

smaller wavelength of electron known as its de Broglie wavelength.  For example, a 

photon with energy of 2 eV has a wavelength of 621 nm from λ=hc/Eph, where h is the 

plank constant (6.625 x 10
-34

 m
2
 kg/s), and c is the speed of light (3 x 10

8 
m/s). While the 

wavelength of an electron with a kinetic energy of 2 eV is obtained to be 0.87 nm 

associated with the de Broglie wavelength (λ=h/p, where p is the momentum of an 

electron with a kinetic energy of k= p
2
/2me; me= 9.1 x 10

-31
kg) of the electron. Such high 

resolution offered by an electron microscope makes it an essential tool for the study of 

the morphology and atomic resolution structure of the semiconductor NWs. The 

resolution and detection capability of the electron microscope highly depends on both 

energy and the size of the electron beam which can be adjusted for various studies. In 

electron microscopy, the electron beam strikes the surface of the specimen and if it is 

sufficiently thin, it will pass through the sample in a so-called transmission process. 

Depending on the interaction of the electron with specimen different signals are 

generated. Figure 16 depicts a schematic illustration of various interactive events which 

might occur between electron beam and matter. Those electrons which are scattered from 

the surface of the sample either lose their primary energy, called back-scattered electrons, 

or experience an energy loss of those within the forward-scattering process that can be 

either an elastic or inelastic scattering. For an elastic scattering, both incident and 

scattered electron beam maintain their direction and energy, whereas for the inelastic  
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scattering, the primary electron undergoes a change in beam path, as well as a measurable 

loss in energy of electron. Some of the signals that are generated through an inelastic 

event are secondary electrons, Auger electrons, characteristics x-ray, 

cathodoluminescence and bremsstrahlung radiation.  

All these generated signals provide useful information about the specimen. For example, 

Auger electrons are used to study the elemental composition of the surface of a given 

specimen. The characteristics X-ray that are emitted through the process of bombardment 

of inner shell electrons are used for identification of elemental composition of the sample 

using a commonly used technique, energy dispersive X-ray spectroscopy (EDS) which 

will be discussed in detail in the following sections. Among all the known electron 

Figure 16. Schematic illustration of the interaction between highly energetic electron and matter 

[https://en.wikipedia.org/wiki/Electron_microscope]. 
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microscopy related techniques, transmission electron microscopy (TEM) and scanning 

electron microscopy (SEM) in combination with EDS or EDXS are utilized for the in-

depth study of the morphology and structural properties as well as the composition of 

semiconductor nanostructures, which are synthesized in the current thesis.  

2.3.1.1 Scanning Electron Microscopy (SEM) 

 
SEM is the most essential technique for the study of the morphology and surface 

topology of the grown NWs (nanostructures). The technique relies on scanning of a 

relatively rough surface of the specimen using a very small focused probe (<10 nm) of 

electrons striking the sample.  

 

The secondary electrons (SEs) generated by bombardment of the specimen using a high-

energy electron beam results in the ejection of outer-shell electrons of atoms exerted by 

kinetic energy of incident electrons. The collection of the low energy (less than 50 eV) 

secondary electrons escaping from the very near surface (depth of 5 to 50 nm) by a wide-

field secondary electron detector results in formation of an image that displays the 

Figure 17. Schematic presentation of the escape depth and volume for the secondary electrons 

generated by incident electron beam in SEM. Dashed lines represents the depth and the shaded grey 

areas are the escape volume [41]  
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topography of the surface. Figure 17 shows an illustrative image of escape depth and 

volume for secondary electrons. As can be seen for the protrusions (bumps) areas of the 

sample the escape volume is larger than that of the smooth surfaces that have normal 

direction parallel to incident electron beam. This phenomenon brings about the higher 

number of secondary electrons to be generated by protrusions which makes them appear 

brighter while being imaged in SEM [41]. Figure 18 depicts a schematic picture of a 

scanning electron microscope with multiple components. As it can be inferred from the 

vertical column of SEM there are different apertures and lenses that are responsible for 

better focusing of the incident electron beam onto the surface of the specimen. The 

condenser lenses are designed to control the spot size by demagnifying the electron beam 

generated by the gun. The objective lens is used to focus the electron beam to a small 

spot. After these secondary electrons are generated near the surface, they move towards 

the surface of a positively biased grid. The most commonly used detector for this purpose 

is the Everhart/Thornley type. As a result of the secondary electrons striking the surface 

(scintillator; a luminescent material) of the detector, the electrical energy is converted to a 

form of photons entering the photomultiplier tube. These photons are later changed back 

to the electrical energy and their amplified signal is projected onto the screen of a cathode 

ray tube. The backscatter electron (>50 eV) detector collects the electrons that bounce 

back after collision with the different atoms of the target specimen, providing the 

information about the distribution of different elements in the sample based on the well-

known concept of Z-contrast. From the backscattering image, which is generally poorer 

than SE image, the atoms with high atomic number (Z) appear brighter due to greater 

elastic scattering from heavier atoms.  
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In the current dissertation, a XL30 ESEM-FEG was utilized for imaging our different 

nanostructures mostly in secondary electron (SE) mode. The XL-30 SEM (Figure 19) 

employs a stable high brightness Schottky Field Emission electron gun (FEG) in an 

operating low vacuum level of 10
-5

 mbar. The spot size (1-10 nm) and energy of the 

beam (5-30 kV) was adjusted depending on different case of studies. To avoid surface 

charging of the samples that are transferred onto quartz glass through a contact printing 

method, the surface of the samples was coated via sputtering of a thin (<50 nm) layer of 

the Au-Pd. This is necessary to facilitate the sinking process of the electrons from the 

surface by creating a conductive layer on the top surface of the specimen. 

Figure 18. Schematic of SEM with a working principle of secondary electron detector [modified from 

https://en.wikipedia.org/wiki/Scanning_electron_microscope + https://cmrf.research.uiowa.edu/scanning-

electron-microscopy]. 
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Together with EDS detector, the XL-30 SEM provides very important information about 

the morphology, dimension, growth direction and areal density of the nanostructure as 

well as the element composition of samples with various experimental and processing 

conditions. 

 

2.3.1.2 Transmission Electron Microscopy (TEM) 

 

TEM is a powerful technique for studying the crystallinity of nanostructures down to 

atomic levels. It requires a very thin electron transparent specimen (less than 100 nm) 

that allows for a very high energy beam to pass through the sample. TEM provides useful 

information about the crystal orientation, or rather called growth direction, and phase 

purity (ZB or WZ) of the nanostructure as well as the concentration of the planar defects 

such as stacking faults and dislocations in nanomaterials. A schematic diagram of the 

typical TEM column is shown in Fig. 20. TEM operation system consists of three main 

Figure 19. XL-30 SEM at LeRoy Solid State Science Center (LSSSC) of ASU. 
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sections: illumination, electron beam-specimen interaction and image formation from the 

top to down inside the column, respectively. First the high energy electrons are generated 

through an electron gun which is typically a filament or a field emission tip with a high 

accelerating voltage. The electrons pass through the condenser lens system which is used 

to focus the electron beam with smaller size. The condenser lenses control the intensity 

and convergence angle of the beam that is directed onto specimen. The incident electron 

beam on the specimen is transmitted and scattered, which passes through the objective 

lens, thereby forming an image of sample on back focal planes (intermediate image 1)  

 object plane. In diffraction mode, the selected area electron diffraction (SAED) aperture 

must be inserted inside to be in front focal plane of the intermediate lens. 

  

Figure 20. Ray diagram representing two basic operation modes of TEM. A) diffraction mode: the 

diffraction pattern is projected onto viewing screen B) imaging mode: the image is projected onto the 

viewing screen. The difference between the two modes is the strength of the intermediate lens which 

selects either image plane or the back focal plane of the objective lens as its object. [42] 
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The configuration of spots in diffraction pattern which is generated by elastically 

scattered electrons depends on interplanar spacing between atomic planes and the angle 

of incidence of electron beam onto the crystalline specimen. Each spot in diffraction 

pattern represents the interplanar distance of a specific set of planes from which the 

crystal structure and phase (ZB or WZ) can be determined. There are two types of 

imaging modes known as bright filed and dark field present in TEM. Bright field images 

are formed by the transmitted electron beam, whereas the dark field images are generated 

using the diffracted electron beam.  More importantly, to obtain the high resolution TEM 

(HRTEM) image of the NWs the TEM NWs must be tilted to a required zone axis. In 

reciprocal space, the zone axis is a term used to specify the direction of the incident 

electron beam with respect to the crystal [43]. In this work, the nanostructures were 

analyzed using an aberration-corrected FEI Titan TEM operating at 300 kV (Fig. 21). 

The system is also equipped with an EDXS detector for elemental analysis of the NWs. 

As mentioned, it is important for the TEM specimen to be thin enough for the electron 

beam to pass through, thus it is required for the NWs to have a diameter of a few hundred 

nanometers. For the thicker wires, it is required to do sample preparation and thin them 

down via polishing and similar techniques. Herein, the NWs or NBs that are studied are 

mostly thin enough to be electron transparent. TEM samples were prepared by contact 

printing which is a direct mechanical transfer of NWs from the as-grown sample to 

another substrate. First the holey-carbon coated copper TEM grid is soaked in ethanol for 

a few second and blown off using an ultra-high purity nitrogen gun. Subsequently, by 
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gently sliding the grid on the as-grown substrate, the nanostructures are transferred onto 

the TEM grid. HRTEM imaging of the nanostructures along the required zone axis was 

performed to identify the crystal structure and study the twin planes and stacking faults in 

combination with SAED patterns. 

 

 

2.3.2 Optical Characterization 

2.3.2.1 Photoluminescence Spectroscopy (PL) 

Photoluminescence (PL) is the widely used contactless and nondestructive technique for 

the study of the intrinsic and extrinsic optical and electronic properties of the 

semiconductors. In PL spectroscopy, photon with energy higher than the bandgap of the 

material is used to generate the photoexcited carriers through an optical pumping process. 

When the specimen is pumped with a high energy laser source, the electrons get excited 

Figure 21. Titan 300/80 (FEI) [courtesy of Prof. Crozier, ASU] 
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to the conduction band and leave behind the holes. The photo-generated electron-hole 

pairs can relax to a lower available energy levels through a radiative or non-radiative 

recombination process. The non-radiative recombination occurs when an electron in 

conduction band and a hole in valence band recombine and the excessive energy is 

released in the form of phonon (thermal energy) or lattice vibration in crystal lattice. 

Three major non-radiative recombination processes are Auger recombination, surface 

recombination and the recombination at defect centers such as dislocations and 

impurities. Direct or radiative recombination of an electron in a conduction band and a 

hole in valence band results in emitting the photons with a wavelength corresponding to 

the bandedge of the semiconductor material. The main optical processes associated with 

radiative recombinations are: absorption or gain, spontaneous emission and stimulated 

spontaneous emission. The schematic of the photon-matter interaction processes in a 

system with two levels of energy is shown in Fig. 22. The idea of stimulated emission 

was first realized by Einstein in 1916. E1 and E2 are the ground and excited state energy 

levels of atoms.  

Figure 22. Light-matter interaction processes in a two-level system. Figure 

is from Nanophotonics course note by Prof. C.Z. Ning (ASU, Fall 2014) 
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When an electron is excited to a higher energy level under illumination of high energy 

light, it decays to a non-occupied lower energy level while emitting light with photon 

energy equal to the difference between ground and excited state. This is a well-known 

process called spontaneous emission which is taken into account for the identification of 

bandgap of material using PL spectroscopy. PL measurement is based on detecting the 

luminescent light produced by sample under optical pumping of high energy laser light. 

Stimulated emission is based on the interaction of incident light with an excited atom that 

results in decaying the electron to ground state. For a system under an equilibrium 

condition, the number of atoms in an excited state are much lower than those in ground 

state which means it is difficult for the rate of stimulated emission regime to exceed the 

absorption rate, unless there are much higher number of electrons in excited state. 

Provided that the optical gain medium (material) has much more gain (generation) of 

carriers than their loss (recombination), there will be an amplified spontaneous emission 

that is an essential condition for lasing to occur. By increasing the pumping power of the 

laser in a suitable resonant cavity, it is possible to achieve lasing under room temperature 

condition. This will be further discussed in the next chapter, where the lasing properties 

of InP nanostructures is studied. A detailed explanation of the PL spectroscopy can be 

found in a review paper by Gilliland [44]. Fig. 23 shows a schematic of a typical PL 

measurement setup. For each PL measurement setup, there are three main different 

components: excitation by laser light illumination (optical pumping), signal collection by 

an appropriately designed optics and detection of the light by spectrometer. A cryostat 

chamber was used for some of the low temperature measurements.  Together with 

mirrors, lenses are used for directing the laser light onto the sample stage or the emitted 
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light after filtering of the laser light toward the spectrometer. The spectrometer consists 

of a diffraction grating-based monochromator and a detector that converts the light to PL 

signal.  

 
     Figure 23. Schematic of typical PL setup in ASU Nanophotonic Lab. Figure modified from ref 45. 

In the current research, depending on the materials of different bandgap and specific goal 

of study, different type of lasers are used as the excitation source such as Spectra-Physics 

Explorer 349nm pulsed Nd: YLF laser, Ti: Sapphire pulsed laser system (Tsunami) with 

λ=810 nm or a PDL 800-B PicoQuant pico-second pulsed diode laser delivering 405 nm 

laser pulses. All the measurements were performed at the optical lab of ASU 

Nanophotonics Group. 
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2.3.2.2 Time-Resolved Photoluminescence Spectroscopy 

Excitation of the electrons in semiconductors leads to the generation of electron-hole 

pairs that can recombine either radiatively or non-radiatively depending on the carrier 

dynamics which is influenced by the crystal quality and the concentration of defects. The 

decay equation for a molecule from an excited state to the ground state can be expressed 

as; 

                                                      I(t)=I0 exp(- 
𝑡

𝜏𝑒𝑓𝑓
),                                      (2.2) 

where I0 the fluorescence intensity upon excitation and and 𝜏𝑒𝑓𝑓 is the effective lifetime 

which depends on both radiative and non-radiative events that are likely to occur in the 

material depending on the environment (
1

𝜏𝑒𝑓𝑓
=

1

𝜏𝑅𝑎𝑑
+

1

𝜏𝑁𝑅
) [46]. PL emission is related to 

the radiative recombination of the carriers from excited states which have a finite 

lifetime. PL lifetime is the time that it takes for the carriers to recombine after the PL 

laser excitation is turned off. This process is not an instantaneous response and the 

decaying process of the carriers to the ground state occurs exponentially. By identifying 

the PL lifetime, the decay channels which increase the recombination rate of the material 

can be determined. Therefore, for the optoelectronic device applications such as solar 

cells, the lifetime measurement is very important task to be performed. Typically for the 

III-V semiconductors, PL lifetimes are in order of sub-nanoseconds to hundreds of 

nanoseconds.  

In order to measure the fluorescence lifetime, the time-correlated single photon counting 

(TCSPC) measurement is used. In TCSPC, the single photon of a periodical light signal 

generated by a pulse laser is detected. In fact, the time between excitation of the sample 
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by pulse laser and the arrival time of the emitted photon to the detector is measured. For 

detection of the low-level light using the TSCPC system, the periodical light signal is 

divided into thousands of signals with a picosecond time resolution and the detected light 

is also synchronized to the periodical (pulsed laser) light as shown in Fig. 24.  

 

 

 

 

Figure 24. The time measurement in TCSPC. a) the PL decay is synchronized to excitation 

pulses. The time is measured between the excitation pulse and the detection of single photon. b) 

the waveform of the fluorescence gives information about the decay dynamic. The figure is 

adapted from Ref. 47 and 48, where the top long pulses indicate the actual PL signal and the 

small stripes (below) at indicate time channels. 
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As can be seen in Fig. 24a, each laser pulse can induce a PL decay that is completed 

before the next pulse (cycle) is started. It is required for the emitted photon to have 

detection probability of less than one. Therefore, the intensity of the emitted photons is 

kept low by adding the neutral density filter into the optical path of TCSPC system. 

By summation of the detected single photons in various time channels (periods) after a 

long acquisition time the waveform of the fluorescence emission can be obtained from 

which the fluorescence lifetime can be measured (Fig. 24b.) A schematic of the TCSPC 

system used for lifetime measurement is shown in Fig. 25. The excitation source is a 

picosecond diode laser (405 nm pulsed laser) with the adjustable repetition rate between 

2.5 MHz and 40 MHz. The excitation source is coupled to a PL system connected to a 

monochromator.  

Figure 25. Schematic of PL lifetime measurement setup using TCSPC system 
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The detected signal by photo multiplier tube (PMT) is amplified by a preamplifier before 

reaching to the TCSPC board (B&H, SPC-130). Our available PMTs operate in in 

various wavelength range; Hamamatsu R928 for UV-VIS and H10330-75 for NIR. A 

digital delay line is used to compensate the time difference in optical path by delaying the 

synchronization signal. The result obtained by processing the PL and synchronization 

signal in TCSPC is used to construct the PL lifetime decay curve from which the carrier 

lifetime can be measured for the material of interest.    

 

2.3.2.3 Raman Spectroscopy 

Since Raman scattering was first discovered by C.V. Raman in 1920s [49], it has been 

widely used as one of the most instrumental analytical techniques to study the structural 

disorders attributed to non-stoichiometric defects that would disrupt the long-range ionic 

ordering in crystalline materials [50]. In Raman spectroscopy, the interaction of incident 

light which is often the monochromatic laser source with the molecular vibrations is 

studied in terms of the associated vibrational energy levels. When the sample is 

illuminated by laser light, a big portion of the light is scattered and re-emitted with the 

same frequency as absorbing photon, which is known as Rayleigh scattering. In Raman 

scattering, a very small portion of incident light is transferred to the molecular vibration 

which has energy frequency slightly different from that for the incident light.  Raman 

effect which is based on an inelastic scattering of the incident light, causes a Raman shift 

(up or down) with respect to the wavelength of incident light. Fig. 26A illustrative a 

schematic picture of such phenomenon that results in Raman scattering. 
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If the frequency of the scattered photon is lower than that of incident light, it is called 

Stokes scattering, but if the frequency is shifted towards higher frequencies, it is called 

anti-Stokes scattering, as it is depicted in Fig. 26B. The experimental setup for Raman 

measurement is the same as PL with the exception that Raman signal is much weaker 

than signal detected by PL. Fig. 27 shows a schematic of typical Raman set up which is 

based on the detection of only the inelastically scattered light arising from molecular 

vibrations. A notch filter is used in optical path to filter the laser light before reaching to 

the spectrometer and being detected by CCD.  The Raman spectrum is often plotted as a 

function of wavenumber shift which is defined as the energy difference between the 

excitation light and re-emitted photons. In order to convert the wavelength obtained by 

spectrum to Raman shift the following formula can be used; 

Figure 26. Schematic of Rayleigh and Raman scattering under 

excitation incident photon (A), Energy-level diagram showing the 

states involved in Raman spectra (B) [51]. 
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                       ∆𝜔(𝑐𝑚−1) = (
1

𝜆0(𝑛𝑚)
−

1

𝜆1(𝑛𝑚)
) ×

(107𝑛𝑚)

(𝑐𝑚)
,                          (2.3) 

where 𝜆0 is the wavelength of the laser, λ1 is the wavelength of Raman spectrum, and ∆𝜔 

is the Raman shift which is expressed by a wavenumber with a common unit of cm
-1 

[51].  

 

In our work, we have collected Raman data using a custom-built Raman spectrometer in 

a 180° geometry. The excitation source is 150 mW Coherent Sapphire single frequency 

laser with a wavelength of 532 nm. The Raman signal is discriminated from the laser 

excitation using a Kaiser laser band pass filter followed by an ultranarrow-band notch 

filter and an edge filter.  The data are collected using an Acton 300i spectrograph and a 

back thinned Princeton Instruments liquid nitrogen cooled CCD detector. The grating of 

Figure 27. Schematic of the Raman measurement setup 

 



  47 

1800 g/mm was utilized for the measurement, resulting in a spectral resolution of less 

than 1 cm
-1

. 

 

2.3.3 Structural Characterization 

2.3.3.1 X-Ray Diffraction (XRD) 

XRD is one of the most convenient tools for determining the crystal quality of the 

materials. It is a non-destructive technique which also provides useful information about 

the strain/stress in thin film crystals as well as crystal orientation. XRD relies on 

existence of long-range order in a crystal due e to lattice periodicity which is formed by 

regular arrangement of atoms in a single crystal. Because of such periodic fashion in a 

crystalline material, a monochromatic x-ray beam striking the single crystal is diffracted 

in form of in-phase x-ray waves (Fig. 28). Such constrictive interference of x-ray is 

produced when the Bragg’s law is satisfied as follows: 

                                                              nλ=2dsinθ,                                                        (2.4) 

 

where n in an integer number representing the order of reflection, λ is the wavelength of 

the incident x-ray radiation, d is the interplanar spacing in the lattice, and θ is the 

diffraction angle. This means that the sample rotates through an angle of θ with a wide 

range of values, while the detector rotates simultaneously with a rotation angle of 2θ with 

respect to the incident x-ray beam. 
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The results obtained from XRD pattern are used to estimate the crystallite size, residual 

strain, and more importantly, the lattice constant for the grown NWs and thin films. For 

the alloy NWs, Vegard’s law is applied to estimate the lattice constant for various ternary 

III-V alloys. Vegard's law is an approximation based on existence of a linear relationship 

between the lattice parameters of an alloy and the concentration of constituent 

components [52].  

All the XRD data was acquired on a High-Resolution X-ray Diffractometer 

(PANalytical X' Pert Pro Materials Research XRD) equipped with copper Kα (λ= 0.15418 

nm) in powder x-ray diffraction mode. The flexibility of the fixed divergence slits 

enables us to shrink the size of the x-ray beam in combination with beam masks down to 

desirable smaller sizes especially for the position dependent measurement of spatially 

composition-graded samples, where step size as small as  below 1mm is needed to 

correlate the XRD data with those obtained by EDS and PL. 

 

Figure 28. Principle of Bragg’s law reflection [copied from 

http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/bragg.html] 
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2.3.3.2 Energy-Dispersive Spectroscopy  

 EDS coupled with SEM microscopes (EDXS in TEM) is an analytical technique for 

identification of elemntal composition of the nanostructues. As mentioned earlier in SEM 

section, the electron beam penetrating into the depth of the specimen brings about 

generation of charactersitcs x-ray with specific characterstics energy associated with each 

element. The main principle behind EDS measurments can be inferred from the difference 

between discrete energy level of inner shell electrons in an atom (Fig. 29).  

 

 

As shown in figure, the x-rays are emitted by an atom when an excited electron by an 

external high energy source falls from an outer to the inner shells. Each different atom 

emits a photon of a specific characteristic energy corresponding to that transition in the 

element. These transitions are named according to their initial and final energy level. 

According to  Mosely’s law (depicted in Fig. 30), which is based on his emprical 

observation on relationship between atomic number of elements and magnitude of their  

charatertics x-ray energy, it is revealed that the outer electrons are repelled from the 

nucleus by all electrons closer to the nucleus [54].  

Figure 29. Characteristics x-ray energy; K, L and M are 

different electron shell around the nucleus [53].   
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This means for an element with specific atomic number, the X-ray characteristic energy 

value is larger for the transitions from the outer shells to nearest shell to the nucleus (Kα> 

Lα>Mα). The accumulation of the number of different x-rays counted by EDS detector is 

used to determine the EDS signal.  EDS spot analysis mode in XL-30 SEM provides us 

with accurate elemental composition different materials with only limitation being 

incapable of detecting the elements with low atomic numbers (Z=1-5). To give an insight 

on precision of quantities data acquired by EDS; the small size of electron beam with a 

spot size of ~ 10 nm enable us to obtain a precise elemental composition profile along the 

length of a single NW. However, EDS results are subject to have errors up to 5-10% due 

to peak fitting, detector efficiency, background subtraction or sometimes overlap between 

the characteristics x-ray energy of two different elements with very close values [56]. 

2.3.4 Electrical Characterization  

Evaluation of the electrical properties of the semiconductor materials are the 

indispensable task to perform prior to using them in making actual optoelectronic 

devices. For evaluation of a device or material in terms of performance and efficiency it 

Figure 30. Moseley’s law: relationship between characteristics 

x-ray energy and atomic number(Z) [55]. 
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is required to examine some of its typical electrical properties. Those tests mainly include 

the measurement of resistivity and conductivity (type and magnitude) carried out on 

different semiconductor with various doping concentration, etc. The other important one 

is the study of the current vs. voltage (I-V) or resistance characteristics which is 

necessary to examine the performance of different devices such as LEDs, sensors and 

photovoltaic cells, etc. 

2.3.4.1 Hot Probe Measurement 

It is a very well-known technique used to determine the carrier type of semiconductor by 

diffusion of the carriers under a thermal energy (heat). The measurement is simply 

performed by using a multimeter while its positive terminal is heated by a soldering iron 

that causes the carriers (electrons in n-type and holes in p-type) to move towards the cold 

electrode (negative terminal) under diffusion at high elevated temperature. 

 

Fig. 31 describes the experimental set up for the hot probe measurements. As it is shown 

in Fig. 31a, for an n-type semiconductor once the positive electrode is coupled with a hot 

Figure 31. Schematic of hot-probe measurment. 
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probe (red), the electrons start to move towards the negative electrode which makes the 

current to flow in a reverse direction. This is equivalent to forward bias, which means the 

voltmeter will be reading a positive voltage value. Similarly, for the p-type 

semiconductors, the value being read by the voltmeter will be negative (Fig. 31b). It is 

important to note that this method is not valid for the, grown layers on top of metals or 

semiconductor substrates such as silicon, etc.  

2.3.4.2 Hall Measurement 

Ever since Edwin Hall has discovered the “Hall Effect” in 1879 [57], it has been 

established as a powerful material characterization technique for the measurement of 

electron mobility of the semiconductors that are used in optoelectronic device 

manufacturing. Basically, for a bulk conductor, Hall measurements reveals how much of 

electrons or carriers flow through the crystal or in another word how much of current can 

be handled by a device. To observe the Hall effect the current pass through the 

semiconductor sample (slab with dimension given as l×w×t shown in Fig. 32), while it is 

exposed to a magnetic field under perpendicular direction to current direction.  When a 

magnetic field is applied (in -z direction), these charge carriers (electrons or holes) 

experience a force, called the Lorentz force [58]. Thus, the magnetic field passing 

through the thin film sample deflect electrons inside the semiconductor causes the 

potential difference perpendicular to current flow. As shown schematically in Fig. 32a, 

for an n-type semiconductor the Lorentz force will be forcing the electrons toward the 

front face (right hand rule), where the accumulation of electrons and depletion in the 

back-face results in building a electric potential with a resulting electric field in that 
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forces the electrons in opposite direction to the Lorentz force. At some point where these 

two forces become equal and balance out each other, there will not be any further 

accumulation of electrons, hence this is called steady state.  

 

Figure 32. Schematic of Hall effect for a) n-type and b) p-type semiconductors 

The corresponding developed potential difference in x-direction is known as Hall voltage 

(VH). For the p-type material (Fig. 32b) with holes as the majority carriers, the direction 

of the electric field (EH = 
𝑉𝐻

𝑤
) will be reverse. The VH read by a voltmeter will be 

negative for an n-type and positive for a p-type.  The Hall coefficient can be driven as: 

                                                 RH= 
𝑉𝐻𝑡

𝐵𝐼
 ,                                                               (2.5) 

where B and I are magnetic field and current. The t value (sample thickness) is the width 

of the plane on which the charges are being accumulated. Hall mobility can be calculated 

using the formula below: 

                                                      μH=𝜎RH=
𝑉𝐻𝑡

𝜌𝐵𝐼
 ,                                                     (2.6) 

where 𝜎 and 𝜌 (1/𝜎) are conductivity and resistivity, respectively. It is also known that 

for a doped semiconductor resistivity can be obtained by: 

                                                              𝜌 =
1

𝜇𝑛𝑞
   ,                                                         (2.7) 
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where 𝜇, n(p) and q are carrier mobility (cm2/V.s), concentration of carriers (cm
–3

), and 

electron (hole) charge (C/cm
2
),  respectively. To measure the carrier concentration and 

mobility of our III-V film, a four-point probe measurement technique was used using 

indium metal contacts in a configuration schematically shown in Figure 33.  

 

 

 

 

The applied magnetic field and current passing through the film with a known thickness 

and resistivity will help us to determine the Hall mobility and carrier type of the grown 

III-V sample. 

2.3.4.3 I-V Measurement 

I-V characteristic curves for solar cells show the current and voltage (I-V) characteristics of 

a phtovoltaic solar cell. The power conversion efficiency of a solar cell can be detrmined 

from the I-V measurments. To measure the performance of solar cells, I-V measurment is 

carried out by scanning an applied voltage across the fabricated solar and measuring the 

current response that is obtained from the cell. For the precise evaluation of the cell 

performance, a solar simulator is typically used. In this work,  an LCS-100 solar simulator 

by ORIEL was used to create 1-sun condition for I-V measurement of solar cells. I-V curve 

is optained by plotting the current of solar cell versus applied. The term open-circuit 

voltage (Voc) is defined as the maxium voltage across the cell, when the system is not 

connected to any load and the current is minimum (I=0). Also for a short circuit solar cell, 

Figure 33. Schematic of four-point probe set up for Hall measurement. Figure adapted from ref. [59]. 



  55 

since the positive and negeative lead are connected together, the voltage across the cell 

becomes minumum (zero) while the short-circuit current (Isc) is at its maximum state.  

Typically solar cells are made in p-n or p-i-n junction configuration, which allows for the 

carriers to be seperated and result in generation of a current upon exposure to light. The I-V 

curve for a solar cell is the superposition of the I-V curve in the dark condition with the 

photogenerated current [60]. As shown schematically in Fig. 34, when a solar cell is 

illuminated the dark I-V shifts down to fourth duadrant, where the product of curret and 

voltage is not zero and the power can be extracted since from the solar cell diode.  The term 

illumination current (IL) can be added to the p-n junction diode current and the result is 

expresed by;  

                                           I = I0 (𝑒
𝑞𝑉

𝑘𝑇-1) - IL,                                                             (2.8) 

  

where I is the net current passing through diode, I0 is the leakage current density of diode 

in the absence of light, V is the applied potential across the terminals of diode, q is 

electron charge, k is Boltzmann constant, and T is the absolute temperature. From the I-V 

curve, the maximum power point (Pmax) can be found as the point where the 

multiplication of current and voltage values is maximum (Vmax . Imax).  

The fill factor (FF) is determined by a portion of area under I-V curve that is limited to 

rectangular area (yellow region) and it can be written as: 

                                                  FF= 
𝑉𝑚𝑎𝑥.𝐼𝑚𝑎𝑥

𝑉𝑜𝑐.𝐼𝑠𝑐
                                     (2.9) 

At last, the power conversion efficiency (η) of solar cell can be determined using the 

formula below: 

                                       η= 
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
 =
𝑉𝑜𝑐.𝐼𝑠𝑐.𝐹𝐹

𝑃𝑖𝑛
,                               (2.10) 
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where Pin is the incident light power which is 100 mW/Cm
2 
for 1 sun AM1.5 G spectrum. 

In overall, evaluation of I-V characteristics of a solar cell during the course of fabrication 

provides us with a better understanding of different steps that result in failure or very low 

device efficiency which are required to be improved.  

 

 

 

 
 
 
 

Figure 34. A typical I-V curve for solar cell devices 

[https://www.ossila.com/products/iv-curve-measurement-system]. 
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3 GROWTH OF InP NANOSTRUCTURES  

3.1 Introduction 

Indium Phosphide is one of the most important III-V semiconductors because of its direct 

bandgap and superior properties such as high electron mobility and low surface 

recombination velocity which makes it suitable for a variety of optoelectronic 

applications. So far, growth of highly crystalline InP NWs has only been demonstrated 

using MOCVD [8, 61] and MBE [62]. As shown in chapter 1, growth of InP NWs using 

vapor phase CVD system using InP source suffers from higher sublimation rate of P 

leading non-stoichiometric InP growth [63]. In this chapter, a low-cost growth 

methodology will be presented that not only resolves this issue, but also significantly 

extends the narrow window of growth temperature of InP to a broader range, while 

sustaining stoichiometric InP growth. InP NWs grown under such growth methodology 

based on vapor transport of elemental source material show less deviation from 

stoichiometric composition. Detailed growth dynamic and optical properties of 

synthesized NWs will be discussed in the following sections. Growth of Nanobelts (NBs) 

and microdisks of InP via interplay between VLS and VS mechanisms are also 

demonstrated. 

3.2 Growth Procedure 

InP NWs were synthesized using a chemical vapor deposition method in a hot wall CVD 

furnace. High purity Indium (In) metal sphere (1mm dia., 99.99% Alfa Aesar), red 

Phosphorous (P) (≥99.99% Sigma Aldrich) powder were supplied with controlled 

evaporation rates inside the separate amorphous quartz boats, each of which attached to a 
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long quartz rod for manipulation of source material using a magnet outside the furnace 

tube (Fig. 35a). The Si (100) substrate was etched using a 2% dilute solution of HF to 

remove the native silicon dioxide layer (1-2 nm), and subsequently washed with DI 

water. A thin layer (1-1.5 nm) of Au was sputtered on the surface of the H-terminated Si 

substrate and it was immediately placed, horizontally, at downstream end of the furnace 

on a rectangular quartz plate. The system was pumped down to a base pressure of 100 

mTorr, and then flushed by purging Ar+5%H2 carrier gas at a rate of 300 standard cubic 

centimeter per minute (sccm) for 30 min to evacuate the system form excessive oxygen 

and CO2 molecules, prior to the growth. Afterwards, the furnace was heated up to 

1000◦C, with ramp-up rate of 42◦C/min. During the growth process, the flow rate was 

reduced to 20 sccm, giving rise to a total pressure of 2 Torr. It is important to mention 

that In source was inside the furnace during the ramp-up time, but after the temperature 

ramp-up process, the red phosphorous boat was pushed to the edge of furnace, where the 

temperature is 400-450 ◦C. After a period of 1-60 min growth time, both In and P boats 

were pushed outside the furnace, where the temperature is low, and the system was 

naturally cooled down to room temperature. In some other set of experiments, pure InP 

was as the precursor loaded inside a quartz boat and evaporating at various pressure and 

temperature conditions. After experimenting different growth conditions, it was figured 

out that if binary InP powder is used as source material, the obtained NWs are very 

sparsely grown with a poor stoichiometry (Fig. 35b). On the contrary, using the single 

elemental In and P precursor results in growth of highly stoichiometric InP NWs (Fig. 

35c). In another word, using binary source material for vapor transport CVD growth 

requires finding the optimum pressure-temperature for evaporation of source material that 
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leads to a stoichiometric product. In the other hand, using single elemental precursors is 

very simple and provides more degrees of freedom for adjusting the vapor pressure of III 

and V species, separately. 

 

As can be seen from the SEM image of the InP NWs with longer growth time, they are 

somewhat vertically aligned with respect to the surface of Si (100) substrate, and thick 

with a hexagonal cross-section and gold tip sticking out. In tems of growth direction, it is 

known that (111) planes have lower surface energy (𝜸) compared to other 

crystallographic planes, due to smaller number of dangling bonds (𝜸(𝟏𝟏𝟏) < 𝜸(𝟏𝟎𝟎) <

𝜸(𝟏𝟏𝟎)). It has been shown for III-V NWs using (111) substrate can lead to growth of 

vertical NWs perpendicular to the surface of substrate. On the contrary, when (100) is 

used, the low angle (35.3°) NWs are grown, still in (111) direction [64]. However, the 

Figure 35. Schematic of the InP NW growth setup. Inset is the images of single elemental source and 

as grown sample. (a) SEM and EDS result for NWs grown at 440 ◦C using binary source material. (b) 

cross-section SEM image and EDS of InP NWs grown at 600 ◦C using single elemental precursor. 

Inset shows the SEM image of hexagonal NW with Au tip sticking out along the NW axis.   
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growth direction has been observed to vary presumably due to altering the surface energy 

by surface free energies, strain, etc [65, 66].  Krishnamachari et al. have demonstrated 

that the growth of defect free InP NW directly on (001) surfaces in [001] direction to be 

possible under certain circumstances such as avoided annealing of Au nanoparticles prior 

to growth [67]. Generally, it is reported that pretreatment of Au catalyst to have an 

impact on growth direction regime [68-70].  In our particular case, further exploration of 

the growth direction is required either by HRTEM study and further tuning the growth 

parameter by a single variable testing to pinpoint why such vertical growth from the 

surface of Si (100) substrate is observed. 

3.3 Growth Dynamic of InP NWs 

 
Growth mechanism of such syringe-like InP NWs using single elemental approach can be 

understood by their morphology. The underlying mechanism can be explained by 

interplay between catalyst-mediated VLS and VS growth mechanisms. It can be 

postulated that VLS growth is followed by a VS growth resulting in lateral expansion of 

NWs. First, the Au thin film sputtered on a substrate is annealed at 600 ◦C, and broken 

down to smaller nanoparticles. Subsequently, Au nanoparticles are alloyed with In prior 

to growth forming an In-Au droplet. NWs are nucleated under the supersaturation of 

vapor phase In and P species inside the Au alloy droplets giving rise to growth of long 

NWs with diameters close to those for In-Au-P droplets. The second step is where the VS 

mode becomes activated and the NWs start to get expanded through the sidewall growth. 

A set of time dependent growth carried out to prove our postulation by observing a frame 

by frame of the growth scenario. The Fig. 36 shows the SEM image of NWs grown at 
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600 ◦C with various growth times. As can be seen for sample grown for 1min, a very long 

and thin InP NWs are grown. For the sample grown at 10 min, it can be seen that how the 

cladding layer of InP is formed on the surface of axially grown InP NW. As the growth 

proceeds, the NW become thicker and axially grown NW is completely covered by the 

cladding layer.  

 

Figure 36. SEM images of time-dependent growth of InP: a) 1 min, b) 10 min, c) 30 min. The planar index 

of the hexagonal NW in c is by assuming that the NW is pure ZB.  

 

 The symmetric geometry along six different direction could be attributed to VS growth 

along the non-polar surface of the m- and a- planes in hexagonal wurtzite (WZ) along 

<0001> direction or corresponding planes along <111> direction of zinc blend(ZB). The 

Fig. 37 shows the atomic configuration of pure WZ and ZB structure along <111> and 

<0001> projections that can lead to formation of hexagonal NWs.  
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Figure 37. Atomic structure of wurtzite (left) and zinc blende (right) structures along  <0001>,  and  <111> 

direction, respectively. The structures are drawn using VESTA software.  

 

However, further TEM study is required to study the structural polytypism as well as the 

stacking faults and twin planes in grown NWs. Sample preparations for such NWs 

requires using complicated sample preparation methods since they are not thin enough to 

be electron transparent [71]. 

Figure 38. Relationship between growth time and length/diameter of InP NWs (a), Length versus diameter 

2D plot obtained from samples with different growth times of 1 to 60 min (b).  
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In order to better understand the growth dynamic, a statistical study of simultaneous axial 

and radial growth of the NWs was carried out by measuring both diameter and length for 

15-20 randomly selected NWs which are contact printed on a quartz substrate. The length 

of the NWs varies from 3.3 μm to 11.3 μm, while the diameter changes from 76 nm to 

1074 nm for the growth time changing from 1 min to 60 min. The result of the study 

showed the slowest rate of axial and radial growth is for the first 5 min of the experiment 

and the highest growth rate is for the time interval between the 5 to10, where the VS 

mechanism becomes accelerated and diffusion of the adatoms onto surface of the wires 

occur during the longer growth than 5 min (Fig. 38a). Also, from the LD space plot (Fig. 

38b) of the NWs, the axial and radial growth rates are very similar indicating that both 

impinging the atomic species onto the catalyst droplet and sidewall growth occur with the 

same rate. The lateral growth of wire can be explained by the fact that diffusion length of 

the In adatoms is not long enough to reach the Au tip. When the length of the NW 

exceeds the diffusion length of In, thus results in sidewall expansion of NWs [72].  

3.4 Effect of III/V Ratio; Supersaturation Effect 

 It is known for III-V NWs that the input ratio of group III to V is a critical factor for 

growth. For instance, by changing the III/V ratio, growth of long NWs can become 

accelerated in one regime, VLS or VS. It can also be suppressed by growing kinked wires 

or not being grown due to change in kinetics of supersaturation (SS) or adataom diffusion 

onto either sidewall surface or Au catalyst [73]. On the contrary, a low III/V ratio results 

in formation of In droplet [74]. To elaborate on the effect of III/V ratio on the growth rate 

of InP NWs in both axial and radial direction, a set of experiments were carried out at 
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600°C (growth temperature) by altering the III/V ratio through changing the evaporation 

rate of In metal at various temperatures, while P source was kept at constant temperature 

range of 400-450°C. The results did not reveal any change in morphology, but the areal 

density of wires significantly deceased for the lower III/V ratio. A comparison of LD 

relationship between different SS levels showed that by changing the evaporation rate of 

the source materials by manipulation of TIn/TP ratio for the growth experiments 

performed at temperature of 600 ◦C and pressure of 2 Torr, simultaneous VS and VLS 

growth mechanism were observed and well-faceted thick wires were obtained in all three 

different SS rates (Fig. 39a). In order to determine the predominant growth mechanism 

(VLS or VS) for each case, a statistical study of both length and diameter of up to 20-30 

NWs for each sample was performed, and the result of the LD dependency on SS level 

(different TIn) showed that there is an unusual behavior for TIn=900 °C (Fig. 39b).  

 

 

 

 

 

As it was apparently found for this sample, the VLS mechanism dominated VS and the 

diameter of the wires decreased compared to the wire grown with TIn= 800 ◦00and 980 

◦C. This nonlinear behavior could be attributed to the change in chemistry of In-Au-P 

Figure 39. Effect of III/V ratio on a) morphology and b) dimension of the NWs grown at 600 ◦C. 
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alloying system increasing VLS growth rate. In addition, the length of the NWs showed a 

decrease for the sample with TIn= 980 ◦C compared to 900 ◦C. Despite the simplicity, this 

growth method enables us to alter the III/V ratio by changing the evaporation temperature 

of In (TIn) in our experiments. 

3.5 Growth of InP Nanobelts and Nanodisks 

 
Nanobelts (NBs), nanosheet and microdisks made of semiconductor materials are of great 

interest for making resonant microcavities that can be used as the nanolasers. Growth of 

such nanostructures with high quality have been reported for II-IV materials [75] and 

perovskites [76]. It was incidentally found that Au-catalyzed growth on Si (111) substrate 

promotes formation of NBs. As can be seen from the SEM image (Fig. 40a) for 30 min 

growth, the obtained NBs are up to ~100 μm long and some of them have the width of up 

to ~15-20 μm, which makes them a suitable cavity that can potentially lase under even 

relatively low optical pumping powers which will be shown later. The Fig. 40 shows a 

summary of substrate dependency of single elemental growth of InP. As can be seen for 

the pre-cleaned InP (100) substrate, hexagonal and rectangular shape NWs are grown 

with much higher vertical growth yield, compared to those grown on Si (100), apparently 

due to lattice matching. Growth of NBs can be explained via interplay between VLS and 

VS mechanisms using Au-catalyzed growth.  
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Further investigation is required for complete understanding the underlying growth 

mechanism. . HRTEM and the corresponding indexed selected-area electron diffraction 

(SAED) pattern of a single InP nanobelt is shown in Fig. 41 indicating that the NB has 

zinc blend structure with growth along <1̅10> direction.  It can be also concluded that the 

VLS-grown NW initially is grow along <1̅10> direction and the VS mode becomes 

activated perpendicular to NB growth axis and the NB grows wider. 

Figure 40. SEM image of Au-catalyzed InP nanostructures on different substrates: a) 

Nanobelts grown on Si (111), nanowires on b)  Si(100) and c) InP (100) . EDS results 

are taken from a single nanostructure.  
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Using the same growth approach, but a self-(In-) catalyzed mechanism, the InP 

microdisks were grown on quartz (amorphous silica) substrate at a growth temperature of 

720 ◦C. Fig. 42 shows SEM image of some of the selected microdisks with interesting 

morphologies with a symmetric geometry. The underlying mechanism for growth of such 

nanostructures needs to be studied and well understood separately in the future.  The 

Figure 42. SEM image of self-(In-) catalyzed grown InP microdisks on amorphous quartz 

substrate. The top right cuboid structure is grown on silicon (111) with Au-catalyzed 

growth at 650 ◦C. 

Figure 41. HRTEM study of an InP nanobelt grown under Au-catalyzed condition: a) bright field image 

of single NB. b) HRTEM image of NB. c) SAED pattern of InP NB along the [111] zone axis. 
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grown nanostructures were transferred from as-grown substrate using contact printing on 

quartz slides (optical glass) and observed under SEM. The structures have different 

geometries that will be utilized as suitable Fabry-Perot cavities for demonstration of 

lasing under optical pumping.  

3.6 Lasing of InP Nanostructures   

 

After demonstration of first optically pumped NW laser by Yan et al. in 2001, NW 

photonics has opened a new avenue in NWs research [77]. Semiconductor NWs (NBs or 

microdisks) lasers are typically dominated by mirror losses at their end facets due to 

transmission and scattering of light at the two ends of the resonator cavity. NWs with 

smaller diameter suffer from significant mirror loss preventing them to be practically 

used for photonic integrated device. As a result, lasing threshold of NWs strongly depend 

on their length and diameter; 

ΓGth=𝛼𝑠+𝛼𝑚                                                 (3.1)  

Gth= 
1

𝐿
𝑙𝑛
1

𝑅
 
,
                                                  (3.2) 

where 𝛼𝑠 and 𝛼𝑚 are scattering, and mirror losses, respectively. Γ is the confinement 

factor, and Gth is the material gain. In the second equation, L is the length of wire, and R 

is the laser power reflectivity. Taking all parameters into account, there is a trade-off 

between the diameter and optical loss in terms of integration density and threshold of NW 

based photonic devices [78]. Growth of InP wires with high surface quality can pave the 

way for on-chip photonic devices based IR lasers. The result of our studies showed that 
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as grown NWs/NBs and microdisks are high quality resonant cavities with flat end and 

sidewall facets that sustain lasing with minimal loss under high power optical pumping 

powers. The quantization effect is prohibited owing to large size (both length and 

diameter) of the wires that allows for fundamental bandgap emission. To study the NIR 

lasing of InP NWs/NBs they were first dispersed onto a glass substrate by contact 

printing and optically pumped at room temperature. A 349 nm Nd:YLF UV-laser was 

utilized to illuminate the nanostructures individually with high energy laser beam under 

confocal condition.  

 

Fig. 43a shows the PL evolution of InP wires starting with a broad band spontaneous 

emission under a low pumping power. By increasing the laser power, initial lasing modes 

Figure 43. PL evolution of a single InP NWs at room temperature (a), Light-in–light-out curves of 

InP wire with multimode lasing behavior (b), SEM image of InP wire disperesed on glass (c), Dark 

field image of InP wire under confocal condition of optical microscope (d). 
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appear to be red shifted with respect to the bandedge emission wavelength. Eventually 

the spontaneous emission becomes saturated, while the amplified spontaneous emission 

(ASE) with multimode lasing occurs with high emission intensities. Transition from 

linear to superlinear regime in typical Light in-Light out (L-L) curve is an evidence for 

threshold behavior (Fig. 43b). A precise study based on NW dimensions (length and 

diameter) is required to determine the critical dimension of wires, below which the lasing 

does not occur. Similarly, as can be seen for the triangular InP microdisk lasing was 

observed (Fig. 44a) with a very low lasing threshold under much lower pumping energy 

of the Nd:YLF laser. A top view and side view SEM image of the microcavity is shown 

in Fig. 44 b and 44c.  

 
 

Figure 44. (a) PL evolution of equilateral triangular InP microdisk cavity with single mode lasing observed 

under optical pumping of Nd:YLF laser, (b and c) SEM images of InP microdisk with a thickness of ~ 

400nm, (d) Light-in-Light-out (LILO) plot of optically pumped triangular cavity, (e) typical s-curve for 

lasing as the evidence for amplified spontaneous emission.    
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The spontaneous emission spectra prior to appearance of first lasing modes, shows a 

central wavelength of 921 nm, which is the typical emission wavelength for direct 

bandgap InP with ZB structure. There is not any deviation from fitting observed due to 

thermal effect at higher pumping level that consumes some of the carriers through a non-

radiative recombination event. Single mode lasing with very dramatic transition slope 

was observed. Typical LILO and SS curve for lading is shown (Fig. 44d and 44e) as the 

evidence for amplified spontaneous emission. 

3.7 Growth of Self-Catalyzed InAsP 

To show the versatility of the single elemental growth, under the same condition as 

before, an extra boat containing small amount of InAs source powder (99.9999%, Alfa 

Aesar) was placed at 760 ◦C, upstream close to P- source boat. InAs has relatively a very 

high vapor pressure, compared to other binaries in InGaAsP material system. This results 

in an early loss of As at very early stage of the growth (as shown in chapter 1, Fig. 8), 

that is why the evaporation temperature of InAs is chosen to be slightly low. An epi-

ready clean Si (100) was used to grow InAsP NWs. There was not any catalyst such as 

Au used, but instead the In seeding prior to growth was used to grow InAsP NWs under 

self-catalyzed condition. To do that, initially InAs and P boats were outside of the 

furnace, and they were pushed inside the furnace after 5 min after the furnace reached the 

set temperature of 1000 ◦C. The growth time was 25 counted after 5 min seeding, where 

the growth starts. The growth temperature was 650 ◦C under 20 sccm flow of Ar+5% H2. 

The only variable in two set of experiments was the evaporation temperature of P which 

was 400-450 ◦C and 350-400 ◦C. For the latter, the P boat was 0.5 cm farther towards 
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upstream. A set of SEM images (Fig. 45) show that InAsP NWs are grown through self-

catalyzed mechanism, but the shape of the tip and body of the NWs vary with change in P 

flow (evaporation rate). As can be seen for both cases, the InAsP NWs of up to 20 μm are 

obtained with a bulky tip which is different from the typical VLS-grown features.  

 

 

 

For the sample with high P content, a periodically twin zigzag morphology was observed. 

(Fig. 45a). Formation of such features in NWs has been widely reported due to formation 

of stacking faults and twining planes [79].  Formation of faceted catalyst is very similar 

to NW tip formed during vapor solid-solid (VSS) growth. However, here, in the 

Figure 45. SEM image of self-catalyzed InAsP NWs: a) Low P-flow, b) High P-flow. EDS analysis of 

three NWs and their tips from each sample are shown below each sample. The last image in each row 

is the contact printed sample on quartz substrate. 
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beginning the tip is in liquid form (150◦C, Tm for In) and at the end of the growth event, 

during the cooling stage, the tip also crystallizes to a faceted shape.  

As can be seen (Fig. 45b) for sample with lower P flow (evaporation temperature) our 

aim was to grow the wires with higher As content, but it is difficult to tune the 

composition by manipulation of evaporation temperature InAs source due premature 

(congruent) sublimation of As. Lower P content available in vapor phase results in highly 

crystalline nail-like NWs without any sign of twining defects and zigzag morphology.  

EDS results also shows better stoichiometry. From EDS spot analysis of three random 

NWs for each sample as can be seen, the As content of tip for all NWs shows a decrease 

compared to body of NWs, while the P content is vice versa. This can be explained by 

decreased partial vapor pressure of As above InAs during the cooling process which 

might not be the case if single elemental As is used.  

3.8 Summary 

A simple, but successful strategy for growth of highly stoichiometric InP nanostructures 

was presented. Since non-stoichiometric materials are often accompanied by defect 

emission or less efficient bandedge emission, the presented method in chapter 3 for 

growth of InP could be potentially important for demonstration of the highly efficient 

InP-base photonic devices. The growth mechanism of InP NWs was explained by 

interplay between VLS and VS growth. The optical properties of InP nanostructures such 

as NWs, NBs and microdisks showed that all the as grown nanostructures support lasing 

under high optical pumping conditions. 
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4 VLS GROWTH OF GaP NANOWIRES 

4.1 Introduction 

Gallium Phosphide (GaP) NWs have attracted great deal of attention among III-V 

materials, due to the wide bandgap energy and emission in the visible spectrum and its 

role as an alloy partner with InP or GaAs for a wide range of applications in 

optoelectronics as light emission and solar cell applications. Growth of direct bandgap 

GaP NWs with wurtzite (WZ) structure has shown to be challenging. However, the 

indirect bandgap zinc blende (ZB) GaP alloyed with other binary compounds has been 

vastly utilized for fabrication of optoelectronic devices such as light emitting diodes 

(LEDs) [80], solar cells [81], photoelectrochemical
 
cell [82], etc. Ternary GaP-based 

alloy compounds such as GaAsP [83] and InGaP [84,85] has shown to have a transition 

from indirect to a direct bandgap cross over that makes their applications appealing for 

the state-of-the-art electron based devices. GaP NWs has been synthesized using different 

methods such as laser ablation [86], metal organic vapor phase epitaxy (MOVPE) [87], 

Molecular beam epitaxy (MBE) [88], surfactant-free solution−liquid−solid (SLS) 

synthetic method [89]
 
and thermal evaporation [90].   

For applications where the low cost is more important such as solar cells, the simple 

chemical vapor deposition (CVD) with low-cost precursor materials is preferred to 

produce material of high crystal quality. However, growth of oxide-free GaP NWs via 

vapor phase transport method [91-93] has been difficult, mostly due to formation of 

stable oxide species such as Ga2O3, and GaPO4 that are thermodynamically prone to 

incorporate into the structure of as-grown GaP resulting in poor optical quality [90]. 

There has been a lack of systematic study of parametric dependent growth study and 
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understanding. Moreover, the large difference in vapor pressure of P and Ga makes it 

challenging to GaP of highly stoichiometric. In binary semiconductors such as GaP, 

deviation from stoichiometry can cause a lattice disorder attributed to vacancies (VGa, 

VP), antisites (PGa, GaP) and self-interstitials (Pi, Gai) affecting the crystal structure within 

the NWs which are found to be deleterious for device applications [94]. Formation of 

such intrinsic point defects in bulk GaP has been studied from both computational and 

experimental points of view [95-99].
 
The concentration of unintentionally formed native 

defects are very sensitive to the stoichiometry of grown GaP and also to the Fermi-level 

position and hence to the dopant concentration. Höglund et al. [99] have reported on the 

effect of stoichiometry on defect type and concentration. Presence of such defect-related 

deep levels near the bandedge has been previously reported in ZnO [100] and ZnSe [101]
 

NWs, but there have been few reports [102] on origin of defect-induced red-band 

emission of GaP NWs. 

In this chapter, an approach for the VLS-growth of GaP NWs will be introduced. The 

main objective of this study is to investigate the effects of growth conditions, substrates 

and precursors on stoichiometry of GaP NWs and to establish a link between 

stoichiometry to the intensity ratio of bandedge emission to defect emission. Our study 

involved systematic materials growth experiments under various conditions, optical and 

material characterizations. Such study allows the establishment of a growth strategy for 

producing high quality GaP NWs based on a simple, inexpensive approach. Our 

systematic growth study under various conditions shows that utilizing elemental P in 

addition to GaP source is necessary for replenishing the P deficiency exerted by 
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congruent sublimation of GaP to grow highly stoichiometric NWs. Our findings for the 

grown GaP NWs under various condition shows that inclusion of defects introduces a 

pronounced red-shifted deep defect emission (DE) peak at wavelength range of 690-720 

nm next to bandedge emission (BE) at 556 nm, while the similar feature for single-crystal 

bulk GaP is also observed at 730 nm that will be shown later. In particular, different 

growth condition are examined to produce maximized BE to DE intensity ratio, both as 

an important requirement for many photonic applications, and as a direct and simple 

indication of stoichiometry and crystal quality of grown NWs. The comprehensive 

structural and optical analyses were carried out to interpret this behavior that will be 

presented below. 

4.2 GaP Growth Procedure 

 
Our growth experiment was carried out in a hot-wall horizontal low-pressure CVD setup. 

Schematic illustration of growth set up and procedure is shown in Fig. 46. Silicon 

substrates were cleaned ultrasonically in acetone, ethanol and DI water. Subsequently, the 

substrates were immersed in a 2% HF for a few second to remove the native oxide prior 

to introduction to growth chamber.  GaP NWs were grown on Si substrates coated with a 

nominal Au thickness of ~1-10 nm as the catalyst for VLS growth, via sputter deposition 

at room temperature. The Au-coated substrate was placed at downstream side of a single 

zone furnace where temperature ranges from 720◦C to 800 ◦C. Growth at lower 

temperatures than 720 ◦C is shown to have high oxygen content in NWs (Fig. 49). As the 

source materials, ball milled high purity GaP (99.999% Alfa Aesar), Gallium metal and 

red Phosphorous powder (≥99.99% Sigma Aldrich) were used inside separate amorphous 
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quartz boats. Ar+5% H2 with flow rate of 40-45 sccm (standard cubic centimeter per 

minutes) was used as carrier gas and the pressure of the reactor was kept constant around 

~5 Torr using a mechanical pump attached to the capacitance manometers. Prior to 

growth, the ball-milled GaP powder was placed in the middle of the furnace where 

temperature is maximum. A magnetic manipulator was utilized to position the red 

phosphorous, upstream from the GaP precursor, outside of the furnace heating zone (see 

Fig. 46a). In different experiments, Ga source was also placed in a separate boat upstream 

of the GaP boat (Fig. 46b). The system was purged for 1 hr under 300 sccm flow rate of 

carrier gas to purge excessive oxygen, CO2 and water molecules inside the furnace tube. 

After the furnace reached the target temperature of 1000 ◦C with a ramp up rate of 42 

◦C/min, the red phosphorus boat was pushed inside the furnace using a magnetic 

manipulator where the temperature was 400-450 ◦C. After a certain period of growth time 

(7 to 45 min) the system was naturally cooled down to room temperature. To study the 

effects of various precursors, experiments were carried out with pure GaP, GaP with P, 

and GaP with Ga as the source materials.   

4.3 Results and Discussion 

 

Our choice of source materials is guided by simplicity, safety, low cost, and most 

importantly the ability to lead to high quality material. One of the greatest advantages of 

the low-cost CVD approach is to be able to use the same compound powder as source 

material to grow NWs of the same material. 



  78 

  

 

Herein, a comparison between using different source materials including GaP, GaP+Ga, 

and GaP+ P as the growth precursor will be presented. As shown in Fig. 47a, our growth 

experiments using pure GaP source lead to GaP NWs with a poor stoichiometry, due to a 

much higher sublimation of P than Ga atoms and premature exhaustion of P. Initially 

such high P sublimation rate leads to excess P in gas phase and in the final grown NWs. 

But during the later stage of growth, the reduced availability of P in the source boat leads 

to less availability of P and eventually the deficiency of P in the grown NWs for longer 

time growth, as shown in Fig. 47. The EDS measurement after 45 min of growth left the 

source with a P to Ga ratio of ~11 to 59, with 29% of oxygen incorporation. To have a 

complete picture of the effects of source materials, Ga in addition to GaP as source 

material was introduced to the growth chamber. The EDS analysis after 15 min of growth 

Figure 46. Schematic of set up GaP nanowire growth using GaP+P (a) and GaP+Ga as the source materials. 

The green bar indicates the growth temperature window of oxide-free GaP NWs.  
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was shown in Fig. 48a and 48b. The addition of Ga apparently exacerbated the 

incongruent sublimation of Ga and P. The source boat P to Ga ratio was even more 

asymmetric in favoring a faster P sublimation. Interestingly, the NWs have a higher P 

(Ga/P=47.14/52.86) after the first 15 min growth due to the enhanced P availability in the 

initial stage of growth.  

From growth-time dependent study using GaP source it was found that if grow long 

enough (e.g., 45 min), the GaP powder turns into a non-stoichiometric source which 

means only a few first min of the growth occurs in a stoichiometric ambient and for the 

remaining time, growth proceeds with a non-stoichiometric source that affects the 

stoichiometry of the grown NWs (Fig. 48a). It was also found that presence of a Ga 

metallic source boat placed at 980 ◦C in addition to pure GaP at 980 ◦C (2cm apart, 

upstream to the GaP source) results in quite faster sublimation of phosphorous. This 

could be explained as follows; assuming that the carrier gas flow rate is not low enough 

to let GaP and Ga reach the equilibrium, given the slightly higher vapor pressure of Ga 

above Ga source Ga(g)/Ga(s)) than that above GaP (Ga(g)/GaP(s)) [103] the chemical 

potential of Ga in gas phase increases. This results in faster sublimation rate of 

phosphorous due to a high affinity of P to Ga to react and form GaP. In fact, the excess 

Ga source here is used to balance the number of atomic Ga and P that are present in the 

growth chamber by almost doubling the partial pressure of Ga. This is why the NWs 

grown for 15 min under excess Ga source are still P-rich, while those grown using pure 

GaP are Ga-rich which was expected due to higher sublimation rate of P than Ga above 
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GaP that results in continuing the growth in a P-deficient environment using single 

source.  

 
Figure 47. GaP NW grown using pure GaP source: EDS (a) and morphology (b) characterization  

of source boat and NWs grown using pure GaP source for 45 minutes. 

 

 

 

Figure 48. GaP nanowires grown using pure GaP+Ga and GaP+P source: EDS (a, c) and morphology (b, d) 

characterization of source boat and NWs grown with additional Ga (a, b) or P (c, d) in addition to GaP 

source after 15 minute growth. 
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These observations are consistent with growth under excess P source with the exception 

that the EDS results showed that in former case, with GaP+P source, the GaP source 

remains stoichiometric after growth (Fig. 48c), while in latter cases almost Ga metal with 

a small amount of dissolved P  was left in the source boat. From EDS measurement of the 

remaining source material after 15 min growth, the amount of remaining P is ~14% for 

GaP with additional Ga, as shown in Fig. 48a.  

 

4.3.1 Growth Using GaP and Excess P Source 

 

GaP NWs growth performed under excess P condition at lower temperatures showed that 

incorporation of oxygen increases as the growth temperature varies further towards 

downstream from 700◦C to 560 ◦C (Fig. 49). It is worth noting that he growth 

temperature always can be determined using the temperature profile measured for the 

horizontal quartz tube furnace (Lindberg/Blue M). This observation corresponds to a 

Figure 49. Effect of growth temperature on oxygen content of GaP NWs; SEM image of Ga-P-O nanowires 

grown at (a) 560 ◦C, (b) 650 ◦C and (c) 700 ◦C. The top right inset is the room-color picture of the as grown 

samples on silicon substrate. Second row represents the corresponding EDS spectra of nanowires grown at 

different temperatures. 
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decrease in activation energy of formation for Ga-P-O compounds such that increasing 

the growth temperature drives the oxygen off the nanostructure. A set of systematic 

growth experiments performed at various temperatures shows that  using the current 

growth system, the ideal growth temperature window to achieve an oxide-free GaP is 

720-800 ◦C. Experiments were performed to verify the above understanding with an 

additional elemental P added to the GaP precursor to replenish the deficiency of P after 

the initial phase of growth.  

 

 

 

Indeed, our examination of source boat and grown NWs after a 15-minute growth in the 

presence of additional elemental P shows a more congruent sublimation. Fig. 48c,d show 

highly stoichiometric NWs and remaining GaP in the boat in contrast to the growth with 

pure GaP source or with GaP and Ga source. More importantly, this approach also led to 

very congruent sublimation of GaP from the source boat and a stoichiometric GaP NWs 

for long time growth, as shown in Fig. 50c for a 45 min growth. A top view of 

representative SEM image of GaP NWs grown at 800 ◦C for 45 min using both red-P and 

Figure 50. GaP nanowires grown under excess P condition: SEM micrograph of GaP NWs 

grown on Si (100) substrate; (insets are real color image of as grown sample (top left) and SEM 

image of a single NW with Au tip, dispersed on glass (top right)). (b) A well-faceted hexagonal 

GaP wire with Au catalyst. (c) A typical EDS spectrum of individual wires with quantitative 

elemental analysis of stoichiometric GaP. 
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GaP source materials on a Si (100) substrate is shown in Fig. 50(a). Inset (right) of Fig. 

50(a) shows a GaP NW dispersed on a glass with a uniform body and slight necking near 

the Au tip. The top left inset of Fig. 50(a) shows a photograph of the whole substrate 

under room lighting (yellow color), showing the large-scale uniformity over the substrate 

of 10 by 15 mm in size. A high magnification SEM image of NWs shows their faceted 

morphology (Fig. 50(b)). The energy-dispersive X-ray spectroscopy (EDS) analysis (Fig. 

50(c)) on the body of GaP NWs grown using GaP+P source shows the Ga:P atomic ratio 

to be 1.00:1.02, with only ~2% deviation from stoichiometry. The extensive growth 

experiments established that the combined GaP and P source material combination is 

ideal for the growth of high quality and high stoichiometric GaP NWs.  

 

4.3.2 Stoichiometric GaP Nanowires: Effects of Source Materials 

 
To understand the situation, it is necessary to consider the difference in partial vapor 

pressures of Ga and P above GaP boat and how it relates to the chemical potential 

difference (∆𝜇) between vapor and solid phases. It is known for many III-V compounds 

including GaP that above the congruent sublimation temperature (Tcs= 571◦C for GaP ), 

GaP loses phosphorous from the surface, preferentially over Ga [104]. For the sublimed 

GaP, the phosphorous dimers (P2) and tetramers (P4) are the common molecular 

compounds that have higher equilibrium partial pressure than that of the Ga element, 

above the Tcs[105,106]. In general, there are two ways to prevent the non-stoichiometric 

sublimation of group III and V species. One way is to determine the sublimation phase 

diagram in P-T space to maintain GaP source boat is always under congruent conditions.  
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This requires numerous experiments under different P-T combinations to determine such 

phase diagram and becomes impractical. Additionally, the likely required low 

sublimation rate would lead to extremely slow growth of NWs and become impractical 

for many low cost applications. The alternative way is to provide an additional 

phosphorous source to maintain a highly positive chemical potential for P in gas phase 

above source boat, whereas the chemical potential of P in gas phase is normally very low, 

if pure GaP is used. Since  the growth process occurs under the constant carrier gas flow 

rate, total pressure of growth chamber and evaporation temperature are kept constant, 

thus the system is thermodynamically under quasi-equilibrium condition. The condition 

during the sublimation process under constant temperature and pressure is written as 

follows: 

GaP (solid) 
𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚
⇔         Ga (liquid/gas)

 + ↑ 
P (gas) 

 + ↑ 
GaP (gas)           (4.1)

 

 The sublimation reaction can be explained by different levels of chemical potential 

obtained at various growth conditions. Let 𝜇𝑗
𝑖   be the chemical potential of species i in 

phase j, where i refer to P or Ga. Hence, ∆𝜇 = 𝜇𝑔
𝑃 − 𝜇𝑠

𝑃 is the difference in chemical 

potential of P in the gas and solid phase.  The ∆𝜇 for the growth using pure GaP source 

compared with excess P source condition is given by; 

Pure GaP ;      𝜇𝑠
𝑃 > 𝜇𝑔

𝑃 ,  or  ∆𝜇 < 0                                  (4.2) 

GaP and P ;     𝜇𝑔
𝑃 > 𝜇𝑠

𝑃 ,  or  ∆𝜇 > 0                                 (4.3) 

Therefore, by increasing the partial vapor pressure of phosphorous in the growth system 

by providing an additional P source ∆𝜇 becomes a positive term, leading to the inhibited 

sublimation of P from the source. Given the high stoichiometry of the GaP obtained from 
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GaP+P combination as the source materials, our study in the following will be focused on 

the growth under excess P condition.  

 

4.3.4 Structural Characterization 

 

In order to study the crystal structure of GaP NWs grown using GaP+P source, XRD 

measurements with X-ray source of Cu Kα were carried out. For both samples grown on 

Si (100) and Si (111) three main diffraction peaks were observed at 2θ values of 28.37°, 

47.24°, and 55.79° corresponding to (111), (220), and (311) crystallographic planes of 

ZB GaP, respectively (Figure 51a).  

 

From normalized XRD spectra both samples show a sharp (111) peak, where the GaP 

NWs grown on Si (111) show relatively better texturing along [111] direction. This can 

be inferred from relative intensity of peaks with respect to (111) peak. The cross-section 

view of the GaP NWs grown at 800 ◦C for 15 min on both Si (100) and (111) substrates 

are shown in Fig. 52. As it can be clearly seen, GaP NWs grown on Si (111) has more 

vertical yield, indicating (111) as the predominant growth direction which is in an 

agreement with XRD results. 

Figure 51. Powder XRD spectra for GaP samples grown on Si (111) and Si (100) under P-rich 

condition (a), and Raman spectra of GaP nanowires grown on Si (100) and (111) substrates (b).  
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Figure 52. Cross-section SEM image of GaP nanowires grown (at 800C for 15 min) on (a) Si (100), and (b) 

Si(111)  

 

Furthermore, the crystal quality of GaP NWs was further examined using Raman 

spectroscopy in which the inelastic scattering of the incident laser light leads to Raman 

shift, revealing the structural information in terms of energy of vibrational transitions in 

crystal lattice [107]. The sample was excited using a 150 mW Coherent Sapphire single 

frequency laser with a wavelength of 532 nm. The laser power was controlled using a 

neutral density filters wheel and an initial laser power of 100mW. Raman spectra for GaP 

NWs were collected using a low laser power of 1.3 mW on a single GaP NW. The 

Raman scattering spectra of the GaP NWs are presented in Fig. 51b. The results obtained 

at room temperature for two different samples grown on Si (111) and Si (100) exhibit two 

phonon modes: the transverse optical phonon (TO), and the longitudinal optical phonon 
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(LO) with the corresponding peaks appearing at around 365 and 402 cm
-1

, respectively. 

These values are in good agreement with the reported bulk values for GaP [108] and also 

the numbers obtained for single crystal GaP wafers. The FWHM of TO mode is 6.04 and 

5.98 cm
-1

 for GaP NWs grown on Si (100) and (111), and the linewidth for LO mode is 

4.39 and 4.01 cm
-1

, respectively (Table 1).  

 

 

For comparison, the linewidth of single crystal GaP wafer was also measured. The 

FWHM for TO and LO mode are 7.88 cm
-1

 and 5.29 cm
-1

,
 
respectively. These Raman 

linewidths indicate a very good crystal quality for NWs and slightly better crystallinity 

for the sample grown on Si (111). The slight downshift of both TO and LO modes might 

be because of an excess of phosphorus (as interstitial or antisites) in the GaP resulting in 

slight lattice distortion [109, 110]. The TO/LO intensity ratio for NWs grown on Si (100) 

and Si (111) is 1.55 and 1.48, respectively. It is known that TO/LO intensity ratio is 

directly correlated with the concentration of defects [111]. This slight difference is 

presumably due to different concentration of intrinsic point defects in two samples. For 

the single crystal GaP wafer this ratio is below 1 which is indicative of smaller 

concentration of defects. The shoulder on the LO peak of GaP for both samples is related 

to surface optical (SO) phonons due to existence of a surface or an interface of 

Table 1. Raman peak position and FWHM obtained by Lorentzian two and three peak fitting for 

GaP nanowires and wafer. 
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amorphous surface oxide in core-shell GaP NWs [112].  The SO modes in NWs appear 

due to extremely large surface of GaP NWs compared to bulk GaP [113-116], 
 
which is 

not observed for GaP bulk as shown in Fig. 53. The absence of SO mode for wafer 

indicated that the physics behind Raman scattering of one-dimensional nanostructures 

such as NWs can be different from that of bulk which is due to the fact that Raman 

feature in NWs are angular dependent due to their highly anisotropic shape [117]. 

 

Figure 53. Raman spectra  of  GaP wafer in comparison with  nanowires grown on Si (100) and Si (111) 

(a). double peak fitting of GaP wafer for both TO and LO modes (b). Three peak fitting for TO, SO and LO 

modes of GaP NWs grown on c) Si (111) and d) Si (100). 

The bright-field (BF) TEM images of a typical VLS-grown GaP NW grown on Si (111) 

substrate (under P-rich condition) are shown in Fig. 54a and 54b. Presence of an 

amorphous layer outside of both NW body and Au-Ga-P alloy droplet is due to existence 

of Ga-P-O compounds such as GaPO4 and Ga2O3 that are formed during the transfer of 
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the NWs onto TEM grid (Fig. 54c). Formation of segments of different contrast (Fig. 54a 

) is attributed to coherent twinning super lattices (TSLs) that are formed by incorporation 

of rotational twins. HRTEM of an individual NW showed a high density of stacking 

faults (SF) and twinning defect (Fig. 54d). Shown in right side of Fig. 54d are the 

selected-area electron diffraction (SAED) pattern taken from two adjacent segments 

separated with a thin multi atomic layer of microtwins (MTs) making a rotation angle of 

141◦ when viewed from <1̅10> zone axis (Fig. 54f). From the interplanar spacing 

between parallel lattice fringes the lattice constant is calculated to be 0.314 nm which 

corresponds well to the (111) interlayer spacing of bulk ZB GaP, thus confirming <111> 

as the growth direction. Indexed characteristic double-spot superimposed pattern obtained 

by fast Fourier transform (FFT) is for zinc blende TSL of GaP that is shown in Fig. 54e. 

Both patterns have a 2-fold symmetry along <1̅10> zone axis that have a rotation of ~70
◦
 

(or 110
◦
) with respect to each other. Formation of such quasiperiodic twinning segments 

within entire body of NW corresponds to intermittent rotational twins introduced by 

stacking faults along <111> growth direction. The exact mechanism of formation of 

TSLs across which the set of stacked (111) family of planes undergo 180
◦
 rotation along 

the [111] axis, is not still fully understood.  However, their dependency on growth 

temperature and diameter of NW and dopants has been studied [118,119]. It has been 

reported that periodic array of twin boundaries in TSLs can result in formation of  mini 

bands due to periodic electron scattering [120].
 
The PL emission characteristics of our 

GaP NWs will be later discussed, in the context of optical properties, to study the defect-

mediated electronic transitions.  
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Figure 54. TEM study of GaP NWs grown under excess P condition. (a) Bright field TEM image taken 

from the NW of 50 nm diameter with evident TSL onset showing transition from single-crystal growth to 

coherent twinning growth. (b) Formation of planar defects such as stacking faults and twin-planes within 

entire body of a GaP NW with the observed smallest diameter of 20 nm. (c) Amorphous layer outside of 

both NW body and Au-Ga-P alloy droplet is due to formation of Ga-P-O compounds such as GaPO4 and 

Ga2O3.   (d) high-resolution (HRTEM) image of quasiperiodic TSL along [1̅10] zone axis with ABCABC 

stacking, for each segment, attributed to the normal ZB planar sequence with [111] growth direction. The 

associated FFT images are taken from two adjacent segments and twin boundary, in which the diffraction 

spots correspond to the (111) planes perpendicular to the growth direction. (e) Indexed double spot FFT 

pattern (two superimposed pattern) along [1̅10] zone axis pattern. Inset with some white arrows represents 

some of the spots diffracted from the TSL. (f) HRTEM image of twin segments with SFs and MTs formed 

at the boundaries. (g) The energy dispersive X-ray spectrum (EDXS) spectrum obtained from Au tip. The C 

and Cu peaks are from the holey carbon grid. 

Fig. 54g shows an energy dispersive X-Ray spectroscopy (EDXS) spectrum with the 

resolved quantitative elemental analysis of tip for NW with 21.15%, 38.00%, 40.84% for 

P, Ga and Au, respectively.  However, the composition of tip of NW grown at 800 ◦C 
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which is based on a gradual cooling path for an unknown liquid composition in Au-Ga-P 

phase diagram [121], does not match with stoichiometric GaP. The EDXS point 

measurement of composition for the crystallized alloy droplet (fringes in Fig. 54c) is 

Au0.52Ga0.48 with a significant Ga content compared to P, which is indicative of the fact 

that above congruent transition temperature of GaP during the cooling process the 

number of cationic and anionic gas phase atomic species leaving GaP boat are not equal, 

while the P-flux at the low temperature downstream is completely interrupted. The 

stepwise non-uniformity in diameter of NWs occurs during the cooling stage where the 

depletion of Au reservoir occurs while the introduction of gas phase species into Au 

droplet is also terminated. This is in an agreement with the similar phenomenon observed 

by Harman et al. [122],
 
and Persson et al. [123] on MBE-grown GaAs NWs. As the 

impingement rate of vapor species decreases, the reservoir is purged under lower P flux, 

resulting in a constriction corresponding to diminution of the volume of reservoir. This 

phenomenon is caused by non-identical vapor pressure of P and Ga adatoms that brings 

about two different incidents as follows: tapering of wire near the Au tip by decreasing 

the size of the catalyst during the cooling process resulting in decreased number of 

nucleation sites at the interface of Au and GaP crystal. Neck formation below the Au seed 

is due to decreased supersaturation rate and complete depletion of reservoir during the 

cooling down process.    
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4.3.5 Optical Characterization 

 
Following the structural studies, optical characterization of the GaP NWs was carried out. 

From PL measurement using an Nd:YLF UV-laser (349 nm) as the excitation source, the 

optical emission properties of NWs were investigated. Room temperature PL spectra of 

as-grown GaP NWs showed (Fig. 55) that there are two dominant characteristics peaks; a 

narrow bandedge (BE) emission at 556 nm attributed to indirect transition of ΓV-to-XC 

and a broad band defect emission (DE) peak at a range of 690-720 nm, possibly related to 

deep defect recombination centers. To examine the emission features of NWs, pump-

power dependent PL measurements are performed, as shown in Fig. 55a. As we see there, 

the relative emission intensities change with decrease in defect emission (DE) and 

increase in BE, consistent with the assignment of 690-720 nm range as the DE band. Due 

to the smaller density of states in DE band, the DE band is quickly filled up with the 

increase in pumping, resulting more population of BE states. To relate the material 

quality with relative BE-DE intensities, PL from sample grown using pure GaP source 

and that grown using the combined GaP and P sources were compared, as shown in Fig. 

55b. It is clear that the less stoichiometric NWs grown in the former case show much 

stronger DE emission than the stoichiometric NWs of latter case. This further validates 

our proposed approach of using a combined GaP and P sources as precursors for the 

growth of high quality NWs.  Presence of such native defect was also observed in PL 

spectrum obtained from single-crystal GaP wafer, despite their high crystal quality which 

will be shown later in comparison with the as grown NW samples. The integrated BE to 

DE (IBE/IDE) ratio to is the more precise way to gauge how much the BE predominates 
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over DE and will be examined more in the following. This is because IBE/IDE takes into 

account the bandwidth (FWHM), in addition to taking the maximum intensities into 

consideration.   The IBE/IDE ratio shows a ~3 fold increase for growth with additional P 

(from 0.37 with pure GaP source to 1.13 with GaP and P sources). This comparison 

shows that the P-deficiency contributes significantly to the DE. Quantitatively, the 3-fold 

increase of IBE/IDE ratio corresponds to an improvement of stoichiometry of about 5.5% 

(from 6.15% to 0.66%).  

In order to establish a correlation between the stoichiometry and IBE/IDE intensity ratio  

the PL for GaP NW samples grown under various experimental conditions including two 

different orientations of Si substrate, growth temperature, growth time, etc. was 

measured, and the results are summarized in Fig. 56 and in Table 2.  

 

 

 

Figure 55. Photoluminescence measurement of GaP nanowires with different growth conditions. (a) 

Evolution of PL spectra for GaP NWs grown at 800 ◦C on Si (111) for 45 min with Au thickness of 1-

1.5 nm. Enhancement of IBE/IDE intensity ratio under high optical pumping power reveals the 

saturation of shallow donor-acceptor levels (b) Comparison of normalized PL spectra at pumping 

energy of 493 nJ for NWs grown using pure GaP source and under excess P condition (both at 800 ◦C 

for 45 min, 1-1.5 nm Au) shows a ~3-fold increase in IBE/IDE intensity ratio. The numbers below the 

ratios show the deviation from stoichiometry (%). 
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Table 2. The correlation between stoichiometry and BE/DE ratio for different GaP samples grown under 

different conditions. 

 

The comparison of IBE to EDE ratio (IBE/IDE) for 9 different samples shown in Fig. 56  

is based on measurement of PL on as-grown samples at the equal pumping energy of 493 

nJ. The PL spectra of all the samples are shown in Fig. 57. First the Lorentzian fitting 

was performed for both BE (in the range of 460-650 nm) and DE (in the wavelength 

range of 550-850 nm), respectively. As measure of stoichiometry, P/Ga ratio was 

obtained from EDS results of all samples, transferred via contact printing [13] from the 

original substrates onto fresh quartz substrate (Table 2). To measure uniformity, 6 NWs 

were measured from each of 9 samples, as presented by 6 data points along each 

horizontal line in Fig. 56. Since PL measurement was performed on as-grown samples 

with a micron-size resolution, all 6 SEM measurements from a given sample corresponds 
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to a single IBE/IDE ratio. In Fig. 56, 9 samples are divided into 3 groups based on growth 

temperature and time. A few observations can be made from Fig. 56: First, NWs with 

high stoichiometric symmetry (P/Ga~1) shows higher IBE/IDE ratio. The best examples 

are samples 6 and 7, showing the highest IBE/IDE ratio of larger than 2.5. Second, 

samples grown for shorter time (15 mins, samples 6 and 7) have higher IBE/IDE ratio 

than longer time (45 mins, samples 1 and 2) under the same growth conditions. This is 

likely due to the fact that smaller wires grown for shorter time are less likely to 

incorporate into defects. 

 

Figure 56. Relationship between IBE/IDE ratio and stoichiometry and IBE/IDE for various GaP samples 

grown under different conditions. Deviation from stoichiometry (P/Ga=1) is determined from EDS analysis 

of single NWs/spots. The IBE/IDE intensity ratios are obtained based on integration of Lorentzian fitting of 

PL spectra (under identical PL pumping energy of 493 nJ) within identical range of 460-650 nm for BE and 

550-850 nm for DE peaks, respectively. Samples are divided into 3 groups based on the growth conditions 

(dashed boxes). The numbers in the parenthesis in front of data set indicate the samples numbers used in 

Table 2. The black numbers with unit of nm indicates the thickness of Au catalyst before the growth. All 

samples were grown using GaP+P as recipe except sample 8, which was grown using GaP only. 
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Figure 57. PL spectra of GaP samples grown under different condition. PL is acquired at identical 493 nJ 

Pumping of Nd-YLF lasers. An image of each as-grown sample under room lighting is embedded on 

corresponding PL plot. 
 

It is also interesting to note that there is no apparent difference in stoichiometry between 

the two groups of wires. Therefore, the additional defects incorporated into samples 1 and 

2 are likely to be stoichiometric. Third, NWs grown with thinner layer of Au are more 

stoichiometric and have stronger BE (higher IBE/IDE ratio), as can be clearly seen by 

comparing samples 1 through 5, as Au is increased from 1-1.5 nm, 2-3 nm, to 6-9 nm.  

Another observation is that there is little difference between substrate orientations (Si 
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(100) vs. Si (111)) in terms of stoichiometry or IBE/IDE ratio. It was found that in 

general, higher growth temperature leads to better stoichiometry and better BE. The ideal 

growth window of temperature is in the range of 720-800 ◦C. Within the ideal 

temperature window, higher temperature does not necessarily lead to better material 

quality. An example is provided by comparing sample 9 grown at 720 ◦C with sample 2 

grown at 800 ◦C, where lower temperature gives higher IBE/IDE ratio.  It is also worth 

noting that there is a change of DE central wavelength from 690 nm at 720 ◦C to 718 nm 

at 800 ◦C (see Table 2 and Fig. 57). Another exception to the above observations is 

sample 8, which was grown under otherwise the same conditions as sample 1. The poor 

stoichiometry and low IBE/IDE ratio are results of growth with pure GaP source without 

additional P, while all other 8 samples were all grown with GaP+P source materials. This 

further verifies the key result of this paper that GaP together with P provides an ideal 

source combination. It is believed that such systematic understanding could be utilized to 

guide the growth of high quality GaP NWs.  

To gain more quantitative information about the spectroscopic features of NWs, we 

examined pumping power dependence of IBE, IDE, IBE/IDE ratio, and linewidths of BE 

and DE of two of our samples grown on Si (100) and Si (111) and compared such 

features with those of commercial GaP wafer, as shown in Fig. 58 for two of our samples 

(samples 6 and 7 shown in Fig. 56). The three samples (sample 6, 7 and wafer) were 

pumped with pumping energy from 217 nJ to 866 nJ and their PL spectra are shown in 

Fig. 59a-c.  The details of Lorentzian fitting are shown in Fig. 59d-f and in Table 3.  
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Figure 58. Comparison of optical characteristics of GaP wafers and nanowires grown on Si (111) and (100) 

(both at 800 ◦C for 15 min and 1-1.5 nm Au catalyst ) and single crystal GaP under different laser pumping 

levels. (a): IBE, (b): IDE, (c) IBE/IDE ratio; and the linewidths of PL peaks (d). 

 

For this comparison, it is important to note that the reflection from NWs at the surface of 

NW samples is very different from the flat GaP wafer. The reflectivity of the GaP wafer 

was estimated to be R=51.15% from Fresnel’s equation for an incident laser light angle 

of 30◦. The pumping intensity of GaP wafer was therefore scaled by (1-R).  
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Such difference while affecting an absolute comparison between the wafer and NW 

samples, it does not affect the slopes of quantities that we plot on log-log scale in Fig. 

58a-c. 

 

First, we notice that the IBE of GaP wafer shows a strongly super-linear increase (with a 

scaling index larger than 2) with pumping, mostly as a result of increased penetration 

depth of pumping beam into a very thick wafer. The IBE from both NW samples shows a 

slightly sublinear increase with a scaling index close to but smaller than 1. The DE for all 

three samples show the same sub-linear increase, as the DE bands are filled up with 

increasing pump. The IBE/IDE ratio reflects mostly the behavior of IBE, since IDE is 

similar for all of them. The linewidth comparison shown in Fig. 58d is more interesting. 

The linewidths for all DE bands increase with pumping, while linewidths for BE of NWs 

decrease and that for the wafer stays practically constant. The increase of DE linewidth is 

Figure 59. PL evolution spectra for different GaP samples with their corresponding double peak 

Lorentzian fitting; GaP wafer (a and d), GaP NWs grown on Si (111) (sample 7) (b and e), GaP NWs 

grown on Si (100) (sample 6) (c and f). 
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a result of filling of DE states of wider range as pumping increase. The absence of 

linewidth increase for wafer is an indication that there are little shallow defect states as a 

result of high quality wafer. 

 

 The decrease of BE linewidth for NW samples indicates a saturation of shallow defect 

states in NWs with pumping, as the excited carriers populate increasingly more and more 

states in the continuum bands. The larger BE linewidth of NWs than that of wafer 

indicates existence of shallow defect states, most likely related to the surface states and 

other twinning defects as seen in the HRTEM analysis. Thus, the linewidth approaches 

the more intrinsic linewidth determined by the band structure, as in the case of wafer. The 

defect peak observed in PL spectrum for GaP is often attributed to structural defects such 

as stacking faults, twins [124, 125], and non-stoichiometric point defects [126,127], that 

introduce deep electronic levels within the bandgap. The density functional theory (DFT) 

calculation by Höglund et al. [99] for local density approximation of native defect states 

in GaP has shown that the stable charge states which have neither electron in conduction 

band nor holes in valence band are primarily vacancies and antisites rather than 

interstitial species, mostly due to their relatively lower formation energy [99,128]. 

Table 3. The integrated intensity values for BE and DE obtained from Lorentzian double peak fitting for 

GaP NWs grown at 800 ◦C for 15 min (sample 6 and 7) and single-crystal GaP. Integration was based on 

identical range of 460-650 nm and 550-850 nm for BE and DE peaks, respectively. 
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Formation of localized energy levels within the bandgap associated with point defects 

that combine to form donor-acceptor pairs seems to be responsible for electronic 

transition of 1.7-1.75 eV for GaP NWs. It is reported in GaP, the intrinsic point defects 

introduced during the growth under excess P condition, are predominantly 𝑃𝐺𝑎
+2and 𝑉𝐺𝑎

−3 

[99]. However, the DE at 690-720 nm was observed for all the samples grown near 

stoichiometric concentration using vapor phase method using Ga, GaP+Ga and GaP+P 

source reagents. Formation of these DE levels could be attributed to the shallow acceptor 

level of VGa (at Ec-1.7 eV) or donor level of PGa (at Ec-0.6 eV) [129]. The location of 

Fermi-level strongly depends on the concentration of native defects that results in slight 

variation in DE peak position. 

4.4 Growth of GaAsP and InGaP Nanowires Using Vapor Transport Method 

To show the versatility of this growth method, by taking into account the composition 

dependency of the bandgap, InGaP and GaAsP alloy NWs were rationally synthesized. 

This is achieved through the precise control over the composition of the ternary alloys 

simply by adding the elemental As or In into GaP growth chamber. For instance, GaAsP 

NWs were grown in a similar condition to GaP NW growth at 800 ◦C and total pressure 

of ~3 Torr. As the source material ball-milled GaP powder was used with a mixture of 

As+P with 1:1 atomic ratio of As:P assuming that As and Red-P have very close vapor 

pressure (slightly higher vapor pressure for As). Shown in right inset of Fig. 60a is the 

SEM image of the Tapered- shape GaAsP NWs. Similarly pellets by providing indium 

pellets at upstream side of the furnace where evaporation temperature is 800 ◦C, single 

composition InGaP alloy NWs were grown. Further experiments are required to adjust 
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the growth parameter for bandgap tuning across the entire composition for GaxAs1-xP and 

InxGa1-xP. A representative PL spectrum for single composition-tunable GaAsP and 

InGaP NWs with a direct bandgap red-emitting wavelength is shown in Fig. 60b.  

 

 

 

 

 

 

 

The narrow width of the PL emission spectra for both alloys without any surface- 

passivation corresponds to the high optical quality of the as grown NWs, apparently due 

to good surface properties and fewer intrinsic defects. Growth of alloys of GaP using 

such low-cost method is promising in terms of application for making LEDs, solar cells, 

etc., despite the simplicity of growth method while rendering high material quality.  

4.5 Summary 

In summary, an Au-catalyzed VLS strategy for the growth of highly stoichiometric 

GaP NWs on Si substrates with a simple low-cost CVD method was presented. It was 

found that excess phosphorous precursor is necessary to inhibit the incongruent 

sublimation of P and Ga and to restore the chemical balance. As a result, highly 

Figure 60. Growth of GaAsP and InGaP nanowires: a) SEM image of Ga0.33As0.67P nanowires (a). Insets 

are the bright field optical image of sample pumped using Nd:YLF (λ=349nm) laser (top left) and the 

zoomed image of the sample from side view. B) PL spectra for InGaP and GaAsP with emission 

wavelength of 610 nm 640 nm. (Embedded pictures are for the real color images of as grown samples) 
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stoichiometric GaP NWs are grown with less defects and more bandedge emission. The 

sublimation behavior of these precursors was explained using the concept of chemical 

potential.   This strategy and the associated understanding are established through a 

systematic growth study and characterization by comparing three sets of precursors: pure 

GaP, GaP+Ga and GaP+P. From the structural study of NWs grown under P-rich 

condition the formation of coherent twin planes or TSLs as the structural defects in body 

of VLS-grown NWs was also noticed. The effect of growth parameters such as time, type 

of silicon substrate, growth temperature, etc., on suppression of DE caused by intrinsic 

crystal imperfections was demonstrated. Our comprehensive growth and characterization 

study allowed us to relate the growth conditions and growth precursors to stoichiometry 

of NWs and the latter in turn to the existence and degree of deep defect states and band 

edge emission. Since types and concentration of defects are important as well as the 

relative intensity of bandage emission for optoelectronic devices, it is therefore 

imperative to study the crucial roles of growth parameters and conditions and to develop 

a growth strategy to minimize defect bands and maximize band edge emission. It is 

believed that such a growth strategy is not only important for GaP, but also for other III-

V compounds. However, there are more aspects of such growth yet to be explored for the 

eventual optimization of material properties and maximization of bandedge emission. In 

addition, the versatility of the GaP growth was shown by bandgap tuning of its alloy 

partners such as InGaP and GaAsP NWs, simply by adding the As or In source into the 

growth medium.  
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5 GROWTH OF InP THIN FILMS AND NANO-NETWORKS  

 
5.1 Introduction 

 InP is one of the important semiconductors for solar cell applications
 
[130-132], either as 

an important alloy partner with GaP to produce wide-gap junctions [133,134] or as an 

independent material for single junction [130,131] cells with almost ideal bandgap. Its 

superior properties include high electron mobility of 5400 cm
2
/V.s [135,136]

 
close to that 

of other III-V semiconductors such as GaAs (8500 cm
2
/V.s) [137], and low surface 

recombination velocity (SRV) of ~10
3

 cm s
-1 

[138,139] compared to GaAs with 

extremely high SRV of ~10
6 

cm s
-1 

[140-142] that can be combined to define a figure of 

merit for solar application. Having high absorption coefficient [143,144], a thin layer InP 

with a direct bandgap can absorb the incoming sun light, efficiently
 
that can reach the 

theoretical Shockley-Queisser limit of ~ 33% under AM1.5G illumination [145]. It is 

reported that a 2 μm thick layer of InP can generate more than 95% of the maximum 

photocurrent efficiency produced by a layer with thickness of infinite, while a 100μ thick 

layer of Si is required to achieve the same ratio [146]. So far, growth of high quality InP 

thin film has mostly been demonstrated by more expensive MOCVD [147] or MBE [148] 

techniques, with some exceptions being the recently demonstrated In phosphorization 

[149] and closed space sublimation (CSS) [150] approaches. Despite the large grain size 

of InP obtained by phosphorization approach, using molybdenum metal substrate as the 

nucleation promoter and thermally evaporated SiOx-capped In exposed by P flux makes 

this approach somewhat complicated. It has been shown that presence of e-beam 

evaporated SiOx capping layer prior to phosphorization is crucial to prevent dewetting of 
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In thin film from the substrate [149]. Growth of InP via CSS is also limited by using the 

metal substrate of choice with a film growth temperature window of 600-700 ◦C and as-

received high purity InP powder as source material [150].  Hence, the extremely high 

precursor and preparation cost together with complexity of processes is still problematic 

for manufacturing the low-cost commercial InP solar cells. It is known that the 

mismatches in lattice parameters and coefficient of thermal expansion make the 

heteroepitaxy of high quality InP challenging. In fact, growth on non-epitaxial substrate 

leads to polycrystalline film with large concentration of recombination centers exerted by 

grain boundaries reducing the density of photogenerated minority carriers. In order to 

decrease the grain boundaries, it is important to grow InP with larger grain size in a 

controllable manner which is crucial for high performance solar cells. It is also essential 

for InP to be grown with largely independency to the growth on single crystal substrate.  

Growth of InP thin film using the typical low-pressure vapor transport method has 

advantage of low cost over other more expensive techniques. However, vapor phase CVD 

growth of InP using precursors such as solid source InP compound directly suffers from 

large difference in sublimation rate of In and P as shown in chapter 3. In the current 

chapter, a low cost VLS-VS assisted growth technique of high quality InP thin film or 

network. The growth approach is based on using single elemental precursor similar to InP 

NW growth which was presented in chapter 3. It will be shown here that the current 

approach which is believed to be the most direct approach for InP growth that leads to 

growth of highly stoichiometric InP in a wide growth temperature window. In addition, 

this approach enables us to control the film thickness and size of the grains by changing 

the growth parameters. The growth mechanism is explained in terms of interplay between 
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VLS and VS mechanisms for both Au-catalyzed and self-catalyzed to shed light on the 

key role that Au catalyst plays on promotion of nucleation leading to growth of coalesced 

nano-network structures.  More importantly, the current method is independent of the 

growth substrate such as silicon, InP, fused amorphous quartz, etc. This growth strategy 

provides a simpler, lower cost way towards producing high quality InP thin film that is 

scalable to high-volume manufacturing of solar cells given the fact that it requires the 

thin film-like processing steps after growth. Extensive material and optical 

characterization as well as device application will be described in detail in following 

sections.  

5.2 Growth Method 

A schematic of basic growth setup is shown in Fig. 61. Prior to growth, all substrates 

were first immersed in acetone and ethanol and DI water, respectively and sonicated for 5 

min during each step to remove organic contaminations from their surface. Subsequently, 

the native oxide was removed for Si substrate by soaking them in a dilute 5% HF solution 

for 2 min, and then they were rinsed with DI water and blown with ultra-high purity 

nitrogen gas to avoid re-oxidation. The InP substrate only was soaked in a 5% HCl bath 

for 5 min (instead of HF solution) to remove the oxide completely. A thin 1-1.5 nm layer 

of Au film was deposited as catalyst on various substrates such as Si, InP, amorphous 

quartz via physical sputtering. The pre-deposited substrate was placed downstream in a 

vertical configuration facing the flow direction.  As the source material, the high purity 

Indium spheres (1mm dia.) (99.99% Alfa Aesar) and red phosphorous (≥99.99% Sigma 

Aldrich) were placed inside a 4 feet long horizontal 34× 38 𝑚𝑚 (I.D.×O.D.) quartz tube 
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embedded in a single zone furnace (Lindberg/Blue M) at corresponding temperature of 

980 ◦C and 450 ◦C, respectively. The system was purged for 1 hr under 300 sccm flow 

rate of Ar+5% H2 carrier gas to evacuate the reactor from excessive oxygen, CO2 and 

water molecules inside the furnace tube. The set temperature of the furnace at the center 

was 980 ◦C that was achieved in a 24 min ramp-up time and the growth time is defined 

by elapsed time after the temperature reaches to the set value. As shown in Fig. 61, two 

separate magnetic manipulators made of quartz rods were used to control the locations 

(and thus the temperatures or evaporation rates) of source materials. It is important to 

notice that the P source material was outside of the heat zones during the temperature 

ramp-up time and only pushed to the desired location after the set temperature is reached, 

while In source was at the center of the heating zone from the beginning of the ramp-up 

time. InP crystals were grown under 20 sccm carrier gas flow on Au-deposited substrates 

positioned inside the furnace at downstream, where the substrate or growth temperature 

varies from 500 ◦C to 720 ◦C. Growth times were 2-60 min and total pressure range was 

~2 Torr. 

Figure 61. Schematic of growth set up for single elemental VLS-InP 
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5.3 Growth Mechanism  

Fig. 62 shows the SEM images of Au-catalyzed InP films for a series of growth studies 

with various growth times at total pressure of 2 Torr and temperatures of of 600 ◦C (Fig. 

62a) and 650 ◦C (Fig. 62b). As can be seen from the 2 min growth at 600 ◦C on Au-

deposited silicon substrate, VLS-growth of short NWs with diameter of less than 200 nm 

are initiated predominantly. The white dots are the Au nanoparticles formed from the 

original 1-1.5 nm thick Au film under Ostwald ripening at high temperature.  By 

increasing the growth time, VS growth mode leads to more growth transverse to the 

original NWs, as can be seen clearly from the zoomed-in image for the growth time of 7 

minutes. With the further increase of growth time, the size of grains increases which 

leads to the merging of grains and eventually forming a film with minimal voids and gaps 

or interconnected network depending on the growth time and other parameters such as 

temperature, as can be seen in the images for 15 mins and 1 hr growth times. The grown 

InP film is polycrystalline with randomly oriented facets. Comparatively, growth at 

higher temperature of 650 ◦C gave qualitatively similar results. The key difference is to 

be the number of initial nucleation sites and sizes of Au particles, as can be understood 

by comparing the two images for the growth time of 15 mins. Larger and smaller number 

of grains are seen at 650 ◦C than those formed at 600 ◦C. In addition, the VS growth at 

650 ◦C seems to be more active than at 600 ◦C, resulting less voids and more continuous 

film in the latter case. Details of spatial filling of the films will be further discussed later.  
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The difference between NW growth shown in chapter 3 and film growth is mainly the 

supersaturation levels of the second step after VLS nucleation and thereafter. If the 

supersaturation is purposely tuned to be high enough, it grows into film.  

5.4 Effect of Growth Temperature 

In order to understand and eventually be able to control the growth of films vs. NWs, the 

growth at different temperatures was experimented. At low pressure of 2 Torr, there is 

wide range of growth temperatures from 560 ◦C to 720 ◦C where InP films can be grown. 

At lower temperature of 500 ◦C, the growth of NWs was predominantly via the VLS 

mechanism (Fig. 63).  

Figure 62. SEM images for a series of growth studies for different lengths of growth times on Si (100) 

substrate at growth temperature of 600 ◦C (row a) and 650 ◦C (row b). The corresponding zoomed-in 

SEM images of samples grown at 600 ◦C are also shown. 
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Figure 63. SEM images of InP grown at wide temperature window of 220 ◦C. VLS-thin film polycrystalline 

InP are grown at range of 560 to 720 ◦C. Inset in top right of 500 ◦C growth is the high magnification 

image of VLS-grown InP NWs. Quantitative EDS elemental composition results show high stoichiometry 

of grown InP.  

 

The fact that growth at higher temperatures lead to more active VS growth mode than 

low temperature can be explained by kinetic of the growth using r=Aexp(-Ea/kT) 

equation, where r is the growth rate, Ea is the activation energy, k is the Boltzmann 

constant and T is the temperature. According to the growth rate equation, it is expected to 

observe higher growth rate at higher temperatures. This is equivalent to the higher 

reaction rate between In and P atomic species. Peiman et al. have reported growth of 

highly tapered short wires or island of InP by increasing the temperature and V/III ratio 

which accounts for the differences in In diffusion length [151]. From the SEM images, it 

can be clearly seen that the growth at higher temperatures results in larger grain sizes and 

less voids which leads to formation of more continuous film. 
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To quantify the continuity of the film or the spatial filling of grains, image processing is 

performed on SEM image acquired from four different samples (all adjusted to the same 

level of brightness and contrast) grown at temperature range of 600 to 720 ◦C, where the 

gray scale of images is digitized in the range of [0, 255], with 0 representing the silicon 

substrate as background. To properly represent the voids distribution, visual comparison 

of original images (Fig. 64a) and those overlaid with various threshold levels (marked as 

white in Fig. 64b). 

 

A best threshold value of 70 was determined this way. Gray levels below 70 are 

considered voids without growth and are marked in white in Fig. 64b. The spatial filling 

ratio is then defined as the percentage of the areas over 70 to the total area. This ratio is 

plotted as a function of growth temperature in Fig. 65a. As can be seen, there is a 

monotonous increase of spatial filling with growth temperature, correlated with an 

Figure 64. SEM study of temperature effects on growth of InP film with Au catalyst . The top via SEM images 

of the InP films grown at temperatures of 600, 650, 680 and 720◦C from left to right (a). Processed images 

shown in row “a” with various spatial filling ratios (b). The white areas represent voids as obtained by the 

image processing (see text for more explanation). The numbers on top left are the spatial pore filling given 

by %. The side view corresponding SEM images of samples in row a showing the thickness of fils (c).  
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increase of grain sizes. The maximum filling ratio of ~96% is achieved at 720◦C for 1 hr 

growth. The thickness of the InP film can also be estimated from the cross-section image 

of the samples (Fig. 64c), ranging from 1.6 μm to 5.5 μm in the temperature from 600◦C 

to 720◦C. The thickness of InP thin film vs. growth temperature is shown in Fig. 65b. 

 

Figure 65. Quantitative measurements on temperature effects on the growth of InP film with Au catalyst. a) 

plots of spatial pore filling ratio (red) and average grain size (blue) vs.  growth temperatures. Curves are 

obtained by exponential fitting in Origin, b) plot of thickness vs. growth temperature. c) Deviation from 

perfect stoichiometry based on EDS elemental analysis. 

 

The mean value of the grain size ranges from ~2.5 μm to 5.1 μm for the growth 

temperature varying from 600◦C to 720◦C (Fig. 65a). The estimated lateral grain size (G) 

and the spatial filling (SF) are both fitted for the temperature (T) dependence (blue and 

red curves, respectively), as shown in Fig 65a.  

 

Table 4.  EDS elemental composition obtained from multiple spots for the samples grown at different 

temperatures. 
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The best exponential fits (obtained by ExpGrow1 function in origin) are given by 

G≈1.78 + 2.41X10
-4

 Exp (T/75.50) and SF≈99.71-1.58 Exp(-T/40.58), respectively. 

EDS measurements were performed on multiple points on the samples grown at different 

temperatures, as presented in Table 4, where the average and calculated deviation from 

perfect stoichiometry are shown. The deviation from stoichiometry (%) for p-rich InP is 

calculated by (P(%)-50)*2  formula. This deviation is plotted as a function of temperature 

in Fig 65c. As one can see, our growth in the wide range of growth temperature window 

of 160 ◦C only results in less than 2% deviation from perfect stoichiometry. 

 

The difference between the temperature dependent-average grain size and film thickness 

values for the same growth temperature window is indicative of the unequal lateral and 

vertical growth rate. Also, by taking the direct relationship between growth temperature 

and grain size and pore filling ratio into account, it was attempted to grow a void-free 

continuous polycrystalline film by further optimizing the growth temperature (Fig. 66).  

Figure 66. Schematic time-temperature diagram for two-step growth at a) 45 min @ 650◦C followed by 

15 min growth @ 600◦C, (b) 45 min @ 680◦C followed by 15 min growth @ 650◦C min, and (c)45 min 

@ 720◦C followed by 15 min growth @ 680◦C (c). Corresponding SEM images are embedded in each 

plot. 
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It is important to know that during the growth there is always a trade-off between 

adsorption and desorption of atomic species which becomes rate-limiting factor of the 

growth. This suggests that a two-step growth at higher temperature followed by a 

relatively lower temperature might reduce the desorption rate of atoms from the crystals 

at last stage of the growth. Continuous polycrystalline film (Fig. 66c) was achieved by a 

growth at 720◦C for 45 min followed by 15 min growth at 680◦C. However, grains are 

not homogenous in size compared to sample grown at 720◦C for 1hr. 

5.5 Effects of Growth Substrates  

To substantiate the non-epitaxial nature and versatility of our growth mechanism, InP 

films were obtained on various substrate such as Si (100) and (111), InP (100) and fused 

amorphous quartz. Quality of VLS-VS assisted growth of InP thin film is largely 

independent of type of the substrate; SEM images of samples grown on the three different 

samples for an hour at 720◦C are shown in Fig. 67.  It is seen that the polycrystalline InP 

with multi-facets (Fig. 67a) are grown on Si and fused quartz, whereas the film grown on 

InP (100) substrate has facets parallel to surface (Fig. 67b) of substrate indicating the 

[100] as the growth direction. It is known that misorientation of grains relative to the 

substrate results in formation of multi-facets depending on the misorienation angle and 

direction [152]. This is reflected by surface topography of the grown samples, as can be 

clearly seen on samples grown on silicon and amorphous quartz substrate. This is 

observed in self-catalyzed growth as well as will be shown later.  



  115 

From a comparison between thickness of InP grown on InP (100) and Si (100) 

substrates, it can be clearly distinguished that the non-epitaxial growth rate on Si 

substrate (5.5 μmh-1) is lower than that of homoepitaxy (6.2 μmh-1) at higher growth 

temperature of 720◦C, while the growth speed is the same (2.3 μmh-1) at 650◦C for 1 

hour (Fig. 67d and 67e). Incidentally, it was noticed that, due to the mismatch in thermal 

expansion coefficients between InP (4.75 10
-6

/K), Si (2.60 10
-6

/K) and fused silica (0.55 

10
-6

/K) [153], thermal-induced stresses during the cooling process following the growth 

leads to the peeling-off of the film of 4-5 μm thick from the substrates. This might be an 

interesting approach towards removable and transferable InP film onto other substrates 

for making solar cells, etc.   

5.6 Au-Catalyzed vs. Self-Catalyzed Growth 

As it was discussed, Au-catalyzed growth promotes the formation of InP network and 

eventually highly coalesced polycrystalline InP film. However, to better understand the 

Figure 67. InP films grown on various substrates. a) Au-catalyzed InP on Si (100), b) Au-catalyzed InP on 

InP (100), c) self-catalyzed InP on fused amorphous quartz. All three samples are grown at 720◦C for an 

hour. Comparison of temperature dependent thickness of InP film grown on Si (100) (d) and InP (100) (e) 

at two different temperatures of 650 ◦C and 720 ◦C. 
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growth mechanism it is required to also study the self (In-)-catalyzed growth explicitly in 

this case. Ideally it is preferred to avoid using external catalyst and try to use the 

vaporized precursor that contributes as reagent species in nucleation and growth of NWs.  

It is known that the use of metal catalyst such as Au in the VLS growth can cause Au 

contamination associated with formation of deep level traps in the grown materials, 

detrimental for device performance [154]. Therefore, the self-catalyzed approach is 

preferred where the metal element of a III-V compounds (such as In in the case of InP) is 

used as the catalyst without introducing foreign metal elements. It has been reported that 

self (In-)-catalyzed growth gives rise to broader size distribution of NWs than when pre-

existing Au catalyst is used, due to a continuing nucleation of the In droplets during the 

growth [155]. In order to understand the difference between Au-seeded and In metal-

catalyzed growth, additional self-catalyzed experiments were carried out. In metal was 

pre-seeded during the initial temperature ramp-up stage of 24 minutes, with In source 

placed at the location with temperature ~ 980 ◦C and no P was introduced. After the 

ramp-up, P was then introduced with all the other conditions and growth time being the 

same as for the Au-catalyzed growth. The SEM images obtained for two samples grown 

on silicon substrate at 600 ◦C for 1 hr under Au- and self-catalyzed growth conditions a 

are shown in Fig 68 (top row of Fig. 68a and 68b). By precise looking, some major 

differences between can be observed from the two cases: from the processing of both 

images using ImageJ software by thresholding each one in gray scale between 53-255 via 

binary watershed processing mode, the number of grains per the same area (~47*26 μm
2
) 

of self-catalyzed sample is greater value than that for Au-catalyzed sample. (449 vs. 159). 
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Gray levels below 53 are considered voids without any grain and are marked in blue 

(middle row images in Fig. 68).  The histogram of grain size distribution for both samples 

is plotted in the bottom row of Fig. 68.  As can be clearly seen from the original and 

processed images, the self-catalyzed growth leads to more symmetric bell-shape 

distribution of grains. However, Au-catalyzed growth also leads to broader grain size 

distribution up to 4.5 μm, while the same value for self-catalyzed is up to 3 μm. It is 

worth noting that the center-size distribution for the Au-catalyzed shows a value of ~2-3 

μm vs. 1-2 μm for self-catalyzed. For the self-catalyzed growth at high temperatures the 

continuous nucleation of In is less observed and as a result the grains are more uniform as 

can be seen from a comparison between In-catalyzed growth at 650 ◦C and 720 ◦C (Fig. 

69a and 69b). 

Figure 68.. Self-catalyzed vs. Au-catalyzed InP: Image processing results for comparison between 

SEM micrographs of samples grown InP grown at 600 ◦C for 1 hr under two different condition: a) 

Au-catalyzed, and b) self-catalyzed. The middle image in each column is obtained based on the gray 

scale thresholding between 53 and 255 via binary watershed processing mode using ImageJ 

software. The histogram for grain size distribution of each sample is shown at the bottom. 
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Figure 69. SEM image of the InP films grown under self-catalyzed condition; a) on Si (100) at 650 ◦C, b) 

on Si (100) at 720 ◦C, c) on InP (100) substrate at 720 ◦C. Growth time for all three samples is 1 hour. 

Insets on the top right of each figure are the magnified view from the corresponding images. Figure d) 

shows the cross-section image of the film shown in Figure c.   

 

It is worthy to mention that, for self-catalyzed InP grown at 720 ◦C, polycrystals with 

grain size of greater than 10 μm was also obtained in form of InP islands that are less 

coalesced. The self-catalyzed growth on InP (100) substrate at 720 ◦C also shows 

formation of a very flat (parallel to the surface) and coalesced film, apparently due zero 

lattice mismatch. 

5.7 Structural Characterization 

Energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and Raman 

measurement were carried out to evaluate material quality of grown samples. EDS results 

were shown in connection with temperature dependent study in Fig. 65c.The XRD 

measurement of a sample grown on Si (100) at 600◦C revealed the absence of any 

obvious In peak present in diffraction pattern showing complete reaction between In and 

P. All peaks match with zinc blende (ZB) structure (JCPDS card 00–010-0216) [156]. As 



  119 

shown in Fig. 70, the (111) peak in XRD pattern is disproportionally stronger compared 

to the XRD pattern of a single crystal InP than (200) and (220) peaks. This indicates that 

the polycrystal grains have larger dimensions along [111] direction. This is consistent 

with the smaller surface energy of (111) planes and the preferred growth direction along 

[111].  

 

Furthermore, the Raman measurement of polycrystalline InP was performed. Raman can 

reveal some subtle crystal imperfections that we are not able to obtain from XRD or 

TEM. Room Temperature micro-Raman measurement of InP grown at different  

temperatures were carried out using an unpolarized laser as the excitation source with 

wavelength of 532 nm and low laser power of 6.0 mW at the surface of the sample. 
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Figure 70. XRD spectrum of InP polycrystalline film grown on Si (100) at 600 ◦C for 1 hr. 
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The Raman spectra shown in Fig. 71 match up to second order with the reference values 

obtained from single crystalline InP [157]. The anti-Stokes transverse optical phonon 

(TO), and the longitudinal optical phonon (LO) peaks are observed at around 305.3 cm
-1

 

and 344.6 cm
-1

, respectively. Second-order peaks of 2TO (~617 cm
-1

), LO+TO (~652 cm
-

1
) and 2TO (~686 cm

-1
) are also shown with a trend of intensity enhancement towards the 

higher frequencies. All the peaks are normalized to TO phonon peak intensity as the 

strongest peak and they are all in close agreement with previous reports [157,158]. It is 

known from the selection rules for zinc blende structure the TO mode is allowed in 

Raman backscattering only from (110) and (111) surfaces, whereas the LO modes are 

observed in backscattering from (100) and (111) surfaces [117]. The fact that both TO 

Figure 71. Raman spectra of InP thin film grown at different temperatures for 1hr. The intensity scale of 

all spectra has been normalized to the TO peak and the results match up to second order with the reference 

values obtained from single crystal InP wafer. The right plot represents the second order peaks, 2TO, 

TO+LO, and 2LO from left to right. The intensities for the right graph are 12X. 
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and LO appear in Raman spectra is indicative of texturing of the grains along (111) 

planes regardless of (100) orientation of silicon substrate. This has been also observed in 

MOCVD grown polycrystalline InP grown on molybdenum substrate [147].  

5.8 Optical and Electrical Properties 

Room temperature PL measurement under optical pumping of Ti-sapphire CW laser 

(λ=810 nm) showed a symmetric band-to-band emission peak at 925 nm (1.34 eV) for the 

ZB InP grown on Si (100) and Si (111) (Fig. 72a). The PL characteristics of coalesced 

InP samples grown at 600 ◦C was also compared with that of an undoped (intrinsically n-

type, (1~10)E15 cm
-3

) InP single-crystal wafer. From PL measurements for the reference 

and our InP samples by taking into account reflectivity of the wafer (42.80%, calculated 

from Fresnel’s equation for an incident light angle of 45◦) the peak positions are nearly 

identical (@ 925 nm), but the full-width-at-half-maximum (FWHM) is slightly broader 

(34 nm vs. 29 nm or 49 meV vs.41 meV) for coalesced polycrystalline InP samples on 

both Si (100) and (111) substrates. Broader emission bandwidth might be caused by 

higher concentration of carriers in grown InP. Also, to show the thickness uniformity of 

the grown InP across entire surface of the substrate, PL was measured PL for 12 different 

points in an s-shape scanning path (Fig. 72b). The examined PL intensity obtained from 

self- and Au- catalyzed samples grown at the same condition (Tg= 600◦C, 1 hr) showed 

that the average PL emission intensity of Au-catalyzed sample is higher than that of self-

catalyzed sample and there was ~ 32% and 20% variation between two points with 

minimum and maximum intensities for self- and Au- catalyzed, respectively. This is due 

to the formation of grains of various size in self-catalyzed growth that are relatively 
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smaller than those grown under Au-catalyzed condition as shown in Fig. 68. To shed 

further light on optical quality of the grown InP, a systematic PL measurement is 

performed on our sample in comparison with single-crystal InP wafer. Taking reflectivity 

of the wafer as the reference into account, the PL emission characteristics of InP grown 

on Si (100) and Si (111) under different laser pumping power are evaluated. From the 

pumping power-dependent PL spectra for grown InP samples and single crystal InP, it 

can be seen the enhancement in PL emission follows the same trend.  

 

The normalized PL spectra for all samples (inset of Fig. 73a-c) indicates that band-edge 

transition is predominant and FWHM is not a function of pumping power. This is another 

strong reason on low density of electronic defect states in grown InP sample. 

To identify the underlying recombination process by which the electronic transition 

occurs, we have further analyzed the integrated PL emission intensity-dependence on the 

excitation power. PL emission intensity is expressed as IPL = cIex
k  , where IPL is the 

Figure 72. Optical characterization of InP film; a) Room temperature PL spectra of VLS- grown InP on 

silicon (100) and (111) substrates in comparison with an undoped single crystal wafer as a reference 

(blue line)., b) position dependent PL taken from different spots in a s-shape scanning path for self- and 

Au- catalyzed, respectively (inset is the real-color photo of as grown Au-catalyzed sample). 
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integrated PL emission intensity, c is the proportionality constant, Iex is the laser 

excitation power and k is an exponent related to the recombination type. 

 

Generally, for excitation laser light with an energy higher than the bandgap of material, k 

value is between 1 and 2 for the free- and bound-exciton emission, k < 1 for free-to-

bound and donor-acceptor pair recombination. k around 1 means excitonic radiative 

recombination is more dominant than defect-involved (non-radiative) recombination 

processes [159]. From a linear fitting of the plot for grown InP on Si (100) and (111) k 

value is obtained to be 1.082 ± 0.018 and 1.134 ± 0.016 which is indicative of the 

Figure 73. PL spectra at different pumping levels measured under optical pumping of Ti-Sapphire 

laser (λ=810nm), with taken into account the reflectivity of wafer, for a) InP grown on Si (100), b) 

InP grown on Si (111), c) Undoped InP (100) wafer, d) The log-log plot of the integrated PL 

intensity versus excitation power with linearly fitted data showing the k value for different 

samples. 



  124 

predominant band to band electronic transition of the carriers and high crystal quality of 

our samples (Fig. 73d). For the InP film grown in InP substrate, a somewhat larger index 

of 1.398 ± 0.015 was obtained. The larger scaling index is mainly due to the increasing 

penetration into the InP substrate as pump power is increased.  

5.9 Hall Mobility Measurement 

The room-temperature Hall measurement was carried out to determine the carrier 

concentration and mobility of Au-catalyzed InP grown at 720 ◦C on quartz substrate (for 

1hr). Measurement of mobility on a substrate that has low resistivity (InP, our lightly 

doped Si) makes it difficult to measure the mobility as it will be influence the result that 

we get for the film. That requires the as grown film to be peeled off from low resistive 

substrate prior to Hall measurement. The grown InP is found to be n-type with 

unintentional bulk doping concentration of 1.7 × 10
18

 cm
-3

 and electron mobility of 13.25 

cm
2
/V.s. P-rich InP has shown to have higher net carrier concentration compared to 

stoichiometric and In-rich InP [160,161].
 
However, the low electron mobility value of the 

grown InP samples here can be attributed to the grain size effect [162], doping 

concentration or compensation ratio [163].   

5.10 Time-Resolved Photoluminescence Lifetime 

The time-resolved photoluminescence (TRPL) lifetime was measured for the InP grown 

at various temperatures. As the excitation source, a 405nm pulsed laser diode was used in 

combination with a time-correlated single photon counting (TCSPC) detector. The PL 

lifetime of all samples are below 0.7 ns for Au-catalyzed samples grown at temperature 

range of 560◦C to 720◦C (Fig. 74a). 
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It is generally expected to have a higher minority carrier lifetime for the sample grown at 

higher temperatures due to reduced concentration of point defects such as interstitials and 

vacancies [149]. However, the highest lifetime that we observed is for polycrystalline InP 

grown at temperature of 650◦C and then start to decrease beyond 650 ◦C.  It is known that 

the grain size and boundaries play an important role in carrier dynamics of 

polycrystalline crystals by reducing the diffusion length of the carriers due to increased 

concentration of defects such as impurities, dangling bonds and dislocations [160-162].
 

As shown in Fig. 64, the size of the grains increases by growth time which corresponds to 

longer lifetime. The decrease in lifetime for growth temperature higher than 650◦C might 

be due to diffusion of Au atoms into InP forming a shallow donor level [164] that 

contributes into the non-radiative recombination. Therefore, it is of particular importance 

to determine the difference in minority carrier lifetime between InP synthesized using the 

Au-catalyzed and self-assisted growth. Suitability of Au-catalyzed VLS grown NWs for 

optoelectronic application in terms of minority carrier lifetime has been examined 

[165,166].
 
This is under debate whether the residual atomic Au have significant impact 

Figure 74. Lifetime measurements of InP film: a) Average time-resolved photoluminescence (TRPL) 

lifetime as a function of growth temperature. b) Comparison of TRPL lifetime for two different samples 

grown at 720◦C under self- and Au-catalyzed condition. 
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on optoelectronic properties of as grown materials, even though, there are systematic 

studies showing concerns over the effect of Au contamination on device quality [167].
 
As 

shown in Fig. 74b comparison between TRPL lifetime measured for two different 

samples grown at 720◦C under self- and Au-catalyzed condition showed about three 

times increase in lifetime of InP in the absence of Au catalyst. This result strengthens the 

hypothesis of diffusion of Au atoms into the crystal structure, thereby reducing the 

lifetime. To summarize key material characteristics of grown InP; table 5 represent the 

quantitative data obtained from our grown InP films in comparison with previously 

reported works.  

 

 Table 5. Comparison of material quality and optoelectronic properties for InP grown using various 

techniques. 
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5.11 Device Application: Solar Cell  

A p-n heterojunction solar cell based on InP NPs was demonstrated. The detailed 

Schematic of fabrication process flow is shown in Fig. 75. To fabricate the InP NP-solar 

cell, first InP was grown (at 650 ◦C) on low resistivity (0.001-0.005 Ω cm) p-type silicon. 

An Aluminum back contact was sputtered on silicon after growth.  The NPs then were 

etched with a dilute (5%) HCl solution to remove the native oxide and clean the NPs 

sidewalls.  A thin (~50 nm) layer of SiO2 was immediately grown by PECVD to 

passivate the surface of InP absorbers. Different interlayer dielectric (e.g., SOG, SU8, 

PMMA) were examined to fill the gaps between pillars by spin-coating. The spin-coated 

sample was polished using an Allied High-Tech MultiPrep Polishing System with a 

diamond lapping film, 0.1 micron to planarize the surface. Fig. 76 shows a representative 

image of fabrication steps before and after spin-coating of SOG followed by polishing 

and deposition of ITO and n-contact. For the sample that is demonstrated as the best 

working device, PMMA was used as the interlayer dielectric.  

Figure 75. The process flow for fabrication ITO/ InP/ Si solar cells 
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After PMMA spin-coating, an O2 reactive ion etching (RIE) was used to etch back the 

extra PMMA on the top to open the NP tips. Then buffered HF (20:1 BOE:DI-H2O) was 

used to remove the SiO2 on the open tips before sputtering of the indium-tin-oxide (ITO) 

transparent conductive layer. Finally, the Au or Ag contacts are deposited via evaporation 

(Fig. 76d). The patterned cells are in square shape with 1 × 1 mm dimension. is known 

that NPs can result in suppressed reflectance and better light trapping in solar cells [ 174]. 

SiO2 is expected to increase the PL lifetime by surface passivation of dangling bonds 

[175].
 
Also, it can result in enhanced light absorption [176]. 

The absorptivity of naturally textured InP NP grown on quartz (reference) is compared 

with InP film. ITO is also included in such measurement performed by integrating 

sphere, since it is used as the window layer that light must pass through and reach the 

absorber layers (see Fig. 77).  

Figure 76. SEM images representing the interlayer dielectric filling; a) as grown InP pillars, b) a NP 

cell with spin coated dielectric layer SOG and polished, c) cell array before deposition of ITO (n-

layer), d) solar cell after deposition of Ag (n-contact) 
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A representative top view SEM image of starting as grown InP sample and solar cell after 

deposition of ITO is shown in Fig. 78.   

The schematic of the optimum cell architecture as well as the I-V characteristics of the 

best working device is show in Fig. 79. The NP solar cell based on Thin-film VLS InP 

absorber exhibit 5.29% efficiency with an open-circuit voltage (Voc) of 529 mV, a short-

circuit current density (Jsc) of 25.36 mA/cm
2
, and a fill factor (FF) of 39.41% under 

AM1.5G solar illumination at 1-sun intensity. 

Figure 77. Absorptivity measured with integration spheres for self-textured InP 

film network grown at 600 ◦C for 1hr on quartz. 

 

Figure 78. SEM image from solar cell fabrication steps; a) as grown InP pillars, b) a NP cell with spin 

coated dielectric layer (PMMA) and deposited ITO. 
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Figure 79. a) Schematic of NP-cell architecture, and b) representative J-V characteristics of best InP pillar-

based solar cells with interlayer dielectric and cell configuration of ITO/n-InP/p-Si. 

 

Although the preliminary solar cell devices based on the InP pillars on silicon substrate 

are demonstrated, further optimization is needed for the performance and low-cost 

fabrication. Especially, the improvement of the quality of ITO layer and its conformity 

covering all the InP pillars is needed to obtain a solar cell with a higher efficiency.  

Table 6. Comparison of InP solar cell performance parameters with previous work  

 

 

A comparison of device performance between our work and previous InP solar 

cells (Table 6) reveals that there is plenty of room to improve the efficiency of our solar 

cell. In addition, this can be achieved by further minimizing the fill factor losses and 

grain engineering [177] in material growth given the low cost and faster growth approach 

that leads to a reduced energy payback time for the final module [177, 178].
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5.12 Summary 

Growth of high quality III-V such as InP films using the inexpensive approaches 

is critical in lowering the cost of solar energy. So far, InP films have been produced 

mostly using the high-cost precursors using the single-crystal substrates in the case of 

epitaxial growth. In chapter 5, a low-cost growth of high quality polycrystalline InP thin 

film and nano-networks using a direct co-evaporation of single elemental In and P 

precursors via a chemical vapor deposition technique was demonstrated for solar cell 

applications. A very small deviation from the perfect stoichiometry for the films grown at 

a wide temperature range of 560 ◦C to 720 ◦C was observed. The proposed method was 

shown to be largely independent of type of substrate for both Au and self- (In-) catalyzed 

growth indicating the versatility of the growth approach. The underlying growth 

mechanism of nano-networks and coalesced thin films was explained via interplay 

between VLS and VS regimes. The key role that Au catalyst plays in the promotion of 

transverse growth was well defined. The grains size and spatial pore filling as well as the 

thickness of InP film was shown to be controllable by changing the growth parameters. 

Structural, optical and electrical properties of the grown films were investigated and 

eventually the preliminary solar cell devices were fabricated on a p-type silicon with an 

ITO contact layer. It is believed that our growth strategy provides a simpler approach for 

producing the high quality InP thin films to be used for fabrication of high efficiency 

solar cells, while lowering the cost for both precursors and growth substrate.  
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6 COMPOSITION-GRADED InGaAsP TERNARY ALLOY NANOWIRES  

 

6.1 Introduction 

The substrate insensitivity of NWs has led to epitaxial growth of device-quality materials 

on inexpensive silicon platform regardless of a large lattice mismatch [179]. More 

importantly, this relaxed requirement on substrate of choice for NWs allows for growth 

of alloys of new compositions that are not accessible by planar growth technique [11]. 

This flexibility provides new design space using semiconductor alloys with 

unprecedented access to new bandgap ranges. However, their bandgap tunability in a 

widely controllable wavelength range has been the main obstacle for developing novel 

optoelectronic devices such as tunable lasers [11], photodetectors on a single chip [12] 

and monolithic solar cells for dispersive concentration photovoltaics [15].
 
Rational design 

and synthesis of semiconductor alloys, monolithically [13] or on a single substrate [180], 

requires different concentration of source reagent and growth temperature for various 

alloy composition. Dual gradient method (DGM) [14] provides a unique means for 

growth of composition graded semiconductor alloy NWs. Combinatorial chemistry 

employed in DGM allows for simultaneous synthesis of materials of various composition 

with different enthalpy of formation. This method combines both temperature gradient 

and spatial source reagent gradient methods enabling us to cover a wide range of 

composition within a single substrate that are otherwise impossible to grow. Such growth 

strategy with a large range of composition control has been extensively implemented on 

II-VI materials [14-16].  Because of superior electrical and optical properties and existing 

rich knowledge in device fabrication based on III-V materials, it is of great interest to 

study similar possibility for III-V alloys which are largely unexplored so far. Thus far, 
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bandgap tuning of full composition range InGaAs [181], GaAsP [182] InGaP [84] alloy 

NWs has been reported.
 
These results comprise the NWs of single compositions obtained 

by multiple growth runs for various alloys over the entire range between two binary 

compounds. In a most recent work, Kuykendall et al. have demonstrated composition-

graded InxGa1-xN on a single substrate over the entire range from the near-ultraviolet to 

the near-infrared region [180].
 
Composition-graded III-V subcells of various bandgap 

could be potentially better alternative to substitute tandem solar cells which are 

practically limited by expensive fabrication cost, complexity in adding the new junction 

and lattice-matching requirement. Full composition range of InGaAsP alloy system is 

able to cover a large range of bandgaps from InAs (0.35 eV) to GaP (2.25 eV), appealing 

for many applications such as full light-spectrum solar cells, multi spectral detector and 

widely tunable lasers. In the current chapter, growth and characterization of spatially 

composition-graded of InxGa1-xP, InxGa1-xAs and GaAsxP1-x ternary alloy NWs using 

DMG on a single substrate will be presented in detail.  It will be shown that the dual 

gradient approach plays an important role as an effective tool for rapidly identifying the 

growth parameters in terms of adjusting the temperature and source reagents gradients. 

6.2 Growth of Composition-Graded InGaP 

Growth of InP and GaP NWs via a facile vapor transport CVD method were presented in 

chapter 3 and 4, respectively. Full composition range of InGaP alloys between two III-

phosphide binaries can cover a wide range of bandgaps of (1.35, 2.25) eV which can be 

used as a wide-bandgap subcell to design a monolithically integrated laterally arrayed 

multiple bandgap (MILAMB) solar cells for spectrum-splitting photovoltaic systems [15, 
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31, 183]. However, InGaP alloy NWs have been grown using MOCVD method, on III-V 

single crystalline substrate, with composition-dependent luminescence in various ranges 

of 755-871 nm [184], 590-760 nm [185], 574-867 nm [186]. Kornienko et al. have 

recently reported solution phase synthesis of InGaP in full composition range from 550 to 

920 nm [84], but there is no report on integrated bandgaps of InGaP in a wide range from 

a single substrate. In this part, growth of composition-graded ternary InGaP alloys in a 

single growth run using Au-catalyzed VLS growth on a single Si substrate is presented. 

Here, a relatively wide range of PL emission from 580-780 nm from a monolithic single 

substrate is demonstrated. InGaP alloys are grown using a vapor transport method. A 

schematic of the growth setup is shown in Fig. 80a. As the source reagents, the high 

purity Indium spheres (1mm dia., 99.99% Alfa Aesar), red Phosphorous (≥99.99% 

Sigma Aldrich) powder, ball-milled Gallium Phosphide (99.999% Alfa Aesar) powder 

were loaded inside two different inner mini tubes embedded inside the larger diameter 

quartz tube separately, giving rise to the material spatial dispersion (source gradient). A 

piece of silicon (111) substrate with dimension of 0.7 by 1.2 cm pre-deposited with a thin 

(2-3 nm) layer of Au film acting as the catalyst of VLS growth was placed at downstream 

side of the furnace. The substarte was in a vertical configuration facing the end of 

minitubes with slight tilting (0.5-1 cm) along the tube axis, such that it covered wide 

range of temperature from 680 ◦C to 800 ◦C (temperature gradient). The tube furnace was 

heated up to set temperature of 1000 ◦C and the growth was maintained for 15 min under 

a 50 sccm (standard centimeter cubic per minutes) flow of Ar+5% H2 carrier gas with a 
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 total growth pressure of 2.8 Torr. Excess red phosphorus boat was used to replenish the 

phosphorus lost from GaP source with emphasis on the effects of vastly different 

sublimation rates of the associated III and V elements above the congruent sublimation 

temperature of binary III-V (e.g., Tcs for InP and GaP is reported to be 571 and 268 ◦C) 

[21, 104]. After growth, the sample was kept inside the furnace to naturally cool down to 

room temperature. It was seen in chapter 3 that using single elemental In and P leads to 

growth highly stoichiometric InP with atomic percentage of close to 1:1 ([P%] =49.32 

and for [In%] =50.68), while using binary InP compound results in non-stoichiometric 

InP with In-rich source material (97.10% In) after 15 min evaporation at 880 ◦C which 

becomes rate-limiting factor of the growth. To give an insight on importance of 

tempertaure optimization in such methodology for growth of InGaP, it is first required to 

Figure 80. A schematic of growth se up for composition-graded InxGa1-xP ternary alloy. The top view 

of the minitubes with cut out shape at a 45 ° angle is also shown. Room-color photograph of sample 

grown in temperature range of 750 to 800 ◦C (b) and 680 to 750 ◦C.  
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find the ideal growth tempretaure range for each of binary compunds of  InP and GaP 

using vapor transport CVD method. In chapter 5, the ideal growth window for thin film-

VLS InP with polycrystalline structure to be from 560 to 720 ◦C, while this range value is 

obtained to be 720 to 800 ◦C for VLS-grown GaP (see chapter 4). To achieve success, an 

overlap in growth windows of binaries is required. Hence, the right growth temperature 

must be selected to ensure both growths at InP- and GaP-rich sides are taking place. For 

instance, changing the substrate temperature range from 750 ◦C to 800 ◦C with a 0.5 cm 

tilting along the tube axis leads to almost no crystal growth in InP-rich region which is 

shown in Fig. 80b that above 750 ◦C InP is no longer stable. To successfully achieve a 

wide range of InGaP alloys, the sample was tilted 1cm along the tube axis rendering 70 

◦C temperature gradient from 680 ◦C (InP-rich side) to750 ◦C (GaP-rich side) As seen 

from the real-color image of as-grown InGaP sample (shown in Fig. 80c), the color 

gradually changes from grey (InP-rich region) to red, orange and eventually yellow 

corresponding to GaP-rich region. The temperature gradient together with material 

dispersion obtained by minitubes of carrying different source reagents favors different 

levels of formation enthalpy for alloy compositions with all needed bandgap from InP- to 

GaP-rich sides. Fig. 81a shows the SEM images taken from 12 representative points 

(marked from left to right) of composition-graded sample along the length of the sample 

(1.2 cm) showing the morphology changing from polycrystalline to NW (up to 10-15 μm 

in length) as we move from InP-rich to GaP-rich side. 
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 Figure 81. Position-dependent SEM and EDS of composition-graded InGaP:  (a) Real color 

photograph of as-grown sample with color changing from grey (InP-rich) to yellow (GaP-rich) side. 

The SEM images are taken from the corresponding data points of In-rich (1) towards Ga-rich (12). (b) 

EDS elemental analysis of InxGa1-xP taken from 12 spots along the length of the substrate with 

indium content varying from x= 0.12 to 0.77.   
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The change in growth morphology indicates different growth kinetics mainly due to 

different level of supersaturation achieved by evaporation rate of the source reagents with 

different vapor pressures. It has been seen that during VLS growth the change in 

supersaturation level can affect the morphology of the obtained nanostructures [63,187]. 

Here, the lower supersaturation or vapor pressure obtained by lower evaporation rate of 

GaP source favors NW growth, while indium and phosphorous with a much higher 

evaporation rate of results in formation of polycrystalline In-rich InGaP. Likewise, the 

position-dependent energy-dispersive X-ray spectroscopy (EDS) spot analysis of 

corresponding regions reveals that In content varies from x= 0.12 to 0.77 (Fig. 81b).   

6.2.1 Position-Dependent PL 

 

To examine the optical quality of sample, an Nd: YLF laser (Spectra Physics, λ = 349 

nm, repetition rate of 10 Hz, pulse width of 5 ns) with a beam spot size of ~ 100 μm was 

used as the optical pumping source for photoluminescence (PL) data acquisition at room 

temperature. From the refined PL measurement of different points along the length of the 

sample a strong emission with a gradual variation in wavelength from 578 nm 

composition, to 781 nm was observed (Fig. 82a). The width of PL peak or FWHM (full 

width at half maximum) is often indicative of the crystal quality of optical material. 

Broadening of PL linewidth might be due to existence of defects or possible 

inhomogeneity of alloy composition. Continuous PL mapping along the length of the 

sample also showed presence of broad peaks for In-rich intermediate compositions. As 

seen from normalized PL spectra, the narrow peaks at the two ends indicate high alloy 

quality. In addition, the red-shifted peaks at Ga-rich ends are due to known defect band 

emission.  In order to understand the composition dependency of PL characterstics or 
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other physical quantities such as lattice constant, etc., the Vegard’s law is used to 

calculate the composition of InGaP using below formula; 

Q(InxGa1-xP)= x.Q(InP)+ (1-x).Q(GaP)-bx(1-x)                     (6.1) 

,where Q is the physical quatity, x is the fraction of x in composition of ternary alloy, and 

b is the quadratic coefficient  called bowing parameter which describes the deviation 

from linearity.  The wavelength values obtained from the central PL peak position and 

those from linear bandgap interpolation (b≅ 0) using EDS results by Vegard’s law show 

a good overall agreement (Fig. 82b).   

 
 
 
 
6.2.2 Position-Dependent XRD  

 
In order to determine the crystal quality/structure of as grown alloys across the entire 

length of the sample, the selected-small area high resolution X-ray diffraction (XRD) was 

utilized. For the precise measurement, a 1/16
◦
 narrow slit was used to shrink the size of 

Figure 82.  a) Normalized position-dependent PL spectra along the grading direction of InxGa1-xP with 

increase in indium content with central wavelength ranging from 578 to 781 nm. b) position-dependent 

PL peak wavelength (blue squares) and wavelength values obtained from interpolated EDS compositions 

(red circles). 
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the striking x-ray beam to ~20 μm (spatial resolution),  which was smaller than the beam 

size of laser (~ 100 μm) used for PL measurement. All the XRD patterns shown in Fig. 

83 are obtained by a point to point mapping along the length of the sample which match 

with the cubic zinc blende(ZB) structure with (111) diffraction peak representing the 

main crystallographic plane of InP and GaP. From InP-rich to GaP-rich end, the (111) 

peak gradually shifts towards larger values of diffraction angle (2θ) indicating the 

formation of intermediate InGaP alloys with decreased lattice constant. Presense of the 

double peaks as we move towards InP-rich side is regarded as an indicator of phase  

 

 

segregation of  InGaP alloys. Observation of phase separation for a wide range of 

composition is due to the large differences in lattice constants of InP (5.8687 Å) and GaP 
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Figure 83. Position-dependent full range XRD patterns of composition-graded InxGa1-xP 

obtained by mapping across the length of the 1.2 cm sample.  Resolved (111) peaks 

showing a gradual peak shifting form InP- to GaP-rich. All the XRD patterns are 

normalized between 0 and 1. The legend shows the position of the corresponding points 

in mm across the length of the substrate. 
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(5.4505 Å) which can result in separation of InGaP alloys into different phase domains 

caused by an internal lattice strain. The majority of III-V alloys are predicted to show 

phase seperation at relatively low growth temperatures [188, 189]. Among them, for 

pseudobinary InxGa1-xP alloy system it is shown that the immiscibility occurs slightly 

below 650 ◦C [189, 190], while our growth temperature range is from 680 ◦C to 750 ◦C, 

it is not expected to see such phase sepration at low growth temepartures. Phase 

separation in III-V NWs have been also extensively reported in form of core-shell 

ternanry alloy NWs that are enriched in group-III elements (In, Ga, Al, etc.). Formation 

of such nanostructures are attributed to role that Au catalyst plays under different 

precursor flow rate or difference in diffusion lengths for the different growth species 

[191-193]. Nicholas et al. showed that the rapid cooling immediately after the growth can 

lead to a high-quality uniform alloy while unassisted natural cooling leads to the 

formation of axial or core−shell heterostructures, containing segments of different phases 

[194]. Therefore, it seems to be essential for the as grown sample to be quenched rapidly 

to the room temperature to obtain a homogenous, single phase InxGa1-xP alloy. Since 

phase segregation of the alloys leads to formation of multiple domains with different 

compositions, the lattice constant and composition of each phase associated with two 

adjacent peaks was determined.  
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6.2.3 XRD Two-Peak Fitting 

 
A Gaussian function was used for a two-peak fitting by Origin to define the center and 

FWHM of the peaks. Fig. 84 displays the fitted double peaks in a magnified scale. The 

corresponding (111) peaks to the In-rich and Ga-rich are referred to as InP-like and GaP-

like alloys. The composition of each component (x1 and x2 is calculated using Vegard’s 

law by taking the relative intensity of InP and GaP into account.  From Bragg’s law using 

the intensity of resolved  InP-like and GaP-like (111) peaks, the cubic zincblend lattice 

constant (a) is calculated to be varying from 5.5048 to 5.7444 Å from GaP- to InP-rich 

side with a corrosponding In content changing from x=0.13 to x=0.70 obtained from 

interpolation using Vegard’s law approximation.  

 

 

 

In order to precisely  detremine the weighted In content, the composition and fraction 

(relative intesity) of both peaks were used to estimate the composition of each spot . 

Detailed calculation and data processing is explained as follows; 

Figure 84. Double peak fitting of XRD patterns taken from different points of the composition 

graded InGaP sample with the magnified scaled InP- and GaP-like (111) peaks. The (blue) pattern 

is fitted using Gaussian function. The red line represents the sum of the resolved black peaks. The 

weighted average of In-composition is given by the black numbers (top right). The composition of 

each (separated) phase is written above the corresponding peak. 
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Interplanar spacing for (111) planes in cubic zinc blende structure and lattice constant can 

be obtained from the formula below: 

                                                       From Bragg’s law: nλ=2dsinθ                                (6.1) 

                                               d(hkl)= 
𝑎

√ℎ2+𝑘2+𝑙2
 = 

𝑎

√3
                                    (6.2) 

                                               a= 
1.541874×√3

2sin (𝜃(°)×
𝜋

180
)
                                            (6.3) 

By using the Vegard’s law and known lattice constant values of 5.8687 and 5.4505 (Å) 

for InP and GaP with relative intensity ratio (RIR) of 14.09 and 8.31, respectively, the 

lattice constant of alloys can be obtained from XRD spectra.  

Table 7. Resolved single and double peak obtained from position dependent  XRD spectra. 

  

 

Single peaks 

Spectrum 

# 
(111) Peak Position d-spacing (Å) a(Å) Composition (In%) 

1 Double Double Double Double 

2 Double Double Double Double 

3 Double Double Double Double 

4 Double Double Double Double 

5 Double Double Double Double 

6 Double Double Double Double 

7 Double Double Double Double 

8 Double Double Double Double 

9 27.85 3.203540228 5.548694439 23% 

10 27.94 3.19342534 5.531174939 19% 

11 28.02 3.184489445 5.515697515 16% 

12 28.08 3.177821288 5.504147928 13% 

 

The results are summarized in table 7 for both single and double peaks: The In content 

(%) for the single peaks can be estimated simply by obtaining the lattice constant from 
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Bragg’s law and subsequent Vegard’s law interpolation. The peak position and 

corrosponding lattice constant of double peaks are summarzaized in table 8. 

Table 8. Peak position and lattice constant for InP- and GaP-like peaks. 

Spectrum 

# 

Double peaks 

InP peak position GaP peak position Lattice constant based 

on InP peak  

Lattice constant 

based on GaP peak  

1 27.079 27.76 5.70359977 5.566328718 

2 26.9299 27.712 5.734589968 5.575780986 

3 26.845 27.6597 5.752391609 5.586117749 

4 26.8062 27.5709 5.76056501 5.603759245 

5 26.7796 27.5424 5.766182239 5.60944557 

6 26.7211 27.3848 5.778575639 5.641105807 

7 26.7153 27.3423 5.779807372 5.649706735 

8 26.7034 27.3299 5.782336239 5.652221274 

 

For double peaks, the relative intensity ratio (RIR) should be taken into account for the 

quantitative analysis of each phase based on weight fraction of each phase. This means 

after determining the composition for each peak with InP- or GaP-like characteristics, 

both intensity and composition should be normalized with respect to the RIR of InP and 

GaP.  

 

For InP-like peak (peak 1): I1
R=𝑥1 ∗ 14.09 + (1 − 𝑥1) ∗ 8.3                       (6.4) 

For GaP-like peak (peak 2): I2
R=𝑥1 ∗ 14.09 + (1 − 𝑥1) ∗ 8.31                    (6.5)  

 

Modified Intensities can be obtained from the raw intensity with respect to RIR of each 

peak (see table 9) as follows; 

For InP-like peak (peak 1):   I1
m= 

I1

I1
R                              (6.6) 

For GaP-like peak (peak 2):    I2
m= 

I2

I1
R,                          (6.7) 



  145 

 where I1 and I2 are the intensity of InP-like and GaP-like peaks from XRD spectrum, 

respectively.  

 

 

The next step is to apply the Vegard’s law on the modified intenisty ratios to obtain the 

weighted value of In content for each set of double peaks, as shown below: 

Modied intensity ratio: Rm= 
I2
m

I2
m+I1

m                                            (6.8) 

Vegard’s law: weighted In content: x= x1*Rm+(1-Rm)*x2                            (6.9) 

The final weighted values obtained from last 8 peaks are summarized in table 10. The 

trend of In content obtained from the resolved XRD peaks (x=0.13 to 0.70) fairly matches 

with EDS and PL.  

Table 10. Weighted indium content from XRD two-peak fitting 

Spectrum # Intensity 

ratio(Ga/In) 

Overall 

composition 
a(Å) 

1 0.875564912 0.317814571 5.583410054 

2 0.836899222 0.361508499 5.601682854 

3 0.717345467 0.436670993 5.633115809 

4 0.706460268 0.476537463 5.649787967 

5 0.473120763 0.577539136 5.692026867 

6 0.552342113 0.602929845 5.702645261 

7 0.474574043 0.639801498 5.718064987 

8 0.290980763 0.702953819 5.744475287 

 

Table 9. Modified relative and raw intensities for InP- and GaP-like peaks. 
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6.2.4 PL Two-Peak Fitting 

 

To further analyze the composition of segregated phases, the broad PL peaks was also 

resolved using a Gaussian function into two peaks similar to XRD peak treatments (Fig. 

85).  

Composition of each InP- and GaP-like peak with calculated corresponding emission 

wavelength using the Vegards’s law is shown next to the fitted green and red peaks.  

More details of the calculation to obtain the weighted average of In-composition (black 

numbers at the top right of each spectrum) using two peak fitting for PL spectra with 

intermediate compositions are shown below in table 11. The weighted In content values 

are obtained from λave= λ1*I1+ λ2*I2, where λave is obtained from the normalized intensity 

of the InP- and GaP-like peaks. However, the beam size of X-ray was around 20 μm vs. 

Figure 85. Double peak fitting of PL spectra taken from different points of the composition graded 

InGaP sample with the InP-like and GaP-like phase emission peaks. The blue line represents the sum of 

the resolved black peaks. The weighted average of In-composition is given by the black numbers (top 

right).  All the peaks are fitted using a Gaussian function. The composition and interpolated emission 

wavelength (using Vagard’s law) of each phase is written above the corresponding peak. 
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50-100 μm for Nd-YLF laser beam and ~10 nm electron beam size used for EDS 

acquisition. 

 

 

This means the probed areas for each technique are not the same and more specifically 

for the XRD and PL, the data is not obtained from the same number of NWs. For better 

matching between XRD and PL/EDS results, the Synchrotron XRD (micro XRD) 

measurement is needed. 
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Table 11. Weighted indium content from PL two-peak fitting 

Figure 86. The lattice constant and bandgap energy of InGaP alloys obtained from Vegards’s law. 

Black and blue squares are obtained from interpolation of PL and XRD results. The red and green 

dashed-lines are the curves obtained by polynominal fitting.   
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All the interpolated values for In contents averaged out from XRD lattice constant and PL 

emission wavelength (λave) value that are obtained by considering the fact that there is not 

much of deviation from linear interpolation using the Vegard’s law. Fig. 86 describes 

such dependency clearly in accordance with the Vegard’s law. The fitted polynomial 

equations show values of 0.0085 and 0.0220 as the estimated bowing parameters for the 

bandgap and lattice constant obtained by interpolation, respectively. The fitted curves 

indicate that both lattice parameters and bandgap of ternary alloys InxGa1-xP almost 

matches with the linear interpolation obtained by Vegard’s law.  

6.3 Growth of Composition-Graded InGaAs 

As an important III-V ternary alloy semiconductor, full composition InGaAs with tunable 

bandgap ranging from 0.35 eV (InAs) to 1.42 eV (GaAs) can cover the near-infrared 

(NIR)  to mid-infrared (MIR) wavelength region (~870 to 3550 nm) . Their high electron 

mobility has made them of particular interest to optoelectronic research for different 

applications such as IR photodetectors and lasers, III-V transistors, and photovoltaic solar 

cells. Growth of InGaAs NWs has been numerously reported via MOCVD [195, 196] and 

MBE [197, 198]. There are also a few reports on successful vapor phase growth of 

InGaAs, NWs, but among them the full-composition InGaAs has been only reported for 

single compositions obtained on different substrates [181, 199]. Here, an unprecedented 

successful growth of InxGa1-xAs covering a wide bandgap ranging from ~930 to 1980 nm 

emitting wavelengths will be presented. The detailed experimental growth procedure as 

well as characterization of the as grown sample is described below.  
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6.3.1 Growth Procedure 

 A rectangular piece of Si (100) substrate coated with 1-3 nm Au film as the catalyst for 

VLS growth. The schematic reprenstative diagram of growth set up for dual gradient 

growth is shown in Fig. 87. For growth of composition-graded InxGa1-xAs alloys first two 

quartz minitubes with 0.5 inch diameter were placed horizontally inside a 1.5 inch 

diameter furnace tube for transporting the source materials vapor to reaction zone. Prior 

to growth, the minitubes were loaded with high-purity InAs and GaAs (Alfa Aesar 

99.999%) with excessive As powder (Sigma Aldrich, 99.999%), separately, for spatial 

dispersion of the materials (source gradient). Then the Au-sputtered substrate was placed 

in a vertical configuration facing the end of minitubes with slight tilting (0.5-1 cm) along 

the tube axis such that it covered wide range of temperature (650-680◦C)(temperature 

gradient) . Ar+5% H2 with flow rate of 45 sccm (standard cubic centimeter per minutes) 

was used as carrier gas and the pressure of the reactor was kept constant  around 3 Torr 

After the furnace reached the target temperature of 1000 ◦C with a ramp-up rate of 

42◦C/min, the source minitubes were pushed inside the furnace using a magnetic 

manipulator where evaporation temperature of GaAs , InAs was 980 and 840 ◦C, 

respectively. After growth for 30 min the system was naturally cooled down to room 

temperature. 
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6.3.2 Result and Discussion 

 

Fig. 88a  shows the real-color photograph of the as-grown composition-graded InGaAs 

sample with a color changing from black (on the GaAs side) to gery (on the InAs side). 

Scanning Electron Microscopy (SEM) images taken from five representative points from 

GaAs-rich to InAs-rich along the length of the sample showed that NWs were grown in 

several tens of microns and diameter of 200-300 nanometers with Au tip as an evident 

sign of Au-catalyzed growth. The morphology of the wires are almost uniform for entire 

sample with lower density of NWs on the InAs-rich side (Fig. 88b). Fig. 88c shows the 

quantitative Energy Dispersive Spectroscopy (EDS) results of single NWs reavealing an 

obvious change in In content from GaAs-rich (x=0.07) to InAs-rich (x=0.84) side of the 

substrate indicating material dispersion along the substrate. This can be visually inferred 

from EDS spectra aquired from some of selected point of sample  (indicated by high-

energy Nd:YAG laser beam cut) with an obvious change in In peak intensity dominatly 

over Ga by moving from left to the right. Si peak in EDS spectrum originates from the 

substarte. 

Figure 87. Schematic of dual gradient growth setup for composition graded InGaAs alloy nanowires with 

tube configuration and temperature profile of CVD reactor. 
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Fig. 89 shows a representative SEM image of each sport showing the upside-down T-

mark (Fig. 89b) on each point marked with a step size of 2 mm using Nd:YAG laser . 

EDS spot analysis was performed on A and B spots and the numbers were averaged out, 

representing the composition of each spot (Fig. 89c). Selected-area high resolution XRD 

with a beam size of a few micron was utilized to determine the crystal quality across the 

entire length of the sample. For the precise measurement a narrow,1/16
◦
, slit was used to 

shrink the size of striking x-ray beam to a comparable scale with the size of the laser-

marked spots. The XRD patterns obtained from diffrenet spots, matches with the cubic 

zinc blende (ZB) structure  with three meain peaks corrosponding to (111), (220) and 

(311) crystallographic planes of  GaAs and InAs (Fig. 90a). 

Figure 88. Position-dependent SEM and EDS of composition-graded InGaAs: Real-color photograph 

of as-grown sample (a), SEM micrographs taken from five representative points from GaAs-rich 

towards InAs-rich InGaAs alloy NWs (b), position-dependent representative EDS spectra along the 

grading direction of InxGa1-xAs with increase in In content (0.7≤𝑥≤0.84). 
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Figure 89. SEM and EDS data acquisition: A photograph of the as grown sample that is marked with step 

size of 2 mm using Nd:YAG laser (a). SEM image of each spot shows the upside-down T-mark on each 

point. EDS spot analysis was performed on A and B spots and the numbers were averaged out represent in 

the composition of each spot (c). 

 
All of the peaks gradually shift towards higher value of diffraction angle, 2θ, by 

decreasing the In content, apparently due to a decrease in lattice constant. This results are 

consistent with those reported by Jung et al. [181]. From bragg’s law using the main  

resolved (111) peak (Fig. 90b)  the cubic lattice constanct (a) is calculated to be varing 

from 5.68 to 5.97 Å from GaAs- to InAs-rich side. From the linear interpolation between 

the lattice constant of pure InAs and GaAs using the Vegards’s law approximation the In 

content in ternary InxGa1-xAs alloys wa calculated to be varying from x=0.06 to x=0.78. 

In order to investigate the optical quality of the NWs PL measurements was performed at 

room temperature using a Ti-Sapphire laser (Spectra Physics, Tsunami, , λ = 810 nm, 150 
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fs pulse duration) as an excitation source for NIR wavelength range. The position-

dependent normalized photoluminescnce (PL) spectra (Fig. 91a) of InxGa1-xAs NWs 

along the length of the sample showed that every spot has different emission wavelength 

which is broadly tuned from GaAs-rich (~930) to the InAs-rich (1980 nm) region. 

 

 

The broad band emission can be described by poor surface quality of the arsenide-based 

NWs [200,201].
 
The existance of a large density of chemisorbed oxygen on the  surface 

or other surface native defects such as dangling bonds are known to be responsible for 

such detrimental impact on optical and electronic properties of NWs. Sun et al. studied 

the removal of surface states and recovery of weak band-edge emission for InAs NWs by 

chemical surface passivation. They observed a quite dramatic change in linewidth 

Figure 90. Position-dependent full range XRD pattern taken from composition-graded InxGa1-xAs 

(x=0.05 to x=0.78) obtained by mapping across the length of the sample with a step size of 2mm(a), 

Resolved (111) peaks showing a gradual peak shifting form InAs- to GaAs-rich (b) 
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narrowing by such treatment [202]. Thus, similar passivation might help for improving 

the PL emission properties of our InGaAs alloy NWs. 

 

Figure 91. Normalized position-dependent PL spectra acquired from different points across the length of 

the composition-graded InGaAs (a), ternary alloy composition obtained using linear interpolation by 

Vegard’s law for both PL and XRD which are in close agreement with EDS results; broadly tuned emission 

wavelength range (~930-1980 nm) obtained by PL mapping (b).      

 

In order to understand the composition dependency of PL characterstics or other physical 

quantities such as lattice constant, etc., Vegard’s law is used to calculate the composition 

of InGaAs using formula below 

                                    Q(InxGa1-xAs)= x.Q(InAs)+ (1-x).Q(GaAs),                           (6.10) 

where Q is the physical quatity and x is the fraction of x in composition of ternary alloy. 

The results obtained by PL and XRD are in a very close agreement with EDS elemntal 

analysis result (Fig. 91b) with the exception of last EDS elemntal mapping data point 

showing slightly (~6%) higher In content than the value obtained by XRD lattice constant 

obeying the Vegard’s law. This might be due to phase segregation of indium in In-rich 

InGaAs alloys occuring during the cooling down process at room temperature or the fact 
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that acquisition area from ensemble of NWs for PL and XRD is differet from due to 

diffrenece in spot size of the x-ray and laser beam (in order of micron range) with 

electron beam (nanometer size).  

6.4 Growth of Composition-Graded GaAsP 

 

In continuation of our focus on growth of subcells of variable composition for design of 

LAMB solar cell successful growth of composition graded GaAsxP1-x alloy NWs on a 

single substrate was also demonstrated. GaAs and GaP have both shown to have similar 

low vapor pressure that makes the growth of such composition graded alloys difficult. As 

the source material ball milled GaP and GaAs were loaded inside the separate minitubes 

with excess P and As with evaporation temperature of 400 ◦C and 300 ◦C, respectively. 

The evaporation temperature of GaAs and GaP were 980 ◦C. By a 0.5 cm tilting of 

substrate corresponding to 20 ◦C (780 to 800 ◦C), an emission wavelength variation from 

685nm (at the GaP side) to 750nm (at the GaAs side) is achieved (Fig. 92a and 92b). 

Photoluminescence (PL) mapping on as-grown alloy NWs were performed at room 

temperature. Position-dependent PL of the GaAsxP1-x shows better optical characteristics 

(narrower linewidth) compared to InxGa1-xAs alloys, possibly due to improved surface 

quality and reduced surface states by incorporation of GaP into alloy system. Fig. 93 

shows the position-dependent SEM and EDS taken from five different representative 

points across the sample from GaAs- to GaP-rich (1 to 5).  
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Figure 92. Normalized position-dependent PL spectra along the grading direction of GaAsP alloy 

nanowires under Nd-YLF laser pumping with wavelength variation from 685nm (at the GaP side) to 750nm 

(at the GaAs side) (a). PL peak wavelengths as a function of substrate length coordinate with an embedded 

real color photograph of as-grown sample with color changing from orange (GaAs side) to brown (GaP 

side) (b) 

The size of the NWs is larger for the GaAs-rich side (2μm) than the GaP-rich side 

(10μm) that is because of the slightly lower vapor pressure of GaAs compared to GaP 

(Fig. 93a). 

 

Figure 93. Position-dependent SEM and EDS of GaAsP alloys from five different representative points of 

composition-graded GaAsxP1-x (0.42 ≤ 𝑥 ≤ 0.84) 

From the real color image of the as grown sample, the reason that (in spite of our 

expectation) the GaP side looks darker than GaAs rich side is due to the fact that GaP 

rich side is denser and able to trap the light better. This can be referred as higher VLS 
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growth rate of GaP compared to the GaAs. Further control over the spatial composition 

grading, temperature gradient, configuration of minitubes and evaporation rate and can 

result in improved crystal quality and more refined composition-bandgap grading. 

6.5 Summary 

 

In this chapter, growth of spatially composition-graded InGaAsP alloy NWs with 

a widely tunable bandgap on the single substrate was shown. The low-cost dual gradient 

method in combination with metal-catalyzed VLS approach was utilized to provide both 

source material dispersion and temperature gradient across the length of the substrate to 

grow InGaP, InGaAs, and GaAsP alloys with spatially-graded bandgaps. A series of 

different growth experiments were performed in our homemade CVD setup to find the 

optimum growth parameters and more specifically the growth window of such materials. 

Further extension of the range of achievable alloy composition and the associated alloy 

uniformity is the goal of future investigation. Such unique material capability provides a 

III-V platform for application in a wide range of novel devices from full spectrum solar 

cells, multispectral detector, tunable nanolasers, and spectrometer on a chip.  
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7 TEMPLATED NANOWIRE GROWTH  

7.1 Introduction 

Ever since the nanowire research has become the center of attention for optoelectronic 

application, a good control over the size, position, growth directional of NWs using 

bottom-up VLS growth has been extensively investigated [203-205]. But, when a large 

throughput is required, especially for solar cell applications, such methods are not 

realistically useful, mostly due to lattice-matched substrate requirement for epitaxial 

growth of vertical NWs. As shown in previous chapters, a successful growth of the high 

quality InGaAsP alloy NWs on lattice-mismatched substrates was demonstrated. 

However, for design of NP-LAMB cells, given the large differences in bandgaps (and 

therefore lattice constants) among the lateral cells, no single substrate of a given lattice 

constants can be used for the epitaxial growth of nano-pillar arrays. Therefore, fabrication 

of templates is a key step that could be used to grow NPs of different lattice parameters 

and bandgaps for the development of NP-LAMB cells. Furthermore, such templates 

could be used as a universal template for the growths beyond the NPs if successfully 

developed.  So far, the traditional anodized aluminum oxide (AAO) template approach 

has been vastly employed to synthesize uniform NWs of Si [206-209], II-VI 

semiconductors [210-212], and perovskite [213] In the other hand, metal -assisted 

chemical etching has been recently introduced as an efficient way of fabrication of 

etched-through templates as well as vertically aligned nanopillars [214]. Recently, the 

low cost nanosphere lithography have shown to be as an effective approach for 

controllable fabrication of NW arrays which allows for engineering of the areal density 
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diameter of NWs. In fact, the pattern can be created by uniform distribution of a close-

packed polystyrene or silica spheres which acts as a mask resulting in top-down 

fabrication of nanopillar array or making etched-through uniform pore arrays similar to 

AAO template that can be Au-impregnated and subsequently used for VLS growth of 

NWs [215]. Templated growth of III-V NWs have been earlier reported using different 

methods such as templated liquid phase (TLP) [216], and Template-assisted selective 

epitaxy (TASE) [217]. Despite the high quality of III-V materials, these methods are not 

economically viable in large scale due to complexity of approach. In the current chapter, 

the initial fabrication of pore arrays for this purpose will be presented. Systematic efforts 

are made to increase the yield of templates fabrication, to deposit metals such as Au, In 

and Ga as growth catalysts at the bottom of the pore, and subsequently grow NP arrays 

from such templates.  

7.2 Template Fabrication 

 

The process flow of fabrication of the templates is shown in Fig. 94. From the schematic 

of process flow, the first step to find a way to obtain a monolayer close-packed 

Polystyrene (PS) spheres from colloidal solution containing PS spheres. The refined 

Langmuir-Blodgett technique (explained in chapter 2) was developed to coat a monolayer 

of PS spheres more uniformly, on large pieces of substrates. A Langmuir–Blodgett 

film contains one or more monolayers of an organic material, which is usually deposited 

from the surface of a liquid onto a solid substrate by immersing the substrate into the 

liquid.  PS spheres with three different size of 0.50, 0.75 and 1.0 μm (Polysterene latex 
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microspheres, 2.5 wt% dispersion in water, Alfa Aesar) were used to float on surface of 

the water with gradual injection using a syringe tip as shown schematically Fig. 95. 

 

 

 

 

 

 

 

 

 

 

The surface of a p
+
-Si substrate is first treated with acetone, ethanol and DI water 

and then piranha solution (a 3:1 mixture of concentrated sulfuric acid (H2SO4) with 

hydrogen peroxide (H2O2)) for 1hr and NH4OH: DI water:H2O2 (1:5:1) for 30 min. These 

two steps are part of the cleaning process prior to deposition of SiO2 film, as the main 

constituent of the walls of pore arrays. A 1-2 μm thick layer of SiO2 was deposited using 

PECVD at 350 ◦C. Thereafter, a 300 nm thin layer of Aluminum (Al) was deposited 

using the e-beam evaporation on the back surface of Si as the ohmic contact. The top 

surface of SiO2 was treated under oxygen (O2) Plasma for 30 min for two main purposes; 

To remove any stains/organic contamination, and making the surface hydrophilic to 

facilitate the uniform dispersion of PS spheres. The as-received colloidal solution of PS 

spheres was mixed with ethanol in a 1:1 volume ratio and transferred to a syringe 

Figure 94. Schematic of optimized template fabrication process: (a): SiO2 deposition on p+ -Si 

substrate; (b): coating of polystyrene (PS) spheres of appropriate diameters and then thinning 

down by oxygen plasma to control the size of PS spheres; (c): metal deposition as hard mask; (d): 

removal of PS spheres; (e): dry etching to create pores; (f): electroplating of metal catalysts. 
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attached to a fine micropipette tip. A 4” diameter petri dish was carefully washed and 

cleaned using acetone and ethanol and DI water. Then, it was filled with DI water up to a 

certain level.  Subsequently the pre-cleaned/treated substrate was soaked into the water 

until it is placed at the bottom of the petri dish. Two glass slides were used as the baffles 

at two ends of the petri dish; one to block the flow of PS spheres at the surface and the 

other one as a stage on which a small piece of quartz was leaning with a sloping position.  

 

 

 

 

 

 

 

 

 

The PS spheres were gently, with a constant rate, injected onto the surface of the inclined 

glass. The PS spheres moved readily toward the surface of the water while the agitation 

of the surface is minimized to not to rupture the surface tension otherwise the experiment 

will fail. Therefore, the microspheres float at the surface of water until their accumulation 

is forms a continuous film with a mixed rainbow color.  After a uniform multi-color layer 

of film is formed at top surface of water, 1-2 drop of 2% Sodium Dodecyl (Lauryl) 

Sulfate (SDS, NaC12H25SO4) solution (dissolved in DI water above 25 ◦C) is added to the 

Figure 95. Schematic of Langmuir-Blodgett technique 
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surface to break the surface tension and push the PS spheres more toward the baffle (as 

shown in the picture; Fig. 95). Next, the excess water is drained gradually, and a close-

packed structure is formed, as can be seen from the picture taken from the sample which 

is dried overnight in the air. The rainbow color of PS-coated substrate is due to a 

phenomenon called iridescence that is the result of light diffraction from the small PS 

spheres. Afterwards, Oxygen plasma etching was used to reduce the size of the PS 

spheres to a desired diameter. Chromium (Cr) mask (50 nm) was deposited at top surface 

Cr deposition: a 50 nm layer using thermal evaporation (Fig. 94c). After removal of the 

PS spheres by sonication in isopropyl alcohol (IPA), dry etching was performed for 60-

90min under presence of CHF3 and O2 mixture to create an etched-through SiO2 film 

with pore arrays. The Cr at top surface was removed using a mixture of HCl: Glycerol 

with 1:1 volume ratio at 50 ◦C for 5-10 min. The substrate was sonicated in DI water for 

10 min to remove all the residual glycerol from inside the pores. Fig. 96 shows the SEM 

image of some of the templates with different pore diameters before metal plating at the 

bottom of the pores. Pore array with distances as large as 1.0 μm can be obtained. The 

pore size can be adjusted by changing the O2 plasma etching time that not only changes 

Figure 96. SEM images of templates with pore arrays fabricated by nanosphere lithography with 

different pore size of a) 300 nm, b) 600 nm and c) 750 nm. The insets in (a) is the real color image of 

fabricated template, and (c) is the cross- section image of the template with pore depth of ~ 2 μm.  
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the size of final pores, but also the lateral distance of the pores which is crucial for 

designing the light trapping behavior of the NP-solar cell.   

7.3 Electroplating of Au Catalyst 

After making the etched-through templates with a pore array, it is required to develop an 

electroplating method to embed the Au catalyst at the bottom of SiO2/Si template for the 

subsequent growth of NPs. Electrodeposition of Au on the surface of a semiconductor 

requires a less resistive ohmic contact ohmic contact which is necessary for the 

electrochemical reaction. The process involves the exchange of electrons between the 

cathode and anode electrodes resulting in deposition of Au on the surface of Si. 

Electroplating of gold is of great importance for MEMS applications, because of its 

excellent physicochemical stability and low electrical resistivity [218]. The main problem 

with electroplating of Au on Si is its low adhesion. However, Fujita et al. have developed 

a two-step process for electrodeposition of Au on Si, which requires an annealing process 

at 250 ◦C between the two steps. They have used the commonly used cyan-type plating 

solution of K-24EA10 at pH of 4.0, and temperature of 40 ◦C [219]. They have also 

observed differences in plating results obtained for the n- and p-type Si. For 

electroplating with a low current density on a p-type Si, since the electron density is low, 

therefore the electron current density that is required to be supplied to the surface is low, 

thus there is not significant growth of Au film. In order to supply mobile electrons in p-

type Si, they have exposed UV light to the surface of the Si which is in contact with 

solution. Hence, the resistivity and the type of conductivity type, are crucial factors to be 

considered before plating.  Also, it is required to remove the native silicon dioxide via 
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dilute HF or BOE prior to electrodeposition to ensure the surface of the semiconductor Si 

substrate is conducting. For our application, it is required to perform electroplating 

preferably at room temperature and a cyanide-free environment (less toxic), which is 

more available and easy to use. Generally, two different methods for electroplating of Au 

on silicon was used as follows: electroplating from colloidal gold nanoparticle bath and 

electroplating from au plating solution. 

7.3.1 Electroplating from Colloidal Gold Nanoparticle Bath 

 

This method is based on electrodeposition of gold colloidal nanoparticles on a Si wafer 

under a uniform electric field. The negatively-charged gold nanoparticles get physically 

attached (physisorbed) to the surface under the electric field, similar to the study reported 

by Buttard et al. [220]. Typically, the experiment involves monitoring the current (I) 

versus time (t) at a constant voltage (V), between the surface of silicon (anode) and the 

inert platinum counter-electrode (cathode). A dilute solution containing citrate stabilized 

Au nanoparticles with a size of of 100 nm (Ted Pella Inc.) were used to plate the gold on 

the surface of bare silicon through electromigration of negatively charged gold 

nanoparticles. A piece of  highly doped n-type silicon (0.001-0.005 ohm.cm) was cleaned 

according to the standard protocol (acetone, ethanol, DI-H2O, 2% HF, DI-H2O). A 

schematic of experiment set up is shown in Fig. 97. The resist (PMMA, etc.) at the back 

surface of silicon above the ohmic contact layer (Al) is to prevent deposition of Au at the 

back side.  
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A set of different conditions was experimented at room temperature and fixed 

concentration of colloidal gold mixed with DI water.  

The Si as the anode (positive terminal) accepts the negatively charged Au NPs forming a 

thin film layer of Au. Fig. 98 shows the SEM image of different samples obtained at two 

constant voltages of 1 and 5 volts with different deposition times ranging from 30 

seconds to 1 min.  

 

Figure 98. SEM images of electrodeposited colloidal Au nanoparticles (on n-type Si) with diameter of 100 

nm under constant voltage of 1V and 5V with deposition time changing from 30 sec. to 10 min. 

 

The current density for all the samples was less than 100 μm/cm
2
 measured by a DC 

microamp meter.  This approach requires to be studied more systematically as it turned 

Figure 97. Schematic of experimental setup for electrodeposition of colloidal 

gold. The magnified picture illustrates the citrate-stabilized Au nanoparticles 
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out from our preliminary results, to be slightly difficult to optimize and not promising for 

our purpose. 

7.3.2 Electroplating from Au Plating Solution 

 

Electrodeposition from the solution containing Au
3+

 ion through a reduction process is 

the most convenient way for electroplating of Au. A diluted Gold Chloroauric acid 

(HAuCl4.3H2O, 0.082 molar (M)) was used as the electroplating bath solution in an 

electrochemical cell. Different concentration of dilute plating bath was prepared for 

electroplating to find the optimum condition.  The experimental setup consists of:  

a) Au solution (cyanide free solutions are preferred) 

b) Platinum electrode as anode where the oxidation reaction takes place 

c) DC current source 

d) Doped n- or p-type silicon substrate with low electrical resistivity which acts as the 

cathode, where the reduction reaction (Au
3+

+3𝑒̅ → Au0
) takes place. Native oxide must 

be removed using HF or BOE. 

Shown in Fig. 99 is the schematic of electroplating setup which was used. The stirrer (or 

magnet) at the bottom is to homogenize the solution during the electrochemical reaction.  

As seen, the back surface of the p- (or n-) type silicon substrate (𝜌= 0.001-0.005 ohm.cm) 

is coated with an ohmic contact such as Al, In, etc. followed by deposition a thin layer of 

resist (e.g., PMMA). As the preliminary experiment two pieces of n- and p- type silicon 

(𝜌= 0.001-0.005 ohm.cm) were tested. 
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The concentration of the gold bath was 4.1*10

-3 
M and the experiment was performed at 

constant voltage of 1V for 5 min. As seen from the picture of electroplated sample, the 

golden yellow color on the surface indicates successful deposition of Au film.  SEM 

image in Fig. 100 shows that NPs with average particle size of ~100 nm and the Au film 

obtained on n-type silicon has relatively larger filling ratio of the surface under the same 

condition. This is because p-type Si has low electron density compared to n-type 

substrate. The same strategy was implemented on the fabricated templates, which was 

shown earlier (see 7.1), to embed the Au nanoparticles at the bottom of the pores via 

electroplating to be used for a subsequent VLS growth of NPs. For this purpose, the back 

surface of Al (or In) deposited template is similarly coated with a thin layer of resist 

(PMMA or adhesive tape). It was then connected to the negative terminal (cathode) of a 

DC current source. It is necessary to remove the native oxide (via sonication in dilute HF 

or BOE) that grows over the time (in the meantime between template fabrication and 

electroplating process) since it can decrease the affinity of ionic Au
3+

 species to be 

reduced into Au
0
 clusters at the bottom of the pores. 

Figure 99. Schematic of experimental setup for electroplating of gold with real color image of plated 

samples (Si substrate and etched-through SiO2/Si template). 
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It is required to test different variables such as plating time, constant voltage, distance 

between electrodes influencing the current, concentration of bath, and temperature (if 

required). It is also expected to see slight differences between optimized parameters for 

bare silicon and the etched-through template since the conducting area of the substrate 

surface is reduced and the top of the pores are less accessible by ionic species in the bath. 

Fig. 101 shows an example of successful plating of Au into template with pore size of 

500 nm diameter. The SEM image taken from large area of the sample shows uniform 

plating across the entire template with more than 90% coverage. The real color image of 

Au-plated template looks reddish brown.  

 

Figure 100. SEM image of the Au-plated Si substrates  under similar condition for a) n-type 

Si, b) p-type Si. The right-hand side image shows the magnified image for two samples. 



  169 

 

Apparently, increasing the voltage results in an increase in current density delivered by 

the cell that affects the size of Au nanocrystals. Filling factor and uniformity pretty much 

depend on fabrication of the template that must deliver a non-defective pore array 

without any crack on the walls. More importantly, all the pores must be uniformly etch-

through by optimizing the dry etching time to make sure there is no residual SiO2 at the 

bottom of the pores that prevents the electrons to reach to the surface. This can preclude 

the pore from receiving the Au deposition due to lack of conductivity. Fig. 102 shows 

some examples of such undesired plating results from templates of various batches that 

are processed consistently, but there are some fluctuations observed, most likely due to 

non-uniform dry etching. From the comparison between three samples, it can be seen that 

the template electroplated under voltage of 5V for 10 min (a) is receiving less gold than 

the other two (b and c) with less current density which is contradictory. Also, for sample 

c with 5 min plating compared to 10 min plating at 1V, the size of the clusters is not the 

same that can be different amount of residual oxide at the bottom of pores. 

Figure 101. SEM image of electroplated Au onto templated p-type Si: a) image taken from large area   of 

sample shown in inset, b) magnified image from a selected area, c) single pore with Au cluster grown under 

constant voltage of 1V for 10 min. 
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Figure 102. SEM image of variation in electroplating with non-uniform distribution of Au clusters across 

entire template. 

 

Sometimes, formation of ring-shape Au pattern inside the pores rather than a cluster was 

observed. As shown in SEM images (Fig. 103), it seems to be due the fact that template is 

over-etched at the cross section between Si and SiO2, thereby no reduction center to 

contribute into the Au
3+ 

to Au
0 

reaction. 

 

Figure 103. SEM images showing the formation of ring-shape Au pattern inside the pores of etched-

through SiO2/Si template with pore sizes of a) ~300nm, b) ~750 nm. c) Magnified SEM image of sample 

(b). EDS spot analysis of the wall is shown for better distinction between three parts. 

 

7.4 Growth of Au-Catalyzed InP Pillars 

 

The typical VLS growth methodology shown in previous chapters for growth of III-V NP 

alloys will be implemented on the Au-plated templates. So far, the growth of 

composition-graded III-V subcells with all needed bandgaps for fabrication of the LAMB 

architecture with 3 lateral cells is demonstrated. The corresponding alloys can be grown 
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using the current templated approach, with flexibility around those bandgap values for 

optimization of the overall system efficiency. However, extensive studies should be 

conducted to optimize such process with an aim towards improving the uniformity of 

NPs. As the first step, we have tried to grow InP using VLS approach based on Au-

catalyst seeded inside the pores of template. Similar to growth of InP NWs and thin film 

(chapter 3 and 5), here also we use the same growth parameters with a slight change in 

evaporation rate of In source as the rate limiting factor for growth. The evaporation 

temperature of In is optimized to be around 900 ◦C and that for red-phosphorous is ~450 

◦C. The growth temperature is chosen to be 680 ◦C and that is equivalent to relatively 

high supersaturation (highly active VS-mode). The growth pressure was kept 2 Torr for 

all of the templated growth of InP. The growth duration varies based on the size of the 

pores and depth of the SiO2 pores which is equal to the time that it takes for the pores to 

be filled up to above the SiO2 surface. The p
+
-type Si-template was electroplated with Au 

seeds in constant voltage of 1V and the plating time was adjusted based on the size of the 

pores. SEM images reveal that post-electroplating growth for InP works successfully. 

Although there are some parameters that are required to be changed including the size of 

the pores, as a result the Au particle sizes to achieve will change. Fig. 104 shows an 

example of the VLS growth of NP array from the Au-plated templates. An Allied 

Polishing System was used to polish the as-grown sample with a fine lapping film (0.1 

micron) to take off the surface artifacts, including excessive SiO2 and features grown on 

top. 
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The surface of polished sample becomes artifact-free and clean. Fig. 104b shows the 

uniform ~ 100% pillar growth-coverage over the entire substrate. The EDS analysis 

indicates the high stoichiometry of as-grown InP pillars with diameter of ~700 nm. One 

of the most efficient ways to prevent formation of excessive features is to further reduce 

the evaporation temperature of In, but this might require longer growth times which is not 

desired. The cross-section image taken from a cleaved as-grown template indicates that 

there is a direct contact between InP and bottom substrate, which makes the current 

design highly suitable for making solar cells.  

Figure 104. SEM image of templated grown InP with 1 V and 5 min plating parameters and 12 min 

growth (a), polished sample (large area) with ~ 100% pillar growth coverage. Inset is the cross section 

of the cleaved substrate (b), high magnification InP pillars (c) and their corresponding EDS result.   
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In order to further improve the templated growth, it was realized that modification of the 

plating parameters (time and current, etc.) results in a growth of smaller and more 

uniform Au nanoparticles. Therefore, it is expected to obtain a better growth and a high 

uniformity of pillars, as can be seen in Fig. 105b and 105d. The NPs grown on a template 

with pore size of D =300 nm shows more active VLS growth. The sample grown on a 

template with pore size of D =500 nm does not show any significant surface artifacts 

which is highly preferred as such sample does not require a post growth polishing.  

Figure 105. SEM image of templated growth InP: before and after plating: a) 1V and 1 

min and D=300 nm, b) 1V and 1 min and D=500 nm and after growth: c) 12 min growth 

(inset is the magnified image) (d) 14 min growth. 
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7.5 In-Ga plating  

7.5.1 Indium Plating 

Au is typically used as the catalyst for growth of NPs, but there are some concerns for 

possible III-V contamination, even though there are systematic studies showing such 

concerns are not serious. As an alternative to Au, a new plating recipe for In and Ga was 

developed, so that Au-free catalysts was successfully obtained at the bottom of the pores. 

For growth of InGAsP, In and Ga metals as the catalysts are especially interesting and 

important, since the III-V NPs already contain In and Ga elements. Such catalysts could 

potentially allow for self-catalyzed growth of NPs, without any concern of Au diffusion 

into NPs. For Au-plated templates, vapor-liquid-solid (VLS) growth is the standard 

approach. For In and Ga plated templates, phosphorization or arsenidation could be 

alternative to the VLS growth. It is believed both approaches can provide high quality 

pillars. The proposed method is based on an initial electroplating of In, Ga or 

combination of both on a pre-cleaned conductive or semiconducting substrate such as 

ITO-coated fused silica or silicon (p- or n-type). The electrochemical cell for this purpose 

is composed of an electrolyte solution containing the chloride-based bath of dilute InCl3 

or GaCl3 that are highly soluble in water. The cathode is made of the prospective substrate 

and anode can be either In, Ga or Pt where the oxidation reaction occurs. To be able to 

reduce the In
3+

 or Ga
3+ 

ions at the cathode which is connected to the negative end of the 

DC current source, it is necessary to provide ample voltage corresponding to reduction 

potential of the metallic elements (M) as follows; 

 M
n+

 + n𝑒̅  → 
M

0
; E=EM

0 + 
RT

nF
 ln[M

n+
],       (7.1) 
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where E is the equilibrium potential of the electrode with respect to the standard 

hydrogen electrode and EM
0  is the standard electrode potential of M element. R and F are 

the molar constant and Faraday’s constant equal to 8.314 J.mol
-1

. K
-1

 and 96,485 C/mol, 

respectively. Similarly, for In and Ga we have [221], 

 In
3+

 + 3e̅  → 
In

0
; E=EIn

0 + 
RT

3F
 ln[In

3+
] = − 0.342+ 0.0197 log [In

3+
]      (7.2) 

 Ga
3+

 + 3e̅  → Ga0
; E=EIn

0 + 
RT

3F
 ln[In

3+
] = − 0.529+ 0.0197 log [Ga

3+
]     (7.3) 

The concentration of the bath containing the prospective ions plays a crucial role in 

deposition rate, since the voltage is constant while the deposition is being driven through 

an electrical current. The thickness and uniformity of the film can be tuned by deposition 

time and voltage. Lobaccaro et al. have reported electrodeposition of In on molybdenum 

(Mo) foil, below room temperature with their electrochemical setup with a counter 

electrode of soluble In as the anode that helps for replenishing the In
3+

 ions that are being 

reduced on the cathode [222]. They have subsequently deposited a thin layer of SiOx as 

capping layer on top of electrodeposited In film. Afterwards, by exposing the substrate 

into P flow they have obtained a high quality thin-film InP with an epi-like quality. As 

the first step, preliminary electrodeposition of In on p
+
-Si substrate was performed. As 

the counter electrode (anode) In and Platinum (Pt) were tested at room temperature. The 

schematic of electrodeposition setup is very similar to what was observed for Au-plating. 

As the plating-bath, a dilute InCl3 (0.028 M) solution was prepared by dissolving 0.25 g 

of solid InCl3 (anhydrous, 99.995%), a highly hygroscopic compound, in 40 ml DI-water. 

The SEM images of two different samples are shown in Fig. 106a and 106b. As seen for 

30 sec electrodepositions, the plating rate on the sample with Pt as the anode is much 
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higher even at lower constant voltage of 5V vs. 10V compared to that obtained for 

sample with soluble In as the anode. An EDS analysis of the plated In shows that there is 

no residual chlorine inside the bulk of the deposited surface (Fig. 106c).  

 

Figure 106. SEM micrograph of electrodeposited Indium thin film samples on P
+
-Si in presence of different 

counter electrode as anode: a) Indium electrode 10 V, 30 sec., b) Pt electrode, 5V, 30 sec., c) EDS of 

electrodeposited In from InCl3 bath for sample shown in Fig b. 

 

A systematic study on time-dependent of In electrodeposition on p
+
-Si with Pt electrode 

as the anode indicates the uniformity of the thin layer (white part in inset of Fig. 107c) 

with a thickness of ~ 3μm obtained at 5V and 5 min. (Fig. 107 (a-d)). 

By taking into account all these parameters that we have examined for electroplating of 

In, now we can move forward with electroplating of In into pores of template, either as 

the catalyst or for subsequent phosphorization process to grow InP. As can be seen from 

SEM image shown in Fig. 108 for a p
+
- Si template, all the pores are uniformly filled 

with faceted In crystals. A cross section image for a plating time of 20 sec (b) also reveals 

that In is grown at the interface of silicon where there is no residual oxide. The time 

dependency of the fraction of pore depth that is filled with In crystal grown by plating is 

plotted in Fig. 108c.  
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Figure 108. SEM image of the indium plated template at 5V for 1min with a pore size of ~ 625 nm. inset is 

the picture of electroplated piece template (a).  cross-section SEM image of the template (D=750 nm) with 

a half-filled pore with indium crystals done at 5V for 20 sec(b) Plot of plated indium thickness vs. 

electroplating time. All three samples are done at 5V for a template with D=750 nm(c)  

 

 

Figure 107. SEM micrograph of time-dependent electrodeposited indium on P
+
-Si  using DC current 

source with constant applied voltage and Pt as the counter electrode (anode) ; a) 5V, 5sec, b) 5 V, 30 

sec, c) 5V, 5 min. insets are the magnified images from a selected area of each sample. d) cross- 

section image of sample c with an indium film thickness of ~3 μm. 
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7.5.2 Gallium Plating 

Similarly, a dilute GaCl3 (0.52 gr GaCl3 dissolved in 30 ml DI water) bath was used for 

electrodeposition of metallic gallium. Since the standard reduction potential of Ga
3+

 is 

more negative compared to In
3+

, it is expected for the gallium solution with almost the 

same concentration to be reduced at higher voltage. A voltage of ~ 4V was recorded as 

the so-called threshold voltage for deposition for gallium, where a thin white layer of 

sparsely grown small Ga nanoparticles was observed. However, to get thicker (white and 

shiny) deposition of Ga (inset of Fig. 109a) a 10V DC current was applied. Formation of 

spherical Ga particles as large as up to 20 μm can be seen from the SEM image shown in 

Fig. 109a. It was first postulated that this might be due to the exothermic nature of 

reduction reaction (Ga
3+

+3𝑒̅ → Ga0
) that brings about dewetting of gallium (contact angle 

is more than 90◦) to form Ga microspheres which tend to have a smaller surface energy.  

Progress in highly competitive 2H
+
+2𝑒̅ →H2 reduction reaction by consumption of most 

of the cathodic electrons can be also a reason to form such morphology due to releasing 

H2 gas that leaves the surface of the substrate [222]. Plating at low temperature 

deposition-bath was also examined, which is known to affect many of the activated 

processes during electrodeposition including adatom surface diffusion rate and interfacial 

binding energy [223]. The temperature of the bath is decreased using an ice bath which is 

controlled by a thermometer. Our results showed that plating at 8 ◦C leads to formation of 

smaller gallium spheres with more uniform surface coverage (Fig. 109b). 
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7.5.3 Indium-Gallium Plating 

In and Ga are the main constituent parts of semiconductor alloys such as Indium-Gallium 

Nitride (InGaN) or Copper Indium Gallium Selenide (CIGS). For example, solar cells of 

made of CuInxGa1-xSe2 (0 ≤ 𝑥 ≤ 1) covers a bandgap range of 1.0 eV (for CuInS2) to 

about 1.7 eV (for CuGaSe2). Electroplating can be used as an effective, low-cost and 

straightforward route towards making solar cells based on CIGS [224] or InGaAsP. In 

general, for III-V materials the current proposed approach relies on a very inexpensive 

electrodeposition technique for group III metallic alloys in composite or solid solution 

Figure 109. SEM image of the electrodeposited Ga on n
+
-Si at 10V for 1min at various temperatures: a) 

3 ◦C, b) 8 ◦C, c) 20 ◦C. insets are the magnified images. Top left in (c) is the picture of Ga 

elelctrodeposited sample. d) EDS analysis of sample in c.  
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form followed by a short time reaction with a hot flux of group V elements (P, As, N, 

etc.). The proposed method is highly suitable for producing high quality thin-film 

materials with epi-like quality. Hence, it is required to develop the electroplating process 

that can provide all the requirements of semiconductor alloying similar to other expensive 

techniques such as MOCVD or MBE. The most crucial factor is the ability to control the 

composition precisely by adjusting the In to Ga molar ratio in electroplated film. So far, 

the electroplating for pure In and Ga was optimized, but rational design of precursors as 

the constituent part of the electroplating bath for engineering the composition of InxGa1-x 

is quite challenging because the reduction potential of the In
3+ 

and
 
Ga

3+
 are not the same. 

This means by simply adjusting the molar ratio between In and Ga precursors, we cannot 

obtain the desired composition. A set of preliminary experiments were carried out which 

are required to be further developed as a promising future work. Given the different 

reduction rate of the In and Ga, there are different ways to engineer the composition(x) if 

InxGa1-x by varying the reduction potential. It is generally required to decrease the 

deposition rate of In since it has less negative reduction potential. This can be 

manipulated by different proposed ways: 

a) Effect of concentration of precursor (bath): from the reduction potential equation 

that was shown earlier the effect of concentration does not seem to be very 

significant since its impact reduced under log scale (Log [In
3+ 

or Ga
3+

]).  

b) Effect of temperature: changing the temperature affects both thermodynamics and 

kinetics. Decreasing the deposition-bath temperature leads to a reduction in 

kinetic of deposition for both In and Ga and this means the applied voltage 
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becomes very important in determining the deposition rate. Therefore, increasing 

the plating temperate can result in increasing the deposition rate of In and Ga.   

c) Making a more stable compound with In ions using a complexing agent to 

increase the reduction potential in a controlled manner. Hence, it will be 

thermodynamically prohibited to be deposited easily.  

From the preliminary results that we have obtained for In-Ga plating on silicon 

substrates, as can be seen from the SEM images, presence of high concentration of Ga in 

composition of the electrodeposited film results in formation of spherical features on tope 

surface. The SEM image shown in Fig. 110 is for the sample electrodeposited from a mix 

bath with InCl3 to GaCl3 molar ration of 0.01M to o.05M at voltage of 10V for 1 min. 

The EDS spot analysis shows that the selected spherical feature has ~87% Ga which is 

indicative of the fact that the concentration of Ga in electrodeposited film is directly 

proportional to the molar ratio of available ionic Ga species in the bath. There is no peak 

showing presence of chlorine or oxygen. 

 

 

 

 

 

 

 

 

 

 

 

 

It was further noticed that the electroplated sample with different size distribution for 

different spheres shows different composition with respect to the size of the spheres. The 

Figure 110. a) SEM image of the electrodeposited In-Ga film from a bath with InCl3 to GaCl3 

molar ratio of 1 to 5. b) EDS spot analysis of spherical feature shown in in red rectangle. 
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Fig. 111 shows the SEM image of the sample electroplated on a p
+
-Si at 6V for 10 

seconds at 1.5 ◦C from a bath of 5:3 InCl3 to GaCl3 precursor ratio. This is performed 

with an aim towards making In0.5Ga0.5P as one of the subcells for LAMB cells by 

phosphorization of the electroplated In0.5Ga0.5. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

It turns out that the spheres with smaller size have less In content and we have seen this 

for other samples as well, independent of the plating voltage varying between 5-10 V.  

This provides us with a hint that there are so many parameters to be optimized for 

successful control of the composition of the electroplated In-Ga alloys since it is critically 

importance before forward with the growth under phosphorus or arsenic flux.  

7.6 Growth of InP via Phosphorization of Metal-Plated Template 

Here we aim to produce a high quality InP film with various alloy composition, x, 

through a unique phosphorization process. This process starts with an electroplating of In 

film on various conducting substrates. The phosphorization of the metal layers of 1-2 

microns thick in a chemical vapor deposition (CVD) reactor would produce a high-

quality film with a quality comparable to those produced through a typical standard film 

Figure 111. SEM image of the electrodeposited In-Ga film on  p
+
-Si substrate 

from a bath with InCl3 to GaCl3 molar ratio of 5 to 3 at 6V for 10 sec. The EDS 

results are obtained from the In-Ga spheres representing their composition.  
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deposition [149].The attractive features of this approach compared to epitaxial growth of 

III-V alloy semiconductors can be expressed as; a) no expensive metal-organic precursors 

or epitaxial equipment such as MOCVD or MBE is required; b) no epitaxial-ready single 

crystal substrate is needed; c) The metal-catalyzed phosphorization process would 

produce a material quality comparable to thin-film deposition obtained by other 

techniques giving rise to polycrystalline films. So far, we have successfully electroplated 

In with 100% filling ratio across the template and as the second step we have performed 

the phosphorization of the In-plated templates as follows; To prevent dewetting of the In 

with fairly low melting point of 157 (or 30) 
◦
C, a thin layer (50-100 nm) of SiO2 is grown 

on electro-plated metal layer using Plasma-Enhanced Chemical Vapor Deposition 

(PECVD). The phosphorization is performed at ambient pressure in a consistently 

pumped low pressure chemical vapor deposition (LPCVD) reactor (see Fig. 112a). The 

substrate is loaded in the downstream of the LPCVD reactor at an appropriate optimized 

temperature under the P flux for a long- enough time until complete conversion of In to 

InP (see Fig. 112b for schematic).  
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Figure 112. a) Schematic of phosphorization growth setup with two different magnetic manipulators for 

rapid cooling of the sample and control over the P flux, b) Schematic of phosphorization for SiO2-capped 

metal In layer.   

The growth window primarily includes the reaction temperature and time which are key 

influencing parameters to be optimized to assure the complete conversation of In to InP. 

Detailed phase diagram of solid solutions of binary In-P is utilized to guide the process to 

achieve stoichiometry between In and P. At the end of the phosporization, the substrate is 

quenched or rapid cooled to prevent phase segregation into second phases such as In 

droplets, etc. The capping layer of SiO2 is subsequently removed with dilute 2% 

hydrofluoric (HF) acid (for 5 min). Fig. 113a shows a representative SEM image of 

stoichiometric InP film grown on InP substrate by phosphorization of In film with a 

thickness of 1.2 μm thickness at 720 ◦C and pressure of ~700 Torr.  
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Figure 113. a) SEM micrograph of InP thin film samples obtained by phosphorization. b) PL spectra for as 

grown InP sample and wafer. 

 

As shown in the inset of Fig. 113a, the obtained polycrystalline InP film is highly 

stoichiometric with an P/In of 48.3 to 51.7.  The PL spectrum (Fig. 113b) shows main 

features very similar to those of a commercial wafer, with linewidth (55 nm) somewhat 

broader than that of single crystal wafer at 35 nm, indicating possible defects and surface 

states contributions. All these can be minimized through an optimization of 

phosphorization process and through an eventual surface treatment. The same strategy 

was implemented to grow the InP pillars through phosphorization of In-plated template. 

The SEM image of the sample of before and after phosphorization is shown in Fig. 114a 

and 114b. The electroplating was performed on a sample with an average pore size ~550 

nm for 1 min and applied voltage of 5V. Subsequently, the optimum phosphorization was 

achieved at the temperature of 400 ◦C and pressure of ~700 Torr for 45 min. 

The sample was then polished using the Allied Polishing System. Fig. 114b shows the 

SEM image of the sample after polishing with the corresponding PL spectrum with a 

narrow bandwidth of ~40 nm measured under optical pumping of an Nd:YLF laser 
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(𝜆 = 349 𝑛𝑚) indicating a high quality of the  grown InP obtained by 

phosphorization.bThe emission wavelength of the InP is around 926nm that matches with 

that of ZB  InP.   The EDS elemental analysis also shows a good stoichiometric ratio 

between In and P for the templated InP NPs. 

 

 

 

7.7 Summary 

 

A universal template with pore arrays fabricated based on SiO2 coated Si substrate was 

established. The aim was to develop a templated substrate that can be used to grow a 

wide range of alloy NP materials, without being limited by typical lattice mismatch, 

providing a low cost universal platform for future PV. A facile recipe for electroplating 

metals such as Au, In and Ga into the pores of template was introduced. Subsequently, 

the growth of InP pillars through both Au-catalyzed VLS growth and phosphorization of 

In-plated template was demonstrated. It is believed, lowering the cost as a critical issue in 

fabrication of solar cells can be addressed by further development of such technology in 

combination with LAMB cells towards making highly efficient solar cell. 

Figure 114. SEM micrograph of In-plated template before and after phosphorization (a). Templated InP 

pillars obtained by phosphorization after polishing. Embedded PL shows narrow bandwidth of the 

obtained InP. Top right inset is the elemental spot analysis of one the pores containing InP crystal (b). 
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8 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE 

 

 This dissertation explored the growth of InGaAsP alloys using a low-cost method that 

could be potentially important especially for III-V NW-based solar cells. The NWs were 

grown by Vapor-Liquid-Solid (VLS) and Vapor-Solid (VS) mechanisms using a Low-

Pressure Chemical Vapor Deposition (LPCVD) technique, without requiring the use of 

lattice-matched single crystal substrates. The concept of supersaturation was employed to 

control the morphology of NWs through the interplay between VLS and VS growth 

mechanisms. Comprehensive optical and material characterizations were carried out to 

evaluate the quality of the grown materials. Concluding remarks on the obtained key 

results are summarized below. 

8.1 Conclusion 

 

A simple, but successful strategy for growth of highly stoichiometric InP 

nanostructures was presented. Since non-stoichiometric materials are often accompanied 

by defect emission or less efficient bandedge emission, the presented method in chapter 3 

for growth of InP could be potentially important for demonstration of the highly efficient 

InP-base photonic devices. The growth mechanism of InP NWs was explained by an 

interplay between VLS and VS growth. The optical properties of InP nanostructures such 

as NWs, NBs and microdisks showed that all the as grown nanostructures support lasing 

under high optical pumping conditions. 

An Au-catalyzed VLS growth of highly stoichiometric ZB GaP NWs on Si 

substrates was introduced in chapter 4. It was found that providing the excess P precursor 

is necessary to replenish the deficiency of P exerted by sublimation of P above the 
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congruent sublimation temperature of GaP binary source. It was shown that GaP NWs 

grown under excess P condition result in better stoichiometry and optical properties. 

From a comprehensive PL study of synthesized NWs using different precursors of GaP 

and under different growth conditions, NWs grown using GaP and P source material 

exhibited strong BE emission with a relatively weak DE emission intensity. Furthermore, 

with a plausible set of data obtained from EDS and BE/DE ratio from PL, a correlation 

between stoichiometry and concentration of the minority defects was established. 

Formation of a large enough concentration of such defects during the growth of GaP 

NWs may preclude them to be used for making the optoelectronic devices. It is therefore 

imperative to study the crucial role that the growth parameters play in their optical 

properties. However, there are more aspects of such growth yet to be explored in context 

of both optical and structural properties. In addition, the versatility of the GaP growth 

was shown by bandgap tuning of its alloys such as InGaP and GaAsP NWs, simply by 

adding the As or In source into the growth medium.  

Growth of high quality III-V such as InP films using the inexpensive approaches 

is critical in lowering the cost of solar energy. So far, InP films have been mostly 

produced using the high-cost precursors using the single-crystal substrates in the case of 

epitaxial growth. In chapter 5, a low-cost growth of high quality polycrystalline InP thin 

film and nano-networks using a direct co-evaporation of single elemental In and P 

precursors via a chemical vapor deposition technique was demonstrated for solar cell 

applications. A very small deviation from the perfect stoichiometry for the films grown at 

a wide temperature range of 560 ◦C to 720 ◦C was observed. The proposed method was 
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shown to be largely independent of type of substrate for both Au and self- (In-) catalyzed 

growth indicating the versatility of the growth approach. The underlying growth 

mechanism of nano-networks and coalesced thin films was explained via interplay 

between VLS and VS regimes. The key role that Au catalyst plays in the promotion of 

transverse growth was well defined. The grains size and spatial pore filling as well as the 

thickness of InP film was shown to be controllable by changing the growth parameters. 

Structural, optical and electrical properties of the grown films were investigated and 

eventually the preliminary solar cell devices were fabricated on a p-type silicon with an 

ITO contact layer. It is believed that our growth strategy provides a simpler approach for 

producing the high quality InP thin films to be used for fabrication of high efficiency 

solar cells, while lowering the cost for both precursors and growth substrate.  

In chapter 6, growth of spatially composition-graded InGaAsP alloy NWs with a 

widely tunable bandgap on the single substrates was shown. The low-cost dual gradient 

method in combination with metal-catalyzed VLS approach was utilized to provide both 

source material dispersion and temperature gradient across the length of the substrate to 

grow InGaP, InGaAs, and GaAsP alloys with spatially-graded bandgaps. A series of 

different growth experiments were performed in our homemade CVD setup to find the 

optimum growth parameters and more specifically the growth window of such materials. 

Further extension of the range of achievable alloy composition and the associated alloy 

uniformity is the goal of future investigation. Such unique material capability provides a 

III-V platform for application in a wide range of novel devices from full spectrum solar 

cells, multispectral detector, tunable nanolasers, and spectrometer on a chip.  
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Finally, fabrication of a universal template with uniform pore arrays based on 

SiO2 coated Si substrate was established. The aim was to develop a templated substrate 

that can be used to grow a wide range of alloy NP materials, without being limited by 

typical lattice mismatch, providing a low cost universal platform for future PV. A facile 

recipe for electroplating metals such as Au, In and Ga into the pores of template was 

introduced. Subsequently, the growth of InP pillars through both Au-catalyzed VLS 

growth and phosphorization of In-plated template was demonstrated. It is believed that 

lowering the cost as a critical issue in fabrication of solar cells can be addressed by 

further development of such technology in combination with LAMB cells towards 

making highly efficient solar cell. 

8.1 Future Work 

Despite the extensive effort made to grow different binaries and associated ternary alloys 

of InGaAsP, it is still important to push the boundaries of this exploration by further 

improving the morphology, optical quality and more in-depth structural studies of the 

grown structures as follows:  

For instance, Growth of the InP NWs can be further studied by optimizing the 

different parameters of growth and controlling the morphology of different nanostructure 

such as NWs, NBs and nanosheets. Structural phase and crystal quality of InP micropillar 

should be further studied using HRTEM for study of the WZ/ZB polytypism and stacking 

faults. 

One of the challenging tasks to accomplish is to grow hexagonal wurtzite GaP 

NWs with direct band gap. With the PL emission falling in the green portion of the 
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spectrum, direct gap GaP can be used for making the highly efficient LEDs and solar 

cells. 

 Growth of monolithic InGaAsP nanobelts can be achieved using a novel growth 

methodology based on dual ion exchange mechanism similar to our previous work [187] 

based on II-VI material. 

We have, so far, achieved a continuous spatial grading for InxGa1-xP, InxGa1-xAs 

and GaAsxP1-x alloys on a single Si substrate. Further extension of the range of 

achievable alloy composition and the associated alloy uniformity is under investigation. 

As a near-term future work, the preliminary 3-LAMB solar cell will be demonstrated. It 

is believed this methodology, the dual gradient method, for bandgap engineering can be 

extended more generally to other ternary and quaternary alloy systems such as 

perovskites with wide range of emission wavelengths on a single substrate. 

The electroplating recipe developed in the current PhD dissertation can be further 

extended by electroplating of In-Ga alloys into pore array of template for subsequent 

growth of ternary InGaP alloy NPs under phosphorization. While the key principle of 

similar phosphorization process has been explored in the case of InP with high material 

quality, similar approach to produce III-V NPs has not been demonstrated. It is believed 

that an in-depth study on both tuning the composition of electroplated InxGa1-x metal film 

and subsequent phosphorizarion (arsenidation) process is required. This can raise the 

hope for making InGaAsP with a high quality using the similar low-cost approach. With 

no need for using the expensive metal-organic precursors or epitaxial equipment such as 

MOCVD or MBE and single crystal substrate this method seems very promising as it  
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