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ABSTRACT  

   

The attractiveness of a reward depends in part on the delay to its receipt, with 

more distant rewards generally being valued less than more proximate ones. The rate at 

which people discount the value of delayed rewards has been associated with a variety of 

clinically and socially relevant human behaviors. Thus, the accurate measurement of 

delay discounting rates is crucial to the study of mechanisms underlying behaviors such 

as risky sex, addiction, and gambling. In delay discounting tasks, participants make 

choices between two alternatives: one small amount of money delivered immediately 

versus a large amount of money delivered after a delay. After many choices, the 

experimental task will converge on an indifference point: the value of the delayed reward 

that approximates the value of the immediate one. It has been shown that these 

indifference points are systematically biased by the direction in which one of the 

alternatives adjusts. This bias is termed a sequencing effect.  

The present research proposed a reference-dependent model of choice drawn from 

Prospect Theory to account for the presence of sequencing effects in a delay discounting 

task. Sensitivity to reference frames and sequencing effects were measured in two 

computer tasks. Bayesian and frequentist analyses indicated that the reference-dependent 

model of choice cannot account for sequencing effects. Thus, an alternative, perceptual 

account of sequencing effects that draws on a Bayesian framework of magnitude 

estimation is proposed and furnished with some preliminary evidence. Implications for 

future research in the measurement of delay discounting and sensitivity to reference 

frames are discussed.  
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CHAPTER 1 

BACKGROUND 

Humans make choices every day that promote satisfaction and well-being. These 

choices are the product of processes that integrate characteristics and experiences specific 

to the individual as well as features of the immediate environment. Efforts abound to 

identify and explain the effects of different traits and contexts on choice; the 

attractiveness of a consequence has been shown to depend on various properties, such as 

its magnitude, valence, and certainty of and delay to its receipt (Berry, Nickerson, & 

Odum, 2017; McKerchar, Pickford, & Robertson, 2013; Nishiyama, 2016; Odum, 

Baumann, & Rimington, 2006; Rachlin, Raineri, & Cross, 1991). For decades, 

researchers have devoted considerable attention to studying delay discounting—the 

inverse relationship between the value of an outcome and the time until its availability—

to better understand humans’ engagement in socially and clinically relevant behaviors. 

There are individual differences in delay discounting rates: the degree to which 

delays imposed on outcomes influence choice (see Reynolds, 2006 for a review). A 

person who tends to defer immediate satisfaction in favor of greater long-term benefit can 

be called self-controlled; a person without such a disposition might be impulsive. While 

such labels may oversimplify a collection of behaviors by framing them as a prescriptive 

personality trait, discounting rate does appear to be robust throughout the lifespan 

(Audrain-McGovern et al., 2009; Kirby, 2009), and twin and genome studies indicate that 

these rates have a significant genetic component—heritability estimates hover around 

40% (Anokhin, Golosheykin, Grant, & Heath, 2011; Gray & Mackillop, 2014; Isen, 

Sparks, & Iacono, 2014).  
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Moreover, these individual differences in discounting rate are correlated with the 

frequency and intensity of behaviors characterized by an alluring short-term gain and 

potential long-term loss, such as risky sex (Collado, Johnson, Loya, Johnson, & Yi, 2016; 

Johnson & Bruner, 2013), cigarette smoking (Audrain-McGovern et al., 2009; Odum, 

Madden, Bickel, 1999; Yi & Landes, 2012), substance abuse (Kirby, Petry, & Bickel, 

1999; Yi, Mitchell, & Bickel, 2010), and pathological gambling (Petry & Casarella, 

1999; Reynolds, 2006). Due to its relevance in human choice behavior, experimenters 

have developed an array of delay discounting procedures to measure sensitivity to delay.  

A quintessential human delay discounting paradigm was introduced by Rachlin 

and colleagues (1991), who adapted a methodology used by Mazur (1987) with pigeons. 

In Rachlin et al., participants made a series of choices between two amounts of money: 

the first, between $1 and $1,000 and available immediately; the second, $1,000 available 

after a specified delay. Choices were made at seven delays that ranged from 6 hours to 25 

years. Each delay block began with a choice between either the smallest or largest 

possible immediate amount (i.e. $1 or $1,000) and the delayed $1,000. Thereafter, the 

immediate alternative was adjusted after each choice to make the initially unattractive 

alternative more alluring, and eventually the participant’s preference switched to the 

originally non-preferred option. For example, a participant may choose $1,000 available 

immediately over $1,000 available after 1 month. Then, the experimenter reduced the 

amount available immediately with each choice, and eventually the participant changed 

their choice and began preferring the delayed alternative. This switching point—the 

amount available immediately that approximated the value of the delayed $1,000—was 

referred to as the indifference point (IP), and served as an indicator of subjective value of 
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the delayed reward. Two IPs for each delay were estimated for each participant: one 

where the immediate amount started at the minimum $1 and increased (ascending 

sequence), and another where the immediate amount started at the maximum $1,000 and 

decreased (descending sequence). Then, these IPs were averaged to create one IP per 

delay, for a total of seven. Finally, a hyperbolic equation, found by Mazur (1987) to 

provide the best fit to pigeon IPs, was fit to aggregate and individual IPs along with an 

exponential function for comparison. 

Quantitative models of delay discounting 

Theoretically, an economically rational decision-maker should discount the value 

of an outcome at a constant rate over time (Samuelson, 1937). In such cases, value as a 

function of delay should decay exponentially, 

 kDV Ae  , (1) 

where V is the discounted value of a reward A delivered after delay D, and k is a free 

parameter that represents the rate at which value decays. Larger values of k result in 

steeper discounting curves, which indicate a more rapid decay of value and stronger 

preference for immediate rewards. A critical assumption of the exponential model of 

discounting is time-consistent preferences: that the rate of discounting remains constant 

for given inter-reward intervals. In other words, preference between two rewards should 

not change if a constant delay is added to both rewards. However, this assumption 

contradicts choices in everyday life. People plan to exercise at the gym, only to change 

their mind as gym time draws nigh; one might decide over breakfast to cook a healthy 

dinner later, but decide to instead purchase fast food while on the drive home that 

evening. Such preference reversals have been shown to occur in experiments with 
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humans (Green, Fristoe, & Myerson, 1994; Rachlin et al., 1991), rats (Green & Estle, 

2003), and pigeons (Rodriguez & Logue, 1988). The exponential equation does not 

predict preference reversals, and thus serves as an incomplete model of intertemporal 

choice. 

In his 1987 experiment, Mazur determined that a hyperbolic equation served as 

the best-fitting quantitative model of discounting as a function of delay, 

 
1

A
V

kD



 , (2) 

which has the same number of free parameters as the exponential equation (one: k), and 

often provides a superior fit to individual and aggregate IPs (Aparicio, 2015; McKerchar 

et al., 2013; Yi, Landes, & Bickel, 2009). Importantly, hyperbolic discounting models 

predict preference reversals.  

Figure 1 illustrates a preference reversal. The height of the bars represents the 

absolute (undiscounted) value of two rewards (A in Eqs. 1 and 2), and the curves 

represent the subjective value of the two rewards per a hyperbolic model. When both 

SSR 

LLR 

S
u
b
je

ct
iv

e 
V

al
u
e 

Time 

T1 T2 

Figure 1. Preference reversals. Subjective value of a smaller-sooner reward (SSR) and a larger-later 

reward (LLR) as a function of delay to receipt. Bar height represents absolute (i.e., undiscounted) 

reward value, and curves show predicted subjective values per the hyperbolic model of discounting. The 

point at which the curves intersect is the point of preference reversal from LLR at T1 to SSR at T2 
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rewards are subject to lengthy delays (near the origin, at T1), the subjective value of the 

larger, later reward (LLR) is greater than the smaller, sooner reward (SSR). This is 

demonstrated by the greater distance of the solid line (LLR) than the dashed line (SSR) 

from the X-axis at T1. However, as the delays are reduced (moving towards T2), the 

subjective value of the SSR overtakes that of the LLR at the intersection of the two 

hyperbolic functions. It is at this point where the allure of fast food overtakes the further-

delayed prospect of a healthy homecooked meal. The ability of the hyperbolic to account 

for such preference reversals, coupled with superior model fits to empirical discounting 

curves compared to the exponential, leads it to serve as the benchmark quantitative model 

of delay discounting (Madden & Johnson, 2010; Reynolds, 2006). 

A variety of delay discounting assessments have been employed in basic and 

translational research. Rachlin and colleagues’ (1991) adjusting-immediate-amount 

(AIA) discounting procedure elicited individual and median IPs that were better 

described by a hyperbolic equation than an exponential. Other experimenters have 

estimated delay discounting rates with psychophysical assays that employ titration (Du, 

Green, & Myerson, 2002) or randomized presentation procedures (Robles & Vargas, 

2007). Others still have estimated discounting rates with computer programs that 

resemble simple video games rather than conventional binary choice tasks 

(Dshemuchadse, Scherbaum, & Goschke, 2013; Scherbaum et al., 2016). Across 

paradigms, authors often use the parameter k from Eq. 2 as a primary dependent variable 

and find the hyperbolic function fits IP curves quite well. In many cases, the objective of 

these studies is to quantify and compare sensitivity to delay across populations or 

experimental conditions (e.g. smokers vs. non-smokers; Bickel et al, 1999). In other 
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cases, researchers instead focus on determining the shape of the discounting function and 

the mathematical formula that describes it. One avenue of research along these lines has 

suggested that a hyperboloid function is the best quantitative model of delay discounting 

(Green, Fry, & Myerson, 1994; Rachlin, 2006), 

 
1 s

A
V

kD



 , (3) 

where s is another free parameter, and is supposed to represent nonlinear sensitivity to 

delay. When s equals one, Equation 3 reduces to Equation 2, and takes the form of a 

simple hyperbola. When s is less than one, as has been shown to be the case in children, 

sensitivity to differences between delays is increased.  

However, Madden and Johnson (2010) advise experimenters to avoid using any of 

these mathematical models if they are interested primarily in quantifying and comparing 

sensitivity to delay between groups or conditions. In such cases, they advocate the 

calculation of area-under-the-curve (AUC) as an index of discounting rate, a technique 

originally suggested by Myerson, Green, and Warusawitharana (2001). To calculate 

AUC, a plot of indifference points is generated on a scale normalized to the maximum 

delay on the X-axis and maximum possible indifference point on the Y-axis (i.e., with a 

minimum of 0 and a maximum of 1). Then, the area under each two sequential IPs are 

calculated using the formula for a trapezoid, 

    
1

1

1

( )
2

n
i i

i i

i
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  ,                     (4) 
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where delays Di and Di+1 are associated with indifference points IPi and IPi+1, 

respectively. The areas of all trapezoids are summed to compute AUC; see Figure 2 (left) 

for an illustration of AUC calculation.  

One benefit of using AUC as a measure of discounting is that the frequency 

distribution of AUC values is often normal, whereas distributions of k are positively 

skewed (Myerson et al., 2001). Therefore, AUC is a measure better suited for parametric 

inferential statistics than untransformed k values. In addition, Myerson et al. argue that 

AUC is theoretically neutral, and that therefore its availability affords experimenters the 

option to not make any assumptions about the mathematical form of the discounting 

function with hyperbolas, hyperboloids, and exponentials. The widespread use of AUC is 

a testament to its convenience and utility as a point-estimate of individual discounting 

rates (Madden & Johnson, 2010), but it is not without its drawbacks. 

Area-under-the-curve measures of discounting are disproportionally influenced by 

long delays relative to short delays (Borges, Kuang, Milhorn, & Yi, 2016). In most 

preference assessments the delayed alternative is held constant and the immediate amount 
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Figure 2. Area-under-the-curve. Vertical dashed lines separate 6 trapezoids whose areas are summed 

to compute AUC. Left: IPs plotted as a function of standardized delay (standard method of calculating 

AUC; see Green et al., 2001); by this formulation, the trapezoid formed by the final two IPs 

constitutes approximately 80% of the final AUC estimate. Center: IPs plotted as a function of log-

transformed delay. Right: IPs plotted as a function of ordinal delays. Log and ordinal transformations 

of delays more evenly distribute the contribution of each trapezoid to AUC. 
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is adjusted until one IP is determined for each delay in a set of pseudo-exponentially 

scaled delays (e.g., in days: 1, 7, 30, 180, 365, 1825, 9125). Borges and colleagues (2016) 

show that when delays such as these are used to calculate AUC, the trapezoid comprised 

of the longest two delays (in our example, 1825 and 9125 days) constitutes approximately 

80% of the total AUC. In contrast, the four shortest delays constitute less than 5% of the 

total AUC. Given that nonlinear regression techniques used to estimate k values equally 

weight each indifference point, it seems inconsistent to use AUC if it is so 

disproportionally influenced by the final two IPs. Thus, Borges et al. suggest log-

transforming the delay to condense the delay scale and more closely equate the delay 

pairs in their contribution to the final measure of AUClogD. Alternatively, one might 

instead transform the delays from a ratio scale to an ordinal scale, making the difference 

between each delay one, and forcing each trapezoid to have the same width. See Figure 2 

(center) for an illustration of AUClogD and Figure 2 (right) for an illustration of AUCordD.  

Area-under-the-curve and k values estimated from Eq. 2 and 3 are regarded as 

valid estimates of the degree to which individuals discount the value of an outcome as a 

function of the delay to its availability. Indeed, all have seen use by experimenters 

investigating sensitivity to delay between groups or within individuals (Berry et al., 2017; 

Green, Fry, & Myerson, 1994; McKerchar et al., 2013; Odum, 2011). However, the new 

formulations of AUC proposed by Borges et al. (2016) have seen comparably less use 

due to them being proposed only recently. Therefore, further empirical exploration is 

necessary to determine the extent to which AUClogD and AUCordD capture the same 

information as AUC. 

Methodological effects in delay discounting paradigms 
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The degree to which people discount outcomes is moderated by a variety of task-

specific factors (Berry et al., 2017; Dehart & Odum, 2015; Read, Frederick, Orsel, & 

Rahman, 2005). For example, one well-studied phenomenon in delay discounting 

research is the magnitude effect, where it is observed that hypothetical small delayed 

rewards are discounted more steeply than larger ones. McKerchar and colleagues (2013) 

found that group median k values from Eqs. 2 and 3 were smaller for participants who 

discounted $25,000 compared to those who discounted $1,000. Comparable results have 

been reported by other authors comparing a range of reward magnitudes (Estle, Green, 

Myerson, & Holt, 2006; Green, Myerson, & Mcfadden, 1997; Vanderveldt, Oliveira, & 

Green, 2016). 

However, this magnitude effect is not reliably observed in experiments with 

animals (Green, Myerson, Holt, Slevin, & Estle, 2004, but c.f. Grace, Sargisson, & 

White, 2012), and a recent study showed that humans do not exhibit the magnitude effect 

when amounts are expressed as dots on a screen instead of numerically (Reyes-Huerta & 

dos Santos, 2016). Reyes-Huerta and dos Santos (2016) suggest that discounting rates do 

not vary as a function of magnitude when numerals are removed from the experimental 

context because participants must estimate the value of each alternative, rather than 

integrate a numerical value in the discounting process. Indeed, when amounts were 

presented as a collection of dots, participants underestimated the value of the immediate 

alternative in an AIA task when the value of the delayed reward was 16,000 Mexican 

pesos, but not when it was 2,000, suggesting non-linear scaling of amount estimation as a 

function of the magnitude of the delayed reward. Another noteworthy finding from their 

study is that effects of type of value representation (numeric vs. non-numeric) on 



  10 

discounting rate were moderated by the starting point and direction of change of the 

immediate alternative, which is consistent with previous research demonstrating 

sequencing effects in delay discounting paradigms.  

Sequencing effects are observed when IPs are systematically biased as a function 

of the direction in which the immediate alternative is adjusted after each choice in a 

series of decision problems. Results from Robles, Vargas, and Bejarano (2009) and 

Robles and Vargas (2008) demonstrate the sequencing effect; see Figure 3 for an 

illustration. Participants in Robles et al.’s studies made a series of choices between an 

SSR and an LLR, where the former ranged from $1 to $1,000 and the latter was held 

constant at $1,000. Indifference points were estimated in both an ascending and 

descending sequence. Estimates of participants’ discounting rates—AUC and k values 

from a simple hyperbola (Eq. 2)—were higher in the ascending sequence, in which the 

SSR began at $1 and increased following each choice than in the descending sequence, in 
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Figure 3. The sequencing effect. Hypothetical indifference curves illustrate steeper discounting as a 

function of delay when immediate values begin at the minimum $1 and are increased between each 

choice (solid line) compared to when they begin at the maximum $1,000 and are decreased (dashed 

line). Curves are hyperbolic (Eq. 2), where k for each curve is the median k in Robles et al., 2009 

(kAscending = .002; kDescending = .0004). 
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which the SSR began at $1,000 and decreased after each choice. At present, the 

mechanism underlying such sequencing effects is unclear. 

A reference-dependent account of sequencing effects 

A possible explanation for sequencing effects, suggested by Robles and his 

colleagues (2008; 2009), instantiates a reference-dependent model of choice (Levin & 

Gaeth, 1998; Tversky & Kahneman, 1991). This model proposes that people evaluate 

their options partly as a function of the way in which the decision problem is framed. 

Evidence for the effects of decision frame on human choice comes from both behavioral 

economics and experimental psychology (e.g. Dehart & Odum, 2015; Dshemuchadse et 

al., 2013; Tereyağoğlu, Fader, & Veeraraghavan, 2017; Tversky & Kahneman, 1981). A 

quintessential example of framing effects can be seen in Table 1, and is taken from 

Tversky and Kahneman’s “Asian Disease Problem” (1981). Respondents (N = 152) were 

asked to imagine a scenario where the U.S. is preparing for an outbreak of a new Asian 

disease that is expected to kill 600 people. Half of the participants were assigned to the 

Gain frame condition, and the other half to the Loss frame condition; in each condition, 

Table 1

Choice varies as a function of decision frame

Frame Response options Choice %

Gain a. If Program A is adopted, 200 people will be saved. a. 72%

b. If Program B is adopted, there is 1/3 probability b. 28%

    that 600 people will be saved, and 2/3 probability

    that no people will be saved.

Loss c. If Program C is adopted, 400 people will die. c. 22%

d. If Program D is adopted, there is a 1/3 probability d. 78%

    that nobody will die, and a 2/3 probability that

    600 people will die.

Note. Response frequency values were taken from Tversky & Kahneman, 1981. N = 152
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the respondent was presented two alternatives to combat the disease and asked to indicate 

which they preferred. These alternatives were mathematically equivalent across 

conditions (all outcomes had an expected value of 200 lives saved), and differed only in 

the language used to describe them. In the Gain frame condition choices were framed in 

terms of people being saved, whereas in the Loss frame condition choices were framed in 

terms of people dying. Participants’ choice percentages are shown in Table 1, and the 

results are clear: the framing of the alternatives as either losses or gains had a systematic 

effect on participants’ responses. Specifically, the loss frame elicited risk-seeking choice, 

and the gain frame elicited risk-averse choice. 

This observed gain-loss framing effect in human decision making is a central 

tenet of Kahneman and Tversky’s prospect theory (Kahneman & Tversky, 1979; Tversky 

& Kahneman, 1991; Tversky & Kahneman, 1981). Indeed, effects such as these are often 

attributed to loss aversion as it is described within this theoretical framework. Loss 

aversion is commonly conceptualized as the finding that, when it comes to humans 

making choices, “losses loom larger than gains” (Levin & Gaeth, 1998). Empirical 

evidence demonstrates that prospective losses often do carry greater weight than 

equivalent gains in human decision-making processes, especially in paradigms similar to 

the original Asian Disease Problem described above and others that establish a strong 

reference point (Kühberger, 1998). In his meta-analysis, Kühberger compiled 230 effect 

sizes from a diverse sample of paradigms and estimated that the average magnitude of 

framing effects was approximately Cohen’s d = 0.31 (weighted by sample size), and that 
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this effect was notably greater for paradigms that established a strong reference point 

(mean weighted d = 0.50). 

Figure 4 illustrates the effect of reference points and the gain-loss asymmetry in 

outcome evaluation processes. At the origin is a decision-maker’s reference point, which 

describes one’s current holdings—the status quo. Reference-dependent models of choice 

posit that all prospective gains and losses are evaluated in terms of deviations from this 

reference point. To the right and left of the origin along the x-axis is the nominal value of 

prospective gains and losses, respectively. The y-axis indicates the subjective value of 

gains and losses. The curves in the upper-right and lower-left quadrants represent the 

value functions for gains and losses, respectively. Imagine a decision-maker choosing to 

accept or reject an equivalent mixed gamble, where there is a 50% chance of winning 

some amount of money (+x) and a 50% chance of losing the same amount of money (–x). 

The value functions for gains and losses in Figure 4 predict that the pleasantness of the 

Subjective value 

Gains Losses 

+ x 

– x 
+ y 

– y ∙ λ 

Figure 4. Hypothetical value functions as posited by a reference-dependent model of choice. Curves in 

the lower-left and upper-right quadrants represent the subjective value assigned to prospective losses 

and gains, respectively. Details in text. 
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prospective gain (+y) of the gamble is outweighed by the unpleasantness of the 

prospective loss (–y ∙ λ), where λ is a scaling factor characterizing the degree to which the 

decision-maker is loss averse. Thus, in contrast to classic “rational” economic theories of 

choice (e.g. expected value theory, see Edwards, 1954; Fishburn, 1970; Samuelson, 

1937) reference-dependent models of choice predict that decision-makers will tend to 

reject equivalent mixed gambles due to the fact that |(–y ∙ λ)| > (+y) when λ > 1; indeed, 

evidence shows that this is often the case (De Martino, Camerer, & Adolphs, 2010; 

Sokol-Hessner et al., 2009; Tom, Fox, Trepel, & Poldrack, 2007; but c.f. Walasek & 

Stewart, 2015). 

Sequencing effects in the AIA discounting task may be the product of 

disproportionate weighting of losses relative to gains. In the descending sequence, 

immediate values are decreased between each choice trial. If a decision-maker were 

attentive to the direction in which value is changing—which reason predicts they would 

be, as it is the only changing parameter in the decision problem—then sequential changes 

in the negative direction may place them in a loss frame. The reference-dependent model 

of choice predicts that, because of framing effects, amount decrements (i.e. losses) 

experienced in the descending sequence should carry more subjective value relative to 

amount increments (i.e. gains) experienced in the ascending sequence. This gain-loss 

asymmetry could account for the systematic bias in discounting rates, as the subjective 

value of the SSR may not equal its nominal value (refer to Figure 4). Thus, the primary 

hypothesis of the present research is that differential sensitivity to gains and losses 

covaries with observed differences in estimated delay discounting rates between 

ascending and descending SSR sequences. 
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Estimating sensitivity to gain and loss frames with a mixed-gamble task 

Authors have employed myriad strategies to estimate the degree to which 

individuals are loss averse (Abdellaoui, Bleichrodt, & L’Haridon, 2008; Abdellaoui, 

Bleichrodt, & Paraschiv, 2007; De Martino et al., 2010; Mukherjee, Sahay, 

Chandrasekhar, & Srinivasan, 2017; Sokol-Hessner et al., 2009; Tom et al., 2007). While 

methods differ, the result of these assays are all point estimates of loss aversion: a single 

value which characterizes the extent to which prospective losses outweigh gains in 

participants’ decisions. For example, Tom et al. (2007), De Martino et al. (2010), and 

Walasek and Stewart (2015) asked participants to indicate whether they would accept or 

reject mixed gambles. Each participant’s responses were submitted to a logistic 

regression that predicted the odds of accepting a gamble from the specified gain and loss 

amounts. The ratio of the estimated loss and gain model coefficients were used to 

compute a loss aversion coefficient λ, which served as a point-estimate of a participant’s 

sensitivity to gain-loss framing effects. 

In summary, a reference-dependent model of choice predicts that the magnitude 

of sequencing effects in an AIA delay discounting tasks should covary with decision-

makers’ differential sensitivity to gains and losses. The experiment presented herein tests 

this hypothesis with a within-subjects correlational design: participants provided 

indifference data from ascending and descending sequences that informed estimates of 

their delay discounting rates and the magnitude of the sequencing effect. The correlation 

between this effect and point-estimates of loss aversion was tested. A positive correlation 

between loss aversion and the magnitude of the sequencing effect would support the 

notion that discounting rates as estimated by AIA choice procedures are partly 
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confounded by an alternative, distinct process responsible for framing effects. Analyses 

also explored various quantitative models of delay discounting to assess the degree to 

which they captured the same information. 
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CHAPTER 2 

METHODS 

Participants 

Participants were current undergraduate students recruited from Arizona State 

University’s West Campus volunteer pool, and were compensated with course credit. An 

a priori power analysis conducted with the software G*Power suggested a sample size of 

N = 43 to detect a sequencing effect of size d = 0.57 with a Type I Error probability α = 

.05 and power (1 – β) = .95 (Erdfelder, Faul, Buchner, & Lang, 2009). This effect size 

was estimated from descriptive statistics on AUC values given in Robles et al. (2009). 

Eighty-one (81) volunteers completed all experimental protocol by the end of the Fall 

2017 semester. Data collection was continued beyond N = 43 to buffer against exclusion 

of participants based on a priori criteria described later in this section. 

Procedure 

All participants completed two computer assessments presented in 

counterbalanced order. One estimated delay discounting rates in ascending and 

descending SSR conditions, and the other estimated loss aversion. All experimental 

programs were written in Python 3.0. Computers were standard Dell desktop PCs, and all 

responses were recorded with the left button on a standard two-button mouse. The 

experiment took approximately 25 minutes to complete. 

Abbreviated delay discounting task 

Figure 5 (left) depicts the choice interface used in the Abbreviated delay discounting 

task (ADT). This task was identical to that used by Robles et al. (2009), which is an 
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abbreviated version of the original procedure used by Rachlin et al. (1991). After the 

experimenter started the program, the participant read the following instructions: 

“This program will show you a series of screens where you will be asked to choose 

between an amount of money available now and $1,000 available after some 

delay. The money in this program is hypothetical, “pretend money,” but please 

make your selections as if you were really going to get the amounts you choose. 

We don’t expect you to choose one in particular, so please don’t select what you 

think we might want you to choose, but click on the alternative you really would 

prefer. After each choice, the program will go on to the next screen, and it will 

tell you when you are done. Now click on the START button when you are ready 

to begin.” 

In each trial, participants chose between two alternatives by clicking the left mouse 

button over a command button associated with their preferred outcome. After making 

their selection, a separate screen presented a new button labeled “CONTINUE” that, 

when pressed, began a new trial with the next pair of choices. One choice was always an 

amount of money available immediately (SSR), and the other always $1,000 available 

after a delay (LLR). Whether the SSR was presented on the left- or right-hand side of the 

screen was determined randomly for each trial. The 30 possible values of the SSR are the 

same as those used in previous studies (US $1000, $999, $995, $990, $960, $940, $920, 

$850, $800, $750, $700, $650, $600, $550, $500, $450, $400, $350, $300, $250, $200, 

$150, $100, $80, $60, $40, $20, $10, $5, $1), and IPs for the LLR were estimated in 8 
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different delay blocks (6 hours, 1 day, 1 week, 2 months, 6 months, 1 year, 5 years, and 

25 years). Participants completed the ascending and descending SSR conditions in a 

random order. 

Conditions differed in the starting value and direction of change of the SSR. In the 

ascending condition, the value of the SSR began at $1 for each delay block and increased 

with each choice of the LLR. Once a participant chose the SSR, the value of the SSR in 

that trial was recorded as the IP and the next delay block began. In the descending 

condition, the SSR began at $1,000 and decreased with each choice of the SSR. Once a 

participant chose the LLR, the value of the SSR in that trial was recorded as the IP and 

the next delay block began. Delay blocks within each condition were presented in 

ascending order. Omitting choices beyond the IP reduces the amount of time the 

assessment takes, and has not been shown to systematically bias IPs (Robles & Vargas, 

2008; Robles, Vargas, & Bejarano, 2009). 

Mixed-gamble loss aversion task 

Figure 5 (right) depicts the choice interface used in the mixed-gamble loss aversion 

task (MGT), which is similar to that used by other authors (De Martino et al., 2010; Tom 

et al., 2007; Walasek & Stewart, 2015). In the MGT, participants indicate whether they 

Figure 5. Choice screens used in the ADT and MGT. Left. The choice screen presented in the 

ADT. Whether the SSR was presented on the left or right was randomly determined for each new 

trial. Right. The choice screen presented in the MGT. Whether the “accept” button was presented 

on the left or right was randomly determined for each new trial. 
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would accept or reject each of 225 unique hypothetical mixed gambles, each of which 

features a 50% chance of gaining some amount of money and a 50% chance of losing 

some amount of money. The prospective gains and losses both ranged from $80 to $332 

with increments of $18 between each value; participants responded to each possible 

combination of gain and loss amounts, which were presented in a pseudo-random order. 

Prior to the presentation of any gambles, participants read the following instructions: 

“This program will show you a series of screens where you will be asked to choose 

whether or not you would accept a hypothetical gamble. Please answer by 

pressing the 'accept' button if you would take the gamble, and the 'reject' button if 

you would not. All gambles are 50/50 shots; that is, there is a 50% chance of 

winning the green money and a 50% chance of losing the red money. We don't 

expect you to choose in any particular way, so please don't choose what you think 

we might want you to choose, but click on the choice you really would prefer 

given the option in real life. After each choice, the program will go on to the next 

screen, and it will tell you when you are done. Please click on the START button 

when you are ready to begin.” 

Participants were shown one gamble at a time and made their selection by clicking 

the left mouse button over a command button labeled either “accept gamble” or “reject 

gamble.” After making their selection, a separate screen presented a new button labeled 

“CONTINUE” that, when pressed, began a new trial with the next gamble. 

Data exclusion 

Delay discounting exclusion criteria were chosen to maximize sample variability 

and minimize that contributed by non-monotonic discounters. Thus, participants were 
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excluded from all analyses if either of their sets of IPs had two or more instances where 

any single IP was greater than the preceding IP by more than $200. Four participants 

were excluded on the basis of this criterion (Johnson & Bickel, 2008). Johnson and 

Bickel (2008) also argued that participants may be excluded if the last IP (at 25 years) in 

a set of IPs was not less than the first (at 6 hours) by at least $100; this criterion was 

unused here to include those who are relatively insensitive to delay. 

Data were also excluded from all analyses if the statistical software was unable to 

fit a logistic regression model to participants’ MGT data. Thirteen participants responded 

so uniformly (i.e., rejected all gambles) that the software was unable to estimate model 

parameters. In other words, the logistic regression resulted in perfect predictions for these 

participants’ responses to the hypothetical gambles, making parameter estimation 

mathematically impossible. Three more participants were excluded as their models were 

unable to converge after 25 iterations. In sum, 20 participants were excluded from all 

analyses, reducing the total sample size from N = 81 to N = 61 (75%). 
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CHAPTER 3 

RESULTS 

Data analysis 

Except for hyperboloid (Eq. 3) model fits, all computations and statistical 

analyses were conducted in R, an open-source statistical computing software. 

Hyperboloid models were fit to indifference point data with the Microsoft Excel 2016 

Solver add-in. Where appropriate, effect sizes are reported as Cohen’s d. 

Is there a sequencing effect in the ADT? 

Hyperbolic (Eq. 2) and hyperboloid models (Eq. 3) were fit to each participant’s 

set of indifference points from the ascending and descending conditions with nonlinear 

least-squares regression. AUC, AUClogD, and AUCordD (Eq. 4) were computed for each 

participant in each condition. Table 2 shows descriptive statistics for ln(k)hyperbola, 

ln(k)hyperboloid, ln(s), AUC, AUClogD, and AUCordD, and Table 3 shows bivariate 

correlations between measures. Note that AUClogD values can exceed one because the log 

of the shortest delay (0.25 days) is a negative number.  

Included in Table 2 is the Standard Error of the Regression (SER) for the 

hyperbola and hyperboloid models: 

 ResidualSS
SER

n p



  (5) 
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where SSResidual is the sum of squared residuals between the observed and predicted IPs, n 

is the number of IPs, and p is the number of free parameters in the model. The SER 

provides an index of goodness-of-fit that is better suited for non-linear models than the 

coefficient of determination R2, because the former does not assume a linear relationship. 

Furthermore, the SER is exactly the size of the average residual, and thus features an 

intuitive interpretation: the mean number of dollars by which the predicted IP differs 

from the observed IP. Interestingly, mean SERs were significantly smaller in the 

descending condition for both hyperbolic fits, t(120) = 3.40, p < .001, and hyperboloid 

fits, t(120) = 3.70, p < .001.This finding suggests that these models of discounting were 

more predictive of IPs when SSRs decreased compared to when they increased. 

Figure 6 (left) illustrates the sequencing effect at the participant-level across 

various measures of delay discounting rate in participant-pair plots. Ln(k)hyperboloid and 

ln(s) values are not shown because hyperboloid model parameters cannot independently 

indicate a sequencing effect and are addressed later. Participants’ ln(k)hyperbola, AUC, 

AUClogD, and AUCordD are plotted as colored circles and are separated by condition. Gray 

lines connect each participant’s estimated delay discounting rate between ascending and 

descending conditions, and black targets are condition means. Note that larger ln(k) 

values indicate greater discounting, whereas larger AUC values indicate less discounting. 

Table 2

Descriptive statistics for the abbreviated delay discounting task

Sequence condition ln (k ) ln (s ) SER AUC AUClogD AUCordD

Ascending Hyperbola mean (SD) -6.39(4.55) -- 181.95(143.19) .446(.305) 0.785(0.300) .589(.232)

median -7.11 -- 150.28 .458 0.864 .659

Hyperboloid mean (SD) -6.15(6.03) -0.49(1.29) 180.41(155.02) -- -- --

median -5.32 -0.39 159.28 -- -- --

Descending Hyperbola mean (SD) -8.89(2.61) -- 109.46(84.71) .626(.280) 0.958(.0157) .721(.126)

median -9.48 -- 91.09 .705 0.999 .756

Hyperboloid mean (SD) -5.54(3.97) -1.01(1.38) 79.08(73.37) -- -- --

median -4.41 -0.71 57.45 -- -- --

Note. SER = standard error of the regression; AUC = area under the curve; SD = standard deviation
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These plots demonstrate that—despite substantial variation between participants—an 

ascending sequence of immediate values usually engenders more impulsive choice. 

This conclusion was corroborated by significance tests. As khyperbola values were 

positively skewed, condition differences in discounting rate were assessed with a paired-

sample Wilcoxon Signed Rank test. AUC values were more normally distributed, and 

thus simple linear regressions were used to compare delay discounting rates by sequence 

condition on these measures. Partial regression coefficients bs are reported. Each 

comparison indicated a statistically significant sequencing effect, with steeper observed 

discounting in the ascending condition: khyperbola, W = 1552, p < .001, median difference = 

0.0004; AUC, t(60) = 4.37, p < .001, b = 0.18, d = 0.62; AUClogD, t(60) = 4.59, p < .001, 

b = 0.17, d = 0.72; and AUCordD, t(60) = 4.54, p < .001, b = 0.13, d = 0.70. To examine 

potential methodological and demographical confounds, multiple linear regression 

analyses were conducted predicting discounting rate from sequence condition, task order 

(MGT or ADT first), condition order (ascending or descending sequence first), and 

participants’ age and sex. All multiple regression models retained unique statistical  

Figure 6 (Reverse). Sequence effects. Left. Participant-pair plots of estimated delay discounting rates 

across conditions as measured by khyperbola, AUC, AUClogD, and AUCordD. Black arrows indicate the 

direction of a statistically significant difference. Right. Probability density functions of estimated delay 

discounting rates across conditions. *p < .001 

 

Table 3

Bivariate correlation matrix of delay discounting measures

Measure ln (k ) AUC AUC logD AUC ordD

ln (k ) -- -.78* -.93* -.93*

AUC -- -- .79* .80*

AUC logD -- -- -- .99*

AUC ordD -- -- -- --

Note . AUC = Area under the discounting curve. *p  < .001
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Min Max 

Range 
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Sequence 

* 

* 

* 

* 
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significance of the sequence condition parameter (all coefficient ps < .05) and 

suggested no unique influence of sex, task order, or ADT condition order on discounting 

rate (all ps > .05). In addition, all multiple regression models identified age as a unique 

predictor of discounting rate (all ps < .05), with older participants making more self-

controlled choices than younger participants. Such a relationship is consistent with 

previous research (Green et al., 1994).   

Figure 6 (right) shows probability density functions (pdfs) of the same measures 

of delay discounting rate. These pdfs afford additional confidence in the robustness of the 

sequencing effect to outliers. For example, six outliers in the ascending condition can be 

seen in the ln(k)hyperbola participant-pair plot (Fig. 6, top-left); those with a critical eye may 

wonder if these outliers are the driving force behind the difference between the means of 

the ascending and descending conditions. However, the pdfs of ln(k)s (Fig. 6, top-right) 

mitigate these concerns: the pdf of the ascending sequence is near-uniformly shifted to 

the right, indicating steeper discounting in this condition relative to the descending 

sequence, and features only a slight increase in density in its right tail. Clearly, the 

observed difference between these two distributions is not wholly due to outliers. Taken 

together, these data suggest that the ascending presentation of immediate values in the 

ADT engenders more impulsive choice than the descending presentation of the same 

amounts. 

Does the hyperboloid model demonstrate a sequencing effect? 

Figure 7 shows four condition median indifference curves: one curve is drawn for 

each condition per the hyperbola (solid lines) and hyperboloid (dashed lines). Visual 

inspection of the IPs, the simple hyperbola, and the hyperbola with the delay raised to a 
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power s indicates that participants discounted the value of the delayed alternative more in 

the ascending sequence than in the descending sequence (note the steepness of the orange 

[ascending] lines relative to the blue [descending] lines). The hyperboloid rate parameter 

khyperboloid and scaling parameter s were both positively skewed and were thus natural-log 

transformed for statistical analyses. However, a statistical comparison of distributions of 

ln(k)hyperboloid between the ascending and descending conditions would not be analogous 

to between-condition comparisons of ln(k)hyperbola if the power s in the hyperboloid model 

differed from one. Note that ln(1) = 0. Thus, a one-sample t-test was conducted to 

compare the distribution of ln(s) against the null hypothesis of ln(s) = 0, which revealed 

that the mean ln(s) was significantly less than zero, t(121) = -6.11, p < .001, d = -0.55.  

Different parameters within mathematical models of behavior are meant to model 

independent processes; thus, there should be no or minimal correlation between estimates 

of ln(k)hyperboloid and ln(s). A significant correlation would imply that these parameters 

model the same or similar processes, and should not be interpreted independently. A test 

Figure 7. Best-fitting group-level discounting curves per hyperbolic (solid lines) and hyperboloid 

(dashed lines) models for the ascending (orange) and descending (blue) sequence conditions. 

Indifference points (diamonds) were condition median IPs for each delay. 
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of the Pearson’s product-moment correlation coefficient r suggested that these parameters 

were inversely related, r(120) = -0.62, p < .001. A correlation coefficient of r = -0.62 

indicates a strong relationship by conventional standards (Cohen, 1992), and such 

collinearity discourages the independent interpretation of estimates of k and s as “rate” 

and “scaling” parameters, respectively. Therefore, no attempt to do so will be made here, 

and the reader is directed to Figure 7 to conclude that the fit of Eq. 3 does not provide 

evidence against the presence of a sequencing effect. 

Were participants loss averse? 

Following Walasek & Stewart (2015) and Tom et al. (2007), MGT responses 

were analyzed by fitting a logistic regression to each participant’s responses, which were 

dummy-coded as accept gamble = 1, reject gamble = 0: 

 
( )

1 ( )
bias gains losses

P accept
Log gain loss

P accept
  

 
     

 
  (6) 

The estimated partial regression weights βlosses and βgains characterize a participant’s 

sensitivity to prospective loss and gain, respectively. The absolute value of the ratio of 

each participant’s estimated βlosses to βgains were used to calculate loss aversion coefficients 

λ: 

 losses

gains





   (7) 

The intercept parameter βbias is included to account for any tendency to respond “accept” 

holding constant the influence of the prospective gains and losses. Thus, the resulting λs 

are a more precise function of participants’ differential sensitivities to losses and gains. 
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Note that loss aversion is observed when λ > 1; λ = 1 and λ < 1 suggest that participants 

are loss-neutral and loss-seeking, respectively. 

Figure 8 (top) shows that the empirical cumulative distribution function (ecdf) for 

|βlosses| is shifted to the right of the ecdf for βgains; a nonparametric two-sample 

Kolmogorov-Smirnov test suggested that these parameters were likely not sampled from 

the same underlying population distribution, D = 0.98, p < .001. Figure 8 (middle) pairs 

each participant’s estimated βgains and |βlosses|; a simple linear regression showed that, on 

average, participants’ |βlosses| were greater than their βgains, t(60) = 3.91, p < .001, b = 0.03, 

d = 0.25.   

Figure 8 (bottom) transposes the pdf of observed loss aversion coefficients λ 

(purple) and the pdf of a hypothetical “null” distribution where the mean λ = 1 (gray). 

The dashed vertical line intersects with λ = 1. Coefficients are bounded within the range 

of [0, +∞] and more closely resemble a log-normal distribution than a gamma 

distribution; Akaike information criterions for these distributions were 176 and 189, 

respectively. Therefore, the hypothetical null distribution is comprised of 1,000 values 

randomly sampled from a hypothetical log-normal distribution with a mean of 1 and 

standard deviation of 1.57—the sample λ standard deviation. The distribution of observed 

λs is shifted slightly to the right and exhibits greater density in its right tail than the null; a 

one-sample t-test conducted on natural-log transformed λ values supported the conclusion 

that the mean λ (λmean = 1.96; λmedian = 1.19) was greater than 1, t(60) = 5.28, p < .001, d = 

0.68. These data from the MGT task collectively show that loss aversion was observed: 

the decisions made by most participants to accept or reject the hypothetical gambles were 

driven more strongly by prospective losses than prospective gains. 
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Figure 8. Top. Empirical cumulative distribution functions of |βlosses| (red) and βgains (green). The arrow 

illustrates the difference between the two functions. Middle. Participant-pair plot of βgains and |βlosses|. 

Gray lines connect each participant’s estimated coefficients, and the black line connects coefficient 

means (targets). Bottom. Probability density functions for observed λs (purple) and a hypothetical null 

distribution (gray) where the mean λ = 1. The hypothetical distribution is comprised of 1,000 random 

samples from a lognormal distribution with a mean of 1 and observed sample λ standard deviation of 

1.57. The vertical dashed line is at λ = 1. *p < .001.  
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Can a reference-dependent model account for sequencing effects? 

The magnitude of the sequencing effect for each measure of delay discounting 

rate was computed as the difference between the ascending and descending rates. Simple 

linear regressions were used to model the relationship between the magnitude of the 

sequencing effect and natural-log transformed λ values; standardized coefficients (β) are 

reported. For each delay discounting measure, significance tests failed to reject the null 

hypothesis that the sequencing effect and loss aversion coefficients were unrelated: 

khyperbola, t(59) = -1.35, p = .18, β = -0.17; AUC, t(59) = 0.54, p = .59, β = 0.07; AUClogD, 

t(59) = 0.53, p = .60, β = 0.07; AUCordD, t(59) = 0.41, p = .69, β = 0.05. Figure 9 shows a 

scatterplot of magnitude of sequencing effect scores as measured by AUC and loss 

aversion coefficients along with the best-fitting linear model. It is important to note, 

however, that failure to reject the null hypothesis is not the same as evidence in its favor. 

Figure 9. Predicting sequencing effect magnitudes (in terms of AUC) by loss aversion 

coefficients. The blue dashed line represents the best-fitting unstandardized linear relationship 

(equation inset) between these two variables. 

 

Model: Y = 0.037X – 0.196, 

r2 = .005 
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Therefore, Bayesian estimation procedures were employed to examine the strength of 

evidence in favor of the null. 

Bayesian methods can provide evidence in support of the null hypothesis, and 

they allow the analyst to incorporate information regarding the distribution of parameter 

estimates in the form of a prior distribution (Kruschke, 2014). The priors used to estimate 

correlations between the sequencing effect and loss aversion were normally distributed 

and weakly informative: they predicted effect sizes centered around a mean of zero—

biasing parameter estimates towards a null effect—with a standard deviation of 0.5. This 

dispersion parameter is wide, and was chosen because there is no previous research on 

the correlation between these two variables. Thus, this prior reflects two reasonable 

assumptions: a relatively small correlation is more likely than a large one, but all are 

theoretically plausible. Bayesian estimation also allows the analyst to specify a non-

normal population distribution for the predicted variable. Therefore, no variables were 

transformed to conform to a normal distribution. The prior distribution and data (also 

called a likelihood distribution) combine to estimate a posterior distribution of parameter 

estimates, which is used to make inferences about likely parameter values. 

There is no threshold used to determine “statistical significance” in Bayesian 

estimation as in null hypothesis significance testing. However, multiple statistics can be 

used to drive inferences and are reported. Bayes Factors (BF01) represent the ratio of the 

marginal likelihoods for the null hypothesis (H0) relative to an alternative hypothesis (H1) 

given the data: 
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where D is the data. As Eq. 8 implies, marginal likelihoods may be interpreted as the 

probability of observing the data if the model in question is true. Thus, evidence mounts 

for H0 as BF01 increases from 1, and mounts for H1 as BF01 reduces from 1. Other 

statistics are the mean parameter estimate (bB)—the mean of the posterior distribution—

and 95% credibility intervals (CI 95: [min, max]), where min and max bound the central 

95% of the posterior distribution. Note that credibility intervals differ from confidence 

intervals in that the former represent a characteristic of the posterior distribution, whereas 

the latter predict the range within which 95% of parameter estimates will fall after 

repeated samples. 

A skewed normal distribution was specified as the population distribution from 

which sequencing effect magnitudes were drawn for khyperbola, as a D’Agostino test 

suggested that the sample distribution was positively skewed (skewness = 5.89), D(61) = 

8.47, p < .001. A normal distribution was specfied for all AUC measures. For each 

measure, a Bayesian simple linear regression estimated a posterior distribution strongly in 

favor of the null hypothesis that loss aversion coefficients and the magnitude of the 

sequencing effect were unrelated: khyperbola, bB = -.01, CI 95: [-.01, .01], BF01 = 14979.87; 

AUC, bB = .02, CI 95: [-.04, .08], BF01 = 352.92; AUClogD, bB = .02, CI 95: [-.04, .07], 

BF01 = 12107.36; AUCordD, bB = .01, CI 95: [-.03, .05], BF01 = 576.92. To interpret these 

results, consider statistics reported for AUC: the BF01 = 352.92 suggests that if one 

entered the hypothesis testing process with minimal information regarding the 

distribution of correlation coefficients, they should now be approximately 353 times more 

confident in H0 than H1. Said another way, the likelihood of observing these data under a 

null model is 353 times greater than the likelihood of observing them under an alternative 
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model. The CI 95: [-.04, .08] specifies that there is a .95 probability that the correlation 

between the magnitude of the sequencing effect and loss aversion lies between r = -.04 

and r = .08. 

Figure 10 superimposes the estimated posterior distribution of correlation 

coefficients between λ and the magnitude of the sequencing effect with the specified prior 

for AUC; plots of khyperbola, AUClogD, and AUCordD effects are qualitatively similar. 

Vertical dashed lines bound the 95% credibility interval for the posterior distribution. 

Two important features of Figure 10 assist with inferences made on the basis of this 

analysis. First, the posterior distribution is narrower than the prior, which reflects the fact 

that the data are informative and can be used to update one’s beliefs and exclude unlikely 

parameter estimates (e.g., those outside the CI). Second, the 95% credibility interval 

includes r = 0, which suggests that the null relationship is more probable than 

Figure 10. Superimposed prior (gray) and posterior (blue) distributions for the correlation coefficient 

between loss aversion and the magnitude of the sequencing effect as measured by AUC. The prior 

distribution is normal with mean = 0 and SD = 0.5, and the posterior is normal with mean = .02 and 

SD = .03; 95% of its density is within the range -.04 > r > .08, as shown by vertical dashed lines. 
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relationships of a magnitude outside the interval. Thus, the inference drawn from this 

analysis is clear: given the large BF01, minute effect size (r2 = bB
2 = .0004), and 95% 

credibility interval that includes r = 0, loss aversion likely accounts for an 

inconsequential amount of the variance produced by sequence condition. Furthermore, 

this result generalizes to all measures of delay discounting rate given the high 

convergence between estimated posterior distributions. 
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CHAPTER 4 

DISCUSSION 

The present research predicted a positive correlation between the sequencing 

effect in the ADT with individual differences in loss aversion as measured by the MGT. 

The sequencing effect and loss aversion were observed (Figs. 6, 7 and 8), but both 

frequentist and Bayesian analyses suggested that these variables are likely unrelated 

(Figs. 9 and 10). 

Researchers primarily use ln(k)hyperbola and/or AUC values to compare delay 

discounting rates between experimental groups or populations (Madden & Johnson, 

2010), with AUClogD and AUCordD seeing considerably less use. The present findings 

suggest that all of these measures are valid estimates of delay discounting rate, as 

evidenced by statistically significant correlation coefficients reported in Table 3. 

Moreover, pdfs of these variables (Fig. 6, right) suggest that log- and ordinally-

transformed delays produce a distribution of AUCs that may be closer to normal than 

conventional AUC values, albeit with slight negative skewness. Therefore, the data 

presented here suggest that it may be preferable to apply inferential statistical tests to 

these transformed measures in order to more closely adhere to assumptions of normality, 

and to not overweight long delays relative to short ones in the calculation of discounting 

rates. 

Hyperbola and hyperboloid goodness-of-fit were not assessed with measures of 

R2 despite its conventional use in the delay discounting literature. In a simulation study, 

Spiess and Neumeyer (2010) demonstrated the inadequacy of R2 as a descriptor of model 

fit in non-linear models. They instead advocate the use of Akaike and Bayesian 
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Information Criteria for researchers interested in model selection, as these measures had 

higher rates of correct rejections and acceptances compared to R2. Interestingly, these 

authors also assessed the quality of residual variance as a model selection tool and found 

that it performed no better than R2. Residual variance and SER are similar indices: SER is 

simply the square root of the residual variance. However, SERs were not used here for 

model selection, but rather for model description as they afford a highly intuitive 

interpretation in the context of indifference points. Researchers fitting equations to 

indifference points might consider replacing R2 as a goodness-of-fit index with a more 

appropriate, intuitive statistic—SER should be considered an attractive candidate due to 

its interpretability and simplicity. 

 Results from the MGT indicate that the majority of participants’ choices were 

consistent with the notion of loss aversion. A loss aversion coefficient λ > 1 suggests that 

a participant was more heavily influenced by prospective losses than prospective gains in 

the MGT, whereas a λ < 1 indicates the opposite. As can be seen in Figure 8 (bottom), 

participants generally exhibited at least mild loss aversion (λmean = 1.96; λmedian = 1.19); 

Equation 6 estimated 45 λs > 1, 15 λs < 1, and one λ = 1, and a test of ln(λ)s against the 

null hypothesis of ln(λ)mean = 0 estimated a Cohen’s d of 0.68—an effect size consistent 

with those reported by Kühberger (1998). Such convergence suggests that the MGT 

accurately captures sensitivty to framing effects, despite recent reports of potential 

methodological shortcomings relating to task stimuli (Walasek & Stewart, 2015). 

Nonetheless, numerous features of the MGT have yet to be fully explored. Task 

parameters such as the magnitude and ease of divisibility of dollar amounts in the MGT 

may have effects on estimates of loss aversion (Harinck, Van Dijk, Van Beest, & 
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Mersmann, 2007; Sokol-Hessner et al., 2009); thus, future research in this area is 

warranted. 

A perceptual account of sequencing effects in the ADT 

The primary hypothesis tested here was that sequencing effect magnitudes would 

be correlated with estimates of sensitivity to framing effects. Frequentist statistical tests 

failed to reject the null hypothesis, and Bayesian statistical procedures supported the null 

hypothesis that these variables are unrelated. These results call into question the influence 

of reference points on choice in tasks such as the ADT. Importantly, reference-dependent 

models include two decision-making stages: an initial framing stage followed by an 

evaluation stage (Kahneman & Tversky, 1979). The data shown here suggest that 

participants may not consciously frame changes in the SSR as losses or gains; rather, they 

might evaluate each decision without paying much attention to the direction of change in 

the SSR between trials. Thus, a perceptual account of the sequencing effect may be more 

tenable, as it does not rely on participants’ framing of improvements and decrements in 

SSRs as gains and losses from a reference point. 

Research in psychophysics has demonstrated that people’s estimates of stimulus 

magnitude are often biased towards the values assigned to previously-judged stimuli. As 

a result, people overestimate the magnitude of a stimulus when stimuli are presented in a 

Figure 11. A perceptual account of sequencing effects. 
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sequence 

Descending 

sequence 
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descending sequence, and underestimate it when stimuli are presented in an ascending 

sequence (Cross, 1973; Jesteadt, Luce, & Green, 1977; Petzschner, Glasauer, & Stephan, 

2015). It may be the case that participants make choices in the ADT by evaluating the 

initially non-preferred option (i.e., the LLR in the descending condition and the SSR in 

the ascending condition); importantly, this perceptual model of choice rests on this 

assumption. Figure 11 illustrates the hypothesis in the context of the ADT in the 

ascending and descending sequences. The number line represents relative values of the 

non-preferred alternative, from $1 to $1,000, and the filled circles represent to-be judged 

values of the initially non-preferred alternative of magnitude Sj within ascending (A) and 

descending (D) conditions. Sj is preceded by n previously-evaluated options (open 

circles)  δj-n. The estimated value of Sj within a trial is δj, which is subject to bias (θ) 

introduced by all or some of these preceding judgments. When the previous judgments 

were larger than Sj (as in D), δj > Sj; when they were smaller (as in A), δj < Sj.  

The logic of this perceptual hypothesis draws on a Bayesian framework of 

magnitude estimation recently discussed in Petzchner et al. (2015). In Bayesian inference, 

wider likelihood distributions (i.e., more variable observations) exert a weaker effect on 

the posterior distribution than narrower, more precise observations. This perceptual 

account proposes that the width of the likelihood distribution is determined by the 

certainty of the value of the present non-preferred alternative Sj. The posterior 

distribution of estimates δj is a product of the likelihood and prior distributions—the 

latter of which is some function of δj-n. Thus, less certain estimates of Sj exhibit a weaker 

influence on δj, which is biased towards the prior. It is important to note that, although Sj 

is a given numerical stimulus (e.g., $1,000), participants must estimate how much Sj is 
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actually worth to them, a process that introduces error. The greater the error about Sj, the 

stronger the relative influence of the prior δj-n, and the larger the bias θ of δj towards it. 

Therefore, if the width of the distribution of estimates Sj is greater in the ascending 

sequence than the descending sequence, then θD > θA, and choice is more biased towards 

the LLR in the descending sequence than in the ascending sequence.  

The present data and this Bayesian framework allow for an initial exploration of 

this perceptual hypothesis, albeit only at the group level. Coefficients of variation (CV = 

SD/Mean) provide a measure of variability of Sj that is relative to the mean estimate. As 

such, CVs should index the uncertainty of estimates of Sj between participants and hence, 

the width of the likelihood distribution. Therefore, CVs of indifference points (the closest 

possible approximation of Sjs available here) were calculated for each delay within the 

ascending and descending conditions at the group level. 

Figure 12 shows CVs of Sjs across the range of delays for the two conditions. 

There is a clear effect of sequence condition on CVs: there was more within-condition 

variability in Sjs in the ascending sequence relative to the descending sequence. This 

finding is consistent with the proposed perceptual account of the sequencing effect, as the 

CV of the likelihood distribution for Sj is inversely related to its influence on the 

posterior. Indeed, assuming priors of equal width and relative location across conditions, 

θD > θA. However, inferences drawn from this analysis should be qualified because they 

are based on group-level data, and may be unrepresentative of single participants’ 

repeated judgments. Furthermore, this hypothesis assumes that participants specifically 

attend to and evaluate the non-preferred alternative in each trial. Thus, whether or not the 

sequencing effect is due to the perceptual bias proposed here is a question that may be 
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better answered by a within-subjects design wherein the width of the likelihood 

distribution Sj is estimated for each participant with repeated sequences of each delay. 

Additional insights may also be provided by eye-tracking data to determine which 

stimulus participants allocate more attention towards in each trial. 

Methodological considerations 

 Alternatively, the null relationship between people’s loss aversion coefficients 

and sequencing effect magnitudes may be attributable to modality-specific processes in 

the MGT and ADT. For instance, the loss averse behavior elicited in the MGT may be 

specific to probabilistic outcomes, and sequencing effects in the ADT specific to delayed 

outcomes. That said, there are some similarities between delay and probability 

discounting processes; for example, Lawyer and colleagues (2010) found that IPs for 

sexual and monetary rewards elicited in both types of discounting tasks were well-

described by a hyperbolic function. Such findings are consistent with a single-process 

Figure 12. Group-level coefficients of variation (CV) of indifference points as a function of delay 

for the ascending (orange) and descending (blue) sequence conditions. The CV of a likelihood 

distribution is inversely related to its influence on the posterior. 
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view in which a shared mechanism underlies both probability and delay discounting 

(Rachlin et al., 1991). However, to the author’s knowledge, sequencing effects have not 

been explored in the context of probability discounting. Thus, it is unclear whether 

differences in discounting rate between ascending or descending sequences are caused by 

a shared delay–probability mechanism or some third variable; this awaits experimental 

psychologists as a line of future research. 

The sample size used in the present experiment was determined to be sufficient to 

detect a sequencing effect of size d = 0.57, and the present data suggest a comparable 

effect size (range of ds: .62–.72). However, a substantially greater sample size may be 

necessary to detect a statistically significant correlation between loss aversion 

coefficients and sequencing effect magnitude. A power analysis in G*Power suggested 

that 779 participants would be necessary to detect a significant correlation of r = .1 with 

power (1 – β) = .80 and α = .05 (Erdfelder et al., 2009). This sample size is reduced to 82 

if r = .3; however, both of these estimates are likely too large given the posterior 

distribution of correlation coefficients (see Fig. 10). Nonetheless, replication of the null 

effect reported here with a larger sample size would increase the confidence that the 

present results are not a Type II error (i.e. a false negative). 

Thirteen of 81 participants responded so uniformly in the MGT that a logistic 

regression was unable to estimate model parameters—such response patterns may be due 

to two task-specific parameters: the attractiveness of the gambles and the number of 

response options. First, the most attractive gamble in the MGT featured a potential gain 

of $332 and loss of $80—a gain/loss ratio of 4.15. Participants who are particularly loss 

averse might reject even these gambles; to encourage them to accept at least some 
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gambles, it might be necessary to make an offer they cannot refuse. Thus, future 

instantiations of the MGT might consider extending the sampling origin of losses and 

gains to include more alluring gain/loss ratios, or even some gambles that include 

prospective losses of $0. Second, forcing participants to either “accept” or “reject” 

gambles reduces the fine-grainedness of the assessment (Krosnick & Presser, 2010; 

Preston & Colman, 2000). That is, participants may possess some degree of uncertainty 

regarding their choice, and may be biased towards rejecting a gamble when they are 

unsure of their preference. To avoid this issue, MGT responses could be instead 

expressed on an ordinal scale with options such as “definitely accept,” “maybe accept,” 

“maybe reject,” and “definitely reject.” Such response scales have been used before in 

MGTs (e.g., Tom et al., 2007), but their merits and limitations have not yet been 

compared to those of binary scales. 

Conclusion 

 In summary, the present experiment sought to relate sequencing effects in a delay 

discounting task to loss aversion via a reference-dependent model of choice, and the data 

did not support this relationship. In fact, Bayesian procedures provided very strong 

support for the null hypothesis for each quantitative measure of delay discounting rate. 

As such, an attentive, motivational account of sequencing effects in the ADT is 

unsatisfactory. A low-level, perceptual hypothesis built within a Bayesian framework was 

proposed and furnished with some preliminary supporting evidence. Future research 

should explore methodological parameters that influence choice in the ADT and MGT, 

the covariance and applicability of various quantitative models of delay discounting rate, 

and the application of Bayesian analytical procedures to test the perceptual account of 
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sequencing effects. Importantly, the proposed perceptual hypothesis does not explain why 

indifference points are more variable in the ascending sequence than in the descending 

sequence. Thus, this observation is worthy of further study per se. 
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